PDFZilla – Unregistered

Total No. of printed pages = 6	\$\$ \$\$
EE 131405	
Roll No. of candidate	

2017

B. Tech P.D.F.Zilla Eddfregistereth

ELECTROTECHNOLOGY

Full Marks-100 Pass Marks-35 Time-Three hours

The figures in the margin indicate full marks for the questions.

GROUP - A

- 1. Answer any ten questions:
- $3 \times 10 = 30$
- (a) What is 'critical resistance' as referred to DC shunt generators? Explain.
- (b) What are the necessary conditions for voltage build-up in a DC shunt generator?
- (c) A 6-pole lap wound DC generator has 600 conductors on its armature. The flux per pole is 0.02 wb. Calculate the gistier edich the generator must be run to generate 300V.
- (d) A DC series motor should never be started without some load on it. Why?

[Turn over

(e) What is the necessity of a starter for a DC motor?

GROUP - B

PDFZilla – Unregistered 2. Answer any eight questions:

 $5 \times 8 = 40$

- (f) Differentiate between lap and wave windings.
- (g) Calculate the distribution factor for a 36-slot, 4-pole, single layer, 3-phase winding of an alternator.
- (h) Explain the terms as referred to alternator: PDFZilla Unregistered
 - (i) Pitch factor
 - (ii) Distribution factor.
- (i) What are the conditions that need to be satisfied for paralleling two alternators?
- (j) A 6-pole, 3-phase, 50 Hz induction motor is running at 940 rpm, calculate the slip and the frequency of rotor currents.
- (k) Why does rotor rotate in the same direction as the rotating magnetic field in a 3-phase induction motor?
- (l) Draw the equivalent circuit of a polyphase induction motor.
- (m) What are V-curves?
- (n) What is the use of damper windings in synchronous motors?

- (a) Derive the condition for maximum efficiency in a DC generator.
- (b) Discuss about the various losses present in a DC machine.
- (c) What are the different methods of decreasing the effects of armature reaction in a DC machine?
- (d) Develop an expression for induced emf for an alternator.
- (e) Draw and explain the slip-torque characteristics of a 3-phase induction motor.
- Unregistered Squirrel-cage induction motor?
 - (g) A single-phase induction motor is not self-starting. Why?
 - (h) Discuss about the various applications of synchronous motors.

(3)

51/EE 131405

[Turn over

- load slip of 4%. The rotor resistance/phase is 0.01\O and standstill reactance/phase of 0.1Ω . Find the ratio of maximum to full load torque and the speed at which the maximum torque occurs.
- has 880 conductors and delivers 120A. The brushes have been displaced through 3 angular degrees from the geometrical axis. Calculate:
 - (i) Demagnetising amp-turns/pole
 - (ii) Cross-Magnetising amp-turns/pole.

GROUP - C

- Answer any three questions:
 - (a) A 25kW, 250V DC shunt generator has armature and field resistances of 0.06Ω and 100Ω respectively. Determine the total armature power developed when working as a:
 - generator delivering 25kW output and

(4)

(ii) motor taking 25kW as input.

- A 50 Hz, 8-pole induction motor has political Unregistered DC shunt motor takes a current of 5A on no-load. The resistances of the armature and field circuit are 0.22Ω and 250Ω respectively. Find the efficiency when loaded and taking a current of 100A.
- (c) The Hopkinson's test on two similar shunt An 4-pole wave-wound DC motor armature - Unregistered gave the following full-load data: Line voltage = 110V, Line current = 48A, Motor armature current = 230A. Field currents are 3A and 3.5A; armature resistance of each machine is 0.035Ω . Calculate the efficiency of each machine assuming a brush contact drop of 1 volt per brush.
 - The power input to a 500V, 50 Hz, 6-pole, 3-phase induction motor running at 975 rpm is 40kW. The stator losses are 1kW and the - Unregistered and windage losses total 2kW. Calculate:

(5)

- the slip,
- (ii) the rotor copper loss,
- (iii) shaft power and
- (iv) the efficiency.

PDFZilla – Unregistered

- (e) From the following test results, determine the voltage regulation of a 2000V, 1-phase alternator delivering a current of 100A at:
 - (i) unity power factor
 - (ii) 0.71 lagging power factor.

Test results: Full-load current of 100A is produced on short-circuit by a field excitation PDF and LaA. Untagistic resistance on open-circuit by the same excitation. The armature resistance is 0.8Ω .

- (f) Write short notes on any two of the following:
 - (i) Commutation process
 - (ii) Testing of DC machines
 - (iii) AC Servo motors
 - (iv) Stepper motors.

PDFZilla - Unregistered