PDFZilla – Unregistered

PDFZilla - Unregistered

PDFZilla - Unregistered

Total No. of printed pages = 6

CE 131504

Roll No. of candidate	

2017

B.Tech. 5th Semester End-Term Examination

Civil

TRANSPORTATION ENGINEERING — I

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No. 1 and any six from the rest.

- 1. Answer the following questions:
- $(10 \times 1 = 10)$
- (a) The super elevation on roads in snow bound areas, should not generally exceed
 - (i) 15%
 - (ii) 12%
 - (iii) 6%
 - (iv) 7%
- (b) The number of vehicles moving in a specified direction on a roadway, that pass a specific given point during specific unit of time is called
 - (i) Traffic volume
 - (ii) Traffic density
 - (iii) Basic capacity
 - (iv) Traffic capacity

[Turn over

3150)4	2		CE	13150	4	3 [Turn over
	(iii) (iv)	Frictional resistance lowers down None of the above		2.	Expl	ain w	ate between rigid and flexible pavements. with diagrams the failures of flexible and ments. $(5 + 10 = 15)$
	(ii)	Rain water drains out				(iv)	Enometer
	(i)	Centrifugal force is counter balanced					Enoscope
. / 1 5	that					(ii)	Speed recorder
f)	The	road surface is provided with camber so	ol _e s			(i)	Speedometer
		3.0 m per lane					instrument used to study spot speeds in ic engineering is
	(ii) (iii)	3.2 m per lane		ž.	<i>(</i> ;)		Axle and wheel load
4	(i)	4.0 m per lane 3.5 m per lane	¥		e.		characteristics
	spec	ifications for multi-lane pavement is			æ		Overtaking distance Geometric and cross sectional
e)	The	width of carriageway as per IRC	1			(i)	Vertical profile of the road
Ŧ	(iv)	3.5 m			(i)		gth of a vehicle affects the design of
	(iii)	0.5 m	1		<i>(</i> :)		Concrete road
	(ii)	4.0 m	6	s	ě		Water bound macadam road
	(i)	2.5 m	a ₂			(ii)	Bitumen road
	IRC	is			F	(i)	Earthen road
d)	The	minimum shoulder width recommended by			(h)	An e	example of rigid pavement is
	(iv)	Base course	a a			(iv)	Parabolic
	(iii)	Base		ř		(iii)	Cycloidal
	(ii)	Subbase				(ii)	Elliptical
	(i)	Subgrade	*	-		(i)	Spiral
c)	Bott	om most component of flexible pavement is			(g)	The	shape of vertical curve is

- 3. Explain the design steps of super elevation. A national highway passing through rolling terrain in heavy rainfall area has a horizontal curve of radius 500 m. Design the length of transition curve assuming suitable data. (5 + 10 = 15)
- 4. What do you understand by the term saturation system? What are the factors affecting it? Following four alternate road plan development proposals with particulars as mentioned below are available: (2+4+9=15)

Proposal	Road length in km	Numbe	er of tow	ns and	villages	Total products in thousand tones
	*	1001- 2000	2001- 5000	5001- 10000	>10000	
P	300	160	80	30	. 6	200
Q	400	200	90	60	8	270
\mathbf{R}	500	240	110	70	10	315
g	550	248	112	73	12	335

Assume the utility unit as given below:

Population	Unit
1001-2000	0.25
2001-5000	0.50
5001-10000	1.00
>10000	2.50
Production	Unit
	0

5. Write the tests carried out for road aggregates? Explain any one of them. Calculate the stresses at interior, edge and corner regions of a cement concrete pavement using Westergaard's stress equations. Use the following data:

Wheel load, P = 5100 kg

Modulus f elasticity of cement concrete, $E = 3 \times 10^5 \,\text{kg/cm}^2$

Pavement thickness, h = 18 cm

Poisson's ratio of concrete, $\mu = 0.15$

Modulus of subgrade reaction, K = 6 kg/cm²

Radius of contact area, a = 15 cm. (2 + 4 + 9 = 15)

- 6. Briefly explain with diagram the different types of road patterns. The CBR value of subgrade soil is 4%. The traffic survey revealed the present ADT of commercial vehicle as 1200. The annual rate of growth traffic is found to be 8 percent. The pavement construction is to be completed in three years after last traffic count. Assume wheel load as 4100 kg and tire pressure 6 kg/cm². Calculate the total thickness of a pavement using
 - (a) Design chart recommended by IRC
 - (b) Design formula developed by the US Corps of Engineers. (5 + 10 = 15)
- 7. Write the requirements for ideal alignment? What are the objectives of highway alignment? What is PIEV theory? (4+8+3=15)

1

1000 tones

- 8. Write a short note on the objectives and functions of Jayakar Committee. What do you mean by capacity, ideal capacity and level of service (LOS) of highways? Calculate the capacity of a traffic lane with one-way traffic flow at a stream speed of 60 kmph. (7 + 3 + 5 = 15)
- 9. What are the essential requirements of highway drainage? Calculate the safe stopping sight distance for design speed of 60 kmph for
 - (a) Two-way traffic on a two lane road.
 - (b) Two-way traffic on a single plane road.

Assume coefficient of friction as 0.37 and reaction time of driver as 2.5 seconds. (7+8=15)