PDFZilla – Unregistered

PDFZilla - Unregistered

PDFZilla - Unregistered

Total No. of printed pages = 6

MA 131101

Roll No. of candidate

2017

B.Tech. 1st Semester End-Term Examination

MATHEMATICS — I

(Old Regulation)

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No. 1 and any six from the rest.

PART A

1. Answer all questions:

 $(10 \times 1 = 10)$

(a) If
$$u = f(x/y)$$
, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is ______

- (b) If f(x) has derivatives of every order in the neighborhood of zero, under what conditions f(x) can be expanded in an infinite series.
- (c) Define homogenous function.
- (d) The integrating factor for $\frac{dy}{dx} + Py = Q$ is
- (e) $X = r \cos \theta$, $Y = r \sin \theta$ then $\frac{\partial(x, y)}{\partial(r, \theta)}$?

[Turn over

- (f) Write down the reduction formula for $\int_{0}^{\pi/} \sin^{n} x \, dx$.
- (g) The value of $\int_{0}^{\pi/2} \cos^6 x \, dx$ is —————.
- (h) Under what condition, the equation M(x, y) dx + N(x, y) dy = 0 become exact?
- (i) What is the solution of y = px + f(p)?
- (j) The complementary function for $\frac{d^2y}{dx^2} y = e^x$ is

PART B

2. Answer the following questions:

(a) Find
$$y^n$$
, if $y = \cos^2(5x + 4)$. (3)

- (b) If $y = \tan^{-1} x$, then prove that $(1+x^2)Y_{n+1} + 2nxY_n + n(n-1)Y_{n-1} = 0 \quad \text{and also}$ find Y_n at x=0. (4+1=5)
- (c) Expand, $\log(1+x)$ in power of x. (3)
- (d) If v = f(2x-3y,3y-4z,4z-2x), then prove that $6v_x + 4v_y + 3v_z = 0.$ (4)

- 3. Answer the following questions:
 - (a) Solve: $(y\cos x + \sin y + y) dx + (\sin x + x\cos y + x) dy = 0.$
 - (b) Find the n^{th} derivative of $Y = \frac{x^2}{(x-a)(x-b)}$. (4)
 - (c) If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$, then prove that, $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)} = r^2 \sin \theta$. (5)
 - (d) If, $u = \frac{5xy^2}{z^3}$ and error in x, yz are 0.001, compute percentage error when x = y = z = 1.
- 4. Answer the following questions:
 - (a) Find the point upon the plane ax + by + cz = pat which the function $f = x^2 + y^2 + z^2$ has a minimum and find the minimum. (5)
 - (b) Evaluate $\int_{0}^{\pi/4} \tan^{6} x \, dx \,. \tag{3}$
 - (c) If, $f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(\theta)$, find θ when,
 - $x \to 1$, where $f(x) = (1-x)^{\frac{5}{2}}$. (4)
 - (d) Sketch the polar curve $r = a \sin 3\theta$. (3)

MA 131101

3

[Turn over

- 5. Answer the following questions:
 - (a) If $x^3 + y^3 3axy = 0$, then find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. (4)
 - (b) Deduce the reduction formula for $\int_{0}^{\pi/2} \sin^{m} x \cos^{n} x dx$, where m and n are both positive integers greater than 1. (5)
 - (c) Find the entire area of the cardioid $r = a(1 + \cos \theta)$.
 - (d) Solve: $(x + \sin y) dx + (x \cos y 2y) dy = 0$. (3)
- 6. Answer the following questions:
 - (a) Evaluate, $\int_{0}^{\infty} \frac{e^{-ax} \sin x}{x} dx$ by applying differentiation under integral sign and hence, evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$. (5)
 - (b) Find the area of the region bounded by the parabolas $y = 6x x^2$ and $y = x^2 2x$. (4)
 - (c) Find the integrating factor of $(3x^2y^4 + 2xy) dx + (2x^3y^3 x^2) dy = 0.$ (2)
 - (d) Solve: $y 2px = \tan^{-1}(xp^2)$. (4)

- 7. Answer the following questions:
 - (a) Prove that, $\beta(m,n) = 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$. (4)
 - (b) Compute, $\iiint \frac{dxdydz}{(x+y+z+1)^3}$ if the region of integration is bounded by the coordinate planes and the plane x+y+z=1. (4)
 - (c) Solve: $(D^2 5D + 6) y = e^x \cos 2x$. (4)
 - (d) Evaluate, $\int_{0}^{1} \int_{x^{2}}^{2-x} xy \, dx \, dy$ (3)
- 8. Answer the following questions:
 - (a) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$, using triple integration. (5)
 - (b) Prove that $\beta(m,n) = \beta(n,m)$. (3)
 - (c) Solve by method of variation of parameters the equation

$$\frac{d^2y}{dx^2} + 4y = \tan 2x. \tag{4}$$

(d) Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about major axis.

9. Answer the following questions:

(a) If
$$u = \log\left(\frac{x^4 + y^4}{x + y}\right)$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3$.

(3)

(b) Solve the simultaneous differential equations

 $\frac{dx}{dt} - y = t$

$$\frac{dy}{dt} + x = t^2.$$

Solve the differential equation $(D^2-2D)y=e^x\sin x$ by the method of undermined coefficient.

(c) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, prove that,

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{9}{(x+y+z)^2}.$$
 (5)

(d) Evaluate $\int_{0}^{\pi/2} \sin^6 x \cos^5 x \, dx.$ (2)