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Preface

These are lecture notes from Real analysis and PDE, Math 240 and Math 231.
Some sections are in better shape than others. I am sorry for those sections
which are still a bit of a mess. These notes are still not polished. Nevertheless,
I hope they may be of some use even in this form.



Part I

Basic Topological, Metric and Banach Space
Notions



1

Limits, sums, and other basics

1.1 Set Operations

Suppose that X is a set. Let P(X) or 2X denote the power set of X, that is
elements of P(X) = 2X are subsets of A. For A ∈ 2X let

Ac = X \A = {x ∈ X : x /∈ A}
and more generally if A,B ⊂ X let

B \A = {x ∈ B : x /∈ A}.
We also define the symmetric difference of A and B by

A4B = (B \A) ∪ (A \B) .
As usual if {Aα}α∈I is an indexed collection of subsets of X we define the
union and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and
∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 1.1 We will also write
`

α∈I Aα for ∪α∈IAα in the case that
{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For
example let {An}∞n=1 be a sequence of subsets from X and define

{An i.o.} := {x ∈ X : # {n : x ∈ An} =∞} and
{An a.a.} := {x ∈ X : x ∈ An for all n sufficiently large}.

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff ∀N ∈ N ∃ n ≥ N 3 x ∈ An which may be
written as
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{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff ∃ N ∈ N 3 ∀ n ≥ N, x ∈ An which may be
written as

{An a.a.} = ∪∞N=1 ∩n≥N An.

1.2 Limits, Limsups, and Liminfs

Notation 1.2 The Extended real numbers is the set R̄ := R∪ {±∞} , i.e. it is
R with two new points called ∞ and −∞. We use the following conventions,
±∞ · 0 = 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ =∞ and −∞−∞ = −∞
while ∞−∞ is not defined.

If Λ ⊂ R̄ we will let supΛ and inf Λ denote the least upper bound and
greatest lower bound of Λ respectively. We will also use the following conven-
tion, if Λ = ∅, then sup ∅ = −∞ and inf ∅ = +∞.

Notation 1.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then
lim inf

n→∞xn = lim
n→∞ inf{xk : k ≥ n} and (1.1)

lim sup
n→∞

xn = lim
n→∞ sup{xk : k ≥ n}. (1.2)

We will also write lim for lim inf and lim for lim sup .

Remark 1.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥
n},then {ak} is an increasing sequence while {bk} is a decreasing sequence.
Therefore the limits in Eq. (1.1) and Eq. (1.2) always exist and

lim inf
n→∞xn = sup

n
inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n
sup{xk : k ≥ n}.

The following proposition contains some basic properties of liminfs and
limsups.

Proposition 1.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

1. lim infn→∞ an ≤ lim supn→∞ an and limn→∞ an exists in R̄ iff lim infn→∞ an =
lim supn→∞ an ∈ R̄.

2. There is a subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =
lim supn→∞ an.

3.
lim sup

n→∞
(an + bn) ≤ lim sup

n→∞
an + lim sup

n→∞
bn (1.3)

whenever the right side of this equation is not of the form ∞−∞.
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4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then
lim sup

n→∞
(anbn) ≤ lim sup

n→∞
an · lim sup

n→∞
bn, (1.4)

provided the right hand side of (1.4) is not of the form 0 ·∞ or ∞ · 0.
Proof. We will only prove part 1. and leave the rest as an exercise to the

reader. We begin by noticing that

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n
so that

lim inf
n→∞ an ≤ lim sup

n→∞
an.

Now suppose that lim infn→∞ an = lim supn→∞ an = a ∈ R. Then for all
� > 0, there is an integer N such that

a− � ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ �,

i.e.
a− � ≤ ak ≤ a+ � for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a.
If lim infn→∞ an =∞, then we know for allM ∈ (0,∞) there is an integer

N such that
M ≤ inf{ak : k ≥ N}

and hence limn→∞ an =∞. The case where lim supn→∞ an = −∞ is handled
similarly.
Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for

every � > 0 there exists N(�) ∈ N such that |A− an| ≤ � for all n ≥ N(�), i.e.

A− � ≤ an ≤ A+ � for all n ≥ N(�).

From this we learn that

A− � ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an ≤ A+ �.

Since � > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an ≤ A,

i.e. that A = lim infn→∞ an = lim supn→∞ an.
If A =∞, then for all M > 0 there exists N(M) such that an ≥M for all

n ≥ N(M). This show that

lim inf
n→∞ an ≥M

and since M is arbitrary it follows that

∞ ≤ lim inf
n→∞ an ≤ lim sup

n→∞
an.

The proof is similar if A = −∞ as well.



6 1 Limits, sums, and other basics

1.3 Sums of positive functions

In this and the next few sections, let X and Y be two sets. We will write
α ⊂⊂ X to denote that α is a finite subset of X.

Definition 1.6. Suppose that a : X → [0,∞] is a function and F ⊂ X is a
subset, then X

F

a =
X
x∈F

a(x) = sup

(X
x∈α

a(x) : α ⊂⊂ F

)
.

Remark 1.7. Suppose that X = N = {1, 2, 3, . . . }, then
X
N

a =
∞X
n=1

a(n) := lim
N→∞

NX
n=1

a(n).

Indeed for all N,
PN

n=1 a(n) ≤
P

N a, and thus passing to the limit we learn
that ∞X

n=1

a(n) ≤
X
N

a.

Conversely, if α ⊂⊂ N, then for all N large enough so that α ⊂ {1, 2, . . . ,N},
we have

P
α a ≤

PN
n=1 a(n) which upon passing to the limit implies thatX

α

a ≤
∞X
n=1

a(n)

and hence by taking the supremum over α we learn thatX
N

a ≤
∞X
n=1

a(n).

Remark 1.8. Suppose that
P

X a < ∞, then {x ∈ X : a(x) > 0} is at most
countable. To see this first notice that for any � > 0, the set {x : a(x) ≥ �}
must be finite for otherwise

P
X a =∞. Thus

{x ∈ X : a(x) > 0} =
[∞

k=1{x : a(x) ≥ 1/k}
which shows that {x ∈ X : a(x) > 0} is a countable union of finite sets and
thus countable.

Lemma 1.9. Suppose that a, b : X → [0,∞] are two functions, thenX
X

(a+ b) =
X
X

a+
X
X

b andX
X

λa = λ
X
X

a

for all λ ≥ 0.
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I will only prove the first assertion, the second being easy. Let α ⊂⊂ X be
a finite set, then X

α

(a+ b) =
X
α

a+
X
α

b ≤
X
X

a+
X
X

b

which after taking sups over α shows thatX
X

(a+ b) ≤
X
X

a+
X
X

b.

Similarly, if α, β ⊂⊂ X, thenX
α

a+
X
β

b ≤
X
α∪β

a+
X
α∪β

b =
X
α∪β

(a+ b) ≤
X
X

(a+ b).

Taking sups over α and β then shows thatX
X

a+
X
X

b ≤
X
X

(a+ b).

Lemma 1.10. Let X and Y be sets, R ⊂ X × Y and suppose that a : R→ R̄
is a function. Let xR := {y ∈ Y : (x, y) ∈ R} and Ry := {x ∈ X : (x, y) ∈ R} .
Then

sup
(x,y)∈R

a(x, y) = sup
x∈X

sup
y∈xR

a(x, y) = sup
y∈Y

sup
x∈Ry

a(x, y) and

inf
(x,y)∈R

a(x, y) = inf
x∈X

inf
y∈xR

a(x, y) = inf
y∈Y

inf
x∈Ry

a(x, y).

(Recall the conventions: sup ∅ = −∞ and inf ∅ = +∞.)

Proof. LetM = sup(x,y)∈R a(x, y), Nx := supy∈xR a(x, y). Then a(x, y) ≤
M for all (x, y) ∈ R implies Nx = supy∈xR a(x, y) ≤M and therefore that

sup
x∈X

sup
y∈xR

a(x, y) = sup
x∈X

Nx ≤M. (1.5)

Similarly for any (x, y) ∈ R,

a(x, y) ≤ Nx ≤ sup
x∈X

Nx = sup
x∈X

sup
y∈xR

a(x, y)

and therefore
sup

(x,y)∈R
a(x, y) ≤ sup

x∈X
sup
y∈xR

a(x, y) =M (1.6)

Equations (1.5) and (1.6) show that

sup
(x,y)∈R

a(x, y) = sup
x∈X

sup
y∈xR

a(x, y).

The assertions involving infinums are proved analogously or follow from what
we have just proved applied to the function −a.
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Fig. 1.1. The x and y — slices of a set R ⊂ X × Y.

Theorem 1.11 (Monotone Convergence Theorem for Sums). Suppose
that fn : X → [0,∞] is an increasing sequence of functions and

f(x) := lim
n→∞ fn(x) = sup

n
fn(x).

Then
lim
n→∞

X
X

fn =
X
X

f

Proof.We will give two proves. For the first proof, let Pf (X) = {A ⊂ X :
A ⊂⊂ X}. Then

lim
n→∞

X
X

fn = sup
n

X
X

fn = sup
n

sup
α∈Pf (X)

X
α

fn = sup
α∈Pf (X)

sup
n

X
α

fn

= sup
α∈Pf (X)

lim
n→∞

X
α

fn = sup
α∈Pf (X)

X
α

lim
n→∞ fn

= sup
α∈Pf (X)

X
α

f =
X
X

f.

(Second Proof.) Let Sn =
P

X fn and S =
P

X f. Since fn ≤ fm ≤ f for
all n ≤ m, it follows that

Sn ≤ Sm ≤ S

which shows that limn→∞ Sn exists and is less that S, i.e.

A := lim
n→∞

X
X

fn ≤
X
X

f. (1.7)

Noting that
P

α fn ≤
P

X fn = Sn ≤ A for all α ⊂⊂ X and in particular,X
α

fn ≤ A for all n and α ⊂⊂ X.
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Letting n tend to infinity in this equation shows thatX
α

f ≤ A for all α ⊂⊂ X

and then taking the sup over all α ⊂⊂ X givesX
X

f ≤ A = lim
n→∞

X
X

fn (1.8)

which combined with Eq. (1.7) proves the theorem.

Lemma 1.12 (Fatou’s Lemma for Sums). Suppose that fn : X → [0,∞]
is a sequence of functions, thenX

X

lim inf
n→∞ fn ≤ lim inf

n→∞

X
X

fn.

Proof. Define gk ≡ inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, X
X

gk ≤
X
X

fn for all n ≥ k

and therefore X
X

gk ≤ lim inf
n→∞

X
X

fn for all k.

We may now use the monotone convergence theorem to let k →∞ to findX
X

lim inf
n→∞ fn =

X
X

lim
k→∞

gk
MCT
= lim

k→∞

X
X

gk ≤ lim inf
n→∞

X
X

fn.

Remark 1.13. If A =
P

X a <∞, then for all � > 0 there exists α� ⊂⊂ X such
that

A ≥
X
α

a ≥ A− �

for all α ⊂⊂ X containing α� or equivalently,¯̄̄̄
¯A−X

α

a

¯̄̄̄
¯ ≤ � (1.9)

for all α ⊂⊂ X containing α�. Indeed, choose α� so that
P

α�
a ≥ A− �.
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1.4 Sums of complex functions

Definition 1.14. Suppose that a : X → C is a function, we say thatX
X

a =
X
x∈X

a(x)

exists and is equal to A ∈ C, if for all � > 0 there is a finite subset α� ⊂ X
such that for all α ⊂⊂ X containing α� we have¯̄̄̄

¯A−X
α

a

¯̄̄̄
¯ ≤ �.

The following lemma is left as an exercise to the reader.

Lemma 1.15. Suppose that a, b : X → C are two functions such that
P

X a
and

P
X b exist, then

P
X(a+ λb) exists for all λ ∈ C andX
X

(a+ λb) =
X
X

a+ λ
X
X

b.

Definition 1.16 (Summable). We call a function a : X → C summable
if X

X

|a| <∞.

Proposition 1.17. Let a : X → C be a function, then
P

X a exists iffP
X |a| <∞, i.e. iff a is summable.

Proof. If
P

X |a| < ∞, then
P

X (Re a)
± < ∞ and

P
X (Im a)± < ∞

and hence by Remark 1.13 these sums exists in the sense of Definition 1.14.
Therefore by Lemma 1.15,

P
X a exists and

X
X

a =
X
X

(Re a)
+ −

X
X

(Re a)
−
+ i

ÃX
X

(Im a)
+ −

X
X

(Im a)
−
!
.

Conversely, if
P

X |a| = ∞ then, because |a| ≤ |Re a| + |Im a| , we must
have X

X

|Re a| =∞ or
X
X

|Im a| =∞.

Thus it suffices to consider the case where a : X → R is a real function. Write
a = a+ − a− where

a+(x) = max(a(x), 0) and a−(x) = max(−a(x), 0). (1.10)

Then |a| = a+ + a− and
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∞ =
X
X

|a| =
X
X

a+ +
X
X

a−

which shows that either
P

X a+ =∞ or
P

X a− =∞. Suppose, with out loss
of generality, that

P
X a+ =∞. Let X 0 := {x ∈ X : a(x) ≥ 0}, then we know

that
P

X0 a = ∞ which means there are finite subsets αn ⊂ X 0 ⊂ X such
that

P
αn

a ≥ n for all n. Thus if α ⊂⊂ X is any finite set, it follows that
limn→∞

P
αn∪α a = ∞, and therefore

P
X a can not exist as a number in R.

Remark 1.18. Suppose that X = N and a : N→ C is a sequence, then it is
not necessarily true that

∞X
n=1

a(n) =
X
n∈N

a(n). (1.11)

This is because
∞X
n=1

a(n) = lim
N→∞

NX
n=1

a(n)

depends on the ordering of the sequence a where as
P

n∈N a(n) does not. For
example, take a(n) = (−1)n/n then Pn∈N |a(n)| = ∞ i.e.

P
n∈N a(n) does

not exist while
P∞

n=1 a(n) does exist. On the other hand, ifX
n∈N

|a(n)| =
∞X
n=1

|a(n)| <∞

then Eq. (1.11) is valid.

Theorem 1.19 (Dominated Convergence Theorem for Sums). Sup-
pose that fn : X → C is a sequence of functions on X such that f(x) =
limn→∞ fn(x) ∈ C exists for all x ∈ X. Further assume there is a dominat-
ing function g : X → [0,∞) such that

|fn(x)| ≤ g(x) for all x ∈ X and n ∈ N (1.12)

and that g is summable. Then

lim
n→∞

X
x∈X

fn(x) =
X
x∈X

f(x). (1.13)

Proof. Notice that |f | = lim |fn| ≤ g so that f is summable. By con-
sidering the real and imaginary parts of f separately, it suffices to prove the
theorem in the case where f is real. By Fatou’s Lemma,X

X

(g ± f) =
X
X

lim inf
n→∞ (g ± fn) ≤ lim inf

n→∞

X
X

(g ± fn)

=
X
X

g + lim inf
n→∞

Ã
±
X
X

fn

!
.
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Since lim infn→∞(−an) = − lim supn→∞ an, we have shown,X
X

g ±
X
X

f ≤
X
X

g +

½
lim infn→∞

P
X fn

− lim supn→∞
P

X fn

and therefore

lim sup
n→∞

X
X

fn ≤
X
X

f ≤ lim inf
n→∞

X
X

fn.

This shows that lim
n→∞

P
X fnexists and is equal to

P
X f.

Proof. (Second Proof.) Passing to the limit in Eq. (1.12) shows that |f | ≤
g and in particular that f is summable. Given � > 0, let α ⊂⊂ X such thatX

X\α
g ≤ �.

Then for β ⊂⊂ X such that α ⊂ β,¯̄̄̄
¯̄X
β

f −
X
β

fn

¯̄̄̄
¯̄ =

¯̄̄̄
¯̄X
β

(f − fn)

¯̄̄̄
¯̄

≤
X
β

|f − fn| =
X
α

|f − fn|+
X
β\α

|f − fn|

≤
X
α

|f − fn|+ 2
X
β\α

g

≤
X
α

|f − fn|+ 2�.

and hence that ¯̄̄̄
¯̄X
β

f −
X
β

fn

¯̄̄̄
¯̄ ≤X

α

|f − fn|+ 2�.

Since this last equation is true for all such β ⊂⊂ X, we learn that¯̄̄̄
¯X
X

f −
X
X

fn

¯̄̄̄
¯ ≤X

α

|f − fn|+ 2�

which then implies that

lim sup
n→∞

¯̄̄̄
¯X
X

f −
X
X

fn

¯̄̄̄
¯ ≤ lim sup

n→∞

X
α

|f − fn|+ 2�

= 2�.

Because � > 0 is arbitrary we conclude that

lim sup
n→∞

¯̄̄̄
¯X
X

f −
X
X

fn

¯̄̄̄
¯ = 0.

which is the same as Eq. (1.13).
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1.5 Iterated sums

Let X and Y be two sets. The proof of the following lemma is left to the
reader.

Lemma 1.20. Suppose that a : X → C is function and F ⊂ X is a subset
such that a(x) = 0 for all x /∈ F. Show that

P
F a exists iff

P
X a exists, and

if the sums exist then X
X

a =
X
F

a.

Theorem 1.21 (Tonelli’s Theorem for Sums). Suppose that a : X×Y →
[0,∞], then X

X×Y
a =

X
X

X
Y

a =
X
Y

X
X

a.

Proof. It suffices to show, by symmetry, thatX
X×Y

a =
X
X

X
Y

a

Let Λ ⊂⊂ X × Y. The for any α ⊂⊂ X and β ⊂⊂ Y such that Λ ⊂ α× β, we
have X

Λ

a ≤
X
α×β

a =
X
α

X
β

a ≤
X
α

X
Y

a ≤
X
X

X
Y

a,

i.e.
P

Λ a ≤
P

X

P
Y a. Taking the sup over Λ in this last equation showsX

X×Y
a ≤

X
X

X
Y

a.

We must now show the opposite inequality. If
P

X×Y a =∞ we are done
so we now assume that a is summable. By Remark 1.8, there is a countable
set {(x0n, y0n)}∞n=1 ⊂ X × Y off of which a is identically 0.
Let {yn}∞n=1 be an enumeration of {y0n}∞n=1 , then since a(x, y) = 0 if

y /∈ {yn}∞n=1 ,
P

y∈Y a(x, y) =
P∞

n=1 a(x, yn) for all x ∈ X. Hence

X
x∈X

X
y∈Y

a(x, y) =
X
x∈X

∞X
n=1

a(x, yn) =
X
x∈X

lim
N→∞

NX
n=1

a(x, yn)

= lim
N→∞

X
x∈X

NX
n=1

a(x, yn), (1.14)

wherein the last inequality we have used the monotone convergence theorem
with FN (x) :=

PN
n=1 a(x, yn). If α ⊂⊂ X, then

X
x∈α

NX
n=1

a(x, yn) =
X

α×{yn}Nn=1

a ≤
X
X×Y

a
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and therefore,

lim
N→∞

X
x∈X

NX
n=1

a(x, yn) ≤
X
X×Y

a. (1.15)

Hence it follows from Eqs. (1.14) and (1.15) thatX
x∈X

X
y∈Y

a(x, y) ≤
X
X×Y

a (1.16)

as desired.
Alternative proof of Eq. (1.16). Let A = {x0n : n ∈ N} and let {xn}∞n=1

be an enumeration of A. Then for x /∈ A, a(x, y) = 0 for all y ∈ Y.
Given � > 0, let δ : X → [0,∞) be the function such that PX δ = � and

δ(x) > 0 for x ∈ A. (For example we may define δ by δ(xn) = �/2n for all n
and δ(x) = 0 if x /∈ A.) For each x ∈ X, let βx ⊂⊂ X be a finite set such thatX

y∈Y
a(x, y) ≤

X
y∈βx

a(x, y) + δ(x).

Then X
X

X
Y

a ≤
X
x∈X

X
y∈βx

a(x, y) +
X
x∈X

δ(x)

=
X
x∈X

X
y∈βx

a(x, y) + � = sup
α⊂⊂X

X
x∈α

X
y∈βx

a(x, y) + �

≤
X
X×Y

a+ �, (1.17)

wherein the last inequality we have usedX
x∈α

X
y∈βx

a(x, y) =
X
Λα

a ≤
X
X×Y

a

with
Λα := {(x, y) ∈ X × Y : x ∈ α and y ∈ βx} ⊂ X × Y.

Since � > 0 is arbitrary in Eq. (1.17), the proof is complete.

Theorem 1.22 (Fubini’s Theorem for Sums). Now suppose that a : X ×
Y → C is a summable function, i.e. by Theorem 1.21 any one of the following
equivalent conditions hold:

1.
P

X×Y |a| <∞,
2.
P

X

P
Y |a| <∞ or

3.
P

Y

P
X |a| <∞.

Then X
X×Y

a =
X
X

X
Y

a =
X
Y

X
X

a.
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Proof. If a : X → R is real valued the theorem follows by applying
Theorem 1.21 to a± — the positive and negative parts of a. The general result
holds for complex valued functions a by applying the real version just proved
to the real and imaginary parts of a.

1.6 `p — spaces, Minkowski and Holder Inequalities

In this subsection, let µ : X → (0,∞] be a given function. Let F denote either
C or R. For p ∈ (0,∞) and f : X → F, let

kfkp ≡ (
X
x∈X

|f(x)|pµ(x))1/p

and for p =∞ let
kfk∞ = sup {|f(x)| : x ∈ X} .

Also, for p > 0, let

cp(µ) = {f : X → F : kfkp <∞}.
In the case where µ(x) = 1 for all x ∈ X we will simply write cp(X) for cp(µ).

Definition 1.23. A norm on a vector space L is a function k·k : L→ [0,∞)
such that

1. (Homogeneity) kλfk = |λ| kfk for all λ ∈ F and f ∈ L.
2. (Triangle inequality) kf + gk ≤ kfk+ kgk for all f, g ∈ L.
3. (Positive definite) kfk = 0 implies f = 0.
A pair (L, k·k) where L is a vector space and k·k is a norm on L is called

a normed vector space.

The rest of this section is devoted to the proof of the following theorem.

Theorem 1.24. For p ∈ [1,∞], (cp(µ), k · kp) is a normed vector space.
Proof. The only difficulty is the proof of the triangle inequality which is

the content of Minkowski’s Inequality proved in Theorem 1.30 below.

1.6.1 Some inequalities

Proposition 1.25. Let f : [0,∞)→ [0,∞) be a continuous strictly increasing
function such that f(0) = 0 (for simplicity) and lim

s→∞ f(s) =∞. Let g = f−1

and for s, t ≥ 0 let

F (s) =

Z s

0

f(s0)ds0 and G(t) =
Z t

0

g(t0)dt0.

Then for all s, t ≥ 0,
st ≤ F (s) +G(t)

and equality holds iff t = f(s).
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Proof. Let

As := {(σ, τ) : 0 ≤ τ ≤ f(σ) for 0 ≤ σ ≤ s} and
Bt := {(σ, τ) : 0 ≤ σ ≤ g(τ) for 0 ≤ τ ≤ t}

then as one sees from Figure 1.2, [0, s]× [0, t] ⊂ As ∪Bt. (In the figure: s = 3,
t = 1, A3 is the region under t = f(s) for 0 ≤ s ≤ 3 and B1 is the region to
the left of the curve s = g(t) for 0 ≤ t ≤ 1.) Hence if m denotes the area of a
region in the plane, then

st = m ([0, s]× [0, t]) ≤ m(As) +m(Bt) = F (s) +G(t).

As it stands, this proof is a bit on the intuitive side. However, it will
become rigorous if one takes m to be Lebesgue measure on the plane which
will be introduced later.
We can also give a calculus proof of this theorem under the additional

assumption that f is C1. (This restricted version of the theorem is all we need
in this section.) To do this fix t ≥ 0 and let

h(s) = st− F (s) =

Z s

0

(t− f(σ))dσ.

If σ > g(t) = f−1(t), then t− f(σ) < 0 and hence if s > g(t), we have

h(s) =

Z s

0

(t− f(σ))dσ =

Z g(t)

0

(t− f(σ))dσ +

Z s

g(t)

(t− f(σ))dσ

≤
Z g(t)

0

(t− f(σ))dσ = h(g(t)).

Combining this with h(0) = 0 we see that h(s) takes its maximum at some
point s ∈ (0, t] and hence at a point where 0 = h0(s) = t − f(s). The only
solution to this equation is s = g(t) and we have thus shown

st− F (s) = h(s) ≤
Z g(t)

0

(t− f(σ))dσ = h(g(t))

with equality when s = g(t). To finish the proof we must show
R g(t)
0

(t −
f(σ))dσ = G(t). This is verified by making the change of variables σ = g(τ)
and then integrating by parts as follows:Z g(t)

0

(t− f(σ))dσ =

Z t

0

(t− f(g(τ)))g0(τ)dτ =
Z t

0

(t− τ)g0(τ)dτ

=

Z t

0

g(τ)dτ = G(t).
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43210

4

3

2

1

0

x

y

x

y

Fig. 1.2. A picture proof of Proposition 1.25.

Definition 1.26. The conjugate exponent q ∈ [1,∞] to p ∈ [1,∞] is q := p
p−1

with the convention that q =∞ if p = 1. Notice that q is characterized by any
of the following identities:

1

p
+
1

q
= 1, 1 +

q

p
= q, p− p

q
= 1 and q(p− 1) = p. (1.18)

Lemma 1.27. Let p ∈ (1,∞) and q := p
p−1 ∈ (1,∞) be the conjugate expo-

nent. Then
st ≤ sq

q
+

tp

p
for all s, t ≥ 0

with equality if and only if sq = tp.

Proof. Let F (s) = sp

p for p > 1. Then f(s) = sp−1 = t and g(t) = t
1

p−1 =

tq−1, wherein we have used q − 1 = p/ (p− 1) − 1 = 1/ (p− 1) . Therefore
G(t) = tq/q and hence by Proposition 1.25,

st ≤ sp

p
+

tq

q

with equality iff t = sp−1.

Theorem 1.28 (Hölder’s inequality). Let p, q ∈ [1,∞] be conjugate expo-
nents. For all f, g : X → F,

kfgk1 ≤ kfkp · kgkq. (1.19)

If p ∈ (1,∞), then equality holds in Eq. (1.19) iff

(
|f |
kfkp )

p = (
|g|
kgkq )

q.
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Proof. The proof of Eq. (1.19) for p ∈ {1,∞} is easy and will be left to
the reader. The cases where kfkq = 0 or ∞ or kgkp = 0 or ∞ are easily dealt
with and are also left to the reader. So we will assume that p ∈ (1,∞) and
0 < kfkq, kgkp < ∞. Letting s = |f |/kfkp and t = |g|/kgkq in Lemma 1.27
implies

|fg|
kfkpkgkq ≤

1

p

|f |p
kfkp +

1

q

|g|q
kgkq .

Multiplying this equation by µ and then summing gives

kfgk1
kfkpkgkq ≤

1

p
+
1

q
= 1

with equality iff

|g|
kgkq =

|f |p−1
kfk(p−1)p

⇐⇒ |g|
kgkq =

|f |p/q
kfkp/qp

⇐⇒ |g|qkfkpp = kgkqq|f |p.

Definition 1.29. For a complex number λ ∈ C, let

sgn(λ) =

½ λ
|λ| if λ 6= 0
0 if λ = 0.

Theorem 1.30 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ cp(µ)
then

kf + gkp ≤ kfkp + kgkp,
with equality iff

sgn(f) = sgn(g) when p = 1 and

f = cg for some c > 0 when p ∈ (1,∞).

Proof. For p = 1,

kf + gk1 =
X
X

|f + g|µ ≤
X
X

(|f |µ+ |g|µ) =
X
X

|f |µ+
X
X

|g|µ

with equality iff

|f |+ |g| = |f + g| ⇐⇒ sgn(f) = sgn(g).

For p =∞,

kf + gk∞ = sup
X
|f + g| ≤ sup

X
(|f |+ |g|)

≤ sup
X
|f |+ sup

X
|g| = kfk∞ + kgk∞.
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Now assume that p ∈ (1,∞). Since
|f + g|p ≤ (2max (|f | , |g|))p = 2pmax (|f |p , |g|p) ≤ 2p (|f |p + |g|p)

it follows that
kf + gkpp ≤ 2p

¡kfkpp + kgkpp¢ <∞.

The theorem is easily verified if kf+gkp = 0, so we may assume kf+gkp >
0. Now

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1 (1.20)

with equality iff sgn(f) = sgn(g). Multiplying Eq. (1.20) by µ and then sum-
ming and applying Holder’s inequality givesX

X

|f + g|pµ ≤
X
X

|f | |f + g|p−1µ+
X
X

|g| |f + g|p−1µ

≤ (kfkp + kgkp) k |f + g|p−1 kq (1.21)

with equality iff µ |f |
kfkp

¶p
=

µ |f + g|p−1
k|f + g|p−1kq

¶q
=

µ |g|
kgkp

¶p
and sgn(f) = sgn(g).

By Eq. (1.18), q(p− 1) = p, and hence

k|f + g|p−1kqq =
X
X

(|f + g|p−1)qµ =
X
X

|f + g|pµ. (1.22)

Combining Eqs. (1.21) and (1.22) implies

kf + gkpp ≤ kfkpkf + gkp/qp + kgkpkf + gkp/qp (1.23)

with equality iff

sgn(f) = sgn(g) andµ |f |
kfkp

¶p
=
|f + g|p
kf + gkpp =

µ |g|
kgkp

¶p
. (1.24)

Solving for kf + gkp in Eq. (1.23) with the aid of Eq. (1.18) shows that
kf + gkp ≤ kfkp + kgkp with equality iff Eq. (1.24) holds which happens iff
f = cg with c > 0.

1.7 Exercises

1.7.1 Set Theory

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of
Y, verify the following assertions.
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Exercise 1.31. (∩i∈IAi)
c = ∪i∈IAc

i .

Exercise 1.32. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 1.33. f−1(∪i∈IAi) = ∪i∈If−1(Ai).

Exercise 1.34. f−1(∩i∈IAi) = ∩i∈If−1(Ai).

Exercise 1.35. Find a counter example which shows that f(C∩D) = f(C)∩
f(D) need not hold.

Exercise 1.36. Now suppose for each n ∈ N ≡ {1, 2, . . .} that fn : X → R is
a function. Let

D ≡ {x ∈ X : lim
n→∞ fn(x) = +∞}

show that
D = ∩∞M=1 ∪∞N=1 ∩n≥N{x ∈ X : fn(x) ≥M}. (1.25)

Exercise 1.37. Let fn : X → R be as in the last problem. Let

C ≡ {x ∈ X : lim
n→∞ fn(x) exists in R}.

Find an expression for C similar to the expression for D in (1.25). (Hint: use
the Cauchy criteria for convergence.)

1.7.2 Limit Problems

Exercise 1.38. Prove Lemma 1.15.

Exercise 1.39. Prove Lemma 1.20.

Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Exercise 1.40. Show lim infn→∞(−an) = − lim supn→∞ an.

Exercise 1.41. Suppose that lim supn→∞ an = M ∈ R̄, show that there is a
subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =M.

Exercise 1.42. Show that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn (1.26)

provided that the right side of Eq. (1.26) is well defined, i.e. no ∞−∞ or
−∞+∞ type expressions. (It is OK to have∞+∞ =∞ or −∞−∞ = −∞,
etc.)

Exercise 1.43. Suppose that an ≥ 0 and bn ≥ 0 for all n ∈ N. Show
lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (1.27)

provided the right hand side of (1.27) is not of the form 0 ·∞ or ∞ · 0.
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1.7.3 Dominated Convergence Theorem Problems

Notation 1.44 For u0 ∈ Rn and δ > 0, let Bu0(δ) := {x ∈ Rn : |x− u0| < δ}
be the ball in Rn centered at u0 with radius δ.

Exercise 1.45. Suppose U ⊂ Rn is a set and u0 ∈ U is a point such that
U ∩ (Bu0(δ) \ {u0}) 6= ∅ for all δ > 0. Let G : U \ {u0} → C be a function
on U \ {u0}. Show that limu→u0 G(u) exists and is equal to λ ∈ C,1 iff for all
sequences {un}∞n=1 ⊂ U \ {u0} which converge to u0 (i.e. limn→∞ un = u0)
we have limn→∞G(un) = λ.

Exercise 1.46. Suppose that Y is a set, U ⊂ Rn is a set, and f : U ×Y → C
is a function satisfying:

1. For each y ∈ Y, the function u ∈ U → f(u, y) is continuous on U.2

2. There is a summable function g : Y → [0,∞) such that

|f(u, y)| ≤ g(y) for all y ∈ Y and u ∈ U.

Show that
F (u) :=

X
y∈Y

f(u, y) (1.28)

is a continuous function for u ∈ U.

Exercise 1.47. Suppose that Y is a set, J = (a, b) ⊂ R is an interval, and
f : J × Y → C is a function satisfying:

1. For each y ∈ Y, the function u→ f(u, y) is differentiable on J,
2. There is a summable function g : Y → [0,∞) such that¯̄̄̄

∂

∂u
f(u, y)

¯̄̄̄
≤ g(y) for all y ∈ Y.

3. There is a u0 ∈ J such that
P

y∈Y |f(u0, y)| <∞.

Show:

a) for all u ∈ J that
P

y∈Y |f(u, y)| <∞.

1 More explicitly, limu→u0 G(u) = λ means for every every � > 0 there exists a
δ > 0 such that

|G(u)− λ| < � whenerver u ∈ U ∩ (Bu0(δ) \ {u0}) .

2 To say g := f(·, y) is continuous on U means that g : U → C is continuous relative
to the metric on Rn restricted to U.
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b) Let F (u) :=
P

y∈Y f(u, y), show F is differentiable on J and that

Ḟ (u) =
X
y∈Y

∂

∂u
f(u, y).

(Hint: Use the mean value theorem.)

Exercise 1.48 (Differentiation of Power Series). Suppose R > 0 and
{an}∞n=0 is a sequence of complex numbers such that

P∞
n=0 |an| rn < ∞ for

all r ∈ (0, R). Show, using Exercise 1.47, f(x) :=P∞n=0 anxn is continuously
differentiable for x ∈ (−R,R) and

f 0(x) =
∞X
n=0

nanx
n−1 =

∞X
n=1

nanx
n−1.

Exercise 1.49. Let {an}∞n=−∞ be a summable sequence of complex numbers,
i.e.

P∞
n=−∞ |an| <∞. For t ≥ 0 and x ∈ R, define

F (t, x) =
∞X

n=−∞
ane
−tn2einx,

where as usual eix = cos(x) + i sin(x). Prove the following facts about F :

1. F (t, x) is continuous for (t, x) ∈ [0,∞)×R.Hint: Let Y = Z and u = (t, x)
and use Exercise 1.46.

2. ∂F (t, x)/∂t, ∂F (t, x)/∂x and ∂2F (t, x)/∂x2 exist for t > 0 and x ∈ R.
Hint: Let Y = Z and u = t for computing ∂F (t, x)/∂t and u = x for
computing ∂F (t, x)/∂x and ∂2F (t, x)/∂x2. See Exercise 1.47.

3. F satisfies the heat equation, namely

∂F (t, x)/∂t = ∂2F (t, x)/∂x2 for t > 0 and x ∈ R.

1.7.4 Inequalities

Exercise 1.50. Generalize Proposition 1.25 as follows. Let a ∈ [−∞, 0] and
f : R ∩ [a,∞)→ [0,∞) be a continuous strictly increasing function such that
lim
s→∞ f(s) =∞, f(a) = 0 if a > −∞ or lims→−∞ f(s) = 0 if a = −∞. Also let

g = f−1, b = f(0) ≥ 0,

F (s) =

Z s

0

f(s0)ds0 and G(t) =

Z t

0

g(t0)dt0.

Then for all s, t ≥ 0,

st ≤ F (s) +G(t ∨ b) ≤ F (s) +G(t)
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Fig. 1.3. Comparing areas when t ≥ b goes the same way as in the text.
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Fig. 1.4. When t ≤ b, notice that g(t) ≤ 0 but G(t) ≥ 0. Also notice that G(t) is
no longer needed to estimate st.

and equality holds iff t = f(s). In particular, taking f(s) = es, prove Young’s
inequality stating

st ≤ es + (t ∨ 1) ln (t ∨ 1)− (t ∨ 1) ≤ es + t ln t− t.

Hint: Refer to the following pictures.
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Metric, Banach and Topological Spaces

2.1 Basic metric space notions

Definition 2.1. A function d : X ×X → [0,∞) is called a metric if
1. (Symmetry) d(x, y) = d(y, x) for all x, y ∈ X
2. (Non-degenerate) d(x, y) = 0 if and only if x = y ∈ X
3. (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

As primary examples, any normed space (X, k·k) is a metric space with
d(x, y) := kx− yk . Thus the space cp(µ) is a metric space for all p ∈ [1,∞].
Also any subset of a metric space is a metric space. For example a surface Σ
in R3 is a metric space with the distance between two points on Σ being the
usual distance in R3.

Definition 2.2. Let (X,d) be a metric space. The open ball B(x, δ) ⊂ X
centered at x ∈ X with radius δ > 0 is the set

B(x, δ) := {y ∈ X : d(x, y) < δ}.
We will often also write B(x, δ) as Bx(δ). We also define the closed ball
centered at x ∈ X with radius δ > 0 as the set Cx(δ) := {y ∈ X : d(x, y) ≤ δ}.
Definition 2.3. A sequence {xn}∞n=1 in a metric space (X, d) is said to be
convergent if there exists a point x ∈ X such that limn→∞ d(x, xn) = 0. In
this case we write limn→∞ xn = x of xn → x as n→∞.

Exercise 2.4. Show that x in Definition 2.3 is necessarily unique.

Definition 2.5. A set F ⊂ X is closed iff every convergent sequence {xn}∞n=1
which is contained in F has its limit back in F. A set V ⊂ X is open iff V c

is closed. We will write F @ X to indicate the F is a closed subset of X and
V ⊂o X to indicate the V is an open subset of X. We also let τd denote the
collection of open subsets of X relative to the metric d.
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Exercise 2.6. Let F be a collection of closed subsets of X, show ∩F :=
∩F∈FF is closed. Also show that finite unions of closed sets are closed, i.e. if
{Fk}nk=1 are closed sets then ∪nk=1Fk is closed. (By taking complements, this
shows that the collection of open sets, τd, is closed under finite intersections
and arbitrary unions.)

The following “continuity” facts of the metric d will be used frequently in
the remainder of this book.

Lemma 2.7. For any non empty subset A ⊂ X, let dA(x) ≡ inf{d(x, a)|a ∈
A}, then

|dA(x)− dA(y)| ≤ d(x, y) ∀x, y ∈ X. (2.1)

Moreover the set F� ≡ {x ∈ X|dA(x) ≥ �} is closed in X.

Proof. Let a ∈ A and x, y ∈ X, then

d(x, a) ≤ d(x, y) + d(y, a).

Take the inf over a in the above equation shows that

dA(x) ≤ d(x, y) + dA(y) ∀x, y ∈ X.

Therefore, dA(x) − dA(y) ≤ d(x, y) and by interchanging x and y we also
have that dA(y)− dA(x) ≤ d(x, y) which implies Eq. (2.1). Now suppose that
{xn}∞n=1 ⊂ F� is a convergent sequence and x = limn→∞ xn ∈ X. By Eq.
(2.1),

�− dA(x) ≤ dA(xn)− dA(x) ≤ d(x, xn)→ 0 as n→∞,

so that � ≤ dA(x). This shows that x ∈ F� and hence F� is closed.

Corollary 2.8. The function d satisfies,

|d(x, y)− d(x0, y0)| ≤ d(y, y0) + d(x, x0)

and in particular d : X ×X → [0,∞) is continuous.
Proof. By Lemma 2.7 for single point sets and the triangle inequality for

the absolute value of real numbers,

|d(x, y)− d(x0, y0)| ≤ |d(x, y)− d(x, y0)|+ |d(x, y0)− d(x0, y0)|
≤ d(y, y0) + d(x, x0).

Exercise 2.9. Show that V ⊂ X is open iff for every x ∈ V there is a δ > 0
such that Bx(δ) ⊂ V. In particular show Bx(δ) is open for all x ∈ X and
δ > 0.
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Lemma 2.10. Let A be a closed subset of X and F� @ X be as defined as in
Lemma 2.7. Then F� ↑ Ac as � ↓ 0.
Proof. It is clear that dA(x) = 0 for x ∈ A so that F� ⊂ Ac for each � > 0

and hence ∪�>0F� ⊂ Ac. Now suppose that x ∈ Ac ⊂o X. By Exercise 2.9
there exists an � > 0 such that Bx(�) ⊂ Ac, i.e. d(x, y) ≥ � for all y ∈ A.
Hence x ∈ F� and we have shown that Ac ⊂ ∪�>0F�. Finally it is clear that
F� ⊂ F�0 whenever �0 ≤ �.

Definition 2.11. Given a set A contained a metric space X, let Ā ⊂ X be
the closure of A defined by

Ā := {x ∈ X : ∃ {xn} ⊂ A 3 x = lim
n→∞xn}.

That is to say Ā contains all limit points of A.

Exercise 2.12. Given A ⊂ X, show Ā is a closed set and in fact

Ā = ∩{F : A ⊂ F ⊂ X with F closed}. (2.2)

That is to say Ā is the smallest closed set containing A.

2.2 Continuity

Suppose that (X, d) and (Y, ρ) are two metric spaces and f : X → Y is a
function.

Definition 2.13. A function f : X → Y is continuous at x ∈ X if for all
� > 0 there is a δ > 0 such that

d(f(x), f(x0)) < � provided that ρ(x, x0) < δ.

The function f is said to be continuous if f is continuous at all points x ∈ X.

The following lemma gives three other ways to characterize continuous
functions.

Lemma 2.14 (Continuity Lemma). Suppose that (X, ρ) and (Y, d) are two
metric spaces and f : X → Y is a function. Then the following are equivalent:

1. f is continuous.
2. f−1(V ) ∈ τρ for all V ∈ τd, i.e. f−1(V ) is open in X if V is open in Y.
3. f−1(C) is closed in X if C is closed in Y.
4. For all convergent sequences {xn} ⊂ X, {f(xn)} is convergent in Y and

lim
n→∞ f(xn) = f

³
lim
n→∞xn

´
.
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Proof. 1. ⇒ 2. For all x ∈ X and � > 0 there exists δ > 0 such that
d(f(x), f(x0)) < � if ρ(x, x0) < δ. i.e.

Bx(δ) ⊂ f−1(Bf(x)(�))

So if V ⊂o Y and x ∈ f−1(V ) we may choose � > 0 such that Bf(x)(�) ⊂ V
then

Bx(δ) ⊂ f−1(Bf(x)(�)) ⊂ f−1(V )

showing that f−1(V ) is open.
2. ⇒ 1. Let � > 0 and x ∈ X, then, since f−1(Bf(x)(�)) ⊂o X, there exists

δ > 0 such that Bx(δ) ⊂ f−1(Bf(x)(�)) i.e. if ρ(x, x0) < δ then d(f(x0), f(x)) <
�.
2. ⇐⇒ 3. If C is closed in Y, then Cc ⊂o Y and hence f−1(Cc) ⊂o X.

Since f−1(Cc) =
¡
f−1(C)

¢c
, this shows that f−1(C) is the complement of an

open set and hence closed. Similarly one shows that 3. ⇒ 2.
1.⇒ 4. If f is continuous and xn → x in X, let � > 0 and choose δ > 0 such

that d(f(x), f(x0)) < � when ρ(x, x0) < δ. There exists an N > 0 such that
ρ(x, xn) < δ for all n ≥ N and therefore d(f(x), f(xn)) < � for all n ≥ N.
That is to say limn→∞ f(xn) = f(x) as n→∞.
4.⇒ 1. We will show that not 1.⇒ not 4. Not 1 implies there exists � > 0,

a point x ∈ X and a sequence {xn}∞n=1 ⊂ X such that d(f(x), f(xn)) ≥ �
while ρ(x, xn) < 1

n . Clearly this sequence {xn} violates 4.
There is of course a local version of this lemma. To state this lemma, we

will use the following terminology.

Definition 2.15. Let X be metric space and x ∈ X. A subset A ⊂ X is a
neighborhood of x if there exists an open set V ⊂o X such that x ∈ V ⊂ A.
We will say that A ⊂ X is an open neighborhood of x if A is open and
x ∈ A.

Lemma 2.16 (Local Continuity Lemma). Suppose that (X, ρ) and (Y, d)
are two metric spaces and f : X → Y is a function. Then following are
equivalent:

1. f is continuous as x ∈ X.
2. For all neighborhoods A ⊂ Y of f(x), f−1(A) is a neighborhood of x ∈ X.
3. For all sequences {xn} ⊂ X such that x = limn→∞ xn, {f(xn)} is con-
vergent in Y and

lim
n→∞ f(xn) = f

³
lim
n→∞xn

´
.

The proof of this lemma is similar to Lemma 2.14 and so will be omitted.

Example 2.17. The function dA defined in Lemma 2.7 is continuous for each
A ⊂ X. In particular, if A = {x} , it follows that y ∈ X → d(y, x) is continuous
for each x ∈ X.

Exercise 2.18. Show the closed ball Cx(δ) := {y ∈ X : d(x, y) ≤ δ} is a
closed subset of X.
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2.3 Basic Topological Notions

Using the metric space results above as motivation we will axiomatize the
notion of being an open set to more general settings.

Definition 2.19. A collection of subsets τ of X is a topology if

1. ∅,X ∈ τ
2. τ is closed under arbitrary unions, i.e. if Vα ∈ τ, for α ∈ I then

S
α∈I

Vα ∈ τ .

3. τ is closed under finite intersections, i.e. if V1, . . . , Vn ∈ τ then V1 ∩ · · ·∩
Vn ∈ τ.

A pair (X, τ) where τ is a topology on X will be called a topological
space.

Notation 2.20 The subsets V ⊂ X which are in τ are called open sets and
we will abbreviate this by writing V ⊂o X and the those sets F ⊂ X such that
F c ∈ τ are called closed sets. We will write F @ X if F is a closed subset of
X.

Example 2.21. 1. Let (X, d) be a metric space, we write τd for the collection
of d — open sets in X. We have already seen that τd is a topology, see
Exercise 2.6.

2. Let X be any set, then τ= P(X) is a topology. In this topology all subsets
of X are both open and closed. At the opposite extreme we have the
trivial topology, τ = {∅,X} . In this topology only the empty set and X
are open (closed).

3. Let X = {1, 2, 3}, then τ = {∅,X, {2, 3}} is a topology on X which does
not come from a metric.

4. Again let X = {1, 2, 3}. Then τ = {{1}, {2, 3}, ∅,X}. is a topology, and
the sets X, {1}, {2, 3}, φ are open and closed. The sets {1, 2} and {1, 3}
are neither open nor closed.

Definition 2.22. Let (X, τ) be a topological space, A ⊂ X and iA : A → X
be the inclusion map, i.e. iA(a) = a for all a ∈ A. Define

τA = i−1A (τ) = {A ∩ V : V ∈ τ} ,
the so called relative topology on A.

Notice that the closed sets in Y relative to τY are precisely those sets of
the form C∩Y where C is close inX. Indeed, B ⊂ Y is closed iff Y \B = Y ∩V
for some V ∈ τ which is equivalent to B = Y \ (Y ∩ V ) = Y ∩ V c for some
V ∈ τ.

Exercise 2.23. Show the relative topology is a topology on A. Also show if
(X, d) is a metric space and τ = τd is the topology coming from d, then (τd)A
is the topology induced by making A into a metric space using the metric
d|A×A.
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1

2
3

Fig. 2.1. A topology.

Notation 2.24 (Neighborhoods of x) An open neighborhood of a point
x ∈ X is an open set V ⊂ X such that x ∈ V. Let τx = {V ∈ τ : x ∈ V }
denote the collection of open neighborhoods of x. A collection η ⊂ τx is called
a neighborhood base at x ∈ X if for all V ∈ τx there exists W ∈ η such that
W ⊂ V .

The notation τx should not be confused with

τ{x} := i−1{x}(τ) = {{x} ∩ V : V ∈ τ} = {∅, {x}} .

When (X, d) is a metric space, a typical example of a neighborhood base for
x is η = {Bx(�) : � ∈ D} where D is any dense subset of (0, 1].
Definition 2.25. Let (X, τ) be a topological space and A be a subset of X.

1. The closure of A is the smallest closed set Ā containing A, i.e.

Ā := ∩ {F : A ⊂ F @ X} .
(Because of Exercise 2.12 this is consistent with Definition 2.11 for the
closure of a set in a metric space.)

2. The interior of A is the largest open set Ao contained in A, i.e.

Ao = ∪ {V ∈ τ : V ⊂ A} .
3. The accumulation points of A is the set

acc(A) = {x ∈ X : V ∩A \ {x} 6= ∅ for all V ∈ τx}.
4. The boundary of A is the set ∂A := Ā \Ao.
5. A is a neighborhood of a point x ∈ X if x ∈ Ao. This is equivalent
to requiring there to be an open neighborhood of V of x ∈ X such that
V ⊂ A.
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Remark 2.26. The relationships between the interior and the closure of a set
are:

(Ao)c =
\
{V c : V ∈ τ and V ⊂ A} =

\
{C : C is closed C ⊃ Ac} = Ac

and similarly, (Ā)c = (Ac)o. Hence the boundary of A may be written as

∂A ≡ Ā \Ao = Ā ∩ (Ao)c = Ā ∩Ac, (2.3)

which is to say ∂A consists of the points in both the closure of A and Ac.

Proposition 2.27. Let A ⊂ X and x ∈ X.

1. If V ⊂o X and A ∩ V = ∅ then Ā ∩ V = ∅.
2. x ∈ Ā iff V ∩A 6= ∅ for all V ∈ τx.
3. x ∈ ∂A iff V ∩A 6= ∅ and V ∩Ac 6= ∅ for all V ∈ τx.
4. Ā = A ∪ acc(A).
Proof. 1. Since A ∩ V = ∅, A ⊂ V c and since V c is closed, Ā ⊂ V c. That

is to say Ā ∩ V = ∅.
2. By Remark 2.261, Ā = ((Ac)o)

c so x ∈ Ā iff x /∈ (Ac)o which happens
iff V * Ac for all V ∈ τx, i.e. iff V ∩A 6= ∅ for all V ∈ τx.
3. This assertion easily follows from the Item 2. and Eq. (2.3).
4. Item 4. is an easy consequence of the definition of acc(A) and item 2.

Lemma 2.28. Let A ⊂ Y ⊂ X, ĀY denote the closure of A in Y with its
relative topology and Ā = ĀX be the closure of A in X, then ĀY = ĀX ∩ Y.
Proof. Using the comments after Definition 2.22,

ĀY = ∩ {B @ Y : A ⊂ B} = ∩ {C ∩ Y : A ⊂ C @ X}
= Y ∩ (∩ {C : A ⊂ C @ X}) = Y ∩ ĀX .

Alternative proof. Let x ∈ Y then x ∈ ĀY iff for all V ∈ τYx , V ∩A 6= ∅.
This happens iff for all U ∈ τXx , U ∩ Y ∩ A = U ∩ A 6= ∅ which happens iff
x ∈ ĀX . That is to say ĀY = ĀX ∩ Y.
Definition 2.29. Let (X, τ) be a topological space and A ⊂ X. We say a
subset U ⊂ τ is an open cover of A if A ⊂ ∪U . The set A is said to be
compact if every open cover of A has finite a sub-cover, i.e. if U is an open
cover of A there exists U0 ⊂⊂ U such that U0 is a cover of A. (We will write
A @@ X to denote that A ⊂ X and A is compact.) A subset A ⊂ X is
precompact if Ā is compact.

1 Here is another direct proof of item 2. which goes by showing x /∈ Ā iff there exists
V ∈ τx such that V ∩A = ∅. If x /∈ Ā then V = Ac ∈ τx and V ∩A ⊂ V ∩ Ā = ∅.
Conversely if there exists V ∈ τx such that V ∩A = ∅ then by Item 1. Ā∩V = ∅.
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Proposition 2.30. Suppose that K ⊂ X is a compact set and F ⊂ K is a
closed subset. Then F is compact. If {Ki}ni=1 is a finite collections of compact
subsets of X then K = ∪ni=1Ki is also a compact subset of X.

Proof. Let U ⊂ τ is an open cover of F, then U∪ {F c} is an open cover
of K. The cover U∪ {F c} of K has a finite subcover which we denote by
U0∪ {F c} where U0 ⊂⊂ U . Since F ∩ F c = ∅, it follows that U0 is the desired
subcover of F.
For the second assertion suppose U ⊂ τ is an open cover of K. Then U

covers each compact set Ki and therefore there exists a finite subset Ui ⊂⊂ U
for each i such that Ki ⊂ ∪Ui. Then U0 := ∪ni=1Ui is a finite cover of K.

Definition 2.31. We say a collection F of closed subsets of a topological space
(X, τ) has the finite intersection property if ∩F0 6= ∅ for all F0 ⊂⊂ F .
The notion of compactness may be expressed in terms of closed sets as

follows.

Proposition 2.32. A topological space X is compact iff every family of closed
sets F ⊂ P(X) with the finite intersection property satisfies TF 6= ∅.
Proof. (⇒) Suppose that X is compact and F ⊂ P(X) is a collection of

closed sets such that
TF = ∅. Let
U = Fc := {Cc : C ∈ F} ⊂ τ,

then U is a cover of X and hence has a finite subcover, U0. Let F0 = Uc0 ⊂⊂ F ,
then ∩F0 = ∅ so that F does not have the finite intersection property.
(⇐) If X is not compact, there exists an open cover U of X with no finite

subcover. Let F = Uc, then F is a collection of closed sets with the finite
intersection property while

TF = ∅.
Exercise 2.33. Let (X, τ) be a topological space. Show that A ⊂ X is com-
pact iff (A, τA) is a compact topological space.

Definition 2.34. Let (X, τ) be a topological space. A sequence {xn}∞n=1 ⊂
X converges to a point x ∈ X if for all V ∈ τx, xn ∈ V almost always
(abbreviated a.a.), i.e. #({n : xn /∈ V }) < ∞. We will write xn → x as n→
∞ or limn→∞ xn = x when xn converges to x.

Example 2.35. Let Y = {1, 2, 3} and τ = {Y, ∅, {1, 2}, {2, 3}, {2}} and yn = 2
for all n. Then yn → y for every y ∈ Y. So limits need not be unique!

Definition 2.36. Let (X, τX) and (Y, τY ) be topological spaces. A function
f : X → Y is continuous if f−1(τY ) ⊂ τX . We will also say that f is τX/τY
—continuous or (τX , τY ) — continuous. We also say that f is continuous at
a point x ∈ X if for every open neighborhood V of f(x) there is an open
neighborhood U of x such that U ⊂ f−1(V ). See Figure 2.2.
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Fig. 2.2. Checking that a function is continuous at x ∈ X.

Definition 2.37. A map f : X → Y between topological spaces is called a
homeomorphism provided that f is bijective, f is continuous and f−1 :
Y → X is continuous. If there exists f : X → Y which is a homeomorphism,
we say that X and Y are homeomorphic. (As topological spaces X and Y are
essentially the same.)

Exercise 2.38. Show f : X → Y is continuous iff f is continuous at all points
x ∈ X.

Exercise 2.39. Show f : X → Y is continuous iff f−1(C) is closed in X for
all closed subsets C of Y.

Exercise 2.40. Suppose f : X → Y is continuous and K ⊂ X is compact,
then f(K) is a compact subset of Y.

Exercise 2.41 (Dini’s Theorem). Let X be a compact topological space
and fn : X → [0,∞) be a sequence of continuous functions such that fn(x) ↓ 0
as n → ∞ for each x ∈ X. Show that in fact fn ↓ 0 uniformly in x, i.e.
supx∈X fn(x) ↓ 0 as n → ∞. Hint: Given � > 0, consider the open sets
Vn := {x ∈ X : fn(x) < �}.
Definition 2.42 (First Countable). A topological space, (X, τ), is first
countable iff every point x ∈ X has a countable neighborhood base. (All
metric space are first countable.)

When τ is first countable, we may formulate many topological notions in
terms of sequences.

Proposition 2.43. If f : X → Y is continuous at x ∈ X and limn→∞ xn =
x ∈ X, then limn→∞ f(xn) = f(x) ∈ Y. Moreover, if there exists a countable
neighborhood base η of x ∈ X, then f is continuous at x iff lim

n→∞ f(xn) = f(x)

for all sequences {xn}∞n=1 ⊂ X such that xn → x as n→∞.
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Proof. If f : X → Y is continuous and W ∈ τY is a neighborhood of
f(x) ∈ Y, then there exists a neighborhood V of x ∈ X such that f(V ) ⊂W.
Since xn → x, xn ∈ V a.a. and therefore f(xn) ∈ f(V ) ⊂ W a.a., i.e.
f(xn)→ f(x) as n→∞.
Conversely suppose that η ≡ {Wn}∞n=1 is a countable neighborhood base

at x and lim
n→∞ f(xn) = f(x) for all sequences {xn}∞n=1 ⊂ X such that xn → x.

By replacingWn byW1∩ · · ·∩Wn if necessary, we may assume that {Wn}∞n=1
is a decreasing sequence of sets. If f were not continuous at x then there exists
V ∈ τf(x) such that x /∈ f−1(V )0. Therefore, Wn is not a subset of f−1(V )
for all n. Hence for each n, we may choose xn ∈Wn \ f−1(V ). This sequence
then has the property that xn → x as n→∞ while f(xn) /∈ V for all n and
hence limn→∞ f(xn) 6= f(x).

Lemma 2.44. Suppose there exists {xn}∞n=1 ⊂ A such that xn → x, then
x ∈ Ā. Conversely if (X, τ) is a first countable space (like a metric space)
then if x ∈ Ā there exists {xn}∞n=1 ⊂ A such that xn → x.

Proof. Suppose {xn}∞n=1 ⊂ A and xn → x ∈ X. Since Āc is an open
set, if x ∈ Āc then xn ∈ Āc ⊂ Ac a.a. contradicting the assumption that
{xn}∞n=1 ⊂ A. Hence x ∈ Ā.
For the converse we now assume that (X, τ) is first countable and that

{Vn}∞n=1 is a countable neighborhood base at x such that V1 ⊃ V2 ⊃ V3 ⊃ . . . .
By Proposition 2.27, x ∈ Ā iff V ∩A 6= ∅ for all V ∈ τx. Hence x ∈ Ā implies
there exists xn ∈ Vn∩A for all n. It is now easily seen that xn → x as n→∞.

Definition 2.45 (Support). Let f : X → Y be a function from a topological
space (X, τX) to a vector space Y. Then we define the support of f by

supp(f) := {x ∈ X : f(x) 6= 0},
a closed subset of X.

Example 2.46. For example, let f(x) = sin(x)1[0,4π](x) ∈ R, then
{f 6= 0} = (0, 4π) \ {π, 2π, 3π}

and therefore supp(f) = [0, 4π].

Notation 2.47 If X and Y are two topological spaces, let C(X,Y ) denote
the continuous functions from X to Y. If Y is a Banach space, let

BC(X,Y ) := {f ∈ C(X,Y ) : sup
x∈X

kf(x)kY <∞}

and
Cc(X,Y ) := {f ∈ C(X,Y ) : supp(f) is compact}.

If Y = R or C we will simply write C(X), BC(X) and Cc(X) for C(X,Y ),
BC(X,Y ) and Cc(X,Y ) respectively.
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The next result is included for completeness but will not be used in the
sequel so may be omitted.

Lemma 2.48. Suppose that f : X → Y is a map between topological spaces.
Then the following are equivalent:

1. f is continuous.
2. f(Ā) ⊂ f(A) for all A ⊂ X
3. f−1(B) ⊂ f−1(B̄) for all B @ X.

Proof. If f is continuous, then f−1
³
f(A)

´
is closed and since A ⊂

f−1 (f(A)) ⊂ f−1
³
f(A)

´
it follows that Ā ⊂ f−1

³
f(A)

´
. From this equa-

tion we learn that f(Ā) ⊂ f(A) so that (1) implies (2) Now assume (2), then
for B ⊂ Y (taking A = f−1(B̄)) we have

f(f−1(B)) ⊂ f(f−1(B̄)) ⊂ f(f−1(B̄)) ⊂ B̄

and therefore
f−1(B) ⊂ f−1(B̄). (2.4)

This shows that (2) implies (3) Finally if Eq. (2.4) holds for all B, then when
B is closed this shows that

f−1(B) ⊂ f−1(B̄) = f−1(B) ⊂ f−1(B)

which shows that
f−1(B) = f−1(B).

Therefore f−1(B) is closed whenever B is closed which implies that f is con-
tinuous.

2.4 Completeness

Definition 2.49 (Cauchy sequences). A sequence {xn}∞n=1 in a metric
space (X, d) is Cauchy provided that

lim
m,n→∞ d(xn, xm) = 0.

Exercise 2.50. Show that convergent sequences are always Cauchy se-
quences. The converse is not always true. For example, let X = Q be the
set of rational numbers and d(x, y) = |x−y|. Choose a sequence {xn}∞n=1 ⊂ Q
which converges to

√
2 ∈ R, then {xn}∞n=1 is (Q, d) — Cauchy but not (Q, d)

— convergent. The sequence does converge in R however.

Definition 2.51. A metric space (X, d) is complete if all Cauchy sequences
are convergent sequences.
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Exercise 2.52. Let (X, d) be a complete metric space. Let A ⊂ X be a subset
of X viewed as a metric space using d|A×A. Show that (A, d|A×A) is complete
iff A is a closed subset of X.

Definition 2.53. If (X, k·k) is a normed vector space, then we say {xn}∞n=1 ⊂
X is a Cauchy sequence if limm,n→∞ kxm − xnk = 0. The normed vector
space is a Banach space if it is complete, i.e. if every {xn}∞n=1 ⊂ X which
is Cauchy is convergent where {xn}∞n=1 ⊂ X is convergent iff there exists
x ∈ X such that limn→∞ kxn − xk = 0. As usual we will abbreviate this last
statement by writing limn→∞ xn = x.

Lemma 2.54. Suppose that X is a set then the bounded functions c∞(X) on
X is a Banach space with the norm

kfk = kfk∞ = sup
x∈X

|f(x)| .

Moreover if X is a topological space the set BC(X) ⊂ c∞(X) = B(X) is
closed subspace of c∞(X) and hence is also a Banach space.

Proof. Let {fn}∞n=1 ⊂ c∞(X) be a Cauchy sequence. Since for any x ∈ X,
we have

|fn(x)− fm(x)| ≤ kfn − fmk∞ (2.5)

which shows that {fn(x)}∞n=1 ⊂ F is a Cauchy sequence of numbers. Because F
(F = R or C) is complete, f(x) := limn→∞ fn(x) exists for all x ∈ X. Passing
to the limit n→∞ in Eq. (2.5) implies

|f(x)− fm(x)| ≤ lim sup
n→∞

kfn − fmk∞

and taking the supremum over x ∈ X of this inequality implies

kf − fmk∞ ≤ lim sup
n→∞

kfn − fmk∞ → 0 as m→∞

showing fm → f in c∞(X).
For the second assertion, suppose that {fn}∞n=1 ⊂ BC(X) ⊂ c∞(X) and

fn → f ∈ c∞(X). We must show that f ∈ BC(X), i.e. that f is continuous.
To this end let x, y ∈ X, then

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ 2 kf − fnk∞ + |fn(x)− fn(y)| .

Thus if � > 0, we may choose n large so that 2 kf − fnk∞ < �/2 and
then for this n there exists an open neighborhood Vx of x ∈ X such that
|fn(x)− fn(y)| < �/2 for y ∈ Vx. Thus |f(x)− f(y)| < � for y ∈ Vx showing
the limiting function f is continuous.
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Remark 2.55. Let X be a set, Y be a Banach space and c∞(X,Y ) denote
the bounded functions f : X → Y equipped with the norm kfk = kfk∞ =
supx∈X kf(x)kY . If X is a topological space, let BC(X,Y ) denote those f ∈
c∞(X,Y ) which are continuous. The same proof used in Lemma 2.54 shows
that c∞(X,Y ) is a Banach space and that BC(X,Y ) is a closed subspace of
c∞(X,Y ).

Theorem 2.56 (Completeness of cp(µ)). Let X be a set and µ : X →
(0,∞] be a given function. Then for any p ∈ [1,∞], (cp(µ), k·kp) is a Banach
space.

Proof. We have already proved this for p =∞ in Lemma 2.54 so we now
assume that p ∈ [1,∞). Let {fn}∞n=1 ⊂ cp(µ) be a Cauchy sequence. Since for
any x ∈ X,

|fn(x)− fm(x)| ≤ 1

µ(x)
kfn − fmkp → 0 as m,n→∞

it follows that {fn(x)}∞n=1 is a Cauchy sequence of numbers and f(x) :=
limn→∞ fn(x) exists for all x ∈ X. By Fatou’s Lemma,

kfn − fkpp =
X
X

µ · lim
m→∞ inf |fn − fm|p ≤ lim

m→∞ inf
X
X

µ · |fn − fm|p

= lim
m→∞ inf kfn − fmkpp → 0 as n→∞.

This then shows that f = (f − fn) + fn ∈ cp(µ) (being the sum of two cp —

functions) and that fn
cp−→ f.

Example 2.57. Here are a couple of examples of complete metric spaces.

1. X = R and d(x, y) = |x− y|.
2. X = Rn and d(x, y) = kx− yk2 =

Pn
i=1(xi − yi)

2.
3. X = cp(µ) for p ∈ [1,∞] and any weight function µ.
4. X = C([0, 1],R) — the space of continuous functions from [0, 1] to R and
d(f, g) := maxt∈[0,1] |f(t)− g(t)|. This is a special case of Lemma 2.54.

5. Here is a typical example of a non-complete metric space. Let X =
C([0, 1],R) and

d(f, g) :=

Z 1

0

|f(t)− g(t)| dt.

2.5 Bounded Linear Operators Basics

Definition 2.58. Let X and Y be normed spaces and T : X → Y be a linear
map. Then T is said to be bounded provided there exists C < ∞ such that
kT (x)k ≤ CkxkX for all x ∈ X. We denote the best constant by kTk, i.e.
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kTk = sup
x 6=0

kT (x)k
kxk = sup

x6=0
{kT (x)k : kxk = 1} .

The number kTk is called the operator norm of T.

Proposition 2.59. Suppose that X and Y are normed spaces and T : X → Y
is a linear map. The the following are equivalent:

(a)T is continuous.
(b) T is continuous at 0.
(c) T is bounded.

Proof. (a)⇒ (b) trivial. (b)⇒ (c) If T continuous at 0 then there exist δ >
0 such that kT (x)k ≤ 1 if kxk ≤ δ. Therefore for any x ∈ X, kT (δx/kxk) k ≤ 1
which implies that kT (x)k ≤ 1

δ kxk and hence kTk ≤ 1
δ < ∞. (c) ⇒ (a) Let

x ∈ X and � > 0 be given. Then

kT (y)− T (x)k = kT (y − x)k ≤ kTk ky − xk < �

provided ky − xk < �/kTk ≡ δ.
For the next three exercises, let X = Rn and Y = Rm and T : X → Y

be a linear transformation so that T is given by matrix multiplication by an
m× n matrix. Let us identify the linear transformation T with this matrix.

Exercise 2.60. Assume the norms on X and Y are the c1 — norms, i.e. for
x ∈ Rn, kxk =Pn

j=1 |xj | . Then the operator norm of T is given by

kTk = max
1≤j≤n

mX
i=1

|Tij | .

Exercise 2.61. Suppose that norms on X and Y are the c∞ — norms, i.e. for
x ∈ Rn, kxk = max1≤j≤n |xj| . Then the operator norm of T is given by

kTk = max
1≤i≤m

nX
j=1

|Tij | .

Exercise 2.62. Assume the norms on X and Y are the c2 — norms, i.e. for
x ∈ Rn, kxk2 = Pn

j=1 x
2
j . Show kTk2 is the largest eigenvalue of the matrix

T trT : Rn → Rn.

Exercise 2.63. If X is finite dimensional normed space then all linear maps
are bounded.

Notation 2.64 Let L(X,Y ) denote the bounded linear operators from X to
Y. If Y = F we write X∗ for L(X,F) and call X∗ the (continuous) dual space
to X.
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Lemma 2.65. Let X,Y be normed spaces, then the operator norm k·k on
L(X,Y ) is a norm. Moreover if Z is another normed space and T : X → Y
and S : Y → Z are linear maps, then kSTk ≤ kSkkTk, where ST := S ◦ T.
Proof. As usual, the main point in checking the operator norm is a norm

is to verify the triangle inequality, the other axioms being easy to check. If
A,B ∈ L(X,Y ) then the triangle inequality is verified as follows:

kA+Bk = sup
x6=0

kAx+Bxk
kxk ≤ sup

x6=0
kAxk+ kBxk

kxk

≤ sup
x6=0

kAxk
kxk + sup

x6=0
kBxk
kxk = kAk+ kBk .

For the second assertion, we have for x ∈ X, that

kSTxk ≤ kSkkTxk ≤ kSkkTkkxk.

From this inequality and the definition of kSTk, it follows that kSTk ≤
kSkkTk.
Proposition 2.66. Suppose that X is a normed vector space and Y is a Ba-
nach space. Then (L(X,Y ), k · kop) is a Banach space. In particular the dual
space X∗ is always a Banach space.

We will use the following characterization of a Banach space in the proof
of this proposition.

Theorem 2.67. A normed space (X, k · k) is a Banach space iff for every
sequence {xn}∞n=1 such that

∞P
n=1

kxnk <∞ then limN→∞
NP
n=1

xn = S exists in

X (that is to say every absolutely convergent series is a convergent series in

X). As usual we will denote S by
∞P
n=1

xn.

Proof. (⇒)IfX is complete and
∞P
n=1

kxnk <∞ then sequence SN ≡
NP
n=1

xn

for N ∈ N is Cauchy because (for N > M)

kSN − SMk ≤
NX

n=M+1

kxnk→ 0 as M,N →∞.

Therefore S =
∞P
n=1

xn := limN→∞
NP
n=1

xn exists in X.

(⇐=) Suppose that {xn}∞n=1 is a Cauchy sequence and let {yk = xnk}∞k=1
be a subsequence of {xn}∞n=1 such that

∞P
n=1

kyn+1− ynk <∞. By assumption
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yN+1 − y1 =
NX
n=1

(yn+1 − yn)→ S =
∞X
n=1

(yn+1 − yn) ∈ X as N →∞.

This shows that limN→∞ yN exists and is equal to x := y1+S. Since {xn}∞n=1
is Cauchy,

kx− xnk ≤ kx− ykk+ kyk − xnk→ 0 as k, n→∞
showing that limn→∞ xn exists and is equal to x.
Proof. (Proof of Proposition 2.66.) We must show (L(X,Y ), k · kop) is

complete. Suppose that Tn ∈ L(X,Y ) is a sequence of operators such that
∞P
n=1

kTnk <∞. Then

∞X
n=1

kTnxk ≤
∞X
n=1

kTnk kxk <∞

and therefore by the completeness of Y, Sx :=
∞P
n=1

Tnx = limN→∞ SNx exists

in Y, where SN :=
NP
n=1

Tn. The reader should check that S : X → Y so defined

in linear. Since,

kSxk = lim
N→∞

kSNxk ≤ lim
N→∞

NX
n=1

kTnxk ≤
∞X
n=1

kTnk kxk ,

S is bounded and

kSk ≤
∞X
n=1

kTnk. (2.6)

Similarly,

kSx− SMxk = lim
N→∞

kSNx− SMxk

≤ lim
N→∞

NX
n=M+1

kTnk kxk =
∞X

n=M+1

kTnk kxk

and therefore,

kS − SMk ≤
∞X

n=M

kTnk→ 0 as M →∞.

Of course we did not actually need to use Theorem 2.67 in the proof. Here
is another proof. Let {Tn}∞n=1 be a Cauchy sequence in L(X,Y ). Then for
each x ∈ X,
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kTnx− Tmxk ≤ kTn − Tmk kxk→ 0 as m,n→∞

showing {Tnx}∞n=1 is Cauchy in Y. Using the completeness of Y, there exists
an element Tx ∈ Y such that

lim
n→∞ kTnx− Txk = 0.

It is a simple matter to show T : X → Y is a linear map. Moreover,

kTx− Tnxk ≤ kTx− Tmxk+ kTmx− Tnxk ≤ kTx− Tmxk+ kTm − Tnk kxk

and therefore

kTx− Tnxk ≤ lim sup
m→∞

(kTx− Tmxk+ kTm − Tnk kxk)
= kxk · lim sup

m→∞
kTm − Tnk .

Hence
kT − Tnk ≤ lim sup

m→∞
kTm − Tnk→ 0 as n→∞.

Thus we have shown that Tn → T in L(X,Y ) as desired.
The following simple “Bounded Linear Transformation” theorem will often

be used in the sequel to define linear transformations.

Theorem 2.68 (B. L. T. Theorem). Suppose that Z is a normed space,
X is a Banach space, and S ⊂ Z is a dense linear subspace of Z. If T :
S → X is a bounded linear transformation (i.e. there exists C <∞ such that
kTzk ≤ C kzk for all z ∈ S), then T has a unique extension to an element
T̄ ∈ L(Z,X) and this extension still satisfies°°T̄ z°° ≤ C kzk for all z ∈ S̄.

