PDFZilla – Unregistered

Total No. of printed pa	iges	= 5			
PH 131202					
Roll No. of candidate					

PDFZilla - Unnegistered

B. Tech 2nd Semester End-Term Examination

PHYSICS - II

Full Marks-100 Pass Marks-35 Time-Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following questions: $3\times10=30$
 - (a) What are X-rays? What is the wavelength range of X-rays?
 - (b) State Weber-Fechner law for acoustics.
 - (c) Define the term, 'coefficient of absorption'.
 - (d) What do you mean by metastable state in PD FeZilla Unregistered
 - (e) What are the characteristics that differentiate ordinary light from laser?
 - (f) Explain with diagram the three sections of optical fiber.

[Turn over

- (g) What is group velocity of matter wave?
 - (h) Show that the wavelength associated with a particle having mass 'm' and kinetic energy PDFZilla – Unregistered
- (h) What is Meissner effect?

'E' is $\lambda = \frac{h}{\sqrt{2mE}}$.

- Define zero bias of a P-N junction diode.
- What are Cooper Pairs?
- Answer any five questions:

 $4 \times 5 = 20$

- 3. Answer any four questions: (a) Explain how the characteristic X-ray Spectra - Unregistered (a) are produced. How are the wavelengths of characteristic X-rays determined?
- (b) What is meant by time of reverberation? Discuss Sabine's formula.
- (c) Discuss any four methods of pumping to achieve population inversion in laser.
- State few applications of laser (minimum eight).
- Discuss signal loss due to attenuation Fizilla Unregistered optical fiber.
- (f) Distinguish between Type-II and Type-II superconductors. Give three examples for each type.
- (g) What are α and β of a transistor? Derive the relation between them.

An X-ray tube operated at 40 kV emits a continuous X-ray spectrun with a short wavelength limit $\lambda_{min} = 0.31\text{Å}$. Calculate Planck's constant h.

(Velocity of light = 3×10^8 m/sec, Charge of electron = 1.6×10^{-19} C).

- (b) Absorption coeffcient of an empty assembly hall of height 10m, breadth 15m and length 20m is 0.106. Find the reverberation time of the hall.
- (c) Calculate the minimum length of an iron rod to generate ultrasonic waves of frequency 0.05 MHz.

(Modulus of elasticity of iron = $1.15 \times 10^{11} \,\text{Nm}^{-2}$, Density of iron = 7.25×10^{3} kgm^{-3}).

 $5 \times 4 = 20$

- (d) A laser source of wavelength 690 Nm and power of 70 mW and an aper Life illum is in registered Discuss the construction and working prinfocused with a lens of local length of 0.1m. Calculate the area and intensity of the image.
- (e) An optical fiber has fiber index 1.30 and fractional refractive index change $\Delta = 0.03$. Find the numerical aperture and acceptance angle.
- (f) What potential difference must be applied to an electron source so as to produce electrons having wavelength equal to 0.24×10⁻¹⁰m.
- The position and momentum of a 1 KeV electron are simultaneously determined. If the position is located with 2A, what is the percentage of uncertainty in momentum?
- PDFzifia³= Unregistered Answer any three questions:
 - (a) State Moseley's law. Derive Moseley's law with the help of Bohr's theory.
 - (b) Describe the construction and working principle of piezo-electric oscillator for production of ultrasonic waves.

(4)

- ciple of Ruby laser with diagram.
- (d) Discuss the block diagram of optical fiber communication system and the operation of different parts.
- PDFZilla Unregisterede) State and explain Heisenberg's uncertainty principle. Apply this principle to conclude that a proton exist inside the atomic nucleus.
 - Explain Hall effect and show that for a n-type semiconductor, the Hall coefficient $R_H = \frac{1}{Ne}$, where 'N' is the number of electron per cubic meter and 'e' is electronic charge.