PDFZilla – Unregistered

PDFZilla - Unregistered

PDFZilla - Unregistered

Total No. of printed pages = 6

CS 131503

,		1		F		2552	l
Roll No. of candidate							

2017

B.Tech. 5th Semester End-Term Examination

Computer Science Engineering

COMPUTER GRAPHICS

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any six from the rest.

- 1. Answer *all* the questions : $(10 \times 1 = 10)$
 - (a) Raster is a synonym for the term:
 - (i) Array
 - (ii) Matrix
 - (iii) Model
 - (iv) All of the above
 - (b) A pixel can be arranged in a regular
 - (i) 1D grid
 - (ii) 2D grid
 - (iii) 3D grid
 - (iv) None of the above

[Turn over

(c)	Higher the number of pix	els, ——— is
	the image quality	

- (i) Bad
- (ii) Smaller
- (iii) Better
- (iv) None of the above
- (d) The center of the display screen is computed as:
 - (i) X_{max}, Y_{max}
 - (ii) $X_{max}/2$, $Y_{max}/2$
 - (iii) $X_{max}/3$, $Y_{max}/3$
 - (iv) None of the above
- (e) Oblique projection with an angle of 45° to the horizontal plane is called as:
 - (i) Cabinet projection
 - (ii) Isometric projection
 - (iii) Cavalier projection
 - (iv) None of these
- (f) The sub-categories of axonometric viewing are:
 - (i) Cavalier, cabinet, isometric
 - (ii) Cavalier, cabinet
 - (iii) Isometric diametric, trimetric
 - (iv) Isometric, cavalier, trimetric

(g) What rotation does the transformation matrix

$$\begin{pmatrix}
\cos\theta & 0 & \sin\theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin\theta & 0 & \cos & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
 represent?

- (i) A rotation through 0 about the x-axis.
- (ii) A rotation through 0 about the y-axis
- (iii) A rotation through 0 about the z-axis
- (iv) None of the above
- (h) The process of determining the suitable pixels for representing image
 - (i) Animation
 - (ii) Rasterization
 - (iii) Scan Conversion
 - (iv) Quantization
- (i) How much memory is taken by a pixel of black and white image?
 - (i) 1 bit
 - (ii) 2 bit
 - (iii) 1 byte
 - (iv) 1 nibble

- (j) A polygon is defined by a sequence of ————— and edges.
 - (i) Ending lines
 - (ii) Points
 - (iii) Vertices
 - (iv) None of the above
- 2. (a) Define aspect ratio with an example.
 - (b) How much time is spent scanning across each row of pixels during screen refresh on a raster system with resolution of 1280 × 1024 and a refresh rate of 60 frames per second?
 - (c) What are the differences between physical and synthetic images? (5 + 5 + 5 = 15)
- 3. (a) Give the differences between CPU and GPU.
 - (b) Explain the OpenGL architecture.
 - (c) Explain the significance of double buffering.

$$(5+5+5=15)$$

- 4. (a) What is the significance of homogeneous coordinates in transformation of objects?
 - (b) Describe about OpenGL culling.
 - (c) Explain events, callbacks and picking in OpenGL. (5+5+5=15)

- 5. (a) Prove that two 2-D rotations above the origin is commutative, i.e. R1.R2 = R2.R1.
 - (b) A triangle is located at P (10, 40), Q (40, 40), R (40, 30). Find the coordinates of the triangle when:
 - (i) Triangle is rotated by 90° about the point Q
 - (ii) Triangle is rotated by 45° about an arbitrary point X (20, 30) (5 + 10 = 15)
- 6. (a) Find the transformation matrix that converts a square with diagonal vertices A(0,3) and (-3,6) into a unit square at the origin.
 - (b) What is viewing? Explain the different types of viewing. (5 + 10 = 15)
- 7. (a) Give the differences between object space and image space viewing.
 - (b) Explain Bresenham's line drawing algorithm. Use Bresenham's line drawing algorithm to draw the line from (-3,0) to (4,4). (5 + 10 = 15)
- 8. (a) What is a light source? Explain the different types of light sources.
 - (b) Given a clipping window whose lower left corner is (-3,1) and upper right corner is at (2,6). Using any line clipping algorithm determine the visible portion of the lines

Whose end points are given as:

- (i) A (-4, 2) and B (-1, 7)
- (ii) C (-1, 5) and D (3,8)
- (iii) E(-2,3) and F(1,2). (5 + 10 = 15)