For an application of this theorem see Proposition 4.2 where the Riemann
integral is constructed.

Exercise 2.69. Prove Theorem 2.68.

2.6 Compactness in Metric Spaces

Let (X, ρ) be a metric space and let B0
x(�) = Bx(�) \ {x} .

Definition 2.70. A point x ∈ X is an accumulation point of a subset E ⊂ X
if ∅ 6= E ∩ V \ {x} for all V ⊂o X containing x.

Let us start with the following elementary lemma which is left as an exer-
cise to the reader.
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Lemma 2.71. Let E ⊂ X be a subset of a metric space (X, ρ) . Then the
following are equivalent:

1. x ∈ X is an accumulation point of E.
2. B0

x(�) ∩E 6= ∅ for all � > 0.
3. Bx(�) ∩E is an infinite set for all � > 0.
4. There exists {xn}∞n=1 ⊂ E \ {x} with limn→∞ xn = x.

Definition 2.72. A metric space (X, ρ) is said to be � — bounded (� > 0)
provided there exists a finite cover of X by balls of radius �. The metric space
is totally bounded if it is � — bounded for all � > 0.

Theorem 2.73. Let X be a metric space. The following are equivalent.

(a)X is compact.
(b) Every infinite subset of X has an accumulation point.
(c)X is totally bounded and complete.

Proof. The proof will consist of showing that a⇒ b⇒ c⇒ a.
(a ⇒ b) We will show that not b ⇒ not a. Suppose there exists E ⊂ X,

such that #(E) =∞ and E has no accumulation points. Then for all x ∈ X
there exists δx > 0 such that Vx := Bx(δx) satisfies (Vx \{x})∩E = ∅. Clearly
V = {Vx}x∈X is a cover of X, yet V has no finite sub cover. Indeed, for each
x ∈ X, Vx ∩ E consists of at most one point, therefore if Λ ⊂⊂ X, ∪x∈ΛVx
can only contain a finite number of points from E, in particular X 6= ∪x∈ΛVx.
(See Figure 2.3.)

Fig. 2.3. The construction of an open cover with no finite sub-cover.

(b ⇒ c) To show X is complete, let {xn}∞n=1 ⊂ X be a sequence and
E := {xn : n ∈ N} . If #(E) < ∞, then {xn}∞n=1 has a subsequence {xnk}
which is constant and hence convergent. If E is an infinite set it has an accu-
mulation point by assumption and hence Lemma 2.71 implies that {xn} has
a convergence subsequence.
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We now show that X is totally bounded. Let � > 0 be given and choose
x1 ∈ X. If possible choose x2 ∈ X such that d(x2, x1) ≥ �, then if possible
choose x3 ∈ X such that d(x3, {x1, x2}) ≥ � and continue inductively choosing
points {xj}nj=1 ⊂ X such that d(xn, {x1, . . . , xn−1}) ≥ �. This process must
terminate, for otherwise we could choose E = {xj}∞j=1 and infinite number of
distinct points such that d(xj , {x1, . . . , xj−1}) ≥ � for all j = 2, 3, 4, . . . . Since
for all x ∈ X the Bx(�/3)∩E can contain at most one point, no point x ∈ X
is an accumulation point of E. (See Figure 2.4.)

Fig. 2.4. Constructing a set with out an accumulation point.

(c ⇒ a) For sake of contradiction, assume there exists a cover an open
cover V = {Vα}α∈A of X with no finite subcover. Since X is totally bounded
for each n ∈ N there exists Λn ⊂⊂ X such that

X =
[

x∈Λn
Bx(1/n) ⊂

[
x∈Λn

Cx(1/n).

Choose x1 ∈ Λ1 such that no finite subset of V covers K1 := Cx1(1). Since
K1 = ∪x∈Λ2K1∩Cx(1/2), there exists x2 ∈ Λ2 such that K2 := K1∩Cx2(1/2)
can not be covered by a finite subset of V. Continuing this way inductively,
we construct sets Kn = Kn−1 ∩ Cxn(1/n) with xn ∈ Λn such no Kn can
be covered by a finite subset of V. Now choose yn ∈ Kn for each n. Since
{Kn}∞n=1 is a decreasing sequence of closed sets such that diam(Kn) ≤ 2/n,
it follows that {yn} is a Cauchy and hence convergent with

y = lim
n→∞ yn ∈ ∩∞m=1Km.

Since V is a cover of X, there exists V ∈ V such that x ∈ V. Since Kn ↓ {y}
and diam(Kn) → 0, it now follows that Kn ⊂ V for some n large. But this
violates the assertion that Kn can not be covered by a finite subset of V.(See
Figure 2.5.)
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Fig. 2.5. Nested Sequence of cubes.

Remark 2.74. Let X be a topological space and Y be a Banach space. By com-
bining Exercise 2.40 and Theorem 2.73 it follows that Cc(X,Y ) ⊂ BC(X,Y ).

Corollary 2.75. Let X be a metric space then X is compact iff all sequences
{xn} ⊂ X have convergent subsequences.

Proof. Suppose X is compact and {xn} ⊂ X.

1. If #({xn : n = 1, 2, . . . }) < ∞ then choose x ∈ X such that xn = x i.o.
and let {nk} ⊂ {n} such that xnk = x for all k. Then xnk → x

2. If #({xn : n = 1, 2, . . . }) =∞. We know E = {xn} has an accumulation
point {x}, hence there exists xnk → x.

Conversely if E is an infinite set let {xn}∞n=1 ⊂ E be a sequence of distinct
elements of E. We may, by passing to a subsequence, assume xn → x ∈ X
as n → ∞. Now x ∈ X is an accumulation point of E by Theorem 2.73 and
hence X is compact.

Corollary 2.76. Compact subsets of Rn are the closed and bounded sets.

Proof. If K is closed and bounded then K is complete (being the closed
subset of a complete space) and K is contained in [−M,M ]n for some positive
integer M. For δ > 0, let

Λδ = δZn ∩ [−M,M ]n := {δx : x ∈ Zn and δ|xi| ≤M for i = 1, 2, . . . , n}.
We will show, by choosing δ > 0 sufficiently small, that

K ⊂ [−M,M ]n ⊂ ∪x∈ΛδB(x, �) (2.7)
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which shows thatK is totally bounded. Hence by Theorem 2.73,K is compact.
Suppose that y ∈ [−M,M ]n, then there exists x ∈ Λδ such that |yi−xi| ≤ δ

for i = 1, 2, . . . , n. Hence

d2(x, y) =
nX
i=1

(yi − xi)
2 ≤ nδ2

which shows that d(x, y) ≤ √nδ. Hence if choose δ < �/
√
n we have shows

that d(x, y) < �, i.e. Eq. (2.7) holds.

Example 2.77. Let X = cp(N) with p ∈ [1,∞) and ρ ∈ X such that ρ(k) ≥ 0
for all k ∈ N. The set

K := {x ∈ X : |x(k)| ≤ ρ(k) for all k ∈ N}
is compact. To prove this, let {xn}∞n=1 ⊂ K be a sequence. By com-
pactness of closed bounded sets in C, for each k ∈ N there is a subse-
quence of {xn(k)}∞n=1 ⊂ C which is convergent. By Cantor’s diagonaliza-
tion trick, we may choose a subsequence {yn}∞n=1 of {xn}∞n=1 such that
y(k) := limn→∞ yn(k) exists for all k ∈ N.2 Since |yn(k)| ≤ ρ(k) for all n
it follows that |y(k)| ≤ ρ(k), i.e. y ∈ K. Finally

lim
n→∞ ky − ynkpp = lim

n→∞

∞X
k=1

|y(k)− yn(k)|p =
∞X
k=1

lim
n→∞ |y(k)− yn(k)|p = 0

where we have used the Dominated convergence theorem. (Note |y(k)− yn(k)|p ≤
2pρp(k) and ρp is summable.) Therefore yn → y and we are done.
Alternatively, we can prove K is compact by showing that K is closed and

totally bounded. It is simple to show K is closed, for if {xn}∞n=1 ⊂ K is a
convergent sequence in X, x := limn→∞ xn, then |x(k)| ≤ limn→∞ |xn(k)| ≤
ρ(k) for all k ∈ N. This shows that x ∈ K and henceK is closed. To see thatK

is totally bounded, let � > 0 and choose N such that
¡P∞

k=N+1 |ρ(k)|p
¢1/p

< �.

Since
QN

k=1Cρ(k)(0) ⊂ CN is closed and bounded, it is compact. Therefore
there exists a finite subset Λ ⊂QN

k=1Cρ(k)(0) such that

NY
k=1

Cρ(k)(0) ⊂ ∪z∈ΛBN
z (�)

2 The argument is as follows. Let {n1j}∞j=1 be a subsequence of N = {n}∞n=1 such that
limj→∞ xn1j

(1) exists. Now choose a subsequence {n2j}∞j=1 of {n1j}∞j=1 such that
limj→∞ xn2j

(2) exists and similarly {n3j}∞j=1 of {n2j}∞j=1 such that limj→∞ xn3j
(3)

exists. Continue on this way inductively to get

{n}∞n=1 ⊃ {n1j}∞j=1 ⊃ {n2j}∞j=1 ⊃ {n3j}∞j=1 ⊃ . . .

such that limj→∞ xnkj
(k) exists for all k ∈ N. Let mj := njj so that eventually

{mj}∞j=1 is a subsequence of {nkj }∞j=1 for all k. Therefore, we may take yj := xmj .
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where BN
z (�) is the open ball centered at z ∈ CN relative to the

cp({1, 2, 3, . . . , N}) — norm. For each z ∈ Λ, let z̃ ∈ X be defined by
z̃(k) = z(k) if k ≤ N and z̃(k) = 0 for k ≥ N + 1. I now claim that

K ⊂ ∪z∈ΛBz̃(2�) (2.8)

which, when verified, shows K is totally bounced. To verify Eq. (2.8), let
x ∈ K and write x = u + v where u(k) = x(k) for k ≤ N and u(k) = 0 for
k < N. Then by construction u ∈ Bz̃(�) for some z̃ ∈ Λ and

kvkp ≤
Ã ∞X
k=N+1

|ρ(k)|p
!1/p

< �.

So we have

kx− z̃kp = ku+ v − z̃kp ≤ ku− z̃kp + kvkp < 2�.
Exercise 2.78 (Extreme value theorem). Let (X, τ) be a compact topo-
logical space and f : X → R be a continuous function. Show −∞ < inf f ≤
sup f <∞ and there exists a, b ∈ X such that f(a) = inf f and f(b) = sup f.
3 Hint: use Exercise 2.40 and Corollary 2.76.

Exercise 2.79 (Uniform Continuity). Let (X, d) be a compact metric
space, (Y, ρ) be a metric space and f : X → Y be a continuous function.
Show that f is uniformly continuous, i.e. if � > 0 there exists δ > 0 such that
ρ(f(y), f(x)) < � if x, y ∈ X with d(x, y) < δ. Hint: I think the easiest proof
is by using a sequence argument.

Definition 2.80. Let L be a vector space. We say that two norms, |·| and
k·k , on L are equivalent if there exists constants α, β ∈ (0,∞) such that

kfk ≤ α |f | and |f | ≤ β kfk for all f ∈ L.

Lemma 2.81. Let L be a finite dimensional vector space. Then any two norms
|·| and k·k on L are equivalent. (This is typically not true for norms on infinite
dimensional spaces.)

Proof. Let {fi}ni=1 be a basis for L and define a new norm on L by°°°°°
nX
i=1

aifi

°°°°°
1

≡
nX
i=1

|ai| for ai ∈ F.

By the triangle inequality of the norm |·| , we find
3 Here is a proof if X is a metric space. Let {xn}∞n=1 ⊂ X be a sequence such that
f(xn) ↑ sup f. By compactness of X we may assume, by passing to a subsequence
if necessary that xn → b ∈ X as n→∞. By continuity of f, f(b) = sup f.
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¯
nX
i=1

aifi

¯̄̄̄
¯ ≤

nX
i=1

|ai| |fi| ≤M
nX
i=1

|ai| =M

°°°°°
nX
i=1

aifi

°°°°°
1

where M = maxi |fi| . Thus we have
|f | ≤M kfk1

for all f ∈ L. This inequality shows that |·| is continuous relative to k·k1 . Now
let S := {f ∈ L : kfk1 = 1} , a compact subset of L relative to k·k1 . Therefore
by Exercise 2.78 there exists f0 ∈ S such that

m = inf {|f | : f ∈ S} = |f0| > 0.
Hence given 0 6= f ∈ L, then f

kfk1 ∈ S so that

m ≤
¯̄̄̄

f

kfk1

¯̄̄̄
= |f | 1

kfk1
or equivalently

kfk1 ≤
1

m
|f | .

This shows that |·| and k·k1 are equivalent norms. Similarly one shows that
k·k and k·k1 are equivalent and hence so are |·| and k·k .
Definition 2.82. A subset D of a topological space X is dense if D̄ = X.
A topological space is said to be separable if it contains a countable dense
subset, D.

Example 2.83. The following are examples of countable dense sets.

1. The rational number Q are dense in R equipped with the usual topology.
2. More generally, Qd is a countable dense subset of Rd for any d ∈ N.
3. Even more generally, for any function µ : N→ (0,∞), cp(µ) is separable
for all 1 ≤ p <∞. For example, let Γ ⊂ F be a countable dense set, then

D := {x ∈ cp(µ) : xi ∈ ¡ for all i and #{j : xj 6= 0} <∞}.
The set Γ can be taken to be Q if F = R or Q+ iQ if F = C.

4. If (X, ρ) is a metric space which is separable then every subset Y ⊂ X is
also separable in the induced topology.

To prove 4. above, let A = {xn}∞n=1 ⊂ X be a countable dense subset of
X. Let ρ(x, Y ) = inf{ρ(x, y) : y ∈ Y } be the distance from x to Y . Recall that
ρ(·, Y ) : X → [0,∞) is continuous. Let �n = ρ(xn, Y ) ≥ 0 and for each n let
yn ∈ Bxn(

1
n)∩Y if �n = 0 otherwise choose yn ∈ Bxn(2�n)∩Y. Then if y ∈ Y

and � > 0 we may choose n ∈ N such that ρ(y, xn) ≤ �n < �/3 and 1
n < �/3.

If �n > 0, ρ(yn, xn) ≤ 2�n < 2�/3 and if �n = 0, ρ(yn, xn) < �/3 and therefore

ρ(y, yn) ≤ ρ(y, xn) + ρ(xn, yn) < �.

This shows that B ≡ {yn}∞n=1 is a countable dense subset of Y.
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Lemma 2.84. Any compact metric space (X, d) is separable.

Proof. To each integer n, there exists Λn ⊂⊂ X such that X =
∪x∈ΛnB(x, 1/n). Let D := ∪∞n=1Λn — a countable subset of X. Moreover,
it is clear by construction that D̄ = X.

2.7 Compactness in Function Spaces

In this section, let (X, τ) be a topological space.

Definition 2.85. Let F ⊂ C(X).

1. F is equicontinuous at x ∈ X iff for all � > 0 there exists U ∈ τx such
that |f(y)− f(x)| < � for all y ∈ U and f ∈ F .

2. F is equicontinuous if F is equicontinuous at all points x ∈ X.
3. F is pointwise bounded if sup{|f(x)| : |f ∈ F} <∞ for all x ∈ X.

Theorem 2.86 (Ascoli-Arzela Theorem). Let (X, τ) be a compact topo-
logical space and F ⊂ C(X). Then F is precompact in C(X) iff F is equicon-
tinuous and point-wise bounded.

Proof. (⇐) Since C(X) ⊂ B(X) is a complete metric space, we must
show F is totally bounded. Let � > 0 be given. By equicontinuity there exists
Vx ∈ τx for all x ∈ X such that |f(y)−f(x)| < �/2 if y ∈ Vx and f ∈ F . Since
X is compact we may choose Λ ⊂⊂ X such that X = ∪x∈ΛVx. We have now
decomposed X into “blocks” {Vx}x∈Λ such that each f ∈ F is constant to
within � on Vx. Since sup {|f(x)| : x ∈ Λ and f ∈ F} < ∞, it is now evident
that

M = sup {|f(x)| : x ∈ X and f ∈ F}
≤ sup {|f(x)| : x ∈ Λ and f ∈ F}+ � <∞.

Let D ≡ {k�/2 : k ∈ Z} ∩ [−M,M ]. If f ∈ F and φ ∈ DΛ (i.e. φ : Λ → D
is a function) is chosen so that |φ(x)− f(x)| ≤ �/2 for all x ∈ Λ, then

|f(y)− φ(x)| ≤ |f(y)− f(x)|+ |f(x)− φ(x)| < � ∀ x ∈ Λ and y ∈ Vx.

From this it follows that F = S©Fφ : φ ∈ DΛª where, for φ ∈ DΛ,
Fφ ≡ {f ∈ F : |f(y)− φ(x)| < � for y ∈ Vx and x ∈ Λ}.

Let Γ :=
©
φ ∈ DΛ : Fφ 6= ∅

ª
and for each φ ∈ Γ choose fφ ∈ Fφ ∩ F . For

f ∈ Fφ, x ∈ Λ and y ∈ Vx we have

|f(y)− fφ(y)| ≤ |f(y)− φ(x))|+ |φ(x)− fφ(y)| < 2�.
So kf − fφk < 2� for all f ∈ Fφ showing that Fφ ⊂ Bfφ(2�). Therefore,
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F = ∪φ∈ΓFφ ⊂ ∪φ∈ΓBfφ(2�)

and because � > 0 was arbitrary we have shown that F is totally bounded.
(⇒) Since k·k : C(X) → [0,∞) is a continuous function on C(X)

it is bounded on any compact subset F ⊂ C(X). This shows that
sup {kfk : f ∈ F} < ∞ which clearly implies that F is pointwise bounded.4

Suppose F were not equicontinuous at some point x ∈ X that is to say there
exists � > 0 such that for all V ∈ τx, sup

y∈V
sup
f∈F

|f(y)−f(x)| > �.5 Equivalently

said, to each V ∈ τx we may choose

fV ∈ F and xV ∈ V such that |fV (x)− fV (xV )| ≥ �. (2.9)

Set CV = {fW :W ∈ τx and W ⊂ V }k·k∞ ⊂ F and notice for any V ⊂⊂ τx
that

∩V ∈VCV ⊇ C∩V 6= ∅,
so that {CV }V ∈ τx ⊂ F has the finite intersection property.6 Since F is
compact, it follows that there exists some

f ∈
\
V ∈τx

CV 6= ∅.

Since f is continuous, there exists V ∈ τx such that |f(x) − f(y)| < �/3 for
all y ∈ V. Because f ∈ CV , there exists W ⊂ V such that kf − fW k < �/3.
We now arrive at a contradiction;

� ≤ |fW (x)− fW (xW )| ≤ |fW (x)− f(x)|+ |f(x)− f(xW )|+ |f(xW )− fW (xW )|
< �/3 + �/3 + �/3 = �.

4 One could also prove that F is pointwise bounded by considering the continuous
evaluation maps ex : C(X)→ R given by ex(f) = f(x) for all x ∈ X.

5 If X is first countable we could finish the proof with the following argument.
Let {Vn}∞n=1 be a neighborhood base at x such that V1 ⊃ V2 ⊃ V3 ⊃ . . . . By
the assumption that F is not equicontinuous at x, there exist fn ∈ F and xn ∈
Vn such that |fn(x) − fn(xn)| ≥ � ∀ n. Since F is a compact metric space by
passing to a subsequence if necessary we may assume that fn converges uniformly
to some f ∈ F . Because xn → x as n→∞ we learn that

� ≤ |fn(x)− fn(xn)| ≤ |fn(x)− f(x)|+ |f(x)− f(xn)|+ |f(xn)− fn(xn)|
≤ 2kfn − fk+ |f(x)− f(xn)|→ 0 as n→∞

which is a contradiction.
6 If we are willing to use Net’s described in Appendix ?? below we could finish
the proof as follows. Since F is compact, the net {fV }V ∈τx ⊂ F has a cluster
point f ∈ F ⊂ C(X). Choose a subnet {gα}α∈A of {fV }V ∈τX such that gα → f
uniformly. Then, since xV → x implies xVα → x, we may conclude from Eq. (2.9)
that

� ≤ |gα(x)− gα(xVα)|→ |g(x)− g(x)| = 0
which is a contradiction.
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2.8 Connectedness

The reader may wish to review the topological notions and results introduced
in Section 2.3 above before proceeding.

Definition 2.87. (X, τ) is disconnected if there exists non-empty open sets
U and V of X such that U ∩ V = ∅ and X = U ∪ V . We say {U, V } is a
disconnection of X. The topological space (X, τ) is called connected if it
is not disconnected, i.e. if there are no disconnection of X. If A ⊂ X we say
A is connected iff (A, τA) is connected where τA is the relative topology on
A. Explicitly, A is disconnected in (X, τ) iff there exists U,V ∈ τ such that
U ∩A 6= ∅, U ∩A 6= ∅, A ∩ U ∩ V = ∅ and A ⊂ U ∪ V.
The reader should check that the following statement is an equivalent

definition of connectivity. A topological space (X, τ) is connected iff the only
sets A ⊂ X which are both open and closed are the sets X and ∅.
Remark 2.88. Let A ⊂ Y ⊂ X. Then A is connected in X iff A is connected
in Y .

Proof. Since

τA ≡ {V ∩A : V ⊂ X} = {V ∩A ∩ Y : V ⊂ X} = {U ∩A : U ⊂o Y },
the relative topology on A inherited from X is the same as the relative topol-
ogy on A inherited from Y . Since connectivity is a statement about the relative
topologies on A, A is connected in X iff A is connected in Y.
The following elementary but important lemma is left as an exercise to

the reader.

Lemma 2.89. Suppose that f : X → Y is a continuous map between topolog-
ical spaces. Then f(X) ⊂ Y is connected if X is connected.

Here is a typical way these connectedness ideas are used.

Example 2.90. Suppose that f : X → Y is a continuous map between topo-
logical spaces, X is connected, Y is Hausdorff, and f is locally constant, i.e.
for all x ∈ X there exists an open neighborhood V of x in X such that f |V is
constant. Then f is constant, i.e. f(X) = {y0} for some y0 ∈ Y. To prove this,
let y0 ∈ f(X) and let W := f−1({y0}). Since Y is Hausdorff, {y0} ⊂ Y is a
closed set and since f is continuous W ⊂ X is also closed. Since f is locally
constant, W is open as well and since X is connected it follows that W = X,
i.e. f(X) = {y0} .
Proposition 2.91. Let (X, τ) be a topological space.
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1. If B ⊂ X is a connected set and X is the disjoint union of two open sets
U and V, then either B ⊂ U or B ⊂ V.

2. a. If A ⊂ X is connected, then Ā is connected.
b. More generally, if A is connected and B ⊂ acc(A), then A ∪ B is
connected as well. (Recall that acc(A) — the set of accumulation points of
A was defined in Definition 2.25 above.)

3. If {Eα}α∈A is a collection of connected sets such that
T
α∈AEα 6= ∅, then

Y :=
S
α∈AEα is connected as well.

4. Suppose A,B ⊂ X are non-empty connected subsets of X such that Ā ∩
B 6= ∅, then A ∪B is connected in X.

5. Every point x ∈ X is contained in a unique maximal connected subset
Cx of X and this subset is closed. The set Cx is called the connected
component of x.

Proof.

1. Since B is the disjoint union of the relatively open sets B ∩U and B ∩ V,
we must have B ∩ U = B or B ∩ V = B for otherwise {B ∩ U,B ∩ V }
would be a disconnection of B.

2. a. Let Y = Ā equipped with the relative topology from X. Suppose that
U, V ⊂o Y form a disconnection of Y = Ā. Then by 1. either A ⊂ U or
A ⊂ V. Say that A ⊂ U. Since U is both open an closed in Y, it follows
that Y = Ā ⊂ U. Therefore V = ∅ and we have a contradiction to the
assumption that {U, V } is a disconnection of Y = Ā. Hence we must
conclude that Y = Ā is connected as well.
b. Now let Y = A ∪B with B ⊂ acc(A), then

ĀY = Ā ∩ Y = (A ∪ acc(A)) ∩ Y = A ∪B.

Because A is connected in Y, by (2a) Y = A ∪B = ĀY is also connected.
3. Let Y :=

S
α∈AEα. By Remark 2.88, we know that Eα is connected in

Y for each α ∈ A. If {U, V } were a disconnection of Y, by item (1),
either Eα ⊂ U or Eα ⊂ V for all α. Let Λ = {α ∈ A : Eα ⊂ U} then
U = ∪α∈ΛEα and V = ∪α∈A\ΛEα. (Notice that neither Λ or A \Λ can be
empty since U and V are not empty.) Since

∅ = U ∩ V =
[

α∈Λ,β∈Λc (Eα ∩Eβ) ⊃
\
α∈A

Eα 6= ∅.

we have reached a contradiction and hence no such disconnection exists.
4. (A good example to keep in mind here is X = R, A = (0, 1) and B =
[1, 2).) For sake of contradiction suppose that {U, V } were a disconnection
of Y = A ∪ B. By item (1) either A ⊂ U or A ⊂ V, say A ⊂ U in which
case B ⊂ V. Since Y = A ∪ B we must have A = U and B = V and so
we may conclude: A and B are disjoint subsets of Y which are both open
and closed. This implies
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A = ĀY = Ā ∩ Y = Ā ∩ (A ∪B) = A ∪ ¡Ā ∩B¢
and therefore

∅ 6= Ā ∩B ⊂ A ∩B = ∅,
which gives us the desired contradiction.

5. Let C denote the collection of connected subsets C ⊂ X such that x ∈ C.
Then by item 3., the set Cx := ∪C is also a connected subset of X which
contains x and clearly this is the unique maximal connected set containing
x. Since C̄x is also connected by item (2) and Cx is maximal, Cx = C̄x,
i.e. Cx is closed.

Theorem 2.92. The connected subsets of R are intervals.

Proof. Suppose that A ⊂ R is a connected subset and that a, b ∈ A with
a < b. If there exists c ∈ (a, b) such that c /∈ A, then U := (−∞, c) ∩ A
and V := (c,∞) ∩ A would form a disconnection of A. Hence (a, b) ⊂ A. Let
α := inf(A) and β := sup(A) and choose αn, βn ∈ A such that αn < βn and
αn ↓ α and βn ↑ β as n → ∞. By what we have just shown, (αn, βn) ⊂ A
for all n and hence (α, β) = ∪∞n=1(αn, βn) ⊂ A. From this it follows that
A = (α, β), [α, β), (α, β] or [α, β], i.e. A is an interval.
Conversely suppose that A is an interval, and for sake of contradiction,

suppose that {U, V } is a disconnection of A with a ∈ U, b ∈ V. After relabelling
U and V if necessary we may assume that a < b. Since A is an interval
[a, b] ⊂ A. Let p = sup ([a, b] ∩ U) , then because U and V are open, a < p < b.
Now p can not be in U for otherwise sup ([a, b] ∩ U) > p and p can not be in
V for otherwise p < sup ([a, b] ∩ U) . From this it follows that p /∈ U ∪ V and
hence A 6= U∪V contradicting the assumption that {U, V } is a disconnection.

Definition 2.93. A topological space X is path connected if to every pair of
points {x0, x1} ⊂ X there exists a continuous path σ ∈ C([0, 1],X) such that
σ(0) = x0 and σ(1) = x1. The space X is said to be locally path connected
if for each x ∈ X, there is an open neighborhood V ⊂ X of x which is path
connected.

Proposition 2.94. Let X be a topological space.

1. If X is path connected then X is connected.
2. If X is connected and locally path connected, then X is path connected.
3. If X is any connected open subset of Rn, then X is path connected.

Proof. The reader is asked to prove this proposition in Exercises 2.125 —
2.127 below.
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2.9 Supplement: Sums in Banach Spaces

Definition 2.95. Suppose that X is a normed space and {vα ∈ X : α ∈ A} is
a given collection of vectors in X. We say that s =

P
α∈A vα ∈ X if for all

� > 0 there exists a finite set Γ� ⊂ A such that
°°s−Pα∈Λ vα

°° < � for all
Λ ⊂⊂ A such that Γ� ⊂ Λ. (Unlike the case of real valued sums, this does
not imply that

P
α∈Λ kvαk <∞. See Proposition 14.22 below, from which one

may manufacture counter-examples to this false premise.)

Lemma 2.96. (1) When X is a Banach space,
P

α∈A vα exists in X iff for
all � > 0 there exists Γ� ⊂⊂ A such that

°°P
α∈Λ vα

°° < � for all Λ ⊂⊂ A \ Γ�.
Also if

P
α∈A vα exists in X then {α ∈ A : va 6= 0} is at most countable. (2)

If s =
P

α∈A vα ∈ X exists and T : X → Y is a bounded linear map between
normed spaces, then

P
α∈A Tvα exists in Y and

Ts = T
X
α∈A

vα =
X
α∈A

Tvα.

Proof. (1) Suppose that s =
P

α∈A vα exists and � > 0. Let Γ� ⊂⊂ A be
as in Definition 2.95. Then for Λ ⊂⊂ A \ Γ�,°°°°°X

α∈Λ
vα

°°°°° ≤
°°°°°X
α∈Λ

vα +
X
α∈Γ�

vα − s

°°°°°+
°°°°°X
α∈Γ�

vα − s

°°°°°
=

°°°°° X
α∈Γ�∪Λ

vα − s

°°°°°+ � < 2�.

Conversely, suppose for all � > 0 there exists Γ� ⊂⊂ A such that
°°P

α∈Λ vα
°° <

� for all Λ ⊂⊂ A\Γ�. Let γn := ∪nk=1Γ1/k ⊂ A and set sn :=
P

α∈γn vα. Then
for m > n,

ksm − snk =
°°°°°°

X
α∈γm\γn

vα

°°°°°° ≤ 1/n→ 0 as m,n→∞.

Therefore {sn}∞n=1 is Cauchy and hence convergent in X. Let s := limn→∞ sn,
then for Λ ⊂⊂ A such that γn ⊂ Λ, we have°°°°°s−X

α∈Λ
vα

°°°°° ≤ ks− snk+
°°°°°°
X

α∈Λ\γn
vα

°°°°°° ≤ ks− snk+ 1

n
.

Since the right member of this equation goes to zero as n → ∞, it follows
that

P
α∈A vα exists and is equal to s.

Let γ := ∪∞n=1γn — a countable subset of A. Then for α /∈ γ, {α} ⊂ A \ γn
for all n and hence
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kvαk =
°°°°°°
X

β∈{α}
vβ

°°°°°° ≤ 1/n→ 0 as n→∞.

Therefore vα = 0 for all α ∈ A \ γ.
(2) Let Γ� be as in Definition 2.95 and Λ ⊂⊂ A such that Γ� ⊂ Λ. Then°°°°°Ts−X

α∈Λ
Tvα

°°°°° ≤ kTk
°°°°°s−X

α∈Λ
vα

°°°°° < kTk �
which shows that

P
α∈Λ Tvα exists and is equal to Ts.

2.10 Word of Caution

Example 2.97. Let (X,d) be a metric space. It is always true that Bx(�) ⊂
Cx(�) since Cx(�) is a closed set containing Bx(�). However, it is not always
true that Bx(�) = Cx(�). For example let X = {1, 2} and d(1, 2) = 1, then
B1(1) = {1} , B1(1) = {1} while C1(1) = X. For another counter example,
take

X =
©
(x, y) ∈ R2 : x = 0 or x = 1ª

with the usually Euclidean metric coming from the plane. Then

B(0,0)(1) =
©
(0, y) ∈ R2 : |y| < 1ª ,

B(0,0)(1) =
©
(0, y) ∈ R2 : |y| ≤ 1ª , while

C(0,0)(1) = B(0,0)(1) ∪ {(0, 1)} .

In spite of the above examples, Lemmas 2.98 and 2.99 below shows that
for certain metric spaces of interest it is true that Bx(�) = Cx(�).

Lemma 2.98. Suppose that (X, |·|) is a normed vector space and d is the
metric on X defined by d(x, y) = |x− y| . Then

Bx(�) = Cx(�) and

∂Bx(�) = {y ∈ X : d(x, y) = �}.

Proof. We must show that C := Cx(�) ⊂ Bx(�) =: B̄. For y ∈ C, let
v = y − x, then

|v| = |y − x| = d(x, y) ≤ �.

Let αn = 1 − 1/n so that αn ↑ 1 as n → ∞. Let yn = x + αnv, then
d(x, yn) = αnd(x, y) < �, so that yn ∈ Bx(�) and d(y, yn) = 1 − αn → 0 as
n→∞. This shows that yn → y as n→∞ and hence that y ∈ B̄.



2.10 Word of Caution 55
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Fig. 2.6. An almost length minimizing curve joining x to y.

2.10.1 Riemannian Metrics

This subsection is not completely self contained and may safely be skipped.

Lemma 2.99. Suppose that X is a Riemannian (or sub-Riemannian) mani-
fold and d is the metric on X defined by

d(x, y) = inf {c(σ) : σ(0) = x and σ(1) = y}
where c(σ) is the length of the curve σ. We define c(σ) = ∞ if σ is not
piecewise smooth.
Then

Bx(�) = Cx(�) and

∂Bx(�) = {y ∈ X : d(x, y) = �}.

Proof. Let C := Cx(�) ⊂ Bx(�) =: B̄. We will show that C ⊂ B̄ by
showing B̄c ⊂ Cc. Suppose that y ∈ B̄c and choose δ > 0 such that By(δ) ∩
B̄ = ∅. In particular this implies that

By(δ) ∩Bx(�) = ∅.
We will finish the proof by showing that d(x, y) ≥ � + δ > � and hence
that y ∈ Cc. This will be accomplished by showing: if d(x, y) < � + δ then
By(δ) ∩Bx(�) 6= ∅.
If d(x, y) < max(�, δ) then either x ∈ By(δ) or y ∈ Bx(�). In either case

By(δ) ∩ Bx(�) 6= ∅. Hence we may assume that max(�, δ) ≤ d(x, y) < � + δ.
Let α > 0 be a number such that

max(�, δ) ≤ d(x, y) < α < �+ δ

and choose a curve σ from x to y such that c(σ) < α. Also choose 0 < δ0 < δ
such that 0 < α−δ0 < � which can be done since α−δ < �. Let k(t) = d(y, σ(t))
a continuous function on [0, 1] and therefore k([0, 1]) ⊂ R is a connected
set which contains 0 and d(x, y). Therefore there exists t0 ∈ [0, 1] such that
d(y, σ(t0)) = k(t0) = δ0. Let z = σ(t0) ∈ By(δ) then
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d(x, z) ≤ c(σ|[0,t0]) = c(σ)− c(σ|[t0,1]) < α− d(z, y) = α− δ0 < �

and therefore z ∈ Bx(�) ∩Bx(δ) 6= ∅.
Remark 2.100. Suppose again that X is a Riemannian (or sub-Riemannian)
manifold and

d(x, y) = inf {c(σ) : σ(0) = x and σ(1) = y} .
Let σ be a curve from x to y and let � = c(σ)− d(x, y). Then for all 0 ≤ u <
v ≤ 1,

d(σ(u), σ(v)) ≤ c(σ|[u,v]) + �.

So if σ is within � of a length minimizing curve from x to y that σ|[u,v] is
within � of a length minimizing curve from σ(u) to σ(v). In particular if
d(x, y) = c(σ) then d(σ(u), σ(v)) = c(σ|[u,v]) for all 0 ≤ u < v ≤ 1, i.e. if σ
is a length minimizing curve from x to y that σ|[u,v] is a length minimizing
curve from σ(u) to σ(v).
To prove these assertions notice that

d(x, y) + � = c(σ) = c(σ|[0,u]) + c(σ|[u,v]) + c(σ|[v,1])
≥ d(x, σ(u)) + c(σ|[u,v]) + d(σ(v), y)

and therefore

c(σ|[u,v]) ≤ d(x, y) + �− d(x, σ(u))− d(σ(v), y)

≤ d(σ(u), σ(v)) + �.

2.11 Exercises

Exercise 2.101. Prove Lemma 2.71.

Exercise 2.102. Let X = C([0, 1],R) and for f ∈ X, let

kfk1 :=
Z 1

0

|f(t)| dt.

Show that (X, k·k1) is normed space and show by example that this space is
not complete.

Exercise 2.103. Let (X, d) be a metric space. Suppose that {xn}∞n=1 ⊂ X is
a sequence and set �n := d(xn, xn+1). Show that for m > n that

d(xn, xm) ≤
m−1X
k=n

�k ≤
∞X
k=n

�k.

Conclude from this that if
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∞X
k=1

�k =
∞X
n=1

d(xn, xn+1) <∞

then {xn}∞n=1 is Cauchy. Moreover, show that if {xn}∞n=1 is a convergent
sequence and x = limn→∞ xn then

d(x, xn) ≤
∞X
k=n

�k.

Exercise 2.104. Show that (X,d) is a complete metric space iff every se-
quence {xn}∞n=1 ⊂ X such that

P∞
n=1 d(xn, xn+1) < ∞ is a convergent se-

quence in X. You may find it useful to prove the following statements in the
course of the proof.

1. If {xn} is Cauchy sequence, then there is a subsequence yj ≡ xnj such
that

P∞
j=1 d(yj+1, yj) <∞.

2. If {xn}∞n=1 is Cauchy and there exists a subsequence yj ≡ xnj of {xn}
such that x = limj→∞ yj exists, then limn→∞ xn also exists and is equal
to x.

Exercise 2.105. Suppose that f : [0,∞) → [0,∞) is a C2 — function such
that f(0) = 0, f 0 > 0 and f 00 ≤ 0 and (X, ρ) is a metric space. Show that
d(x, y) = f(ρ(x, y)) is a metric on X. In particular show that

d(x, y) ≡ ρ(x, y)

1 + ρ(x, y)

is a metric on X. (Hint: use calculus to verify that f(a+ b) ≤ f(a) + f(b) for
all a, b ∈ [0,∞).)
Exercise 2.106. Let d : C(R)× C(R)→ [0,∞) be defined by

d(f, g) =
∞X
n=1

2−n
kf − gkn

1 + kf − gkn ,

where kfkn ≡ sup{|f(x)| : |x| ≤ n} = max{|f(x)| : |x| ≤ n}.
1. Show that d is a metric on C(R).
2. Show that a sequence {fn}∞n=1 ⊂ C(R) converges to f ∈ C(R) as n→∞
iff fn converges to f uniformly on compact subsets of R.

3. Show that (C(R), d) is a complete metric space.

Exercise 2.107. Let {(Xn, dn)}∞n=1 be a sequence of metric spaces, X :=Q∞
n=1Xn, and for x = (x(n))

∞
n=1 and y = (y(n))∞n=1 in X let

d(x, y) =
∞X
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
.
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Show: 1) (X, d) is a metric space, 2) a sequence {xk}∞k=1 ⊂ X converges to
x ∈ X iff xk(n) → x(n) ∈ Xn as k → ∞ for every n = 1, 2, . . . , and 3) X is
complete if Xn is complete for all n.

Exercise 2.108 (Tychonoff ’s Theorem). Let us continue the notation of
the previous problem. Further assume that the spaces Xn are compact for all
n. Show (X, d) is compact. Hint: Either use Cantor’s method to show every
sequence {xm}∞m=1 ⊂ X has a convergent subsequence or alternatively show
(X, d) is complete and totally bounded.

Exercise 2.109. Let (Xi, di) for i = 1, . . . , n be a finite collection of metric
spaces and for 1 ≤ p ≤ ∞ and x = (x1, x2, . . . , xn) and y = (y1, . . . , yn) in
X :=

Qn
i=1Xi, let

ρp(x, y) =

½
(
Pn

i=1 [di(xi, yi)]
p)
1/p if p 6=∞

maxi di(xi, yi) if p =∞ .

1. Show (X, ρp) is a metric space for p ∈ [1,∞]. Hint: Minkowski’s inequal-
ity.

2. Show that all of the metric {ρp : 1 ≤ p ≤ ∞} are equivalent, i.e. for any
p, q ∈ [1,∞] there exists constants c, C <∞ such that

ρp(x, y) ≤ Cρq(x, y) and ρq(x, y) ≤ cρp(x, y) for all x, y ∈ X.

Hint: This can be done with explicit estimates or more simply using
Lemma 2.81.

3. Show that the topologies associated to the metrics ρp are the same for all
p ∈ [1,∞].

Exercise 2.110. Let C be a closed proper subset of Rn and x ∈ Rn \C. Show
there exists a y ∈ C such that d(x, y) = dC(x).

Exercise 2.111. Let F = R in this problem and A ⊂ c2(N) be defined by

A = {x ∈ c2(N) : x(n) ≥ 1 + 1/n for some n ∈ N}
= ∪∞n=1{x ∈ c2(N) : x(n) ≥ 1 + 1/n}.

Show A is a closed subset of c2(N) with the property that dA(0) = 1 while
there is no y ∈ A such that dA(y) = 1. (Remember that in general an infinite
union of closed sets need not be closed.)

2.11.1 Banach Space Problems

Exercise 2.112. Show that all finite dimensional normed vector spaces
(L, k·k) are necessarily complete. Also show that closed and bounded sets
(relative to the given norm) are compact.
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Exercise 2.113. Let (X, k·k) be a normed space over F (R or C). Show the
map

(λ, x, y) ∈ F×X ×X → x+ λy ∈ X

is continuous relative to the topology on F×X ×X defined by the norm

k(λ, x, y)kF×X×X := |λ|+ kxk+ kyk .
(See Exercise 2.109 for more on the metric associated to this norm.) Also show
that k·k : X → [0,∞) is continuous.
Exercise 2.114. Let p ∈ [1,∞] and X be an infinite set. Show the closed
unit ball in cp(X) is not compact.

Exercise 2.115. Let X = N and for p, q ∈ [1,∞) let k·kp denote the cp(N) —
norm. Show k·kp and k·kq are inequivalent norms for p 6= q by showing

sup
f 6=0

kfkp
kfkq

=∞ if p < q.

Exercise 2.116. Folland Problem 5.5. Closure of subspaces are subspaces.

Exercise 2.117. Folland Problem 5.9. Showing Ck([0, 1]) is a Banach space.

Exercise 2.118. Folland Problem 5.11. Showing Holder spaces are Banach
spaces.

Exercise 2.119. Let X, Y and Z be normed spaces. Prove the maps

(S, x) ∈ L(X,Y )×X −→ Sx ∈ Y

and
(S, T ) ∈ L(X,Y )× L(Y,Z) −→ ST ∈ L(X,Z)

are continuous relative to the norms

k(S, x)kL(X,Y )×X := kSkL(X,Y ) + kxkX and

k(S, T )kL(X,Y )×L(Y,Z) := kSkL(X,Y ) + kTkL(Y,Z)
on L(X,Y )×X and L(X,Y )× L(Y,Z) respectively.

2.11.2 Ascoli-Arzela Theorem Problems

Exercise 2.120. Let T ∈ (0,∞) and F ⊂ C([0, T ]) be a family of functions
such that:

1. ḟ(t) exists for all t ∈ (0, T ) and f ∈ F .
2. supf∈F |f(0)| <∞ and

3. M := supf∈F supt∈(0,T )
¯̄̄
ḟ(t)

¯̄̄
<∞.

Show F is precompact in the Banach space C([0, T ]) equipped with the
norm kfk∞ = supt∈[0,T ] |f(t)| .
Exercise 2.121. Folland Problem 4.63.

Exercise 2.122. Folland Problem 4.64.
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2.11.3 General Topological Space Problems

Exercise 2.123. Give an example of continuous map, f : X → Y, and a
compact subset K of Y such that f−1(K) is not compact.

Exercise 2.124. Let V be an open subset of R. Show V may be written as
a disjoint union of open intervals Jn = (an, bn), where an, bn ∈ R∪ {±∞} for
n = 1, 2, · · · < N with N =∞ possible.

2.11.4 Connectedness Problems

Exercise 2.125. Prove item 1. of Proposition 2.94. Hint: show X is not
connected implies X is not path connected.

Exercise 2.126. Prove item 2. of Proposition 2.94. Hint: fix x0 ∈ X and let
W denote the set of x ∈ X such that there exists σ ∈ C([0, 1],X) satisfying
σ(0) = x0 and σ(1) = x. Then show W is both open and closed.

Exercise 2.127. Prove item 3. of Proposition 2.94.

Exercise 2.128. Let

X :=
©
(x, y) ∈ R2 : y = sin(x−1)ª ∪ {(0, 0)}

equipped with the relative topology induced from the standard topology on
R2. Show X is connected but not path connected.

Exercise 2.129. Prove the following strong version of item 3. of Proposition
2.94, namely to every pair of points x0, x1 in a connected open subset V of
Rn there exists σ ∈ C∞(R, V ) such that σ(0) = x0 and σ(1) = x1. Hint: Use
a convolution argument.
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Locally Compact Hausdorff Spaces

In this section X will always be a topological space with topology τ. We
are now interested in restrictions on τ in order to insure there are “plenty” of
continuous functions. One such restriction is to assume τ = τd — is the topology
induced from a metric on X. The following two results shows that (X, τd) has
lots of continuous functions. Recall for A ⊂ X, dA(x) = inf{d(x, y) : y ∈ A}.
Lemma 3.1 (Urysohn’s Lemma for Metric Spaces). Let (X, d) be a
metric space, V ⊂o X and F @ X such that F ⊂ V. Then

f(x) =
dV c(x)

dF (x) + dV c(x)
for x ∈ X (3.1)

defines a continuous function, f : X → [0, 1], such that f(x) = 1 for x ∈ F and
f(x) = 0 if x /∈ V. (This may also be stated as follows. Let A (A = F ) and B
(B = V c) be two disjoint closed subsets of X, then there exists f ∈ C(X, [0, 1])
such that f = 1 on A and f = 0 on B.)

Proof. By Lemma 2.7, dF and dV c are continuous functions on X. Since
F and V c are closed, dF (x) > 0 if x /∈ F and dV c(x) > 0 if x ∈ V. Since
F ∩ V c = ∅, dF (x) + dV c(x) > 0 for all x and (dF + dV c)

−1 is continuous as
well. The remaining assertions about f are all easy to verify.

Theorem 3.2 (Metric Space Tietze Extension Theorem). Let (X, d)
be a metric space, D be a closed subset of X, −∞ < a < b < ∞ and f ∈
C(D, [a, b]). (Here we are viewing D as a topological space with the relative
topology, τD, see Definition 2.22.) Then there exists F ∈ C(X, [a, b]) such that
F |D = f.

Proof.

1. By scaling and translation (i.e. by replacing f by f−a
b−a ), it suffices to prove

Theorem 3.2 with a = 0 and b = 1.
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2. Suppose α ∈ (0, 1] and f : D → [0, α] is continuous function. Let A :=
f−1([0, 13α]) and B := f−1([23α, 1]). By Lemma 3.1 there exists a function
g̃ ∈ C(X, [0, α/3]) such that g̃ = 0 on A and g̃ = 1 on B. Letting g := α

3 g̃,
we have g ∈ C(X, [0, α/3]) such that g = 0 on A and g = α/3 on B.
Further notice that

0 ≤ f(x)− g(x) ≤ 2
3
α for all x ∈ D.

3. Now suppose f : D → [0, 1] is a continuous function as in step 1. Let
g1 ∈ C(X, [0, 1/3]) be as in step 2. with α = 1 and let f1 := f − g1|D ∈
C(D, [0, 2/3]). Apply step 2. with α = 2/3 and f = f1 to find g2 ∈
C(X, [0, 13

2
3 ]) such that f2 := f − (g1 + g2) |D ∈ C(D, [0,

¡
2
3

¢2
]). Continue

this way inductively to find gn ∈ C(X, [0, 13
¡
2
3

¢n−1
]) such that

f −
NX
n=1

gn|D =: fN ∈ C(D, [0,

µ
2

3

¶N
]). (3.2)

4. Define F :=
P∞

n=1 gn. Since

∞X
n=1

kgnku ≤
∞X
n=1

1

3

µ
2

3

¶n−1
=
1

3

1

1− 2
3

= 1,

the series defining F is uniformly convergent so F ∈ C(X, [0, 1]). Passing
to the limit in Eq. (3.2) shows f = F |D.

The main thrust of this section is to study locally compact (and σ — com-
pact) Hausdorff spaces as defined below. We will see again that this class of
topological spaces have an ample supply of continuous functions. We will start
out with the notion of a Hausdorff topology. The following example shows a
pathology which occurs when there are not enough open sets in a topology.

Example 3.3. Let X = {1, 2, 3} and τ = {X, ∅, {1, 2}, {2, 3}, {2}} and xn = 2
for all n. Then xn → x for every x ∈ X!

Definition 3.4 (Hausdorff Topology). A topological space, (X, τ), is
Hausdorff if for each pair of distinct points, x, y ∈ X, there exists dis-
joint open neighborhoods, U and V of x and y respectively. (Metric spaces are
typical examples of Hausdorff spaces.)

Remark 3.5.When τ is Hausdorff the “pathologies” appearing in Example 3.3
do not occur. Indeed if xn → x ∈ X and y ∈ X \ {x} we may choose V ∈ τx
and W ∈ τy such that V ∩W = ∅. Then xn ∈ V a.a. implies xn /∈ W for all
but a finite number of n and hence xn 9 y, so limits are unique.
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Proposition 3.6. Suppose that (X, τ) is a Hausdorff space, K @@ X and
x ∈ Kc. Then there exists U, V ∈ τ such that U ∩ V = ∅, x ∈ U and K ⊂ V.
In particular K is closed. (So compact subsets of Hausdorff topological spaces
are closed.) More generally if K and F are two disjoint compact subsets of X,
there exist disjoint open sets U,V ∈ τ such that K ⊂ V and F ⊂ U.

Proof. Because X is Hausdorff, for all y ∈ K there exists Vy ∈ τy and
Uy ∈ τx such that Vy ∩Uy = ∅. The cover {Vy}y∈K of K has a finite subcover,
{Vy}y∈Λ for some Λ ⊂⊂ K. Let V = ∪y∈ΛVy and U = ∩y∈ΛUy, then U, V ∈ τ

satisfy x ∈ U, K ⊂ V and U ∩ V = ∅. This shows that Kc is open and hence
that K is closed.
Suppose that K and F are two disjoint compact subsets of X. For each

x ∈ F there exists disjoint open sets Ux and Vx such that K ⊂ Vx and x ∈ Ux.
Since {Ux}x∈F is an open cover of F, there exists a finite subset Λ of F such
that F ⊂ U := ∪x∈ΛUx. The proof is completed by defining V := ∩x∈ΛVx.
Exercise 3.7. Show any finite set X admits exactly one Hausdorff topology
τ.

Exercise 3.8. Let (X, τ) and (Y, τY ) be topological spaces.

1. Show τ is Hausdorff iff∆ := {(x, x) : x ∈ X} is a closed inX×X equipped
with the product topology τ ⊗ τ.

2. Suppose τ is Hausdorff and f, g : Y → X are continuous maps. If

{f = g}Y = Y then f = g. Hint: make use of the map f×g : Y → X×X
defined by (f × g) (y) = (f(y), g(y)).

Exercise 3.9. Given an example of a topological space which has a non-closed
compact subset.

Proposition 3.10. Suppose that X is a compact topological space, Y is a
Hausdorff topological space, and f : X → Y is a continuous bijection then f
is a homeomorphism, i.e. f−1 : Y → X is continuous as well.

Proof. Since closed subsets of compact sets are compact, continuous im-
ages of compact subsets are compact and compact subsets of Hausdorff spaces
are closed, it follows that

¡
f−1

¢−1
(C) = f(C) is closed in X for all closed

subsets C of X. Thus f−1 is continuous.

Definition 3.11 (Local and σ — compactness). Let (X, τ) be a topological
space.

1. (X, τ) is locally compact if for all x ∈ X there exists an open neigh-
borhood V ⊂ X of x such that V̄ is compact. (Alternatively, in light of
Definition 2.25, this is equivalent to requiring that to each x ∈ X there
exists a compact neighborhood Nx of x.)
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2. (X, τ) is σ — compact if there exists compact sets Kn ⊂ X such that
X = ∪∞n=1Kn. (Notice that we may assume, by replacing Kn by K1∪K2∪
· · · ∪Kn if necessary, that Kn ↑ X.)

Example 3.12. Any open subset of X ⊂ Rn is a locally compact and σ —
compact metric space (and hence Hausdorff). The proof of local compactness
is easy and is left to the reader. To see that X is σ — compact, for k ∈ N, let

Kk := {x ∈ X : |x| ≤ k and dXc(x) ≥ 1/k} .
Then Kk is a closed and bounded subset of Rn and hence compact. Moreover
Ko
k ↑ X as k →∞ since1

Ko
k ⊃ {x ∈ X : |x| < k and dXc(x) > 1/k} ↑ X as k →∞.

Exercise 3.13. Every separable locally compact metric space is σ — compact.
Hint: Let {xn}∞n=1 ⊂ X be a countable dense subset of X and define

�n =
1

2
sup {� > 0 : Cxn(�) is compact} ∧ 1.

Exercise 3.14. Every σ — compact metric space is separable. Therefore a
locally compact metric space is separable iff it is σ — compact.

Exercise 3.15. Suppose that (X, d) is a metric space and U ⊂ X is an open
subset.

1. If X is locally compact then (U, d) is locally compact.
2. If X is σ — compact then (U, d) is σ — compact. Hint: Mimick Example
3.12, replacing C0(k) by compact set Kk @@ X such that Kk ↑ X.

Lemma 3.16. Let (X, τ) be a locally compact and σ — compact topological
space. Then there exists compact sets Kn ↑ X such that Kn ⊂ Ko

n+1 ⊂ Kn+1

for all n.

Proof. Suppose that C ⊂ X is a compact set. For each x ∈ C let Vx ⊂o X
be an open neighborhood of x such that V̄x is compact. Then C ⊂ ∪x∈CVx so
there exists Λ ⊂⊂ C such that

C ⊂ ∪x∈ΛVx ⊂ ∪x∈ΛV̄x =: K.

Then K is a compact set, being a finite union of compact subsets of X, and
C ⊂ ∪x∈ΛVx ⊂ Ko.
Now let Cn ⊂ X be compact sets such that Cn ↑ X as n → ∞. Let

K1 = C1 and then choose a compact set K2 such that C2 ⊂ Ko
2 . Similarly,

choose a compact set K3 such that K2∪C3 ⊂ Ko
3 and continue inductively to

find compact sets Kn such that Kn ∪ Cn+1 ⊂ Ko
n+1 for all n. Then {Kn}∞n=1

is the desired sequence.
1 In fact this is an equality, but we will not need this here.
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Remark 3.17. Lemma 3.16 may also be stated as saying there exists precom-
pact open sets {Gn}∞n=1 such that Gn ⊂ Ḡn ⊂ Gn+1 for all n and Gn ↑ X as
n→∞. Indeed if {Gn}∞n=1 are as above, let Kn := Ḡn and if {Kn}∞n=1 are as
in Lemma 3.16, let Gn := Ko

n.

The following result is a Corollary of Lemma 3.16 and Theorem 2.86.

Corollary 3.18 (Locally compact form of Ascoli-Arzela Theorem
). Let (X, τ) be a locally compact and σ — compact topological space and
{fm} ⊂ C(X) be a pointwise bounded sequence of functions such that {fm|K}
is equicontinuous for any compact subset K ⊂ X. Then there exists a subse-
quence {mn} ⊂ {m} such that {gn := fmn}∞n=1 ⊂ C(X) is a sequence which
is uniformly convergent on compact subsets of X.

Proof. Let {Kn}∞n=1 be the compact subsets of X constructed in Lemma
3.16. We may now apply Theorem 2.86 repeatedly to find a nested family of
subsequences

{fm} ⊃ {g1m} ⊃ {g2m} ⊃ {g3m} ⊃ . . .

such that the sequence {gnm}∞m=1 ⊂ C(X) is uniformly convergent on Kn.
Using Cantor’s trick, define the subsequence {hn} of {fm} by hn ≡ gnn . Then
{hn} is uniformly convergent on Kl for each l ∈ N. Now if K ⊂ X is an
arbitrary compact set, there exists l < ∞ such that K ⊂ Ko

l ⊂ Kl and
therefore {hn} is uniformly convergent on K as well.
The next two results shows that locally compact Hausdorff spaces have

plenty of open sets and plenty of continuous functions.

Proposition 3.19. Suppose X is a locally compact Hausdorff space and U ⊂o
X and K @@ U. Then there exists V ⊂o X such that K ⊂ V ⊂ V ⊂ U ⊂ X
and V̄ is compact.

Proof. By local compactness, for all x ∈ K, there exists Ux ∈ τx such
that Ūx is compact. Since K is compact, there exists Λ ⊂⊂ K such that
{Ux}x∈Λ is a cover of K. The set O = U ∩ (∪x∈ΛUx) is an open set such that
K ⊂ O ⊂ U and O is precompact since Ō is a closed subset of the compact
set ∪x∈ΛŪx. (∪x∈ΛŪx. is compact because it is a finite union of compact sets.)
So by replacing U by O if necessary, we may assume that Ū is compact.
Since Ū is compact and ∂U = Ū ∩ Uc is a closed subset of Ū , ∂U is

compact. Because ∂U ⊂ Uc, it follows that ∂U ∩ K = ∅, so by Proposition
3.6, there exists disjoint open sets V and W such that K ⊂ V and ∂U ⊂ W.
By replacing V by V ∩U if necessary we may further assume thatK ⊂ V ⊂ U,
see Figure 3.1.
Because Ū∩W c is a closed set containing V and U c∩Ū∩W c = ∂U∩W c =

∅,
V̄ ⊂ Ū ∩W c = U ∩W c ⊂ U ⊂ Ū .

Since Ū is compact it follows that V̄ is compact and the proof is complete.
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Fig. 3.1. The construction of V.

Exercise 3.20. Give a “simpler” proof of Proposition 3.19 under the addi-
tional assumption that X is a metric space. Hint: show for each x ∈ K there
exists Vx := Bx(�x) with �x > 0 such that Bx(�x) ⊂ Cx(�x) ⊂ U with Cx(�x)
being compact. Recall that Cx(�) is the closed ball of radius � about x.

Definition 3.21. Let U be an open subset of a topological space (X, τ). We
will write f ≺ U to mean a function f ∈ Cc(X, [0, 1]) such that supp(f) :=
{f 6= 0} ⊂ U.

Lemma 3.22 (Locally Compact Version of Urysohn’s Lemma). Let X
be a locally compact Hausdorff space and K @@ U ⊂o X. Then there exists
f ≺ U such that f = 1 on K. In particular, if K is compact and C is closed
in X such that K ∩ C = ∅, there exists f ∈ Cc(X, [0, 1]) such that f = 1 on
K and f = 0 on C.

Proof. For notational ease later it is more convenient to construct g :=
1 − f rather than f. To motivate the proof, suppose g ∈ C(X, [0, 1]) such
that g = 0 on K and g = 1 on U c. For r > 0, let Ur = {g < r} . Then for
0 < r < s ≤ 1, Ur ⊂ {g ≤ r} ⊂ Us and since {g ≤ r} is closed this implies

K ⊂ Ur ⊂ Ūr ⊂ {g ≤ r} ⊂ Us ⊂ U.

Therefore associated to the function g is the collection open sets {Ur}r>0 ⊂ τ
with the property that K ⊂ Ur ⊂ Ūr ⊂ Us ⊂ U for all 0 < r < s ≤ 1 and
Ur = X if r > 1. Finally let us notice that we may recover the function g from
the sequence {Ur}r>0 by the formula

g(x) = inf{r > 0 : x ∈ Ur}. (3.3)

The idea of the proof to follow is to turn these remarks around and define g
by Eq. (3.3).
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Step 1. (Construction of the Ur.) Let

D ≡ ©k2−n : k = 1, 2, . . . , 2−1, n = 1, 2, . . .ª
be the dyadic rationales in (0, 1]. Use Proposition 3.19 to find a precompact
open set U1 such that K ⊂ U1 ⊂ Ū1 ⊂ U. Apply Proposition 3.19 again to
construct an open set U1/2 such that

K ⊂ U1/2 ⊂ Ū1/2 ⊂ U1

and similarly use Proposition 3.19 to find open sets U1/2, U3/4 ⊂o X such that

K ⊂ U1/4 ⊂ Ū1/4 ⊂ U1/2 ⊂ Ū1/2 ⊂ U3/4 ⊂ Ū3/4 ⊂ U1.

Likewise there exists open set U1/8, U3/8, U5/8, U7/8 such that

K ⊂ U1/8 ⊂ Ū1/8 ⊂ U1/4 ⊂ Ū1/4 ⊂ U3/8 ⊂ Ū3/8 ⊂ U1/2

⊂ Ū1/2 ⊂ U5/8 ⊂ Ū5/8 ⊂ U3/4 ⊂ Ū3/4 ⊂ U7/8 ⊂ Ū7/8 ⊂ U1.

Continuing this way inductively, one shows there exists precompact open sets
{Ur}r∈D ⊂ τ such that

K ⊂ Ur ⊂ Ur ⊂ Us ⊂ U1 ⊂ Ū1 ⊂ U

for all r, s ∈ D with 0 < r < s ≤ 1.
Step 2. Let Ur ≡ X if r > 1 and define

g(x) = inf{r ∈ D ∪ (1,∞) : x ∈ Ur},
see Figure 3.2. Then g(x) ∈ [0, 1] for all x ∈ X, g(x) = 0 for x ∈ K since
x ∈ K ⊂ Ur for all r ∈ D. If x ∈ Uc

1 , then x /∈ Ur for all r ∈ D and hence
g(x) = 1. Therefore f := 1 − g is a function such that f = 1 on K and
{f 6= 0} = {g 6= 1} ⊂ U1 ⊂ Ū1 ⊂ U so that supp(f) = {f 6= 0} ⊂ Ū1 ⊂ U is
a compact subset of U. Thus it only remains to show f, or equivalently g, is
continuous.
Since E = {(α,∞), (−∞, α) : α ∈ R} generates the standard topology on

R, to prove g is continuous it suffices to show {g < α} and {g > α} are open
sets for all α ∈ R. But g(x) < α iff there exists r ∈ D ∪ (1,∞) with r < α
such that x ∈ Ur. Therefore

{g < α} =
[
{Ur : r ∈ D ∪ (1,∞) 3 r < α}

which is open in X. If α ≥ 1, {g > α} = ∅ and if α < 0, {g > α} = X. If
α ∈ (0, 1), then g(x) > α iff there exists r ∈ D such that r > α and x /∈ Ur.
Now if r > α and x /∈ Ur then for s ∈ D ∩ (α, r), x /∈ Ūs ⊂ Ur. Thus we have
shown that

{g > α} =
[n¡

Us

¢c
: s ∈ D 3 s > α

o
which is again an open subset of X.
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Fig. 3.2. Determining g from {Ur} .

Exercise 3.23. mGive a simpler proof of Lemma 3.22 under the additional
assumption that X is a metric space.

Theorem 3.24 (Locally Compact Tietz Extension Theorem). Let
(X, τ) be a locally compact Hausdorff space, K @@ U ⊂o X, f ∈ C(K,R),
a = min f(K) and b = max f(K). Then there exists F ∈ C(X, [a, b])
such that F |K = f. Moreover given c ∈ [a, b], F can be chosen so that
supp(F − c) = {F 6= c} ⊂ U.

The proof of this theorem is similar to Theorem 3.2 and will be left to the
reader, see Exercise 3.51.

Lemma 3.25. Suppose that (X, τ) is a locally compact second countable
Hausdorff space. (For example any separable locally compact metric space and
in particular any open subsets of Rn.) Then:

1. every open subset U ⊂ X is σ — compact.
2. If F ⊂ X is a closed set, there exist open sets Vn ⊂ X such that Vn ↓ F
as n→∞.

3. To each open set U ⊂ X there exists fn ≺ U such that limn→∞ fn = 1U .
4. The σ — algebra generated by Cc(X) is the Borel σ — algebra, BX .
Proof.

1. Let U be an open subset of X, V be a countable base for τ and

VU := {W ∈ V : W̄ ⊂ U and W̄ is compact}.
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For each x ∈ U, by Proposition 3.19, there exists an open neighborhood
V of x such that V̄ ⊂ U and V̄ is compact. Since V is a base for the
topology τ, there exists W ∈ V such that x ∈W ⊂ V. Because W̄ ⊂ V̄ , it
follows that W̄ is compact and hence W ∈ VU . As x ∈ U was arbitrary,
U = ∪VU .
Let {Wn}∞n=1 be an enumeration of VU and set Kn := ∪nk=1W̄k. Then
Kn ↑ U as n→∞ and Kn is compact for each n.

2. Let {Kn}∞n=1 be compact subsets of F c such that Kn ↑ F c as n→∞ and
set Vn := Kc

n = X \Kn. Then Vn ↓ F and by Proposition 3.6, Vn is open
for each n.

3. Let U ⊂ X be an open set and {Kn}∞n=1 be compact subsets of U such
that Kn ↑ U. By Lemma 3.22, there exist fn ≺ U such that fn = 1 on
Kn. These functions satisfy, 1U = limn→∞ fn.

4. By Item 3., 1U is σ(Cc(X,R)) — measurable for all U ∈ τ. Hence
τ ⊂ σ(Cc(X,R)) and therefore BX = σ(τ) ⊂ σ(Cc(X,R)). The con-
verse inclusion always holds since continuous functions are always Borel
measurable.

Corollary 3.26. Suppose that (X, τ) is a second countable locally compact
Hausdorff space, BX = σ(τ) is the Borel σ — algebra on X and H is a subspace
of B(X,R) which is closed under bounded convergence and contains Cc(X,R).
Then H contains all bounded BX — measurable real valued functions on X.

Proof. Since H is closed under bounded convergence and Cc(X,R) ⊂ H,
it follows by Item 3. of Lemma 3.25 that 1U ∈ H for all U ∈ τ. Since τ is a π
— class the corollary follows by an application of Theorem 9.12.

3.1 Locally compact form of Urysohn Metrization
Theorem

Notation 3.27 Let Q := [0, 1]N denote the (infinite dimensional) unit cube
in RN. For a, b ∈ Q let

d(a, b) :=
∞X
n=1

1

2n
|an − bn| . (3.4)

The metric introduced in Exercise 2.108 would be defined, in this context,
as d̃(a, b) :=

P∞
n=1

1
2n

|an−bn|
1+|an−bn| . Since 1 ≤ 1 + |an − bn| ≤ 2, it follows that

d̃ ≤ d ≤ 2d. So the metrics d and d̃ are equivalent and in particular the
topologies induced by d and d̃ are the same. By Exercises 7.80, the d — topology
on Q is the same as the product topology and by Exercise 2.108, (Q, d) is a
compact metric space.
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Theorem 3.28 (Urysohn Metrization Theorem). Every second count-
able locally compact Hausdorff space, (X, τ) , is metrizable, i.e. there is a met-
ric ρ on X such that τ = τρ. Moreover, ρ may be chosen so that X is isometric
to a subset Q0 ⊂ Q equipped with the metric d in Eq. (3.4). In this metric
X is totally bounded and hence the completion of X (which is isometric to
Q̄0 ⊂ Q) is compact.

Proof. Let B be a countable base for τ and set
Γ ≡ {(U,V ) ∈ B × B | Ū ⊂ V and Ū is compact}.

To each O ∈ τ and x ∈ O there exist (U, V ) ∈ Γ such that x ∈ U ⊂ V ⊂ O.
Indeed, since B is a basis for τ, there exists V ∈ B such that x ∈ V ⊂ O.
Now apply Proposition 3.19 to find U 0 ⊂o X such that x ∈ U 0 ⊂ Ū 0 ⊂ V
with Ū 0 being compact. Since B is a basis for τ, there exists U ∈ B such that
x ∈ U ⊂ U 0 and since Ū ⊂ Ū 0, Ū is compact so (U, V ) ∈ Γ. In particular this
shows that B0 := {U ∈ B : (U, V ) ∈ Γ for some V ∈ B} is still a base for τ.
If Γ is a finite, then B0 is finite and τ only has a finite number of elements

as well. Since (X, τ) is Hausdorff, it follows that X is a finite set. Letting
{xn}Nn=1 be an enumeration of X, define T : X → Q by T (xn) = en for
n = 1, 2, . . . , N where en = (0, 0, . . . , 0, 1, 0, . . . ), with the 1 ocurring in the
nth spot. Then ρ(x, y) := d(T (x), T (y)) for x, y ∈ X is the desired metric.
So we may now assume that Γ is an infinite set and let {(Un, Vn)}∞n=1 be an
enumeration of Γ.
By Urysohn’s Lemma 3.22 there exists fU,V ∈ C(X, [0, 1]) such that fU,V =

0 on Ū and fU,V = 1 on V c. Let F ≡ {fU,V | (U,V ) ∈ Γ} and set fn := fUn,Vn
— an enumeration of F . We will now show that

ρ(x, y) :=
∞X
n=1

1

2n
|fn(x)− fn(y)|

is the desired metric on X. The proof will involve a number of steps.

1. (ρ is a metric on X.) It is routine to show ρ satisfies the triangle inequal-
ity and ρ is symmetric. If x, y ∈ X are distinct points then there exists
(Un0 , Vn0) ∈ Γ such that x ∈ Un0 and Vn0 ⊂ O := {y}c . Since fn0(x) = 0
and fn0(y) = 1, it follows that ρ(x, y) ≥ 2−n0 > 0.

2. (Let τ0 = τ (fn : n ∈ N) , then τ = τ0 = τρ.) As usual we have τ0 ⊂ τ.
Since, for each x ∈ X, y → ρ(x, y) is τ0 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that Bx(�) :=
{y ∈ X : ρ(x, y) < �} ∈ τ0 for all x ∈ X and � > 0. Thus τρ ⊂ τ0 ⊂ τ.
Suppose that O ∈ τ and x ∈ O. Let (Un0 , Vn0) ∈ Γ be such that x ∈ Un0
and Vn0 ⊂ O. Then fn0(x) = 0 and fn0 = 1 on O

c. Therefore if y ∈ X and
fn0(y) < 1, then y ∈ O so x ∈ {fn0 < 1} ⊂ O. This shows that O may be
written as a union of elements from τ0 and therefore O ∈ τ0. So τ ⊂ τ0 and
hence τ = τ0.Moreover, if y ∈ Bx(2

−n0) then 2−n0 > ρ(x, y) ≥ 2−n0fn0(y)
and therefore x ∈ Bx(2

−n0) ⊂ {fn0 < 1} ⊂ O. This shows O is ρ — open
and hence τρ ⊂ τ0 ⊂ τ ⊂ τρ.
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3. (X is isometric to some Q0 ⊂ Q.) Let T : X → Q be defined by T (x) =
(f1(x), f2(x), . . . , fn(x), . . . ). Then T is an isometry by the very definitions
of d and ρ and thereforeX is isometric toQ0 := T (X). Since Q0 is a subset
of the compact metric space (Q, d), Q0 is totally bounded and therefore
X is totally bounded.

3.2 Partitions of Unity

Definition 3.29. Let (X, τ) be a topological space and X0 ⊂ X be a set. A
collection of sets {Bα}α∈A ⊂ 2X is locally finite on X0 if for all x ∈ X0,
there is an open neighborhood Nx ∈ τ of x such that #{α ∈ A : Bα ∩ Nx 6=
∅} <∞.

Lemma 3.30. Let (X, τ) be a locally compact Hausdorff space.

1. A subset E ⊂ X is closed iff E ∩K is closed for all K @@ X.
2. Let {Cα}α∈A be a locally finite collection of closed subsets of X, then

C = ∪α∈ACα is closed in X. (Recall that in general closed sets are only
closed under finite unions.)

Proof. Item 1. Since compact subsets of Hausdorff spaces are closed, E∩K
is closed if E is closed and K is compact. Now suppose that E ∩K is closed
for all compact subsets K ⊂ X and let x ∈ Ec. Since X is locally compact,
there exists a precompact open neighborhood, V, of x.2 By assumption E ∩ V̄
is closed so x ∈ ¡E ∩ V̄ ¢c — an open subset of X. By Proposition 3.19 there
exists an open set U such that x ∈ U ⊂ Ū ⊂ ¡E ∩ V̄ ¢c , see Figure 3.3. Let
W := U ∩ V. Since

W ∩E = U ∩ V ∩E ⊂ U ∩ V̄ ∩E = ∅,
andW is an open neighborhood of x and x ∈ Ec was arbitrary, we have shown
Ec is open hence E is closed.
Item 2. Let K be a compact subset of X and for each x ∈ K let Nx be an

open neighborhood of x such that #{α ∈ A : Cα ∩Nx 6= ∅} <∞. Since K is
compact, there exists a finite subset Λ ⊂ K such that K ⊂ ∪x∈ΛNx. Letting
Λ0 := {α ∈ A : Cα ∩K 6= ∅}, then

#(Λ0) ≤
X
x∈Λ

#{α ∈ A : Cα ∩Nx 6= ∅} <∞

2 If X were a metric space we could finish the proof as follows. If there does not
exist an open neighborhood of x which is disjoint from E, then there would exists
xn ∈ E such that xn → x. Since E ∩ V̄ is closed and xn ∈ E ∩ V̄ for all large n,
it follows (see Exercise 2.12) that x ∈ E ∩ V̄ and in particular that x ∈ E. But
we chose x ∈ Ec.
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Fig. 3.3. Showing Ec is open.

and hence K ∩ (∪α∈ACα) = K ∩ (∪α∈Λ0Cα) . The set (∪α∈Λ0Cα) is a finite
union of closed sets and hence closed. Therefore, K ∩ (∪α∈ACα) is closed and
by Item (1) it follows that ∪α∈ACα is closed as well.

