PDFZilla – Unregistered

PDFZilla - Unregistered

PDFZilla - Unregistered

Total No. of printed pages = 6

ME 131601

Roll No. of candidate

2017

B. Tech 6th Semester End-Term Examination

HEAT TRANSFER - II

Full Marks - 100 Pass Marks - 35 Time - Three hours

The figures in the margin indicate full marks for the questions.

1. Answer any six of the following in brief:

 $6 \times 2 = 12$

- (a) What is reflectivity and transmissivity?
- (b) What is shape factor?
- (c) What are the values of emissivity and transmissivity for a black body?
- (d) What would be the solid angle subtended by a complete hemisphere?

[Turn over

- (e) For a steel body, the absorptivity and reflectivity are specified as 0.3 and 0.5 respectively. What would be the transmissivity of the body?
- (f) If the temperature of a solid surface decreases from 527°C to 37°C, then what would be the decrease in the ratio of the emissive power of the body?
- (g) An enclosure consists of five surfaces, 1, 2, 3, 4 and 5. The shape factors for radiation heat transfer are F₁₁ = 0.1, F₁₂ = 0.2, F₁₃ = 0.15, F₁₄ = 0.4 (the subscripts 1, 2, 3, 4, 5 represents respective surfaces). The surface areas A₁, A₂, A₃, A₄ and A₅ are 4m², 1m², 2m², 3m² and 5m² respectively. Find the value of the shape factor F₅₁.
- 2. Answer any six of the following: $6\times3=18$
 - (a) An opaque surface is at 50°C and its emissivity is 0.5. If the emissive power of the surface is 600 W/m² and is exposed to solar radiation at the rate of 1200 W/m², then what would be the radiosity of the surface?

(2)

- (b) Find the shape factor of a hemispherical body placed on a flat surface with respect to itself.
- (c) A circular tube of equal length and diameter is shown below:

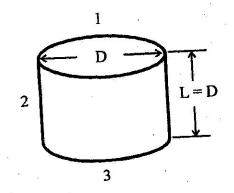


Figure-1

A circular tube of equal length and diameter

The tube consists of three surfaces, 1 is the top surface, 2 is the sidewall and 3 is the bottom surface. Find the value of shape factor F_{12} if F_{13} is 0.17.

(d) In a counter flow heat exchanger, air enters at 70°C and leaves at 40°C. Water enters 30°C and leaves at 50°C. Find the value of LMTD in °C.

- (e) In a counter flow heat exchanger, water $(c_p = 4.18 \text{ kJ/kgK})$ enters at 80°C with a mass flow rate of 0.5 kg/s. Air $(c_p = 1 \text{ kJ/kgK})$ enters at 30°C with a mass flow rate of 2.009 kg/s. What would be the LMTD (in °C) of the heat exchanger if its effectiveness is 0.8?
- (f) In a counter flow heat exchanger, if $\dot{m_h}c_h = \dot{m_c}c_c$ and the NTU is equal to 1, then what would be the effectiveness of the heat exchanger?
- (g) Would the heat exchanger be counter flow or parallel flow, if the hot fluid enters at 65°C and leaves at 40°C and the cold fluid enters at 18°C and leaves at 43°C?
- 3. Answer any *two* of the following: $2\times5=10$
 - (a) Determine the net radiation per square metre between two very large parallel plates at temperatures 327°C and 127°C. The emissivities of the hot and cold plates are 0.75 and 0.65 respectively.

 Stefan-Boltzmann constant is 5.67×10⁻⁸, W/m²K.

(4)

- (b) Two long parallel surfaces have emissivity of 0.85 each. Determine the number of thin parallel shields, each of equal emissivity, required to reduce the net heat exchange by 80%.
- (c) A counter flow heat exchanger is used to heat water with hot exhaust gas coming out from an engine. The water (c_p = 4180 J/kg°C) flows at a rate of 2 kg/s, while the exhaust gas (c_p = 1030 J/kg°C) flows at the rate of 5.25 kg/s. If the surface area of heat transfer is 32.5 m² and the overall heat transfer coefficient is 200 W/m² °C, what is the NTU for the heat exchanger?
- 4. Answer any three of the following: $3\times20=60$
 - (a) A small sphere (outside radius = 30 mm) is maintained at a temperature of 300°C. It is placed at the geometric centre of a large sphere (inside radius = 180 mm) which is maintained at 15°C. Assuming both the surfaces to be black bodies, calculate the following:
 - (i) The fraction of emission from the large sphere, which is absorbed by the inner surface of the large sphere itself.

(5)

- (ii) Net rate of heat exchange between the two spheres.
- (b) The flow rates of hot and cold water streams running through a parallel flow heat exchanger are 0.2 kg/s and 0.5 kg/s respectively. The inlet temperatures of the hot and cold fluids are 75°C and 20°C respectively. The exit temperature of hot water is 45°C. If the individual heat transfer coefficients on both sides are 650 W/m²°C, calculate the area of the heat exchanger.
- (c) Explain film condensation and dropwise condensation processes with the help of diagrams.State any five assumptions of Nusselt theory

State any five assumptions of Nusselt theory of condensation.

- (d) Write short notes on the following:
 - (i) Heat exchanger
 - (ii) Wien's displacement law
 - (iii) Solid angle
 - (iv) Irradiation and radiosity.