PDFZilla – Unregistered

PDFZilla - Unregistered

PDFZilla - Unregistered

Total No. of printed pages = 6

ME 131303

.(e)

Roll No. of candidate			
2017			
B.Tech. 3rd Semester End-Term Examination			
Mechanical			
BASIC THERMODYNAMICS			
Full Marks – 100 Time – Three hours			
The figures in the margin indicate full marks for the questions.			
		wer Question No 1. and any six questions from rest. $(10 \times 1 = 10)$	
1.	Ans	Answer the following.	
* :	(a)	If barometer reads 760 mm of Hg, then 5 cm Hg vacuum = kPa absolute pressure.	
	(b)	A is a device which increases the velocity of a fluid at the expense of its pressure drop whereas a is a device which increases the pressure of a fluid at the expense of its kinetic energy.	
	(c)	The property introduced by the first law of thermodynamics is ————.	
J.	(d)	When a process remains infinitesimally close to an equilibrium state at all times, it is called	

In a reversible adiabatic process, -

[Turn over

remains constant.

- (f) Work done for a polytropic process 1-2 is given by:
 - (i) $W_{1-2} = \frac{p_1 v_1}{n-1} \left[1 \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} \right]$
 - (ii) $W_{1-2} = \frac{p_1 v_1}{1-n} \left[1 \left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} \right]$
 - (iii) $W_{1-2} = \frac{p_1 v_1}{n-1} \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} 1 \right]$
 - (iv) $W_{1-2} = \frac{p_1 v_1}{1+n} \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} 1 \right]$
- (g) Properties of substances like pressure, temperature and density, in thermodynamic coordinates, are
 - (i) Path functions
 - (ii) Point functions
 - (iii) Cyclic functions
 - (iv) Thermodynamic functions
- (h) The value of index, n=1, in polytropic process $pv^n=C$, indicates
 - (i) A reversible process
 - (ii) An isothermal process
 - (iii) An adiabatic process
 - (iv) An irreversible process

- (i) Amount of oxygen required for complete combustion of 5 kg of carbon is
 - (i) 2.6 kg
- (ii) 13.33 kg
- (iii) 7.33 kg
- (iv) 5.33 kg
- (j) According clausius' inequality, a cycle is reversible when

(i)
$$\oint \frac{dQ}{T} = 0$$
 (ii) $\oint \frac{dQ}{T} < 0$

(iii)
$$\oint \frac{dQ}{T} > 0$$
 (iv) $\oint \frac{dQ}{T} \le 0$

- 2. Write notes on:
 - (a) Bomb calorimeter
 - (b) Carnot cycle
 - (c) Formation of 1 kg steam for ice at 0°C at 1 bar pressure. (5+5+5)
- 3. (a) State both the statements of 2nd law of thermodynamics.
 - (b) Differentiate between
 - (i) Extensive and intensive properties
 - (ii) Absolute pressure and gauge pressure
 - (iii) SI and CI engines
 - (iv) Point and path functions
 - (v) Reversible and irreversible processes.

(5+10)

- 4. (a) Show that no heat engine working between two fixed temperatures can have efficiency greater than that of a reversible engine working between the same temperatures.
 - (b) What is the principle of thermometry? Name any three thermometers along with their thermometric properties
 - (c) Prove that energy is a property of a thermodynamic system. (5+5+5)

- 5. (a) Explain in details the rankine cycle with a p-v diagram and derive its efficiency.
 - (b) In an air standard diesal cycle, the compression ratio is 16 and at the beginning of isentropic compression, the temperature is 15°C and the pressure is 0.1 MPa. Heat is added until the temperature at the end of constant pressure process is 1480°C.

Calculate:

- (i) Cut off ratio
- (ii) Heat supplied per kg of air
- (iii) Cycle efficiency

(iv) m.e.p.
$$(5+10)$$

- 6. (a) What are proximate analysis and ultimate analysis of fuel?
 - (b) Dry exhaust gas from an oil engine had the following composition by volume:

$${
m CO_2} = 8.85\%, \ {
m CO} = 1.5\%, \ {
m O_2} = 6.8\%, \ {
m N_2} = 80.15\%$$

The fuel oil had a percentage composition by mass as:

$$C = 85\%$$
, $H_2 = 14\%$, $O_2 = 2\%$

- (i) Convert this volumetric analysis to percentage analysis by weight
- (ii) Determine the A/F ratio. (5+10)

- 7. (a) Define the following terms: Degree of superheat, calorific value, stoichiometric air, HCV and LCV.
 - (b) A reversible heat engine which drives a reversible refrigerator operates between a source and a sink at temperatures 450°C and 38°C respectively. The refrigerator has its source at -25°C and rejects heat to the sink at 38°C as the heat engine. The heat energy transfer to the heat engine is 2100 kJ and the network output of the combined engine-refrigerator plant is 350 kJ. Determine.
 - (i) The heat transfer to the refrigerant and the net heat transfer to the sink.
 - (ii) Recondiser (i) Given that the efficiency of the heat engine and COP of the refrigerator are each 50% of their maximum possible value. (5+10)
- 8. (a) What are steady flow devices? Explain with examples. What assumptions are made during the analysis of a system undergoing steady flow process?
 - (b) In a steam power plant operating on ideal Rankine cycle, steam enters the turbine at 20 bar, 350°C and expands to condenser pressure of 0.1 bar. It then condenses to saturated liquid water and is pumped back into the boiler by a pump. Determine the cycle efficiency.

5

- In a steam power station, steam flows steadily (c) through a 0.25 m diameter pipeline from the boiler to the turbine. At the boiler end, the steam conditions are found to be: p = 4 Mpa, $h = 3213.6 \, kJ/kg$ $t = 400^{\circ} C$, $v = 0.073m^3/kg$. At the turbine end, the found to be p = 3.5 MPa, are conditions $h=3202.6\,kJ/kg$ $t=390^{\circ}C$. v = 0.084m³ / kg. There is heat loss of 8.5 kJ/kg. from the pipeline. Calculate the steam flow (5+5+5)rate.
- 9. (a) Establish the inequality of claussius.
 - (b) An engine working on Otto cycle is supplied with air at 0.2 MPa, 36°C. The compression ratio is 8. Heat supplied is 2200kJ/kg. Calculate the cycle efficiency, maximum pressure and temperature of the cycle.
 - (c) Calculate the entropy change of the universe as a result of a copper block of 600g mass and with Cp of 150 J/k at 100°C is placed in a lake at 8° C.

 (5+5+5)