Definition 3.31. Suppose that U is an open cover of X0 ⊂ X. A collection
{φi}Ni=1 ⊂ C(X, [0, 1]) (N = ∞ is allowed here) is a partition of unity on
X0 subordinate to the cover U if:
1. for all i there is a U ∈ U such that supp(φi) ⊂ U,
2. the collection of sets, {supp(φi)}Ni=1, is locally finite on X0, and
3.
PN

i=1 φi = 1 on X0. (Notice by (2), that for each x ∈ X0 there is a
neighborhood Nx such that φi|Nx is not identically zero for only a finite
number of terms. So the sum is well defined and we say the sum is locally
finite.)

Proposition 3.32 (Partitions of Unity: The Compact Case). Suppose
that X is a locally compact Hausdorff space, K ⊂ X is a compact set and
U = {Uj}nj=1 is an open cover of K. Then there exists a partition of unity
{hj}nj=1 of K such that hj ≺ Uj for all j = 1, 2, . . . , n.

Proof. For all x ∈ K choose a precompact open neighborhood, Vx, of x
such that V x ⊂ Uj . Since K is compact, there exists a finite subset, Λ, of K
such that K ⊂ S

x∈Λ
Vx. Let

Fj = ∪
©
V̄x : x ∈ Λ and V x ⊂ Uj

ª
.

Then Fj is compact, Fj ⊂ Uj for all j, and K ⊂ ∪nj=1Fj . By Urysohn’s
Lemma 3.22 there exists fj ≺ Uj such that fj = 1 on Fj . We will now give
two methods to finish the proof.
Method 1. Let h1 = f1, h2 = f2(1− h1) = f2(1− f1),

h3 = f3(1− h1 − h2) = f3(1− f1 − (1− f1)f2) = f3(1− f1)(1− f2)
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and continue on inductively to define

hk = (1− h1 − · · ·− hk−1)fk = fk ·
k−1Y
j=1

(1− fj)∀ k = 2, 3, . . . , n (3.5)

and to show

(1− h1 − · · ·− hn) =
nY
j=1

(1− fj). (3.6)

From these equations it clearly follows that hj ∈ Cc(X, [0, 1]) and that
supp(hj) ⊂ supp(fj) ⊂ Uj , i.e. hj ≺ Uj . Since

Qn
j=1(1 − fj) = 0 on K,Pn

j=1 hj = 1 on K and {hj}nj=1 is the desired partition of unity.
Method 2. Let g :=

nP
j=1

fj ∈ Cc(X). Then g ≥ 1 on K and hence

K ⊂ {g > 1
2}. Choose φ ∈ Cc(X, [0, 1]) such that φ = 1 on K and supp(φ) ⊂

{g > 1
2} and define f0 ≡ 1 − φ. Then f0 = 0 on K, f0 = 1 if g ≤ 1

2 and
therefore,

f0 + f1 + · · ·+ fn = f0 + g > 0

on X. The desired partition of unity may be constructed as

hj(x) =
fj(x)

f0(x) + · · ·+ fn(x)
.

Indeed supp (hj) = supp (fj) ⊂ Uj , hj ∈ Cc(X, [0, 1]) and on K,

h1 + · · ·+ hn =
f1 + · · ·+ fn

f0 + f1 + · · ·+ fn
=

f1 + · · ·+ fn
f1 + · · ·+ fn

= 1.

Proposition 3.33. Let (X, τ) be a locally compact and σ — compact Hausdorff
space. Suppose that U ⊂ τ is an open cover of X. Then we may construct two
locally finite open covers V = {Vi}Ni=1 and W = {Wi}Ni=1 of X (N = ∞ is
allowed here) such that:

1. Wi ⊂ W̄i ⊂ Vi ⊂ V̄i and V̄i is compact for all i.
2. For each i there exist U ∈ U such that V̄i ⊂ U.

Proof. By Remark 3.17, there exists an open cover of G = {Gn}∞n=1
of X such that Gn ⊂ Ḡn ⊂ Gn+1. Then X = ∪∞k=1(Ḡk \ Ḡk−1), where
by convention G−1 = G0 = ∅. For the moment fix k ≥ 1. For each x ∈
Ḡk \ Gk−1, let Ux ∈ U be chosen so that x ∈ Ux and by Proposition 3.19
choose an open neighborhood Nx of x such that N̄x ⊂ Ux∩ (Gk+1 \Ḡk−2), see
Figure 3.4 below. Since {Nx}x∈Ḡk\Gk−1 is an open cover of the compact set
Ḡk \Gk−1, there exist a finite subset Γk ⊂ {Nx}x∈Ḡk\Gk−1 which also covers
Ḡk \ Gk−1. By construction, for each W ∈ Γk, there is a U ∈ U such that
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Fig. 3.4. Constructing the {Wi}Ni=1 .

W̄ ⊂ U ∩ (Gk+1 \ Ḡk−2). Apply Proposition 3.19 one more time to find, for
eachW ∈ Γk, an open set VW such that W̄ ⊂ VW ⊂ V̄W ⊂ U ∩(Gk+1 \Ḡk−2).
We now choose and enumeration {Wi}Ni=1 of the countable open cover

∪∞k=1Γk of X and define Vi = VWi . Then the collection {Wi}Ni=1 and {Vi}Ni=1
are easily checked to satisfy all the conclusions of the proposition. In particular
notice that for each k that the set of i’s such that Vi ∩Gk 6= ∅ is finite.
Theorem 3.34 (Partitions of Unity in locally and σ — compact
spaces). Let (X, τ) be a locally compact and σ — compact Hausdorff space
and U ⊂ τ be an open cover of X. Then there exists a partition of unity of
{hi}Ni=1 (N =∞ is allowed here) subordinate to the cover U such that supp(hi)
is compact for all i.

Proof. Let V = {Vi}Ni=1 and W = {Wi}Ni=1 be open covers of X with the
properties described in Proposition 3.33. By Urysohn’s Lemma 3.22, there
exists fi ≺ Vi such that fi = 1 on W̄i for each i.
As in the proof of Proposition 3.32 there are two methods to finish the

proof.
Method 1. Define h1 = f1, hj by Eq. (3.5) for all other j. Then as in Eq.

(3.6)

1−
NX
j=1

hj =
NY
j=1

(1− fj) = 0

since for x ∈ X, fj(x) = 1 for some j. As in the proof of Proposition 3.32, it
is easily checked that {hi}Ni=1 is the desired partition of unity.
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Method 2. Let f ≡ PN
i=1 fi, a locally finite sum, so that f ∈ C(X).

Since {Wi}∞i=1 is a cover of X, f ≥ 1 on X so that 1/f ∈ C (X)) as well. The
functions hi ≡ fi/f for i = 1, 2, . . . , N give the desired partition of unity.

Corollary 3.35. Let (X, τ) be a locally compact and σ — compact Hausdorff
space and U = {Uα}α∈A ⊂ τ be an open cover of X. Then there exists a
partition of unity of {hα}α∈A subordinate to the cover U such that supp(hα) ⊂
Uα for all α ∈ A. (Notice that we do not assert that hα has compact support.
However if Ūα is compact then supp(hα) will be compact.)

Proof. By the σ — compactness of X, we may choose a countable subset,
{αi}i<N (N = ∞ allowed here), of A such that {Ui ≡ Uαi}i<N is still an
open cover of X. Let {gj}j<N be a partition of unity subordinate to the
cover {Ui}i<N as in Theorem 3.34. Define Γ̃k ≡ {j : supp(gj) ⊂ Uk} and
Γk := Γ̃k \

³
∪k−1j=1 Γ̃k

´
, where by convention Γ̃0 = ∅. Then

{i ∈ N : i < N}=
∞[
k=1

Γ̃k =
∞a
k=1

Γk.

If Γk = ∅ let hk ≡ 0 otherwise let hk :=
P

j∈Γk gj , a locally finite sum. ThenP∞
k=1 hk =

PN
j=1 gj = 1 and the sum

P∞
k=1 hk is still locally finite. (Why?)

Now for α = αk ∈ {αi}Ni=1, let hα := hk and for α /∈ {αi}Ni=1 let hα ≡ 0. Since
{hk 6= 0} = ∪j∈Γk {gj 6= 0} ⊂ ∪j∈Γksupp(gj) ⊂ Uk

and, by Item 2. of Lemma 3.30, ∪j∈Γksupp(gj) is closed, we see that
supp(hk) = {hk 6= 0} ⊂ ∪j∈Γksupp(gj) ⊂ Uk.

Therefore {hα}α∈A is the desired partition of unity.
Corollary 3.36. Let (X, τ) be a locally compact and σ — compact Haus-
dorff space and A,B be disjoint closed subsets of X. Then there exists
f ∈ C(X, [0, 1]) such that f = 1 on A and f = 0 on B. In fact f can be
chosen so that supp(f) ⊂ Bc.

Proof. Let U1 = Ac and U2 = Bc, then {U1, U2} is an open cover of X.
By Corollary 3.35 there exists h1, h2 ∈ C(X, [0, 1]) such that supp(hi) ⊂ Ui
for i = 1, 2 and h1 + h2 = 1 on X. The function f = h2 satisfies the desired
properties.

3.3 C0(X) and the Alexanderov Compactification

Definition 3.37. Let (X, τ) be a topological space. A continuous function f :
X → C is said to vanish at infinity if {|f | ≥ �} is compact in X for all
� > 0. The functions, f ∈ C(X), vanishing at infinity will be denoted by
C0(X).
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Proposition 3.38. Let X be a topological space, BC(X) be the space of
bounded continuous functions on X with the supremum norm topology. Then

1. C0(X) is a closed subspace of BC(X).
2. If we further assume that X is a locally compact Hausdorff space, then

C0(X) = Cc(X).

Proof.

1. If f ∈ C0(X), K1 := {|f | ≥ 1} is a compact subset of X and there-
fore f(K1) is a compact and hence bounded subset of C and so M :=
supx∈K1

|f(x)| <∞. Therefore kfku ≤M ∨ 1 <∞ showing f ∈ BC(X).
Now suppose fn ∈ C0(X) and fn → f in BC(X). Let � > 0 be given and
choose n sufficiently large so that kf − fnku ≤ �/2. Since

|f | ≤ |fn|+ |f − fn| ≤ |fn|+ kf − fnku ≤ |fn|+ �/2,

{|f | ≥ �} ⊂ {|fn|+ �/2 ≥ �} = {|fn| ≥ �/2} .
Because {|f | ≥ �} is a closed subset of the compact set {|fn| ≥ �/2} ,
{|f | ≥ �} is compact and we have shown f ∈ C0(X).

2. Since C0(X) is a closed subspace of BC(X) and Cc(X) ⊂ C0(X), we
always have Cc(X) ⊂ C0(X). Now suppose that f ∈ C0(X) and let Kn ≡
{|f | ≥ 1

n} @@ X. By Lemma 3.22 we may choose φn ∈ Cc(X, [0, 1]) such
that φn ≡ 1 on Kn. Define fn ≡ φnf ∈ Cc(X). Then

kf − fnku = k(1− φn)fku ≤ 1

n
→ 0 as n→∞.

This shows that f ∈ Cc(X).

Proposition 3.39 (Alexanderov Compactification). Suppose that (X, τ)
is a non-compact locally compact Hausdorff space. Let X∗ = X ∪ {∞} , where
{∞} is a new symbol not in X. The collection of sets,

τ∗ = τ ∪ {X∗ \K : K @@ X} ⊂ P(X∗),

is a topology on X∗ and (X∗, τ∗) is a compact Hausdorff space. Moreover
f ∈ C(X) extends continuously to X∗ iff f = g+ c with g ∈ C0(X) and c ∈ C
in which case the extension is given by f(∞) = c.

Proof. 1. (τ∗ is a topology.) Let F := {F ⊂ X∗ : X∗ \ F ∈ τ∗}, i.e.
F ∈ F iff F is a compact subset of X or F = F0∪{∞} with F0 being a closed
subset of X. Since the finite union of compact (closed) subsets is compact
(closed), it is easily seen that F is closed under finite unions. Because arbitrary
intersections of closed subsets of X are closed and closed subsets of compact
subsets of X are compact, it is also easily checked that F is closed under
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arbitrary intersections. Therefore F satisfies the axioms of the closed subsets
associated to a topology and hence τ∗ is a topology.
2. ((X∗, τ∗) is a Hausdorff space.) It suffices to show any point x ∈ X

can be separated from ∞. To do this use Proposition 3.19 to find an open
precompact neighborhood, U, of x. Then U and V := X∗ \ Ū are disjoint open
subsets of X∗ such that x ∈ U and ∞ ∈ V.
3. ((X∗, τ∗) is compact.) Suppose that U ⊂ τ∗ is an open cover of X∗.

Since U covers ∞, there exists a compact set K ⊂ X such that X∗ \K ∈ U .
Clearly X is covered by U0 := {V \ {∞} : V ∈ U} and by the definition of τ∗
(or using (X∗, τ∗) is Hausdorff), U0 is an open cover of X. In particular U0 is
an open cover of K and since K is compact there exists Λ ⊂⊂ U such that
K ⊂ ∪ {V \ {∞} : V ∈ Λ} . It is now easily checked that Λ ∪ {X∗ \K} ⊂ U
is a finite subcover of X∗.
4. (Continuous functions on C(X∗) statements.) Let i : X → X∗ be the

inclusion map. Then i is continuous and open, i.e. i(V ) is open in X∗ for all
V open in X. If f ∈ C(X∗), then g = f |X−f(∞) = f ◦ i−f(∞) is continuous
on X. Moreover, for all � > 0 there exists an open neighborhood V ∈ τ∗ of ∞
such that

|g(x)| = |f(x)− f(∞)| < � for all x ∈ V.

Since V is an open neighborhood of ∞, there exists a compact subset,
K ⊂ X, such that V = X∗ \ K. By the previous equation we see that
{x ∈ X : |g(x)| ≥ �} ⊂ K, so {|g| ≥ �} is compact and we have shown g van-
ishes at ∞.
Conversely if g ∈ C0(X), extend g to X∗ by setting g(∞) = 0. Given

� > 0, the set K = {|g| ≥ �} is compact, hence X∗ \K is open in X∗. Since
g(X∗ \K) ⊂ (−�, �) we have shown that g is continuous at ∞. Since g is also
continuous at all points in X it follows that g is continuous on X∗. Now it
f = g + c with c ∈ C and g ∈ C0(X), it follows by what we just proved that
defining f(∞) = c extends f to a continuous function on X∗.

3.4 More on Separation Axioms: Normal Spaces

(The reader may skip to Definition 3.42 if he/she wishes. The following ma-
terial will not be used in the rest of the book.)

Definition 3.40 (T0 — T2 Separation Axioms). Let (X, τ) be a topological
space. The topology τ is said to be:

1. T0 if for x 6= y in X there exists V ∈ τ such that x ∈ V and y /∈ V or V
such that y ∈ V but x /∈ V.

2. T1 if for every x, y ∈ X with x 6= y there exists V ∈ τ such that x ∈ V
and y /∈ V. Equivalently, τ is T1 iff all one point subsets of X are closed.3

3 If one point subsets are closed and x 6= y in X then V := {x}c is an open set
containing y but not x. Conversely if τ is T1 and x ∈ X there exists Vy ∈ τ such
that y ∈ Vy and x /∈ Vy for all y 6= x. Therefore, {x}c = ∪y 6=xVy ∈ τ.
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3. T2 if it is Hausdorff.

Note T2 implies T1 which implies T0. The topology in Example 3.3 is T0
but not T1. If X is a finite set and τ is a T1 — topology on X then τ = 2X . To
prove this let x ∈ X be fixed. Then for every y 6= x in X there exists Vy ∈ τ
such that x ∈ Vy while y /∈ Vy. Thus {x} = ∩y 6=xVy ∈ τ showing τ contains
all one point subsets of X and therefore all subsets of X. So we have to look
to infinite sets for an example of T1 topology which is not T2.

Example 3.41. Let X be any infinite set and let τ = {A ⊂ X : #(Ac) <∞}∪
{∅} — the so called cofinite topology. This topology is T1 because if x 6= y in
X, then V = {x}c ∈ τ with x /∈ V while y ∈ V. This topology however is not
T2. Indeed if U, V ∈ τ are open sets such that x ∈ U, y ∈ V and U ∩ V = ∅
then U ⊂ V c. But this implies #(U) < ∞ which is impossible unless U = ∅
which is impossible since x ∈ U.

The uniqueness of limits of sequences which occurs for Hausdorff topologies
(see Remark 3.5) need not occur for T1 — spaces. For example, let X = N and
τ be the cofinite topology on X as in Example 3.41. Then xn = n is a sequence
in X such that xn → x as n → ∞ for all x ∈ N. For the most part we will
avoid these pathologies in the future by only considering Hausdorff topologies.

Definition 3.42 (Normal Spaces: T4 — Separation Axiom). A topologi-
cal space (X, τ) is said to be normal or T4 if:

1. X is Hausdorff and
2. if for any two closed disjoint subsets A,B ⊂ X there exists disjoint open
sets V,W ⊂ X such that A ⊂ V and B ⊂W.

Example 3.43. By Lemma 3.1 and Corollary 3.36 it follows that metric space
and locally compact and σ — compact Hausdorff space (in particular compact
Hausdorff spaces) are normal. Indeed, in each case if A,B are disjoint closed
subsets of X, there exists f ∈ C(X, [0, 1]) such that f = 1 on A and f = 0 on
B. Now let U =

©
f > 1

2

ª
and V = {f < 1

2}.
Remark 3.44. A topological space, (X, τ), is normal iff for any C ⊂ W ⊂ X
with C being closed and W being open there exists an open set U ⊂o X such
that

C ⊂ U ⊂ Ū ⊂W.

To prove this first suppose X is normal. Since W c is closed and C ∩W c = ∅,
there exists disjoint open sets U and V such that C ⊂ U and W c ⊂ V.
Therefore C ⊂ U ⊂ V c ⊂W and since V c is closed, C ⊂ U ⊂ Ū ⊂ V c ⊂W.
For the converse direction suppose A and B are disjoint closed subsets of

X. Then A ⊂ Bc and Bc is open, and so by assumption there exists U ⊂o X
such that A ⊂ U ⊂ Ū ⊂ Bc and by the same token there exists W ⊂o X such
that Ū ⊂W ⊂ W̄ ⊂ Bc. Taking complements of the last expression implies
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B ⊂ W̄ c ⊂W c ⊂ Ūc.

Let V = W̄ c. Then A ⊂ U ⊂o X, B ⊂ V ⊂o X and U ∩ V ⊂ U ∩W c = ∅.
Theorem 3.45 (Urysohn’s Lemma for Normal Spaces). Let X be a
normal space. Assume A,B are disjoint closed subsets of X. Then there
exists f ∈ C(X, [0, 1]) such that f = 0 on A and f = 1 on B.

Proof. To make the notation match Lemma 3.22, let U = Ac and K = B.
Then K ⊂ U and it suffices to produce a function f ∈ C(X, [0, 1]) such that
f = 1 on K and supp(f) ⊂ U. The proof is now identical to that for Lemma
3.22 except we now use Remark 3.44 in place of Proposition 3.19.

Theorem 3.46 (Tietze Extension Theorem). Let (X, τ) be a normal
space, D be a closed subset of X, −∞ < a < b < ∞ and f ∈ C(D, [a, b]).
Then there exists F ∈ C(X, [a, b]) such that F |D = f.

Proof. The proof is identical to that of Theorem 3.2 except we now use
Theorem 3.45 in place of Lemma 3.1.

Corollary 3.47. Suppose that X is a normal topological space, D ⊂ X is
closed, F ∈ C(D,R). Then there exists F ∈ C(X) such that F |D = f.

Proof. Let g = arctan(f) ∈ C(D, (−π
2 ,

π
2 )). Then by the Tietze ex-

tension theorem, there exists G ∈ C(X, [−π
2 ,

π
2 ]) such that G|D = g. Let

B ≡ G−1({−π
2 ,

π
2 }) @ X, then B ∩ D = ∅. By Urysohn’s lemma (Theo-

rem 3.45) there exists h ∈ C(X, [0, 1]) such that h ≡ 1 on D and h = 0
on B and in particular hG ∈ C(D, (−π

2 ,
π
2 )) and (hG) |D = g. The function

F ≡ tan(hG) ∈ C(X) is an extension of f.

Theorem 3.48 (Urysohn Metrization Theorem). Every second count-
able normal space, (X, τ) , is metrizable, i.e. there is a metric ρ on X such
that τ = τρ. Moreover, ρ may be chosen so that X is isometric to a subset
Q0 ⊂ Q equipped with the metric d in Eq. (3.4). In this metric X is totally
bounded and hence the completion of X (which is isometric to Q̄0 ⊂ Q) is
compact.

Proof. Let B be a countable base for τ and set
Γ ≡ {(U, V ) ∈ B × B | Ū ⊂ V }.

To each O ∈ τ and x ∈ O there exist (U, V ) ∈ Γ such that x ∈ U ⊂ V ⊂ O.
Indeed, since B is a basis for τ, there exists V ∈ B such that x ∈ V ⊂ O.
Because {x}∩V c = ∅, there exists disjoint open sets eU andW such that x ∈ eU,
V c ⊂ W and eU ∩ W = ∅. Choose U ∈ B such that x ∈ U ⊂ eU. Since
U ⊂ eU ⊂ W c, U ⊂ W c ⊂ V and hence (U, V ) ∈ Γ. See Figure 3.5 below. In
particular this shows that {U ∈ B : (U,V ) ∈ Γ for some V ∈ B} is still a base
for τ.
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Fig. 3.5. Constructing (U, V ) ∈ Γ.

If Γ is a finite set, the previous comment shows that τ only has a finite
number of elements as well. Since (X, τ) is Hausdorff, it follows that X is a
finite set. Letting {xn}Nn=1 be an enumeration of X, define T : X → Q by
T (xn) = en for n = 1, 2, . . . , N where en = (0, 0, . . . , 0, 1, 0, . . . ), with the
1 ocurring in the nth spot. Then ρ(x, y) := d(T (x), T (y)) for x, y ∈ X is
the desired metric. So we may now assume that Γ is an infinite set and let
{(Un, Vn)}∞n=1 be an enumeration of Γ.
By Urysohn’s Lemma (Theorem 3.45) there exists fU,V ∈ C(X, [0, 1]) such

that fU,V = 0 on Ū and fU,V = 1 on V c. Let F ≡ {fU,V | (U, V ) ∈ Γ} and
set fn := fUn,Vn — an enumeration of F . We will now show that

ρ(x, y) :=
∞X
n=1

1

2n
|fn(x)− fn(y)|

is the desired metric on X. The proof will involve a number of steps.

1. (ρ is a metric on X.) It is routine to show ρ satisfies the triangle inequal-
ity and ρ is symmetric. If x, y ∈ X are distinct points then there exists
(Un0 , Vn0) ∈ Γ such that x ∈ Un0 and Vn0 ⊂ O := {y}c . Since fn0(x) = 0
and fn0(y) = 1, it follows that ρ(x, y) ≥ 2−n0 > 0.

2. (Let τ0 = τ (fn : n ∈ N) , then τ = τ0 = τρ.) As usual we have τ0 ⊂ τ.
Since, for each x ∈ X, y → ρ(x, y) is τ0 — continuous (being the uni-
formly convergent sum of continuous functions), it follows that Bx(�) :=
{y ∈ X : ρ(x, y) < �} ∈ τ0 for all x ∈ X and � > 0. Thus τρ ⊂ τ0 ⊂ τ.
Suppose that O ∈ τ and x ∈ O. Let (Un0 , Vn0) ∈ Γ be such that x ∈ Un0
and Vn0 ⊂ O. Then fn0(x) = 0 and fn0 = 1 on O

c. Therefore if y ∈ X and
fn0(y) < 1, then y ∈ O so x ∈ {fn0 < 1} ⊂ O. This shows that O may be
written as a union of elements from τ0 and therefore O ∈ τ0. So τ ⊂ τ0 and
hence τ = τ0.Moreover, if y ∈ Bx(2

−n0) then 2−n0 > ρ(x, y) ≥ 2−n0fn0(y)
and therefore x ∈ Bx(2

−n0) ⊂ {fn0 < 1} ⊂ O. This shows O is ρ — open
and hence τρ ⊂ τ0 ⊂ τ ⊂ τρ.
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3. (X is isometric to some Q0 ⊂ Q.) Let T : X → Q be defined by T (x) =
(f1(x), f2(x), . . . , fn(x), . . . ). Then T is an isometry by the very definitions
of d and ρ and thereforeX is isometric toQ0 := T (X). Since Q0 is a subset
of the compact metric space (Q, d), Q0 is totally bounded and therefore
X is totally bounded.

3.5 Exercises

Exercise 3.49. Let (X, τ) be a topological space, A ⊂ X, iA : A → X be
the inclusion map and τA := i−1A (τ) be the relative topology on A. Verify
τA = {A ∩ V : V ∈ τ} and show C ⊂ A is closed in (A, τA) iff there exists
a closed set F ⊂ X such that C = A ∩ F. (If you get stuck, see the remarks
after Definition 2.22 where this has already been proved.)

Exercise 3.50. Let (X, τ) and (Y, τ 0) be a topological spaces, f : X → Y be
a function, U be an open cover of X and {Fj}nj=1 be a finite cover of X by
closed sets.

1. IfA ⊂ X is any set and f : X → Y is (τ, τ 0) — continuous then f |A : A→ Y
is (τA, τ 0) — continuous.

2. Show f : X → Y is (τ, τ 0) — continuous iff f |U : U → Y is (τU , τ 0) —
continuous for all U ∈ U .

3. Show f : X → Y is (τ, τ 0) — continuous iff f |Fj : Fj → Y is (τFj , τ
0) —

continuous for all j = 1, 2, . . . , n.
4. (A baby form of the Tietze extension Theorem.) Suppose V ∈ τ and
f : V → C is a continuous function such supp(f) ⊂ V, then F : X → C
defined by

F (x) =

½
f(x) if x ∈ V
0 otherwise

is continuous.

Exercise 3.51. Prove Theorem 3.24. Hints:

1. By Proposition 3.19, there exists a precompact open set V such that
K ⊂ V ⊂ V̄ ⊂ U. Now suppose that f : K → [0, α] is continuous with
α ∈ (0, 1] and let A := f−1([0, 13α]) and B := f−1([23α, 1]). Appeal to
Lemma 3.22 to find a function g ∈ C(X, [0, α/3]) such that g = α/3 on B
and supp(g) ⊂ V \A.

2. Now follow the argument in the proof of Theorem 3.2 to construct F ∈
C(X, [a, b]) such that F |K = f.

3. For c ∈ [a, b], choose φ ≺ U such that φ = 1 on K and replace F by
Fc := φF + (1− φ)c.
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Exercise 3.52 (Sterographic Projection). Let X = Rn, X∗ := X ∪ {∞}
be the one point compactification of X, Sn := {y ∈ Rn+1 : |y| = 1} be the
unit sphere in Rn+1 and N = (0, . . . , 0, 1) ∈ Rn+1. Define f : Sn → X∗ by
f(N) =∞, and for y ∈ Sn \ {N} let f(y) = b ∈ Rn be the unique point such
that (b, 0) is on the line containing N and y, see Figure 3.6 below. Find a
formula for f and show f : Sn → X∗ is a homeomorphism. (So the one point
compactification of Rn is homeomorphic to the n sphere.)

N

-N

ρ (b,0)

z

1

y

Fig. 3.6. Sterographic projection and the one point compactification of Rn.

Exercise 3.53. Let (X, τ) be a locally compact Hausdorff space. Show (X, τ)
is separable iff (X∗, τ∗) is separable.

Exercise 3.54. Show by example that there exists a locally compact metric
space (X, d) such that the one point compactification, (X∗ := X ∪ {∞} , τ∗) ,
is not metrizable. Hint: use exercise 3.53.

Exercise 3.55. Suppose (X, d) is a locally compact and σ — compact metric
space. Show the one point compactification, (X∗ := X ∪ {∞} , τ∗) , is metriz-
able.
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The Riemann Integral

In this Chapter, the Riemann integral for Banach space valued functions is
defined and developed. Our exposition will be brief, since the Lebesgue integral
and the Bochner Lebesgue integral will subsume the content of this chapter.
For the remainder of the chapter, let [a, b] be a fixed compact interval and

X be a Banach space. The collection S = S([a, b],X) of step functions,
f : [a, b]→ X, consists of those functions f which may be written in the form

f(t) = x01[a,t1](t) +
n−1X
i=1

xi1(ti,ti+1](t), (4.1)

where π ≡ {a = t0 < t1 < · · · < tn = b} is a partition of [a, b] and xi ∈ X.
For f as in Eq. (4.1), let

I(f) ≡
n−1X
i=0

(ti+1 − ti)xi ∈ X. (4.2)

Exercise 4.1. Show that I(f) is well defined, independent of how f is repre-
sented as a step function. (Hint: show that adding a point to a partition π of
[a, b] does not change the right side of Eq. (4.2).) Also verify that I : S → X
is a linear operator.

Proposition 4.2 (Riemann Integral). The linear function I : S → X
extends uniquely to a continuous linear operator Ī from S̄ (the closure of the
step functions inside of c∞([a, b],X)) to X and this operator satisfies,

kĪ(f)k ≤ (b− a) kfk∞ for all f ∈ S̄. (4.3)

Furthermore, C([a, b],X) ⊂ S̄ ⊂ c∞([a, b],X) and for f ∈, Ī(f) may be com-
puted as

Ī(f) = lim
|π|→0

n−1X
i=0

f(cπi )(ti+1 − ti) (4.4)
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where π ≡ {a = t0 < t1 < · · · < tn = b} denotes a partition of [a, b],
|π| = max {|ti+1 − ti| : i = 0, . . . , n− 1} is the mesh size of π and cπi may be
chosen arbitrarily inside [ti, ti+1].

Proof. Taking the norm of Eq. (4.2) and using the triangle inequality
shows,

kI(f)k ≤
n−1X
i=0

(ti+1 − ti)kxik ≤
n−1X
i=0

(ti+1 − ti)kfk∞ ≤ (b− a)kfk∞. (4.5)

The existence of Ī satisfying Eq. (4.3) is a consequence of Theorem 2.68.
For f ∈ C([a, b],X), π ≡ {a = t0 < t1 < · · · < tn = b} a partition of [a, b],

and cπi ∈ [ti, ti+1] for i = 0, 1, 2 . . . , n− 1, let

fπ(t) ≡ f(c0)01[t0,t1](t) +
n−1X
i=1

f(cπi )1(ti,ti+1](t).

Then I(fπ) =
Pn−1

i=0 f(cπi )(ti+1−ti) so to finish the proof of Eq. (4.4) and that
C([a, b],X) ⊂ S̄, it suffices to observe that lim|π|→0 kf − fπk∞ = 0 because f
is uniformly continuous on [a, b].
If fn ∈ S and f ∈ S̄ such that limn→∞ kf − fnk∞ = 0, then for a ≤ α <

β ≤ b, then 1[α,β]fn ∈ S and limn→∞
°°1[α,β]f − 1[α,β]fn°°∞ = 0. This shows

1[α,β]f ∈ S̄ whenever f ∈ S̄.
Notation 4.3 For f ∈ S̄ and a ≤ α ≤ β ≤ b we will write denote Ī(1[α,β]f)

by
R β
α
f(t) dt or

R
[α,β]

f(t)dt. Also following the usual convention, if a ≤ β ≤
α ≤ b, we will let Z β

α

f(t) dt = −Ī(1[β,α]f) = −
Z α

β

f(t) dt.

The next Lemma, whose proof is left to the reader (Exercise 4.13) contains
some of the many familiar properties of the Riemann integral.

Lemma 4.4. For f ∈ S̄([a, b],X) and α, β, γ ∈ [a, b], the Riemann integral
satisfies:

1.
°°°R βα f(t) dt

°°°
∞
≤ (β − α) sup {kf(t)k : α ≤ t ≤ β} .

2.
R γ
α
f(t) dt =

R β
α
f(t) dt+

R γ
β
f(t) dt.

3. The function G(t) :=
R t
a
f(τ)dτ is continuous on [a, b].

4. If Y is another Banach space and T ∈ L(X,Y ), then Tf ∈ S̄([a, b], Y )
and

T

ÃZ β

α

f(t)dt

!
=

Z β

α

Tf(t)dt.
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5. The function t→ kf(t)kX is in S̄([a, b],R) and°°°°°
Z b

a

f(t) dt

°°°°° ≤
Z b

a

kf(t)k dt.

6. If f, g ∈ S̄([a, b],R) and f ≤ g, thenZ b

a

f(t)dt ≤
Z b

a

g(t)dt.

Theorem 4.5 (Baby Fubini Theorem). Let a, b, c, d ∈ R and f(s, t) ∈ X
be a continuous function of (s, t) for s between a and b and t between c and d.
Then the maps t→ R b

a
f(s, t)ds ∈ X and s→ R d

c
f(s, t)dt are continuous andZ d

c

"Z b

a

f(s, t)ds

#
dt =

Z b

a

"Z d

c

f(s, t)dt

#
ds. (4.6)

Proof. With out loss of generality we may assume a < b and c < d. By
uniform continuity of f, Exercise 2.79,

sup
c≤t≤d

kf(s, t)− f(s0, t)k→ 0 as s→ s0

and so by Lemma 4.4Z d

c

f(s, t)dt→
Z d

c

f(s0, t)dt as s→ s0

showing the continuity of s → R d
c
f(s, t)dt. The other continuity assertion is

proved similarly.
Now let

π = {a ≤ s0 < s1 < · · · < sm = b} and π0 = {c ≤ t0 < t1 < · · · < tn = d}
be partitions of [a, b] and [c, d] respectively. For s ∈ [a, b] let sπ = si if s ∈
(si, si+1] and i ≥ 1 and sπ = s0 = a if s ∈ [s0, s1]. Define tπ0 for t ∈ [c, d]
analogously. ThenZ b

a

"Z d

c

f(s, t)dt

#
ds =

Z b

a

"Z d

c

f(s, tπ0)dt

#
ds+

Z b

a

�π0(s)ds

=

Z b

a

"Z d

c

f(sπ, tπ0)dt

#
ds+ δπ,π0 +

Z b

a

�π0(s)ds

where

�π0(s) =

Z d

c

f(s, t)dt−
Z d

c

f(s, tπ0)dt
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and

δπ,π0 =

Z b

a

"Z d

c

{f(s, tπ0)− f(sπ, tπ0)} dt
#
ds.

The uniform continuity of f and the estimates

sup
s∈[a,b]

k�π0(s)k ≤ sup
s∈[a,b]

Z d

c

kf(s, t)− f(s, tπ0)k dt

≤ (d− c) sup {kf(s, t)− f(s, tπ0)k : (s, t) ∈ Q}
and

kδπ,π0k ≤
Z b

a

"Z d

c

kf(s, tπ0)− f(sπ, tπ0)k dt
#
ds

≤ (b− a)(d− c) sup {kf(s, t)− f(s, tπ0)k : (s, t) ∈ Q}
allow us to conclude thatZ b

a

"Z d

c

f(s, t)dt

#
ds−

Z b

a

"Z d

c

f(sπ, tπ0)dt

#
ds→ 0 as |π|+ |π0|→ 0.

By symmetry (or an analogous argument),Z d

c

"Z b

a

f(s, t)ds

#
dt−

Z d

c

"Z b

a

f(sπ, tπ0)ds

#
dt→ 0 as |π|+ |π0|→ 0.

This completes the proof sinceZ b

a

"Z d

c

f(sπ, tπ0)dt

#
ds =

X
0≤i<m,0≤j<n

f(si, tj)(si+1 − si)(tj+1 − tj)

=

Z d

c

"Z b

a

f(sπ, tπ0)ds

#
dt.

4.0.1 The Fundamental Theorem of Calculus

Our next goal is to show that our Riemann integral interacts well with dif-
ferentiation, namely the fundamental theorem of calculus holds. Before doing
this we will need a couple of basic definitions and results.

Definition 4.6. Let (a, b) ⊂ R. A function f : (a, b) → X is differentiable
at t ∈ (a, b) iff L := limh→0

f(t+h)−f(t)
h exists in X. The limit L, if it exists,

will be denoted by ḟ(t) or df
dt (t). We also say that f ∈ C1((a, b)→ X) if f is

differentiable at all points t ∈ (a, b) and ḟ ∈ C((a, b)→ X).
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Proposition 4.7. Suppose that f : [a, b] → X is a continuous function such
that ḟ(t) exists and is equal to zero for t ∈ (a, b). Then f is constant.

Proof. Let � > 0 and α ∈ (a, b) be given. (We will later let � ↓ 0 and
α ↓ a.) By the definition of the derivative, for all τ ∈ (a, b) there exists δτ > 0
such that

kf(t)− f(τ)k =
°°°f(t)− f(τ)− ḟ(τ)(t− τ)

°°° ≤ � |t− τ | if |t− τ | < δτ .

(4.7)
Let

A = {t ∈ [α, b] : kf(t)− f(α)k ≤ �(t− α)} (4.8)

and t0 be the least upper bound for A. We will now use a standard argument
called continuous induction to show t0 = b.
Eq. (4.7) with τ = α shows t0 > α and a simple continuity argument shows

t0 ∈ A, i.e.
kf(t0)− f(α)k ≤ �(t0 − α) (4.9)

For the sake of contradiction, suppose that t0 < b. By Eqs. (4.7) and (4.9),

kf(t)− f(α)k ≤ kf(t)− f(t0)k+ kf(t0)− f(α)k
≤ �(t0 − α) + �(t− t0) = �(t− α)

for 0 ≤ t− t0 < δt0 which violates the definition of t0 being an upper bound.
Thus we have shown Eq. (4.8) holds for all t ∈ [α, b]. Since � > 0 and α > a
were arbitrary we may conclude, using the continuity of f, that kf(t)−f(a)k =
0 for all t ∈ [a, b].
Remark 4.8. The usual real variable proof of Proposition 4.7 makes use Rolle’s
theorem which in turn uses the extreme value theorem. This latter theorem
is not available to vector valued functions. However with the aid of the Hahn
Banach Theorem 28.16 and Lemma 4.4, it is possible to reduce the proof of
Proposition 4.7 and the proof of the Fundamental Theorem of Calculus 4.9 to
the real valued case, see Exercise 28.50.

Theorem 4.9 (Fundamental Theorem of Calculus). Suppose that f ∈
C([a, b],X), Then

1. d
dt

R t
a
f(τ) dτ = f(t) for all t ∈ (a, b).

2. Now assume that F ∈ C([a, b],X), F is continuously differentiable on
(a, b), and Ḟ extends to a continuous function on [a, b] which is still de-
noted by Ḟ . Then Z b

a

Ḟ (t) dt = F (b)− F (a).
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Proof. Let h > 0 be a small number and consider

k
Z t+h

a

f(τ)dτ −
Z t

a

f(τ)dτ − f(t)hk = k
Z t+h

t

(f(τ)− f(t)) dτk

≤
Z t+h

t

k(f(τ)− f(t))k dτ
≤ h�(h),

where �(h) ≡ maxτ∈[t,t+h] k(f(τ)−f(t))k. Combining this with a similar com-
putation when h < 0 shows, for all h ∈ R sufficiently small, that

k
Z t+h

a

f(τ)dτ −
Z t

a

f(τ)dτ − f(t)hk ≤ |h|�(h),

where now �(h) ≡ maxτ∈[t−|h|,t+|h|] k(f(τ) − f(t))k. By continuity of f at t,
�(h)→ 0 and hence d

dt

R t
a
f(τ) dτ exists and is equal to f(t).

For the second item, set G(t) ≡ R t
a
Ḟ (τ) dτ − F (t). Then G is continuous

by Lemma 4.4 and Ġ(t) = 0 for all t ∈ (a, b) by item 1. An application of
Proposition 4.7 shows G is a constant and in particular G(b) = G(a), i.e.R b
a
Ḟ (τ) dτ − F (b) = −F (a).

Corollary 4.10 (Mean Value Inequality). Suppose that f : [a, b] → X is
a continuous function such that ḟ(t) exists for t ∈ (a, b) and ḟ extends to a
continuous function on [a, b]. Then

kf(b)− f(a)k ≤
Z b

a

kḟ(t)kdt ≤ (b− a) ·
°°°ḟ°°°

∞
. (4.10)

Proof. By the fundamental theorem of calculus, f(b) − f(a) =
R b
a
ḟ(t)dt

and then by Lemma 4.4,

kf(b)− f(a)k =
°°°°°
Z b

a

ḟ(t)dt

°°°°° ≤
Z b

a

kḟ(t)kdt

≤
Z b

a

°°°ḟ°°°
∞
dt = (b− a) ·

°°°ḟ°°°
∞
.

Proposition 4.11 (Equality of Mixed Partial Derivatives). Let Q =
(a, b) × (c, d) be an open rectangle in R2 and f ∈ C(Q,X). Assume that
∂
∂tf(s, t),

∂
∂sf(s, t) and

∂
∂t

∂
∂sf(s, t) exists and are continuous for (s, t) ∈ Q,

then ∂
∂s

∂
∂tf(s, t) exists for (s, t) ∈ Q and

∂

∂s

∂

∂t
f(s, t) =

∂

∂t

∂

∂s
f(s, t) for (s, t) ∈ Q. (4.11)
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Proof. Fix (s0, t0) ∈ Q. By two applications of Theorem 4.9,

f(s, t) = f(st0 , t) +

Z s

s0

∂

∂σ
f(σ, t)dσ

= f(s0, t) +

Z s

s0

∂

∂σ
f(σ, t0)dσ +

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ

∂

∂σ
f(σ, τ) (4.12)

and then by Fubini’s Theorem 4.5 we learn

f(s, t) = f(s0, t) +

Z s

s0

∂

∂σ
f(σ, t0)dσ +

Z t

t0

dτ

Z s

s0

dσ
∂

∂τ

∂

∂σ
f(σ, τ).

Differentiating this equation in t and then in s (again using two more appli-
cations of Theorem 4.9) shows Eq. (4.11) holds.

4.0.2 Exercises

Exercise 4.12. Let c∞([a, b],X) ≡ {f : [a, b]→ X : kfk∞ ≡ supt∈[a,b] kf(t)k <
∞}. Show that (c∞([a, b],X), k · k∞) is a complete Banach space.
Exercise 4.13. Prove Lemma 4.4.

Exercise 4.14. Using Lemma 4.4, show f = (f1, . . . , fn) ∈ S̄([a, b],Rn) iff
fi ∈ S̄([a, b],R) for i = 1, 2, . . . , n andZ b

a

f(t)dt =

ÃZ b

a

f1(t)dt, . . . ,

Z b

a

fn(t)dt

!
.

Exercise 4.15. Give another proof of Proposition 4.11 which does not use
Fubini’s Theorem 4.5 as follows.

1. By a simple translation argument we may assume (0, 0) ∈ Q and we are
trying to prove Eq. (4.11) holds at (s, t) = (0, 0).

2. Let h(s, t) := ∂
∂t

∂
∂sf(s, t) and

G(s, t) :=

Z s

0

dσ

Z t

0

dτh(σ, τ)

so that Eq. (4.12) states

f(s, t) = f(0, t) +

Z s

0

∂

∂σ
f(σ, t0)dσ +G(s, t)

and differentiating this equation at t = 0 shows

∂

∂t
f(s, 0) =

∂

∂t
f(0, 0) +

∂

∂t
G(s, 0). (4.13)
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Now show using the definition of the derivative that

∂

∂t
G(s, 0) =

Z s

0

dσh(σ, 0). (4.14)

Hint: Consider

G(s, t)− t

Z s

0

dσh(σ, 0) =

Z s

0

dσ

Z t

0

dτ [h(σ, τ)− h(σ, 0)] .

3. Now differentiate Eq. (4.13) in s using Theorem 4.9 to finish the proof.

Exercise 4.16. Give another proof of Eq. (4.6) in Theorem 4.5 based on
Proposition 4.11. To do this let t0 ∈ (c, d) and s0 ∈ (a, b) and define

G(s, t) :=

Z t

t0

dτ

Z s

s0

dσf(σ, τ)

Show G satisfies the hypothesis of Proposition 4.11 which combined with two
applications of the fundamental theorem of calculus implies

∂

∂t

∂

∂s
G(s, t) =

∂

∂s

∂

∂t
G(s, t) = f(s, t).

Use two more applications of the fundamental theorem of calculus along with
the observation that G = 0 if t = t0 or s = s0 to conclude

G(s, t) =

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ

∂

∂σ
G(σ, τ) =

Z s

s0

dσ

Z t

t0

dτ
∂

∂τ
f(σ, τ). (4.15)

Finally let s = b and t = d in Eq. (4.15) and then let s0 ↓ a and t0 ↓ c to
prove Eq. (4.6).

4.1 More Examples of Bounded Operators

In the examples to follow all integrals are the standard Riemann integrals,
see Section 4 below for the definition and the basic properties of the Riemann
integral.

Example 4.17. Suppose that K : [0, 1] × [0, 1] → C is a continuous function.
For f ∈ C([0, 1]), let

Tf(x) =

Z 1

0

K(x, y)f(y)dy.

Since
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|Tf(x)− Tf(z)| ≤
Z 1

0

|K(x, y)−K(z, y)| |f(y)| dy
≤ kfk∞maxy |K(x, y)−K(z, y)| (4.16)

and the latter expression tends to 0 as x → z by uniform continuity of K.
Therefore Tf ∈ C([0, 1]) and by the linearity of the Riemann integral, T :
C([0, 1])→ C([0, 1]) is a linear map. Moreover,

|Tf(x)| ≤
Z 1

0

|K(x, y)| |f(y)| dy ≤
Z 1

0

|K(x, y)| dy · kfk∞ ≤ A kfk∞

where

A := sup
x∈[0,1]

Z 1

0

|K(x, y)| dy <∞. (4.17)

This shows kTk ≤ A < ∞ and therefore T is bounded. We may in fact
show kTk = A. To do this let x0 ∈ [0, 1] be such that

sup
x∈[0,1]

Z 1

0

|K(x, y)| dy =
Z 1

0

|K(x0, y)| dy.

Such an x0 can be found since, using a similar argument to that in Eq. (4.16),
x→ R 1

0
|K(x, y)| dy is continuous. Given � > 0, let

f�(y) :=
K(x0, y)q

�+ |K(x0, y)|2

and notice that lim�↓0 kf�k∞ = 1 and

kTf�k∞ ≥ |Tf�(x0)| = Tf�(x0) =

Z 1

0

|K(x0, y)|2q
�+ |K(x0, y)|2

dy.

Therefore,

kTk ≥ lim
�↓0

1

kf�k∞

Z 1

0

|K(x0, y)|2q
�+ |K(x0, y)|2

dy

= lim
�↓0

Z 1

0

|K(x0, y)|2q
�+ |K(x0, y)|2

dy = A

since
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0 ≤ |K(x0, y)|− |K(x0, y)|2q
�+ |K(x0, y)|2

=
|K(x0, y)|q
�+ |K(x0, y)|2

·q
�+ |K(x0, y)|2 − |K(x0, y)|

¸

≤
q
�+ |K(x0, y)|2 − |K(x0, y)|

and the latter expression tends to zero uniformly in y as � ↓ 0.
We may also consider other norms on C([0, 1]). Let (for now) L1 ([0, 1])

denote C([0, 1]) with the norm

kfk1 =
Z 1

0

|f(x)| dx,

then T : L1 ([0, 1], dm) → C([0, 1]) is bounded as well. Indeed, let M =
sup {|K(x, y)| : x, y ∈ [0, 1]} , then

|(Tf)(x)| ≤
Z 1

0

|K(x, y)f(y)| dy ≤M kfk1

which shows kTfk∞ ≤M kfk1 and hence,
kTkL1→C ≤ max {|K(x, y)| : x, y ∈ [0, 1]} <∞.

We can in fact show that kTk =M as follows. Let (x0, y0) ∈ [0, 1]2 satisfying
|K(x0, y0)| = M. Then given � > 0, there exists a neighborhood U = I × J
of (x0, y0) such that |K(x, y)−K(x0, y0)| < � for all (x, y) ∈ U. Let f ∈
Cc(I, [0,∞)) such that

R 1
0
f(x)dx = 1. Choose α ∈ C such that |α| = 1 and

αK(x0, y0) =M, then

|(Tαf)(x0)| =
¯̄̄̄Z 1

0

K(x0, y)αf(y)dy

¯̄̄̄
=

¯̄̄̄Z
I

K(x0, y)αf(y)dy

¯̄̄̄
≥ Re

Z
I

αK(x0, y)f(y)dy

≥
Z
I

(M − �) f(y)dy = (M − �) kαfkL1

and hence
kTαfkC ≥ (M − �) kαfkL1

showing that kTk ≥ M − �. Since � > 0 is arbitrary, we learn that kTk ≥ M
and hence kTk =M.
One may also view T as a map from T : C([0, 1]) → L1([0, 1]) in which

case one may show

kTkL1→C ≤
Z 1

0

max
y
|K(x, y)| dx <∞.
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4.2 Inverting Elements in L(X) and Linear ODE

Definition 4.18. A linear map T : X → Y is an isometry if kTxkY = kxkX
for all x ∈ X. T is said to be invertible if T is a bijection and T−1 is bounded.

Notation 4.19 We will write GL(X,Y ) for those T ∈ L(X,Y ) which are
invertible. If X = Y we simply write L(X) and GL(X) for L(X,X) and
GL(X,X) respectively.

Proposition 4.20. Suppose X is a Banach space and Λ ∈ L(X) ≡ L(X,X)

satisfies
∞P
n=0

kΛnk <∞. Then I − Λ is invertible and

(I − Λ)−1 = “
1

I − Λ
” =

∞X
n=0

Λn and
°°(I − Λ)−1

°° ≤ ∞X
n=0

kΛnk.

In particular if kΛk < 1 then the above formula holds and°°(I − Λ)−1
°° ≤ 1

1− kΛk .

Proof. Since L(X) is a Banach space and
∞P
n=0

kΛnk <∞, it follows from

Theorem 2.67 that

S := lim
N→∞

SN := lim
N→∞

NX
n=0

Λn

exists in L(X). Moreover, by Exercise 2.119 below,

(I − Λ)S = (I − Λ) lim
N→∞

SN = lim
N→∞

(I − Λ)SN

= lim
N→∞

(I − Λ)
NX
n=0

Λn = lim
N→∞

(I − ΛN+1) = I

and similarly S (I − Λ) = I. This shows that (I −Λ)−1 exists and is equal to
S. Moreover, (I − Λ)−1 is bounded because

°°(I − Λ)−1
°° = kSk ≤ ∞X

n=0

kΛnk.

If we further assume kΛk < 1, then kΛnk ≤ kΛkn and
∞X
n=0

kΛnk ≤
∞X
n=0

kΛkn ≤ 1

1− kΛk <∞.
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Corollary 4.21. Let X and Y be Banach spaces. Then GL(X,Y ) is an open
(possibly empty) subset of L(X,Y ). More specifically, if A ∈ GL(X,Y ) and
B ∈ L(X,Y ) satisfies

kB −Ak < kA−1k−1 (4.18)

then B ∈ GL(X,Y )

B−1 =
∞X
n=0

£
IX −A−1B

¤n
A−1 ∈ L(Y,X) (4.19)

and °°B−1°° ≤ kA−1k 1

1− kA−1k kA−Bk .

Proof. Let A and B be as above, then

B = A− (A−B) = A
£
IX −A−1(A−B))

¤
= A(IX − Λ)

where Λ : X → X is given by

Λ := A−1(A−B) = IX −A−1B.

Now

kΛk = °°A−1(A−B))
°° ≤ kA−1k kA−Bk < kA−1kkA−1k−1 = 1.

Therefore I−Λ is invertible and hence so is B (being the product of invertible
elements) with

B−1 = (I − Λ)−1A−1 =
£
IX −A−1(A−B))

¤−1
A−1.

For the last assertion we have,°°B−1°° ≤ °°(IX − Λ)−1
°° kA−1k ≤ kA−1k 1

1− kΛk
≤ kA−1k 1

1− kA−1k kA−Bk .

For an application of these results to linear ordinary differential equations,
see Section 6.2.



5

Hölder Spaces

Notation 5.1 Let Ω be an open subset of Rd, BC(Ω) and BC(Ω̄) be the
bounded continuous functions on Ω and Ω̄ respectively. By identifying f ∈
BC(Ω̄) with f |Ω ∈ BC(Ω), we will consider BC(Ω̄) as a subset of BC(Ω).
For u ∈ BC(Ω) and 0 < β ≤ 1 let

kuku := sup
x∈Ω

|u(x)| and [u]β := sup
x,y∈Ω
x6=y

½ |u(x)− u(y)|
|x− y|β

¾
.

If [u]β < ∞, then u is Hölder continuous with holder exponent1 β. The
collection of β — Hölder continuous function on Ω will be denoted by

C0,β(Ω) := {u ∈ BC(Ω) : [u]β <∞}
and for u ∈ C0,β(Ω) let

kukC0,β(Ω) := kuku + [u]β . (5.1)

Remark 5.2. If u : Ω → C and [u]β < ∞ for some β > 1, then u is constant
on each connected component of Ω. Indeed, if x ∈ Ω and h ∈ Rd then¯̄̄̄

u(x+ th)− u(x)

t

¯̄̄̄
≤ [u]βtβ/t→ 0 as t→ 0

which shows ∂hu(x) = 0 for all x ∈ Ω. If y ∈ Ω is in the same connected
component as x, then by Exercise 2.129 there exists a smooth curve σ : [0, 1]→
Ω such that σ(0) = x and σ(1) = y. So by the fundamental theorem of calculus
and the chain rule,

u(y)− u(x) =

Z 1

0

d

dt
u(σ(t))dt =

Z 1

0

0 dt = 0.

This is why we do not talk about Hölder spaces with Hölder exponents larger
than 1.
1 If β = 1, u is is said to be Lipschitz continuous.
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Lemma 5.3. Suppose u ∈ C1(Ω) ∩ BC(Ω) and ∂iu ∈ BC(Ω) for i =
1, 2, . . . , d, then u ∈ C0,1(Ω), i.e. [u]1 <∞.

The proof of this lemma is left to the reader as Exercise 5.15.

Theorem 5.4. Let Ω be an open subset of Rd. Then

1. Under the identification of u ∈ BC
¡
Ω̄
¢
with u|Ω ∈ BC (Ω) , BC(Ω̄) is a

closed subspace of BC(Ω).
2. Every element u ∈ C0,β(Ω) has a unique extension to a continuous func-
tion (still denoted by u) on Ω̄. Therefore we may identify C0,β(Ω) with
C0,β(Ω̄) ⊂ BC(Ω̄). (In particular we may consider C0,β(Ω) and C0,β(Ω̄)
to be the same when β > 0.)

3. The function u ∈ C0,β(Ω) → kukC0,β(Ω) ∈ [0,∞) is a norm on C0,β(Ω)

which make C0,β(Ω) into a Banach space.

Proof. 1. The first item is trivial since for u ∈ BC(Ω̄), the sup-norm of
u on Ω̄ agrees with the sup-norm on Ω and BC(Ω̄) is complete in this norm.
2. Suppose that [u]β <∞ and x0 ∈ ∂Ω. Let {xn}∞n=1 ⊂ Ω be a sequence

such that x0 = limn→∞ xn. Then

|u(xn)− u(xm)| ≤ [u]β |xn − xm|β → 0 as m,n→∞
showing {u(xn)}∞n=1 is Cauchy so that ū(x0) := limn→∞ u(xn) exists. If
{yn}∞n=1 ⊂ Ω is another sequence converging to x0, then

|u(xn)− u(yn)| ≤ [u]β |xn − yn|β → 0 as n→∞,

showing ū(x0) is well defined. In this way we define ū(x) for all x ∈ ∂Ω and
let ū(x) = u(x) for x ∈ Ω. Since a similar limiting argument shows

|ū(x)− ū(y)| ≤ [u]β |x− y|β for all x, y ∈ Ω̄

it follows that ū is still continuous and [ū]β = [u]β . In the sequel we will abuse
notation and simply denote ū by u.
3. For u, v ∈ C0,β(Ω),

[v + u]β = sup
x,y∈Ω
x6=y

½ |v(y) + u(y)− v(x)− u(x)|
|x− y|β

¾

≤ sup
x,y∈Ω
x6=y

½ |v(y)− v(x)|+ |u(y)− u(x)|
|x− y|β

¾
≤ [v]β + [u]β

and for λ ∈ C it is easily seen that [λu]β = |λ| [u]β. This shows [·]β is a semi-
norm on C0,β(Ω) and therefore k · kC0,β(Ω) defined in Eq. (5.1) is a norm.
To see that C0,β(Ω) is complete, let {un}∞n=1 be a C0,β(Ω)—Cauchy

sequence. Since BC(Ω̄) is complete, there exists u ∈ BC(Ω̄) such that
ku− unku → 0 as n→∞. For x, y ∈ Ω with x 6= y,
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|u(x)− u(y)|
|x− y|β

= lim
n→∞

|un(x)− un(y)|
|x− y|β

≤ lim sup
n→∞

[un]β ≤ lim
n→∞ kunkC0,β(Ω) <∞,

and so we see that u ∈ C0,β(Ω). Similarly,

|u(x)− un(x)− (u(y)− un(y))|
|x− y|β

= lim
m→∞

|(um − un)(x)− (um − un)(y)|
|x− y|β

≤ lim sup
m→∞

[um − un]β → 0 as n→∞,

showing [u− un]β → 0 as n→∞ and therefore limn→∞ ku− unkC0,β(Ω) = 0.

Notation 5.5 Since Ω and Ω̄ are locally compact Hausdorff spaces, we may
define C0(Ω) and C0(Ω̄) as in Definition 3.37. We will also let

C0,β0 (Ω) := C0,β(Ω) ∩ C0(Ω) and C0,β0 (Ω̄) := C0,β(Ω) ∩ C0(Ω̄).

It has already been shown in Proposition 3.38 that C0(Ω) and C0(Ω̄) are
closed subspaces of BC(Ω) and BC(Ω̄) respectively. The next proposition
describes the relation between C0(Ω) and C0(Ω̄).

Proposition 5.6. Each u ∈ C0(Ω) has a unique extension to a continuous
function on Ω̄ given by ū = u on Ω and ū = 0 on ∂Ω and the extension ū is
in C0(Ω̄). Conversely if u ∈ C0(Ω̄) and u|∂Ω = 0, then u|Ω ∈ C0(Ω). In this
way we may identify C0(Ω) with those u ∈ C0(Ω̄) such that u|∂Ω = 0.
Proof. Any extension u ∈ C0(Ω) to an element ū ∈ C(Ω̄) is necessarily

unique, since Ω is dense inside Ω̄. So define ū = u on Ω and ū = 0 on ∂Ω.
We must show ū is continuous on Ω̄ and ū ∈ C0(Ω̄).
For the continuity assertion it is enough to show ū is continuous at all

points in ∂Ω. For any � > 0, by assumption, the setK� := {x ∈ Ω : |u(x)| ≥ �}
is a compact subset of Ω. Since ∂Ω = Ω̄ \Ω, ∂Ω ∩K� = ∅ and therefore the
distance, δ := d(K�, ∂Ω), between K� and ∂Ω is positive. So if x ∈ ∂Ω and
y ∈ Ω̄ and |y − x| < δ, then |ū(x)− ū(y)| = |u(y)| < � which shows ū : Ω̄ → C
is continuous. This also shows {|ū| ≥ �} = {|u| ≥ �} = K� is compact in Ω
and hence also in Ω̄. Since � > 0 was arbitrary, this shows ū ∈ C0(Ω̄).
Conversely if u ∈ C0(Ω̄) such that u|∂Ω = 0 and � > 0, then K� :=©

x ∈ Ω̄ : |u(x)| ≥ �
ª
is a compact subset of Ω̄ which is contained in Ω since

∂Ω ∩K� = ∅. Therefore K� is a compact subset of Ω showing u|Ω ∈ C0(Ω̄).

Definition 5.7. Let Ω be an open subset of Rd, k ∈ N∪ {0} and β ∈ (0, 1].
Let BCk(Ω) (BCk(Ω̄)) denote the set of k — times continuously differentiable
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functions u on Ω such that ∂αu ∈ BC(Ω) (∂αu ∈ BC(Ω̄))2 for all |α| ≤ k.
Similarly, let BCk,β(Ω) denote those u ∈ BCk(Ω) such that [∂αu]β <∞ for
all |α| = k. For u ∈ BCk(Ω) let

kukCk(Ω) =
X
|α|≤k

k∂αuku and

kukCk,β(Ω) =
X
|α|≤k

k∂αuku +
X
|α|=k

[∂αu]β .

Theorem 5.8. The spaces BCk(Ω) and BCk,β(Ω) equipped with k · kCk(Ω)

and k·kCk,β(Ω) respectively are Banach spaces and BC
k(Ω̄) is a closed subspace

of BCk(Ω) and BCk,β(Ω) ⊂ BCk(Ω̄). Also

Ck,β
0 (Ω) = Ck,β

0 (Ω̄) = {u ∈ BCk,β(Ω) : ∂αu ∈ C0(Ω) ∀ |α| ≤ k}
is a closed subspace of BCk,β(Ω).

Proof. Suppose that {un}∞n=1 ⊂ BCk(Ω) is a Cauchy sequence, then
{∂αun}∞n=1 is a Cauchy sequence in BC(Ω) for |α| ≤ k. Since BC(Ω) is
complete, there exists gα ∈ BC(Ω) such that limn→∞ k∂αun − gαku = 0 for
all |α| ≤ k. Letting u := g0, we must show u ∈ Ck(Ω) and ∂αu = gα for all
|α| ≤ k. This will be done by induction on |α| . If |α| = 0 there is nothing to
prove. Suppose that we have verified u ∈ Cl(Ω) and ∂αu = gα for all |α| ≤ l
for some l < k. Then for x ∈ Ω, i ∈ {1, 2, . . . , d} and t ∈ R sufficiently small,

∂aun(x+ tei) = ∂aun(x) +

Z t

0

∂i∂
aun(x+ τei)dτ.

Letting n→∞ in this equation gives

∂au(x+ tei) = ∂au(x) +

Z t

0

gα+ei(x+ τei)dτ

from which it follows that ∂i∂αu(x) exists for all x ∈ Ω and ∂i∂
αu = gα+ei .

This completes the induction argument and also the proof that BCk(Ω) is
complete.
It is easy to check that BCk(Ω̄) is a closed subspace of BCk(Ω) and

by using Exercise 5.15 and Theorem 5.4 that that BCk,β(Ω) is a subspace
of BCk(Ω̄). The fact that Ck,β

0 (Ω) is a closed subspace of BCk,β(Ω) is a
consequence of Proposition 3.38.
To prove BCk,β(Ω) is complete, let {un}∞n=1 ⊂ BCk,β(Ω) be a k · kCk,β(Ω)

— Cauchy sequence. By the completeness of BCk(Ω) just proved, there exists
u ∈ BCk(Ω) such that limn→∞ ku−unkCk(Ω) = 0. An application of Theorem

2 To say ∂αu ∈ BC(Ω̄) means that ∂αu ∈ BC(Ω) and ∂αu extends to a continuous
function on Ω̄.
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5.4 then shows limn→∞ k∂αun − ∂αukC0,β(Ω) = 0 for |α| = k and therefore
limn→∞ ku− unkCk,β(Ω) = 0.
The reader is asked to supply the proof of the following lemma.

Lemma 5.9. The following inclusions hold. For any β ∈ [0, 1]
BCk+1,0(Ω) ⊂ BCk,1(Ω) ⊂ BCk,β(Ω)

BCk+1,0(Ω̄) ⊂ BCk,1(Ω̄) ⊂ BCk,β(Ω).

Definition 5.10. Let A : X → Y be a bounded operator between two (separa-
ble) Banach spaces. Then A is compact if A [BX(0, 1)] is precompact in Y or
equivalently for any {xn}∞n=1 ⊂ X such that kxnk ≤ 1 for all n the sequence
yn := Axn ∈ Y has a convergent subsequence.

Example 5.11. Let X = c2 = Y and λn ∈ C such that limn→∞ λn = 0, then
A : X → Y defined by (Ax)(n) = λnx(n) is compact.

Proof. Suppose {xj}∞j=1 ⊂ c2 such that kxjk2 =
P |xj(n)|2 ≤ 1 for all j.

By Cantor’s Diagonalization argument, there exists {jk} ⊂ {j} such that, for
each n, x̃k(n) = xjk(n) converges to some x̃(n) ∈ C as k →∞. Since for any
M <∞,

MX
n=1

|x̃(n)|2 = lim
k→∞

MX
n=1

|x̃k(n)|2 ≤ 1

we may conclude that
∞P
n=1

|x̃(n)|2 ≤ 1, i.e. x̃ ∈ c2.

Let yk := Ax̃k and y := Ax̃.We will finish the verification of this example
by showing yk → y in c2 as k →∞. Indeed if λ∗M = max

n≥M
|λn|, then

kAx̃k −Ax̃k2 =
∞X
n=1

|λn|2 |x̃k(n)− x̃(n)|2

=
MX
n=1

|λn|2|x̃k(n)− x̃(n)|2 + |λ∗M |2
∞X

M+1

|x̃k(n)− x̃(n)|2

≤
MX
n=1

|λn|2|x̃k(n)− x̃(n)|2 + |λ∗M |2 kx̃k − x̃k2

≤
MX
n=1

|λn|2|x̃k(n)− x̃(n)|2 + 4|λ∗M |2.

Passing to the limit in this inequality then implies

lim sup
k→∞

kAx̃k −Ax̃k2 ≤ 4|λ∗M |2 → 0 as M →∞.
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Lemma 5.12. If X A−→ Y
B−→ Z are continuous operators such the either A

or B is compact then the composition BA : X → Z is also compact.

Proof. If A is compact and B is bounded, then BA(BX(0, 1)) ⊂
B(ABX(0, 1)) which is compact since the image of compact sets under con-
tinuous maps are compact. Hence we conclude that BA(BX(0, 1)) is compact,
being the closed subset of the compact set B(ABX(0, 1)).
If A is continuous and B is compact, then A(BX(0, 1)) is a bounded set

and so by the compactness of B, BA(BX(0, 1)) is a precompact subset of Z,
i.e. BA is compact.

Proposition 5.13. Let Ω ⊂o Rd such that Ω̄ is compact and 0 ≤ α < β ≤ 1.
Then the inclusion map i : Cβ(Ω) /→ Cα(Ω) is compact.

Let {un}∞n=1 ⊂ Cβ(Ω) such that kunkCβ ≤ 1, i.e. kunk∞ ≤ 1 and
|un(x)− un(y)| ≤ |x− y|β for all x, y ∈ Ω.

By the Arzela-Ascoli Theorem 2.86, there exists a subsequence of {ũn}∞n=1 of
{un}∞n=1 and u ∈ Co(Ω̄) such that ũn → u in C0. Since

|u(x)− u(y)| = lim
n→∞ |ũn(x)− ũn(y)| ≤ |x− y|β ,

u ∈ Cβ as well. Define gn := u− ũn ∈ Cβ , then

[gn]β + kgnkC0 = kgnkCβ ≤ 2
and gn → 0 in C0. To finish the proof we must show that gn → 0 in Cα. Given
δ > 0,

[gn]α = sup
x6=y

|gn(x)− gn(y)|
|x− y|α ≤ An +Bn

where

An = sup

½ |gn(x)− gn(y)|
|x− y|α : x 6= y and |x− y| ≤ δ

¾
= sup

½ |gn(x)− gn(y)|
|x− y|β · |x− y|β−α : x 6= y and |x− y| ≤ δ

¾
≤ δβ−α · [gn]β ≤ 2δβ−α

and

Bn = sup

½ |gn(x)− gn(y)|
|x− y|α : |x− y| > δ

¾
≤ 2δ−α kgnkC0 → 0 as n→∞.

Therefore,

lim sup
n→∞

[gn]α ≤ lim sup
n→∞

An + lim sup
n→∞

Bn ≤ 2δβ−α + 0→ 0 as δ ↓ 0.

This proposition generalizes to the following theorem which the reader is asked
to prove in Exercise 5.16 below.

Theorem 5.14. Let Ω be a precompact open subset of Rd, α, β ∈ [0, 1] and
k, j ∈ N0. If j+β > k+α, then Cj,β

¡
Ω̄
¢
is compactly contained in Ck,α

¡
Ω̄
¢
.
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5.1 Exercises

Exercise 5.15. Prove Lemma 5.3.

Exercise 5.16. Prove Theorem 5.14. Hint: First prove Cj,β
¡
Ω̄
¢
@@

Cj,α
¡
Ω̄
¢
is compact if 0 ≤ α < β ≤ 1. Then use Lemma 5.12 repeatedly

to handle all of the other cases.





6

Ordinary Differential Equations in a Banach
Space

Let X be a Banach space, U ⊂o X, J = (a, b) 3 0 and Z ∈ C (J × U,X) — Z
is to be interpreted as a time dependent vector-field on U ⊂ X. In this section
we will consider the ordinary differential equation (ODE for short)

ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U. (6.1)

The reader should check that any solution y ∈ C1(J, U) to Eq. (6.1) gives a
solution y ∈ C(J, U) to the integral equation:

y(t) = x+

Z t

0

Z(τ, y(τ))dτ (6.2)

and conversely if y ∈ C(J, U) solves Eq. (6.2) then y ∈ C1(J, U) and y solves
Eq. (6.1).

Remark 6.1. For notational simplicity we have assumed that the initial condi-
tion for the ODE in Eq. (6.1) is taken at t = 0. There is no loss in generality
in doing this since if ỹ solves

dỹ

dt
(t) = Z̃(t, ỹ(t)) with ỹ(t0) = x ∈ U

iff y(t) := ỹ(t+ t0) solves Eq. (6.1) with Z(t, x) = Z̃(t+ t0, x).

6.1 Examples

Let X = R, Z(x) = xn with n ∈ N and consider the ordinary differential
equation

ẏ(t) = Z(y(t)) = yn(t) with y(0) = x ∈ R. (6.3)

If y solves Eq. (6.3) with x 6= 0, then y(t) is not zero for t near 0. Therefore
up to the first time y possibly hits 0, we must have
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t =

Z t

0

ẏ(τ)

y(τ)n
dτ =

Z y(t)

0

u−ndu =


[y(t)]1−n−x1−n

1−n if n > 1

ln
¯̄̄
y(t)
x

¯̄̄
if n = 1

and solving these equations for y(t) implies

y(t) = y(t, x) =

(
x

n−1√1−(n−1)txn−1 if n > 1

etx if n = 1.
(6.4)

The reader should verify by direct calculation that y(t, x) defined above does
indeed solve Eq. (6.3). The above argument shows that these are the only
possible solutions to the Equations in (6.3).
Notice that when n = 1, the solution exists for all time while for n > 1,

we must require
1− (n− 1)txn−1 > 0

or equivalently that

t <
1

(1− n)xn−1
if xn−1 > 0 and

t > − 1

(1− n) |x|n−1 if x
n−1 < 0.

Moreover for n > 1, y(t, x) blows up as t approaches the value for which
1− (n− 1)txn−1 = 0. The reader should also observe that, at least for s and
t close to 0,

y(t, y(s, x)) = y(t+ s, x) (6.5)

for each of the solutions above. Indeed, if n = 1 Eq. (6.5) is equivalent to the
well know identity, etes = et+s and for n > 1,

y(t, y(s, x)) =
y(s, x)

n−1
p
1− (n− 1)ty(s, x)n−1

=

x
n−1√1−(n−1)sxn−1

n−1

s
1− (n− 1)t

·
x

n−1√1−(n−1)sxn−1
¸n−1

=

x
n−1√1−(n−1)sxn−1

n−1
q
1− (n− 1)t xn−1

1−(n−1)sxn−1

=
x

n−1
p
1− (n− 1)sxn−1 − (n− 1)txn−1

=
x

n−1
p
1− (n− 1)(s+ t)xn−1

= y(t+ s, x).

Now suppose Z(x) = |x|α with 0 < α < 1 and we now consider the
ordinary differential equation
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ẏ(t) = Z(y(t)) = |y(t)|α with y(0) = x ∈ R. (6.6)

Working as above we find, if x 6= 0 that

t =

Z t

0

ẏ(τ)

|y(t)|α dτ =
Z y(t)

0

|u|−α du = [y(t)]
1−α − x1−α

1− α
,

where u1−α := |u|1−α sgn(u). Since sgn(y(t)) = sgn(x) the previous equation
implies

sgn(x)(1− α)t = sgn(x)
h
sgn(y(t)) |y(t)|1−α − sgn(x) |x|1−α

i
= |y(t)|1−α − |x|1−α

and therefore,

y(t, x) = sgn(x)
³
|x|1−α + sgn(x)(1− α)t

´ 1
1−α

(6.7)

is uniquely determined by this formula until the first time t where |x|1−α +
sgn(x)(1 − α)t = 0. As before y(t) = 0 is a solution to Eq. (6.6), however it
is far from being the unique solution. For example letting x ↓ 0 in Eq. (6.7)
gives a function

y(t, 0+) = ((1− α)t)
1

1−α

which solves Eq. (6.6) for t > 0. Moreover if we define

y(t) :=

½
((1− α)t)

1
1−α if t > 0

0 if t ≤ 0 ,

(for example if α = 1/2 then y(t) = 1
4 t
21t≥0) then the reader may easily check

y also solve Eq. (6.6). Furthermore, ya(t) := y(t− a) also solves Eq. (6.6) for
all a ≥ 0, see Figure 6.1 below.
With these examples in mind, let us now go to the general theory starting

with linear ODEs.

