PDFZilla – Unregistered

PDFZilla - Unregistered

PDFZilla - Unregistered

Total No. of printed pages = 6

CS 131601

Roll No. of candidate

2017

B. Tech 6th Semester End-Term Examination SIGNALS SYSTEMS

Full Marks-100 Pass Marks-35 Time-Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer any six questions:
- $6 \times 2 = 12$
- (a) Sketch the following signals:
 - (1) X(t) = 2t
- , for all t
- (2) X(n) = 2n 3
- , for all n
- (b) State the necessary and sufficient condition for the LTI continuous time system to be casual.
- (c) What is aliasing?
- (d) Define unilateral and bilateral Z-Transform.

Tun oue

- (e) Find the overall impulse response h(n) when two systems $h_1(n) = u(n)$ and $h_2(n) = \delta(n) + 2\delta(n-1)$.
- (f) State any two properties of ROC of the Laplace transform X(S) of an signal x(t).
- (g) Define convolution sum with its equation.
- (h) What is the condition for the existence of DIFT?
- 2. Answer any six questions:

 $6 \times 3 = 18$

- (a) Explain the relationship between Fourier transform and Laplace transform.
- (b) Determine whether the signal x(t) = sin 20πt
 + sin 5πt is periodic or not? If yes, then find the fundamental period.
- (c) Find whether signal x(n)=(1/2)ⁿ u(n) is energy or power signal and calculate their energy or power.

(2)

(d) Write the equations for the waveforms using shifted step functions:

- (e) Find the odd and even components of the signal X(n) = { -2, 1, 2,-1, 3}
- (f) Find whether the system with impulse response $h(t) = e^{-2|t|}$ is stable or not.
 - What is sampling theorem? Define sampling period and sampling rate.
- (h) Determine the Laplace transform of a unit step function.
- 3. Answer any eight questions:

 $8 \times 5 = 40$

(a) State and prove the frequency shifting property of Fourier transform.

(b) Find out the convolution of the signals given below using the DTFT

$$X_1(n) = (1/2)^n u(n)n ; x_2(n) = (1/3)^n u(n)$$

(c) Obtain the cascade realization of the system described by the difference equation

$$y(n) - \frac{1}{4}y(n-1) - \frac{1}{8}y(n-1) = x(n) + 3x(n-1) + 2x(n-2)$$

- (d) Find the Laplace transform of the signal $x(t) = e^{-at} u(t)$ and its region of convergence.
- (e) Write the basic classifications of signals and systems.
- (f) Find the inverse Z-transform of

$$X(Z) = \frac{1}{1 - \frac{1.5}{z} + 0.5z^{-2}}$$
 where ROC: $|Z| > 1$

(g) Find the transfer function and impulse response of a casual LTI system

$$\frac{d^2y(t)}{dt^2} + 2\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} - 2x(t)$$

(h) Find the nyquist rate and nyquist interval for the signal

$$X(t) = \frac{1}{2\pi} \cos(4000 \pi t) \cos(1000\pi t)$$

- (i) Find the Z-transform of the sequence $x(n) = a^{n-1}u(n-1)$.
- (j) Find the linear convolution of $x(n) = \{1,2,3,4,5,6\}$ with $y(n) = \{2,-4,6,-8\}$.
- 4. Answer any three questions:

- (a) Determine whether the discrete time system $y(n) = x(n)\cos \omega n$
 - (1) Memoryless
 - (2) Stable
 - (3) Casual
 - (4) Linear
 - (5) Time invariant.
- (b) Compute the convolution of x(t) and h(t) sequences

$$X(n) = \begin{cases} 1, & 0 \le t < 2 \\ 0, & \text{otherwise} \end{cases}$$

$$H(n) = \begin{cases} 1, & 0 \le t < 3 \\ 0, & \text{otherwise} \end{cases}$$

(c) Consider a casual LTI system that is characterized by the difference equation

$$y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = 2x(n)$$

Find the frequency response H(e^{jw}) and the impulse response h(n) of the system.

(d) Find the trigonometric Fourier series for the half wave rectified sine wave shown in the figure below.

(e) Define Z-transform. Describe at least four properties of Z-transform.