PDFZilla – Unregistered

PDFZilla - Unregistered

PDFZilla - Unregistered

Total No. of printed pages = 4

ET 131304

Roll No. of candidate	

2017

B.Tech. 3rd Semester End-Term Examination Computer Science Engineering DIGITAL SYSTEMS

Full Marks – 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No. 1 and any six from the rest.

- 1. Fill in the blanks:
 - (a) 9's complement of no 5968 is ———
 - (b) In a K map, iff all the cell contains 1, the output becomes————
 - (c) The octal equivalent of $(10111011)_2$ is
 - (d) Binary equivalent of (1101101) grey is
 - (e) In a X-OR gate, O/P is high only when both the inputs are ______
 - (f) Fastest among logic families is

[Turn over

*	(g)	Race around condition occurs $J = $ and $K = $	when –.		4.	(a)	Simply using K map $Y = \Sigma m(0, 1, 2, 3, 5, 7, 10, 13, 15)$. (5)
v	(h)	A simple flip-flop is a ——————————————————————————————————	- bit			(b)	Perform the following BCD addition. (5)
	(i)	In positive logic 5 V is considered as ———					(i) $(679.6)_{10} + (536.8)_{10}$
	(j)	To design a MOD 5 synchronous counter, a	no of	0	4		(ii) $(342.8)_{10} + (108.9)_{10}$.
	, 07	flip flop requires is ————.	10 01		¥.	(c)	Expand $Y = ABC + \overline{B}CD + BD$ to minterm and
2.	(a)	Convert the decimal no (98) ₁₀ into	(5)				maxterm. (5)
		(i) Binary code		9	5.	(a)	Draw the logic diagram of full adder using two
		(ii) Grey code					half adder. Justify with logic expression starting from the truth table. (5)
	3	(iii) BCD code				(b)	Design a two bit comparator. (5)
	•	(iv) Excess 3 code					Design a 8:1 MUX using 4:1 MUX and 2:1 MUX.
		(v) Octal code			1	(c)	Design a 6.1 MOA using 4.1 MOA and 2.1 MOA. (5)
	(b)	(b) Find the base x $(107)_{10} = (153)_x$			6.	(a)	Explain Race around condition. How it can be avoided?
			(3)	ş			
	(c)	Perform the binary addition	(2)			(b)	Convert SR FF into JK FF. (5)
		110110				(c)	What is parity generator? Design an even
		+ 110001				(-)	parity generator. (5)
		+ 111	a ^t	*	7	(-)	NY14
	(d)	Using 2's complement $(23)_{10}$ from $(46)_{10}$.	(5)		7.	(a)	What is counter? Explain different types of triggering. (2)
3.	(a)	Realize NAND gate using only NOR gate.	(5)			(b)	Differentiate between asynchronous and
. ((b)	Prove using Boolean algebra	,				synchronous counter with suitable diagram. (3)
		$AB + \overline{A}C = (A + C)(\overline{A} + B)$.	(5)			(c)	Explain the operation of ring counter with neat diagram. (5)
	(c)	Implement the following expression using a NAND gate $Y = A\overline{B}C + B\overline{C} + \overline{D}$.	only (5)			(d)	What is shift register? What are the modes of
							operation of a shift register? Explain. (5)

3

(5)

(5)

Draw the circuit diagram of TTL NAND gate 8. (a) and explain its operation. Minimise the following expression using Quine-(b) Mc-Clusky method. $F = \Sigma m(0, 2, 3, 5, 7, 8, 12, 13).$ (7)9. Design a MOD 5 synchronous counter using JK flip flop and implement it. (10)Write short notes on: (5)**FPGA** (i)

(ii)

ROM.