6.2 Linear Ordinary Differential Equations

Consider the linear differential equation

ẏ(t) = A(t)y(t) where y(0) = x ∈ X. (6.8)

Here A ∈ C(J → L(X)) and y ∈ C1(J → X). This equation may be written
in its equivalent (as the reader should verify) integral form, namely we are
looking for y ∈ C(J,X) such that
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86420

10

7.5

5

2.5

0

tt

Fig. 6.1. Three different solutions to the ODE ẏ(t) = |y(t)|1/2 with y(0) = 0.

y(t) = x+

Z t

0

A(τ)y(τ)dτ. (6.9)

In what follows, we will abuse notation and use k·k to denote the operator
norm on L (X) associated to k·k on X we will also fix J = (a, b) 3 0 and let
kφk∞ := maxt∈J kφ(t)k for φ ∈ BC(J,X) or BC(J, L (X)).

Notation 6.2 For t ∈ R and n ∈ N, let

∆n(t) =

½{(τ1, . . . , τn) ∈ Rn : 0 ≤ τ1 ≤ · · · ≤ τn ≤ t} if t ≥ 0
{(τ1, . . . , τn) ∈ Rn : t ≤ τn ≤ · · · ≤ τ1 ≤ 0} if t ≤ 0

and also write dτ = dτ1 . . . dτn andZ
∆n(t)

f(τ1, . . . τn)dτ : = (−1)n·1t<0
Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1f(τ1, . . . τn).

Lemma 6.3. Suppose that ψ ∈ C (R,R) , then

(−1)n·1t<0
Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1

n!

µZ t

0

ψ(τ)dτ

¶n
. (6.10)

Proof. Let Ψ(t) :=
R t
0
ψ(τ)dτ. The proof will go by induction on n. The

case n = 1 is easily verified since

(−1)1·1t<0
Z
∆1(t)

ψ(τ1)dτ1 =

Z t

0

ψ(τ)dτ = Ψ(t).

Now assume the truth of Eq. (6.10) for n− 1 for some n ≥ 2, then
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(−1)n·1t<0
Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ

=

Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1ψ(τ1) . . . ψ(τn)

=

Z t

0

dτn
Ψn−1(τn)
(n− 1)! ψ(τn) =

Z t

0

dτn
Ψn−1(τn)
(n− 1)! Ψ̇(τn)

=

Z Ψ(t)

0

un−1

(n− 1)!du =
Ψn(t)

n!
,

wherein we made the change of variables, u = Ψ(τn), in the second to last
equality.

Remark 6.4. Eq. (6.10) is equivalent toZ
∆n(t)

ψ(τ1) . . . ψ(τn)dτ =
1

n!

ÃZ
∆1(t)

ψ(τ)dτ

!n

and another way to understand this equality is to view
R
∆n(t)

ψ(τ1) . . . ψ(τn)dτ

as a multiple integral (see Section 9 below) rather than an iterated integral.
Indeed, taking t > 0 for simplicity and letting Sn be the permutation group
on {1, 2, . . . , n} we have

[0, t]n = ∪σ∈Sn{(τ1, . . . , τn) ∈ Rn : 0 ≤ τσ1 ≤ · · · ≤ τσn ≤ t}
with the union being “essentially” disjoint. Therefore, making a change of vari-
ables and using the fact that ψ(τ1) . . . ψ(τn) is invariant under permutations,
we findµZ t

0

ψ(τ)dτ

¶n
=

Z
[0,t]n

ψ(τ1) . . . ψ(τn)dτ

=
X
σ∈Sn

Z
{(τ1,...,τn)∈Rn:0≤τσ1≤···≤τσn≤t}

ψ(τ1) . . . ψ(τn)dτ

=
X
σ∈Sn

Z
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(sσ−11) . . . ψ(sσ−1n)ds

=
X
σ∈Sn

Z
{(s1,...,sn)∈Rn:0≤s1≤···≤sn≤t}

ψ(s1) . . . ψ(sn)ds

= n!

Z
∆n(t)

ψ(τ1) . . . ψ(τn)dτ.

Theorem 6.5. Let φ ∈ BC(J,X), then the integral equation

y(t) = φ(t) +

Z t

0

A(τ)y(τ)dτ (6.11)
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has a unique solution given by

y(t) = φ(t) +
∞X
n=1

(−1)n·1t<0
Z
∆n(t)

A(τn) . . . A(τ1)φ(τ1)dτ (6.12)

and this solution satisfies the bound

kyk∞ ≤ kφk∞ e
R
J
kA(τ)kdτ .

Proof. Define Λ : BC(J,X)→ BC(J,X) by

(Λy)(t) =

Z t

0

A(τ)y(τ)dτ.

Then y solves Eq. (6.9) iff y = φ+ Λy or equivalently iff (I − Λ)y = φ.
An induction argument shows

(Λnφ)(t) =

Z t

0

dτnA(τn)(Λ
n−1φ)(τn)

=

Z t

0

dτn

Z τn

0

dτn−1A(τn)A(τn−1)(Λn−2φ)(τn−1)

...

=

Z t

0

dτn

Z τn

0

dτn−1 . . .
Z τ2

0

dτ1A(τn) . . . A(τ1)φ(τ1)

= (−1)n·1t<0
Z
∆n(t)

A(τn) . . . A(τ1)φ(τ1)dτ.

Taking norms of this equation and using the triangle inequality along with
Lemma 6.3 gives,

k(Λnφ)(t)k ≤ kφk∞ ·
Z
∆n(t)

kA(τn)k . . . kA(τ1)kdτ

≤kφk∞ · 1
n!

ÃZ
∆1(t)

kA(τ)kdτ
!n

≤kφk∞ · 1
n!

µZ
J

kA(τ)kdτ
¶n

.

Therefore,

kΛnkop ≤ 1

n!

µZ
J

kA(τ)kdτ
¶n

(6.13)

and ∞X
n=0

kΛnkop ≤ e
R
J
kA(τ)kdτ <∞
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where k·kop denotes the operator norm on L (BC(J,X)) . An application of

Proposition 4.20 now shows (I − Λ)−1 =
∞P
n=0

Λn exists and

°°(I − Λ)−1
°°
op
≤ e

R
J
kA(τ)kdτ .

It is now only a matter of working through the notation to see that these
assertions prove the theorem.

Corollary 6.6. Suppose that A ∈ L(X) is independent of time, then the so-
lution to

ẏ(t) = Ay(t) with y(0) = x

is given by y(t) = etAx where

etA =
∞X
n=0

tn

n!
An. (6.14)

Proof. This is a simple consequence of Eq. 6.12 and Lemma 6.3 with
ψ = 1.
We also have the following converse to this corollary whose proof is outlined

in Exercise 6.36 below.

Theorem 6.7. Suppose that Tt ∈ L(X) for t ≥ 0 satisfies
1. (Semi-group property.) T0 = IdX and TtTs = Tt+s for all s, t ≥ 0.
2. (Norm Continuity) t → Tt is continuous at 0, i.e. kTt − IkL(X) → 0 as

t ↓ 0.
Then there exists A ∈ L(X) such that Tt = etA where etA is defined in Eq.

(6.14).

6.3 Uniqueness Theorem and Continuous Dependence
on Initial Data

Lemma 6.8. Gronwall’s Lemma. Suppose that f, �, and k are non-negative
functions of a real variable t such that

f(t) ≤ �(t) +

¯̄̄̄Z t

0

k(τ)f(τ)dτ

¯̄̄̄
. (6.15)

Then

f(t) ≤ �(t) +

¯̄̄̄Z t

0

k(τ)�(τ)e|
R t
τ
k(s)ds|dτ

¯̄̄̄
, (6.16)

and in particular if � and k are constants we find that

f(t) ≤ �ek|t|. (6.17)
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Proof. I will only prove the case t ≥ 0. The case t ≤ 0 can be derived by
applying the t ≥ 0 to f̃(t) = f(−t), k̃(t) = k(−t) and �̃(t) = �(−t).
Set F (t) =

R t
0
k(τ)f(τ)dτ . Then by (6.15),

Ḟ = kf ≤ k�+ kF.

Hence,

d

dt
(e−

R t
0
k(s)dsF ) = e−

R t
0
k(s)ds(Ḟ − kF ) ≤ k�e−

R t
0
k(s)ds.

Integrating this last inequality from 0 to t and then solving for F yields:

F (t) ≤ e
R t
0
k(s)ds ·

Z t

0

dτk(τ)�(τ)e−
R τ
0
k(s)ds =

Z t

0

dτk(τ)�(τ)e
R t
τ
k(s)ds.

But by the definition of F we have that

f ≤ �+ F,

and hence the last two displayed equations imply (6.16). Equation (6.17) fol-
lows from (6.16) by a simple integration.

Corollary 6.9 (Continuous Dependence on Initial Data). Let U ⊂o X,
0 ∈ (a, b) and Z : (a, b) × U → X be a continuous function which is K—
Lipschitz function on U, i.e. kZ(t, x)−Z(t, x0)k ≤ Kkx− x0k for all x and x0
in U. Suppose y1, y2 : (a, b)→ U solve

dyi(t)

dt
= Z(t, yi(t)) with yi(0) = xi for i = 1, 2. (6.18)

Then
ky2(t)− y1(t)k ≤ kx2 − x1keK|t| for t ∈ (a, b) (6.19)

and in particular, there is at most one solution to Eq. (6.1) under the above
Lipschitz assumption on Z.

Proof. Let f(t) ≡ ky2(t) − y1(t)k. Then by the fundamental theorem of
calculus,

f(t) = ky2(0)− y1(0) +

Z t

0

(ẏ2(τ)− ẏ1(τ)) dτk

≤ f(0) +

¯̄̄̄Z t

0

kZ(τ, y2(τ))− Z(τ, y1(τ))k dτ
¯̄̄̄

= kx2 − x1k+K

¯̄̄̄Z t

0

f(τ) dτ

¯̄̄̄
.

Therefore by Gronwall’s inequality we have,

ky2(t)− y1(t)k = f(t) ≤ kx2 − x1keK|t|.
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6.4 Local Existence (Non-Linear ODE)

We now show that Eq. (6.1) under a Lipschitz condition on Z. Another exis-
tence theorem is given in Exercise 8.70.

Theorem 6.10 (Local Existence). Let T > 0, J = (−T, T ), x0 ∈ X, r > 0
and

C(x0, r) := {x ∈ X : kx− x0k ≤ r}
be the closed r — ball centered at x0 ∈ X. Assume

M = sup {kZ(t, x)k : (t, x) ∈ J × C(x0, r)} <∞ (6.20)

and there exists K <∞ such that

kZ(t, x)− Z(t, y)k ≤ K kx− yk for all x, y ∈ C(x0, r) and t ∈ J. (6.21)

Let T0 < min {r/M, T} and J0 := (−T0, T0), then for each x ∈ B(x0, r−MT0)
there exists a unique solution y(t) = y(t, x) to Eq. (6.2) in C (J0, C(x0, r)) .
Moreover y(t, x) is jointly continuous in (t, x), y(t, x) is differentiable in t,
ẏ(t, x) is jointly continuous for all (t, x) ∈ J0 × B(x0, r −MT0) and satisfies
Eq. (6.1).

Proof. The uniqueness assertion has already been proved in Corollary 6.9.
To prove existence, let Cr := C(x0, r), Y := C (J0, C(x0, r)) and

Sx(y)(t) := x+

Z t

0

Z(τ, y(τ))dτ. (6.22)

With this notation, Eq. (6.2) becomes y = Sx(y), i.e. we are looking for a
fixed point of Sx. If y ∈ Y, then

kSx(y)(t)− x0k ≤ kx− x0k+
¯̄̄̄Z t

0

kZ(τ, y(τ))k dτ
¯̄̄̄
≤ kx− x0k+M |t|

≤ kx− x0k+MT0 ≤ r −MT0 +MT0 = r,

showing Sx (Y ) ⊂ Y for all x ∈ B(x0, r −MT0). Moreover if y, z ∈ Y,

kSx(y)(t)− Sx(z)(t)k =
°°°°Z t

0

[Z(τ, y(τ))− Z(τ, z(τ))] dτ

°°°°
≤
¯̄̄̄Z t

0

kZ(τ, y(τ))− Z(τ, z(τ))k dτ
¯̄̄̄

≤ K

¯̄̄̄Z t

0

ky(τ)− z(τ)k dτ
¯̄̄̄
. (6.23)

Let y0(t, x) = x and yn(·, x) ∈ Y defined inductively by
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yn(·, x) := Sx(yn−1(·, x)) = x+

Z t

0

Z(τ, yn−1(τ, x))dτ. (6.24)

Using the estimate in Eq. (6.23) repeatedly we find

|| yn+1(t)− yn(t) ||

≤ K

¯̄̄̄Z t

0

kyn(τ)− yn−1(τ)k dτ
¯̄̄̄

≤ K2

¯̄̄̄Z t

0

dt1

¯̄̄̄Z t1

0

dt2 kyn−1(t2)− yn−2(t2)k
¯̄̄̄¯̄̄̄

...

≤ Kn

¯̄̄̄Z t

0

dt1

¯̄̄̄Z t1

0

dt2 . . .

¯̄̄̄Z tn−1

0

dtn ky1(tn)− y0(tn)k
¯̄̄̄
. . .

¯̄̄̄¯̄̄̄
≤ Kn ky1(·, x)− y0(·, x)k∞

Z
∆n(t)

dτ

=
Kn |t|n

n!
ky1(·, x)− y0(·, x)k∞ ≤ 2r

Kn |t|n
n!

(6.25)

wherein we have also made use of Lemma 6.3. Combining this estimate with

ky1(t, x)− y0(t, x)k =
°°°°Z t

0

Z(τ, x)dτ

°°°° ≤ ¯̄̄̄Z t

0

kZ(τ, x)k dτ
¯̄̄̄
≤M0,

where

M0 = T0max

(Z T0

0

kZ(τ, x)k dτ,
Z 0

−T0
kZ(τ, x)k dτ

)
≤MT0,

shows

kyn+1(t, x)− yn(t, x)k ≤M0
Kn |t|n

n!
≤M0

KnTn
0

n!

and this implies

∞X
n=0

sup{ kyn+1(·, x)− yn(·, x)k∞,J0
: t ∈ J0}

≤
∞X
n=0

M0
KnTn

0

n!
=M0e

KT0 <∞

where

kyn+1(·, x)− yn(·, x)k∞,J0
:= sup {kyn+1(t, x)− yn(t, x)k : t ∈ J0} .

So y(t, x) := limn→∞ yn(t, x) exists uniformly for t ∈ J and using Eq. (6.21)
we also have
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sup{ kZ(t, y(t))− Z(t, yn−1(t))k : t ∈ J0}
≤ K ky(·, x)− yn−1(·, x)k∞,J0

→ 0 as n→∞.

Now passing to the limit in Eq. (6.24) shows y solves Eq. (6.2). From this
equation it follows that y(t, x) is differentiable in t and y satisfies Eq. (6.1).
The continuity of y(t, x) follows from Corollary 6.9 and mean value in-

equality (Corollary 4.10):

ky(t, x)− y(t0, x0)k ≤ ky(t, x)− y(t, x0)k+ ky(t, x0)− y(t0, x0)k

= ky(t, x)− y(t, x0)k+
°°°°Z t

t0
Z(τ, y(τ, x0))dτ

°°°°
≤ ky(t, x)− y(t, x0)k+

¯̄̄̄Z t

t0
kZ(τ, y(τ, x0))k dτ

¯̄̄̄
≤ kx− x0keKT +

¯̄̄̄Z t

t0
kZ(τ, y(τ, x0))k dτ

¯̄̄̄
(6.26)

≤ kx− x0keKT +M |t− t0| .
The continuity of ẏ(t, x) is now a consequence Eq. (6.1) and the continuity

of y and Z.

Corollary 6.11. Let J = (a, b) 3 0 and suppose Z ∈ C(J ×X,X) satisfies

kZ(t, x)− Z(t, y)k ≤ K kx− yk for all x, y ∈ X and t ∈ J. (6.27)

Then for all x ∈ X, there is a unique solution y(t, x) (for t ∈ J) to Eq. (6.1).
Moreover y(t, x) and ẏ(t, x) are jointly continuous in (t, x).

Proof. Let J0 = (a0, b0) 3 0 be a precompact subinterval of J and Y :=
BC (J0,X) . By compactness, M := supt∈J̄0 kZ(t, 0)k < ∞ which combined
with Eq. (6.27) implies

sup
t∈J̄0

kZ(t, x)k ≤M +K kxk for all x ∈ X.

Using this estimate and Lemma 4.4 one easily shows Sx(Y ) ⊂ Y for all x ∈ X.
The proof of Theorem 6.10 now goes through without any further change.

6.5 Global Properties

Definition 6.12 (Local Lipschitz Functions). Let U ⊂o X, J be an open
interval and Z ∈ C(J×U,X). The function Z is said to be locally Lipschitz in
x if for all x ∈ U and all compact intervals I ⊂ J there exists K = K(x, I) <
∞ and � = �(x, I) > 0 such that B(x, �(x, I)) ⊂ U and

kZ(t, x1)− Z(t, x0)k ≤ K(x, I)kx1 − x0k ∀ x0, x1 ∈ B(x, �(x, I)) & t ∈ I.
(6.28)
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For the rest of this section, we will assume J is an open interval containing
0, U is an open subset ofX and Z ∈ C(J×U,X) is a locally Lipschitz function.
Lemma 6.13. Let Z ∈ C(J × U,X) be a locally Lipschitz function in X and
E be a compact subset of U and I be a compact subset of J. Then there exists
� > 0 such that Z(t, x) is bounded for (t, x) ∈ I × E� and and Z(t, x) is K —
Lipschitz on E� for all t ∈ I, where

E� := {x ∈ U : dist(x,E) < �} .
Proof. Let �(x, I) and K(x, I) be as in Definition 6.12 above. Since

E is compact, there exists a finite subset Λ ⊂ E such that E ⊂ V :=
∪x∈ΛB(x, �(x, I)/2). If y ∈ V, there exists x ∈ Λ such that ky − xk < �(x, I)/2
and therefore

kZ(t, y)k ≤ kZ(t, x)k+K(x, I) ky − xk ≤ kZ(t, x)k+K(x, I)�(x, I)/2

≤ sup
x∈Λ,t∈I

{kZ(t, x)k+K(x, I)�(x, I)/2} =:M <∞.

This shows Z is bounded on I × V.
Let

� := d(E, V c) ≤ 1
2
min
x∈Λ

�(x, I)

and notice that � > 0 since E is compact, V c is closed and E ∩ V c = ∅.
If y, z ∈ E� and ky − zk < �, then as before there exists x ∈ Λ such that
ky − xk < �(x, I)/2. Therefore

kz − xk ≤ kz − yk+ ky − xk < �+ �(x, I)/2 ≤ �(x, I)

and since y, z ∈ B(x, �(x, I)), it follows that

kZ(t, y)− Z(t, z)k ≤ K(x, I)ky − zk ≤ K0ky − zk
where K0 := maxx∈ΛK(x, I) < ∞. On the other hand if y, z ∈ E� and
ky − zk ≥ �, then

kZ(t, y)− Z(t, z)k ≤ 2M ≤ 2M
�
ky − zk .

Thus if we let K := max {2M/�,K0} , we have shown
kZ(t, y)− Z(t, z)k ≤ Kky − zk for all y, z ∈ E� and t ∈ I.

Proposition 6.14 (Maximal Solutions). Let Z ∈ C(J ×U,X) be a locally
Lipschitz function in x and let x ∈ U be fixed. Then there is an interval Jx =
(a(x), b(x)) with a ∈ [−∞, 0) and b ∈ (0,∞] and a C1—function y : J → U
with the following properties:
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1. y solves ODE in Eq. (6.1).
2. If ỹ : J̃ = (ã, b̃) → U is another solution of Eq. (6.1) (we assume that
0 ∈ J̃) then J̃ ⊂ J and ỹ = y| J̃ .
The function y : J → U is called the maximal solution to Eq. (6.1).

Proof. Suppose that yi : Ji = (ai, bi) → U, i = 1, 2, are two solutions to
Eq. (6.1). We will start by showing the y1 = y2 on J1 ∩ J2. To do this1 let
J0 = (a0, b0) be chosen so that 0 ∈ J0 ⊂ J1∩J2, and let E := y1(J0)∪y2(J0) —
a compact subset of X. Choose � > 0 as in Lemma 6.13 so that Z is Lipschitz
on E�. Then y1|J0 , y2|J0 : J0 → E� both solve Eq. (6.1) and therefore are
equal by Corollary 6.9. Since J0 = (a0, b0) was chosen arbitrarily so that
[a, b] ⊂ J1 ∩ J2, we may conclude that y1 = y2 on J1 ∩ J2.
Let (yα, Jα = (aα, bα))α∈A denote the possible solutions to (6.1) such that

0 ∈ Jα. Define Jx = ∪Jα and set y = yα on Jα. We have just checked that y
is well defined and the reader may easily check that this function y : Jx → U
satisfies all the conclusions of the theorem.

Notation 6.15 For each x ∈ U, let Jx = (a(x), b(x)) be the maximal interval
on which Eq. (6.1) may be solved, see Proposition 6.14. Set D(Z) ≡ ∪x∈U (Jx×
{x}) ⊂ J × U and let φ : D(Z) → U be defined by φ(t, x) = y(t) where y is
the maximal solution to Eq. (6.1). (So for each x ∈ U, φ(·, x) is the maximal
solution to Eq. (6.1).)

Proposition 6.16. Let Z ∈ C(J × U,X) be a locally Lipschitz function in x
and y : Jx = (a(x), b(x))→ U be the maximal solution to Eq. (6.1). If b(x) <
b, then either lim supt↑b(x) kZ(t, y(t))k =∞ or y(b(x)−) ≡ limt↑b(x) y(t) exists
and y(b(x)−) /∈ U. Similarly, if a > a(x), then either lim supt↓a(x) ky(t)k =∞
or y(a(x)+) ≡ limt↓a y(t) exists and y(a(x)+) /∈ U.

Proof. Suppose that b < b(x) and M ≡ lim supt↑b(x) kZ(t, y(t))k < ∞.
Then there is a b0 ∈ (0, b(x)) such that kZ(t, y(t))k ≤ 2M for all t ∈ (b0, b(x)).
Thus, by the usual fundamental theorem of calculus argument,

ky(t)− y(t0)k ≤
¯̄̄̄
¯
Z t0

t

kZ(t, y(τ))k dτ
¯̄̄̄
¯ ≤ 2M |t− t0|

1 Here is an alternate proof of the uniqueness. Let

T ≡ sup{t ∈ [0,min{b1, b2}) : y1 = y2 on [0, t]}.
(T is the first positive time after which y1 and y2 disagree.
Suppose, for sake of contradiction, that T < min{b1, b2}. Notice that y1(T ) =

y2(T ) =: x
0. Applying the local uniqueness theorem to y1(· − T ) and y2(· − T )

thought as function from (−δ, δ) → B(x0, �(x0)) for some δ sufficiently small, we
learn that y1(·−T ) = y2(·−T ) on (−δ, δ). But this shows that y1 = y2 on [0, T+δ)
which contradicts the definition of T. Hence we must have the T = min{b1, b2},
i.e. y1 = y2 on J1 ∩ J2 ∩ [0,∞). A similar argument shows that y1 = y2 on
J1 ∩ J2 ∩ (−∞, 0] as well.
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for all t, t0 ∈ (b0, b(x)). From this it is easy to conclude that y(b(x)−) =
limt↑b(x) y(t) exists. If y(b(x)−) ∈ U, by the local existence Theorem 6.10,
there exists δ > 0 and w ∈ C1 ((b(x)− δ, b(x) + δ), U) such that

ẇ(t) = Z(t, w(t)) and w(b(x)) = y(b(x)−).
Now define ỹ : (a, b(x) + δ)→ U by

ỹ(t) =

½
y(t) if t ∈ Jx
w(t) if t ∈ [b(x), b(x) + δ)

.

The reader may now easily show ỹ solves the integral Eq. (6.2) and hence also
solves Eq. 6.1 for t ∈ (a(x), b(x) + δ).2 But this violates the maximality of y
and hence we must have that y(b(x)−) /∈ U. The assertions for t near a(x) are
proved similarly.

Example 6.17. Let X = R2, J = R, U =
©
(x, y) ∈ R2 : 0 < r < 1

ª
where

r2 = x2 + y2 and

Z(x, y) =
1

r
(x, y) +

1

1− r2
(−y, x).

The the unique solution (x(t), y(t)) to

d

dt
(x(t), y(t)) = Z(x(t), y(t)) with (x(0), y(0)) = (

1

2
, 0)

is given by

(x(t), y(t)) =

µ
t+

1

2

¶µ
cos

µ
1

1/2− t

¶
, sin

µ
1

1/2− t

¶¶
for t ∈ J(1/2,0) = (−∞, 1/2) . Notice that kZ(x(t), y(t))k→∞ as t ↑ 1/2 and
dist((x(t), y(t)), U c)→ 0 as t ↑ 1/2.
Example 6.18. (Not worked out completely.) Let X = U = c2, ψ ∈ C∞(R2)
be a smooth function such that ψ = 1 in a neighborhood of the line segment
joining (1, 0) to (0, 1) and being supported within the 1/10 — neighborhood of
this segment. Choose an ↑ ∞ and bn ↑ ∞ and define

Z(x) =
∞X
n=1

anψ(bn(xn, xn+1))(en+1 − en). (6.29)

For any x ∈ c2, only a finite number of terms are non-zero in the above some
in a neighborhood of x. Therefor Z : c2 → c2 is a smooth and hence locally
Lipshcitz vector field. Let (y(t), J = (a, b)) denote the maximal solution to

2 See the argument in Proposition 6.19 for a slightly different method of extending
y which avoids the use of the integral equation (6.2).
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ẏ(t) = Z(y(t)) with y(0) = e1.

Then if the an and bn are chosen appropriately, then b < ∞ and there will
exist tn ↑ b such that y(tn) is approximately en for all n. So again y(tn) does
not have a limit yet supt∈[0,b) ky(t)k < ∞. The idea is that Z is constructed
to blow the particle form e1 to e2 to e3 to e4 etc. etc. with the time it takes to
travel from en to en+1 being on order 1/2n. The vector field in Eq. (6.29) is a
first approximation at such a vector field, it may have to be adjusted a little
more to provide an honest example. In this example, we are having problems
because y(t) is “going off in dimensions.”

Here is another version of Proposition 6.16 which is more useful when
dim(X) <∞.

Proposition 6.19. Let Z ∈ C(J × U,X) be a locally Lipschitz function in x
and y : Jx = (a(x), b(x))→ U be the maximal solution to Eq. (6.1).

1. If b(x) < b, then for every compact subset K ⊂ U there exists TK < b(x)
such that y(t) /∈ K for all t ∈ [TK , b(x)).

2. When dim(X) < ∞, we may write this condition as: if b(x) < b, then
either

lim sup
t↑b(x)

ky(t)k =∞ or lim inf
t↑b(x)

dist(y(t), U c) = 0.

Proof. 1) Suppose that b(x) < b and, for sake of contradiction, there
exists a compact set K ⊂ U and tn ↑ b(x) such that y(tn) ∈ K for all n.
Since K is compact, by passing to a subsequence if necessary, we may assume
y∞ := limn→∞ y(tn) exists in K ⊂ U. By the local existence Theorem 6.10,
there exists T0 > 0 and δ > 0 such that for each x0 ∈ B (y∞, δ) there exists a
unique solution w(·, x0) ∈ C1((−T0, T0), U) solving

w(t, x0) = Z(t, w(t, x0)) and w(0, x0) = x0.

Now choose n sufficiently large so that tn ∈ (b(x)− T0/2, b(x)) and y(tn) ∈
B (y∞, δ) . Define ỹ : (a(x), b(x) + T0/2)→ U by

ỹ(t) =

½
y(t) if t ∈ Jx
w(t− tn, y(tn)) if t ∈ (tn − T0, b(x) + T0/2).

wherein we have used (tn−T0, b(x)+T0/2) ⊂ (tn−T0, tn+T0). By uniqueness
of solutions to ODE’s ỹ is well defined, ỹ ∈ C1((a(x), b(x) + T0/2) ,X) and ỹ
solves the ODE in Eq. 6.1. But this violates the maximality of y.
2) For each n ∈ N let

Kn := {x ∈ U : kxk ≤ n and dist(x,Uc) ≥ 1/n} .
Then Kn ↑ U and each Kn is a closed bounded set and hence compact if
dim(X) < ∞. Therefore if b(x) < b, by item 1., there exists Tn ∈ [0, b(x))
such that y(t) /∈ Kn for all t ∈ [Tn, b(x)) or equivalently ky(t)k > n or
dist(y(t), U c) < 1/n for all t ∈ [Tn, b(x)).
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Remark 6.20. In general it is not true that the functions a and b are continu-
ous. For example, let U be the region in R2 described in polar coordinates by
r > 0 and 0 < θ < 3π/4 and Z(x, y) = (0,−1) as in Figure 6.2 below. Then
b(x, y) = y for all x, y > 0 while b(x, y) = ∞ for all x < 0 and y ∈ R which
shows b is discontinuous. On the other hand notice that

{b > t} = {x < 0} ∪ {(x, y) : x ≥ 0, y > t}
is an open set for all t > 0. An example of a vector field for which b(x) is
discontinuous is given in the top left hand corner of Figure 6.2. The map ψ
would allow the reader to find an example on R2 if so desired. Some calcu-
lations shows that Z transferred to R2 by the map ψ is given by the new
vector

Z̃(x, y) = −e−x
µ
sin

µ
3π

8
+
3

4
tan−1 (y)

¶
, cos

µ
3π

8
+
3

4
tan−1 (y)

¶¶
.

Fig. 6.2. Manufacturing vector fields where b(x) is discontinuous.

Theorem 6.21 (Global Continuity). Let Z ∈ C(J × U,X) be a locally
Lipschitz function in x. Then D(Z) is an open subset of J ×U and the func-
tions φ : D(Z) → U and φ̇ : D(Z) → U are continuous. More precisely, for
all x0 ∈ U and all open intervals J0 such that 0 ∈ J0 @@ Jx0 there exists
δ = δ(x0, J0, Z) > 0 and C = C(x0, J0, Z) <∞ such that for all x ∈ B(x0, δ),
J0 ⊂ Jx and

kφ(·, x)− φ(·, x0)kBC(J0,U) ≤ C kx− x0k . (6.30)
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Proof. Let |J0| = b0−a0, I = J̄0 and E := y(J̄0) — a compact subset of U
and let � > 0 and K <∞ be given as in Lemma 6.13, i.e. K is the Lipschitz
constant for Z on E�. Also recall the notation: ∆1(t) = [0, t] if t > 0 and
∆1(t) = [t, 0] if t < 0.
Suppose that x ∈ E�, then by Corollary 6.9,

kφ(t, x)− φ(t, x0)k ≤ kx− x0keK|t| ≤ kx− x0keK|J0| (6.31)

for all t ∈ J0 ∩ Jx such that such that φ (∆1(t), x) ⊂ E�. Letting δ :=
�e−K|J0|/2, and assuming x ∈ B(x0, δ), the previous equation implies

kφ(t, x)− φ(t, x0)k ≤ �/2 < � ∀ t ∈ J0 ∩ Jx 3 φ (∆1(t), x) ⊂ E�.

This estimate further shows that φ(t, x) remains bounded and strictly away
from the boundary of U for all such t. Therefore, it follows from Proposition
6.14 and “continuous induction3” that J0 ⊂ Jx and Eq. (6.31) is valid for all
t ∈ J0. This proves Eq. (6.30) with C := eK|J0|.
Suppose that (t0, x0) ∈ D(Z) and let 0 ∈ J0 @@ Jx0 such that t0 ∈ J0 and

δ be as above. Then we have just shown J0 × B(x0, δ) ⊂ D(Z) which proves
D(Z) is open. Furthermore, since the evaluation map

(t0, y) ∈ J0 ×BC(J0, U)
e→ y(t0) ∈ X

is continuous (as the reader should check) it follows that φ = e◦(x→ φ(·, x)) :
J0 × B(x0, δ) → U is also continuous; being the composition of continuous
maps. The continuity of φ̇(t0, x) is a consequences of the continuity of φ and
the differential equation 6.1
Alternatively using Eq. (6.2),

kφ(t0, x)− φ(t, x0)k ≤ kφ(t0, x)− φ(t0, x0)k+ kφ(t0, x0)− φ(t, x0)k

≤ C kx− x0k+
¯̄̄̄Z t0

t

kZ(τ, φ(τ, x0))k dτ
¯̄̄̄

≤ C kx− x0k+M |t0 − t|

where C is the constant in Eq. (6.30) andM = supτ∈J0 kZ(τ, φ(τ, x0))k <∞.
This clearly shows φ is continuous.

6.6 Semi-Group Properties of time independent flows

To end this chapter we investigate the semi-group property of the flow asso-
ciated to the vector-field Z. It will be convenient to introduce the following
suggestive notation. For (t, x) ∈ D(Z), set etZ(x) = φ(t, x). So the path
t→ etZ(x) is the maximal solution to

3 See the argument in the proof of Proposition 4.7.
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d

dt
etZ(x) = Z(etZ(x)) with e0Z(x) = x.

This exponential notation will be justified shortly. It is convenient to have the
following conventions.

Notation 6.22 We write f : X → X to mean a function defined on some
open subset D(f) ⊂ X. The open set D(f) will be called the domain of f.
Given two functions f : X → X and g : X → X with domains D(f) and
D(g) respectively, we define the composite function f ◦ g : X → X to be the
function with domain

D(f ◦ g) = {x ∈ X : x ∈ D(g) and g(x) ∈ D(f)} = g−1(D(f))

given by the rule f ◦ g(x) = f(g(x)) for all x ∈ D(f ◦ g). We now write f = g
iff D(f) = D(g) and f(x) = g(x) for all x ∈ D(f) = D(g). We will also write
f ⊂ g iff D(f) ⊂ D(g) and g|D(f) = f.

Theorem 6.23. For fixed t ∈ R we consider etZ as a function from X to X
with domain D(etZ) = {x ∈ U : (t, x) ∈ D(Z)}, where D(φ) = D(Z) ⊂ R×U,
D(Z) and φ are defined in Notation 6.15. Conclusions:
1. If t, s ∈ R and t · s ≥ 0, then etZ ◦ esZ = e(t+s)Z .
2. If t ∈ R, then etZ ◦ e−tZ = IdD(e−tZ).

3. For arbitrary t, s ∈ R, etZ ◦ esZ ⊂ e(t+s)Z .

Proof. Item 1. For simplicity assume that t, s ≥ 0. The case t, s ≤ 0 is left
to the reader. Suppose that x ∈ D(etZ ◦esZ). Then by assumption x ∈ D(esZ)
and esZ(x) ∈ D(etZ). Define the path y(τ) via:

y(τ) =

½
eτZ(x) if 0 ≤ τ ≤ s
e(τ−s)Z(x) if s ≤ τ ≤ t+ s

.

It is easy to check that y solves ẏ(τ) = Z(y(τ)) with y(0) = x. But since,
eτZ(x) is the maximal solution we must have that x ∈ D(e(t+s)Z) and y(t+
s) = e(t+s)Z(x). That is e(t+s)Z(x) = etZ ◦ esZ(x). Hence we have shown that
etZ ◦ esZ ⊂ e(t+s)Z .
To finish the proof of item 1. it suffices to show that D(e(t+s)Z) ⊂ D(etZ ◦

esZ). Take x ∈ D(e(t+s)Z), then clearly x ∈ D(esZ). Set y(τ) = e(τ+s)Z(x)
defined for 0 ≤ τ ≤ t. Then y solves

ẏ(τ) = Z(y(τ)) with y(0) = esZ(x).

But since τ → eτZ(esZ(x)) is the maximal solution to the above initial valued
problem we must have that y(τ) = eτZ(esZ(x)), and in particular at τ =
t, e(t+s)Z(x) = etZ(esZ(x)). This shows that x ∈ D(etZ ◦ esZ) and in fact
e(t+s)Z ⊂ etZ ◦ esZ .
Item 2. Let x ∈ D(e−tZ) — again assume for simplicity that t ≥ 0. Set

y(τ) = e(τ−t)Z(x) defined for 0 ≤ τ ≤ t. Notice that y(0) = e−tZ(x) and
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ẏ(τ) = Z(y(τ)). This shows that y(τ) = eτZ(e−tZ(x)) and in particular that
x ∈ D(etZ ◦ e−tZ) and etZ ◦ e−tZ(x) = x. This proves item 2.
Item 3. I will only consider the case that s < 0 and t + s ≥ 0, the other

cases are handled similarly. Write u for t + s, so that t = −s + u. We know
that etZ = euZ ◦ e−sZ by item 1. Therefore

etZ ◦ esZ = (euZ ◦ e−sZ) ◦ esZ .
Notice in general, one has (f ◦ g) ◦ h = f ◦ (g ◦ h) (you prove). Hence, the
above displayed equation and item 2. imply that

etZ ◦ esZ = euZ ◦ (e−sZ ◦ esZ) = e(t+s)Z ◦ ID(esZ) ⊂ e(t+s)Z .

The following result is trivial but conceptually illuminating partial con-
verse to Theorem 6.23.

Proposition 6.24 (Flows and Complete Vector Fields). Suppose U ⊂o
X, φ ∈ C(R× U,U) and φt(x) = φ(t, x). Suppose φ satisfies:

1. φ0 = IU ,
2. φt ◦ φs = φt+s for all t, s ∈ R, and
3. Z(x) := φ̇(0, x) exists for all x ∈ U and Z ∈ C(U,X) is locally Lipschitz.

Then φt = etZ .

Proof. Let x ∈ U and y(t) ≡ φt(x). Then using Item 2.,

ẏ(t) =
d

ds
|0y(t+ s) =

d

ds
|0φ(t+s)(x) = d

ds
|0φs ◦ φt(x) = Z(y(t)).

Since y(0) = x by Item 1. and Z is locally Lipschitz by Item 3., we know by
uniqueness of solutions to ODE’s (Corollary 6.9) that φt(x) = y(t) = etZ(x).

6.7 Exercises

Exercise 6.25. Find a vector field Z such that e(t+s)Z is not contained in
etZ ◦ esZ .
Definition 6.26. A locally Lipschitz function Z : U ⊂o X → X is said to be
a complete vector field if D(Z) = R×U. That is for any x ∈ U, t→ etZ(x) is
defined for all t ∈ R.
Exercise 6.27. Suppose that Z : X → X is a locally Lipschitz function.
Assume there is a constant C > 0 such that

kZ(x)k ≤ C(1 + kxk) for all x ∈ X.

Then Z is complete. Hint: use Gronwall’s Lemma 6.8 and Proposition 6.16.
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Exercise 6.28. Suppose y is a solution to ẏ(t) = |y(t)|1/2 with y(0) = 0.
Show there exists a, b ∈ [0,∞] such that

y(t) =


1
4(t− b)2 if t ≥ b

0 if −a < t < b
−14(t+ a)2 if t ≤ −a.

Exercise 6.29. Using the fact that the solutions to Eq. (6.3) are never 0 if
x 6= 0, show that y(t) = 0 is the only solution to Eq. (6.3) with y(0) = 0.

Exercise 6.30. Suppose that A ∈ L(X). Show directly that:

1. etA define in Eq. (6.14) is convergent in L(X) when equipped with the
operator norm.

2. etA is differentiable in t and that d
dte

tA = AetA.

Exercise 6.31. Suppose that A ∈ L(X) and v ∈ X is an eigenvector of A
with eigenvalue λ, i.e. that Av = λv. Show etAv = etλv. Also show that
X = Rn and A is a diagonalizable n× n matrix with

A = SDS−1 with D = diag(λ1, . . . , λn)

then etA = SetDS−1 where etD = diag(etλ1 , . . . , etλn).

Exercise 6.32. Suppose that A,B ∈ L(X) and [A,B] ≡ AB−BA = 0. Show
that e(A+B) = eAeB.

Exercise 6.33. Suppose A ∈ C(R, L(X)) satisfies [A(t), A(s)] = 0 for all
s, t ∈ R. Show

y(t) := e(
R t
0
A(τ)dτ)x

is the unique solution to ẏ(t) = A(t)y(t) with y(0) = x.

Exercise 6.34. Compute etA when

A =

µ
0 1
−1 0

¶
and use the result to prove the formula

cos(s+ t) = cos s cos t− sin s sin t.
Hint: Sum the series and use etAesA = e(t+s)A.

Exercise 6.35. Compute etA when

A =

0 a b
0 0 c
0 0 0


with a, b, c ∈ R. Use your result to compute et(λI+A) where λ ∈ R and I is
the 3× 3 identity matrix. Hint: Sum the series.
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Exercise 6.36. Prove Theorem 6.7 using the following outline.

1. First show t ∈ [0,∞)→ Tt ∈ L(X) is continuos.
2. For � > 0, let S� := 1

�

R �
0
Tτdτ ∈ L(X). Show S� → I as � ↓ 0 and conclude

from this that S� is invertible when � > 0 is sufficiently small. For the
remainder of the proof fix such a small � > 0.

3. Show

TtS� =
1

�

Z t+�

t

Tτdτ

and conclude from this that

lim
t↓0

t−1 (Tt − I)S� =
1

�
(T� − IdX) .

4. Using the fact that S� is invertible, conclude A = limt↓0 t−1 (Tt − I) exists
in L(X) and that

A =
1

�
(T� − I)S−1� .

5. Now show using the semigroup property and step 4. that d
dtTt = ATt for

all t > 0.
6. Using step 5, show d

dte
−tATt = 0 for all t > 0 and therefore e−tATt =

e−0AT0 = I.

Exercise 6.37 (Higher Order ODE). LetX be a Banach space, , U ⊂o Xn

and f ∈ C (J × U ,X) be a Locally Lipschitz function in x = (x1, . . . , xn).
Show the nth ordinary differential equation,

y(n)(t) = f(t, y(t), ẏ(t), . . . y(n−1)(t)) with y(k)(0) = yk0 for k < n (6.32)

where (y00, . . . , y
n−1
0 ) is given in U , has a unique solution for small t ∈ J.Hint:

let y(t) =
¡
y(t), ẏ(t), . . . y(n−1)(t)

¢
and rewrite Eq. (6.32) as a first order ODE

of the form
ẏ(t) = Z(t,y(t)) with y(0) = (y00 , . . . , y

n−1
0 ).

Exercise 6.38. Use the results of Exercises 6.35 and 6.37 to solve

ÿ(t)− 2ẏ(t) + y(t) = 0 with y(0) = a and ẏ(0) = b.

Hint: The 2× 2 matrix associated to this system, A, has only one eigenvalue
1 and may be written as A = I +B where B2 = 0.

Exercise 6.39. Suppose that A : R → L(X) is a continuous function and
U, V : R→ L(X) are the unique solution to the linear differential equations

V̇ (t) = A(t)V (t) with V (0) = I

and
U̇(t) = −U(t)A(t) with U(0) = I. (6.33)
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Prove that V (t) is invertible and that V −1(t) = U(t). Hint: 1) show
d
dt [U(t)V (t)] = 0 (which is sufficient if dim(X) < ∞) and 2) show com-
pute y(t) := V (t)U(t) solves a linear differential ordinary differential equation
that has y ≡ 0 as an obvious solution. Then use the uniqueness of solutions
to ODEs. (The fact that U(t) must be defined as in Eq. (6.33) is the content
of Exercise 19.32 below.)

Exercise 6.40 (Duhamel’ s Principle I). Suppose that A : R → L(X) is
a continuous function and V : R→ L(X) is the unique solution to the linear
differential equation in Eq. (19.36). Let x ∈ X and h ∈ C(R,X) be given.
Show that the unique solution to the differential equation:

ẏ(t) = A(t)y(t) + h(t) with y(0) = x (6.34)

is given by

y(t) = V (t)x+ V (t)

Z t

0

V (τ)−1h(τ) dτ. (6.35)

Hint: compute d
dt [V

−1(t)y(t)] when y solves Eq. (6.34).

Exercise 6.41 (Duhamel’ s Principle II). Suppose that A : R→ L(X) is
a continuous function and V : R→ L(X) is the unique solution to the linear
differential equation in Eq. (19.36). Let W0 ∈ L(X) and H ∈ C(R, L(X)) be
given. Show that the unique solution to the differential equation:

Ẇ (t) = A(t)W (t) +H(t) with W (0) =W0 (6.36)

is given by

W (t) = V (t)W0 + V (t)

Z t

0

V (τ)−1H(τ) dτ. (6.37)

Exercise 6.42 (Non-Homogeneous ODE). Suppose that U ⊂o X is open
and Z : R×U → X is a continuous function. Let J = (a, b) be an interval and
t0 ∈ J. Suppose that y ∈ C1(J,U) is a solution to the “non-homogeneous”
differential equation:

ẏ(t) = Z(t, y(t)) with y(to) = x ∈ U. (6.38)

Define Y ∈ C1(J − t0,R×U) by Y (t) ≡ (t+ t0, y(t+ t0)). Show that Y solves
the “homogeneous” differential equation

Ẏ (t) = Z̃(Y (t)) with Y (0) = (t0, y0), (6.39)

where Z̃(t, x) ≡ (1, Z(x)). Conversely, suppose that Y ∈ C1(J−t0,R×U) is a
solution to Eq. (6.39). Show that Y (t) = (t+t0, y(t+t0)) for some y ∈ C1(J, U)
satisfying Eq. (6.38). (In this way the theory of non-homogeneous ode’s may
be reduced to the theory of homogeneous ode’s.)



6.7 Exercises 127

Exercise 6.43 (Differential Equations with Parameters). LetW be an-
other Banach space, U × V ⊂o X ×W and Z ∈ C(U × V,X) be a locally
Lipschitz function on U ×V. For each (x,w) ∈ U×V, let t ∈ Jx,w → φ(t, x, w)
denote the maximal solution to the ODE

ẏ(t) = Z(y(t), w) with y(0) = x. (6.40)

Prove
D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w} (6.41)

is open in R× U × V and φ and φ̇ are continuous functions on D.
Hint: If y(t) solves the differential equation in (6.40), then v(t) ≡ (y(t), w)

solves the differential equation,

v̇(t) = Z̃(v(t)) with v(0) = (x,w), (6.42)

where Z̃(x,w) ≡ (Z(x,w), 0) ∈ X×W and let ψ(t, (x,w)) := v(t). Now apply
the Theorem 6.21 to the differential equation (6.42).

Exercise 6.44 (Abstract Wave Equation). For A ∈ L(X) and t ∈ R, let

cos(tA) :=
∞X
n=0

(−1)n
(2n)!

t2nA2n and

sin(tA)

A
:=

∞X
n=0

(−1)n
(2n+ 1)!

t2n+1A2n.

Show that the unique solution y ∈ C2 (R,X) to

ÿ(t) +A2y(t) = 0 with y(0) = y0 and ẏ(0) = ẏ0 ∈ X (6.43)

is given by

y(t) = cos(tA)y0 +
sin(tA)

A
ẏ0.

Remark 6.45. Exercise 6.44 can be done by direct verification. Alternatively
and more instructively, rewrite Eq. (6.43) as a first order ODE using Exercise
6.37. In doing so you will be lead to compute etB where B ∈ L(X × X) is
given by

B =

µ
0 I
−A2 0

¶
,

where we are writing elements ofX×X as column vectors,
µ
x1
x2

¶
. You should

then show

etB =

µ
cos(tA) sin(tA)

A−A sin(tA) cos(tA)
¶

where

A sin(tA) :=
∞X
n=0

(−1)n
(2n+ 1)!

t2n+1A2(n+1).
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Exercise 6.46 (Duhamel’s Principle for the Abstract Wave Equa-
tion). Continue the notation in Exercise 6.44, but now consider the ODE,

ÿ(t) +A2y(t) = f(t) with y(0) = y0 and ẏ(0) = ẏ0 ∈ X (6.44)

where f ∈ C(R,X). Show the unique solution to Eq. (6.44) is given by

y(t) = cos(tA)y0 +
sin(tA)

A
ẏ0 +

Z t

0

sin((t− τ)A)

A
f(τ)dτ (6.45)

Hint: Again this could be proved by direct calculation. However it is more
instructive to deduce Eq. (6.45) from Exercise 6.40 and the comments in
Remark 6.45.
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Algebras, σ — Algebras and Measurability

7.1 Introduction: What are measures and why
“measurable” sets

Definition 7.1 (Preliminary). Suppose that X is a set and P(X) denotes
the collection of all subsets of X. A measure µ on X is a function µ : P(X)→
[0,∞] such that
1. µ(∅) = 0
2. If {Ai}Ni=1 is a finite (N <∞) or countable (N =∞) collection of subsets
of X which are pair-wise disjoint (i.e. Ai ∩Aj = ∅ if i 6= j) then

µ(∪Ni=1Ai) =
NX
i=1

µ(Ai).

Example 7.2. Suppose that X is any set and x ∈ X is a point. For A ⊂ X, let

δx(A) =

½
1 if x ∈ A
0 otherwise.

Then µ = δx is a measure on X called the Dirac delta function at x.

Example 7.3. Suppose that µ is a measure on X and λ > 0, then λ · µ is
also a measure on X. Moreover, if {µα}α∈J are all measures on X, then
µ =

P
α∈J µα, i.e.

µ(A) =
X
α∈J

µα(A) for all A ⊂ X

is a measure on X. (See Section 1 for the meaning of this sum.) To prove
this we must show that µ is countably additive. Suppose that {Ai}∞i=1 is a
collection of pair-wise disjoint subsets of X, then
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µ(∪∞i=1Ai) =
∞X
i=1

µ(Ai) =
∞X
i=1

X
α∈J

µα(Ai)

=
X
α∈J

∞X
i=1

µα(Ai) =
X
α∈J

µα(∪∞i=1Ai)

= µ(∪∞i=1Ai)

wherein the third equality we used Theorem 1.21 and in the fourth we used
that fact that µα is a measure.

Example 7.4. Suppose that X is a set λ : X → [0,∞] is a function. Then

µ :=
X
x∈X

λ(x)δx

is a measure, explicitly
µ(A) =

X
x∈A

λ(x)

for all A ⊂ X.

7.2 The problem with Lebesgue “measure”

Question 7.5. Does there exist a measure µ : P(R)→[0,∞] such that
1. µ([a, b)) = (b− a) for all a < b and
2. (Translation invariant) µ(A + x) = µ(A) for all x ∈ R? (Here A + x :=
{y + x : y ∈ A} ⊂ R.)

The answer is no which we now demonstrate. In fact the answer is no even if
we replace (1) by the condition that 0 < µ((0, 1]) <∞.

Let us identify [0, 1) with the unit circle S1 := {z ∈ C : |z| = 1} by the
map φ(t) = ei2πt ∈ S1 for t ∈ [0, 1). Using this identification we may use µ to
define a function ν on P(S1) by ν(φ(A)) = µ(A) for all A ⊂ [0, 1). This new
function is a measure on S1 with the property that 0 < ν((0, 1]) < ∞. For
z ∈ S1 and N ⊂ S1 let

zN := {zn ∈ S1 : n ∈ N}, (7.1)

that is to say eiθN is N rotated counter clockwise by angle θ. We now claim
that ν is invariant under these rotations, i.e.

ν(zN) = ν(N) (7.2)

for all z ∈ S1 and N ⊂ S1. To verify this, write N = φ(A) and z = φ(t) for
some t ∈ [0, 1) and A ⊂ [0, 1). Then
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φ(t)φ(A) = φ(t+Amod1)

where for A ⊂ [0, 1) and α ∈ [0, 1), let
t+Amod1 = {a+ tmod1 ∈ [0, 1) : a ∈ N}

= (a+A ∩ {a < 1− t}) ∪ ((t− 1) +A ∩ {a ≥ 1− t}) .
Thus

ν(φ(t)φ(A)) = µ(t+Amod1)

= µ ((a+A ∩ {a < 1− t}) ∪ ((t− 1) +A ∩ {a ≥ 1− t}))
= µ ((a+A ∩ {a < 1− t})) + µ (((t− 1) +A ∩ {a ≥ 1− t}))
= µ (A ∩ {a < 1− t}) + µ (A ∩ {a ≥ 1− t})
= µ ((A ∩ {a < 1− t}) ∪ (A ∩ {a ≥ 1− t}))
= µ(A) = ν(φ(A)).

Therefore it suffices to prove that no finite measure ν on S1 such that Eq.
(7.2) holds. To do this we will “construct” a non-measurable set N = φ(A)
for some A ⊂ [0, 1).
To do this let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q},
a countable subgroup of S1. As above R acts on S1 by rotations and divides
S1 up into equivalence classes, where z, w ∈ S1 are equivalent if z = rw for
some r ∈ R. Choose (using the axiom of choice) one representative point n
from each of these equivalence classes and let N ⊂ S1 be the set of these
representative points. Then every point z ∈ S1 may be uniquely written as
z = nr with n ∈ N and r ∈ R. That is to say

S1 =
a
r∈R

(rN) (7.3)

where
`

αAα is used to denote the union of pair-wise disjoint sets {Aα} . By
Eqs. (7.2) and (7.3),

ν(S1) =
X
r∈R

ν(rN) =
X
r∈R

ν(N).

The right member from this equation is either 0 or∞, 0 if ν(N) = 0 and∞ if
ν(N) > 0. In either case it is not equal ν(S1) ∈ (0, 1). Thus we have reached
the desired contradiction.
Proof. (Second proof of Answer to Question 7.5) For N ⊂ [0, 1) and

α ∈ [0, 1), let
Nα = N + αmod1

= {a+ αmod1 ∈ [0, 1) : a ∈ N}
= (α+N ∩ {a < 1− α}) ∪ ((α− 1) +N ∩ {a ≥ 1− α}) .
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If µ is a measure satisfying the properties of the Question we would have

µ (Nα) = µ (α+N ∩ {a < 1− α}) + µ ((α− 1) +N ∩ {a ≥ 1− α})
= µ (N ∩ {a < 1− α}) + µ (N ∩ {a ≥ 1− α})
= µ (N ∩ {a < 1− α} ∪ (N ∩ {a ≥ 1− α}))
= µ(N). (7.4)

We will now construct a bad set N which coupled with Eq. (7.4) will lead to
a contradiction.
Set

Qx ≡ {x+ r ∈ R : r∈ Q} =x+Q.
Notice that Qx ∩Qy 6= ∅ implies that Qx = Qy. Let O = {Qx : x ∈ R} — the
orbit space of the Q action. For all A ∈ O choose f(A) ∈ [0, 1/3)∩A.1 Define
N = f(O). Then observe:
1. f(A) = f(B) implies that A ∩B 6= ∅ which implies that A = B so that f
is injective.

2. O = {Qn : n ∈ N}.
Let R be the countable set,

R ≡ Q ∩ [0, 1).
We now claim that

Nr ∩Ns = ∅ if r 6= s and (7.5)

[0, 1) = ∪r∈RNr. (7.6)

Indeed, if x ∈ Nr ∩ Ns 6= ∅ then x = r + nmod1 and x = s + n0mod1,
then n− n0 ∈ Q, i.e. Qn = Qn0 . That is to say, n = f(Qn) = f(Qn0) = n0 and
hence that s = rmod1, but s, r ∈ [0, 1) implies that s = r. Furthermore, if
x ∈ [0, 1) and n := f(Qx), then x− n = r ∈ Q and x ∈ Nrmod 1.
Now that we have constructed N, we are ready for the contradiction. By

Equations (7.4—7.6) we find

1 = µ([0, 1)) =
X
r∈R

µ(Nr) =
X
r∈R

µ(N)

=

½∞ if µ(N) > 0
0 if µ(N) = 0

.

which is certainly inconsistent. Incidentally we have just produced an example
of so called “non — measurable” set.
Because of this example and our desire to have a measure µ on R satisfying

the properties in Question 7.5, we need to modify our definition of a measure.

1 We have used the Axiom of choice here, i.e.
Q

A∈F (A ∩ [0, 1/3]) 6= ∅
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We will give up on trying to measure all subsets A ⊂ R, i.e. we will only try
to define µ on a smaller collection of “measurable” sets. Such collections will
be called σ — algebras which we now introduce. The formal definition of a
measure appears in Definition 8.1 of Section 8 below.

7.3 Algebras and σ — algebras

Definition 7.6. A collection of subsets A of X is an Algebra if

1. ∅,X ∈ A
2. A ∈ A implies that Ac ∈ A
3. A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪ · · ·∪An ∈
A.
In view of conditions 1. and 2., 3. is equivalent to

30. A is closed under finite intersections.

Definition 7.7. A collection of subsetsM of X is a σ — algebra (σ — field) if
M is an algebra which also closed under countable unions, i.e. if {Ai}∞i=1 ⊂
M, then ∪∞i=1Ai ∈ M. (Notice that since M is also closed under taking
complements, M is also closed under taking countable intersections.) A pair
(X,M), where X is a set andM is a σ — algebra on X, is called ameasurable
space.

The reader should compare these definitions with that of a topology, see
Definition 2.19. Recall that the elements of a topology are called open sets.
Analogously, we will often refer to elements of and algebra A or a σ — algebra
M as measurable sets.

Example 7.8. Here are some examples.

1. τ = M = P(X) in which case all subsets of X are open, closed, and
measurable.

2. Let X = {1, 2, 3}, then τ = {∅,X, {2, 3}} is a topology on X which is not
an algebra.

3. τ = A = {{1}, {2, 3}, ∅,X} is a topology, an algebra, and a σ — algebra
on X. The sets X, {1}, {2, 3}, ∅ are open and closed. The sets {1, 2} and
{1, 3} are neither open nor closed and are not measurable.

Proposition 7.9. Let E be any collection of subsets of X. Then there exists a
unique smallest topology τ(E), algebra A(E) and σ-algebra σ(E) which contains
E .
Proof. Note P(X) is a topology and an algebra and a σ-algebra and

E ⊂ P(X), so E is always a subset of a topology, algebra, and σ — algebra.
One may now easily check that
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τ(E) ≡
\
{τ : τ is a topology and E ⊂ τ}

is a topology which is clearly the smallest topology containing E . The analo-
gous construction works for the other cases as well.
We may give explicit descriptions of τ(E) andA(E). However σ(E) typically

does not admit a simple concrete description.

Proposition 7.10. Let X be a set and E ⊂ P(X). For simplicity of notation,
assume that X, ∅ ∈ E (otherwise adjoin them to E if necessary) and let Ec ≡
{Ac : A ∈ E} and Ec = E ∪ {X, ∅} ∪ Ec Then τ(E) = τ and A(E) = A where

τ := {arbitrary unions of finite intersections of elements from E} (7.7)

and

A := {finite unions of finite intersections of elements from Ec}. (7.8)

Proof. From the definition of a topology and an algebra, it is clear that
E ⊂ τ ⊂ τ(E) and E ⊂ A ⊂ A(E). Hence to finish that proof it suffices to show
τ is a topology and A is an algebra. The proof of these assertions are routine
except for possibly showing that τ is closed under taking finite intersections
and A is closed under complementation.
To check A is closed under complementation, let Z ∈ A be expressed as

Z =
N[
i=1

K\
j=1

Aij

where Aij ∈ Ec. Therefore, writing Bij = Ac
ij ∈ Ec, we find that

Zc =
N\
i=1

K[
j=1

Bij =
K[

j1,...,jN=1

(B1j1 ∩B2j2 ∩ · · · ∩BNjN ) ∈ A

wherein we have used the fact that B1j1 ∩B2j2 ∩ · · · ∩BNjN is a finite inter-
section of sets from Ec.
To show τ is closed under finite intersections it suffices to show for V,W ∈ τ

that V ∩W ∈ τ. Write

V = ∪α∈AVα and W = ∪β∈BWβ

where Vα and Wβ are sets which are finite intersection of elements from E.
Then

V ∩W = (∪α∈AVα) ∩ (∪β∈BWβ) =
[

(α,β)∈A×B
Vα ∩Wβ ∈ τ

since for each (α, β) ∈ A×B, Vα ∩Wβ is still a finite intersection of elements
from E .
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Remark 7.11. One might think that in general σ(E) may be described as the
countable unions of countable intersections of sets in Ec. However this is false,
since if

Z =
∞[
i=1

∞\
j=1

Aij

with Aij ∈ Ec, then

Zc =
∞[

j1=1,j2=1,...jN=1,...

Ã ∞\
c=1

Ac
c,jc

!

which is now an uncountable union. Thus the above description is not cor-
rect. In general it is complicated to explicitly describe σ(E), see Proposition
1.23 on page 39 of Folland for details.

Exercise 7.12. Let τ be a topology on a set X and A = A(τ) be the algebra
generated by τ. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F ∩ V where F is closed and V is open.

The following notion will be useful in the sequel.

Definition 7.13. A set E ⊂ P(X) is said to be an elementary family or
elementary class provided that

• ∅ ∈ E
• E is closed under finite intersections
• if E ∈ E, then Ec is a finite disjoint union of sets from E. (In particular

X = ∅c is a disjoint union of elements from E .)
Proposition 7.14. Suppose E ⊂ P(X) is an elementary family, then A =
A(E) consists of sets which may be written as finite disjoint unions of sets
from E .
Proof. This could be proved making use of Proposition 7.14. However it

is easier to give a direct proof.
Let A denote the collection of sets which may be written as finite disjoint

unions of sets from E. Clearly E ⊂ A ⊂ A(E) so it suffices to show A is an
algebra since A(E) is the smallest algebra containing E .
By the properties of E, we know that ∅,X ∈ A. Now suppose that Ai =`

F∈Λi F ∈ A where, for i = 1, 2, . . . , n., Λi is a finite collection of disjoint
sets from E . Then

n\
i=1

Ai =
n\
i=1

Ã a
F∈Λi

F

!
=

[
(F1,,...,Fn)∈Λ1×···×Λn

(F1 ∩ F2 ∩ · · · ∩ Fn)

and this is a disjoint (you check) union of elements from E. Therefore A is
closed under finite intersections. Similarly, if A =

`
F∈Λ F with Λ being a
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finite collection of disjoint sets from E, then Ac =
T
F∈Λ F

c. Since by assump-
tion F c ∈ A for F ∈ Λ ⊂ E and A is closed under finite intersections, it
follows that Ac ∈ A.
Exercise 7.15. Let A ⊂ P(X) and B ⊂ P(Y ) be elementary families. Show
the collection

E = A× B = {A×B : A ∈ A and B ∈ B}
is also an elementary family.

The analogous notion of elementary class E for topologies is a basis V
defined below.

Definition 7.16. Let (X, τ) be a topological space. We say that S ⊂ τ is a
sub-basis for the topology τ iff τ = τ(S) and X = ∪S := ∪V ∈SV. We say
V ⊂ τ is a basis for the topology τ iff V is a sub-basis with the property that
every element V ∈ τ may be written as

V = ∪{B ∈ V : B ⊂ V }.
Exercise 7.17. Suppose that S is a sub-basis for a topology τ on a set X.
Show V := Sf consisting of finite intersections of elements from S is a basis
for τ. Moreover, S is itself a basis for τ iff

V1 ∩ V2 = ∪{S ∈ S : S ⊂ V1 ∩ V2}.
for every pair of sets V1, V2 ∈ S.
Remark 7.18. Let (X, d) be a metric space, then E = {Bx(δ) : x ∈ X and
δ > 0} is a basis for τd — the topology associated to the metric d. This is the
content of Exercise 2.9.
Let us check directly that E is a basis for a topology. Suppose that x, y ∈ X

and �, δ > 0. If z ∈ B(x, δ) ∩B(y, �), then
B(z, α) ⊂ B(x, δ) ∩B(y, �) (7.9)

where α = min{δ − d(x, z), � − d(y, z)}, see Figure 7.1. This is a for-
mal consequence of the triangle inequality. For example let us show that
B(z, α) ⊂ B(x, δ). By the definition of α, we have that α ≤ δ − d(x, z) or
that d(x, z) ≤ δ − α. Hence if w ∈ B(z, α), then

d(x,w) ≤ d(x, z) + d(z, w) ≤ δ − α+ d(z, w) < δ − α+ α = δ

which shows that w ∈ B(x, δ). Similarly we show that w ∈ B(y, �) as well.
Owing to Exercise 7.17, this shows E is a basis for a topology. We do not

need to use Exercise 7.17 here since in fact Equation (7.9) may be generalized
to finite intersection of balls. Namely if xi ∈ X, δi > 0 and z ∈ ∩ni=1B(xi, δi),
then



7.3 Algebras and σ — algebras 139

x

y

zδ

ε

d(x,z)

δ−d(x,z)

Fig. 7.1. Fitting balls in the intersection.

B(z, α) ⊂ ∩ni=1B(xi, δi) (7.10)

where now α := min {δi − d(xi, z) : i = 1, 2, . . . , n} . By Eq. (7.10) it follows
that any finite intersection of open balls may be written as a union of open
balls.

Example 7.19. Suppose X = {1, 2, 3} and E = {∅,X, {1, 2}, {1, 3}}, see Figure
7.2 below.

Fig. 7.2. A collection of subsets.

Then

τ(E) = {∅,X, {1}, {1, 2}, {1, 3}}
A(E) = σ(E) = P(X).

Definition 7.20. Let X be a set. We say that a family of sets F ⊂ P(X) is
a partition of X if X is the disjoint union of the sets in F .
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Example 7.21. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = τ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}
where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

#A(E) = #(P({1, 2, . . . , n})) = 2n.
Proposition 7.22. Suppose that M ⊂ P(X) is a σ — algebra and M is at
most a countable set. Then there exists a unique finite partition F of X such
that F ⊂M and every element A ∈M is of the form

A = ∪ {α ∈ F : α ⊂ A} . (7.11)

In particularM is actually a finite set.

Proof. For each x ∈ X let

Ax = (∩x∈A∈MA) ∈M.

That is, Ax is the smallest set in M which contains x. Suppose that C =
Ax ∩Ay is non-empty. If x /∈ C then x ∈ Ax \C ∈M and hence Ax ⊂ Ax \C
which shows that Ax ∩ C = ∅ which is a contradiction. Hence x ∈ C and
similarly y ∈ C, therefore Ax ⊂ C = Ax ∩ Ay and Ay ⊂ C = Ax ∩ Ay

which shows that Ax = Ay. Therefore, F = {Ax : x ∈ X} is a partition of
X (which is necessarily countable) and Eq. (7.11) holds for all A ∈M. Let
F = {Pn}Nn=1 where for the moment we allow N = ∞. If N = ∞, then M
is one to one correspondence with {0, 1}N . Indeed to each a ∈ {0, 1}N , let
Aa ∈M be defined by

Aa = ∪{Pn : an = 1}.
This shows thatM is uncountable since {0, 1}N is uncountable; think of the
base two expansion of numbers in [0, 1] for example. Thus any countable σ
— algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader.

Example 7.23. Let X = R and

E = {(a,∞) : a ∈ R} ∪ {R, ∅} = {(a,∞) ∩ R : a ∈ R̄} ⊂ P(R).
Notice that Ef = E and that E is closed under unions, which shows that
τ(E) = E , i.e. E is already a topology. Since (a,∞)c = (−∞, a] we find that
Ec = {(a,∞), (−∞, a],−∞ ≤ a <∞} ∪ {R, ∅}. Noting that

(a,∞) ∩ (−∞, b] = (a, b]

it is easy to verify that the algebra A(E) generated by E may be described as
being those sets which are finite disjoint unions of sets from the following list
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Ẽ := ©(a, b] ∩ R : a, b ∈ R̄ª .
(This follows from Proposition 7.14 and the fact that Ẽ is an elementary family
of subsets of R.) The σ — algebra, σ(E), generated by E is very complicated.
Here are some sets in σ(E) — most of which are not in A(E).

(a) (a, b) =
∞S
n=1
(a, b− 1

n ] ∈ σ(E).
(b) All of the standard open subsets of R are in σ(E).
(c) {x} = T

n

¡
x− 1

n , x
¤ ∈ σ(E)

(d) [a, b] = {a} ∪ (a, b] ∈ σ(E)
(e) Any countable subset of R is in σ(E).
Remark 7.24. In the above example, one may replace E by E = {(a,∞) : a ∈
Q} ∪ {R, ∅}, in which case A(E) may be described as being those sets which
are finite disjoint unions of sets from the following list

{(a,∞), (−∞, a], (a, b] : a, b ∈ Q} ∪ {∅,R} .

This shows that A(E) is a countable set — a fact we will use later on.
Definition 7.25. A topological space, (X, τ), is second countable if there
exists a countable base V for τ, i.e. V ⊂ τ is a countable set such that for
every W ∈ τ,

W = ∪{V : V ∈ V 3V ⊂W}.
Exercise 7.26. Suppose E ⊂ P(X) is a countable collection of subsets of X,
then τ = τ(E) is a second countable topology on X.

Proposition 7.27. Every separable metric space, (X,ρ) is second countable.

Proof. Let {xn}∞n=1 be a countable dense subset of X. Let V ≡
{X, ∅}

∞S
m,n=1

{Bxn(rm)} ⊂ τρ, where {rm}∞m=1 is dense in (0,∞). Then V is
a countable base for τρ. To see this let V ⊂ X be open and x ∈ V . Choose
� > 0 such that Bx(�) ⊂ V and then choose xn ∈ Bx(�/3). Choose rm near
�/3 such that ρ(x, xn) < rm < �/3 so that x ∈ Bxn(rm) ⊂ V . This shows
V =

S {Bxn(rm) : Bxn(rm) ⊂ V } .
Notation 7.28 For a general topological space (X, τ), the Borel σ — algebra
is the σ — algebra, BX = σ(τ). We will use BR to denote the Borel σ - algebra
on R.

Proposition 7.29. If τ is a second countable topology on X and E ⊂ P(X)
is a countable set such that τ = τ(E), then BX := σ(τ) = σ(E), i.e. σ(τ(E)) =
σ(E).
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Proof. Let Ef denote the collection of subsets of X which are finite in-
tersection of elements from E along with X and ∅. Notice that Ef is still
countable (you prove). A set Z is in τ(E) iff Z is an arbitrary union of sets
from Ef . Therefore Z =

S
A∈F

A for some subset F ⊂ Ef which is necessarily
countable. Since Ef ⊂ σ(E) and σ(E) is closed under countable unions it fol-
lows that Z ∈ σ(E) and hence that τ(E) ⊂ σ(E). For the last assertion, since
E ⊂ τ(E) ⊂ σ(E) it follows that σ(E) ⊂ σ(τ(E)) ⊂ σ(E).
Exercise 7.30. Verify the following identities

BR = σ({(a,∞) : a ∈ R} = σ({(a,∞) : a ∈ Q}
= σ({[a,∞) : a ∈ Q}).

7.4 Continuous and Measurable Functions

Our notion of a “measurable” function will be analogous to that for a con-
tinuous function. For motivational purposes, suppose (X,M, µ) is a measure
space and f : X → R+. Roughly speaking, in the next section we are going
to define

R
X

fdµ by

Z
X

fdµ = lim
mesh→0

∞X
0<a1<a2<a3<...

aiµ(f
−1(ai, ai+1]).

For this to make sense we will need to require f−1((a, b]) ∈M for all a < b.
Because of Lemma 7.37 below, this last condition is equivalent to the condition

f−1(BR) ⊂M,

where we are using the following notation.

Notation 7.31 If f : X → Y is a function and E ⊂ P(Y ) let
f−1E ≡ f−1 (E) ≡ {f−1(E)|E ∈ E}.

If G ⊂ P(X), let
f∗G ≡ {A ∈ P(Y )|f−1(A) ∈ G}.

Exercise 7.32. Show f−1E and f∗G are σ — algebras (topologies) provided E
and G are σ — algebras (topologies).
Definition 7.33. Let (X,M) and (Y,F) be measurable (topological) spaces. A
function f : X → Y is measurable (continuous) if f−1(F) ⊂M. We will
also say that f is M/F — measurable (continuous) or (M,F) — measurable
(continuous).
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Example 7.34 (Characteristic Functions). Let (X,M) be a measurable space
and A ⊂ X. We define the characteristic function 1A : X → R by

1A(x) =

½
1 if x ∈ A
0 if x /∈ A.

If A ∈M, then 1A is (M,P(R)) — measurable because 1−1A (W ) is either ∅, X,
A or Ac for any U ⊂ R. Conversely, if F is any σ — algebra on R containing
a set W ⊂ R such that 1 ∈ W and 0 ∈ W c, then A ∈M if 1A is (M,F) —
measurable. This is because A = 1−1A (W ) ∈M.

