PDFZilla – Unregistered

PDFZilla - Unregistered

PDFZilla - Unregistered

Total No. of printed pages = 6
EE 131303
Roll No. of candidate
2017
B.Tech. 3rd Semester End-Term Examination
Electrical
MATERIAL SCIENCE
Full Marks – 100 Time – Three hours
The figures in the margin indicate full marks for the questions.
Answer Question No. 1 and any six from the rest.
Answer the following questions: $(10 \times 1 = 10)$
(a) Coordination number in simple cubic crystal structure
(i) 2
(ii) 3 (iii) 4
(iii) 4 (iv) 6
(b) Identify a good dielectric.

(i)

Iron (ii) Ceramics (iii) Plastic

(iv) Magnesium

[Turn over

- (c) Dielectric loss is a function of
 - (i) Frequency
 - (ii) Temperature
 - (iii) Both
 - (iv) None
- (d) Edge dislocation Imperfection is a sub type of
 - (i) Point Imperfections
 - (ii) Line Imperfections
 - (iii) Volume Imperfection
 - (iv) Surface Imperfection
- (e) Materials which can store electrical energy are
 - (i) Magnetic material
 - (ii) Semiconductor
 - (iii) Dielectric material
 - (iv) Super conductors
- (f) Drift Current in semiconductor is due to
 - (i) Electric field
 - (ii) Gradient of carrier concentration
 - (iii) Magnetic field
 - (iv) Holes
- (g) Identify the ferroelectric material
 - (i) Rochelle salt
 - (ii) Quartz
 - (iii) Zinc oxide
 - (iv) Lead zirconate

- (h) The materials having low coercive force are suitable for making
 - (i) Weak magnets
 - (ii) Soft magnets
 - (iii) Hard/Permanent magnets
 - (iv) None of the above
- (i) The ratio of intensity of magnetization to magnetization force is
 - (i) Flux density
 - (ii) Susceptibility
 - (iii) Permeability
 - (iv) None of the above
- (j) The material which has negative value of susceptibility is
 - (i) Ferromagnetic
 - (ii) Paramagnetic
 - (iii) Diamagnetic
 - (iv) Ceramic
- 2. (a) For a BCC crystal, find out the relation between atomic radius (r) and lattice constant (a) and also the atomic packing factor for BCC crystal structure. (2 + 3 = 5)
 - (b) Find out the Miller Indices for the following intercepts: (1 + 1 + 1 = 3)
 - (i) a, b/2, 3c.
 - (ii) a, 2b, -3c/2
 - (iii) $a, 2b, \infty$.

- (c) Explain the Bragg's law with a suitable diagram. (3)
- (d) A beam of X-rays of $\lambda = 0.842 \text{Å}$ is incident on a crystal at a glancing angle of 18°, when the 1st Bragg's reflection occurs. Calculate the glancing angle for 3rd order reflection. (4)
- 3. (a) What is polarization in dielectric materials? Explain its types in brief. (4)
 - (b) The dielectric constant of helium, measured at 0°C and 1 atmosphere is $\varepsilon_r = 1.0000684$. Under these conditions the gas contains 2.7×10^{25} atoms per m³. Calculate the radius of electron cloud (atomic radius). Also calculate the displacement 'x' when a Helium atom is subjected to a field of 10^6 V/m. (5)
 - (c) What is a dipole moment? With reference to a 2-D Cartesian coordinate system (x,y) four point charges are located as follows: a charge of Q coulomb at the point (0,0); -Q at (1,0); 3Q at (1,1) and -3Q at (0,1); the numbers refer to meters. Find the magnitude and direction of net dipole moment of the system. (2+4=6)
- 4. (a) Derive the expression for internal field in solid and liquid dielectrics. (5)
 - (b) Define polarizability. The susceptibilty of Argon at 273 K and 1 atmosphere is 4.35×10^{-4} . Find the atomic polarizability of argon when $N = 2.7 \times 10^{25}$ atoms per m³. (2 + 3 = 5)
 - (c) Derive the Debye's generalization Clausius-Mosotti relation for a solid containing N atoms/m³, each atom having polarizability α Farad m². (5)

- 5. (a) Write short notes on
 - (i) Ferromagnetic Domains.
 - (ii) Magnetostriction.
 - (b) Derive expression for relation between susceptibility and temperature for ferromagnetic materials above Curie temperature. (5)
 - (c) What are soft and hard magnetic materials with applications? (3)
 - (d) Explain the method of classifying magnetic materials. (3)
- 6. (a) Describe the phenomenon of superconductivity and its behavior in magnetic field. Give some applications. (3+3+3=9)
 - (b) Why is carbon preferred for brushes in electrical machines? (3)
 - (c) Define relaxation time, collision time, mean free path. (3)
- 7. (a) The Hall Effect of a p-type semiconductor is positive. What is its significance? (2)
 - (b) What do you understand by drift and diffusion currents in case of transistor? Deduce the Einstein Relation relating to these currents.

(2+5=7)

(4)

- (c) Explain the behavior of p-n junction under forward and reverse bias conditions. (3)
- (d) The resistivity of intrinsic germanium at 300 K is 0.47 ohm-m. If the electron hole motilities are 0.38 and 0.18 m² volt⁻¹ s⁻¹, calculate the intrinsic carrier density at 300K. (3)

8. (a) Derive Joules law.

(5)

(b) The following data for copper

Density= 8.92 g/cc

Resistivity = 1.73×10^{-8} ohm-m

Atomic weight = 63.5

Calculate mobility and average time of collision of electrons in copper. (6)

- (c) A solenoid of 0.3 m length and 2 cm in diameter is required to develop magnetic field of 10 kA/m in vacuum when powered with 1 A.
 - (i) Determine the number of turns of wire.
 - (ii) What is the DC voltage required to power if the solenoid is wound with 0.5 mm diameter copper wire. The resistivity of copper is 17.2×10^{-6} Ohm-m. (4)
- 9. (a) Classify the bonds and also give their properties. (5)
 - (b) Explain briefly about the various crystal defects. (5)
 - (c) Write about piezoelectricity and dipolar relaxation. (5)