Remark 7.35. Let f : X → Y be a function. Given a σ — algebra (topology)
F ⊂ P(Y ), the σ — algebra (topology) M := f−1(F) is the smallest σ —
algebra (topology) on X such that f is (M,F) - measurable (continuous).
Similarly, ifM is a σ - algebra (topology) on X then F = f∗M is the largest
σ — algebra (topology) on Y such that f is (M,F) - measurable (continuous).
Lemma 7.36. Suppose that (X,M), (Y,F) and (Z,G) are measurable (topo-
logical) spaces. If f : (X,M)→ (Y,F) and g : (Y,F)→ (Z,G) are measurable
(continuous) functions then g ◦ f : (X,M) → (Z,G) is measurable (continu-
ous) as well.

Proof. This is easy since by assumption g−1(G) ⊂ F and f−1 (F) ⊂M
so that

(g ◦ f)−1 (G) = f−1
¡
g−1 (G)¢ ⊂ f−1 (F) ⊂M.

Lemma 7.37. Suppose that f : X → Y is a function and E ⊂ P(Y ), then
σ
¡
f−1(E)¢ = f−1(σ(E)) and (7.12)

τ
¡
f−1(E)¢ = f−1(τ(E)). (7.13)

Moreover, if F = σ(E) (or F = τ(E)) and M is a σ — algebra (topology) on
X, then f is (M,F) — measurable (continuous) iff f−1(E) ⊂M.

Proof. We will prove Eq. (7.12), the proof of Eq. (7.13) being analogous.
If E ⊂ F , then f−1(E) ⊂ f−1(σ(E)) and therefore, (because f−1(σ(E)) is a σ
— algebra)

G := σ(f−1(E)) ⊂ f−1(σ(E))
which proves half of Eq. (7.12). For the reverse inclusion notice that

f∗G =
©
B ⊂ Y : f−1(B) ∈ Gª

is a σ — algebra which contains E and thus σ(E) ⊂ f∗G. Hence if B ∈ σ(E) we
know that f−1(B) ∈ G, i.e. f−1(σ(E)) ⊂ G. The last assertion of the Lemma
is an easy consequence of Eqs. (7.12) and (7.13). For example, if f−1E ⊂M,
then f−1σ (E) = σ

¡
f−1E¢ ⊂M which shows f is (M,F) — measurable.
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Definition 7.38. A function f : X → Y between to topological spaces is
Borel measurable if f−1(BY ) ⊂ BX .
Proposition 7.39. Let X and Y be two topological spaces and f : X → Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma 7.37 and BY = σ(τY ),

f−1(BY ) = f−1(σ(τY )) = σ(f−1(τY )) ⊂ σ(τX) = BX .

Corollary 7.40. Suppose that (X,M) is a measurable space. Then f : X →
R is (M,BR) — measurable iff f−1((a,∞)) ∈M for all a ∈ R iff f−1((a,∞)) ∈
M for all a ∈ Q iff f−1((−∞, a]) ∈M for all a ∈ R, etc. Similarly, if (X,M)
is a topological space, then f : X → R is (M, τR) - continuous iff f−1((a, b)) ∈
M for all −∞ < a < b <∞ iff f−1((a,∞)) ∈M and f−1((−∞, b)) ∈M for
all a, b ∈ Q. (We are using τR to denote the standard topology on R induced
by the metric d(x, y) = |x− y|.)
Proof. This is an exercise (Exercise 7.71) in using Lemma 7.37.
We will often deal with functions f : X → R̄ = R∪ {±∞} . Let

BR̄ := σ ({[a,∞] : a ∈ R}) . (7.14)

The following Corollary of Lemma 7.37 is a direct analogue of Corollary 7.40.

Corollary 7.41. f : X → R̄ is (M,BR̄) - measurable iff f−1((a,∞]) ∈ M
for all a ∈ R iff f−1((−∞, a]) ∈M for all a ∈ R, etc.
Proposition 7.42. Let BR and BR̄ be as above, then

BR̄ = {A ⊂ R̄ : A ∩R ∈BR}. (7.15)

In particular {∞} , {−∞} ∈ BR̄ and BR ⊂ BR̄.
Proof. Let us first observe that

{−∞} = ∩∞n=1[−∞,−n) = ∩∞n=1[−n,∞]c ∈ BR̄,
{∞} = ∩∞n=1[n,∞] ∈ BR̄ and R = R̄\ {±∞} ∈ BR̄.

Letting i : R→ R̄ be the inclusion map,

i−1 (BR̄) = σ
¡
i−1

¡©
[a,∞] : a ∈ R̄ª¢¢ = σ

¡©
i−1 ([a,∞]) : a ∈ R̄ª¢

= σ
¡©
[a,∞] ∩R : a ∈ R̄ª¢ = σ ({[a,∞) : a ∈ R}) = BR.

Thus we have shown

BR = i−1 (BR̄) = {A ∩R : A ∈ BR̄}.
This implies:
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1. A ∈ BR̄ =⇒ A ∩ R ∈BR and
2. if A ⊂ R̄ is such that A ∩ R ∈BR there exists B ∈ BR̄ such that A ∩ R =

B ∩ R. Because A∆B ⊂ {±∞} and {∞} , {−∞} ∈ BR̄ we may conclude
that A ∈ BR̄ as well.
This proves Eq. (7.15).

Proposition 7.43 (Closure under sups, infs and limits). Suppose that
(X,M) is a measurable space and fj : (X,M)→ R is a sequence ofM/BR —
measurable functions. Then

supjfj , infjfj, lim sup
j→∞

fj and lim inf
j→∞

fj

are all M/BR — measurable functions. (Note that this result is in generally
false when (X,M) is a topological space and measurable is replaced by con-
tinuous in the statement.)

Proof. Define g+(x) := sup jfj(x), then

{x : g+(x) ≤ a} = {x : fj(x) ≤ a ∀ j}
= ∩j{x : fj(x) ≤ a} ∈M

so that g+ is measurable. Similarly if g−(x) = infj fj(x) then

{x : g−(x) ≥ a} = ∩j{x : fj(x) ≥ a} ∈M.

Since

lim sup
j→∞

fj = inf
n
sup {fj : j ≥ n} and

lim inf
j→∞

fj = sup
n
inf {fj : j ≥ n}

we are done by what we have already proved.

7.4.1 More general pointwise limits

Lemma 7.44. Suppose that (X,M) is a measurable space, (Y, d) is a metric
space and fj : X → Y is (M,BY ) — measurable for all j. Also assume that for
each x ∈ X, f(x) = limn→∞ fn(x) exists. Then f : X → Y is also (M,BY ) —
measurable.

Proof. Let V ∈ τd and Wm := {y ∈ Y : dV c(y) > 1/m} for m = 1, 2, . . . .
Then Wm ∈ τd,

Wm ⊂ W̄m ⊂ {y ∈ Y : dV c(y) ≥ 1/m} ⊂ V

for all m and Wm ↑ V as m → ∞. The proof will be completed by verifying
the identity,
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f−1(V ) = ∪∞m=1 ∪∞N=1 ∩n≥Nf−1n (Wm) ∈M.

If x ∈ f−1(V ) then f(x) ∈ V and hence f(x) ∈Wm for somem. Since fn(x)→
f(x), fn(x) ∈ Wm for almost all n. That is x ∈ ∪∞m=1 ∪∞N=1 ∩n≥Nf−1n (Wm).
Conversely when x ∈ ∪∞m=1 ∪∞N=1 ∩n≥Nf−1n (Wm) there exists an m such that
fn(x) ∈Wm ⊂ W̄m for almost all n. Since fn(x)→ f(x) ∈ W̄m ⊂ V, it follows
that x ∈ f−1(V ).

Remark 7.45. In the previous Lemma 7.44 it is possible to let (Y, τ) be any
topological space which has the “regularity” property that if V ∈ τ there exists
Wm ∈ τ such that Wm ⊂ W̄m ⊂ V and V = ∪∞m=1Wm. Moreover, some extra
condition is necessary on the topology τ in order for Lemma 7.44 to be correct.
For example if Y = {1, 2, 3} and τ = {Y, ∅, {1, 2}, {2, 3}, {2}} as in Example
2.35 and X = {a, b} with the trivial σ — algebra. Let fj(a) = fj(b) = 2 for all
j, then fj is constant and hence measurable. Let f(a) = 1 and f(b) = 2, then
fj → f as j → ∞ with f being non-measurable. Notice that the Borel σ —
algebra on Y is P(Y ).

7.5 Topologies and σ — Algebras Generated by Functions

Definition 7.46. Let E ⊂ P(X) be a collection of sets, A ⊂ X, iA : A → X
be the inclusion map (iA(x) = x) for all x ∈ A, and

EA = i−1A (E) = {A ∩E : E ∈ E} .
When E = τ is a topology or E =M is a σ — algebra we call τA the relative
topology andMA the relative σ — algebra on A.

Proposition 7.47. Suppose that A ⊂ X, M ⊂ P(X) is a σ — algebra and
τ ⊂ P(X) is a topology, then MA ⊂ P(A) is a σ — algebra and τA ⊂ P(A)
is a topology. Moreover if E ⊂ P(X) is such that M = σ(E) (τ = τ(E)) then
MA = σ(EA) (τA = τ(EA)).
Proof. The first assertion is Exercise 7.32 and the second assertion is a

consequence of Lemma 7.37. Indeed,

MA = i−1A (M) = i−1A (σ(E)) = σ(i−1A (E)) = σ(EA)
and similarly

τA = i−1A (τ) = i−1A (τ(E)) = τ(i−1A (E)) = τ(EA).

Example 7.48. Suppose that (X, d) is a metric space and A ⊂ X is a set. Let
τ = τd and dA := d|A×A be the metric d restricted to A. Then τA = τdA , i.e.
the relative topology, τA, of τd on A is the same as the topology induced by
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the restriction of the metric d to A. Indeed, if V ∈ τA there exists W ∈ τ
such that V ∩ A = W. Therefore for all x ∈ A there exists � > 0 such that
Bx(�) ⊂ W and hence Bx(�) ∩ A ⊂ V. Since Bx(�) ∩ A = BdA

x (�) is a dA —
ball in A, this shows V is dA — open, i.e. τA ⊂ τdA . Conversely, if V ∈ τdA ,
then for each x ∈ A there exists �x > 0 such that BdA

x (�) = Bx(�) ∩ A ⊂ V.
Therefore V = A ∩W with W := ∪x∈ABx(�) ∈ τ. This shows τdA ⊂ τA.

Definition 7.49. Let A ⊂ X, f : A → C be a function, M ⊂ P(X) be a σ
— algebra and τ ⊂ P(X) be a topology, then we say that f |A is measurable
(continuous) if f |A isMA — measurable (τA continuous).

Proposition 7.50. Let A ⊂ X, f : X → C be a function,M ⊂ P(X) be a σ
— algebra and τ ⊂ P(X) be a topology. If f isM — measurable (τ continuous)
then f |A is MA measurable (τA continuous). Moreover if An ∈M (An ∈ τ)
such that X = ∪∞n=1An and f |An is MAn measurable (τAn continuous) for
all n, then f isM — measurable (τ continuous).

Proof. Notice that iA is (MA,M) — measurable (τA, τ) — continuous)
hence f |A = f ◦ iA is MA measurable (τA — continuous). Let B ⊂ C be a
Borel set and consider

f−1(B) = ∪∞n=1
¡
f−1(B) ∩An

¢
= ∪∞n=1f |−1An(B).

If A ∈M (A ∈ τ), then it is easy to check that

MA = {B ∈M : B ⊂ A} ⊂M and

τA = {B ∈ τ : B ⊂ A} ⊂ τ.

The second assertion is now an easy consequence of the previous three equa-
tions.

Definition 7.51. Let X and A be sets, and suppose for α ∈ A we are give a
measurable (topological) space (Yα,Fα) and a function fα : X → Yα. We will
write σ(fα : α ∈ A) (τ(fα : α ∈ A)) for the smallest σ-algebra (topology) on
X such that each fα is measurable (continuous), i.e.

σ(fα : α ∈ A) = σ(∪αf−1α (Fα)) and
τ(fα : α ∈ A) = τ(∪αf−1α (Fα)).

Proposition 7.52. Assuming the notation in Definition 7.51 and addition-
ally let (Z,M) be a measurable (topological) space and g : Z → X be a
function. Then g is (M, σ(fα : α ∈ A)) — measurable ((M, τ(fα : α ∈ A)) —
continuous) iff fα ◦ g is (M,Fα)—measurable (continuous) for all α ∈ A.

Proof. (⇒) If g is (M, σ(fα : α ∈ A)) — measurable, then the composition
fα ◦ g is (M,Fα) — measurable by Lemma 7.36.
(⇐) Let
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G = σ(fα : α ∈ A) = σ
¡∪α∈Af−1α (Fα)

¢
.

If fα ◦ g is (M,Fα) — measurable for all α, then

g−1f−1α (Fα) ⊂M∀α ∈ A

and therefore

g−1
¡∪α∈Af−1α (Fα)

¢
= ∪α∈Ag−1f−1α (Fα) ⊂M.

Hence

g−1 (G) = g−1
¡
σ
¡∪α∈Af−1α (Fα)

¢¢
= σ(g−1

¡∪α∈Af−1α (Fα)
¢ ⊂M

which shows that g is (M,G) — measurable.
The topological case is proved in the same way.

7.6 Product Spaces

In this section we consider product topologies and σ — algebras. We will start
with a finite number of factors first and then later mention what happens for
an infinite number of factors.

7.6.1 Products with a Finite Number of Factors

Let {Xi}ni=1 be a collection of sets, X := X1×X2×· · ·×Xn and πi : X → Xi

be the projection map π(x1, x2, . . . , xn) = xi for each 1 ≤ i ≤ n. Let us also
suppose that τi is a topology on Xi andMi is a σ — algebra on Xi for each i.

Notation 7.53 Let Ei ⊂ P(Xi) be a collection of subsets of Xi for i =
1, 2, . . . , n we will write, by abuse of notation, E1×E2×· · ·×En for the collec-
tion of subsets of X1 × · · · ×Xn of the form A1 ×A2 × · · · ×An with Ai ∈ Ei
for all i. That is we are identifying (A1, A2, . . . , An) with A1×A2× · · · ×An.

Definition 7.54. The product topology on X, denoted by τ1⊗ τ2⊗ · · ·⊗ τn
is the smallest topology on X so that each map πi : X → Xi is continuous.
Similarly, the product σ — algebra on X, denoted byM1⊗M2⊗ · · ·⊗Mn,
is the smallest σ — algebra on X so that each map πi : X → Xi is measurable.

Remark 7.55. The product topology may also be described as the smallest
topology containing sets from τ1 × · · · × τn, i.e.

τ1 ⊗ τ2 ⊗ · · ·⊗ τn = τ(τ1 × · · · × τn).

Indeed,
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τ1 ⊗ τ2 ⊗ · · ·⊗ τn = τ(π1, π2, . . . , πn)

= τ(
©∩ni=1π−1i (Vi) : Vi ∈ τi for i = 1, 2, . . . , n

ª
)

= τ({V1 × V2 × · · · × Vn : Vi ∈ τi for i = 1, 2, . . . , n}).
Similarly,

M1 ⊗M2 ⊗ · · ·⊗Mn = σ(M1 ×M2 × · · · ×Mn).

Furthermore if Bi ⊂ τi is a basis for the topology τi for each i, then B1×· · ·×Bn
is a basis for τ1 ⊗ τ2 ⊗ · · · ⊗ τn. Indeed, τ1 × · · · × τn is closed under finite
intersections and generates τ1⊗τ2⊗· · ·⊗τn, therefore τ1×· · ·×τn is a basis for
the product topology. Hence for W ∈ τ1⊗τ2⊗ · · ·⊗ τn and x = (x1, . . . , xn) ∈
W, there exists V1 × V2 × · · · × Vn ∈ τ1 × · · · × τn such that

x ∈ V1 × V2 × · · · × Vn ⊂W.

Since Bi is a basis for τi, we may now choose Ui ∈ Bi such that xi ∈ Ui ⊂ Vi
for each i. Thus

x ∈ U1 × U2 × · · · × Un ⊂W

and we have shown W may be written as a union of sets from B1 × · · · × Bn.
Since

B1 × · · · × Bn ⊂ τ1 × · · · × τn ⊂ τ1 ⊗ τ2 ⊗ · · ·⊗ τn,

this shows B1 × · · · × Bn is a basis for τ1 ⊗ τ2 ⊗ · · ·⊗ τn.

Lemma 7.56. Let (Xi, di) for i = 1, . . . , n be metric spaces, X := X1× · · · ×
Xn and for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in X let

d(x, y) =
nX
i=1

di(xi, yi). (7.16)

Then the topology, τd, associated to the metric d is the product topology on X,
i.e.

τd = τd1 ⊗ τd2 ⊗ · · ·⊗ τdn .

Proof. Let ρ(x, y) = max{di(xi, yi) : i = 1, 2, . . . , n}. Then ρ is equivalent
to d and hence τρ = τd. Moreover if � > 0 and x = (x1, x2, . . . , xn) ∈ X, then

Bρ
x(�) = Bd1

x1(�)× · · · ×Bdn
xn(�).

By Remark 7.18,
E := {Bρ

x(�) : x ∈ X and � > 0}
is a basis for τρ and by Remark 7.55 E is also a basis for τd1 ⊗ τd2 ⊗ · · ·⊗ τdn .
Therefore,

τd1 ⊗ τd2 ⊗ · · ·⊗ τdn = τ(E) = τρ = τd.
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Remark 7.57. Let (Z,M) be a measurable (topological) space, then by Propo-
sition 7.52, a function f : Z → X is measurable (continuous) iff πi◦f : Z → Xi

is (M,Mi) — measurable ((τ, τi) — continuous) for i = 1, 2, . . . , n. So if we write

f(z) = (f1(z), f2(z), . . . , fn(z)) ∈ X1 ×X2 × · · · ×Xn,

then f : Z → X is measurable (continuous) iff fi : Z → Xi is measurable
(continuous) for all i.

Theorem 7.58. For i = 1, 2, . . . , n, let Ei ⊂ P(Xi) be a collection of subsets
of Xi such that Xi ∈ Ei and Mi = σ(Ei) (or τi = τ(Ei)) for i = 1, 2, . . . , n,
then

M1 ⊗M2 ⊗ · · ·⊗Mn = σ(E1 × E2 × · · · × En) and
τ1 ⊗ τ2 ⊗ · · ·⊗ τn = τ(E1 × E2 × · · · × En).

Written out more explicitly, these equations state

σ(σ(E1)× σ(E2)× · · · × σ(En)) = σ(E1 × E2 × · · · × En) and (7.17)

τ(τ(E1)× τ(E2)× · · · × τ(En)) = τ(E1 × E2 × · · · × En). (7.18)

Moreover if {(Xi, τi)}ni=1 is a sequence of second countable topological spaces,
τ = τ1 ⊗ τ2 ⊗ · · ·⊗ τn is the product topology on X = X1 × · · · ×Xn, then

BX := σ(τ1 ⊗ τ2 ⊗ · · ·⊗ τn) = σ(BX1 × · · · × BXn)

=: BX1
⊗ · · ·⊗ BXn

.

That is to say the Borel σ — algebra and the product σ — algebra on X are the
same.

Proof. We will prove Eq. (7.17). The proof of Eq. (7.18) is completely
analogous. Let us first do the case of two factors. Since

E1 × E2 ⊂ σ(E1)× σ(E2)
it follows that

σ (E1 × E2) ⊂ σ (σ(E1)× σ(E2)) = σ(π1, π2).

To prove the reverse inequality it suffices to show πi : X1 × X2 → Xi is
σ (E1 × E2) —Mi = σ(Ei) measurable for i = 1, 2. To prove this suppose that
E ∈ E1, then

π−11 (E) = E ×X2 ∈ E1 × E2 ⊂ σ (E1 × E2)
wherein we have used the fact that X2 ∈ E2. Similarly, for E ∈ E2 we have

π−12 (E) = X1 ×E ∈ E1 × E2 ⊂ σ (E1 × E2) .
This proves the desired measurability, and hence
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σ(π1, π2) ⊂ σ (E1 × E2) ⊂ σ(π1, π2).

To prove the last assertion we may assume each Ei is countable for i = 1, 2.
Since E1 × E2 is countable, a couple of applications of Proposition 7.29 along
with the first two assertions of the theorems gives

σ(τ1 ⊗ τ2) = σ(τ (τ1 × τ2)) = σ(τ (τ(E1)× τ(E2)))
= σ(τ (E1 × E2)) = σ(E1 × E2) = σ (σ(E1)× σ(E2))
= σ (M1 ×M2) =M1 ⊗M2.

The proof for n factors works the same way. Indeed,

E1 × E2 × · · · × En ⊂ σ(E1)× σ(E2)× · · · × σ(En)
implies

σ (E1 × E2 × · · · × En) ⊂ σ (σ(E1)× σ(E2)× · · · × σ(En))
= σ(π1, . . . , πn)

and for E ∈ Ei,
π−1i (E) = X1 ×X2 × · · · ×Xi−1 ×E ×Xi+1 · · · ×Xn

which shows

π−1i (E) ∈ E1 × E2 × · · · × En ⊂ σ (E1 × E2 × · · · × En) .
This show πi is σ (E1 × E2 × · · · × En) —Mi = σ(Ei)measurable and therefore,

σ(π1, . . . , πn) ⊂ σ (E1 × E2 × · · · × En) ⊂ σ(π1, . . . , πn).

If the Ei are countable, then
σ(τ1 ⊗ τ2 ⊗ · · ·⊗ τn) = σ(τ (τ1 × τ2 × · · · × τn))

= σ(τ (τ(E1)× τ(E2)× · · · × τ(En)))
= σ(τ (E1 × E2 × · · · × En))
= σ(E1 × E2 × · · · × En)
= σ (σ(E1)× σ(E2)× · · · × σ(En))
= σ (M1 ×M2 × · · · ×Mn)

=M1 ⊗M2 ⊗ · · ·⊗Mn.

Remark 7.59. One can not relax the assumption thatXi ∈ Ei in Theorem 7.58.
For example, if X1 = X2 = {1, 2} and E1 = E2 = {{1}} , then σ(E1 × E2) =
{∅,X1 ×X2, {(1, 1)}} while σ(σ(E1)× σ(E2)) = P(X1 ×X2).
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Proposition 7.60. If (Xi, di) are separable metric spaces for i = 1, . . . , n,
then

BX1 ⊗ · · ·⊗ BXn = B(X1×···×Xn)

where BXi
is the Borel σ — algebra on Xi and B(X1×···×Xn) is the Borel σ —

algebra on X1 × · · · ×Xn equipped with the product topology.

Proof. This follows directly from Proposition 7.27 and Theorem 7.58.
Because all norms on finite dimensional spaces are equivalent, the usual

Euclidean norm on Rm ×Rn is equivalent to the “product” norm defined by

k(x, y)kRm×Rn = kxkRm + kykRn .
Hence by Lemma 7.56, the Euclidean topology on Rm+n is the same as the
product topology on Rm+n ∼= Rm×Rn Here we are identifying Rm×Rn with
Rm+n by the map

(x, y) ∈ Rm ×Rn → (x1, . . . , xm, y1, . . . , yn) ∈ Rm+n.
Proposition 7.60 and these comments leads to the following corollaries.

Corollary 7.61. After identifying Rm × Rn with Rm+n as above and letting
BRn denote the Borel σ —algebra on Rn, we have

BRm+n = BRn ⊗ BRm and BRn =
n—timesz }| {

BR ⊗ · · ·⊗ BR.
Corollary 7.62. If (X,M) is a measurable space, then

f = (f1, f2, . . . , fn) : X → Rn

is (M,BRn) — measurable iff fi : X → R is (M,BR) — measurable for each
i. In particular, a function f : X → C is (M,BC) — measurable iff Re f and
Im f are (M,BR) — measurable.
Corollary 7.63. Let (X,M) be a measurable space and f, g : X → C be
(M,BC) — measurable functions. Then f ± g and f · g are also (M,BC) —
measurable.

Proof. Define F : X → C×C, A± : C×C→ C and M : C×C −→ C by
F (x) = (f(x), g(x)), A±(w, z) = w ± z and M(w, z) = wz. Then A± and M
are continuous and hence (BC2 ,BC) — measurable. Also F is (M,BC ⊗ BC) =
(M,BC2) — measurable since π1 ◦ F = f and π2 ◦ F = g are (M,BC) —
measurable. Therefore A±◦F = f±g andM ◦F = f ·g, being the composition
of measurable functions, are also measurable.

Lemma 7.64. Let α ∈ C, (X,M) be a measurable space and f : X → C be a
(M,BC) — measurable function. Then

F (x) :=

½ 1
f(x) if f(x) 6= 0
α if f(x) = 0

is measurable.
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Proof. Define i : C→ C by

i(z) =

½
1
z if z 6= 0
α if z = 0.

For any open set V ⊂ C we have

i−1(V ) = i−1(V \ {0}) ∪ i−1(V ∩ {0})

Because i is continuous except at z = 0, i−1(V \{0}) is an open set and hence
in BC. Moreover, i−1(V ∩ {0}) ∈ BC since i−1(V ∩ {0}) is either the empty
set or the one point set {α} . Therefore i−1(τC) ⊂ BC and hence i−1(BC) =
i−1(σ(τC)) = σ(i−1(τC)) ⊂ BC which shows that i is Borel measurable. Since
F = i ◦ f is the composition of measurable functions, F is also measurable.

7.6.2 General Product spaces

Definition 7.65. Suppose(Xα,Mα)α∈A is a collection of measurable spaces
and let X be the product space

X =
Y
α∈A

Xα

and πα : X → Xα be the canonical projection maps. Then the product σ —
algebra,

N
α
Mα, is defined by

O
α∈A

Mα ≡ σ(πα : α ∈ A) = σ

Ã[
α

π−1α (Mα)

!
.

Similarly if (Xα,Mα)α∈A is a collection of topological spaces, the product
topology

N
α
Mα, is defined by

O
α∈A

Mα ≡ τ(πα : α ∈ A) = τ

Ã[
α

π−1α (Mα)

!
.

Remark 7.66. Let (Z,M) be a measurable (topological) space andÃ
X =

Y
α∈A

Xα,
O
α∈A

Mα

!

be as in Definition 7.65. By Proposition 7.52, a function f : Z → X is mea-
surable (continuous) iff πα ◦ f is (M,Mα) — measurable (continuous) for all
α ∈ A.
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Proposition 7.67. Suppose that (Xα,Mα)α∈A is a collection of measurable
(topological) spaces and Eα ⊂Mα generatesMα for each α ∈ A, then

⊗α∈AMα = σ
¡∪α∈Aπ−1α (Eα)

¢ ¡
τ
¡∪α∈Aπ−1α (Eα)

¢¢
(7.19)

Moreover, suppose that A is either finite or countably infinite, Xα ∈ Eα for
each α ∈ A, and Mα = σ(Eα) for each α ∈ A. Then the product σ — algebra
satisfies

O
α∈A

Mα = σ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
. (7.20)

Similarly if A is finite andMα = τ(Eα), then the product topology satisfies
O
α∈A

Mα = τ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
. (7.21)

Proof.We will prove Eq. (7.19) in the measure theoretic case since a sim-
ilar proof works in the topological category. Since

S
α
π−1α (Eα) ⊂ ∪απ−1α (Mα),

it follows that

F := σ

Ã[
α

π−1α (Eα)
!
⊂ σ

Ã[
α

π−1α (Mα)

!
=
O
α

Mα.

Conversely,
F ⊃ σ(π−1α (Eα)) = π−1α (σ(Eα)) = π−1α (Mα)

holds for all α implies that [
α

π−1α (Mα) ⊂ F

and hence that
N
α
Mα ⊂ F .

We now prove Eq. (7.20). Since we are assuming that Xα ∈ Eα for each
α ∈ A, we see that

[
α

π−1α (Eα) ⊂
(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)

and therefore by Eq. (7.19)

O
α∈A

Mα = σ

Ã[
α

π−1α (Eα)
!
⊂ σ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
.

This last statement is true independent as to whether A is countable or not.
For the reverse inclusion it suffices to notice that since A is countable,
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α∈A

Eα = ∩α∈Aπ−1α (Eα) ∈
O
α∈A

Mα

and hence

σ

Ã(Y
α∈A

Eα : Eα ∈ Eα for all α ∈ A

)!
⊂
O
α∈A

Mα.

Here is a generalization of Theorem 7.58 to the case of countable number of
factors.

Proposition 7.68. Let {Xα}α∈A be a sequence of sets where A is at most
countable. Suppose for each α ∈ A we are given a countable set Eα ⊂ P(Xα).
Let τα = τ(Eα) be the topology on Xα generated by Eα and X be the product
space

Q
α∈AXα with equipped with the product topology τ := ⊗α∈Aτ(Eα). Then

the Borel σ — algebra BX = σ(τ) is the same as the product σ — algebra:

BX = ⊗α∈ABXα
,

where BXα = σ(τ(Eα)) = σ(Eα) for all α ∈ A.

Proof. By Proposition 7.67, the topology τ may be described as the small-
est topology containing E = ∪α∈Aπ−1α (Eα). Now E is the countable union of
countable sets so is still countable. Therefore by Proposition 7.29 and Propo-
sition 7.67 we have

BX = σ(τ) = σ(τ(E)) = σ(E) = ⊗α∈Aσ(Eα)
= ⊗α∈Aσ(τα) = ⊗α∈ABXα .

Lemma 7.69. Suppose that (Y,F) is a measurable space and F : X → Y is a
map. Then to every (σ(F ),BR̄) — measurable function, H from X → R̄, there
is a (F ,BR̄) — measurable function h : Y → R̄ such that H = h ◦ F.
Proof. First suppose that H = 1A where A ∈ σ(F ) = F−1(BR̄). Let

J ∈ BR̄ such that A = F−1(J) then 1A = 1F−1(J) = 1J ◦ F and hence the
Lemma is valid in this case with h = 1J . More generally if H =

P
ai1Ai is a

simple function, then there exists Ji ∈ BR̄ such that 1Ai = 1Ji ◦ F and hence
H = h ◦ F with h :=

P
ai1Ji — a simple function on R̄.

For general (σ(F ),BR̄) — measurable function, H, from X → R̄, choose
simple functions Hn converging to H. Let hn be simple functions on R̄ such
that Hn = hn ◦ F. Then it follows that

H = lim
n→∞Hn = lim sup

n→∞
Hn = lim sup

n→∞
hn ◦ F = h ◦ F

where h := lim supn→∞ hn — a measurable function from Y to R̄.
The following is an immediate corollary of Proposition 7.52 and Lemma

7.69.
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Corollary 7.70. Let X and A be sets, and suppose for α ∈ A we are give a
measurable space (Yα,Fα) and a function fα : X → Yα. Let Y :=

Q
α∈A Yα,

F := ⊗α∈AFα be the product σ — algebra on Y and M := σ(fα : α ∈ A)
be the smallest σ-algebra on X such that each fα is measurable. Then the
function F : X → Y defined by [F (x)]α := fα(x) for each α ∈ A is (M,F)
— measurable and a function H : X → R̄ is (M,BR̄) — measurable iff there
exists a (F ,BR̄) — measurable function h from Y to R̄ such that H = h ◦ F.

7.7 Exercises

Exercise 7.71. Prove Corollary 7.40. Hint: See Exercise 7.30.

Exercise 7.72. Folland, Problem 1.5 on p.24. If M is the σ — algebra gen-
erated by E ⊂ P(X), then M is the union of the σ — algebras generated by
countable subsets F ⊂ E .
Exercise 7.73. Let (X,M) be a measure space and fn : X → F be a sequence
of measurable functions on X. Show that {x : limn→∞ fn(x) exists} ∈M.

Exercise 7.74. Show that every monotone function f : R→ R is (BR,BR) —
measurable.

Exercise 7.75. Folland problem 2.6 on p. 48.

Exercise 7.76. Suppose that X is a set, {(Yα, τα) : α ∈ A} is a family of
topological spaces and fα : X → Yα is a given function for all α ∈ A. Assuming
that Sα ⊂ τα is a sub-basis for the topology τα for each α ∈ A, show S :=
∪α∈Af−1α (Sα) is a sub-basis for the topology τ := τ(fα : α ∈ A).

Notation 7.77 Let X be a set and p := {pn}∞n=0 be a family of semi-metrics
on X, i.e. pn : X × X → [0,∞) are functions satisfying the assumptions
of metric except for the assertion that pn(x, y) = 0 implies x = y. Further
assume that pn(x, y) ≤ pn+1(x, y) for all n and if pn(x, y) = 0 for all n ∈ N
then x = y. Given n ∈ N and x ∈ X let

Bn(x, �) := {y ∈ X : pn(x, y) < �} .
We will write τ(p) form the smallest topology on X such that pn(x, ·) : X →
[0,∞) is continuous for all n ∈ N and x ∈ X, i.e. τ(p) := τ(pn(x·) : n ∈ N
and x ∈ X).

Exercise 7.78. Using Notation 7.77, show that collection of balls,

B := {Bn(x, �) : n ∈ N, x ∈ X and � > 0} ,
forms a basis for the topology τ(p). Hint: Use Exercise 7.76 to show B is a
sub-basis for the topology τ(p) and then use Exercise 7.17 to show B is in
fact a basis for the topology τ(p).
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Exercise 7.79. Using the notation in 7.77, let

d(x, y) =
∞X
n=0

2−n
pn(x, y)

1 + pn(x, y)
.

Show d is a metric on X and τd = τ(p). Conclude that a sequence {xk}∞k=1 ⊂
X converges to x ∈ X iff

lim
k→∞

pn(xk, x) = 0 for all n ∈ N.

Exercise 7.80. Let {(Xn, dn)}∞n=1 be a sequence of metric spaces, X :=Q∞
n=1Xn, and for x = (x(n))

∞
n=1 and y = (y(n))∞n=1 in X let

d(x, y) =
∞X
n=1

2−n
dn(x(n), y(n))

1 + dn(x(n), y(n))
.

(See Exercise 2.107.) Moreover, let πi : X → Xi be the projection maps, show

τd = ⊗∞n=1τdi := τ({πi : i ∈ N}).

That is show the d — metric topology is the same as the product topology on
X.
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Measures and Integration

Definition 8.1. A measure µ on a measurable space (X,M) is a function
µ :M→ [0,∞] such that
1. µ(∅) = 0 and
2. (Finite Additivity) If {Ai}ni=1 ⊂M are pairwise disjoint, i.e. Ai ∩Aj = ∅
when i 6= j, then

µ(
n[
i=1

Ai) =
nX
i=1

µ(Ai).

3. (Continuity) If An ∈M and An ↑ A, then µ(An) ↑ µ(A).
We call a triple (X,M, µ), where (X,M) is a measurable space and µ :

M→ [0,∞] is a measure, a measure space.
Remark 8.2. Properties 2) and 3) in Definition 8.1 are equivalent to the fol-
lowing condition. If {Ai}∞i=1 ⊂M are pairwise disjoint then

µ(
∞[
i=1

Ai) =
∞X
i=1

µ(Ai). (8.1)

To prove this suppose that Properties 2) and 3) in Definition 8.1 and

{Ai}∞i=1 ⊂M are pairwise disjoint. Let Bn :=
nS
i=1

Ai ↑ B :=
∞S
i=1

Ai, so that

µ(B)
(3)
= lim

n→∞µ(Bn)
(2)
= lim

n→∞

nX
i=1

µ(Ai) =
∞X
i=1

µ(Ai).

Conversely, if Eq. (8.1) holds we may take Aj = ∅ for all j ≥ n to see that
Property 2) of Definition 8.1 holds. Also if An ↑ A, let Bn := An \An−1. Then
{Bn}∞n=1 are pairwise disjoint, An = ∪nj=1Bj and A = ∪∞j=1Bj . So if Eq. (8.1)
holds we have
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µ(A) = µ
¡∪∞j=1Bj

¢
=
∞X
j=1

µ(Bj)

= lim
n→∞

nX
j=1

µ(Bj) = lim
n→∞µ(∪nj=1Bj) = lim

n→∞µ(An).

Proposition 8.3 (Basic properties of measures). Suppose that (X,M, µ)
is a measure space and E,F ∈M and {Ej}∞j=1 ⊂M, then :

1. µ(E) ≤ µ(F ) if E ⊂ F.
2. µ(∪Ej) ≤

P
µ(Ej).

3. If µ(E1) <∞ and Ej ↓ E, i.e. E1 ⊃ E2 ⊃ E3 ⊃ . . . and E = ∩jEj , then
µ(Ej) ↓ µ(E) as j →∞.

Proof.

1. Since F = E ∪ (F \E),

µ(F ) = µ(E) + µ(F \E) ≥ µ(E).

2. Let eEj = Ej \ (E1∪ · · ·∪Ej−1) so that the Ẽj ’s are pair-wise disjoint and
E = ∪ eEj . Since Ẽj ⊂ Ej it follows from Remark 8.2 and part (1), that

µ(E) =
X

µ( eEj) ≤
X

µ(Ej).

3. Define Di ≡ E1 \Ei then Di ↑ E1 \E which implies that

µ(E1)− µ(E) = lim
i→∞

µ(Di) = µ(E1)− lim
i→∞

µ(Ei)

which shows that limi→∞ µ(Ei) = µ(E).

Definition 8.4. A set E ⊂ X is a null set if E ∈M and µ(E) = 0. If P is
some “property” which is either true or false for each x ∈ X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E := {x ∈ X : P is false for x}

is a null set. For example if f and g are two measurable functions on
(X,M, µ), f = g a.e. means that µ(f 6= g) = 0.

Definition 8.5. A measure space (X,M, µ) is complete if every subset of a
null set is in M, i.e. for all F ⊂ X such that F ⊂ E ∈ M with µ(E) = 0
implies that F ∈M.
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N
F

A

Fig. 8.1. Completing a σ — algebra.

Proposition 8.6. Let (X,M, µ) be a measure space. Set

N ≡ {N ⊂ X : ∃ F ∈M 3 N ⊂ F and µ(F ) = 0}
and

M̄ = {A ∪N : A ∈M, N ∈M},
see Fig. 8.1. Then M̄ is a σ-algebra. Define µ̄(A ∪N) = µ(A), then µ̄ is the
unique measure on M̄ which extends µ.

Proof. Clearly X, ∅ ∈ M̄.
Let A ∈ M and N ∈ N and choose F ∈ M such that N ⊂ F and

µ(F ) = 0. Since N c = (F \N) ∪ F c,

(A ∪N)c = Ac ∩Nc = Ac ∩ (F \N ∪ F c)

= [Ac ∩ (F \N)] ∪ [Ac ∩ F c]

where [Ac ∩ (F \ N)] ∈ N and [Ac ∩ F c] ∈ M. Thus M̄ is closed under
complements.
If Ai ∈ M and Ni ⊂ Fi ∈ M such that µ(Fi) = 0 then ∪(Ai ∪ Ni) =

(∪Ai)∪ (∪Ni) ∈ M̄ since ∪Ai ∈M and ∪Ni ⊂ ∪Fi and µ(∪Fi) ≤
P

µ(Fi) =
0. Therefore, M̄ is a σ-algebra.
Suppose A ∪ N1 = B ∪ N2 with A,B ∈M and N1, N2,∈ N . Then A ⊂

A ∪N1 ⊂ A ∪N1 ∪ F2 = B ∪ F2 which shows that
µ(A) ≤ µ(B) + µ(F2) = µ(B).

Similarly, we show that µ(B) ≤ µ(A) so that µ(A) = µ(B) and hence µ̄(A ∪
N) := µ(A) is well defined. It is left as an exercise to show µ̄ is a measure,
i.e. that it is countable additive.
Many theorems in the sequel will require some control on the size of a

measure µ. The relevant notion for our purposes (and most purposes) is that
of a σ — finite measure defined next.
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Definition 8.7. Suppose X is a set, E ⊂M ⊂ P(X) and µ : M → [0,∞]
is a function. The function µ is σ — finite on E if there exists En ∈ E such
that µ(En) <∞ and X = ∪n=1En. IfM is a σ — algebra and µ is a measure
on M which is σ — finite on M we will say (X,M, µ) is a σ-finite measure
space.

The reader should check that if µ is a finitely additive measure on an
algebra, M, then µ is σ — finite on M iff there exists Xn ∈ M such that
Xn ↑ X and µ(Xn) <∞.

8.1 Example of Measures

Most σ — algebras and σ -additive measures are somewhat difficult to describe
and define. However, one special case is fairly easy to understand. Namely
suppose that F ⊂ P(X) is a countable or finite partition of X andM ⊂ P(X)
is the σ — algebra which consists of the collection of sets A ⊂ X such that

A = ∪ {α ∈ F : α ⊂ A} . (8.2)

It is easily seen thatM is a σ — algebra.
Any measure µ :M → [0,∞] is determined uniquely by its values on F .

Conversely, if we are given any function λ : F → [0,∞] we may define, for
A ∈M,

µ(A) =
X

α∈F3α⊂A
λ(α) =

X
α∈F

λ(α)1α⊂A

where 1α⊂A is one if α ⊂ A and zero otherwise. We may check that µ is a
measure onM. Indeed, if A =

`∞
i=1Ai and α ∈ F , then α ⊂ A iff α ⊂ Ai for

one and hence exactly one Ai. Therefore 1α⊂A =
P∞

i=1 1α⊂Ai and hence

µ(A) =
X
α∈F

λ(α)1α⊂A =
X
α∈F

λ(α)
∞X
i=1

1α⊂Ai

=
∞X
i=1

X
α∈F

λ(α)1α⊂Ai =
∞X
i=1

µ(Ai)

as desired. Thus we have shown that there is a one to one correspondence
between measures µ onM and functions λ : F → [0,∞].
We will leave the issue of constructing measures until Sections 12 and 13.

However, let us point out that interesting measures do exist. The following
theorem may be found in Theorem 12.37 or see Section 12.8.1.

Theorem 8.8. To every right continuous non-decreasing function F : R→ R
there exists a unique measure µF on BR such that

µF ((a, b]) = F (b)− F (a) ∀ −∞ < a ≤ b <∞ (8.3)
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Moreover, if A ∈ BR then

µF (A) = inf

( ∞X
i=1

(F (bi)− F (ai)) : A ⊂ ∪∞i=1(ai, bi]
)

(8.4)

= inf

( ∞X
i=1

(F (bi)− F (ai)) : A ⊂
∞a
i=1

(ai, bi]

)
. (8.5)

In fact the map F → µF is a one to one correspondence between right con-
tinuous functions F with F (0) = 0 on one hand and measures µ on BR such
that µ(J) <∞ on any bounded set J ∈ BR on the other.
Example 8.9. The most important special case of Theorem 8.8 is when F (x) =
x, in which case we writem for µF . The measurem is called Lebesgue measure.

Theorem 8.10. Lebesgue measure m is invariant under translations, i.e. for
B ∈ BR and x ∈ R,

m(x+B) = m(B). (8.6)

Moreover, m is the unique measure on BR such that m((0, 1]) = 1 and Eq.
(8.6) holds for B ∈ BR and x ∈ R. Moreover, m has the scaling property

m(λB) = |λ|m(B) (8.7)

where λ ∈ R, B ∈ BR and λB := {λx : x ∈ B}.
Proof. Let mx(B) := m(x + B), then one easily shows that mx is a

measure on BR such that mx((a, b]) = b− a for all a < b. Therefore, mx = m
by the uniqueness assertion in Theorem 8.8.
For the converse, suppose thatm is translation invariant andm((0, 1]) = 1.

Given n ∈ N, we have

(0, 1] = ∪nk=1(
k − 1
n

,
k

n
] = ∪nk=1

µ
k − 1
n

+ (0,
1

n
]

¶
.

Therefore,

1 = m((0, 1]) =
nX

k=1

m

µ
k − 1
n

+ (0,
1

n
]

¶

=
nX

k=1

m((0,
1

n
]) = n ·m((0, 1

n
]).

That is to say

m((0,
1

n
]) = 1/n.

Similarly, m((0, ln ]) = l/n for all l, n ∈ N and therefore by the translation
invariance of m,
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m((a, b]) = b− a for all a, b ∈ Q with a < b.

Finally for a, b ∈ R such that a < b, choose an, bn ∈ Q such that bn ↓ b and
an ↑ a, then (an, bn] ↓ (a, b] and thus

m((a, b]) = lim
n→∞m((an, bn]) = lim

n→∞ (bn − an) = b− a,

i.e. m is Lebesgue measure.
To prove Eq. (8.7) we may assume that λ 6= 0 since this case is trivial to

prove. Now let mλ(B) := |λ|−1m(λB). It is easily checked that mλ is again a
measure on BR which satisfies

mλ((a, b]) = λ−1m ((λa, λb]) = λ−1(λb− λa) = b− a

if λ > 0 and

mλ((a, b]) = |λ|−1m ([λb, λa)) = − |λ|−1 (λb− λa) = b− a

if λ < 0. Hence mλ = m.
We are now going to develope integration theory relative to a measure. The

integral defined in the case for Lebesgue measure, m, will be an extension of
the standard Riemann integral on R.

8.2 Integrals of Simple functions

Let (X,M, µ) be a fixed measure space in this section.

Definition 8.11. A function φ : X → F is a simple function if φ is M
— BR measurable and φ(X) is a finite set. Any such simple functions can be
written as

φ =
nX
i=1

λi1Ai with Ai ∈M and λi ∈ F. (8.8)

Indeed, let λ1, λ2, . . . , λn be an enumeration of the range of φ and Ai =
φ−1({λi}). Also note that Eq. (8.8) may be written more intrinsically as

φ =
X
y∈F

y1φ−1({y}).

The next theorem shows that simple functions are “pointwise dense” in
the space of measurable functions.

Theorem 8.12 (Approximation Theorem). Let f : X → [0,∞] be mea-
surable and define
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φn(x) ≡
22n−1X
k=0

k

2n
1f−1(( k

2n ,
k+1
2n ])(x) + 2

n1f−1((2n,∞])(x)

=
22n−1X
k=0

k

2n
1{ k

2n<f≤k+1
2n }(x) + 2

n1{f>2n}(x)

then φn ≤ f for all n, φn(x) ↑ f(x) for all x ∈ X and φn ↑ f uniformly on
the sets XM := {x ∈ X : f(x) ≤M} with M < ∞. Moreover, if f : X →
C is a measurable function, then there exists simple functions φn such that
limn→∞ φn(x) = f(x) for all x and |φn| ↑ |f | as n→∞.

Proof. It is clear by construction that φn(x) ≤ f(x) for all x and that
0 ≤ f(x)−φn(x) ≤ 2−n if x ∈ X2n . From this it follows that φn(x) ↑ f(x) for
all x ∈ X and φn ↑ f uniformly on bounded sets.
Also notice that

(
k

2n
,
k + 1

2n
] = (

2k

2n+1
,
2k + 2

2n+1
]

= (
2k

2n+1
,
2k + 1

2n+1
] ∪ (2k + 1

2n+1
,
2k + 2

2n+1
]

and for x ∈ f−1
¡
( 2k
2n+1 ,

2k+1
2n+1 ]

¢
, φn(x) = φn+1(x) =

2k
2n+1 and for x ∈

f−1
¡
( 2k+12n+1 ,

2k+2
2n+1 ]

¢
, φn(x) =

2k
2n+1 < 2k+1

2n+1 = φn+1(x). Similarly

(2n,∞] = (2n, 2n+1] ∪ (2n+1,∞],

so for x ∈ f−1((2n+1,∞]) φn(x) = 2n < 2n+1 = φn+1(x) and for x ∈
f−1((2n, 2n+1]), φn+1(x) ≥ 2n = φn(x). Therefore φn ≤ φn+1 for all n and
we have completed the proof of the first assertion.
For the second assertion, first assume that f : X → R is a measurable

function and choose φ±n to be simple functions such that φ
±
n ↑ f± as n →∞

and define φn = φ+n − φ−n . Then

|φn| = φ+n + φ−n ≤ φ+n+1 + φ−n+1 = |φn+1|

and clearly |φn| = φ+n +φ−n ↑ f++f− = |f | and φn = φ+n −φ−n → f+−f− = f
as n→∞.
Now suppose that f : X → C is measurable. We may now choose simple

function un and vn such that |un| ↑ |Re f | , |vn| ↑ |Im f | , un → Re f and
vn → Im f as n→∞. Let φn = un + ivn, then

|φn|2 = u2n + v2n ↑ |Re f |2 + |Im f |2 = |f |2

and φn = un + ivn → Re f + i Im f = f as n→∞.
We are now ready to define the Lebesgue integral. We will start by inte-

grating simple functions and then proceed to general measurable functions.
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Definition 8.13. Let F = C or [0,∞) and suppose that φ : X → F is a simple
function. If F = C assume further that µ(φ−1({y})) < ∞ for all y 6= 0 in C.
For such functions φ, define Iµ(φ) by

Iµ(φ) =
X
y∈F

yµ(φ−1({y})).

Proposition 8.14. Let λ ∈ F and φ and ψ be two simple functions, then Iµ
satisfies:

1.
Iµ(λφ) = λIµ(φ). (8.9)

2.
Iµ(φ+ ψ) = Iµ(ψ) + Iµ(φ).

3. If φ and ψ are non-negative simple functions such that φ ≤ ψ then

Iµ(φ) ≤ Iµ(ψ).

Proof. Let us write {φ = y} for the set φ−1({y}) ⊂ X and µ(φ = y) for
µ({φ = y}) = µ(φ−1 ({y})) so that

Iµ(φ) =
X
y∈C

yµ(φ = y).

We will also write {φ = a, ψ = b} for φ−1({a}) ∩ ψ−1({b}). This notation is
more intuitive for the purposes of this proof. Suppose that λ ∈ F then

Iµ(λφ) =
X
y∈F

y µ(λφ = y) =
X
y∈F

y µ(φ = y/λ)

=
X
z∈F

λz µ(φ = z) = λIµ(φ)

provided that λ 6= 0. The case λ = 0 is clear, so we have proved 1.
Suppose that φ and ψ are two simple functions, then

Iµ(φ+ ψ) =
X
z∈F

z µ(φ+ ψ = z)

=
X
z∈F

z µ (∪w∈F {φ = w, ψ = z − w})

=
X
z∈F

z
X
w∈F

µ(φ = w, ψ = z − w)

=
X
z,w∈F

(z + w)µ(φ = w, ψ = z)

=
X
z∈F

z µ(ψ = z) +
X
w∈F

w µ(φ = w)

= Iµ(ψ) + Iµ(φ).
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which proves 2.
For 3. if φ and ψ are non-negative simple functions such that φ ≤ ψ

Iµ(φ) =
X
a≥0

aµ(φ = a) =
X
a,b≥0

aµ(φ = a, ψ = b)

≤
X
a,b≥0

bµ(φ = a, ψ = b) =
X
b≥0

bµ(ψ = b) = Iµ(ψ),

wherein the third inequality we have used {φ = a, ψ = b} = ∅ if a > b.

8.3 Integrals of positive functions

Definition 8.15. Let L+ = {f : X → [0,∞] : f is measurable}. DefineZ
X

fdµ = sup {Iµ(φ) : φ is simple and φ ≤ f} .

Because of item 3. of Proposition 8.14, if φ is a non-negative simple function,R
X
φdµ = Iµ(φ) so that

R
X
is an extension of Iµ. We say the f ∈ L+ is

integrable if
R
X
fdµ <∞.

Remark 8.16. Notice that we still have the monotonicity property: 0 ≤ f ≤ g
then Z

X

fdµ = sup {Iµ(φ) : φ is simple and φ ≤ f}

≤ sup {Iµ(φ) : φ is simple and φ ≤ g} ≤
Z
X

g.

Similarly if c > 0, Z
X

cfdµ = c

Z
X

fdµ.

Also notice that if f is integrable, then µ ({f =∞}) = 0.
Lemma 8.17. Let X be a set and ρ : X → [0,∞] be a function, let µ =P

x∈X ρ(x)δx onM = P(X), i.e.

µ(A) =
X
x∈A

ρ(x).

If f : X → [0,∞] is a function (which is necessarily measurable), thenZ
X

fdµ =
X
X

ρf.
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Proof. Suppose that φ : X → [0,∞] is a simple function, then φ =P
z∈[0,∞] z1φ−1({z}) andX
X

ρφ =
X
x∈X

ρ(x)
X

z∈[0,∞]
z1φ−1({z})(x) =

X
z∈[0,∞]

z
X
x∈X

ρ(x)1φ−1({z})(x)

=
X

z∈[0,∞]
zµ(φ−1({z})) =

Z
X

φdµ.

So if φ : X → [0,∞) is a simple function such that φ ≤ f, thenZ
X

φdµ =
X
X

ρφ ≤
X
X

ρf.

Taking the sup over φ in this last equation then shows thatZ
X

fdµ ≤
X
X

ρf.

For the reverse inequality, let Λ ⊂⊂ X be a finite set and N ∈ (0,∞).
Set fN (x) = min {N, f(x)} and let φN,Λ be the simple function given by
φN,Λ(x) := 1Λ(x)f

N (x). Because φN,Λ(x) ≤ f(x),X
Λ

ρfN =
X
X

ρφN,Λ =

Z
X

φN,Λdµ ≤
Z
X

fdµ.

Since fN ↑ f asN →∞, we may letN →∞ in this last equation to concluded
that X

Λ

ρf ≤
Z
X

fdµ

and since Λ is arbitrary we learn thatX
X

ρf ≤
Z
X

fdµ.

Theorem 8.18 (Monotone Convergence Theorem). Suppose fn ∈ L+

is a sequence of functions such that fn ↑ f (f is necessarily in L+) thenZ
fn ↑

Z
f as n→∞.

Proof. Since fn ≤ fm ≤ f, for all n ≤ m <∞,Z
fn ≤

Z
fm ≤

Z
f
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from which if follows
R
fn is increasing in n and

lim
n→∞

Z
fn ≤

Z
f. (8.10)

For the opposite inequality, let φ be a simple function such that 0 ≤ φ ≤ f
and let α ∈ (0, 1). By Proposition 8.14,Z

fn ≥
Z
1Enfn ≥

Z
En

αφ = α

Z
En

φ. (8.11)

Write φ =
P

λi1Bi with λi > 0 and Bi ∈M, then

lim
n→∞

Z
En

φ = lim
n→∞

X
λi

Z
En

1Bi =
X

λiµ(En ∩Bi)

=
X

λi lim
n→∞µ(En ∩Bi)

=
X

λiµ(Bi) =

Z
φ.

Using this we may let n→∞ in Eq. (8.11) to conclude

lim
n→∞

Z
fn ≥ α lim

n→∞

Z
En

φ = α

Z
X

φ.

Because this equation holds for all simple functions 0 ≤ φ ≤ f, form the
definition of

R
f we have lim

n→∞
R
fn ≥ α

R
f. Since α ∈ (0, 1) is arbitrary,

lim
n→∞

R
fn ≥

R
f which combined with Eq. (8.10) proves the theorem.

The following simple lemma will be use often in the sequel.

Lemma 8.19 (Chebyshev’s Inequality). Suppose that f ≥ 0 is a measur-
able function, then for any � > 0,

µ(f ≥ �) ≤ 1
�

Z
X

fdµ. (8.12)

In particular if
R
X
fdµ < ∞ then µ(f = ∞) = 0 (i.e. f < ∞ a.e.) and the

set {f > 0} is σ — finite.
Proof. Since 1{f≥�} ≤ 1{f≥�} 1� f ≤ 1

�f,

µ(f ≥ �) =

Z
X

1{f≥�}dµ ≤
Z
X

1{f≥�}
1

�
fdµ ≤ 1

�

Z
X

fdµ.

If M :=
R
X
fdµ <∞, then

µ(f =∞) ≤ µ(f ≥ n) ≤ M

n
→ 0 as n→∞

and {f ≥ 1/n} ↑ {f > 0} with µ(f ≥ 1/n) ≤ nM <∞ for all n.
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Corollary 8.20. If fn ∈ L+ is a sequence of functions thenZ X
n

fn =
X
n

Z
fn.

In particular, if
P

n

R
fn <∞ then

P
n fn <∞ a.e.

Proof. First off we show thatZ
(f1 + f2) =

Z
f1 +

Z
f2

by choosing non-negative simple function φn and ψn such that φn ↑ f1 and
ψn ↑ f2. Then (φn +ψn) is simple as well and (φn+ψn) ↑ (f1+ f2) so by the
monotone convergence theorem,Z

(f1 + f2) = lim
n→∞

Z
(φn + ψn) = lim

n→∞

µZ
φn +

Z
ψn

¶
= lim

n→∞

Z
φn + lim

n→∞

Z
ψn =

Z
f1 +

Z
f2.

Now to the general case. Let gN ≡
NP
n=1

fn and g =
∞P
1
fn, then gN ↑ g and so

again by monotone convergence theorem and the additivity just proved,

∞X
n=1

Z
fn := lim

N→∞

NX
n=1

Z
fn = lim

N→∞

Z NX
n=1

fn

= lim
N→∞

Z
gN =

Z
g =

∞X
n=1

Z
fn.

Remark 8.21. It is in the proof of this corollary (i.e. the linearity of the in-
tegral) that we really make use of the assumption that all of our functions
are measurable. In fact the definition

R
fdµ makes sense for all functions

f : X → [0,∞] not just measurable functions. Moreover the monotone conver-
gence theorem holds in this generality with no change in the proof. However,
in the proof of Corollary 8.20, we use the approximation Theorem 8.12 which
relies heavily on the measurability of the functions to be approximated.

The following Lemma and the next Corollary are simple applications of
Corollary 8.20.

Lemma 8.22 (First Borell-Carnteli- Lemma.). Let (X,M, µ) be a mea-
sure space, An ∈M, and set

{An i.o.} = {x ∈ X : x ∈ An for infinitely many n’s} =
∞\

N=1

[
n≥N

An.

If
P∞

n=1 µ(An) <∞ then µ({An i.o.}) = 0.
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Proof. (First Proof.) Let us first observe that

{An i.o.} =
(
x ∈ X :

∞X
n=1

1An(x) =∞
)
.

Hence if
P∞

n=1 µ(An) <∞ then

∞ >
∞X
n=1

µ(An) =
∞X
n=1

Z
X

1An dµ =

Z
X

∞X
n=1

1An dµ

implies that
∞P
n=1

1An(x) <∞ for µ - a.e. x. That is to say µ({An i.o.}) = 0.
(Second Proof.) Of course we may give a strictly measure theoretic proof

of this fact:

µ(An i.o.) = lim
N→∞

µ

 [
n≥N

An


≤ lim

N→∞

X
n≥N

µ(An)

and the last limit is zero since
P∞

n=1 µ(An) <∞.

Corollary 8.23. Suppose that (X,M, µ) is a measure space and {An}∞n=1 ⊂
M is a collection of sets such that µ(Ai ∩Aj) = 0 for all i 6= j, then

µ (∪∞n=1An) =
∞X
n=1

µ(An).

Proof. Since

µ (∪∞n=1An) =

Z
X

1∪∞n=1Andµ and

∞X
n=1

µ(An) =

Z
X

∞X
n=1

1Andµ

it suffices to show ∞X
n=1

1An = 1∪∞n=1An µ — a.e. (8.13)

Now
P∞

n=1 1An ≥ 1∪∞n=1An and
P∞

n=1 1An(x) 6= 1∪∞n=1An(x) iff x ∈ Ai∩Aj for
some i 6= j, that is(

x :
∞X
n=1

1An(x) 6= 1∪∞n=1An(x)
)
= ∪i<jAi ∩Aj

and the later set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (8.13) and hence the corollary.
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Example 8.24. Suppose −∞ < a < b < ∞, f ∈ C([a, b], [0,∞)) and m be
Lebesgue measure on R. Also let πk = {a = ak0 < ak1 < · · · < aknk = b} be a
sequence of refining partitions (i.e. πk ⊂ πk+1 for all k) such that

mesh(πk) := max{
¯̄
akj − ak+1j−1

¯̄
: j = 1, . . . , nk}→ 0 as k →∞.

For each k, let

fk(x) = f(a)1{a} +
nk−1X
l=0

min
©
f(x) : akl ≤ x ≤ akl+1

ª
1(akl ,akl+1](x)

then fk ↑ f as k →∞ and so by the monotone convergence theorem,Z b

a

fdm :=

Z
[a,b]

fdm = lim
k→∞

Z b

a

fk dm

= lim
k→∞

nkX
l=0

min
©
f(x) : akl ≤ x ≤ akl+1

ª
m
¡
(akl , a

k
l+1]

¢
=

Z b

a

f(x)dx.

The latter integral being the Riemann integral.

We can use the above result to integrate some non-Riemann integrable
functions:

Example 8.25. For all λ > 0,
R∞
0

e−λxdm(x) = λ−1 and
R
R

1
1+x2 dm(x) =

π. The proof of these equations are similar. By the monotone convergence
theorem, Example 8.24 and the fundamental theorem of calculus for Riemann
integrals (or see Theorem 8.40 below),Z ∞

0

e−λxdm(x) = lim
N→∞

Z N

0

e−λxdm(x) = lim
N→∞

Z N

0

e−λxdx

= − lim
N→∞

1

λ
e−λx|N0 = λ−1

and Z
R

1

1 + x2
dm(x) = lim

N→∞

Z N

−N

1

1 + x2
dm(x) = lim

N→∞

Z N

−N

1

1 + x2
dx

= tan−1(N)− tan−1(−N) = π.

Let us also consider the functions x−p,Z
(0,1]

1

xp
dm(x) = lim

n→∞

Z 1

0

1( 1n ,1](x)
1

xp
dm(x)

= lim
n→∞

Z 1

1
n

1

xp
dx = lim

n→∞
x−p+1

1− p

¯̄̄̄1
1/n

=

½ 1
1−p if p < 1
∞ if p > 1
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If p = 1 we findZ
(0,1]

1

xp
dm(x) = lim

n→∞

Z 1

1
n

1

x
dx = lim

n→∞ ln(x)|
1
1/n =∞.

Example 8.26. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =
∞X
n=1

2−n
1p|x− rn|

with the convention that

1p|x− rn|
= 5 if x = rn.

Since, By Theorem 8.40,Z 1

0

1p|x− rn|
dx =

Z 1

rn

1√
x− rn

dx+

Z rn

0

1√
rn − x

dx

= 2
√
x− rn|1rn − 2

√
rn − x|rn0 = 2

¡√
1− rn −√rn

¢
≤ 4,

we findZ
[0,1]

f(x)dm(x) =
∞X
n=1

2−n
Z
[0,1]

1p|x− rn|
dx ≤

∞X
n=1

2−n4 = 4 <∞.

In particular, m(f =∞) = 0, i.e. that f <∞ for almost every x ∈ [0, 1] and
this implies that

∞X
n=1

2−n
1p|x− rn|

<∞ for a.e. x ∈ [0, 1].

This result is somewhat surprising since the singularities of the summands
form a dense subset of [0, 1].

Proposition 8.27. Suppose that f ≥ 0 is a measurable function. ThenR
X
fdµ = 0 iff f = 0 a.e. Also if f, g ≥ 0 are measurable functions such that

f ≤ g a.e. then
R
fdµ ≤ R gdµ. In particular if f = g a.e. then

R
fdµ =

R
gdµ.

Proof. If f = 0 a.e. and φ ≤ f is a simple function then φ = 0 a.e.
This implies that µ(φ−1({y})) = 0 for all y > 0 and hence

R
X
φdµ = 0 and

therefore
R
X
fdµ = 0.

Conversely, if
R
fdµ = 0, then by Chebyshev’s Inequality (Lemma 8.19),

µ(f ≥ 1/n) ≤ n

Z
fdµ = 0 for all n.
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Therefore, µ(f > 0) ≤P∞n=1 µ(f ≥ 1/n) = 0, i.e. f = 0 a.e.
For the second assertion let E be the exceptional set where g > f, i.e.

E := {x ∈ X : g(x) > f(x)}. By assumption E is a null set and 1Ecf ≤ 1Ecg
everywhere. Because g = 1Ecg + 1Eg and 1Eg = 0 a.e.,Z

gdµ =

Z
1Ecgdµ+

Z
1Egdµ =

Z
1Ecgdµ

and similarly
R
fdµ =

R
1Ecfdµ. Since 1Ecf ≤ 1Ecg everywhere,Z

fdµ =

Z
1Ecfdµ ≤

Z
1Ecgdµ =

Z
gdµ.

Corollary 8.28. Suppose that {fn} is a sequence of non-negative functions
and f is a measurable function such that fn ↑ f off a null set, thenZ

fn ↑
Z

f as n→∞.

Proof. Let E ⊂ X be a null set such that fn1Ec ↑ f1Ec as n→∞. Then
by the monotone convergence theorem and Proposition 8.27,Z

fn =

Z
fn1Ec ↑

Z
f1Ec =

Z
f as n→∞.

Lemma 8.29 (Fatou’s Lemma). If fn : X → [0,∞] is a sequence of mea-
surable functions then Z

lim inf
n→∞ fn ≤ lim inf

n→∞

Z
fn

Proof. Define gk ≡ inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, Z
gk ≤

Z
fn for all n ≥ k

and therefore Z
gk ≤ lim inf

n→∞

Z
fn for all k.

We may now use the monotone convergence theorem to let k →∞ to findZ
lim inf

n→∞ fn =

Z
lim
k→∞

gk
MCT
= lim

k→∞

Z
gk ≤ lim inf

n→∞

Z
fn.
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8.4 Integrals of Complex Valued Functions

Definition 8.30. A measurable function f : X → R̄ is integrable if f+ ≡
f1{f≥0} and f− = −f 1{f≤0} are integrable. We write L1 for the space of
integrable functions. For f ∈ L1, letZ

fdµ =

Z
f+dµ−

Z
f−dµ

Convention: If f, g : X → R̄ are two measurable functions, let f + g
denote the collection of measurable functions h : X → R̄ such that h(x) =
f(x)+g(x) whenever f(x)+g(x) is well defined, i.e. is not of the form∞−∞
or −∞ +∞. We use a similar convention for f − g. Notice that if f, g ∈ L1

and h1, h2 ∈ f + g, then h1 = h2 a.e. because |f | <∞ and |g| <∞ a.e.

Remark 8.31. Since
f± ≤ |f | ≤ f+ + f−,

a measurable function f is integrable iff
R |f | dµ < ∞. If f, g ∈ L1 and

f = g a.e. then f± = g± a.e. and so it follows from Proposition 8.27 thatR
fdµ =

R
gdµ. In particular if f, g ∈ L1 we may defineZ

X

(f + g) dµ =

Z
X

hdµ

where h is any element of f + g.

Proposition 8.32. The map

f ∈ L1 →
Z
X

fdµ ∈ R

is linear and has the monotonicity property:
R
fdµ ≤ R gdµ for all f, g ∈ L1

such that f ≤ g a.e.

Proof. Let f, g ∈ L1 and a, b ∈ R. By modifying f and g on a null set, we
may assume that f, g are real valued functions. We have af+bg ∈ L1 because

|af + bg| ≤ |a||f |+ |b| |g| ∈ L1.

If a < 0, then
(af)+ = −af− and (af)− = −af+

so that Z
af = −a

Z
f− + a

Z
f+ = a(

Z
f+ −

Z
f−) = a

Z
f.

A similar calculation works for a > 0 and the case a = 0 is trivial so we have
shown that



176 8 Measures and IntegrationZ
af = a

Z
f.

Now set h = f + g. Since h = h+ − h−,

h+ − h− = f+ − f− + g+ − g−

or
h+ + f− + g− = h− + f+ + g+.

Therefore, Z
h+ +

Z
f− +

Z
g− =

Z
h− +

Z
f+ +

Z
g+

and henceZ
h =

Z
h+ −

Z
h− =

Z
f+ +

Z
g+ −

Z
f− −

Z
g− =

Z
f +

Z
g.

Finally if f+ − f− = f ≤ g = g+ − g− then f+ + g− ≤ g+ + f− which
implies that Z

f+ +

Z
g− ≤

Z
g+ +

Z
f−

or equivalently thatZ
f =

Z
f+ −

Z
f− ≤

Z
g+ −

Z
g− =

Z
g.

The monotonicity property is also a consequence of the linearity of the in-
tegral, the fact that f ≤ g a.e. implies 0 ≤ g − f a.e. and Proposition 8.27.

Definition 8.33. A measurable function f : X → C is integrable ifR
X
|f | dµ <∞, again we write f ∈ L1. Because, max (|Re f | , |Im f |) ≤ |f | ≤√
2max (|Re f | , |Im f |) , R |f | dµ <∞ iffZ

|Re f | dµ+
Z
|Im f | dµ <∞.

For f ∈ L1 define Z
f dµ =

Z
Re f dµ+ i

Z
Im f dµ.

It is routine to show the integral is still linear on the complex L1 (prove!).

Proposition 8.34. Suppose that f ∈ L1, then¯̄̄̄Z
X

fdµ

¯̄̄̄
≤
Z
X

|f |dµ.
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Proof. Start by writing
R
X
f dµ = Reiθ. Then using the monotonicity in

Proposition 8.27,¯̄̄̄Z
X

fdµ

¯̄̄̄
= R = e−iθ

Z
X

fdµ =

Z
X

e−iθfdµ

=

Z
X

Re
¡
e−iθf

¢
dµ ≤

Z
X

¯̄
Re
¡
e−iθf

¢¯̄
dµ ≤

Z
X

|f | dµ.

Proposition 8.35. f, g ∈ L1, then

1. The set {f 6= 0} is σ-finite, in fact {|f | ≥ 1
n} ↑ {f 6= 0} and µ(|f | ≥ 1

n) <∞ for all n.
2. The following are equivalent

a)
R
E
f =

R
E
g for all E ∈M

b)
R
X

|f − g| = 0
c) f = g a.e.

Proof. 1. By Chebyshev’s inequality, Lemma 8.19,

µ(|f | ≥ 1

n
) ≤ n

Z
X

|f |dµ <∞

for all n.
2. (a) =⇒ (c) Notice thatZ

E

f =

Z
E

g ⇔
Z
E

(f − g) = 0

for all E ∈M. Taking E = {Re(f − g) > 0} and using 1E Re(f − g) ≥ 0, we
learn that

0 = Re

Z
E

(f − g)dµ =

Z
1E Re(f − g) =⇒ 1E Re(f − g) = 0 a.e.

This implies that 1E = 0 a.e. which happens iff

µ ({Re(f − g) > 0}) = µ(E) = 0.

Similar µ(Re(f−g) < 0) = 0 so that Re(f−g) = 0 a.e. Similarly, Im(f−g) = 0
a.e and hence f − g = 0 a.e., i.e. f = g a.e.
(c) =⇒ (b) is clear and so is (b) =⇒ (a) since¯̄̄̄Z

E

f −
Z
E

g

¯̄̄̄
≤
Z
|f − g| = 0.
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Definition 8.36. Let (X,M, µ) be a measure space and L1(µ) = L1(X,M, µ)
denote the set of L1 functions modulo the equivalence relation; f ∼ g iff f = g
a.e. We make this into a normed space using the norm

kf − gkL1 =
Z
|f − g| dµ

and into a metric space using ρ1(f, g) = kf − gkL1 .
Remark 8.37. More generally we may define Lp(µ) = Lp(X,M, µ) for p ∈
[1,∞) as the set of measurable functions f such thatZ

X

|f |p dµ <∞

modulo the equivalence relation; f ∼ g iff f = g a.e.

We will see in Section 10 that

kfkLp =
µZ

|f |p dµ
¶1/p

for f ∈ Lp(µ)

is a norm and (Lp(µ), k·kLp) is a Banach space in this norm.
Theorem 8.38 (Dominated Convergence Theorem). Suppose fn, gn, g ∈
L1, fn → f a.e., |fn| ≤ gn ∈ L1, gn → g a.e. and

R
X
gndµ →

R
X
gdµ. Then

f ∈ L1 and Z
X

fdµ = lim
h→∞

Z
X

fndµ.

(In most typical applications of this theorem gn = g ∈ L1 for all n.)

Proof. Notice that |f | = limn→∞ |fn| ≤ limn→∞ |gn| ≤ g a.e. so that
f ∈ L1. By considering the real and imaginary parts of f separately, it suffices
to prove the theorem in the case where f is real. By Fatou’s Lemma,Z

X

(g ± f)dµ =

Z
X

lim inf
n→∞ (gn ± fn) dµ ≤ lim inf

n→∞

Z
X

(gn ± fn) dµ

= lim
n→∞

Z
X

gndµ+ lim inf
n→∞

µ
±
Z
X

fndµ

¶
=

Z
X

gdµ+ lim inf
n→∞

µ
±
Z
X

fndµ

¶
Since lim infn→∞(−an) = − lim supn→∞ an, we have shown,Z

X

gdµ±
Z
X

fdµ ≤
Z
X

gdµ+

½
lim infn→∞

R
X
fndµ

− lim supn→∞
R
X
fndµ

and therefore

lim sup
n→∞

Z
X

fndµ ≤
Z
X

fdµ ≤ lim inf
n→∞

Z
X

fndµ.

This shows that lim
n→∞

R
X
fndµ exists and is equal to

R
X
fdµ.
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Corollary 8.39. Let {fn}∞n=1 ⊂ L1 be a sequence such that
P∞

n=1 kfnkL1 <
∞, then

P∞
n=1 fn is convergent a.e. andZ

X

Ã ∞X
n=1

fn

!
dµ =

∞X
n=1

Z
X

fndµ.

Proof. The condition
P∞

n=1 kfnkL1 <∞ is equivalent to
P∞

n=1 |fn| ∈ L1.

Hence
P∞

n=1 fn is almost everywhere convergent and if SN :=
PN

n=1 fn, then

|SN | ≤
NX
n=1

|fn| ≤
∞X
n=1

|fn| ∈ L1.

So by the dominated convergence theorem,Z
X

Ã ∞X
n=1

fn

!
dµ =

Z
X

lim
N→∞

SNdµ = lim
N→∞

Z
X

SNdµ

= lim
N→∞

NX
n=1

Z
X

fndµ =
∞X
n=1

Z
X

fndµ.

Theorem 8.40 (The Fundamental Theorem of Calculus). Suppose
−∞ < a < b <∞, f ∈ C((a, b),R)∩L1((a, b),m) and F (x) :=

R x
a
f(y)dm(y).

Then

1. F ∈ C([a, b],R) ∩C1((a, b),R).
2. F 0(x) = f(x) for all x ∈ (a, b).
3. If G ∈ C([a, b],R) ∩ C1((a, b),R) is an anti-derivative of f on (a, b) (i.e.

f = G0|(a,b)) then Z b

a

f(x)dm(x) = G(b)−G(a).

Proof. Since F (x) :=
R
R 1(a,x)(y)f(y)dm(y), limx→z 1(a,x)(y) = 1(a,z)(y)

for m — a.e. y and
¯̄
1(a,x)(y)f(y)

¯̄ ≤ 1(a,b)(y) |f(y)| is an L1 — function, it
follows from the dominated convergence Theorem 8.38 that F is continuous
on [a, b]. Simple manipulations show,¯̄̄̄

F (x+ h)− F (x)

h
− f(x)

¯̄̄̄
=
1

|h|


¯̄̄R x+h
x

[f(y)− f(x)] dm(y)
¯̄̄
if h > 0¯̄̄R x

x+h
[f(y)− f(x)] dm(y)

¯̄̄
if h < 0

≤ 1

|h|

(R x+h
x

|f(y)− f(x)| dm(y) if h > 0R x
x+h

|f(y)− f(x)| dm(y) if h < 0

≤ sup {|f(y)− f(x)| : y ∈ [x− |h| , x+ |h|]}
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and the latter expression, by the continuity of f, goes to zero as h→ 0 . This
shows F 0 = f on (a, b).
For the converse direction, we have by assumption that G0(x) = F 0(x) for

x ∈ (a, b). Therefore by the mean value theorem, F−G = C for some constant
C. HenceZ b

a

f(x)dm(x) = F (b) = F (b)− F (a)

= (G(b) + C)− (G(a) + C) = G(b)−G(a).

Example 8.41. The following limit holds,

lim
n→∞

Z n

0

(1− x

n
)ndm(x) = 1.

Let fn(x) = (1 − x
n)

n1[0,n](x) and notice that limn→∞ fn(x) = e−x. We will
now show

0 ≤ fn(x) ≤ e−x for all x ≥ 0.
It suffices to consider x ∈ [0, n]. Let g(x) = exfn(x), then for x ∈ (0, n),

d

dx
ln g(x) = 1 + n

1

(1− x
n)
(− 1

n
) = 1− 1

(1− x
n)
≤ 0

which shows that ln g(x) and hence g(x) is decreasing on [0, n]. Therefore
g(x) ≤ g(0) = 1, i.e.

0 ≤ fn(x) ≤ e−x.

From Example 8.25, we knowZ ∞
0

e−xdm(x) = 1 <∞,

so that e−x is an integrable function on [0,∞). Hence by the dominated con-
vergence theorem,

lim
n→∞

Z n

0

(1− x

n
)ndm(x) = lim

n→∞

Z ∞
0

fn(x)dm(x)

=

Z ∞
0

lim
n→∞ fn(x)dm(x) =

Z ∞
0

e−xdm(x) = 1.

Example 8.42 (Integration of Power Series). Suppose R > 0 and {an}∞n=0 is a
sequence of complex numbers such that

P∞
n=0 |an| rn < ∞ for all r ∈ (0, R).

ThenZ β

α

Ã ∞X
n=0

anx
n

!
dm(x) =

∞X
n=0

an

Z β

α

xndm(x) =
∞X
n=0

an
βn+1 − αn+1

n+ 1
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for all −R < α < β < R. Indeed this follows from Corollary 8.39 since

∞X
n=0

Z β

α

|an| |x|n dm(x) ≤
∞X
n=0

ÃZ |β|

0

|an| |x|n dm(x) +
Z |α|

0

|an| |x|n dm(x)
!

≤
∞X
n=0

|an| |β|
n+1

+ |α|n+1
n+ 1

≤ 2r
∞X
n=0

|an| rn <∞

where r = max(|β| , |α|).
Corollary 8.43 (Differentiation Under the Integral). Suppose that J ⊂
R is an open interval and f : J ×X → C is a function such that

1. x→ f(t, x) is measurable for each t ∈ J.
2. f(t0, ·) ∈ L1(µ) for some t0 ∈ J.
3. ∂f∂t (t, x) exists for all (t, x).

4. There is a function g ∈ L1 such that
¯̄̄
∂f
∂t (t, ·)

¯̄̄
≤ g ∈ L1 for each t ∈ J.

Then f(t, ·) ∈ L1(µ) for all t ∈ J (i.e.
R |f(t, x)| dµ(x) < ∞), t →R

X
f(t, x)dµ(x) is a differentiable function on J and

d

dt

Z
X

f(t, x)dµ(x) =

Z
X

∂f

∂t
(t, x)dµ(x).

Proof. (The proof is essentially the same as for sums.) By considering the
real and imaginary parts of f separately, we may assume that f is real. Also
notice that

∂f

∂t
(t, x) = lim

n→∞n(f(t+ n−1, x)− f(t, x))

and therefore, for x → ∂f
∂t (t, x) is a sequential limit of measurable functions

and hence is measurable for all t ∈ J. By the mean value theorem,

|f(t, x)− f(t0, x)| ≤ g(x) |t− t0| for all t ∈ J (8.14)

and hence

|f(t, x)| ≤ |f(t, x)− f(t0, x)|+ |f(t0, x)| ≤ g(x) |t− t0|+ |f(t0, x)| .
This shows f(t, ·) ∈ L1(µ) for all t ∈ J. Let G(t) :=

R
X
f(t, x)dµ(x), then

G(t)−G(t0)

t− t0
=

Z
X

f(t, x)− f(t0, x)

t− t0
dµ(x).

By assumption,

lim
t→t0

f(t, x)− f(t0, x)

t− t0
=

∂f

∂t
(t, x) for all x ∈ X

and by Eq. (8.14),
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f(t, x)− f(t0, x)

t− t0

¯̄̄̄
≤ g(x) for all t ∈ J and x ∈ X.

Therefore, we may apply the dominated convergence theorem to conclude

lim
n→∞

G(tn)−G(t0)

tn − t0
= lim

n→∞

Z
X

f(tn, x)− f(t0, x)

tn − t0
dµ(x)

=

Z
X

lim
n→∞

f(tn, x)− f(t0, x)

tn − t0
dµ(x)

=

Z
X

∂f

∂t
(t0, x)dµ(x)

for all sequences tn ∈ J \ {t0} such that tn → t0. Therefore, Ġ(t0) =
limt→t0

G(t)−G(t0)
t−t0 exists and

Ġ(t0) =

Z
X

∂f

∂t
(t0, x)dµ(x).

Example 8.44. Recall from Example 8.25 that

λ−1 =
Z
[0,∞)

e−λxdm(x) for all λ > 0.

Let � > 0. For λ ≥ 2� > 0 and n ∈ N there exists Cn(�) <∞ such that

0 ≤
µ
− d

dλ

¶n
e−λx = xne−λx ≤ C(�)e−�x.

Using this fact, Corollary 8.43 and induction gives

n!λ−n−1 =
µ
− d

dλ

¶n
λ−1 =

Z
[0,∞)

µ
− d

dλ

¶n
e−λxdm(x)

=

Z
[0,∞)

xne−λxdm(x).

That is n! = λn
R
[0,∞) x

ne−λxdm(x). Recall that

Γ (t) :=

Z
[0,∞)

xt−1e−xdx for t > 0.

(The reader should check that Γ (t) < ∞ for all t > 0.) We have just shown
that Γ (n+ 1) = n! for all n ∈ N.
Remark 8.45. Corollary 8.43 may be generalized by allowing the hypothesis
to hold for x ∈ X \ E where E ∈ M is a fixed null set, i.e. E must be
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independent of t. Consider what happens if we formally apply Corollary 8.43
to g(t) :=

R∞
0
1x≤tdm(x),

ġ(t) =
d

dt

Z ∞
0

1x≤tdm(x)
?
=

Z ∞
0

∂

∂t
1x≤tdm(x).

The last integral is zero since ∂
∂t1x≤t = 0 unless t = x in which case it is

not defined. On the other hand g(t) = t so that ġ(t) = 1. (The reader should
decide which hypothesis of Corollary 8.43 has been violated in this example.)

8.5 Measurability on Complete Measure Spaces

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 8.46. Suppose that (X,M, µ) is a complete measure space1 and
f : X → R is measurable.

1. If g : X → R is a function such that f(x) = g(x) for µ — a.e. x, then g is
measurable.

2. If fn : X → R are measurable and f : X → R is a function such that
limn→∞ fn = f, µ - a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(x) 6= g(x)} which is assumed to be in M and
µ(E) = 0. Then g = 1Ecf + 1Eg since f = g on Ec. Now 1Ecf is measurable
so g will be measurable if we show 1Eg is measurable. For this consider,

(1Eg)
−1(A) =

½
Ec ∪ (1Eg)−1(A \ {0}) if 0 ∈ A
(1Eg)

−1(A) if 0 /∈ A
(8.15)

Since (1Eg)−1(B) ⊂ E if 0 /∈ B and µ(E) = 0, it follow by completeness of
M that (1Eg)−1(B) ∈ M if 0 /∈ B. Therefore Eq. (8.15) shows that 1Eg is
measurable.
2. Let E = {x : lim

n→∞ fn(x) 6= f(x)} by assumption E ∈M and µ(E) = 0.

Since g ≡ 1Ef = limn→∞ 1Ecfn, g is measurable. Because f = g on Ec and
µ(E) = 0, f = g a.e. so by part 1. f is also measurable.
The above results are in general false if (X,M, µ) is not complete. For

example, let X = {0, 1, 2} M = {{0}, {1, 2},X, φ} and µ = δ0 Take g(0) =
0, g(1) = 1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 8.47. Suppose that (X,M, µ) is a measure space and M̄ is the com-
pletion ofM relative to µ and µ̄ is the extension of µ to M̄. Then a function
f : X → R is (M̄,B = BR) — measurable iff there exists a function g : X → R
1 Recall this means that if N ⊂ X is a set such that N ⊂ A ∈M and µ(A) = 0,
then N ∈M as well.
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that is (M,B) — measurable such E = {x : f(x) 6= g(x)} ∈ M̄ and µ̄ (E) = 0,
i.e. f(x) = g(x) for µ̄ — a.e. x. Moreover for such a pair f and g, f ∈ L1(µ̄)
iff g ∈ L1(µ) and in which caseZ

X

fdµ̄ =

Z
X

gdµ.

Proof. Suppose first that such a function g exists so that µ̄(E) = 0. Since
g is also (M̄,B) — measurable, we see from Proposition 8.46 that f is (M̄,B)
— measurable.
Conversely if f is (M̄,B) — measurable, by considering f± we may assume

that f ≥ 0. Choose (M̄,B) — measurable simple function φn ≥ 0 such that
φn ↑ f as n→∞. Writing

φn =
X

ak1Ak

with Ak ∈ M̄, we may choose Bk ∈M such that Bk ⊂ Ak and µ̄(Ak\Bk) = 0.
Letting

φ̃n :=
X

ak1Bk

we have produced a (M,B) — measurable simple function φ̃n ≥ 0 such that
En := {φn 6= φ̃n} has zero µ̄ — measure. Since µ̄ (∪nEn) ≤

P
n µ̄ (En) , there

exists F ∈M such that ∪nEn ⊂ F and µ(F ) = 0. It now follows that

1F φ̃n = 1Fφn ↑ g := 1F f as n→∞.

This shows that g = 1F f is (M,B) — measurable and that {f 6= g} ⊂ F has
µ̄ — measure zero.
Since f = g, µ̄ — a.e.,

R
X
fdµ̄ =

R
X
gdµ̄ so to prove Eq. (8.16) it suffices to

prove Z
X

gdµ̄ =

Z
X

gdµ. (8.16)

Because µ̄ = µ on M, Eq. (8.16) is easily verified for non-negative M —
measurable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 8.12 it holds for all M — measurable functions
g : X → [0,∞]. The rest of the assertions follow in the standard way by
considering (Re g)± and (Im g)± .

8.6 Comparison of the Lebesgue and the Riemann
Integral

For the rest of this chapter, let −∞ < a < b < ∞ and f : [a, b] → R be a
bounded function. A partition of [a, b] is a finite subset π ⊂ [a, b] containing
{a, b}. To each partition
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π = {a = t0 < t1 < · · · < tn = b} (8.17)

of [a, b] let
mesh(π) := max{|tj − tj−1| : j = 1, . . . , n},

Mj = sup{f(x) : tj ≤ x ≤ tj−1}, mj = inf{f(x) : tj ≤ x ≤ tj−1}

Gπ = f(a)1{a} +
nX
1

Mj1(tj−1,tj ], gπ = f(a)1{a} +
nX
1

mj1(tj−1,tj ] and

Sπf =
X

Mj(tj − tj−1) and sπf =
X

mj(tj − tj−1).

Notice that

Sπf =

Z b

a

Gπdm and sπf =

Z b

a

gπdm.

The upper and lower Riemann integrals are defined respectively byZ b

a

f(x)dx = inf
π
Sπf and

Z a

b

f(x)dx = sup
π

sπf.

Definition 8.48. The function f is Riemann integrable iff
R b
a
f =

R b
a
f and

which case the Riemann integral
R b
a
f is defined to be the common value:Z b

a

f(x)dx =

Z b

a

f(x)dx =

Z b

a

f(x)dx.

The proof of the following Lemma is left as an exercise to the reader.

Lemma 8.49. If π0 and π are two partitions of [a, b] and π ⊂ π0 then

Gπ ≥ Gπ0 ≥ f ≥ gπ0 ≥ gπ and

Sπf ≥ Sπ0f ≥ sπ0f ≥ sπf.

There exists an increasing sequence of partitions {πk}∞k=1 such that mesh(πk) ↓
0 and

Sπkf ↓
Z b

a

f and sπkf ↑
Z b

a

f as k →∞.

If we let
G ≡ lim

k→∞
Gπk and g ≡ lim

k→∞
gπk (8.18)

then by the dominated convergence theorem,Z
[a,b]

gdm = lim
k→∞

Z
[a,b]

gπk = lim
k→∞

sπkf =

Z b

a

f(x)dx (8.19)

andZ
[a,b]

Gdm = lim
k→∞

Z
[a,b]

Gπk = lim
k→∞

Sπkf =

Z b

a

f(x)dx. (8.20)
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Notation 8.50 For x ∈ [a, b], let
H(x) = lim sup

y→x
f(y) = lim

�↓0
sup{f(y) : |y − x| ≤ �, y ∈ [a, b]} and

h(x) ≡ lim inf
y→x

f(y) = lim
�↓0

inf {f(y) : |y − x| ≤ �, y ∈ [a, b]}.

Lemma 8.51. The functions H,h : [a, b]→ R satisfy:

1. h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b] and h(x) = H(x) iff f is continuous
at x.

2. If {πk}∞k=1 is any increasing sequence of partitions such that mesh(πk) ↓ 0
and G and g are defined as in Eq. (8.18), then

G(x) = H(x) ≥ f(x) ≥ h(x) = g(x) ∀ x /∈ π := ∪∞k=1πk. (8.21)

(Note π is a countable set.)
3. H and h are Borel measurable.

Proof. Let Gk ≡ Gπk ↓ G and gk ≡ gπk ↑ g.
1. It is clear that h(x) ≤ f(x) ≤ H(x) for all x and H(x) = h(x) iff lim

y→x
f(y)

exists and is equal to f(x). That is H(x) = h(x) iff f is continuous at x.
2. For x /∈ π,

Gk(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ gk(x) ∀ k
and letting k →∞ in this equation implies

G(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ g(x) ∀ x /∈ π. (8.22)

Moreover, given � > 0 and x /∈ π,

sup{f(y) : |y − x| ≤ �, y ∈ [a, b]} ≥ Gk(x)

for all k large enough, since eventually Gk(x) is the supremum of f(y)
over some interval contained in [x− �, x+ �]. Again letting k →∞ implies
sup

|y−x|≤�
f(y) ≥ G(x) and therefore, that

H(x) = lim sup
y→x

f(y) ≥ G(x)

for all x /∈ π. Combining this equation with Eq. (8.22) then impliesH(x) =
G(x) if x /∈ π. A similar argument shows that h(x) = g(x) if x /∈ π and
hence Eq. (8.21) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set π,
both H and h are also Borel measurable. (You justify this statement.)
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Theorem 8.52. Let f : [a, b]→ R be a bounded function. ThenZ b

a

f =

Z
[a,b]

Hdm and
Z b

a

f =

Z
[a,b]

hdm (8.23)

and the following statements are equivalent:

1. H(x) = h(x) for m -a.e. x,
2. the set

E := {x ∈ [a, b] : f is disconituous at x}
is an m̄ — null set.

3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measurable2 , i.e. f is L/B —
measurable where L is the Lebesgue σ — algebra and B is the Borel σ — algebra
on [a, b]. Moreover if we let m̄ denote the completion of m, thenZ

[a,b]

Hdm =

Z b

a

f(x)dx =

Z
[a,b]

fdm̄ =

Z
[a,b]

hdm. (8.24)

Proof. Let {πk}∞k=1 be an increasing sequence of partitions of [a, b] as
described in Lemma 8.49 and let G and g be defined as in Lemma 8.51. Since
m(π) = 0, H = G a.e., Eq. (8.23) is a consequence of Eqs. (8.19) and (8.20).
From Eq. (8.23), f is Riemann integrable iffZ

[a,b]

Hdm =

Z
[a,b]

hdm

and because h ≤ f ≤ H this happens iff h(x) = H(x) for m - a.e. x. Since
E = {x : H(x) 6= h(x)}, this last condition is equivalent to E being a m — null
set. In light of these results and Eq. (8.21), the remaining assertions including
Eq. (8.24) are now consequences of Lemma 8.47.

Notation 8.53 In view of this theorem we will often write
R b
a
f(x)dx forR b

a
fdm.

8.7 Appendix: Bochner Integral

In this appendix we will discuss how to define integrals of functions taking
values in a Banach space. The resulting integral will be called the Bochner
integral. In this section, let (Ω,F , µ) be a probability space and X be a
separable Banach space.

2 f need not be Borel measurable.
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Remark 8.54. Recall that we have already seen in this case that the Borel σ —
field B = B(X) on X is the same as the σ — field ( σ(X∗)) which is generated
by X∗ — the continuous linear functionals on X. As a consequence F : Ω → X
is F/B(X) measurable iff φ ◦ F : Ω → R is F/B(R) — measurable for all
φ ∈ X∗.

Lemma 8.55. Let 1 ≤ p < ∞ and Lp(µ;X) denote the space of measurable
functions F : Ω → X such that

R
Ω

kFkpdµ <∞. For F ∈ Lp(µ;X), define

kFkLp =
Z
Ω

kFkpXdµ
 1

p

.

Then after identifying function F ∈ Lp(µ;X) which agree modulo sets of µ —
measure zero, (Lp(µ;X), k · kLp) becomes a Banach space.
Proof. It is easily checked that k · kLp is a norm, for example,

kF +GkLp =
Z
Ω

kF +GkpXdµ
 1

p

≤
Z
Ω

(kFkX + kGkX)pdµ
 1

p

≤ kFkLp + kGkLp .
So the main point is to check completeness of the space. For this suppose

{Fn}∞1 ⊂ Lp = Lp(µ;X) such that
∞P
n=1

kFn+1 − FnkLp < ∞ and define

F0 ≡ 0. Since kFkL1 ≤ kFkLp it follows thatZ
Ω

∞X
n=1

kFn+1 − FnkXdµ ≤
∞X
n=1

kFn+1 − FnkL1 <∞

and therefore that
∞P
n=1

kFn+1 − FnkX < ∞ on as set Ω0 ⊂ Ω such that

µ(Ω0) = 1. Since X is complete, we know
∞P
n=0
(Fn+1(x) − Fn(x)) exists in X

for all x ∈ Ω0 so we may define F : Ω → X by

F ≡

∞P
n=0

(Fn+1 − Fn) ∈ X on Ω0

0 on Ωc
0.

Then on Ω0,

F − FN =
∞X

n=N+1

(Fn+1 − Fn) = lim
M→∞

MX
n=N+1

(Fn+1 − Fn).
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So

kF − FNkX ≤
∞X

n=N+1

kFn+1 − FnkX = lim
M→∞

MX
n−N+1

kFn+1 − FnkX

and therefore by Fatou’s Lemma and Minikowski’s inequality,

kF − FNkLp ≤
°°°°° limM→∞

inf
MX
N+1

kFn+1 − FnkX
°°°°°
Lp

≤ lim
M→∞

inf

°°°°°
MX
N+1

|Fn+1 − Fn|
°°°°°
Lp

≤ lim
M→∞

inf
MX
N+1

kFn+1 − FnkLp

=
∞X

N+1

kFn+1 − FnkLp → 0 as N →∞.

Therefore F ∈ Lp and lim
N→∞

FN = F in Lp.

Definition 8.56. A measurable function F : Ω → X is said to be a simple
function provided that F (Ω) is a finite set. Let S denote the collection of
simple functions. For F ∈ S set

I(F ) ≡
X
x∈X

xµ(F−1({x})) =
X
x∈X

xµ({F = x}) =
X

x∈F (Ω)
xµ({F = x}).

Proposition 8.57. The map I : S → X is linear and satisfies for all F ∈ S,

kI(F )kX ≤
Z
Ω

kFkdµ (8.25)

and

φ(I(F )) =

Z
X

φ ◦ F dµ ∀φ ∈ X∗. (8.26)

Proof. If 0 6= c ∈ R and F ∈ S, then

I(cF ) =
X
x∈X

xµ(cF = x) =
X
x∈X

xµ
³
F =

x

c

´
=
X
y∈X

cy µ(F = y) = cI(F )

and if c = 0, I(0F ) = 0 = 0I(F ). If F,G ∈ S,
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I(F +G) =
X
x

xµ(F +G = x)

=
X
x

x
X

y+z=x

µ(F = y,G = z)

=
X
y,z

(y + z)µ(F = y,G = z)

=
X
y

yµ(F = y) +
X
z

zµ(G = z) = I(F ) + I(G).

Equation (8.25) is a consequence of the following computation:

kI(F )kX = k
X
x∈X

xµ(F = x)k ≤
X
x∈X

kxkµ(F = x) =

Z
Ω

kFkdµ

and Eq. (8.26) follows from:

φ(I(F )) = φ(
X
x∈X

xµ({F = x}))

=
X
x∈X

φ(x)µ({F = x}) =
Z
X

φ ◦ F dµ.

Proposition 8.58. The set of simple functions, S, is dense in Lp(µ,X) for
all p ∈ [1,∞).
Proof. By assumption that X is separable, there is a countable dense set

D ={xn}∞n=1 ⊂ X. Given � > 0 and n ∈ N set

V �
n = B(xn, �)r

Ã
n−1[
i=1

B(xi, �)

!

where by convention V �
1 = B(x1, �). Then X =

∞̀

i=1
V �
i disjoint union. For

F ∈ Lp(µ;X) let

F � =
∞X
n=1

xn1F−1(V �
n)

and notice that kF − F �kX ≤ � on Ω and therefore, kF − F �kLp ≤ �. In
particular this shows that

kF �kLp ≤ kF − F �kLp + kFkLp ≤ �+ kFkLp <∞

so that F � ∈ Lp(µ;X). Since
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∞ > kF �kpLp =
∞X
n=1

kxnkpµ(F−1(V �
n)),

there exists N such that
∞P

n=N+1

kxnkpµ(F−1(V �
n)) ≤ �p and hence

°°°°°F −
NX
n=1

xn1F−1(V �
n)

°°°°°
Lp

≤ kF − F �kLp +
°°°°°F � −

NX
n=1

xn1F−1(V �
n)

°°°°°
Lp

≤ �+

°°°°°
∞X

n=N+1

xn1F−1(V �
n)

°°°°°
Lp

= �+

Ã ∞X
n=N+1

kxnkpµ(F−1(V �
n))

!1/p
≤ �+ � = 2�.

Since
NP
n=1

xn1F−1(V �
n)
∈ S and � > 0 is arbitrary, the last estimate proves the

proposition.

Theorem 8.59. There is a unique continuous linear map Ī : L1(Ω,F , µ;X)→
X such that Ī|S = I where I is defined in Definition 8.56. Moreover, for
all F ∈ L1(Ω,F , µ;X),

kĪ(F )kX ≤
Z
Ω

kFkdµ (8.27)

and Ī(F ) is the unique element in X such that

φ(Ī(F )) =

Z
X

φ ◦ F dµ ∀φ ∈ X∗. (8.28)

The map Ī(F ) will be denoted suggestively by
R
X
Fdµ so that Eq. (8.28) may

be written as

φ(

Z
X

Fdµ) =

Z
X

φ ◦ F dµ ∀φ ∈ X∗.

Proof. The existence of a continuous linear map Ī : L1(Ω,F , µ;X)→ X
such that Ī|S = I and Eq. (8.27) holds follows from Propositions 8.57 and
8.58 and the bounded linear transformation Theorem 2.68. If φ ∈ X∗ and
F ∈ L1(Ω,F , µ;X), choose Fn ∈ S such that Fn → F in L1(Ω,F , µ;X) as
n→∞. Then Ī(F ) = limn→∞ I(Fn) and hence by Eq. (8.26),

φ(Ī(F )) = φ( lim
n→∞ I(Fn)) = lim

n→∞φ(I(Fn)) = lim
n→∞

Z
X

φ ◦ Fndµ.
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This proves Eq. (8.28) since¯̄̄̄
¯̄Z
Ω

(φ ◦ F − φ ◦ Fn)dµ
¯̄̄̄
¯̄ ≤ Z

Ω

|φ ◦ F − φ ◦ Fn| dµ

≤
Z
Ω

kφkX∗ kφ ◦ F − φ ◦ FnkX dµ

= kφkX∗kF − FnkL1 → 0 as n→∞.

The fact that Ī(F ) is determined by Eq. (8.28) is a consequence of the Hahn
— Banach theorem.

Remark 8.60. The separability assumption on X may be relaxed by assuming
that F : Ω → X has separable essential range. In this case we may still defineR
X
Fdµ by applying the above formalism with X replaced by the separable

Banach space X0 := essranµ(F ). For example if Ω is a compact topological
space and F : Ω → X is a continuous map, then

R
Ω
Fdµ is always defined.

8.8 Bochner Integrals (NEEDS WORK)

8.8.1 Bochner Integral Problems From Folland

#15
Let f, g ∈ L1Y , c ∈ C then |(f + cg)(x)| ≤ |f(x)|+ |c| |g(x)| for all x ∈ X.

Integrating over x⇒ kf + cgk1 ≤ kfk1 + |c| kgk1 <∞. Hence f, g ∈ LY and
c ∈ C ⇒ f + cg ∈ LY so that LY is vector subspace of all functions from
X → Y . (By the way LY is a vector space since the map (y1, y2)→ y1 + cy2
from Y ×Y → Y is continuous and therefore f+cg = Φ(f, g) is a composition
of measurable functions). It is clear that FY is a linear space. Moreover if

f =
nX
j=1

yjxEj with u(Ej) < ∞ then |f(x)| ≤
nP
j=1

|yj |xEj (x) ⇒ kfkL1 ≤
nP
j=1

|yi|u(Ej) <∞. So FY ⊂ L1Y . It is easily checked that k · k1 is a seminorm
with the property

kfk1 = 0⇔
Z
kf(x)kdu(x) = 0

⇔ kf(x)k = 0 a.e.

⇔ f(x) = 0 a.e.

Hence k · k1 is a norm on L1Y / (null functions).
#16
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B�
n = {y ∈ Y : ky − ynk < �kynk}

{yn}∞n=1 = Y
.

Let 0 6= y ∈ Y and choose {ynk} ⊂ {yn} 3 ynk → y as k → ∞. Then
ky−ynkk→ 0 while kynkk→ kyk 6= 0 as k →∞. Hence eventually |y−ynkk <
�kynkk for k sufficiently large, i.e. y ∈ B�

nk
for all k sufficiently large. Thus

Y \ {0} ⊂
∞S
n=1

B�
n. Also Y \ {0} =

∞S
n=1

B�
n if � < 1. Since k0− ynk < �kynk can

not happen.

#17
Let f ∈ L1Y and 1 > � > 0, B�

n as in problem 16. Define A�
n ≡ B�

n \ (B�
1 ∪

· · · ∪B�
n−1) and E�

n ≡ f−1(A�
n) and set

g� ≡
∞X
1

ynxE�
n
=
∞X
1

ynxA�n ◦ f.

Suppose ∈ E�
n then kf(x) − g�(x)k = kyn − f(x)k < �kynk. Now kynk ≤

kyn−f(x)k+kf(x)k < �kynk+kf(x)k. Therefore kynk < kf(x)k
1− �

. So kf(x)−
g�(x)k < �

1−�kf(x)k for x ∈ E�
n. Since n is arbitrary it follows by problem

16 that kf(x) − g�(x)k < �
1−�kf(x)k for all x /∈ f−1({0}). Since � < 1, by

the end of problem 16 we know 0 /∈ A�
n for any n ⇒ g�(x) = 0 if f(x) = 0.

Hence kf(x) − g�(x)k < �
1−�kf(x)k holds for all x ∈ X. This implies kf −

g�k1 ≤ �
1−�kfk1 → 0 � → 0. Also we see kg�k1 ≤ kfk1 + kf − g�k1 <

∞ ⇒
∞P
n=1

kynku(E�
n) = kg�k1 < ∞. Choose N(�) ∈ {1, 2, 3, . . . } such that

∞P
n=N(�)+1

kynku(E�
n) < �. Set f�(x) =

N(�)P
n=1

ynxE�
n
. Then

kf − f�k1 ≤ kf − g�k1 + kg� − f�k1

≤ �

1− �
kfk1 +

∞X
n=N(�)+1

kynku(E�
n)

≤ �(1 +
kfk1
1− �

)→ 0 as � ↓ 0.

Finally f� ∈ FY so we are done.

#18
Define

R
: FY → Y by

R
X

f(x)du(x) =
P
y∈Y

yu(f−1({y}) Just is the real
variable case be in class are shows that

R
: FY → Y is linear. For f ∈ L1Y

choose fn ∈ FY such that kf − fnk1 → 0, n→∞. Then kfn − fmk1 → 0 as
m,n→∞. Now fn f ∈ FY .
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k
Z
X

f duk ≤
X
y∈Y

kyku(f−1({y})) =
Z
X

kfkdu.

Therefore k R
X

fn du − R
X

fm duk ≤ kfn − fmk1 → 0 m,n → ∞. Hence
lim
n→∞

R
X

fn du exists in Y . Set
R
X
f du = lim

n→∞
R
X
fn du.

Claim.
R
X
fdu is well defined. Indeed if gn ∈ Fy such that kf − gnk1 → 0 as

n → ∞. Then kfn − gnk1 → 0 as n → ∞ also. ⇒ k R
X
fn du − R

x
gnduk ≤

kfn − gnk1 → 0 n→∞. So lim
n→∞

R
X
gndu = lim

n→∞
R
X
fn du

Finally:

k
Z
X

f duk = lim
n→∞ k

Z
X

fn duk
≤ lim sup

n→∞
kfnk1 = kfk1

#19 D.C.T {fn} ⊂ L1Y , f ∈ L1Y such that g ∈ L1(dµ) for all n kfn(x)k ≤
g(x) a.e. and fn(x) → f(x) a.e. Then k R f R fnk ≤ �kf − fnkdu −→

n→∞ 0 by

real variable.

8.9 Exercises

Exercise 8.61. Let µ be a measure on an algebra A ⊂ P(X), then µ(A) +
µ(B) = µ(A ∪B) + µ(A ∩B) for all A,B ∈ A.
Exercise 8.62. Problem 12 on p. 27 of Folland. Let (X,M, µ) be a finite
measure space and for A,B ∈ M let ρ(A,B) = µ(A∆B) where A∆B =
(A \B)∪(B \A) . Define A ∼ B iff µ(A∆B) = 0. Show “∼ ” is an equivalence
relation, ρ is a metric onM/ ∼ and µ(A) = µ(B) if A ∼ B. Also show that
µ : (M/ ∼)→ [0,∞) is a continuous function relative to the metric ρ.
Exercise 8.63. Suppose that µn :M → [0,∞] are measures on M for n ∈
N. Also suppose that µn(A) is increasing in n for all A ∈ M. Prove that
µ :M→ [0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure.

Exercise 8.64. Now suppose that Λ is some index set and for each λ ∈ Λ,
µλ : M → [0,∞] is a measure on M. Define µ : M → [0,∞] by µ(A) =P

λ∈Λ µλ(A) for each A ∈M. Show that µ is also a measure.

Exercise 8.65. Let (X,M, µ) be a measure space and ρ : X → [0,∞] be a
measurable function. For A ∈M, set ν(A) :=

R
A
ρdµ.

1. Show ν :M→ [0,∞] is a measure.
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2. Let f : X → [0,∞] be a measurable function, showZ
X

fdν =

Z
X

fρdµ. (8.29)

Hint: first prove the relationship for characteristic functions, then for
simple functions, and then for general positive measurable functions.

3. Show that f ∈ L1(ν) iff fρ ∈ L1(µ) and if f ∈ L1(ν) then Eq. (8.29) still
holds.

Notation 8.66 It is customary to informally describe ν defined in Exercise
8.65 by writing dν = ρdµ.

Exercise 8.67. Let (X,M, µ) be a measure space, (Y,F) be a measurable
space and f : X → Y be a measurable map. Define a function ν : F → [0,∞]
by ν(A) := µ(f−1(A)) for all A ∈ F .
1. Show ν is a measure. (We will write ν = f∗µ or ν = µ ◦ f−1.)
2. Show Z

Y

gdν =

Z
X

(g ◦ f) dµ (8.30)

for all measurable functions g : Y → [0,∞]. Hint: see the hint from
Exercise 8.65.

3. Show g ∈ L1(ν) iff g◦f ∈ L1(µ) and that Eq. (8.30) holds for all g ∈ L1(ν).

Exercise 8.68. Let F : R → R be a C1-function such that F 0(x) > 0 for all
x ∈ R and limx→±∞ F (x) = ±∞. (Notice that F is strictly increasing so that
F−1 : R→ R exists and moreover, by the implicit function theorem that F−1

is a C1 — function.) Let m be Lebesgue measure on BR and
ν(A) = m(F (A)) = m(

¡
F−1

¢−1
(A)) =

¡
F−1∗ m

¢
(A)

for all A ∈ BR. Show dν = F 0dm. Use this result to prove the change of
variable formula, Z

R
h ◦ F · F 0dm =

Z
R
hdm (8.31)

which is valid for all Borel measurable functions h : R→ [0,∞].
Hint: Start by showing dν = F 0dm on sets of the form A = (a, b] with

a, b ∈ R and a < b. Then use the uniqueness assertions in Theorem 8.8 to
conclude dν = F 0dm on all of BR. To prove Eq. (8.31) apply Exercise 8.67
with g = h ◦ F and f = F−1.

Exercise 8.69. Let (X,M, µ) be a measure space and {An}∞n=1 ⊂M, show

µ({An a.a.}) ≤ lim inf
n→∞ µ (An)

and if µ (∪m≥nAm) <∞ for some n, then

µ({An i.o.}) ≥ lim sup
n→∞

µ (An) .
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Exercise 8.70 (Peano’s Existence Theorem). Suppose Z : R × Rd →
Rd is a bounded continuous function. Then for each T < ∞3 there exists a
solution to the differential equation

ẋ(t) = Z(t, x(t)) for 0 ≤ t ≤ T with x(0) = x0. (8.32)

Do this by filling in the following outline for the proof.

1. Given � > 0, show there exists a unique function x� ∈ C([−�,∞) → Rd)
such that x�(t) ≡ x0 for −� ≤ t ≤ 0 and

x�(t) = x0 +

Z t

0

Z(τ, x�(τ − �))dτ for all t ≥ 0. (8.33)

HereZ t

0

Z(τ, x�(τ−�))dτ =
µZ t

0

Z1(τ, x�(τ − �))dτ, . . . ,

Z t

0

Zd(τ, x�(τ − �))dτ

¶
where Z = (Z1, . . . , Zd) and the integrals are either the Lebesgue or the
Riemann integral since they are equal on continuous functions. Hint: For
t ∈ [0, �], it follows from Eq. (8.33) that

x�(t) = x0 +

Z t

0

Z(τ, x0)dτ.

Now that x�(t) is known for t ∈ [−�, �] it can be found by integration for
t ∈ [−�, 2�]. The process can be repeated.

2. Then use Exercise 2.120 to show there exists {�k}∞k=1 ⊂ (0,∞) such that
limk→∞ �k = 0 and x�k converges to some x ∈ C([0, T ]) (relative to the
sup-norm: kxk∞ = supt∈[0,T ] |x(t)|) as k →∞.

3. Pass to the limit in Eq. (8.33) with � replaced by �k to show x satisfies

x(t) = x0 +

Z t

0

Z(τ, x(τ))dτ ∀ t ∈ [0, T ].

4. Conclude from this that ẋ(t) exists for t ∈ (0, T ) and that x solves Eq.
(8.32).

5. Apply what you have just prove to the ODE,

ẏ(t) = −Z(−t, y(t)) for 0 ≤ t ≤ T with x(0) = x0.

Then extend x(t) above to [−T, T ] by setting x(t) = y(−t) if t ∈ [−T, 0].
Show x so defined solves Eq. (8.32) for t ∈ (−T, T ).

Exercise 8.71. Folland 2.12 on p. 52.
3 Using Corollary 3.18 below, we may in fact allow T =∞.
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Exercise 8.72. Folland 2.13 on p. 52.

Exercise 8.73. Folland 2.14 on p. 52.

Exercise 8.74. Give examples of measurable functions {fn} on R such that
fn decreases to 0 uniformly yet

R
fndm =∞ for all n. Also give an example

of a sequence of measurable functions {gn} on [0, 1] such that gn → 0 whileR
gndm = 1 for all n.

Exercise 8.75. Folland 2.19 on p. 59.

Exercise 8.76. Suppose {an}∞n=−∞ ⊂ C is a summable sequence (i.e.P∞
n=−∞ |an| < ∞), then f(θ) :=

P∞
n=−∞ ane

inθ is a continuous function
for θ ∈ R and

an =
1

2π

Z π

−π
f(θ)e−inθdθ.

Exercise 8.77. Folland 2.26 on p. 59.

Exercise 8.78. Folland 2.28 on p. 59.

Exercise 8.79. Folland 2.31b on p. 60.
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Fubini’s Theorem

This next example gives a “real world” example of the fact that it is not
always possible to interchange order of integration.

Example 9.1. ConsiderZ 1

0

dy

Z ∞
1

dx(e−xy − 2e−2xy) =
Z 1

0

dy

½
e−y

−y − 2
e−2xy

−2y
¾¯̄̄̄∞

x=1

=

Z 1

0

dy

·
e−y − e−2y

y

¸
=

Z 1

0

dy e−y
µ
1− e−y

y

¶
∈ (0,∞).

Note well that
³
1−e−y

y

´
has not singularity at 0. On the other hand

Z ∞
1

dx

Z 1

0

dy(e−xy − 2e−2xy) =
Z ∞
1

dx

½
e−xy

−x − 2
e−2xy

−2x
¾¯̄̄̄1

y=0

=

Z ∞
1

dx

½
e−2x − e−x

x

¾
= −

Z ∞
1

e−x
·
1− e−x

x

¸
dx ∈ (−∞, 0).

Moral
R
dx
R
dy f(x, y) 6= R dy R dx f(x, y) is not always true.

In the remainder of this section we will let (X,M, µ) and (Y,N , ν) be
fixed measure spaces. Our main goals are to show:

1. There exists a unique measure µ⊗ν onM⊗N such that µ⊗ν(A×B) =
µ(A)ν(B) for all A ∈M and B ∈ N and

2. For all f : X × Y → [0,∞] which areM⊗N — measurable,
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X×Y

f d (µ⊗ ν) =

Z
X

dµ(x)

Z
Y

dν(y)f(x, y)

=

Z
Y

dν(y)

Z
X

dµ(x)f(x, y).

Before proving such assertions, we will need a few more technical measure
theoretic arguments which are of independent interest.

9.1 Measure Theoretic Arguments

Definition 9.2. Let C ⊂ P(X) be a collection of sets. We say:
1. C is a monotone class if it is closed under countable increasing unions
and countable decreasing intersections,

2. C is a π — class if it is closed under finite intersections and
3. C is a λ—class if C satisfies the following properties:

a) X ∈ C
b) If A,B ∈ C and A ∩ B = ∅, then A ∪ B ∈ C. (Closed under disjoint
unions.)

c) If A,B ∈ C and A ⊃ B, then A \B ∈ C. (Closed under proper differ-
ences.)

d) If An ∈ C and An ↑ A, then A ∈ C. (Closed under countable increasing
unions.)

4. We will say C is a λ0 — class if C satisfies conditions a) — c) but not
necessarily d).

Remark 9.3. Notice that every λ — class is also a monotone class.

(The reader wishing to shortcut this section may jump to Theorem 9.7
where he/she should then only read the second proof.)

Lemma 9.4 (Monotone Class Theorem). Suppose A ⊂ P(X) is an alge-
bra and C is the smallest monotone class containing A. Then C = σ(A).
Proof. For C ∈ C let

C(C) = {B ∈ C : C ∩B,C ∩Bc, B ∩ Cc ∈ C},

then C(C) is a monotone class. Indeed, if Bn ∈ C(C) and Bn ↑ B, then
Bc
n ↓ Bc and so

C 3 C ∩Bn ↑ C ∩B
C 3 C ∩Bc

n ↓ C ∩Bc and

C 3 Bn ∩ Cc ↑ B ∩ Cc.
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Since C is a monotone class, it follows that C ∩ B,C ∩ Bc, B ∩ Cc ∈ C,
i.e. B ∈ C(C). This shows that C(C) is closed under increasing limits and a
similar argument shows that C(C) is closed under decreasing limits. Thus we
have shown that C(C) is a monotone class for all C ∈ C.
If A ∈ A ⊂ C, then A ∩ B,A ∩ Bc, B ∩ Ac ∈ A ⊂ C for all B ∈ A and

hence it follows that A ⊂ C(A) ⊂ C. Since C is the smallest monotone class
containing A and C(A) is a monotone class containing A, we conclude that
C(A) = C for any A ∈ A.
Let B ∈ C and notice that A ∈ C(B) happens iff B ∈ C(A). This observa-

tion and the fact that C(A) = C for all A ∈ A implies A ⊂ C(B) ⊂ C for all
B ∈ C. Again since C is the smallest monotone class containing A and C(B)
is a monotone class we conclude that C(B) = C for all B ∈ C. That is to say,
if A,B ∈ C then A ∈ C = C(B) and hence A ∩ B, A ∩ Bc, Ac ∩ B ∈ C. So C
is closed under complements (since X ∈ A ⊂ C) and finite intersections and
increasing unions from which it easily follows that C is a σ — algebra.
Let E ⊂ P(X × Y ) be given by

E =M×N = {A×B : A ∈M, B ∈ N}
and recall from Exercise 7.15 that E is an elementary family. Hence the algebra
A = A(E) generated by E consists of sets which may be written as disjoint
unions of sets from E.
Theorem 9.5 (Uniqueness). Suppose that E ⊂ P(X) is an elementary class
andM = σ(E) (the σ — algebra generated by E). If µ and ν are two measures
onM which are σ — finite on E and such that µ = ν on E then µ = ν onM.

Proof. Let A := A(E) be the algebra generated by E . Since every element
of A is a disjoint union of elements from E, it is clear that µ = ν on A.
Henceforth we may assume that E = A. We begin first with the special case
where µ(X) <∞ and hence ν(X) = µ(X) <∞. Let

C = {A ∈M : µ(A) = ν(A)}
The reader may easily check that C is a monotone class. Since A ⊂ C, the
monotone class lemma asserts thatM = σ(A) ⊂ C ⊂M showing that C =M
and hence that µ = ν onM.
For the σ — finite case, let Xn ∈ A be sets such that µ(Xn) = ν(Xn) <∞

and Xn ↑ X as n→∞. For n ∈ N, let
µn(A) := µ(A ∩Xn) and νn(A) = ν(A ∩Xn) (9.1)

for all A ∈M. Then one easily checks that µn and νn are finite measure on
M such that µn = νn on A. Therefore, by what we have just proved, µn = νn
onM. Hence or all A ∈M, using the continuity of measures,

µ(A) = lim
n→∞µ(A ∩Xn) = lim

n→∞ ν(A ∩Xn) = ν(A).
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Lemma 9.6. If D is a λ0 — class which contains a π-class, C, then D contains
A (C) — the algebra generated by C.
Proof. We will give two proofs of this lemma. The first proof is “con-

structive” and makes use of Proposition 7.10 which tells how to construct
A(C) from C. The key to the first proof is the following claim which will be
proved by induction.
Claim. Let C̃0 = C and C̃n denote the collection of subsets of X of the

form
Ac
1 ∩ · · · ∩Ac

n ∩B = B \A1 \A2 \ · · · \An. (9.2)

with Ai ∈ C and B ∈ C ∪ {X} . Then C̃n ⊂ D for all n, i.e. C̃ := ∪∞n=0C̃n ⊂ D.
By assumption C̃0 ⊂ D and when n = 1,

B \A1 = B \ (A1 ∩B) ∈ D

when A1, B ∈ C ⊂ D since A1 ∩ B ∈ C ⊂ D. Therefore, C̃1 ⊂ D. For the
induction step, let B ∈ C ∪ {X} and Ai ∈ C ∪ {X} and let En denote the set
in Eq. (9.2) We now assume C̃n ⊂ D and wish to show En+1 ∈ D, where

En+1 = En \An+1 = En \ (An+1 ∩En).

Because
An+1 ∩En = Ac

1 ∩ · · · ∩Ac
n ∩ (B ∩An+1) ∈ C̃n ⊂ D

and (An+1 ∩ En) ⊂ En ∈ C̃n ⊂ D, we have En+1 ∈ D as well. This finishes
the proof of the claim.
Notice that C̃ is still a multiplicative class and from Proposition 7.10 (using

the fact that C is a multiplicative class), A(C) consists of finite unions of
elements from C̃. By applying the claim to C̃, Ac

1 ∩ · · ·∩Ac
n ∈ D for all Ai ∈ C̃

and hence
A1 ∪ · · · ∪An = (A

c
1 ∩ · · · ∩Ac

n)
c ∈ D.

Thus we have shown A(C) ⊂ D which completes the proof.
(Second Proof.) With out loss of generality, we may assume that D is the

smallest λ0 — class containing C for if not just replace D by the intersection
of all λ0 — classes containing C. Let

D1 := {A ∈ D : A ∩ C ∈ D ∀ C ∈ C}.

Then C ⊂ D1 and D1 is also a λ0—class as we now check. a) X ∈ D1. b) If
A,B ∈ D1 with A∩B = ∅, then (A∪B)∩C = (A ∩ C)` (B ∩ C) ∈ D for all
C ∈ C. c) If A,B ∈ D1 with B ⊂ A, then (A \B) ∩C = A ∩C \ (B ∩C) ∈ D
for all C ∈ C. Since C ⊂ D1 ⊂ D and D is the smallest λ0 — class containing C
it follows that D1 = D. From this we conclude that if A ∈ D and B ∈ C then
A ∩B ∈ D.
Let

D2 := {A ∈ D : A ∩D ∈ D ∀ D ∈ D}.
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Then D2 is a λ0—class (as you should check) which, by the above paragraph,
contains C. As above this implies that D = D2, i.e. we have shown that
D is closed under finite intersections. Since λ0 — classes are closed under
complementation, D is an algebra and hence A (C) ⊂ D. In fact D = A(C).
This Lemma along with the monotone class theorem immediately implies

Dynkin’s very useful “π — λ theorem.”

Theorem 9.7 (π — λ Theorem). If D is a λ class which contains a contains
a π-class, C, then σ(C) ⊂ D.
Proof. Since D is a λ0 — class, Lemma 9.6 implies that A(C) ⊂ D and

so by Remark 9.3 and Lemma 9.4, σ(C) ⊂ D. Let us pause to give a second
stand-alone proof of this Theorem.
(Second Proof.) With out loss of generality, we may assume that D is

the smallest λ — class containing C for if not just replace D by the intersection
of all λ — classes containing C. Let

D1 := {A ∈ D : A ∩ C ∈ D ∀ C ∈ C}.

Then C ⊂ D1 and D1 is also a λ—class because as we now check. a) X ∈ D1. b)
If A,B ∈ D1 with A∩B = ∅, then (A∪B)∩C = (A ∩ C)` (B ∩ C) ∈ D for
all C ∈ C. c) If A,B ∈ D1 with B ⊂ A, then (A \B)∩C = A∩C \(B∩C) ∈ D
for all C ∈ C. d) If An ∈ D1 and An ↑ A as n → ∞, then An ∩ C ∈ D for
all C ∈ D and hence An ∩ C ↑ A ∩ C ∈ D. Since C ⊂ D1 ⊂ D and D is the
smallest λ — class containing C it follows that D1 = D. From this we conclude
that if A ∈ D and B ∈ C then A ∩B ∈ D.
Let

D2 := {A ∈ D : A ∩D ∈ D ∀ D ∈ D}.
Then D2 is a λ—class (as you should check) which, by the above paragraph,
contains C. As above this implies that D = D2, i.e. we have shown that D is
closed under finite intersections.
Since λ — classes are closed under complementation, D is an algebra which

is closed under increasing unions and hence is closed under arbitrary countable
unions, i.e. D is a σ — algebra. Since C ⊂ D we must have σ(C) ⊂ D and in
fact σ(C) = D.
Using this theorem we may strengthen Theorem 9.5 to the following.

Theorem 9.8 (Uniqueness). Suppose that C ⊂ P(X) is a π — class such
that M = σ(C). If µ and ν are two measures on M and there exists Xn ∈ C
such that Xn ↑ X and µ(Xn) = ν(Xn) <∞ for each n, then µ = ν onM.

Proof. As in the proof of Theorem 9.5, it suffices to consider the case
where µ and ν are finite measure such that µ(X) = ν(X) < ∞. In this case
the reader may easily verify from the basic properties of measures that

D = {A ∈M : µ(A) = ν(A)}
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is a λ — class. By assumption C ⊂ D and hence by the π— λ theorem, D
containsM = σ(C).
As an immediate consequence we have the following corollaries.

Corollary 9.9. Suppose that (X, τ) is a topological space, BX = σ(τ) is the
Borel σ — algebra on X and µ and ν are two measures on BX which are σ —
finite on τ. If µ = ν on τ then µ = ν on BX , i.e. µ ≡ ν.

Corollary 9.10. Suppose that µ and ν are two measures on BRn which are
finite on bounded sets and such that µ(A) = ν(A) for all sets A of the form

A = (a, b] = (a1, b1]× · · · × (an, bn]

with a, b ∈ Rn and a ≤ b, i.e. ai ≤ bi for all i. Then µ = ν on BRn .
To end this section we wish to reformulate the π — λ theorem in a function

theoretic setting.

Definition 9.11 (Bounded Convergence). Let X be a set. We say that a
sequence of functions fn from X to R or C converges boundedly to a function
f if limn→∞ fn(x) = f(x) for all x ∈ X and

sup{|fn(x)| : x ∈ X and n = 1, 2, . . .} <∞.

Theorem 9.12. Let X be a set and H be a subspace of B(X,R) — the space
of bounded real valued functions on X. Assume:

1. 1 ∈ H, i.e. the constant functions are in H and
2. H is closed under bounded convergence, i.e. if {fn}∞n=1 ⊂ H and fn → f
boundedly then f ∈ H.
If C ⊂ P(X) is a multiplicative class such that 1A ∈ H for all A ∈ C, then

H contains all bounded σ(C) — measurable functions.
Proof. Let D := {A ⊂ X : 1A ∈ H}. Then by assumption C ⊂ D and since

1 ∈ H we know X ∈ D. If A,B ∈ D are disjoint then 1A∪B = 1A + 1B ∈ H
so that A ∪ B ∈ D and if A,B ∈ D and A ⊂ B, then 1B\A = 1B − 1A ∈ H.
Finally if An ∈ D and An ↑ A as n→∞ then 1An → 1A boundedly so 1A ∈ H
and hence A ∈ D. So D is λ — class containing C and hence D contains σ(C).
From this it follows that H contains 1A for all A ∈ σ(C) and hence all σ(C)
— measurable simple functions by linearity. The proof is now complete with
an application of the approximation Theorem 8.12 along with the assumption
that H is closed under bounded convergence.

Corollary 9.13. Suppose that (X, d) is a metric space and BX = σ(τd) is the
Borel σ — algebra on X and H is a subspace of B(X,R) such that BC(X,R) ⊂
H (BC(X,R) — the bounded continuous functions on X) and H is closed
under bounded convergence. Then H contains all bounded BX — measurable
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real valued functions on X. (This may be paraphrased as follows. The smallest
vector space of bounded functions which is closed under bounded convergence
and contains BC(X,R) is the space of bounded BX — measurable real valued
functions on X.)

Proof. Let V ∈ τd be an open subset of X and for n ∈ N let
fn(x) := min(n · dV c(x), 1) for all x ∈ X.

Notice that fn = φn ◦ dV c where φn(t) = min(nt, 1) which is continuous and
hence fn ∈ BC(X,R) for all n. Furthermore, fn converges boundedly to 1V
as n → ∞ and therefore 1V ∈ H for all V ∈ τ. Since τ is a π — class the
corollary follows by an application of Theorem 9.12.
Here is a basic application of this corollary.

Proposition 9.14. Suppose that (X,d) is a metric space, µ and ν are two
measures on BX = σ(τd) which are finite on bounded measurable subsets of X
and Z

X

fdµ =

Z
X

fdν (9.3)

for all f ∈ BCb(X,R) where

BCb(X,R) = {f ∈ BC(X,R) : supp(f) is bounded}.
Then µ ≡ ν.

Proof. To prove this fix a o ∈ X and let

ψR(x) = ([R+ 1− d(x, o)] ∧ 1) ∨ 0
so that ψR ∈ BCb(X, [0, 1]), supp(ψR) ⊂ B(o,R + 2) and ψR ↑ 1 as R →∞.
Let HR denote the space of bounded measurable functions f such thatZ

X

ψRfdµ =

Z
X

ψRfdν. (9.4)

Then HR is closed under bounded convergence and because of Eq. (9.3) con-
tains BC(X,R). Therefore by Corollary 9.13, HR contains all bounded mea-
surable functions on X. Take f = 1A in Eq. (9.4) with A ∈ BX , and then use
the monotone convergence theorem to let R→∞. The result is µ(A) = ν(A)
for all A ∈ BX .
Corollary 9.15. Let (X, d) be a metric space, BX = σ(τd) be the Borel σ —
algebra and µ : BX → [0,∞] be a measure such that µ(K) <∞ when K is a
compact subset of X. Assume further there exists compact sets Kk ⊂ X such
that Ko

k ↑ X. Suppose that H is a subspace of B(X,R) such that Cc(X,R) ⊂ H
(Cc(X,R) is the space of continuous functions with compact support) and
H is closed under bounded convergence. Then H contains all bounded BX —
measurable real valued functions on X.
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Proof. Let k and n be positive integers and set ψn,k(x) = min(1, n ·
d(Ko

k)
c(x)). Then ψn,k ∈ Cc(X,R) and {ψn,k 6= 0} ⊂ Ko

k . Let Hn,k denote

those bounded BX — measurable functions, f : X → R, such that ψn,kf ∈ H.
It is easily seen that Hn,k is closed under bounded convergence and that
Hn,k contains BC(X,R) and therefore by Corollary 9.13, ψn,kf ∈ H for all
bounded measurable functions f : X → R. Since ψn,kf → 1Ko

k
f boundedly

as n→∞, 1Ko
k
f ∈ H for all k and similarly 1Ko

k
f → f boundedly as k →∞

and therefore f ∈ H.
Here is another version of Proposition 9.14.

Proposition 9.16. Suppose that (X,d) is a metric space, µ and ν are two
measures on BX = σ(τd) which are both finite on compact sets. Further assume
there exists compact sets Kk ⊂ X such that Ko

k ↑ X. IfZ
X

fdµ =

Z
X

fdν (9.5)

for all f ∈ Cc(X,R) then µ ≡ ν.

Proof. Let ψn,k be defined as in the proof of Corollary 9.15 and let Hn,k

denote those bounded BX — measurable functions, f : X → R such thatZ
X

fψn,kdµ =

Z
X

fψn,kdν.

By assumption BC(X,R) ⊂ Hn,k and one easily checks that Hn,k is closed
under bounded convergence. Therefore, by Corollary 9.13, Hn,k contains all
bounded measurable function. In particular for A ∈ BX ,Z

X

1A ψn,kdµ =

Z
X

1A ψn,kdν.

Letting n → ∞ in this equation, using the dominated convergence theorem,
one shows Z

X

1A 1Ko
k
dµ =

Z
X

1A 1Ko
k
dν

holds for k. Finally using the monotone convergence theorem we may let
k →∞ to conclude

µ(A) =

Z
X

1A dµ =

Z
X

1A dν = ν(A)

for all A ∈ BX .

9.2 Fubini-Tonelli’s Theorem and Product Measure

Recall that (X,M, µ) and (Y,N , ν) are fixed measure spaces.
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Notation 9.17 Suppose that f : X → C and g : Y → C are functions, let
f ⊗ g denote the function on X × Y given by

f ⊗ g(x, y) = f(x)g(y).

Notice that if f, g are measurable, then f⊗g is (M⊗N ,BC) — measurable.
To prove this let F (x, y) = f(x) and G(x, y) = g(y) so that f ⊗ g = F ·G will
be measurable provided that F and G are measurable. Now F = f ◦π1 where
π1 : X ×Y → X is the projection map. This shows that F is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

Theorem 9.18. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces
and f is a nonnegative (M⊗N ,BR) — measurable function, then for each
y ∈ Y,

x→ f(x, y) isM — B[0,∞] measurable, (9.6)

for each x ∈ X,

y → f(x, y) is N — B[0,∞] measurable, (9.7)

x→
Z
Y

f(x, y)dν(y) isM — B[0,∞] measurable, (9.8)

y →
Z
X

f(x, y)dµ(x) is N — B[0,∞] measurable, (9.9)

and Z
X

dµ(x)

Z
Y

dν(y)f(x, y) =

Z
Y

dν(y)

Z
X

dµ(x)f(x, y). (9.10)

Proof. Suppose that E = A×B ∈ E :=M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

and one sees that Eqs. (9.6) and (9.7) hold. MoreoverZ
Y

f(x, y)dν(y) =

Z
Y

1A(x)1B(y)dν(y) = 1A(x)ν(B),

so that Eq. (9.8) holds and we haveZ
X

dµ(x)

Z
Y

dν(y)f(x, y) = ν(B)µ(A). (9.11)

Similarly, Z
X

f(x, y)dµ(x) = µ(A)1B(y) andZ
Y

dν(y)

Z
X

dµ(x)f(x, y) = ν(B)µ(A)
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from which it follows that Eqs. (9.9) and (9.10) hold in this case as well.
For the moment let us further assume that µ(X) <∞ and ν(Y ) <∞ and

let H be the collection of all bounded (M⊗N ,BR) — measurable functions
on X × Y such that Eqs. (9.6) — (9.10) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence
theorem (the dominating function always being a constant), one easily shows
that H closed under bounded convergence. Since we have just verified that
1E ∈ H for all E in the π — class, E, it follows thatH is the space of all bounded
(M⊗N ,BR) — measurable functions on X ×Y. Finally if f : X ×Y → [0,∞]
is a (M⊗N ,BR̄) — measurable function, let fM = M ∧ f so that fM ↑ f as
M → ∞ and Eqs. (9.6) — (9.10) hold with f replaced by fM for all M ∈ N.
Repeated use of the monotone convergence theorem allows us to pass to the
limit M → ∞ in these equations to deduce the theorem in the case µ and ν
are finite measures.
For the σ — finite case, choose Xn ∈M, Yn ∈ N such that Xn ↑ X, Yn ↑ Y,

µ(Xn) <∞ and ν(Yn) <∞ for allm,n ∈ N. Then define µm(A) = µ(Xm∩A)
and νn(B) = ν(Yn ∩ B) for all A ∈ M and B ∈ N or equivalently dµm =
1Xmdµ and dνn = 1Yndν. By what we have just proved Eqs. (9.6) — (9.10) with
µ replaced by µm and ν by νn for all (M⊗N ,BR̄) — measurable functions,
f : X×Y → [0,∞]. The validity of Eqs. (9.6) — (9.10) then follows by passing
to the limits m → ∞ and then n → ∞ using the monotone convergence
theorem again to concludeZ

X

fdµm =

Z
X

f1Xmdµ ↑
Z
X

fdµ as m→∞

and Z
Y

gdµn =

Z
Y

g1Yndµ ↑
Z
Y

gdµ as n→∞

for all f ∈ L+(X,M) and g ∈ L+(Y,N ).
Corollary 9.19. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces.
Then there exists a unique measure π on M ⊗ N such that π(A × B) =
µ(A)ν(B) for all A ∈M and B ∈ N . Moreover π is given by

π(E) =

Z
X

dµ(x)

Z
Y

dν(y)1E(x, y) =

Z
Y

dν(y)

Z
X

dµ(x)1E(x, y) (9.12)

for all E ∈M⊗N and π is σ — finite.

Notation 9.20 The measure π is called the product measure of µ and ν and
will be denoted by µ⊗ ν.

Proof. Notice that any measure π such that π(A × B) = µ(A)ν(B) for
all A ∈ M and B ∈ N is necessarily σ — finite. Indeed, let Xn ∈ M and
Yn ∈ N be chosen so that µ(Xn) <∞, ν(Yn) <∞, Xn ↑ X and Yn ↑ Y, then
Xn × Yn ∈M ⊗ N , Xn × Yn ↑ X × Y and π(Xn × Yn) < ∞ for all n. The
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uniqueness assertion is a consequence of either Theorem 9.5 or by Theorem 9.8
with E =M×N . For the existence, it suffices to observe, using the monotone
convergence theorem, that π defined in Eq. (9.12) is a measure on M ⊗ N .
Moreover this measure satisfies π(A × B) = µ(A)ν(B) for all A ∈ M and
B ∈ N from Eq. (9.11

Theorem 9.21 (Tonelli’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ-finite measure spaces and π = µ⊗ ν is the product measure on M⊗N . If
f ∈ L+(X × Y,M ⊗ N ), then f(·, y) ∈ L+(X,M) for all y ∈ Y, f(x, ·) ∈
L+(Y,N ) for all x ∈ X,Z

Y

f(·, y)dν(y) ∈ L+(X,M),

Z
X

f(x, ·)dµ(x) ∈ L+(Y,N )

and Z
X×Y

f dπ =

Z
X

dµ(x)

Z
Y

dν(y)f(x, y) (9.13)

=

Z
Y

dν(y)

Z
X

dµ(x)f(x, y). (9.14)

Proof. By Theorem 9.18 and Corollary 9.19, the theorem holds when
f = 1E with E ∈M⊗N . Using the linearity of all of the statements, the the-
orem is also true for non-negative simple functions. Then using the monotone
convergence theorem repeatedly along with Theorem 8.12, one deduces the
theorem for general f ∈ L+(X × Y,M⊗N ).
Theorem 9.22 (Fubini’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are
σ-finite measure spaces and π = µ⊗ ν be the product measure onM⊗N . If
f ∈ L1(π) then for µ a.e. x, f(x, ·) ∈ L1(ν) and for ν a.e. y, f(·, y) ∈ L1(µ).
Moreover,

g(x) =

Z
Y

f(x, y)dv(y) and h(y) =
Z
X

f(x, y)dµ(x)

are in L1(µ) and L1(ν) respectively and Eq. (9.14) holds.

Proof. If f ∈ L1(X × Y ) ∩ L+ then by Eq. (9.13),Z
X

µZ
Y

f(x, y)dν(y)

¶
dµ(x) <∞

so
R
Y
f(x, y)dν(y) <∞ for µ a.e. x, i.e. for µ a.e. x, f(x, ·) ∈ L1(ν). Similarly

for ν a.e. y, f(·, y) ∈ L1(µ). Let f be a real valued function in f ∈ L1(X×Y )
and let f = f+−f−. Apply the results just proved to f± to conclude, f±(x, ·) ∈
L1(ν) for µ a.e. x and thatZ

Y

f±(·, y)dν(y) ∈ L1(µ).
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Therefore for µ a.e. .x,

f(x, ·) = f+(x, ·)− f−(x, ·) ∈ L1(ν)

and

x→
Z

f(x, y)dν(y) =

Z
f+(x, ·)dν(y)−

Z
f−(x, ·)dν(y)

is a µ — almost everywhere defined function such that
R
f(·, y)dν(y) ∈ L1(µ).

Because Z
f±(x, y)d (µ⊗ ν) =

Z
dµ(x)

Z
dν(y)f±(x, y),

Z
f d(µ⊗ ν) =

Z
f+d(µ⊗ ν)−

Z
f−d(µ⊗ ν)

=

Z
dµ

Z
dνf+ −

Z
dµ

Z
dνf−

=

Z
dµ

µZ
f+dν −

Z
f−dν

¶
=

Z
dµ

Z
dν(f+ − f−) =

Z
dµ

Z
dνf.

The proof that Z
f d(µ⊗ ν) =

Z
dν(y)

Z
dµ(x)f(x, y)

is analogous. As usual the complex case follows by applying the real results
just proved to the real and imaginary parts of f.

Notation 9.23 Given E ⊂ X × Y and x ∈ X, let

xE := {y ∈ Y : (x, y) ∈ E}.
Similarly if y ∈ Y is given let

Ey := {x ∈ X : (x, y) ∈ E}.
If f : X × Y → C is a function let fx = f(x, ·) and fy := f(·, y) so that
fx : Y → C and fy : X → C.

Theorem 9.24. Suppose (X,M, µ) and (Y,N , ν) are complete σ-finite mea-
sure spaces. Let (X × Y,L, λ) be the completion of (X × Y,M⊗N , µ⊗ ν). If
f is L-measurable and (a) f ≥ 0 or (b) f ∈ L1(λ) then fx is N -measurable
for µ a.e. x and fy isM-measurable for ν a.e. y and in case (b) fx ∈ L1(ν)
and fy ∈ L1(µ) for µ a.e. x and ν a.e. y respectively. Moreover,

x→
Z

fxdν and y →
Z

fydµ
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are measurable andZ
fdλ =

Z
dν

Z
dµ f =

Z
dµ

Z
dν f.

Proof. If E ∈M⊗N is a µ⊗ ν null set ((µ⊗ ν)(E) = 0), then

0 = (µ⊗ ν)(E) =

Z
X

ν(xE)dµ(x) =

Z
X

µ(Ey)dν(y).

This shows that

µ({x : ν(xE) 6= 0}) = 0 and ν({y : µ(Ey) 6= 0}) = 0,
i.e. ν(xE) = 0 for µ a.e. x and µ(Ey) = 0 for ν a.e. y.
If h is L measurable and h = 0 for λ- a.e., then there exists E ∈M⊗N 3

{(x, y) : h(x, y) 6= 0} ⊂ E and (µ⊗ ν)(E) = 0. Therefore |h(x, y)| ≤ 1E(x, y)
and (µ⊗ ν)(E) = 0. Since

{hx 6= 0} = {y ∈ Y : h(x, y) 6= 0} ⊂ xE and

{hy 6= 0} = {x ∈ X : h(x, y) 6= 0} ⊂ Ey

we learn that for µ a.e. x and ν a.e. y that {hx 6= 0} ∈ M, {hy 6= 0} ∈ N ,
ν({hx 6= 0}) = 0 and a.e. and µ({hy 6= 0}) = 0. This implies

for ν a.e. y,
Z

h(x, y)dν(y) exists and equals 0

and

for µ a.e. x,
Z

h(x, y)dµ(y) exists and equals 0.

Therefore

0 =

Z
hdλ =

Z µZ
hdµ

¶
dν =

Z µZ
hdν

¶
dµ.

For general f ∈ L1(λ), we may choose g ∈ L1(M ⊗ N , µ ⊗ ν) such that
f(x, y) = g(x, y) for λ− a.e. (x, y). Define h ≡ f − g. Then h = 0, λ− a.e.
Hence by what we have just proved and Theorem 9.21 f = g + h has the
following properties:

1. For µ a.e. x, y → f(x, y) = g(x, y) + h(x, y) is in L1(ν) andZ
f(x, y)dν(y) =

Z
g(x, y)dν(y).

2. For ν a.e. y, x→ f(x, y) = g(x, y) + h(x, y) is in L1(µ) andZ
f(x, y)dµ(x) =

Z
g(x, y)dµ(x).
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From these assertions and Theorem 9.21, it follows thatZ
dµ(x)

Z
dν(y)f(x, y) =

Z
dµ(x)

Z
dν(y)g(x, y)

=

Z
dν(y)

Z
dν(x)g(x, y)

=

Z
g(x, y)d(µ⊗ ν)(x, y)

=

Z
f(x, y)dλ(x, y)

and similarly we showsZ
dν(y)

Z
dµ(x)f(x, y) =

Z
f(x, y)dλ(x, y).

The previous theorems have obvious generalizations to products of any
finite number of σ — compact measure spaces. For example the following the-
orem holds.

Theorem 9.25. Suppose {(Xi,Mi, µi)}ni=1 are σ — finite measure spaces
and X := X1 × · · · × Xn. Then there exists a unique measure, π, on
(X,M1 ⊗ · · ·⊗Mn) such that π(A1 × · · · × An) = µ1(A1) . . . µn(An) for all
Ai ∈Mi. (This measure and its completion will be denote by µ1 ⊗ · · ·⊗ µn.)
If f : X → [0,∞] is a measurable function thenZ

X

fdπ =
nY
i=1

Z
Xσ(i)

dµσ(i)(xσ(i)) f(x1, . . . , xn)

where σ is any permutation of {1, 2, . . . , n}. This equation also holds for any
f ∈ L1(X,π) and moreover, f ∈ L1(X,π) iff

nY
i=1

Z
Xσ(i)

dµσ(i)(xσ(i)) |f(x1, . . . , xn)| <∞

for some (and hence all) permutation, σ.

This theorem can be proved by the same methods as in the two factor
case. Alternatively, one can use induction on n, see Exercise 9.50.

Example 9.26.We haveZ ∞
0

sinx

x
e−Λxdx =

1

2
π − arctanΛ for all Λ > 0 (9.15)

and forΛ,M ∈ [0,∞),
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¯
Z M

0

sinx

x
e−Λxdx− 1

2
π + arctanΛ

¯̄̄̄
¯ ≤ C

e−MΛ

M
(9.16)

where C = maxx≥0 1+x
1+x2 =

1
2
√
2−2
∼= 1.2. In particular,

lim
M→∞

Z M

0

sinx

x
dx = π/2. (9.17)

To verify these assertions, first notice that by the fundamental theorem of
calculus,

|sinx| =
¯̄̄̄Z x

0

cos ydy

¯̄̄̄
≤
¯̄̄̄Z x

0

|cos y| dy
¯̄̄̄
≤
¯̄̄̄Z x

0

1dy

¯̄̄̄
= |x|

so
¯̄
sinx
x

¯̄ ≤ 1 for all x 6= 0. Making use of the identityZ ∞
0

e−txdt = 1/x

and Fubini’s theorem,Z M

0

sinx

x
e−Λxdx =

Z M

0

dx sinx e−Λx
Z ∞
0

e−txdt

=

Z ∞
0

dt

Z M

0

dx sinx e−(Λ+t)x

=

Z ∞
0

1− (cosM + (Λ+ t) sinM) e−M(Λ+t)

(Λ+ t)
2
+ 1

dt

=

Z ∞
0

1

(Λ+ t)2 + 1
dt−

Z ∞
0

cosM + (Λ+ t) sinM

(Λ+ t)2 + 1
e−M(Λ+t)dt

=
1

2
π − arctanΛ− �(M,Λ) (9.18)

where

�(M,Λ) =

Z ∞
0

cosM + (Λ+ t) sinM

(Λ+ t)2 + 1
e−M(Λ+t)dt.

Since ¯̄̄̄
¯cosM + (Λ+ t) sinM

(Λ+ t)
2
+ 1

¯̄̄̄
¯ ≤ 1 + (Λ+ t)

(Λ+ t)
2
+ 1
≤ C,

|�(M,Λ)| ≤
Z ∞
0

e−M(Λ+t)dt = C
e−MΛ

M
.

This estimate along with Eq. (9.18) proves Eq. (9.16) from which Eq. (9.17)
follows by taking Λ → ∞ and Eq. (9.15) follows (using the dominated con-
vergence theorem again) by letting M →∞.
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9.3 Lebesgue measure on Rd

Notation 9.27 Let

md :=

d timesz }| {
m⊗ · · ·⊗m on BRd =

d timesz }| {
BR ⊗ · · ·⊗ BR

be the d — fold product of Lebesgue measure m on BR. We will also use md

to denote its completion and let Ld be the completion of BRd relative to m.
A subset A ∈ Ld is called a Lebesgue measurable set and md is called d —
dimensional Lebesgue measure, or just Lebesgue measure for short.

Definition 9.28. A function f : Rd → R is Lebesgue measurable if
f−1(BR) ⊂ Ld.
Theorem 9.29. Lebesgue measure md is translation invariant. Moreover md

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.

Proof. Let A = J1 × · · · × Jd with Ji ∈ BR and x ∈ Rd. Then
x+A = (x1 + J1)× (x2 + J2)× · · · × (xd + Jd)

and therefore by translation invariance of m on BR we find that
md(x+A) = m(x1 + J1) . . .m(xd + Jd) = m(J1) . . .m(Jd) = md(A)

and hence md(x+ A) = md(A) for all A ∈ BRd by Corollary 9.10. From this
fact we see that the measure md(x + ·) and md(·) have the same null sets.
Using this it is easily seen that m(x + A) = m(A) for all A ∈ Ld. The proof
of the second assertion is Exercise 9.51.

Notation 9.30 I will often be sloppy in the sequel and write m for md and
dx for dm(x) = dmd(x). Hopefully the reader will understand the meaning
from the context.

The following change of variable theorem is an important tool in using
Lebesgue measure.

Theorem 9.31 (Change of Variables Theorem). Let Ω ⊂o Rd be an open
set and T : Ω → T (Ω) ⊂o Rd be a C1 — diffeomorphism1 . Then for any Borel
measurable function, f : T (Ω)→ [0,∞],Z

Ω

f ◦ T |detT 0|dm =

Z
T (Ω)

f dm, (9.19)

where T 0(x) is the linear transformation on Rd defined by T 0(x)v := d
dt |0T (x+

tv). Alternatively, the ij — matrix entry of T 0(x) is given by T 0(x)ij =
∂Tj(x)/∂xi where T (x) = (T1(x), . . . , Td(x)).

1 That is T : Ω → T (Ω) ⊂o Rd is a continuously differentiable bijection and the
inverse map T−1 : T (Ω)→ Ω is also continuously differentiable.
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We will postpone the full proof of this theorem until Section 21. However
we will give here the proof in the case that T is linear. The following elementary
remark will be used in the proof.

Remark 9.32. Suppose that

Ω
T→ T (Ω)

S→ S(T (Ω))

are two C1 — diffeomorphisms and Theorem 9.31 holds for T and S separately,
then it holds for the composition S ◦ T. IndeedZ

Ω

f ◦ S ◦ T |det (S ◦ T )0 |dm =

Z
Ω

f ◦ S ◦ T |det (S0 ◦ T )T 0|dm

=

Z
Ω

(|detS0| f ◦ S) ◦ T |detT 0|dm

=

Z
T (Ω)

|detS0| f ◦ Sdm =

Z
S(T (Ω))

fdm.

Theorem 9.33. Suppose T ∈ GL(d,R) = GL(Rd) — the space of d × d in-
vertible matrices.

1. If f : Rd → R is Borel — measurable then so is f ◦ T and if f ≥ 0 or
f ∈ L1 then Z

Rd
f(y)dy = |detT |

Z
Rd

f ◦ T (x)dx. (9.20)

2. If E ∈ Ld then T (E) ∈ Ld and m(T (E)) = |detT |m(E).
Proof. Since f is Borel measurable and T : Rd → Rd is continuous and

hence Borel measurable, f ◦ T is also Borel measurable. We now break the
proof of Eq. (9.20) into a number of cases. In each case we make use Tonelli’s
theorem and the basic properties of one dimensional Lebesgue measure.

1. Suppose that i < k and

T (x1, x2 . . . , xd) = (x1, . . . , xi−1, xk, xi+1 . . . , xk−1, xi, xk+1, . . . xd)

then by Tonelli’s theorem,Z
Rd

f ◦ T (x1, . . . , xd) =
Z
Rd

f(x1, . . . , xk, . . . xi, . . . xd)dx1 . . . dxd

=

Z
Rd

f(x1, . . . , xd)dx1 . . . dxd

which prove Eq. (9.20) in this case since |detT | = 1.
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2. Suppose that c ∈ R and T (x1, . . . xk, . . . , xd) = (x1, . . . , cxk, . . . xd), thenZ
Rd

f ◦ T (x1, . . . , xd)dm =

Z
Rd

f(x1, . . . , cxk, . . . , xd)dx1 . . . dxk . . . dxd

= |c|−1
Z
Rd

f(x1, . . . , xd)dx1 . . . dxd

= |detT |−1
Z
Rd

f dm

which again proves Eq. (9.20) in this case.
3. Suppose that

T (x1, x2 . . . , xd) = (x1, . . . ,
i’th spot
xi + cxk, . . . xk, . . . xd).

ThenZ
Rd

f ◦ T (x1, . . . , xd)dm =

Z
Rd

f(x1, . . . , xi + cxk, . . . xk, . . . xd)dx1 . . . dxi . . . dxk . . . dxd

=

Z
Rd

f(x1, . . . , xi, . . . xk, . . . xd)dx1 . . . dxi . . . dxk . . . dxd

=

Z
Rd

f(x1, . . . , xd)dx1 . . . dxd

where in the second inequality we did the xi integral first and used trans-
lation invariance of Lebesgue measure. Again this proves Eq. (9.20) in this
case since det(T ) = 1.

Since every invertible matrix is a product of matrices of the type occurring
in steps 1. — 3. above, it follows by Remark 9.32 that Eq. (9.20) holds in
general. For the second assertion, let E ∈ BRd and take f = 1E in Eq. (9.20)
to find

|detT |m(T−1(E)) = |detT |
Z
Rd
1T−1(E)dm

= |detT |
Z
Rd
1E ◦ Tdm =

Z
Rd
1Edm = m(E).

Replacing T by T−1 in this equation shows that

m(T (E)) = |detT |m(E)
for all E ∈ BRd . In particular this shows that m ◦ T and m have the same
null sets and therefore the completion of BRd is Ld for both measures. Using
Proposition 8.6 one now easily shows

m(T (E)) = |detT |m(E) ∀ E ∈ Ld.
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9.4 Polar Coordinates and Surface Measure

Let

Sd−1 = {x ∈ Rd : |x|2 :=
dX
i=1

x2i = 1}

be the unit sphere in Rd. Let Φ : Rd \ (0) → (0,∞) × Sd−1 and Φ−1 be the
inverse map given by

Φ(x) := (|x| , x

|x| ) and Φ−1(r, ω) = rω (9.21)

respectively. Since Φ and Φ−1 are continuous, they are Borel measurable.
Consider the measure Φ∗m on B(0,∞) ⊗ BSd−1 given by

Φ∗m(A) := m
¡
Φ−1(A)

¢
for all A ∈ B(0,∞) ⊗ BSd−1 . For E ∈ BSd−1 and a > 0, let

Ea := {rω : r ∈ (0, a] and ω ∈ E} = Φ−1((0, a]×E) ∈ BRd .
Noting that Ea = aE1, we have for 0 < a < b, E ∈ BSd−1 , E and A = (a, b]×E
that

Φ−1(A) = {rω : r ∈ (a, b] and ω ∈ E} (9.22)

= bE1 \ aE1. (9.23)

Therefore,

(Φ∗m) ((a, b]×E) = m (bE1 \ aE1) = m(bE1)−m(aE1)

= bdm(E1)− adm(E1)

= d ·m(E1)
Z b

a

rd−1dr. (9.24)

Let ρ denote the unique measure on B(0,∞) such that

ρ(J) =

Z
J

rd−1dr (9.25)

for all J ∈ B(0,∞), i.e. dρ(r) = rd−1dr.

Definition 9.34. For E ∈ BSd−1 , let σ(E) := d ·m(E1).We call σ the surface
measure on S.

It is easy to check that σ is a measure. Indeed if E ∈ BSd−1 , then E1 =
Φ−1 ((0, 1]×E) ∈ BRd so thatm(E1) is well defined. Moreover ifE =

`∞
i=1Ei,

then E1 =
`∞

i=1 (Ei)1 and
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σ(E) = d ·m(E1) =
∞X
i=1

m ((Ei)1) =
∞X
i=1

σ(Ei).

The intuition behind this definition is as follows. If E ⊂ Sd−1 is a set and
� > 0 is a small number, then the volume of

(1, 1 + �] ·E = {rω : r ∈ (1, 1 + �] and ω ∈ E}
should be approximately given by m ((1, 1 + �] ·E) ∼= σ(E)�, see Figure 9.1
below.

Fig. 9.1. Motivating the definition of surface measure for a sphere.

On the other hand

m ((1, 1 + �]E) = m (E1+� \E1) =
©
(1 + �)d − 1ªm(E1).

Therefore we expect the area of E should be given by

σ(E) = lim
�↓0

©
(1 + �)d − 1ªm(E1)

�
= d ·m(E1).

According to these definitions and Eq. (9.24) we have shown that

Φ∗m((a, b]×E) = ρ((a, b]) · σ(E). (9.26)

Let
E = {(a, b]×E : 0 < a < b,E ∈ BSd−1} ,

then E is an elementary class. Since σ(E) = B(0,∞)⊗BSd−1 , we conclude from
Eq. (9.26) that

Φ∗m = ρ⊗ σ

and this implies the following theorem.
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Theorem 9.35. If f : Rd → [0,∞] is a (BRd ,B)—measurable function thenZ
Rd

f(x)dm(x) =

Z
[0,∞)×Sd−1

f(r ω) dσ(ω)rd−1dr. (9.27)

Let us now work out some integrals using Eq. (9.27).

Lemma 9.36. Let a > 0 and

Id(a) :=

Z
Rd

e−a|x|
2

dm(x).

Then Id(a) = (π/a)
d/2.

Proof. By Tonelli’s theorem and induction,

Id(a) =

Z
Rd−1×R

e−a|y|
2

e−at
2

md−1(dy) dt

= Id−1(a)I1(a) = Id1 (a). (9.28)

So it suffices to compute:

I2(a) =

Z
R2

e−a|x|
2

dm(x) =

Z
R2\{0}

e−a(x
2
1+x

2
2)dx1dx2.

We now make the change of variables,

x1 = r cos θ and x2 = r sin θ for 0 < r <∞ and 0 < θ < 2π.

In vector form this transform is

x = T (r, θ) =

µ
r cos θ
r sin θ

¶
and the differential and the Jacobian determinant are given by

T 0(r, θ) =
µ
cos θ −r sin θ
sin θ r cos θ

¶
and

detT 0(r, θ) = r cos2 θ + r sin2 θ = r.

Notice that T : (0,∞)×(0, 2π)→ R2\c where c is the ray, c := {(x, 0) : x ≥ 0}
which is am2 — null set. Hence by Tonelli’s theorem and the change of variable
theorem, for any Borel measurable function f : R2 → [0,∞] we haveZ

R2
f(x)dx =

Z 2π

0

Z ∞
0

f(r cos θ, r sin θ) rdrdθ.
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In particular,

I2(a) =

Z ∞
0

dr r

Z 2π

0

dθ e−ar
2

= 2π

Z ∞
0

re−ar
2

dr

= 2π lim
M→∞

Z M

0

re−ar
2

dr = 2π lim
M→∞

e−ar
2

−2a
Z M

0

=
2π

2a
= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (9.28).

Corollary 9.37. The surface area σ(Sd−1) of the unit sphere Sd−1 ⊂ Rd is

σ(Sd−1) =
2πd/2

Γ (d/2)
(9.29)

where Γ is the gamma function given by

Γ (x) :=

Z ∞
0

ux−1e−udr (9.30)

Moreover, Γ (1/2) =
√
π, Γ (1) = 1 and Γ (x+ 1) = xΓ (x) for x > 0.

Proof. We may alternatively compute Id(1) = πd/2 using Theorem 9.35;

Id(1) =

Z ∞
0

dr rd−1e−r
2

Z
Sd−1

dσ

= σ(Sd−1)
Z ∞
0

rd−1e−r
2

dr.

We simplify this last integral by making the change of variables u = r2 so
that r = u1/2 and dr = 1

2u
−1/2du. The result isZ ∞

0

rd−1e−r
2

dr =

Z ∞
0

u
d−1
2 e−u

1

2
u−1/2du

=
1

2

Z ∞
0

u
d
2−1e−udu

=
1

2
Γ (d/2). (9.31)

Collecting these observations implies that

πd/2 = Id(1) =
1

2
σ(Sd−1)Γ (d/2)

which proves Eq. (9.29).
The computation of Γ (1) is easy and is left to the reader. By Eq. (9.31),

Γ (1/2) = 2

Z ∞
0

e−r
2

dr =

Z ∞
−∞

e−r
2

dr

= I1(1) =
√
π.
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The relation, Γ (x+1) = xΓ (x) is the consequence of the following integration
by parts:

Γ (x+ 1) =

Z ∞
0

e−u ux+1
du

u
=

Z ∞
0

ux
µ
− d

du
e−u

¶
du

= x

Z ∞
0

ux−1 e−u du = x Γ (x).

9.5 Regularity of Measures

Definition 9.38. Suppose that E is a collection of subsets of X, let Eσ denote
the collection of subsets of X which are finite or countable unions of sets
from E . Similarly let Eδ denote the collection of subsets of X which are finite
or countable intersections of sets from E . We also write Eσδ = (Eσ)δ and
Eδσ = (Eδ)σ , etc.
Remark 9.39. Notice that if A is an algebra and C = ∪Ci and D = ∪Dj with
Ci,Dj ∈ Aσ, then

C ∩D = ∪i,j (Ci ∩Dj) ∈ Aσ

so that Aσ is closed under finite intersections.

The following theorem shows how recover a measure µ on σ(A) from its
values on an algebra A.
Theorem 9.40 (Regularity Theorem). Let A ⊂ P(X) be an algebra of
sets, M = σ(A) and µ :M→ [0,∞] be a measure on M which is σ — finite
on A. Then for all A ∈M,

µ(A) = inf {µ(B) : A ⊂ B ∈ Aσ} . (9.32)

Moreover, if A ∈M and � > 0 are given, then there exists B ∈ Aσ such that
A ⊂ B and µ(B \A) ≤ �.

Proof. For A ⊂ X, define

µ∗(A) = inf {µ(B) : A ⊂ B ∈ Aσ} .
We are trying to show µ∗ = µ onM. We will begin by first assuming that µ
is a finite measure, i.e. µ(X) <∞.
Let

F = {B ∈M : µ∗ (B) = µ(B)} = {B ∈M : µ∗ (B) ≤ µ(B)}.
It is clear that A ⊂ F , so the finite case will be finished by showing F is
a monotone class. Suppose Bn ∈ F , Bn ↑ B as n → ∞ and let � > 0 be
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given. Since µ∗(Bn) = µ(Bn) there exists An ∈ Aσ such that Bn ⊂ An and
µ(An) ≤ µ(Bn) + �2−n i.e.

µ(An \Bn) ≤ �2−n.

Let A = ∪nAn ∈ Aσ, then B ⊂ A and

µ(A \B) = µ(∪n(An \B)) ≤
∞X
n=1

µ((An \B))

≤
∞X
n=1

µ((An \Bn)) ≤
∞X
n=1

�2−n = �.

Therefore,
µ∗(B) ≤ µ(A) ≤ µ(B) + �

and since � > 0 was arbitrary it follows that B ∈ F .
Now suppose that Bn ∈ F and Bn ↓ B as n→∞ so that

µ(Bn) ↓ µ(B) as n→∞.

As above choose An ∈ Aσ such that Bn ⊂ An and

0 ≤ µ(An)− µ(Bn) = µ(An \Bn) ≤ 2−n.
Combining the previous two equations shows that limn→∞ µ(An) = µ(B).
Since µ∗(B) ≤ µ(An) for all n, we conclude that µ∗(B) ≤ µ(B), i.e. that
B ∈ F .
Since F is a monotone class containing the algebra A, the monotone class

theorem asserts that
M = σ(A) ⊂ F ⊂M

showing the F =M and hence that µ∗ = µ onM.
For the σ — finite case, let Xn ∈ A be sets such that µ(Xn) < ∞ and

Xn ↑ X as n →∞. Let µn be the finite measure onM defined by µn(A) :=
µ(A∩Xn) for all A ∈M. Suppose that � > 0 and A ∈M are given. By what
we have just proved, for all A ∈M, there exists Bn ∈ Aσ such that A ⊂ Bn

and
µ ((Bn ∩Xn) \ (A ∩Xn)) = µn(Bn \A) ≤ �2−n.

Notice that since Xn ∈ Aσ, Bn ∩Xn ∈ Aσ and

B := ∪∞n=1 (Bn ∩Xn) ∈ Aσ.

Moreover, A ⊂ B and

µ(B \A) ≤
∞X
n=1

µ((Bn ∩Xn) \A) ≤
∞X
n=1

µ((Bn ∩Xn) \ (A ∩Xn))

≤
∞X
n=1

�2−n = �.
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Since this implies that

µ(A) ≤ µ(B) ≤ µ(A) + �

and � > 0 is arbitrary, this equation shows that Eq. (9.32) holds.

Corollary 9.41. Let A ⊂ P(X) be an algebra of sets, M = σ(A) and µ
: M → [0,∞] be a measure on M which is σ — finite on A. Then for all
A ∈M and � > 0 there exists B ∈ Aδ such that B ⊂ A and

µ(A \B) < �.

Furthermore, for any B ∈ M there exists A ∈ Aδσ and C ∈ Aσδ such that
A ⊂ B ⊂ C and µ(C \A) = 0.
Proof. By Theorem 9.40, there exist C ∈ Aσ such that Ac ⊂ C and

µ(C \ Ac) ≤ �. Let B = Cc ⊂ A and notice that B ∈ Aδ and that C \ Ac =
Bc ∩A = A \B, so that

µ(A \B) = µ(C \Ac) ≤ �.

Finally, given B ∈ M, we may choose An ∈ Aδ and Cn ∈ Aσ such that
An ⊂ B ⊂ Cn and µ(Cn \ B) ≤ 1/n and µ(B \ An) ≤ 1/n. By replacing AN

by ∪Nn=1An and CN by ∩Nn=1Cn, we may assume that An ↑ and Cn ↓ as n
increases. Let A = ∪An ∈ Aδσ and C = ∩Cn ∈ Aσδ, then A ⊂ B ⊂ C and

µ(C \A) = µ(C \B) + µ(B \A) ≤ µ(Cn \B) + µ(B \An)

≤ 2/n→ 0 as n→∞.

Corollary 9.42. Let A ⊂ P(X) be an algebra of sets, M = σ(A) and µ
:M→ [0,∞] be a measure onM which is σ — finite on A. Then for every B ∈
M such that µ(B) <∞ and � > 0 there exists D ∈ A such that µ(B4D) < �.

Proof. By Corollary 9.41, there exists C ∈ Aσ such B ⊂ C and µ(C\B) <
�. Now write C = ∪∞n=1Cn with Cn ∈ A for each n. By replacing Cn by
∪nk=1Ck ∈ A if necessary, we may assume that Cn ↑ C as n → ∞. Since
Cn \B ↑ C \B and B \Cn ↓ B \C = ∅ as n→∞ and µ(B \C1) ≤ µ(B) <∞,
we know that

lim
n→∞µ(Cn \B) = µ(C \B) < � and lim

n→∞µ(B \ Cn) = µ(B \ C) = 0

Hence for n sufficiently large,

µ(B4Cn) = (µ(Cn \B) + µ(B \ Cn) < �.

Hence we are done by taking D = Cn ∈ A for an n sufficiently large.
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Remark 9.43.We have to assume that µ(B) < ∞ as the following example
shows. Let X = R,M = B, µ = m, A be the algebra generated by half open
intervals of the form (a, b], and B = ∪∞n=1(2n, 2n+1]. It is easily checked that
for every D ∈ A, that m(B∆D) =∞.

For Exercises 9.44 — 9.46 let τ ⊂ P(X) be a topology, M = σ(τ) and µ
:M→ [0,∞) be a finite measure, i.e. µ(X) <∞.

Exercise 9.44. Let

F := {A ∈M : µ(A) = inf {µ(V ) : A ⊂ V ∈ τ}} . (9.33)

1. Show F may be described as the collection of set A ∈M such that for all
� > 0 there exists V ∈ τ such that A ⊂ V and µ(V \A) < �.

2. Show F is a monotone class.

Exercise 9.45. Give an example of a topology τ onX = {1, 2} and a measure
µ onM = σ(τ) such that F defined in Eq. (9.33) is notM.

Exercise 9.46. Suppose now τ ⊂ P(X) is a topology with the property that
to every closed set C ⊂ X, there exists Vn ∈ τ such that Vn ↓ C as n → ∞.
Let A = A(τ) be the algebra generated by τ.
1. With the aid of Exercise 7.12, show that A ⊂ F . Therefore by exercise
9.44 and the monotone class theorem, F =M, i.e.

µ(A) = inf {µ(V ) : A ⊂ V ∈ τ} .

(Hint: Recall the structure of A from Exercise 7.12.)
2. Show this result is equivalent to following statement: for every � > 0 and
A ∈M there exist a closed set C and an open set V such that C ⊂ A ⊂ V
and µ(V \ C) < �. (Hint: Apply part 1. to both A and Ac.)

Exercise 9.47 (Generalization to the σ — finite case). Let τ ⊂ P(X)
be a topology with the property that to every closed set F ⊂ X, there exists
Vn ∈ τ such that Vn ↓ F as n→∞. Also letM = σ(τ) and µ :M→ [0,∞]
be a measure which is σ — finite on τ.

1. Show that for all � > 0 and A ∈M there exists an open set V ∈ τ and a
closed set F such that F ⊂ A ⊂ V and µ(V \ F ) ≤ �.

2. Let Fσ denote the collection of subsets of X which may be written as a
countable union of closed sets. Use item 1. to show for all B ∈M, there
exists C ∈ τδ (τδ is customarily written as Gδ) and A ∈ Fσ such that
A ⊂ B ⊂ C and µ(C \A) = 0.

Exercise 9.48 (Metric Space Examples). Suppose that (X, d) is a metric
space and τd is the topology of d — open subsets of X. To each set F ⊂ X and
� > 0 let
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F� = {x ∈ X : dF (x) < �} = ∪x∈FBx(�) ∈ τd.

Show that if F is closed, then F� ↓ F as � ↓ 0 and in particular Vn := F1/n ∈ τd
are open sets decreasing to F. Therefore the results of Exercises 9.46 and 9.47
apply to measures on metric spaces with the Borel σ — algebra, B = σ(τd).

Corollary 9.49. Let X ⊂ Rn be an open set and B = BX be the Borel σ —
algebra on X equipped with the standard topology induced by open balls with
respect to the Euclidean distance. Suppose that µ : B → [0,∞] is a measure
such that µ(K) <∞ whenever K is a compact set.

1. Then for all A ∈ B and � > 0 there exist a closed set F and an open set
V such that F ⊂ A ⊂ V and µ(V \ F ) < �.

2. If µ(A) <∞, the set F in item 1. may be chosen to be compact.
3. For all A ∈ B we may compute µ(A) using

µ(A) = inf{µ(V ) : A ⊂ V and V is open} (9.34)

= sup{µ(K) : K ⊂ A and K is compact}. (9.35)

Proof. For k ∈ N, let
Kk := {x ∈ X : |x| ≤ k and dXc(x) ≥ 1/k} . (9.36)

Then Kk is a closed and bounded subset of Rn and hence compact. Moreover
Ko
k ↑ X as k →∞ since2

{x ∈ X : |x| < k and dXc(x) > 1/k} ⊂ Ko
k

and {x ∈ X : |x| < k and dXc(x) > 1/k} ↑ X as k → ∞.This shows µ is σ —
finite on τX and Item 1. follows from Exercises 9.47 and 9.48.
If µ(A) < ∞ and F ⊂ A ⊂ V as in item 1. Then Kk ∩ F ↑ F as k → ∞

and therefore since µ(V ) < ∞, µ(V \Kk ∩ F ) ↓ µ(V \ F ) as k → ∞. Hence
by choosing k sufficiently large, µ(V \Kk ∩ F ) < � and we may replace F by
the compact set F ∩Kk and item 1. still holds. This proves item 2.
Item 3. Item 1. easily implies that Eq. (9.34) holds and item 2. implies

Eq. (9.35) holds when µ(A) < ∞. So we need only check Eq. (9.35) when
µ(A) =∞. By Item 1. there is a closed set F ⊂ A such that µ(A\F ) < 1 and
in particular µ(F ) =∞. Since Kn ∩F ↑ F, and Kn ∩F is compact, it follows
that the right side of Eq. (9.35) is infinite and hence equal to µ(A).

9.6 Exercises

Exercise 9.50. Let (Xj ,Mj , µj) for j = 1, 2, 3 be σ — finite measure spaces.
Let F : X1 ×X2 ×X3 → (X1 ×X2)×X3 be defined by

F ((x1, x2), x3) = (x1, x2, x3).

2 In fact this is an equality, but we will not need this here.
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1. Show F is ((M1 ⊗M2)⊗M3,M1 ⊗M2 ⊗M3) — measurable and F−1

is (M1 ⊗M2 ⊗M3, (M1 ⊗M2)⊗M3) — measurable. That is

F : ((X1 ×X2)×X3, (M1 ⊗M2)⊗M3)→ (X1×X2×X3,M1⊗M2⊗M3)

is a “measure theoretic isomorphism.”
2. Let λ := F∗ [(µ1 ⊗ µ2)⊗ µ3] , i.e. λ(A) = [(µ1 ⊗ µ2)⊗ µ3] (F

−1(A)) for all
A ∈M1 ⊗M2 ⊗M3. Then λ is the unique measure onM1 ⊗M2 ⊗M3

such that
λ(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

for all Ai ∈Mi. We will write λ := µ1 ⊗ µ2 ⊗ µ3.
3. Let f : X1 ×X2 ×X3 → [0,∞] be a (M1 ⊗M2 ⊗M3,BR̄) — measurable
function. Verify the identity,Z

X1×X2×X3

fdλ =

Z
X3

Z
X2

Z
X1

f(x1, x2, x3)dµ1(x1)dµ2(x2)dµ3(x3),

makes sense and is correct. Also show the identity holds for any one of
the six possible orderings of the iterated integrals.

Exercise 9.51. Prove the second assertion of Theorem 9.29. That is show md

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.
Hint: Look at the proof of Theorem 8.10.

Exercise 9.52. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],
M = B[0,1] be the Borel σ — field on X, m be Lebesgue measure on [0, 1] and
ν be counting measure, ν(A) = #(A). Finally let D = {(x, x) ∈ X2 : x ∈ X}
be the diagonal in X2. ShowZ

X

Z
X

1D(x, y)dν(y)dm(x) 6=
Z
X

Z
X

1D(x, y)dm(x)dν(y)

by explicitly computing both sides of this equation.

Exercise 9.53. Folland Problem 2.48 on p. 69. (Fubini problem.)

Exercise 9.54. Folland Problem 2.50 on p. 69. (Note theM×BR should be
M⊗ BR̄ in this problem.)
Exercise 9.55. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 9.56. Folland Problem 2.56 on p. 77. Let f ∈ L1((0, a), dm), g(x) =R a
x

f(t)
t dt for x ∈ (0, a), show g ∈ L1((0, a), dm) andZ a

0

g(x)dx =

Z a

0

f(t)dt.

Exercise 9.57. Show
R∞
0

¯̄
sinx
x

¯̄
dm(x) = ∞. So sinx

x /∈ L1([0,∞),m) andR∞
0

sinx
x dm(x) is not defined as a Lebesgue integral.
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Exercise 9.58. Folland Problem 2.57 on p. 77.

Exercise 9.59. Folland Problem 2.58 on p. 77.

Exercise 9.60. Folland Problem 2.60 on p. 77. Properties of Γ — functions.

Exercise 9.61. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 9.62. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on Sn−1.

Exercise 9.63. Folland Problem 2.64 on p. 80. On the integrability of
|x|a |log |x||b for x near 0 and x near ∞ in Rn.
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Lp-spaces

Let (X,M, µ) be a measure space and for 0 < p < ∞ and a measurable
function f : X → C let

kfkp ≡ (
Z
|f |pdµ)1/p. (10.1)

When p =∞, let

kfk∞ = inf {a ≥ 0 : µ(|f | > a) = 0} (10.2)

For 0 < p ≤ ∞, let

Lp(X,M, µ) = {f : X → C : f is measurable and kfkp <∞}/ ∼
where f ∼ g iff f = g a.e. Notice that kf − gkp = 0 iff f ∼ g and if f ∼ g
then kfkp = kgkp. In general we will (by abuse of notation) use f to denote
both the function f and the equivalence class containing f.

Remark 10.1. Suppose that kfk∞ ≤ M, then for all a > M, µ(|f | > a) = 0
and therefore µ(|f | > M) = limn→∞ µ(|f | > M + 1/n) = 0, i.e. |f(x)| ≤ M
for µ - a.e. x. Conversely, if |f | ≤M a.e. and a > M then µ(|f | > a) = 0 and
hence kfk∞ ≤M. This leads to the identity:

kfk∞ = inf {a ≥ 0 : |f(x)| ≤ a for µ — a.e. x} .
Theorem 10.2 (Hölder’s inequality). Suppose that 1 ≤ p ≤ ∞ and q :=
p

p−1 , or equivalently p
−1 + q−1 = 1. If f and g are measurable functions then

kfgk1 ≤ kfkp · kgkq. (10.3)

Assuming p ∈ (1,∞) and kfkp · kgkq <∞, equality holds in Eq. (10.3) iff |f |p
and |g|q are linearly dependent as elements of L1. If we further assume that
kfkp and kgkq are positive then equality holds in Eq. (10.3) iff

|g|qkfkpp = kgkqq|f |p a.e. (10.4)
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Proof. The cases where kfkq = 0 or ∞ or kgkp = 0 or ∞ are easy to deal
with and are left to the reader. So we will now assume that 0 < kfkq, kgkp <
∞. Let s = |f |/kfkp and t = |g|/kgkq then Lemma 1.27 implies

|fg|
kfkpkgkq ≤

1

p

|f |p
kfkp +

1

q

|g|q
kgkq (10.5)

with equality iff |g/kgkq| = |f |p−1/kfk(p−1)p = |f |p/q/kfkp/qp , i.e. |g|qkfkpp =
kgkqq|f |p. Integrating Eq. (10.5) implies

kfgk1
kfkpkgkq ≤

1

p
+
1

q
= 1

with equality iff Eq. (10.4) holds. The proof is finished since it is easily checked
that equality holds in Eq. (10.3) when |f |p = c |g|q of |g|q = c |f |p for some
constant c.
The following corollary is an easy extension of Hölder’s inequality.

Corollary 10.3. Suppose that fi : X → C are measurable functions for i =
1, . . . , n and p1, . . . , pn and r are positive numbers such that

Pn
i=1 p

−1
i = r−1,

then °°°°°
nY
i=1

fi

°°°°°
r

≤
nY
i=1

kfikpi where
nX
i=1

p−1i = r−1.

Proof. To prove this inequality, start with n = 2, then for any p ∈ [1,∞],

kfgkrr =
Z

frgrdµ ≤ kfrkp kgrkp∗

where p∗ = p
p−1 is the conjugate exponent. Let p1 = pr and p2 = p∗r so that

p−11 + p−12 = r−1 as desired. Then the previous equation states that

kfgkr ≤ kfkp1 kgkp2
as desired. The general case is now proved by induction. Indeed,°°°°°

n+1Y
i=1

fi

°°°°°
r

=

°°°°°
nY
i=1

fi · fn+1
°°°°°
r

≤
°°°°°

nY
i=1

fi

°°°°°
q

kfn+1kpn+1

where q−1+p−1n+1 = r−1. Since
Pn

i=1 p
−1
i = q−1, we may now use the induction

hypothesis to conclude °°°°°
nY
i=1

fi

°°°°°
q

≤
nY
i=1

kfikpi ,

which combined with the previous displayed equation proves the generalized
form of Holder’s inequality.
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Theorem 10.4 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ Lp

then
kf + gkp ≤ kfkp + kgkp. (10.6)

Moreover if p <∞, then equality holds in this inequality iff

sgn(f) = sgn(g) when p = 1 and

f = cg or g = cf for some c > 0 when p > 1.

Proof.When p =∞, |f | ≤ kfk∞ a.e. and |g| ≤ kgk∞ a.e. so that |f + g| ≤
|f |+ |g| ≤ kfk∞ + kgk∞ a.e. and therefore

kf + gk∞ ≤ kfk∞ + kgk∞ .

When p <∞,

|f + g|p ≤ (2max (|f | , |g|))p = 2pmax (|f |p , |g|p) ≤ 2p (|f |p + |g|p) ,

kf + gkpp ≤ 2p
¡kfkpp + kgkpp¢ <∞.

In case p = 1,

kf + gk1 =
Z
X

|f + g|dµ ≤
Z
X

|f |dµ+
Z
X

|g|dµ

with equality iff |f |+ |g| = |f + g| a.e. which happens iff sgn(f) = sgn(g) a.e.
In case p ∈ (1,∞), we may assume kf+gkp, kfkp and kgkp are all positive

since otherwise the theorem is easily verified. Now

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1

with equality iff sgn(f) = sgn(g). Integrating this equation and applying
Holder’s inequality with q = p/(p− 1) givesZ

X

|f + g|pdµ ≤
Z
X

|f | |f + g|p−1dµ+
Z
X

|g| |f + g|p−1dµ

≤ (kfkp + kgkp) k |f + g|p−1 kq (10.7)

with equality iff

sgn(f) = sgn(g) andµ |f |
kfkp

¶p
=
|f + g|p
kf + gkpp =

µ |g|
kgkp

¶p
a.e. (10.8)

Therefore

k|f + g|p−1kqq =
Z
X

(|f + g|p−1)qdµ =
Z
X

|f + g|pdµ. (10.9)
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Combining Eqs. (10.7) and (10.9) implies

kf + gkpp ≤ kfkpkf + gkp/qp + kgkpkf + gkp/qp (10.10)

with equality iff Eq. (10.8) holds which happens iff f = cg a.e. with c > 0..
Solving for kf + gkp in Eq. (10.10) gives Eq. (10.6).
The next theorem gives another example of using Hölder’s inequality

Theorem 10.5. Suppose that (X,M, µ) and (Y,N , ν) be σ-finite measure
spaces, p ∈ [1,∞], q = p/(p − 1) and k : X × Y → C be a M ⊗ N —
measurable function. Assume there exist finite constants C1 and C2 such thatZ

X

|k(x, y)| dµ(x) ≤ C1 for ν a.e. y andZ
Y

|k(x, y)| dν(y) ≤ C2 for µ a.e. x.

If f ∈ Lp(ν), thenZ
Y

|k(x, y)f(y)| dν(y) <∞ for µ — a.e. x,

x→ Kf(x) :=
R
k(x, y)f(y)dν(y) ∈ Lp(µ) and

kKfkLp(µ) ≤ C
1/p
1 C

1/q
2 kfkLp(ν) (10.11)

Proof. Suppose p ∈ (1,∞) to begin with and let q = p/(p − 1), then by
Hölder’s inequality,Z
Y

|k(x, y)f(y)| dν(y) =
Z
Y

|k(x, y)|1/q |k(x, y)|1/p |f(y)| dν(y)

≤
·Z

Y

|k(x, y)| dν(y)
¸1/q ·Z

X

|k(x, y)| |f(y)|p dν(y)
¸1/p

≤ C
1/q
2

·Z
X

|k(x, y)| |f(y)|p dν(y)
¸1/p

.

Therefore, using Tonelli’s theorem,°°°°Z
Y

|k(·, y)f(y)| dν(y)
°°°°p
p

≤ C
p/q
2

Z
Y

dµ(x)

Z
X

dν(y) |k(x, y)| |f(y)|p

= C
p/q
2

Z
X

dν(y) |f(y)|p
Z
Y

dµ(x) |k(x, y)|

≤ C
p/q
2 C1

Z
X

dν(y) |f(y)|p = C
p/q
2 C1 kfkpp .

From this it follows that x→ Kf(x) :=
R
k(x, y)f(y)dν(y) ∈ Lp(µ) and that

Eq. (10.11) holds.
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Similarly, if p =∞,Z
Y

|k(x, y)f(y)| dν(y) ≤ kfk∞
Z
Y

|k(x, y)| dν(y) ≤ C2 kfk∞ for µ — a.e. x.

so that kKfkL∞(µ) ≤ C2 kfkL∞(ν) . If p = 1, thenZ
X

dµ(x)

Z
Y

dν(y) |k(x, y)f(y)| =
Z
Y

dν(y) |f(y)|
Z
X

dµ(x) |k(x, y)|

≤ C1

Z
Y

dν(y) |f(y)|

which shows kKfkL1(µ) ≤ C1 kfkL1(ν) .

10.1 Jensen’s Inequality

Definition 10.6. A function φ : (a, b)→ R is convex if for all a < x0 < x1 <
b and t ∈ [0, 1] φ(xt) ≤ tφ(x1) + (1− t)φ(x0) where xt = tx1 + (1− t)x0.

The following Proposition is clearly motivated by Figure 10.1.

20-2-4-6

20

15

10

5

0

x

y

x

y

Fig. 10.1. A convex function along with two cords corresponding to x0 = −2 and
x1 = 4 and x0 = −5 and x1 = −2.

Proposition 10.7. Suppose φ : (a, b)→ R is a convex function, then

1. For all u, v, w, z ∈ (a, b) such that u < z, w ∈ [u, z) and v ∈ (u, z],
φ(v)− φ(u)

v − u
≤ φ(z)− φ(w)

z − w
. (10.12)
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2. For each c ∈ (a, b), the right and left sided derivatives φ0±(c) exists in R
and if a < u < v < b, then φ0+(u) ≤ φ0−(v) ≤ φ0+(v).

3. The function φ is continuous.
4. For all t ∈ (a, b) and β ∈ [φ0−(t), φ0+(t)], φ(x) ≥ φ(t) + β(x − t) for all

x ∈ (a, b). In particular,
φ(x) ≥ φ(t) + φ0−(t)(x− t) for all x, t ∈ (a, b).

Proof. 1a) Suppose first that u < v = w < z, in which case Eq. (10.12) is
equivalent to

(φ(v)− φ(u)) (z − v) ≤ (φ(z)− φ(v)) (v − u)

which after solving for φ(v) is equivalent to the following equations holding:

φ(v) ≤ φ(z)
v − u

z − u
+ φ(u)

z − v

z − u
.

But this last equation states that φ(v) ≤ φ(z)t+ φ(u) (1− t) where t = v−u
z−u

and v = tz + (1− t)u and hence is valid by the definition of φ being convex.
1b) Now assume u = w < v < z, in which case Eq. (10.12) is equivalent to

(φ(v)− φ(u)) (z − u) ≤ (φ(z)− φ(u)) (v − u)

which after solving for φ(v) is equivalent to

φ(v) (z − u) ≤ φ(z) (v − u) + φ(u) (z − v)

which is equivalent to

φ(v) ≤ φ(z)
v − u

z − u
+ φ(u)

z − v

z − u
.

Again this equation is valid by the convexity of φ.
1c) u < w < v = z, in which case Eq. (10.12) is equivalent to

(φ(z)− φ(u)) (z − w) ≤ (φ(z)− φ(w)) (z − u)

and this is equivalent to the inequality,

φ(w) ≤ φ(z)
w − u

z − u
+ φ(u)

z − w

z − u

which again is true by the convexity of φ.
1) General case. If u < w < v < z, then by 1a-1c)

φ(z)− φ(w)

z − w
≥ φ(v)− φ(w)

v − w
≥ φ(v)− φ(u)

v − u

and if u < v < w < z
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φ(z)− φ(w)

z − w
≥ φ(w)− φ(v)

w − v
≥ φ(w)− φ(u)

w − u
.

We have now taken care of all possible cases.
2) On the set a < w < z < b, Eq. (10.12) shows that (φ(z)− φ(w)) / (z − w)

is a decreasing function in w and an increasing function in z and therefore
φ0±(x) exists for all x ∈ (a, b). Also from Eq. (10.12) we learn that

φ0+(u) ≤
φ(z)− φ(w)

z − w
for all a < u < w < z < b, (10.13)

φ(v)− φ(u)

v − u
≤ φ0−(z) for all a < u < v < z < b, (10.14)

and letting w ↑ z in the first equation also implies that

φ0+(u) ≤ φ0−(z) for all a < u < z < b.

The inequality, φ0−(z) ≤ φ0+(z), is also an easy consequence of Eq. (10.12).
3) Since φ(x) has both left and right finite derivatives, it follows that φ is

continuous. (For an alternative proof, see Rudin.)
4) Given t, let β ∈ [φ0−(t), φ0+(t)], then by Eqs. (10.13) and (10.14),

φ(t)− φ(u)

t− u
≤ φ0−(t) ≤ β ≤ φ0+(t) ≤

φ(z)− φ(t)

z − t

for all a < u < t < z < b. Item 4. now follows.

Corollary 10.8. Suppose φ : (a, b)→ R is differential then φ is convex iff φ0

is non decreasing. In particular if φ ∈ C2(a, b) then φ is convex iff φ00 ≥ 0.
Proof. By Proposition 10.7, if φ is convex then φ0 is non-decreasing. Con-

versely if φ0 is increasing then by the mean value theorem,

φ(x1)− φ(c)

x1 − c
= φ0(ξ1) for some ξ1 ∈ (c, x1)

and
φ(c)− φ(x0)

c− x0
= φ0(ξ2) for some ξ2 ∈ (x0, c).

Hence
φ(x1)− φ(c)

x1 − c
≥ φ(c)− φ(x0)

c− x0

for all x0 < c < x1. Solving this inequality for φ(c) gives

φ(c) ≤ c− x0
x1 − x0

φ(x1) +
x1 − c

x1 − x0
φ(x0)

showing φ is convex.
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Example 10.9. The functions exp(x) and − log(x) are convex and xp is
convex iff p ≥ 1.
Theorem 10.10 (Jensen’s Inequality). Suppose that (X,M, µ) is a prob-
ability space, i.e. µ is a positive measure and µ(X) = 1. Also suppose that
f ∈ L1(µ), f : X → (a, b), and φ : (a, b)→ R is a convex function. Then

φ

µZ
X

fdµ

¶
≤
Z
X

φ(f)dµ

where if φ ◦ f /∈ L1(µ), then φ ◦ f is integrable in the extended sense andR
X
φ(f)dµ =∞.

Proof. Let t =
R
X
fdµ ∈ (a, b) and let β ∈ R be such that φ(s) − φ(t) ≥

β(s−t) for all s ∈ (a, b). Then integrating the inequality, φ(f)−φ(t) ≥ β(f−t),
implies that

0 ≤
Z
X

φ(f)dµ− φ(t) =

Z
X

φ(f)dµ− φ(

Z
X

fdµ).

Moreover, if φ(f) is not integrable, then φ(f) ≥ φ(t) + β(f − t) which shows
that negative part of φ(f) is integrable. Therefore,

R
X
φ(f)dµ = ∞ in this

case.

Example 10.11. The convex functions in Example 10.9 lead to the following
inequalities,

exp

µZ
X

fdµ

¶
≤
Z
X

efdµ, (10.15)Z
X

log(|f |)dµ ≤ log
µZ

X

|f | dµ
¶
≤ log

µZ
X

fdµ

¶
and for p ≥ 1, ¯̄̄̄Z

X

fdµ

¯̄̄̄p
≤
µZ

X

|f | dµ
¶p
≤
Z
X

|f |p dµ.

The last equation may also easily be derived using Hölder’s inequality. As a
special case of the first equation, we get another proof of Lemma 1.27. Indeed,
more generally, suppose pi, si > 0 for i = 1, 2, . . . , n and

Pn
i=1

1
pi
= 1, then

s1 . . . sn = e
Pn

i=1 ln si = e
Pn

i=1
1
pi
ln s

pi
i ≤

nX
i=1

1

pi
eln s

pi
i =

nX
i=1

spii
pi

(10.16)

where the inequality follows from Eq. (10.15) with µ =
Pn

i=1
1
pi
δsi . Of course

Eq. (10.16) may be proved directly by directly using the convexity of the
exponential function.
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10.2 Modes of Convergence

As usual let (X,M, µ) be a fixed measure space and let {fn} be a sequence
of measurable functions on X. Also let f : X → C be a measurable function.
We have the following notions of convergence and Cauchy sequences.

Definition 10.12. 1. fn → f a.e. if there is a set E ∈M such that µ(Ec) =
0 and limn→∞ 1Efn = 1Ef.

2. fn → f in µ — measure if limn→∞ µ(|fn − f | > �) = 0 for all � > 0. We
will abbreviate this by saying fn → f in L0 or by fn

µ→ f.
3. fn → f in Lp iff f ∈ Lp and fn ∈ Lp for all n, and limn→∞

R |fn−f |pdµ =
0.

Definition 10.13. 1. {fn} is a.e. Cauchy if there is a set E ∈M such that
µ(Ec) = 0 and{1E fn} is a pointwise Cauchy sequences.

2. {fn} is Cauchy in µ — measure (or L0 — Cauchy) if limm,n→∞ µ(|fn −
fm| > �) = 0 for all � > 0.

3. {fn} is Cauchy in Lp if limm,n→∞
R |fn − fm|pdµ = 0.

Lemma 10.14 (Chebyshev’s inequality again). Let p ∈ [1,∞) and f ∈
Lp, then

µ (|f | ≥ �) ≤ 1

�p
kfkpp for all � > 0.

In particular if {fn} ⊂ Lp is Lp — convergent (Cauchy) then {fn} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (8.12),

µ (|f | ≥ �) = µ (|f |p ≥ �p) ≤ 1

�p

Z
X

|f |p dµ = 1

�p
kfkpp

and therefore if {fn} is Lp — Cauchy, then

µ (|fn − fm| ≥ �) ≤ 1

�p
kfn − fmkp → 0 as m,n→∞

showing {fn} is L0 — Cauchy. A similar argument holds for the Lp — convergent
case.

Lemma 10.15. Suppose an ∈ C and |an+1− an| ≤ �n and
∞P
n=1

�n <∞. Then

lim
n→∞ an = a ∈ C exists and |a− an| ≤ δn ≡

∞P
k=n

�k.

Proof. Let m > n then

|am − an| =
¯̄̄̄
m−1P
k=n

(ak+1 − ak)

¯̄̄̄
≤

m−1P
k=n

|ak+1 − ak| ≤
∞P
k=n

�k ≡ δn . (10.17)

So |am− an| ≤ δmin(m,n) → 0 as ,m, n→∞, i.e. {an} is Cauchy. Let m→∞
in (10.17) to find |a− an| ≤ δn.
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Fig. 10.2. Modes of convergence examples. In picture 1. fn → 0 a.e., fn 9 0 in L1,
fn

m→ 0. In picture 2. fn → 0 a.e., fn 9 0 in L1, fn
m9 0. In picture 3., fn → 0 a.e.,

fn
m→ 0 but fn 9 0 in L1. In picture 4., fn → 0 in L1, fn 9 0 a.e., and fn

m→ 0.

Theorem 10.16. Suppose {fn} is L0-Cauchy. Then there exists a subse-

quence gj = fnj of {fn} such that lim gj ≡ f exists a.e. and fn
µ

−→ f

as n → ∞. Moreover if g is a measurable function such that fn
µ−→ g

as n→∞, then f = g a.e.

Proof. Let �n > 0 such that
∞P
n=1

�n < ∞ (�n = 2−n would do) and set

δn =
∞P
k=n

�k. Choose gj = fnj such that {nj} is a subsequence of N and

µ({|gj+1 − gj | > �j}) ≤ �j .

Let Ej = {|gj+1 − gj | > �j} ,

FN =
∞[
j=N

Ej =
∞[

j=N

{|gj+1 − gj | > �j}
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and

E ≡
∞\

N=1

FN =
∞\

N=1

∞[
j=N

Ej = {|gj+1 − gj | > �j i.o.}.

Then µ(E) = 0 since

µ(E) ≤
∞X
j=N

µ(Ej) ≤
∞X

j=N

�j = δN → 0 as N →∞.

For x /∈ FN , |gj+1(x) − gj(x)| ≤ �j for all j ≥ N and by Lemma 10.15,
f(x) = lim

j→∞
gj(x) exists and |f(x) − gj(x)| ≤ δj for all j ≥ N . Therefore,

lim
j→∞

gj(x) = f(x) exists for all x /∈ E. Moreover, {x : |f(x)−fj(x)| > δj} ⊂ Fj

for all j ≥ N and hence

µ(|f − gj | > δj) ≤ µ(Fj) ≤ δj → 0 as j →∞.

Therefore gj
µ−→ f as j →∞.

Since

{|fn − f | > �} = {|f − gj + gj − fn| > �}
⊂ {|f − gj | > �/2} ∪ {|gj − fn| > �/2},

µ({|fn − f | > �}) ≤ µ({|f − gj | > �/2}) + µ(|gj − fn| > �/2)

and

µ({|fn − f | > �}) ≤ lim
j→∞

supµ(|gj − fn| > �/2)→ 0 as n→∞.

If also fn
µ−→ g as n→∞, then arguing as above

µ(|f − g| > �) ≤ µ({|f − fn| > �/2}) + µ(|g − fn| > �/2)→ 0 as n→∞.

Hence

µ(|f − g| > 0) = µ(∪∞n=1{|f − g| > 1

n
}) ≤

∞X
n=1

µ(|f − g| > 1

n
) = 0,

i.e. f = g a.e.

Corollary 10.17 (Dominated Convergence Theorem). Suppose {fn} ,
{gn} , and g are in L1 and f ∈ L0 are functions such that

|fn| ≤ gn a.e., fn
µ−→ f, gn

µ−→ g, and
Z

gn →
Z

g as n→∞.

Then f ∈ L1 and limn→∞ kf − fnk1 = 0, i.e. fn → f in L1. In particular
limn→∞

R
fn =

R
f.
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Proof. First notice that |f | ≤ g a.e. and hence f ∈ L1 since g ∈ L1. To
see that |f | ≤ g, use Theorem 10.16 to find subsequences {fnk} and {gnk} of
{fn} and {gn} respectively which are almost everywhere convergent. Then

|f | = lim
k→∞

|fnk | ≤ lim
k→∞

gnk = g a.e.

If (for sake of contradiction) limn→∞ kf − fnk1 6= 0 there exists � > 0 and
a subsequence {fnk} of {fn} such thatZ

|f − fnk | ≥ � for all k. (10.18)

Using Theorem 10.16 again, we may assume (by passing to a further subse-
quences if necessary) that fnk → f and gnk → g almost everywhere. Noting,
|f − fnk | ≤ g + gnk → 2g and

R
(g + gnk) →

R
2g, an application of the

dominated convergence Theorem 8.38 implies limk→∞
R |f − fnk | = 0 which

contradicts Eq. (10.18).

Exercise 10.18 (Fatou’s Lemma). If fn ≥ 0 and fn → f in measure, thenR
f ≤ lim infn→∞

R
fn.

Theorem 10.19 (Egoroff ’s Theorem). Suppose µ(X) < ∞ and fn → f
a.e. Then for all � > 0 there exists E ∈M such that µ(E) < � and fn → f

uniformly on Ec. In particular fn
µ−→ f as n→∞.

Proof. Let fn → f a.e. Then µ({|fn − f | > 1
k i.o. n}) = 0 for all k > 0,

i.e.

lim
N→∞

µ

 [
n≥N

{|fn − f | > 1

k
}
 = µ

 ∞\
N=1

[
n≥N

{|fn − f | > 1

k
}
 = 0.

Let Ek :=
S

n≥Nk

{|fn − f | > 1
k} and choose an increasing sequence {Nk}∞k=1

such that µ(Ek) < �2−k for all k. Setting E := ∪Ek, µ(E) <
P

k �2
−k = �

and if x /∈ E, then |fn − f | ≤ 1
k for all n ≥ Nk and all k. That is fn → f

uniformly on Ec.

Exercise 10.20. Show that Egoroff’s Theorem remains valid when the as-
sumption µ(X) <∞ is replaced by the assumption that |fn| ≤ g ∈ L1 for all
n.

10.3 Completeness of Lp — spaces

Theorem 10.21. Let k·k∞ be as defined in Eq. (10.2), then (L∞(X,M, µ), k·k∞) is
a Banach space. A sequence {fn}∞n=1 ⊂ L∞ converges to f ∈ L∞ iff there ex-
ists E ∈ M such that µ(E) = 0 and fn → f uniformly on Ec. Moreover,
bounded simple functions are dense in L∞.
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Proof. By Minkowski’s Theorem 10.4, k·k∞ satisfies the triangle inequal-
ity. The reader may easily check the remaining conditions that ensure k·k∞ is
a norm.
Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such fn → f ∈ L∞, i.e.

kf − fnk∞ → 0 as n→∞. Then for all k ∈ N, there exists Nk <∞ such that

µ
¡|f − fn| > k−1

¢
= 0 for all n ≥ Nk.

Let
E = ∪∞k=1 ∪n≥Nk

©|f − fn| > k−1
ª
.

Then µ(E) = 0 and for x ∈ Ec, |f(x)− fn(x)| ≤ k−1 for all n ≥ Nk. This
shows that fn → f uniformly on Ec. Conversely, if there exists E ∈M such
that µ(E) = 0 and fn → f uniformly on Ec, then for any � > 0,

µ (|f − fn| ≥ �) = µ ({|f − fn| ≥ �} ∩Ec) = 0

for all n sufficiently large. That is to say lim supn→∞ kf − fnk∞ ≤ � for
all � > 0. The density of simple functions follows from the approximation
Theorem 8.12.
So the last item to prove is the completeness of L∞ for which we will

use Theorem 2.67. Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such thatP∞
n=1 kfnk∞ <∞. LetMn := kfnk∞ , En := {|fn| > Mn} , andE := ∪∞n=1En

so that µ(E) = 0. Then

∞X
n=1

sup
x∈Ec

|fn(x)| ≤
∞X
n=1

Mn <∞

which shows that SN (x) =
PN

n=1 fn(x) converges uniformly to S(x) :=P∞
n=1 fn(x) on Ec, i.e. limn→∞ kS − Snk∞ = 0.
Alternatively, suppose �m,n := kfm − fnk∞ → 0 as m,n → ∞.

Let Em,n = {|fn − fm| > �m,n} and E := ∪Em,n, then µ(E) = 0 and
kfm − fnkEc,u = �m,n → 0 as m,n → ∞. Therefore, f := limn→∞ fn ex-
ists on Ec and the limit is uniform on Ec. Letting f = lim supn→∞ fn, it then
follows that kfm − fk∞ → 0 as m→∞.

Theorem 10.22 (Completeness of Lp(µ)). For 1 ≤ p ≤ ∞, Lp(µ) equipped
with the Lp — norm, k·kp (see Eq. (10.1)), is a Banach space.
Proof. By Minkowski’s Theorem 10.4, k·kp satisfies the triangle inequality.

As above the reader may easily check the remaining conditions that ensure k·kp
is a norm. So we are left to prove the completeness of Lp(µ) for 1 ≤ p < ∞,
the case p = ∞ being done in Theorem 10.21. By Chebyshev’s inequality
(Lemma 10.14), {fn} is L0-Cauchy (i.e. Cauchy in measure) and by Theorem
10.16 there exists a subsequence {gj} of {fn} such that gj → f a.e. By Fatou’s
Lemma,
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kgj − fkpp =
Z
lim
k→∞

inf |gj − gk|pdµ ≤ lim
k→∞

inf

Z
|gj − gk|pdµ

= lim
k→∞

inf kgj − gkkpp → 0 as j →∞.

In particular, kfkp ≤ kgj −fkp+kgjkp <∞ so the f ∈ Lp and gj
Lp−→ f . The

proof is finished because,

kfn − fkp ≤ kfn − gjkp + kgj − fkp → 0 as j, n→∞.

The Lp(µ) — norm controls two types of behaviors of f, namely the “be-
havior at infinity” and the behavior of local singularities. So in particular, if f
is blows up at a point x0 ∈ X, then locally near x0 it is harder for f to be in
Lp(µ) as p increases. On the other hand a function f ∈ Lp(µ) is allowed to de-
cay at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect Lp(µ) ⊂ Lq(µ) or Lq(µ) ⊂ Lp(µ). However,
there are two notable exceptions. (1) If µ(X) <∞, then there is no behavior
at infinity to worry about and Lq(µ) ⊂ Lp(µ) for all q ≤ p as is shown in
Corollary 10.23 below. (2) If µ is counting measure, i.e. µ(A) = #(A), then
all functions in Lp(µ) for any p can not blow up on a set of positive measure,
so there are no local singularities. In this case Lp(µ) ⊂ Lq(µ) for all q ≤ p,
see Corollary 10.27 below.

Corollary 10.23. If µ(X) < ∞, then Lp(µ) ⊂ Lq(µ) for all 0 < p < q ≤ ∞
and the inclusion map is bounded.

Proof. Choose a ∈ [1,∞] such that
1

p
=
1

a
+
1

q
, i.e. a =

pq

q − p
.

Then by Corollary 10.3,

kfkp = kf · 1kp ≤ kfkq · k1ka = µ(X)1/akfkq = µ(X)(
1
p− 1

q )kfkq.

The reader may easily check this final formula is correct even when q = ∞
provided we interpret 1/p− 1/∞ to be 1/p.

Proposition 10.24. Suppose that 0 < p < q < r ≤ ∞, then Lq ⊂ Lp + Lr,
i.e. every function f ∈ Lq may be written as f = g + h with g ∈ Lp and
h ∈ Lr. For 1 ≤ p < r ≤ ∞ and f ∈ Lp + Lr let

kfk := inf
n
kgkp + khkr : f = g + h

o
.

Then (Lp + Lr, k·k) is a Banach space and the inclusion map from Lq to
Lp + Lr is bounded; in fact kfk ≤ 2 kfkq for all f ∈ Lq.
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Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f | > M} and the behavior of f at “infinity” is solely determined
by f on Ec. Hence let g = f1E and h = f1Ec so that f = g+h. By our earlier
discussion we expect that g ∈ Lp and h ∈ Lr and this is the case since,

kgkpp =
°°f1|f |>M°°pp = Z |f |p 1|f|>M =Mp

Z ¯̄̄̄
f

M

¯̄̄̄p
1|f |>M

≤Mp

Z ¯̄̄̄
f

M

¯̄̄̄q
1|f |>M ≤Mp−q kfkqq <∞

and

khkrr =
°°f1|f |≤M°°rr = Z |f |r 1|f |≤M =Mr

Z ¯̄̄̄
f

M

¯̄̄̄r
1|f |≤M

≤Mr

Z ¯̄̄̄
f

M

¯̄̄̄q
1|f |≤M ≤Mr−q kfkqq <∞.

Moreover this shows

kfk ≤M1−q/p kfkq/pq +M1−q/r kfkq/rq .

Taking M = λ kfkq then gives

kfk ≤
³
λ1−q/p + λ1−q/r

´
kfkq

and then taking λ = 1 shows kfk ≤ 2 kfkq . The the proof that (Lp + Lr, k·k)
is a Banach space is left as Exercise 10.48 to the reader.

Corollary 10.25 (Interpolation of Lp — norms). Suppose that 0 < p <
q < r ≤ ∞, then Lp ∩ Lr ⊂ Lq and

kfkq ≤ kfkλp kfk1−λr (10.19)

where λ ∈ (0, 1) is determined so that
1

q
=

λ

p
+
1− λ

r
with λ = p/q if r =∞.

Further assume 1 ≤ p < q < r ≤ ∞, and for f ∈ Lp ∩ Lr let
kfk := kfkp + kfkr .

Then (Lp ∩ Lr, k·k) is a Banach space and the inclusion map of Lp ∩ Lr into
Lq is bounded, in fact

kfkq ≤ max
¡
λ−1, (1− λ)−1

¢ ³kfkp + kfkr´ , (10.20)

where

λ =

1
q − 1

r
1
p − 1

r

=
p (r − q)

q (r − p)
.
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The heuristic explanation of this corollary is that if f ∈ Lp ∩ Lr, then f
has local singularities no worse than an Lr function and behavior at infinity
no worse than an Lp function. Hence f ∈ Lq for any q between p and r.
Proof. Let λ be determined as above, a = p/λ and b = r/(1−λ), then by

Corollary 10.3,

kfkq =
°°°|f |λ |f |1−λ°°°

q
≤
°°°|f |λ°°°

a

°°°|f |1−λ°°°
b
= kfkλp kfk1−λr .

It is easily checked that k·k is a norm on Lp ∩ Lr. To show this space is
complete, suppose that {fn} ⊂ Lp ∩ Lr is a k·k — Cauchy sequence. Then
{fn} is both Lp and Lr — Cauchy. Hence there exist f ∈ Lp and g ∈ Lr

such that limn→∞ kf − fnkp = 0 and limn→∞ kg − fnkq = 0. By Chebyshev’s
inequality (Lemma 10.14) fn → f and fn → g in measure and therefore by
Theorem 10.16, f = g a.e. It now is clear that limn→∞ kf − fnk = 0. The
estimate in Eq. (10.20) is left as Exercise 10.47 to the reader.

Remark 10.26. Let p = p1, r = p0 and for λ ∈ (0, 1) let pλ be defined by
1

pλ
=
1− λ

p0
+

λ

p1
. (10.21)

Combining Proposition 10.24 and Corollary 10.25 gives

Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1

and Eq. (10.19) becomes

kfkpλ ≤ kfk
1−λ
p0

kfkλp1 .
Corollary 10.27. Suppose now that µ is counting measure on X. Then
Lp(µ) ⊂ Lq(µ) for all 0 < p < q ≤ ∞ and kfkq ≤ kfkp .
Proof. Suppose that 0 < p < q =∞, then

kfkp∞ = sup {|f(x)|p : x ∈ X} ≤
X
x∈X

|f(x)|p = kfkpp ,

i.e. kfk∞ ≤ kfkp for all 0 < p < ∞. For 0 < p ≤ q ≤ ∞, apply Corollary
10.25 with r =∞ to find

kfkq ≤ kfkp/qp kfk1−p/q∞ ≤ kfkp/qp kfk1−p/qp = kfkp .

10.3.1 Summary:

1. Since µ(|f | > �) ≤ �−p kfkpp it follows that Lp — convergence implies L0 —
convergence.
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2. L0 — convergence implies almost everywhere convergence for some subse-
quence.

3. If µ(X) <∞, then Lq ⊂ Lp for all p ≤ q in fact

kfkp ≤ [µ(X)](
1
p− 1

q ) kfkq ,
i.e. Lq — convergence implies Lp — convergence.

4. Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1 where

1

pλ
=
1− λ

p0
+

λ

p1
.

5. cp ⊂ cq if p ≤ q. In fact kfkq ≤ kfkp in this case. To prove this write
1

q
=

λ

p
+
(1− λ)

∞ ,

then using kfk∞ ≤ kfkp for all p,

kfkq ≤ kfkλp kfk1−λ∞ ≤ kfkλp kfk1−λp = kfkp .
6. If µ(X) < ∞ then almost everywhere convergence implies L0 — conver-
gence.

10.4 Converse of Hölder’s Inequality

Throughout this section we assume (X,M, µ) is a σ-finite measure space,
q ∈ [1,∞] and p ∈ [1,∞] are conjugate exponents, i.e. p−1 + q−1 = 1. For
g ∈ Lq, let φg ∈ (Lp)∗ be given by

φg(f) =

Z
gf dµ. (10.22)

By Hölder’s inequality

|φg(f)| ≤
Z
|gf |dµ ≤ kgkqkfkp (10.23)

which implies that

kφgk(Lp)∗ := sup{|φg(f)| : kfkp = 1} ≤ kgkq. (10.24)

Proposition 10.28 (Converse of Hölder’s Inequality). Let (X,M, µ) be
a σ-finite measure space and 1 ≤ p ≤ ∞ as above. For all g ∈ Lq,

kgkq = kφgk(Lp)∗ := sup
n
|φg(f)| : kfkp = 1

o
(10.25)

and for any measurable function g : X → C,

kgkq = sup
½Z

X

|g| fdµ : kfkp = 1 and f ≥ 0
¾
. (10.26)
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Proof. We begin by proving Eq. (10.25). Assume first that q < ∞ so
p > 1. Then

|φg(f)| =
¯̄̄̄Z

gf dµ

¯̄̄̄
≤
Z
|gf | dµ ≤ kgkqkfkp

and equality occurs in the first inequality when sgn(gf) is constant a.e. while
equality in the second occurs, by Theorem 10.2, when |f |p = c|g|q for some
constant c > 0. So let f := sgn(g)|g|q/p which for p =∞ is to be interpreted
as f = sgn(g), i.e. |g|q/∞ ≡ 1.
When p =∞,

|φg(f)| =
Z
X

g sgn(g)dµ = kgkL1(µ) = kgk1 kfk∞

which shows that kφgk(L∞)∗ ≥ kgk1. If p <∞, then

kfkpp =
Z
|f |p =

Z
|g|q = kgkqq

while

φg(f) =

Z
gfdµ =

Z
|g||g|q/pdµ =

Z
|g|qdµ = kgkqq.

Hence
|φg(f)|
kfkp =

kgkqq
kgkq/pq

= kgkq(1−
1
p )

q = kgkq.

This shows that ||φgk ≥ kgkq which combined with Eq. (10.24) implies Eq.
(10.25).
The last case to consider is p = 1 and q =∞. Let M := kgk∞ and choose

Xn ∈ M such that Xn ↑ X as n → ∞ and µ(Xn) < ∞ for all n. For any
� > 0, µ(|g| ≥M − �) > 0 and Xn∩{|g| ≥M − �} ↑ {|g| ≥M − �}. Therefore,
µ(Xn ∩ {|g| ≥M − �}) > 0 for n sufficiently large. Let

f = sgn(g)1Xn∩{|g|≥M−�},

then
kfk1 = µ(Xn ∩ {|g| ≥M − �}) ∈ (0,∞)

and

|φg(f)| =
Z
Xn∩{|g|≥M−�}

sgn(g)gdµ =

Z
Xn∩{|g|≥M−�}

|g|dµ

≥ (M − �)µ(Xn ∩ {|g| ≥M − �}) = (M − �)kfk1.

Since � > 0 is arbitrary, it follows from this equation that kφgk(L1)∗ ≥ M =
kgk∞.
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We now will prove Eq. (10.26). The key new point is that we no longer are
assuming that g ∈ Lq. Let M(g) denote the right member in Eq. (10.26) and
set gn := 1Xn∩{|g|≤n}g. Then |gn| ↑ |g| as n→∞ and it is clear thatM(gn) is
increasing in n. Therefore using Lemma 1.10 and the monotone convergence
theorem,

lim
n→∞M(gn) = sup

n
M(gn) = sup

n
sup

½Z
X

|gn| fdµ : kfkp = 1 and f ≥ 0
¾

= sup

½
sup
n

Z
X

|gn| fdµ : kfkp = 1 and f ≥ 0
¾

= sup

½
lim
n→∞

Z
X

|gn| fdµ : kfkp = 1 and f ≥ 0
¾

= sup

½Z
X

|g| fdµ : kfkp = 1 and f ≥ 0
¾
=M(g).

Since gn ∈ Lq for all n and M(gn) = kφgnk(Lp)∗ (as you should verify), it
follows from Eq. (10.25) thatM(gn) = kgnkq .When q <∞, by the monotone
convergence theorem, and when q = ∞, directly from the definitions, one
learns that limn→∞ kgnkq = kgkq . Combining this fact with limn→∞M(gn) =
M(g) just proved shows M(g) = kgkq .
As an application we can derive a sweeping generalization of Minkowski’s

inequality. (See Reed and Simon, Vol II. Appendix IX.4 for a more thorough
discussion of complex interpolation theory.)

Theorem 10.29 (Minkowski’s Inequality for Integrals). Let (X,M, µ)
and (Y,N , ν) be σ-finite measure spaces and 1 ≤ p ≤ ∞. If f is a M ⊗ N
measurable function, then y → kf(·, y)kLp(µ) is measurable and
1. if f is a positiveM⊗N measurable function, then

k
Z
Y

f(·, y)dν(y)kLp(µ) ≤
Z
Y

kf(·, y)kLp(µ)dν(y). (10.27)

2. If f : X×Y → C is aM⊗N measurable function and
R
Y
kf(·, y)kLp(µ)dν(y) <

∞ then
a) for µ — a.e. x, f(x, ·) ∈ L1(ν),
b) the µ —a.e. defined function, x→ R

Y
f(x, y)dν(y), is in Lp(µ) and

c) the bound in Eq. (10.27) holds.

Proof. For p ∈ [1,∞], let Fp(y) := kf(·, y)kLp(µ). If p ∈ [1,∞)

Fp(y) = kf(·, y)kLp(µ) =
µZ

X

|f(x, y)|p dµ(x)
¶1/p

is a measurable function on Y by Fubini’s theorem. To see that F∞ is mea-
surable, let Xn ∈M such that Xn ↑ X and µ(Xn) < ∞ for all n. Then by
Exercise 10.46,
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F∞(y) = lim
n→∞ lim

p→∞ kf(·, y)1XnkLp(µ)
which shows that F∞ is (Y,N ) — measurable as well. This shows that integral
on the right side of Eq. (10.27) is well defined.
Now suppose that f ≥ 0, q = p/(p− 1)and g ∈ Lq(µ) such that g ≥ 0 and

kgkLq(µ) = 1. Then by Tonelli’s theorem and Hölder’s inequality,Z
X

·Z
Y

f(x, y)dν(y)

¸
g(x)dµ(x) =

Z
Y

dν(y)

Z
X

dµ(x)f(x, y)g(x)

≤ kgkLq(µ)
Z
Y

kf(·, y)kLp(µ)dν(y)

=

Z
Y

kf(·, y)kLp(µ)dν(y).

Therefore by Proposition 10.28,

k
Z
Y

f(·, y)dν(y)kLp(µ)

= sup

½Z
X

·Z
Y

f(x, y)dν(y)

¸
g(x)dµ(x) : kgkLq(µ) = 1 and g ≥ 0

¾
≤
Z
Y

kf(·, y)kLp(µ)dν(y)

proving Eq. (10.27) in this case.
Now let f : X×Y → C be as in item 2) of the theorem. Applying the first

part of the theorem to |f | showsZ
Y

|f(x, y)| dν(y) <∞ for µ— a.e. x,

i.e. f(x, ·) ∈ L1(ν) for the µ —a.e. x. Since
¯̄R
Y
f(x, y)dν(y)

¯̄ ≤ R
Y
|f(x, y)| dν(y)

it follows by item 1) that

k
Z
Y

f(·, y)dν(y)kLp(µ) ≤ k
Z
Y

|f(·, y)| dν(y)kLp(µ) ≤
Z
Y

kf(·, y)kLp(µ)dν(y).

Hence the function, x ∈ X → R
Y
f(x, y)dν(y), is in Lp(µ) and the bound in

Eq. (10.27) holds.
Here is an application of Minkowski’s inequality for integrals.

Theorem 10.30 (Theorem 6.20 in Folland). Suppose that k : (0,∞) ×
(0,∞)→ C is a measurable function such that k is homogenous of degree −1,
i.e. k(λx, λy) = λ−1k(x, y) for all λ > 0. If

Cp :=

Z ∞
0

|k(x, 1)|x−1/pdx <∞
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for some p ∈ [1,∞], then for f ∈ Lp((0,∞),m), k(x, ·)f(·) ∈ Lp((0,∞),m)
for m — a.e. x Moreover, the m — a.e. defined function

(Kf)(x) =

Z ∞
0

k(x, y)f(y)dy (10.28)

is in Lp((0,∞),m) and
kKfkLp((0,∞),m) ≤ CpkfkLp((0,∞),m).

Proof. By the homogeneity of k, k(x, y) = y−1k(xy , 1). HenceZ ∞
0

|k(x, y)f(y)| dy =
Z ∞
0

x−1 |k(1, y/x)f(y)| dy

=

Z ∞
0

x−1 |k(1, z)f(xz)|xdz =
Z ∞
0

|k(1, z)f(xz)| dz.

Since

kf(· z)kpLp((0,∞),m) =
Z ∞
0

|f(yz)|pdy =
Z ∞
0

|f(x)|p dx

z
,

kf(· z)kLp((0,∞),m) = z−1/pkfkLp((0,∞),m).
Using Minkowski’s inequality for integrals then shows°°°°Z ∞

0

|k(·, y)f(y)| dy
°°°°
Lp((0,∞),m)

≤
Z ∞
0

|k(1, z)| kf(·z)kLp((0,∞),m) dz

= kfkLp((0,∞),m)
Z ∞
0

|k(1, z)| z−1/pdz
= CpkfkLp((0,∞),m) <∞.

This shows that Kf in Eq. (10.28) is well defined from m — a.e. x. The proof
is finished by observing

kKfkLp((0,∞),m) ≤
°°°°Z ∞

0

|k(·, y)f(y)| dy
°°°°
Lp((0,∞),m)

≤ CpkfkLp((0,∞),m)

for all f ∈ Lp((0,∞),m).
The following theorem is a strengthening of Proposition 10.28. which will

be used (actually maybe not) in Theorem ?? below. (WHERE IS THIS THE-
OREM USED?)

Theorem 10.31 (Converse of Hölder’s Inequality II). Assume that
(X,M, µ) is a σ — finite measure space, q, p ∈ [1,∞] are conjugate exponents
and let Sf denote the set of simple functions φ on X such that µ (φ 6= 0) <∞.
For g : X → C measurable such that φg ∈ L1 for all φ ∈ Sf , 1 let
1 This is equivalent to requiring 1Ag ∈ L1(µ) for all A ∈M such that µ(A) <∞.
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Mq(g) = sup

½¯̄̄̄Z
X

φgdµ

¯̄̄̄
: φ ∈ Sf with kφkp = 1

¾
. (10.29)

If Mq(g) <∞ then g ∈ Lq and Mq(g) = kgkq .
Proof. Let Xn ∈M be sets such that µ(Xn) <∞ and Xn ↑ X as n ↑ ∞.

Suppose that q = 1 and hence p = ∞. Choose simple functions φn on X
such that |φn| ≤ 1 and sgn(g) = limn→∞ φn in the pointwise sense. Then
1Xmφn ∈ Sf and therefore¯̄̄̄Z

X

1Xm
φngdµ

¯̄̄̄
≤Mq(g)

for all m,n. By assumption 1Xmg ∈ L1(µ) and therefore by the dominated
convergence theorem we may let n→∞ in this equation to findZ

X

1Xm |g| dµ ≤Mq(g)

for all m. The monotone convergence theorem then implies thatZ
X

|g| dµ = lim
m→∞

Z
X

1Xm |g| dµ ≤Mq(g)

showing g ∈ L1(µ) and kgk1 ≤ Mq(g). Since Holder’s inequality implies that
Mq(g) ≤ kgk1 , we have proved the theorem in case q = 1.
For q > 1, we will begin by assuming that g ∈ Lq(µ). Since p ∈ [1,∞)

we know that Sf is a dense subspace of Lp(µ) and therefore, using φg is
continuous on Lp(µ),

Mq(g) = sup

½¯̄̄̄Z
X

φgdµ

¯̄̄̄
: φ ∈ Lp(µ) with kφkp = 1

¾
= kgkq

where the last equality follows by Proposition 10.28.
So it remains to show that if φg ∈ L1 for all φ ∈ Sf and Mq(g) < ∞

then g ∈ Lq(µ). For n ∈ N, let gn ≡ 1Xn
1|g|≤ng. Then gn ∈ Lq(µ), in fact

kgnkq ≤ nµ(Xn)
1/q <∞. So by the previous paragraph, kgnkq =Mq(gn) and

hence

kgnkq = sup
½¯̄̄̄Z

X

φ1Xn1|g|≤ngdµ
¯̄̄̄
: φ ∈ Lp(µ) with kφkp = 1

¾
≤Mq(g)

°°φ1Xn1|g|≤n
°°
p
≤Mq(g) · 1 =Mq(g)

wherein the second to last inequality we have made use of the definition of
Mq(g) and the fact that φ1Xn1|g|≤n ∈ Sf . If q ∈ (1,∞), an application of the
monotone convergence theorem (or Fatou’s Lemma) along with the continuity
of the norm, k·kp , implies

kgkq = lim
n→∞ kgnkq ≤Mq(g) <∞.

If q =∞, then kgnk∞ ≤Mq(g) <∞ for all n implies |gn| ≤Mq(g) a.e. which
then implies that |g| ≤Mq(g) a.e. since |g| = limn→∞ |gn| . That is g ∈ L∞(µ)
and kgk∞ ≤M∞(g).
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10.5 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L0 — convergent sequence is Lp — convergent.

Notation 10.32 For f ∈ L1(µ) and E ∈M, let

µ(f : E) :=

Z
E

fdµ.

and more generally if A,B ∈M let

µ(f : A,B) :=

Z
A∩B

fdµ.

Lemma 10.33. Suppose g ∈ L1(µ), then for any � > 0 there exist a δ > 0
such that µ(|g| : E) < � whenever µ(E) < δ.

Proof. If the Lemma is false, there would exist � > 0 and sets En such
that µ(En) → 0 while µ(|g| : En) ≥ � for all n. Since |1Eng| ≤ |g| ∈ L1 and
for any δ ∈ (0, 1), µ(1En |g| > δ) ≤ µ(En) → 0 as n → ∞, the dominated
convergence theorem of Corollary 10.17 implies limn→∞ µ(|g| : En) = 0. This
contradicts µ(|g| : En) ≥ � for all n and the proof is complete.
Suppose that {fn}∞n=1 is a sequence of measurable functions which con-

verge in L1(µ) to a function f. Then for E ∈M and n ∈ N,
|µ(fn : E)| ≤ |µ(f − fn : E)|+ |µ(f : E)| ≤ kf − fnk1 + |µ(f : E)| .

Let �N := supn>N kf − fnk1 , then �N ↓ 0 as N ↑ ∞ and

sup
n
|µ(fn : E)| ≤ sup

n≤N
|µ(fn : E)| ∨ (�N + |µ(f : E)|) ≤ �N + µ (gN : E) ,

(10.30)
where gN = |f | +PN

n=1 |fn| ∈ L1. From Lemma 10.33 and Eq. (10.30) one
easily concludes,

∀ � > 0 ∃ δ > 0 3 sup
n
|µ(fn : E)| < � when µ(E) < δ. (10.31)

Definition 10.34. Functions {fn}∞n=1 ⊂ L1(µ) satisfying Eq. (10.31) are
said to be uniformly integrable.

Remark 10.35. Let {fn} be real functions satisfying Eq. (10.31), E be a set
where µ(E) < δ and En = E ∩ {fn ≥ 0} . Then µ(En) < δ so that µ(f+n :
E) = µ(fn : En) < � and similarly µ(f−n : E) < �. Therefore if Eq. (10.31)
holds then

sup
n

µ(|fn| : E) < 2� when µ(E) < δ. (10.32)

Similar arguments work for the complex case by looking at the real and imag-
inary parts of fn. Therefore {fn}∞n=1 ⊂ L1(µ) is uniformly integrable iff

∀ � > 0 ∃ δ > 0 3 sup
n

µ(|fn| : E) < � when µ(E) < δ. (10.33)
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Lemma 10.36. Assume that µ(X) < ∞, then {fn} is uniformly bounded in
L1(µ) (i.e. K = supn kfnk1 <∞) and {fn} is uniformly integrable iff

lim
M→∞

sup
n

µ(|fn| : |fn| ≥M) = 0. (10.34)

Proof. Since {fn} is uniformly bounded in L1(µ), µ(|fn| ≥ M) ≤ K/M.
So if (10.33) holds and � > 0 is given, we may choose M sufficeintly large so
that µ(|fn| ≥M) < δ(�) for all n and therefore,

sup
n

µ(|fn| : |fn| ≥M) ≤ �.

Since � is arbitrary, we concluded that Eq. (10.34) must hold.
Conversely, suppose that Eq. (10.34) holds, then automatically K =

supn µ(|fn|) <∞ because

µ(|fn|) = µ(|fn| : |fn| ≥M) + µ(|fn| : |fn| < M)

≤ sup
n

µ(|fn| : |fn| ≥M) +Mµ(X) <∞.

Moreover,

µ(|fn| : E) = µ(|fn| : |fn| ≥M,E) + µ(|fn| : |fn| < M,E)

≤ sup
n

µ(|fn| : |fn| ≥M) +Mµ(E).

So given � > 0 choose M so large that supn µ(|fn| : |fn| ≥M) < �/2 and then
take δ = �/ (2M) .

Remark 10.37. It is not in general true that if {fn} ⊂ L1(µ) is uniformly
integrable then supn µ(|fn|) <∞. For example take X = {∗} and µ({∗}) = 1.
Let fn(∗) = n. Since for δ < 1 a set E ⊂ X such that µ(E) < δ is in fact
the empty set, we see that Eq. (10.32) holds in this example. However, for
finite measure spaces with out “atoms”, for every δ > 0 we may find a finite
partition of X by sets {Ec}kc=1 with µ(Ec) < δ. Then if Eq. (10.32) holds with
2� = 1, then

µ(|fn|) =
kX

c=1

µ(|fn| : Ec) ≤ k

showing that µ(|fn|) ≤ k for all n.

The following Lemmas gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly bounded and uniformly in-
tegrable.

Lemma 10.38. Suppose that µ(X) < ∞, and Λ ⊂ L0(X) is a collection of
functions.
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1. If there exists a non decreasing function φ : R+ → R+ such that
limx→∞ φ(x)/x =∞ and

K := sup
f∈Λ

µ(φ(|f |)) <∞ (10.35)

then
lim

M→∞
sup
f∈Λ

µ
¡|f | 1|f|≥M¢ = 0. (10.36)

2. Conversely if Eq. (10.36) holds, there exists a non-decreasing continuous
function φ : R+ → R+ such that φ(0) = 0, limx→∞ φ(x)/x = ∞ and Eq.
(10.35) is valid.

Proof. 1. Let φ be as in item 1. above and set �M := supx≥M
x

φ(x) → 0

as M →∞ by assumption. Then for f ∈ Λ

µ(|f | : |f | ≥M) = µ(
|f |

φ (|f |)φ (|f |) : |f | ≥M) ≤ �Mµ(φ (|f |) : |f | ≥M)

≤ �Mµ(φ (|f |)) ≤ K�M

and hence
lim

M→∞
sup
f∈Λ

µ
¡|f | 1|f |≥M¢ ≤ lim

M→∞
K�M = 0.

2. By assumption, �M := supf∈Λ µ
¡|f | 1|f|≥M¢→ 0 asM →∞. Therefore

we may choose Mn ↑ ∞ such that

∞X
n=0

(n+ 1) �Mn <∞

where by convention M0 := 0. Now define φ so that φ(0) = 0 and

φ0(x) =
∞X
n=0

(n+ 1) 1(Mn,Mn+1](x),

i.e.

φ(x) =

Z x

0

φ0(y)dy =
∞X
n=0

(n+ 1) (x ∧Mn+1 − x ∧Mn) .

By construction φ is continuous, φ(0) = 0, φ0(x) is increasing (so φ is
convex) and φ0(x) ≥ (n+ 1) for x ≥Mn. In particular

φ(x)

x
≥ φ(Mn) + (n+ 1)x

x
≥ n+ 1 for x ≥Mn

from which we conclude limx→∞ φ(x)/x = ∞. We also have φ0(x) ≤ (n + 1)
on [0,Mn+1] and therefore
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φ(x) ≤ (n+ 1)x for x ≤Mn+1.

So for f ∈ Λ,

µ (φ(|f |)) =
∞X
n=0

µ
¡
φ(|f |)1(Mn,Mn+1](|f |)

¢
≤
∞X
n=0

(n+ 1)µ
¡|f | 1(Mn,Mn+1](|f |)

¢
≤
∞X
n=0

(n+ 1)µ
¡|f | 1|f |≥Mn

¢ ≤ ∞X
n=0

(n+ 1) �Mn

and hence

sup
f∈Λ

µ (φ(|f |)) ≤
∞X
n=0

(n+ 1) �Mn <∞.

Theorem 10.39 (Vitali Convergence Theorem). (Folland 6.15) Suppose
that 1 ≤ p <∞. A sequence {fn} ⊂ Lp is Cauchy iff

1. {fn} is L0 — Cauchy,
2. {|fn|p} — is uniformly integrable.
3. For all � > 0, there exists a set E ∈ M such that µ(E) < ∞ andR

Ec |fn|p dµ < � for all n. (This condition is vacuous when µ(X) <∞.)

Proof. (=⇒) Suppose {fn} ⊂ Lp is Cauchy. Then (1) {fn} is L0 —
Cauchy by Lemma 10.14. (2) By completeness of Lp, there exists f ∈ Lp such
that kfn − fkp → 0 as n→∞. By the mean value theorem,

||f |p − |fn|p| ≤ p(max(|f |, |fn|))p−1 ||f |− |fn|| ≤ p(|f |+ |fn|)p−1 ||f |− |fn||

and therefore by Hölder’s inequality,Z
||f |p − |fn|p| dµ ≤ p

Z
(|f |+ |fn|)p−1 ||f |− |fn|| dµ ≤ p

Z
(|f |+ |fn|)p−1|f − fn|dµ

≤ pkf − fnkpk(|f |+ |fn|)p−1kq = pk|f |+ |fn|kp/qp kf − fnkp
≤ p(kfkp + kfnkp)p/qkf − fnkp

where q := p/(p− 1). This shows that R ||f |p − |fn|p| dµ→ 0 as n→∞.2 By
the remarks prior to Definition 10.34, {|fn|p} is uniformly integrable.
2 Here is an alternative proof. Let hn ≡ ||fn|p − |f |p| ≤ |fn|p+ |f |p =: gn ∈ L1 and
g ≡ 2|f |p. Then gn

µ→ g, hn
µ→ 0 and

R
gn →

R
g. Therefore by the dominated

convergence theorem in Corollary 10.17, lim
n→∞

R
hn dµ = 0.
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To verify (3), for M > 0 and n ∈ N let EM = {|f | ≥ M} and EM (n) =
{|fn| ≥M}. Then µ(EM ) ≤ 1

Mp kf ||pp <∞ and by the dominated convergence
theorem, Z

Ec
M

|f |pdµ =
Z
|f |p1|f |<Mdµ→ 0 as M → 0.

Moreover,°°fn1Ec
M

°°
p
≤ °°f1Ec

M

°°
p
+
°°(fn − f)1Ec

M

°°
p
≤ °°f1Ec

M

°°
p
+ kfn − fkp . (10.37)

So given � > 0, choose N sufficiently large such that for all n ≥ N, kf −
fnkpp < �. Then choose M sufficiently small such that

R
Ec
M
|f |p dµ < � andR

Ec
M (n)

|f |p dµ < � for all n = 1, 2, . . . , N −1. Letting E ≡ EM ∪EM (1)∪ · · ·∪
EM (N − 1), we have

µ(E) <∞,

Z
Ec

|fn|p dµ < � for n ≤ N − 1

and by Eq. (10.37)Z
Ec

|fn|p dµ < (�1/p + �1/p)p ≤ 2p� for n ≥ N.

Therefore we have found E ∈M such that µ(E) <∞ and

sup
n

Z
Ec

|fn|p dµ ≤ 2p�

which verifies (3) since � > 0 was arbitrary.
(⇐=) Now suppose{fn} ⊂ Lp satisfies conditions (1) - (3). Let � > 0, E

be as in (3) and

Amn ≡ {x ∈ E|fm(x)− fn(x)| ≥ �}.
Then

k(fn − fm) 1Eckp ≤ kfn1Eckp + kfm 1Eckp < 2�1/p
and

kfn − fmkp = k(fn − fm)1Eckp + k(fn − fm)1E\Amn
kp

+ k(fn − fm)1Amnkp
≤ k(fn − fm)1E\Amn

kp + k(fn − fm)1Amnkp + 2�1/p. (10.38)

Using properties (1) and (3) and 1E∩{|fm−fn|<�}|fm − fn|p ≤ �p1E ∈ L1, the
dominated convergence theorem in Corollary 10.17 implies

k(fn − fm) 1E\Amn
kpp =

Z
1E∩{|fm−fn|<�} |fm − fn|p −→

m,n→∞ 0.
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which combined with Eq. (10.38) implies

lim sup
m,n→∞

kfn − fmkp ≤ lim sup
m,n→∞

k(fn − fm)1Amnkp + 2�1/p.

Finally

k(fn − fm)1Amn
kp ≤ kfn1Amn

kp + kfm 1Amn
kp ≤ 2δ(�)

where
δ(�) ≡ sup

n
sup{ kfn 1Ekp : E ∈M 3 µ(E) ≤ �}

By property (2), δ(�)→ 0 as �→ 0. Therefore

lim sup
m,n→∞

kfn − fmkp ≤ 2�1/p + 0 + 2δ(�)→ 0 as � ↓ 0

and therefore {fn} is Lp-Cauchy.
Here is another version of Vitali’s Convergence Theorem.

Theorem 10.40 (Vitali Convergence Theorem). (This is problem 9 on
p. 133 in Rudin.) Assume that µ(X) <∞, {fn} is uniformly integrable, fn →
f a.e. and |f | <∞ a.e., then f ∈ L1(µ) and fn → f in L1(µ).

Proof. Let � > 0 be given and choose δ > 0 as in the Eq. (10.32). Now use
Egoroff’s Theorem 10.19 to choose a set Ec where {fn} converges uniformly on
Ec and µ(E) < δ. By uniform convergence on Ec, there is an integer N <∞
such that |fn − fm| ≤ 1 on Ec for all m,n ≥ N. Letting m → ∞, we learn
that

|fN − f | ≤ 1 on Ec.

Therefore |f | ≤ |fN |+ 1 on Ec and hence

µ(|f |) = µ(|f | : Ec) + µ(|f | : E)
≤ µ(|fN |) + µ(X) + µ(|f | : E).

Now by Fatou’s lemma,

µ(|f | : E) ≤ lim inf
n→∞µ(|fn| : E) ≤ 2� <∞

by Eq. (10.32). This shows that f ∈ L1. Finally

µ(|f − fn|) = µ(|f − fn| : Ec) + µ(|f − fn| : E)
≤ µ(|f − fn| : Ec) + µ(|f |+ |fn| : E)
≤ µ(|f − fn| : Ec) + 4�

and so by the Dominated convergence theorem we learn that

lim sup
n→∞

µ(|f − fn|) ≤ 4�.

Since � > 0 was arbitrary this completes the proof.
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Theorem 10.41 (Vitali again). Suppose that fn → f in µ measure and Eq.
(10.34) holds, then fn → f in L1.

Proof. This could of course be proved using 10.40 after passing to subse-
quences to get {fn} to converge a.s. However I wish to give another proof.
First off, by Fatou’s lemma, f ∈ L1(µ). Now let

φK(x) = x1|x|≤K +K1|x|>K .

then φK(fn)
µ→ φK(f) because |φK(f)− φK(fn)| ≤ |f − fn| and since

|f − fn| ≤ |f − φK(f)|+ |φK(f)− φK(fn)|+ |φK(fn)− fn|
we have that

µ|f − fn| ≤ µ |f − φK(f)|+ µ|φK(f)− φK(fn)|+ µ |φK(fn)− fn|
= µ(|f | : |f | ≥ K) + µ|φK(f)− φK(fn)|+ µ(|fn| : |fn| ≥ K).

Therefore by the dominated convergence theorem

lim sup
n→∞

µ|f − fn| ≤ µ(|f | : |f | ≥ K) + lim sup
n→∞

µ(|fn| : |fn| ≥ K).

This last expression goes to zero as K →∞ by uniform integrability.

10.6 Exercises

Definition 10.42. The essential range of f, essran(f), consists of those
λ ∈ C such that µ(|f − λ| < �) > 0 for all � > 0.

Definition 10.43. Let (X, τ) be a topological space and ν be a measure on
BX = σ(τ). The support of ν, supp(ν), consists of those x ∈ X such that
ν(V ) > 0 for all open neighborhoods, V, of x.

Exercise 10.44. Let (X, τ) be a second countable topological space and ν be
a measure on BX — the Borel σ — algebra on X. Show

1. supp(ν) is a closed set. (This is true on all topological spaces.)
2. ν(X \ supp(ν)) = 0 and use this to conclude that W := X \ supp(ν)
is the largest open set in X such that ν(W ) = 0. Hint: U ⊂ τ be a
countable base for the topology τ. Show that W may be written as a
union of elements from V ∈ V with the property that µ(V ) = 0.

Exercise 10.45. Prove the following facts about essran(f).

1. Let ν = f∗µ := µ◦f−1 — a Borel measure on C. Show essran(f) = supp(ν).
2. essran(f) is a closed set and f(x) ∈ essran(f) for almost every x, i.e.
µ(f /∈ essran(f)) = 0.
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3. If F ⊂ C is a closed set such that f(x) ∈ F for almost every x then
essran(f) ⊂ F. So essran(f) is the smallest closed set F such that f(x) ∈ F
for almost every x.

4. kfk∞ = sup {|λ| : λ ∈ essran(f)} .
Exercise 10.46. Let f ∈ Lp ∩ L∞ for some p < ∞. Show kfk∞ =
limq→∞ kfkq . If we further assume µ(X) <∞, show kfk∞ = limq→∞ kfkq for
all measurable functions f : X → C. In particular, f ∈ L∞ iff limq→∞ kfkq <
∞.

Exercise 10.47. Prove Eq. (10.20) in Corollary 10.25. (Part of Folland 6.3
on p. 186.) Hint: Use Lemma 1.27 applied to the right side of Eq. (10.19).

Exercise 10.48. Complete the proof of Proposition 10.24 by showing (Lp +
Lr, k·k) is a Banach space. (Part of Folland 6.4 on p. 186.)
Exercise 10.49. Folland 6.5 on p. 186.

Exercise 10.50. Folland 6.6 on p. 186.

Exercise 10.51. Folland 6.9 on p. 186.

Exercise 10.52. Folland 6.10 on p. 186. Use the strong form of Theorem
8.38.

Exercise 10.53. Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces, f ∈
L2(ν) and k ∈ L2(µ⊗ ν). ShowZ

|k(x, y)f(y)| dν(y) <∞ for µ — a.e. x.

Let Kf(x) :=
R
Y
k(x, y)f(y)dν(y) when the integral is defined. Show Kf ∈

L2(µ) and K : L2(ν) → L2(µ) is a bounded operator with kKkop ≤
kkkL2(µ⊗ν) .
Exercise 10.54. Folland 6.27 on p. 196.

Exercise 10.55. Folland 2.32 on p. 63.

Exercise 10.56. Folland 2.38 on p. 63.
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Approximation Theorems and Convolutions

Let (X,M, µ) be a measure space, A ⊂M an algebra.

Notation 11.1 Let Sf (A, µ) denote those simple functions φ : X → C such
that φ−1({λ}) ∈ A for all λ ∈ C and µ(φ 6= 0) <∞.

For φ ∈ Sf (A, µ) and p ∈ [1,∞), |φ|p =Pz 6=0 |z|p1{φ=z} and henceZ
|φ|p dµ =

X
z 6=0

|z|pµ(φ = z) <∞

so that Sf (A, µ) ⊂ Lp(µ).

Lemma 11.2 (Simple Functions are Dense). The simple functions,
Sf (M, µ), form a dense subspace of Lp(µ) for all 1 ≤ p <∞.

Proof. Let {φn}∞n=1 be the simple functions in the approximation Theo-
rem 8.12. Since |φn| ≤ |f | for all n, φn ∈ Sf (M, µ) (verify!) and

|f − φn|p ≤ (|f |+ |φn|)p ≤ 2p |f |p ∈ L1.

Therefore, by the dominated convergence theorem,

lim
n→∞

Z
|f − φn|pdµ =

Z
lim
n→∞ |f − φn|pdµ = 0.

Theorem 11.3 (Separable Algebras implies Separability of Lp —
Spaces). Suppose 1 ≤ p <∞ and A ⊂M is an algebra such that σ(A) =M
and µ is σ-finite on A. Then Sf (A, µ) is dense in Lp(µ). Moreover, if A is
countable, then Lp(µ) is separable and

D = {
X

aj1Aj : aj ∈ Q+ iQ, Aj ∈ A with µ(Aj) <∞}
is a countable dense subset.
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Proof. First Proof. Let Xk ∈ A be sets such that µ(Xk) < ∞ and
Xk ↑ X as k →∞. For k ∈ N let Hk denote those boundedM — measurable

functions, f, on X such that 1Xkf ∈ Sf (A, µ)
Lp(µ)

. It is easily seen that Hk is
a vector space closed under bounded convergence and this subspace contains
1A for all A ∈ A. Therefore by Theorem 9.12, Hk is the set of all boundedM
— measurable functions on X.
For f ∈ Lp(µ), the dominated convergence theorem implies 1Xk∩{|f |≤k}f →

f in Lp(µ) as k →∞. We have just proved 1Xk∩{|f|≤k}f ∈ Sf (A, µ)
Lp(µ)

for

all k and hence it follows that f ∈ Sf (A, µ)L
p(µ)

. The last assertion of the
theorem is a consequence of the easily verified fact that D is dense in Sf (A, µ)
relative to the Lp(µ) — norm.
Second Proof. Given � > 0, by Corollary 9.42, for all E ∈M such that

µ(E) <∞, there exists A ∈ A such that µ(E4A) < �. ThereforeZ
|1E − 1A|pdµ = µ(E4A) < �. (11.1)

This equation shows that any simple function in Sf (M, µ) may be approxi-
mated arbitrary well by an element from D and hence D is also dense in Lp(µ).

Corollary 11.4 (Riemann Lebesgue Lemma). Suppose that f ∈ L1(R,m),
then

lim
λ→±∞

Z
R
f(x)eiλxdm(x) = 0.

Proof. Let A denote the algebra on R generated by the half open intervals,
i.e. A consists of sets of the form

na
k=1

(ak, bk] ∩R

where ak, bk ∈ R̄. By Theorem 11.3given � > 0 there exists φ =
Pn

k=1 ck1(ak,bk]
with ak, bk ∈ R such that Z

R
|f − φ|dm < �.

Notice thatZ
R
φ(x)eiλxdm(x) =

Z
R

nX
k=1

ck1(ak,bk](x)e
iλxdm(x)

=
nX

k=1

ck

Z bk

ak

eiλxdm(x) =
nX

k=1

ckλ
−1eiλx|bkak

= λ−1
nX

k=1

ck
¡
eiλbk − eiλak

¢→ 0 as |λ|→∞.
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Combining these two equations with¯̄̄̄Z
R
f(x)eiλxdm(x)

¯̄̄̄
≤
¯̄̄̄Z
R
(f(x)− φ(x)) eiλxdm(x)

¯̄̄̄
+

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
≤
Z
R
|f − φ|dm+

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
≤ �+

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
we learn that

lim sup
|λ|→∞

¯̄̄̄Z
R
f(x)eiλxdm(x)

¯̄̄̄
≤ �+ lim sup

|λ|→∞

¯̄̄̄Z
R
φ(x)eiλxdm(x)

¯̄̄̄
= �.

Since � > 0 is arbitrary, we have proven the lemma.

Theorem 11.5 (Continuous Functions are Dense). Let (X, d) be a met-
ric space, τd be the topology on X generated by d and BX = σ(τd) be the Borel
σ — algebra. Suppose µ : BX → [0,∞] is a measure which is σ — finite on
τd and let BCf (X) denote the bounded continuous functions on X such that
µ(f 6= 0) <∞. Then BCf (X) is a dense subspace of Lp(µ) for any p ∈ [1,∞).
Proof. First Proof. Let Xk ∈ τd be open sets such that Xk ↑ X and

µ(Xk) <∞. Let k and n be positive integers and set

ψn,k(x) = min(1, n · dXc
k
(x)) = φn(dXc

k
(x)),

and notice that ψn,k → 1dXc
k
>0 = 1Xk

as n→∞, see Figure 11.1 below.

21.510.50

1

0.75

0.5

0.25

0

x

y

x

y

Fig. 11.1. The plot of φn for n = 1, 2, and 4. Notice that φn → 1(0,∞).

Then ψn,k ∈ BCf (X) and {ψn,k 6= 0} ⊂ Xk. Let H denote those bounded

M — measurable functions, f : X → R, such that ψn,kf ∈ BCf (X)
Lp(µ)

. It is
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easily seen thatH is a vector space closed under bounded convergence and this
subspace contains BC(X,R). By Corollary 9.13, H is the set of all bounded

real valuedM — measurable functions on X, i.e. ψn,kf ∈ BCf (X)
Lp(µ)

for all
bounded measurable f and n, k ∈ N. Let f be a bounded measurable function,
by the dominated convergence theorem, ψn,kf → 1Xk

f in Lp(µ) as n → ∞,

therefore 1Xk
f ∈ BCf (X)

Lp(µ)
. It now follows as in the first proof of Theorem

11.3 that BCf (X)
Lp(µ)

= Lp(µ).
Second Proof. Since Sf (M, µ) is dense in Lp(µ) it suffices to show any

φ ∈ Sf (M, µ) may be well approximated by f ∈ BCf (X). Moreover, to prove
this it suffices to show for A ∈ M with µ(A) < ∞ that 1A may be well
approximated by an f ∈ BCf (X). By Exercises 9.47 and 9.48, for any � > 0
there exists a closed set F and an open set V such that F ⊂ A ⊂ V and
µ(V \ F ) < �. (Notice that µ(V ) < µ(A) + � < ∞.) Let f be as in Eq. (3.1),
then f ∈ BCf (X) and since |1A − f | ≤ 1V \F ,Z

|1A − f |p dµ ≤
Z
1V \Fdµ = µ(V \ F ) ≤ � (11.2)

or equivalently
k1A − fk ≤ �1/p.

Since � > 0 is arbitrary, we have shown that 1A can be approximated in Lp(µ)
arbitrarily well by functions from BCf (X)).

Proposition 11.6. Let (X, τ) be a second countable locally compact Hausdorff
space, BX = σ(τ) be the Borel σ — algebra and µ : BX → [0,∞] be a measure
such that µ(K) < ∞ when K is a compact subset of X. Then Cc(X) (the
space of continuous functions with compact support) is dense in Lp(µ) for all
p ∈ [1,∞).
Proof. First Proof. Let {Kk}∞k=1 be a sequence of compact sets as in

Lemma 3.16 and set Xk = Ko
k . Using Item 3. of Lemma 3.25, there exists

{ψn,k}∞n=1 ⊂ Cc(X) such that supp(ψn,k) ⊂ Xk and limn→∞ ψn,k = 1Xk
.

As in the first proof of Theorem 11.5, let H denote those bounded BX —

measurable functions, f : X → R, such that ψn,kf ∈ Cc(X)
Lp(µ)

. It is easily
seen that H is a vector space closed under bounded convergence and this
subspace contains BC(X,R). By Corollary 3.26, H is the set of all bounded

real valued BX — measurable functions on X, i.e. ψn,kf ∈ Cc(X)
Lp(µ)

for all
bounded measurable f and n, k ∈ N. Let f be a bounded measurable function,
by the dominated convergence theorem, ψn,kf → 1Xk

f in Lp(µ) as k → ∞,

therefore 1Xk
f ∈ Cc(X)

Lp(µ)
. It now follows as in the first proof of Theorem

11.3 that Cc(X)
Lp(µ)

= Lp(µ).
Second Proof. Following the second proof of Theorem 11.5, let A ∈M

with µ(A) < ∞. Since limk→∞ ||1A∩Ko
k
− 1A||p = 0, it suffices to assume
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A ⊂ Ko
k for some k. Given � > 0, by Item 2. of Lemma 3.25 and Exercises

9.47 there exists a closed set F and an open set V such that F ⊂ A ⊂ V and
µ(V \ F ) < �. Replacing V by V ∩Ko

k we may assume that V ⊂ Ko
k ⊂ Kk.

The function f defined in Eq. (3.1) is now in Cc(X). The remainder of the
proof now follows as in the second proof of Theorem 11.5.

Lemma 11.7. Let (X, τ) be a second countable locally compact Hausdorff
space, BX = σ(τ) be the Borel σ — algebra and µ : BX → [0,∞] be a measure
such that µ(K) < ∞ when K is a compact subset of X. If h ∈ L1loc(µ) is a
function such that Z

X

fhdµ = 0 for all f ∈ Cc(X) (11.3)

then h(x) = 0 for µ — a.e. x.

Proof. First Proof. Let dν(x) = |h(x)| dx, then ν is a measure on X
such that ν(K) < ∞ for all compact subsets K ⊂ X and hence Cc(X) is
dense in L1(ν) by Proposition 11.6. Notice thatZ

X

f · sgn(h)dν =
Z
X

fhdµ = 0 for all f ∈ Cc(X). (11.4)

Let {Kk}∞k=1 be a sequence of compact sets such that Kk ↑ X as in Lemma
3.16. Then 1Kksgn(h) ∈ L1(ν) and therefore there exists fm ∈ Cc(X) such
that fm → 1Kksgn(h) in L1(ν). So by Eq. (11.4),

ν(Kk) =

Z
X

1Kk
dν = lim

m→∞

Z
X

fmsgn(h)dν = 0.

Since Kk ↑ X as k →∞, 0 = ν(X) =
R
X
|h| dµ, i.e. h(x) = 0 for µ — a.e. x.

Second Proof. Let Kk be as above and use Lemma 3.22 to find χ ∈
Cc(X, [0, 1]) such that χ = 1 on Kk. Let H denote the set of bounded mea-
surable real valued functions on X such that

R
X
χfhdµ = 0. Then it is easily

checked that H is linear subspace closed under bounded convergence which
contains Cc(X). Therefore by Corollary 3.26, 0 =

R
X
χfhdµ for all bounded

measurable functions f : X → R and then by linearity for all bounded mea-
surable functions f : X → C. Taking f = sgn(h) then implies

0 =

Z
X

χ |h| dµ ≥
Z
Kk

|h| dµ

and hence by the monotone convergence theorem,

0 = lim
k→∞

Z
Kk

|h| dµ =
Z
X

|h| dµ.

Corollary 11.8. Suppose X ⊂ Rn is an open set, BX is the Borel σ — algebra
on X and µ is a measure on (X,BX) which is finite on compact sets. Then
Cc(X) is dense in Lp(µ) for all p ∈ [1,∞).
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11.1 Convolution and Young’s Inequalities

Definition 11.9. Let f, g : Rn → C be measurable functions. We define

f ∗ g(x) =
Z
Rn

f(x− y)g(y)dy

whenever the integral is defined, i.e. either f(x− ·)g(·) ∈ L1(Rn,m) or f(x−
·)g(·) ≥ 0. Notice that the condition that f(x−·)g(·) ∈ L1(Rn,m) is equivalent
to writing |f | ∗ |g| (x) <∞.

Notation 11.10 Given a multi-index α ∈ Zn+, let |α| = α1 + · · ·+ αn,

xα :=
nY
j=1

x
αj
j , and ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
.

Remark 11.11 (The Significance of Convolution). Suppose that L =
P

|α|≤k aα∂
α

is a constant coefficient differential operator and suppose that we can solve
(uniquely) the equation Lu = g in the form

u(x) = Kg(x) :=

Z
Rn

k(x, y)g(y)dy

where k(x, y) is an “integral kernel.” (This is a natural sort of assumption
since, in view of the fundamental theorem of calculus, integration is the inverse
operation to differentiation.) Since τzL = Lτz for all z ∈ Rn, (this is another
way to characterize constant coefficient differential operators) and L−1 = K
we should have τzK = Kτz. Writing out this equation then saysZ

Rn
k(x− z, y)g(y)dy = (Kg) (x− z) = τzKg(x) = (Kτzg) (x)

=

Z
Rn

k(x, y)g(y − z)dy =

Z
Rn

k(x, y + z)g(y)dy.

Since g is arbitrary we conclude that k(x− z, y) = k(x, y + z). Taking y = 0
then gives

k(x, z) = k(x− z, 0) =: ρ(x− z).

We thus find that Kg = ρ ∗ g. Hence we expect the convolution operation to
appear naturally when solving constant coefficient partial differential equa-
tions. More about this point later.

The following proposition is an easy consequence of Minkowski’s inequality
for integrals, Theorem 10.29.

Proposition 11.12. Suppose p ∈ [1,∞], f ∈ L1 and g ∈ Lp, then f ∗ g(x)
exists for almost every x, f ∗ g ∈ Lp and

kf ∗ gkp ≤ kfk1 kgkp .
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For z ∈ Rn and f : Rn → C, let τzf : Rn → C be defined by τzf(x) =
f(x− z).

Proposition 11.13. Suppose that p ∈ [1,∞), then τz : L
p → Lp is an iso-

metric isomorphism and for f ∈ Lp, z ∈ Rn → τzf ∈ Lp is continuous.

Proof. The assertion that τz : L
p → Lp is an isometric isomorphism

follows from translation invariance of Lebesgue measure and the fact that
τ−z ◦ τz = id. For the continuity assertion, observe that

kτzf − τyfkp = kτ−y (τzf − τyf)kp = kτz−yf − fkp
from which it follows that it is enough to show τzf → f in Lp as z → 0 ∈ Rn.
When f ∈ Cc(Rn), τzf → f uniformly and since theK := ∪|z|≤1supp(τzf)

is compact, it follows by the dominated convergence theorem that τzf → f in
Lp as z → 0 ∈ Rn. For general g ∈ Lp and f ∈ Cc(Rn),

kτzg − gkp ≤ kτzg − τzfkp + kτzf − fkp + kf − gkp
= kτzf − fkp + 2 kf − gkp

and thus

lim sup
z→0

kτzg − gkp ≤ lim sup
z→0

kτzf − fkp + 2 kf − gkp = 2 kf − gkp .

Because Cc(Rn) is dense in Lp, the term kf − gkp may be made as small as
we please.

Definition 11.14. Suppose that (X, τ) is a topological space and µ is a mea-
sure on BX = σ(τ). For a measurable function f : X → C we define the
essential support of f by

suppµ(f) = {x ∈ U : µ({y ∈ V : f(y) 6= 0}}) > 0 for all neighborhoods V of x}.
(11.5)

It is not hard to show that if supp(µ) = X (see Definition 10.43) and
f ∈ C(X) then suppµ(f) = supp(f) := {f 6= 0} , see Exercise 11.59.
Lemma 11.15. Suppose (X, τ) is second countable and f : X → C is a mea-
surable function and µ is a measure on BX . Then X := U \ suppµ(f) may
be described as the largest open set W such that f1W (x) = 0 for µ — a.e. x.
Equivalently put, C := suppµ(f) is the smallest closed subset of X such that
f = f1C a.e.

Proof. To verify that the two descriptions of suppµ(f) are equivalent,
suppose suppµ(f) is defined as in Eq. (11.5) and W := X \ suppµ(f). Then

W = {x ∈ X : ∃ τ 3 V 3 x such that µ({y ∈ V : f(y) 6= 0}}) = 0}
= ∪ {V ⊂o X : µ (f1V 6= 0) = 0}
= ∪ {V ⊂o X : f1V = 0 for µ — a.e.} .
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So to finish the argument it suffices to show µ (f1W 6= 0) = 0. To to this let
U be a countable base for τ and set

Uf := {V ∈ U : f1V = 0 a.e.}.

Then it is easily seen thatW = ∪Uf and since Uf is countable µ (f1W 6= 0) ≤P
V ∈Uf µ (f1V 6= 0) = 0.

Lemma 11.16. Suppose f, g, h : Rn → C are measurable functions and as-
sume that x is a point in Rn such that |f |∗|g| (x) <∞ and |f |∗(|g| ∗ |h|) (x) <
∞, then

1. f ∗ g(x) = g ∗ f(x)
2. f ∗ (g ∗ h)(x) = (f ∗ g) ∗ h(x)
3. If z ∈ Rn and τz(|f | ∗ |g|)(x) = |f | ∗ |g| (x− z) <∞, then

τz(f ∗ g)(x) = τzf ∗ g(x) = f ∗ τzg(x)

4. If x /∈ suppm(f)+suppm(g) then f ∗g(x) = 0 and in particular, suppm(f ∗
g) ⊂ suppm(f) + suppm(g) where in defining suppm(f ∗g) we will use the
convention that “f ∗ g(x) 6= 0” when |f | ∗ |g| (x) =∞.

Proof. For item 1.,

|f | ∗ |g| (x) =
Z
Rn
|f | (x− y) |g| (y)dy =

Z
Rn
|f | (y) |g| (y − x)dy = |g| ∗ |f | (x)

where in the second equality we made use of the fact that Lebesgue measure
invariant under the transformation y → x− y. Similar computations prove all
of the remaining assertions of the first three items of the lemma.
Item 4. Since f∗g(x) = f̃∗g̃(x) if f = f̃ and g = g̃ a.e. we may, by replacing

f by f1suppm(f) and g by g1suppm(g) if necessary, assume that {f 6= 0} ⊂
suppm(f) and {g 6= 0} ⊂ suppm(g). So if x /∈ (suppm(f) + suppm(g)) then
x /∈ ({f 6= 0}+ {g 6= 0}) and for all y ∈ Rn, either x − y /∈ {f 6= 0} or y /∈
{g 6= 0} . That is to say either x − y ∈ {f = 0} or y ∈ {g = 0} and hence
f(x−y)g(y) = 0 for all y and therefore f ∗g(x) = 0. This shows that f ∗g = 0
on Rn \

³
suppm(f) + suppm(g)

´
and therefore

Rn \
³
suppm(f) + suppm(g)

´
⊂ Rn \ suppm(f ∗ g),

i.e. suppm(f ∗ g) ⊂ suppm(f) + suppm(g).
Remark 11.17. Let A,B be closed sets of Rn, it is not necessarily true that
A+B is still closed. For example, take

A = {(x, y) : x > 0 and y ≥ 1/x} and B = {(x, y) : x < 0 and y ≥ 1/|x|} ,
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then every point of A+B has a positive y - component and hence is not zero.
On the other hand, for x > 0 we have (x, 1/x)+(−x, 1/x) = (0, 2/x) ∈ A+B
for all x and hence 0 ∈ A+B showing A + B is not closed. Nevertheless if
one of the sets A or B is compact, then A+B is closed again. Indeed, if A is
compact and xn = an + bn ∈ A+ B and xn → x ∈ Rn, then by passing to a
subsequence if necessary we may assume limn→∞ an = a ∈ A exists. In this
case

lim
n→∞ bn = lim

n→∞ (xn − an) = x− a ∈ B

exists as well, showing x = a+ b ∈ A+B.

Proposition 11.18. Suppose that p, q ∈ [1,∞] and p and q are conjugate
exponents, f ∈ Lp and g ∈ Lq, then f ∗ g ∈ BC(Rn), kf ∗ gku ≤ kfkp kgkq
and if p, q ∈ (1,∞) then f ∗ g ∈ C0(Rn).

Proof. The existence of f∗g(x) and the estimate |f ∗ g| (x) ≤ kfkp kgkq for
all x ∈ Rn is a simple consequence of Holders inequality and the translation in-
variance of Lebesgue measure. In particular this shows kf ∗ gku ≤ kfkp kgkq .
By relabeling p and q if necessary we may assume that p ∈ [1,∞). Since

kτz (f ∗ g)− f ∗ gku = kτzf ∗ g − f ∗ gku
≤ kτzf − fkp kgkq → 0 as z → 0

it follows that f ∗ g is uniformly continuous. Finally if p, q ∈ (1,∞), we learn
from Lemma 11.16 and what we have just proved that fm ∗ gm ∈ Cc(Rn)
where fm = f1|f|≤m and gm = g1|g|≤m. Moreover,

kf ∗ g − fm ∗ gmku ≤ kf ∗ g − fm ∗ gku + kfm ∗ g − fm ∗ gmku
≤ kf − fmkp kgkq + kfmkp kg − gmkq
≤ kf − fmkp kgkq + kfkp kg − gmkq → 0 as m→∞

showing, with the aid of Proposition 3.38, f ∗ g ∈ C0(Rn).

Theorem 11.19 (Young’s Inequality). Let p, q, r ∈ [1,∞] satisfy
1

p
+
1

q
= 1 +

1

r
. (11.6)

If f ∈ Lp and g ∈ Lq then |f | ∗ |g| (x) <∞ for m — a.e. x and

kf ∗ gkr ≤ kfkp kgkq . (11.7)

In particular L1 is closed under convolution. (The space (L1, ∗) is an example
of a “Banach algebra” without unit.)

Remark 11.20. Before going to the formal proof, let us first understand Eq.
(11.6) by the following scaling argument. For λ > 0, let fλ(x) := f(λx), then
after a few simple change of variables we find
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kfλkp = λ−1/p kfk and (f ∗ g)λ = λfλ ∗ gλ.

Therefore if Eq. (11.7) holds for some p, q, r ∈ [1,∞], we would also have

kf ∗ gkr = λ1/r k(f ∗ g)λkr ≤ λ1/rλ kfλkp kgλkq = λ(1+1/r−1/p−1/q) kfkp kgkq
for all λ > 0. This is only possible if Eq. (11.6) holds.

Proof. Let α, β ∈ [0, 1] and p1, p2 ∈ [0,∞] satisfy p−11 + p−12 + r−1 = 1.
Then by Hölder’s inequality, Corollary 10.3,

|f ∗ g(x)| =
¯̄̄̄Z

f(x− y)g(y)dy

¯̄̄̄
≤
Z
|f(x− y)|(1−α) |g(y)|(1−β) |f(x− y)|α |g(y)|β dy

≤
µZ

|f(x− y)|(1−α)r |g(y)|(1−β)r dy
¶1/r µZ

|f(x− y)|αp1 dy
¶1/p1

×

×
µZ

|g(y)|βp2 dy
¶1/p2

=

µZ
|f(x− y)|(1−α)r |g(y)|(1−β)r dy

¶1/r
kfkααp1 kgk

β
βp2

.

Taking the rth power of this equation and integrating on x gives

kf ∗ gkrr ≤
Z µZ

|f(x− y)|(1−α)r |g(y)|(1−β)r dy
¶
dx · kfkααp1 kgk

β
βp2

= kfk(1−α)r(1−α)r kgk(1−β)r(1−β)r kfkαrαp1 kgk
βr
βp2

. (11.8)

Let us now suppose, (1 − α)r = αp1 and (1 − β)r = βp2, in which case Eq.
(11.8) becomes,

kf ∗ gkrr ≤ kfkrαp1 kgk
r
βp2

which is Eq. (11.7) with

p := (1− α)r = αp1 and q := (1− β)r = βp2. (11.9)

So to finish the proof, it suffices to show p and q are arbitrary indices in [1,∞]
satisfying p−1 + q−1 = 1 + r−1.
If α, β, p1, p2 satisfy the relations above, then

α =
r

r + p1
and β =

r

r + p2

and
1

p
+
1

q
=
1

p1

r + p1
r

+
1

p2

r + p2
r

=
1

p1
+
1

p2
+
2

r
= 1 +

1

r
.
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Conversely, if p, q, r satisfy Eq. (11.6), then let α and β satisfy p = (1 − α)r
and q = (1− β)r, i.e.

α :=
r − p

r
= 1− p

r
≤ 1 and β =

r − q

r
= 1− q

r
≤ 1.

From Eq. (11.6), α = p(1− 1
q ) ≥ 0 and β = q(1− 1

p) ≥ 0, so that α, β ∈ [0, 1].
We then define p1 := p/α and p2 := q/β, then

1

p1
+
1

p2
+
1

r
= β

1

q
+ α

1

p
+
1

r
=
1

q
− 1

r
+
1

p
− 1

r
+
1

r
= 1

as desired.

Theorem 11.21 (Approximate δ — functions). Let p ∈ [1,∞], φ ∈
L1(Rn), a :=

R
Rn f(x)dx, and for t > 0 let φt(x) = t−nφ(x/t). Then

1. If f ∈ Lp with p <∞ then φt ∗ f → af in Lp as t ↓ 0.
2. If f ∈ BC(Rn) and f is uniformly continuous then kφt ∗ f − fk∞ → 0 as

t ↓ 0.
3. If f ∈ L∞ and f is continuous on U ⊂o Rn then φt ∗ f → af uniformly
on compact subsets of U as t ↓ 0.
Proof. Making the change of variables y = tz implies

φt ∗ f(x) =
Z
Rn

f(x− y)φt(y)dy =

Z
Rn

f(x− tz)φ(z)dz

so that

φt ∗ f(x)− af(x) =

Z
Rn
[f(x− tz)− f(x)]φ(z)dz

=

Z
Rn
[τtzf(x)− f(x)]φ(z)dz. (11.10)

Hence by Minkowski’s inequality for integrals (Theorem 10.29), Proposition
11.13 and the dominated convergence theorem,

kφt ∗ f − afkp ≤
Z
Rn
kτtzf − fkp |φ(z)| dz → 0 as t ↓ 0.

Item 2. is proved similarly. Indeed, form Eq. (11.10)

kφt ∗ f − afk∞ ≤
Z
Rn
kτtzf − fk∞ |φ(z)| dz

which again tends to zero by the dominated convergence theorem because
limt↓0 kτtzf − fk∞ = 0 uniformly in z by the uniform continuity of f.
Item 3. Let BR = B(0, R) be a large ball in Rn and K @@ U, then
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sup
x∈K

|φt ∗ f(x)− af(x)|

≤
¯̄̄̄Z
BR

[f(x− tz)− f(x)]φ(z)dz

¯̄̄̄
+

¯̄̄̄
¯
Z
Bc
R

[f(x− tz)− f(x)]φ(z)dz

¯̄̄̄
¯

≤
Z
BR

|φ(z)| dz · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 kfk∞
Z
Bc
R

|φ(z)| dz

≤ kφk1 · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 kfk∞
Z
|z|>R

|φ(z)| dz

so that using the uniform continuity of f on compact subsets of U,

lim sup
t↓0

sup
x∈K

|φt ∗ f(x)− af(x)| ≤ 2 kfk∞
Z
|z|>R

|φ(z)| dz → 0 as R→∞.

See Theorem 8.15 if Folland for a statement about almost everywhere
convergence.

Exercise 11.22. Let

f(t) =

½
e−1/t if t > 0
0 if t ≤ 0.

Show f ∈ C∞(R, [0, 1]).

Lemma 11.23. There exists φ ∈ C∞c (Rn, [0,∞)) such that φ(0) > 0,
supp(φ) ⊂ B̄(0, 1) and

R
Rn φ(x)dx = 1.

Proof. Define h(t) = f(1 − t)f(t + 1) where f is as in Exercise 11.22.
Then h ∈ C∞c (R, [0, 1]), supp(h) ⊂ [−1, 1] and h(0) = e−2 > 0. Define c =R
Rn h(|x|2)dx. Then φ(x) = c−1h(|x|2) is the desired function.
Definition 11.24. Let X ⊂ Rn be an open set. A Radon measure on BX is
a measure µ which is finite on compact subsets of X. For a Radon measure
µ, we let L1loc(µ) consists of those measurable functions f : X → C such thatR
K
|f | dµ <∞ for all compact subsets K ⊂ X.

The reader asked to prove the following proposition in Exercise 11.60 be-
low.

Proposition 11.25. Suppose that f ∈ L1loc(Rn,m) and φ ∈ C1c (Rn), then
f ∗ φ ∈ C1(Rn) and ∂i(f ∗ φ) = f ∗ ∂iφ. Moreover if φ ∈ C∞c (Rn) then
f ∗ φ ∈ C∞(Rn).

Corollary 11.26 (C∞ — Uryhson’s Lemma). Given K @@ U ⊂o Rn,
there exists f ∈ C∞c (Rn, [0, 1]) such that supp(f) ⊂ U and f = 1 on K.
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Proof. Let φ be as in Lemma 11.23, φt(x) = t−nφ(x/t) be as in Theorem
11.21, d be the standard metric on Rn and � = d(K,Uc). Since K is compact
and Uc is closed, � > 0. Let Vδ = {x ∈ Rn : d(x,K) < δ} and f = φ�/3 ∗ 1V�/3 ,
then

supp(f) ⊂ supp(φ�/3) + V�/3 ⊂ V̄2�/3 ⊂ U.

Since V̄2�/3 is closed and bounded, f ∈ C∞c (U) and for x ∈ K,

f(x) =

Z
Rn
1d(y,K)<�/3 · φ�/3(x− y)dy =

Z
Rn

φ�/3(x− y)dy = 1.

The proof will be finished after the reader (easily) verifies 0 ≤ f ≤ 1.
Here is an application of this corollary whose proof is left to the reader,

Exercise 11.61.

Lemma 11.27 (Integration by Parts). Suppose f and g are measur-
able functions on Rn such that t → f(x1, . . . , xi−1, t, xi+1, . . . , xn) and t →
g(x1, . . . , xi−1, t, xi+1, . . . , xn) are continuously differentiable functions on R
for each fixed x = (x1, . . . , xn) ∈ Rn. Moreover assume f · g, ∂f

∂xi
· g and

f · ∂g
∂xi

are in L1(Rn,m). ThenZ
Rn

∂f

∂xi
· gdm = −

Z
Rn

f · ∂g
∂xi

dm.

With this result we may give another proof of the Riemann Lebesgue
Lemma.

Lemma 11.28. For f ∈ L1(Rn,m) let

f̂(ξ) := (2π)−n/2
Z
Rn

f(x)e−iξ·xdm(x)

be the Fourier transform of f. Then f̂ ∈ C0(Rn) and
°°°f̂°°°

u
≤ (2π)−n/2 kfk1 .

(The choice of the normalization factor, (2π)−n/2, in f̂ is for later conve-
nience.)

Proof. The fact that f̂ is continuous is a simple application of the domi-
nated convergence theorem. Moreover,¯̄̄

f̂(ξ)
¯̄̄
≤
Z
|f(x)| dm(x) ≤ (2π)−n/2 kfk1

so it only remains to see that f̂(ξ)→ 0 as |ξ|→∞.

First suppose that f ∈ C∞c (Rn) and let ∆ =
Pn

j=1
∂2

∂x2j
be the Laplacian

on Rn. Notice that ∂
∂xj

e−iξ·x = −iξje−iξ·x and ∆e−iξ·x = − |ξ|2 e−iξ·x. Using
Lemma 11.27 repeatedly,
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∆kf(x)e−iξ·xdm(x) =

Z
f(x)∆k

xe
−iξ·xdm(x) = − |ξ|2k

Z
f(x)e−iξ·xdm(x)

= −(2π)n/2 |ξ|2k f̂(ξ)

for any k ∈ N. Hence (2π)n/2
¯̄̄
f̂(ξ)

¯̄̄
≤ |ξ|−2k °°∆kf

°°
1
→ 0 as |ξ| → ∞ and

f̂ ∈ C0(Rn). Suppose that f ∈ L1(m) and fk ∈ C∞c (Rn) is a sequence such
that limk→∞ kf − fkk1 = 0, then limk→∞

°°°f̂ − f̂k

°°°
u
= 0. Hence f̂ ∈ C0(Rn)

by an application of Proposition 3.38.

Corollary 11.29. Let X ⊂ Rn be an open set and µ be a Radon measure on
BX .
1. Then C∞c (X) is dense in Lp(µ) for all 1 ≤ p <∞.
2. If h ∈ L1loc(µ) satisfiesZ

X

fhdµ = 0 for all f ∈ C∞c (X) (11.11)

then h(x) = 0 for µ — a.e. x.

Proof. Let f ∈ Cc(X), φ be as in Lemma 11.23, φt be as in Theorem
11.21 and set ψt := φt ∗ (f1X) . Then by Proposition 11.25 ψt ∈ C∞(X) and
by Lemma 11.16 there exists a compact set K ⊂ X such that supp(ψt) ⊂ K
for all t sufficiently small. By Theorem 11.21, ψt → f uniformly on X as t ↓ 0
1. The dominated convergence theorem (with dominating function being
kfk∞ 1K), shows ψt → f in Lp(µ) as t ↓ 0. This proves Item 1., since
Proposition 11.6 guarantees that Cc(X) is dense in Lp(µ).

2. Keeping the same notation as above, the dominated convergence theorem
(with dominating function being kfk∞ |h| 1K) implies

0 = lim
t↓0

Z
X

ψthdµ =

Z
X

lim
t↓0

ψthdµ =

Z
X

fhdµ.

The proof is now finished by an application of Lemma 11.7.

11.1.1 Smooth Partitions of Unity

We have the following smooth variants of Proposition 3.32, Theorem 3.34 and
Corollary 3.35. The proofs of these results are the same as their continuous
counterparts. One simply uses the smooth version of Urysohn’s Lemma of
Corollary 11.26 in place of Lemma 3.22.



11.2 Classical Weierstrass Approximation Theorem 273

Proposition 11.30 (Smooth Partitions of Unity for Compacts). Sup-
pose that X is an open subset of Rn, K ⊂ X is a compact set and U = {Uj}nj=1
is an open cover of K. Then there exists a smooth (i.e. hj ∈ C∞(X, [0, 1]))
partition of unity {hj}nj=1 of K such that hj ≺ Uj for all j = 1, 2, . . . , n.

Theorem 11.31 (Locally Compact Partitions of Unity). Suppose that
X is an open subset of Rn and U is an open cover of X. Then there exists a
smooth partition of unity of {hi}Ni=1 (N = ∞ is allowed here) subordinate to
the cover U such that supp(hi) is compact for all i.
Corollary 11.32. Suppose that X is an open subset of Rn and U =
{Uα}α∈A ⊂ τ is an open cover of X. Then there exists a smooth partition
of unity of {hα}α∈A subordinate to the cover U such that supp(hα) ⊂ Uα for
all α ∈ A. Moreover if Ūα is compact for each α ∈ A we may choose hα so
that hα ≺ Uα.

11.2 Classical Weierstrass Approximation Theorem

Let Z+ := N ∪ {0}.
Notation 11.33 For x ∈ Rd and α ∈ Zd+ let xα =

Qd
i=1 x

αi
i and |α| =Pd

i=1 αi. A polynomial on Rd is a function p : Rd → C of the form

p(x) =
X

α:|α|≤N
pαx

α with pα ∈ C and N ∈ Z+.

If pα 6= 0 for some α such that |α| = N, then we define deg(p) := N to be
the degree of p. The function p has a natural extension to z ∈ Cd, namely
p(z) =

P
α:|α|≤N pαz

α where zα =
Qd

i=1 z
αi
i .

Remark 11.34. The mapping (x, y) ∈ Rd × Rd → z = x + iy ∈ Cd is an
isomorphism of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2
and y = z−z̄

2i . Therefore under this identification any polynomial p(x, y) on
Rd ×Rd may be written as a polynomial q in (z, z̄), namely

q(z, z̄) = p(
z + z̄

2
,
z − z̄

2i
).

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x+ iy, x− iy).

Theorem 11.35 (Weierstrass Approximation Theorem). Let a, b ∈ Rd
with a ≤ b (i.e. ai ≤ bi for i = 1, 2, . . . , d ) and set [a, b] := [a1, b1] × · · · ×
[ad, bd]. Then for f ∈ C([a, b],C) there exists polynomials pn on Rd such that
pn → f uniformly on [a, b].



274 11 Approximation Theorems and Convolutions

We will give two proofs of this theorem below. The first proof is based on
the “weak law of large numbers,” while the second is base on using a certain
sequence of approximate δ — functions.

Corollary 11.36. Suppose that K ⊂ Rd is a compact set and f ∈ C(K,C).
Then there exists polynomials pn on Rd such that pn → f uniformly on K.

Proof. Choose a, b ∈ Rd such that a ≤ b and K ⊂ (a, b) := (a1, b1)×· · ·×
(ad, bd). Let f̃ : K∪(a, b)c → C be the continuous function defined by f̃ |K = f
and f̃ |(a,b)c ≡ 0. Then by the Tietze extension Theorem (either of Theorems
3.2 or 3.24 will do) there exists F ∈ C(Rd,C) such that f̃ = F |K∪(a,b)c . Apply
the Weierstrass Approximation Theorem 11.35 to F |[a,b] to find polynomials
pn on Rd such that pn → F uniformly on [a, b]. Clearly we also have pn → f
uniformly on K.

Corollary 11.37 (Complex Weierstrass Approximation Theorem).
Suppose that K ⊂ Cd is a compact set and f ∈ C(K,C). Then there ex-
ists polynomials pn(z, z̄) for z ∈ Cd such that supz∈K |pn(z, z̄)− f(z)|→ 0 as
n→∞.

Proof. This is an immediate consequence of Remark 11.34 and Corollary
11.36.

Example 11.38. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of poly-
nomials in (z, z̄) restricted to S1. Then A is dense in C(S1).1 Since z̄ = z−1

on S1, we have shown polynomials in z and z−1 are dense in C(S1). This
example generalizes in an obvious way to K =

¡
S1
¢d ⊂ Cd.

11.2.1 First proof of the Weierstrass Approximation Theorem
11.35

Proof. Let 0 : = (0, 0, . . . , 0) and 1 : = (1, 1, . . . , 1). By considering the real
and imaginary parts of f separately, it suffices to assume f is real valued. By
replacing f by g(x) = f(a1 + x1(b1 − a1), . . . , ad + xd(bd − ad)) for x ∈ [0,1],
it suffices to prove the theorem for f ∈ C([0,1]).
For x ∈ [0, 1], let νx be the measure on {0, 1} such that νx ({0}) = 1− x

and νx ({1}) = x. ThenZ
{0,1}

ydνx(y) = 0 · (1− x) + 1 · x = x and (11.12)Z
{0,1}

(y − x)2dνx(y) = x2(1− x) + (1− x)2 · x = x(1− x). (11.13)

1 Note that it is easy to extend f ∈ C(S1) to a function F ∈ C(C) by setting
F (z) = zf( z

|z| ) for z 6= 0 and F (0) = 0. So this special case does not require the
Tietze extension theorem.
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For x ∈ [0,1] let µx = νx1 ⊗ · · · ⊗ νxd be the product of νx1 , . . . , νxd on
Ω := {0, 1}d . Alternatively the measure µx may be described by

µx ({�}) =
dY
i=1

(1− xi)
1−�i x�ii (11.14)

for � ∈ Ω. Notice that µx ({�}) is a degree d polynomial in x for each � ∈ Ω.
For n ∈ N and x ∈ [0,1], let µnx denote the n — fold product of µx with itself
on Ωn, Xi(ω) = ωi ∈ Ω ⊂ Rd for ω ∈ Ωn and let

Sn = (S
1
n, . . . , S

d
n) := (X1 +X2 + · · ·+Xn)/n,

so Sn : Ωn → Rd. The reader is asked to verify (Exercise 11.39) thatZ
Ωn

Sndµ
n
x =

µZ
Ωn

S1ndµ
n
x , . . . ,

Z
Ωn

Sdndµ
n
x

¶
= (x1, . . . , xd) = x (11.15)

and Z
Ωn

|Sn − x|2 dµnx =
1

n

dX
i=1

xi(1− xi) ≤ d

n
. (11.16)

From these equations it follows that Sn is concentrating near x as n→∞, a
manifestation of the law of large numbers. Therefore it is reasonable to expect

pn(x) :=

Z
Ωn

f(Sn)dµ
n
x (11.17)

should approach f(x) as n→∞.
Let � > 0 be given, M = sup {|f(x)| : x ∈ [0, 1]} and

δ� = sup {|f(y)− f(x)| : x, y ∈ [0,1] and |y − x| ≤ �} .
By uniform continuity of f on [0,1], lim�↓0 δ� = 0. Using these definitions and
the fact that µnx(Ω

n) = 1,

|f(x)− pn(x)| =
¯̄̄̄Z
Ωn

(f(x)− f(Sn)) dµ
n
x

¯̄̄̄
≤
Z
Ωn

|f(x)− f(Sn)| dµnx

≤
Z
{|Sn−x|>�}

|f(x)− f(Sn)| dµnx +
Z
{|Sn−x|≤�}

|f(x)− f(Sn)| dµnx
≤ 2Mµnx (|Sn − x| > �) + δ�. (11.18)

By Chebyshev’s inequality,

µnx (|Sn − x| > �) ≤ 1

�2

Z
Ωn

(Sn − x)2dµnx =
d

n�2
,

and therefore, Eq. (11.18) yields the estimate
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kf − pnku ≤
2dM

n�2
+ δ�

and hence
lim sup
n→∞

kf − pnku ≤ δ� → 0 as � ↓ 0.
This completes the proof since, using Eq. (11.14),

pn(x) =
X
ω∈Ωn

f(Sn(ω))µ
n
x({ω}) =

X
ω∈Ωn

f(Sn(ω))
nY
i=1

µx({ωi}),

is an nd — degree polynomial in x ∈ Rd).
Exercise 11.39. Verify Eqs. (11.15) and (11.16). This is most easily done
using Eqs. (11.12) and (11.13) and Fubini’s theorem repeatedly. (Of course
Fubini’s theorem here is over kill since these are only finite sums after all.
Nevertheless it is convenient to use this formulation.)

11.2.2 Second proof of the Weierstrass Approximation Theorem
11.35

For the second proof we will first need two lemmas.

Lemma 11.40 (Approximate δ — sequences). Suppose that {Qn}∞n=1 is a
sequence of positive functions on Rd such thatZ

Rd
Qn(x) dx = 1 and (11.19)

lim
n→∞

Z
|x|≥�

Qn(x)dx = 0 for all � > 0. (11.20)

For f ∈ BC(Rd), Qn ∗ f converges to f uniformly on compact subsets of Rd.

Proof. Let x ∈ Rd, then because of Eq. (11.19),

|Qn ∗ f(x)− f(x)| =
¯̄̄̄Z
Rd

Qn(y) (f(x− y)− f(x)) dy

¯̄̄̄
≤
Z
Rd

Qn(y) |f(x− y)− f(x)| dy.

Let M = sup
©|f(x)| : x ∈ Rdª and � > 0, then by and Eq. (11.19)

|Qn ∗ f(x)− f(x)| ≤
Z
|y|≤�

Qn(y) |f(x− y)− f(x)| dy

+

Z
|y|>�

Qn(y) |f(x− y)− f(x)| dy

≤ sup
|z|≤�

|f(x+ z)− f(x)|+ 2M
Z
|y|>�

Qn(y)dy.
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Let K be a compact subset of Rd, then

sup
x∈K

|Qn ∗ f(x)− f(x)| ≤ sup
|z|≤�,x∈K

|f(x+ z)− f(x)|+ 2M
Z
|y|>�

Qn(y)dy

and hence by Eq. (11.20),

lim sup
n→∞

sup
x∈K

|Qn ∗ f(x)− f(x)| ≤ sup
|z|≤�,x∈K

|f(x+ z)− f(x)| .

This finishes the proof since the right member of this equation tends to 0 as
� ↓ 0 by uniform continuity of f on compact subsets of Rn.
Let qn : R→[0,∞) be defined by

qn(x) ≡ 1

cn
(1− x2)n1|x|≤1where cn :=

Z 1

−1
(1− x2)ndx. (11.21)

Figure 11.2 displays the key features of the functions qn.

10.50-0.5-1

5

3.75

2.5

1.25

0

x

y

x

y

Fig. 11.2. A plot of q1, q50, and q100. The most peaked curve is q100 and the least
is q1. The total area under each of these curves is one.

Define
Qn : Rn → [0,∞) by Qn(x) = qn(x1) . . . qn(xd). (11.22)

Lemma 11.41. The sequence {Qn}∞n=1 is an approximate δ — sequence, i.e.
they satisfy Eqs. (11.19) and (11.20).

Proof. The fact that Qn integrates to one is an easy consequence of
Tonelli’s theorem and the definition of cn. Since all norms on Rd are equiva-
lent, we may assume that |x| = max {|xi| : i = 1, 2, . . . , d} when proving Eq.
(11.20). With this norm
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x ∈ Rd : |x| ≥ �

ª
= ∪di=1

©
x ∈ Rd : |xi| ≥ �

ª
and therefore by Tonelli’s theorem and the definition of cn,Z

{|x|≥�}

Qn(x)dx ≤
dX
i=1

Z
{|xi|≥�}

Qn(x)dx = d

Z
{x∈R|x|≥�}

qn(x)dx.

Since Z
|x|≥�

qn(x)dx =
2
R 1
�
(1− x2)ndx

2
R �
0
(1− x2)ndx+ 2

R 1
�
(1− x2)ndx

≤
R 1
�

x
� (1− x2)ndxR �

0
x
� (1− x2)ndx

=
(1− x2)n+1|1�
(1− x2)n+1|�0

=
(1− �2)n+1

1− (1− �2)n+1
→ 0 as n→∞,

the proof is complete.
We will now prove Corollary 11.36 which clearly implies Theorem 11.35.
Proof. Proof of Corollary 11.36. As in the beginning of the proof already

given for Corollary 11.36, we may assume that K = [a, b] for some a ≤ b and
f = F |K where F ∈ C(Rd,C) is a function such that F |Kc ≡ 0. Moreover, by
replacing F (x) by G(x) = F (a1+x1(b1−a1), . . . , ad+xd(bd−ad)) for x ∈ Rn
we may further assume K = [0,1].
Let Qn(x) be defined as in Eq. (11.22). Then by Lemma 11.41 and 11.40,

pn(x) := (Qn ∗ F )(x)→ F (x) uniformly for x ∈ [0,1] as n→∞. So to finish
the proof it only remains to show pn(x) is a polynomial when x ∈ [0,1]. For
x ∈ [0,1],

pn(x) =

Z
Rd

Qn(x− y)f(y)dy

=
1

cn

Z
[0,1]

f(y)
dY
i=1

£
c−1n (1− (xi − yi)

2)n1|xi−yi|≤1
¤
dy

=
1

cn

Z
[0,1]

f(y)
dY
i=1

£
c−1n (1− (xi − yi)

2)n
¤
dy.

Since the product in the above integrand is a polynomial if (x, y) ∈ Rn ×Rn,
it follows easily that pn(x) is polynomial in x.

11.3 Stone-Weierstrass Theorem

We now wish to generalize Theorem 11.35 to more general topological spaces.
We will first need some definitions.



11.3 Stone-Weierstrass Theorem 279

Definition 11.42. Let X be a topological space and A ⊂ C(X) = C(X,R) or
C(X,C) be a collection of functions. Then

1. A is said to separate points if for all distinct points x, y ∈ X there exists
f ∈ A such that f(x) 6= f(y).

2. A is an algebra if A is a vector subspace of C(X) which is closed under
pointwise multiplication.

3. A is called a lattice if f ∨ g := max(f, g) and f ∧ g = min(f, g) ∈ A for
all f, g ∈ A.

4. A ⊂ C(X) is closed under conjugation if f̄ ∈ A whenever f ∈ A.2

Remark 11.43. If X is a topological space such that C(X,R) separates points
then X is Hausdorff. Indeed if x, y ∈ X and f ∈ C(X,R) such that
f(x) 6= f(y), then f−1(J) and f−1(I) are disjoint open sets containing x
and y respectively when I and J are disjoint intervals containing f(x) and
f(y) respectively.

Lemma 11.44. If A ⊂ C(X,R) is a closed algebra then |f | ∈ A for all f ∈ A
and A is a lattice.

Proof. Let f ∈ A and let M = sup
x∈X

|f(x)|. Using Theorem 11.35 or

Exercise 11.62, there are polynomials pn(t) such that

lim
n→∞ sup

|t|≤M
||t|− pn(t)| = 0.

By replacing pn by pn − pn(0) if necessary we may assume that pn(0) = 0.
Since A is an algebra, it follows that fn = pn(f) ∈ A and |f | ∈ A, because
|f | is the uniform limit of the fn’s. Since

f ∨ g = 1

2
(f + g + |f − g|) and

f ∧ g = 1

2
(f + g − |f − g|),

we have shown A is a lattice.

Lemma 11.45. Let A ⊂ C(X,R) be an algebra which separates points and
x, y ∈ X be distinct points such that

∃ f, g ∈ A 3 f(x) 6= 0 and g(y) 6= 0. (11.23)

Then
V := {(f(x), f(y)) : f ∈ A}= R2. (11.24)

2 This is of course no restriction when C(X) = C(X,R).
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Proof. It is clear that V is a non-zero subspace of R2. If dim(V ) = 1, then
V = span(a, b) with a 6= 0 and b 6= 0 by the assumption in Eq. (11.23). Since
(a, b) = (f(x), f(y)) for some f ∈ A and f2 ∈ A, it follows that (a2, b2) =
(f2(x), f2(y)) ∈ V as well. Since dimV = 1, (a, b) and (a2, b2) are linearly
dependent and therefore

0 = det

µ
a a2

b b2

¶
= ab2 − ba2 = ab(b− a)

which implies that a = b. But this the implies that f(x) = f(y) for all f ∈ A,
violating the assumption that A separates points. Therefore we conclude that
dim(V ) = 2, i.e. V = R2.

Theorem 11.46 (Stone-Weierstrass Theorem). ppose X is a compact
Hausdorff space and A ⊂ C(X,R) is a closed subalgebra which separates
points. For x ∈ X let

Ax ≡ {f(x) : f ∈ A} and
Ix = {f ∈ C(X,R) : f(x) = 0}.

Then either one of the following two cases hold.

1. Ax = R for all x ∈ X, i.e. for all x ∈ X there exists f ∈ A such that
f(x) 6= 0.3

2. There exists a unique point x0 ∈ X such that Ax0 = {0} .
Moreover in case (1) A = C(X,R) and in case (2) A = Ix0 = {f ∈

C(X,R) : f(x0) = 0}.
Proof. If there exists x0 such that Ax0 = {0} (x0 is unique since A

separates points) then A ⊂ Ix0 . If such an x0 exists let C = Ix0 and if Ax = R
for all x, set C = C(X,R). Let f ∈ C, then by Lemma 11.45, for all x, y ∈ X
such that x 6= y there exists gxy ∈ A such that f = gxy on {x, y}.4 The basic
idea of the proof is contained in the following identity,

f(z) = inf
x∈X

sup
y∈X

gxy(z) for all z ∈ X. (11.25)

To prove this identity, let gx := supy∈X gxy and notice that gx ≥ f since
gxy(y) = f(y) for all y ∈ X. Moreover, gx(x) = f(x) for all x ∈ X since
gxy(x) = f(x) for all x. Therefore,

inf
x∈X

sup
y∈X

gxy = inf
x∈X

gx = f.

The rest of the proof is devoted to replacing the inf and the sup above by
min and max over finite sets at the expense of Eq. (11.25) becoming only an
approximate identity.
3 If A contains the constant function 1, then this hypothesis holds.
4 If Ax0 = {0} and x = x0 or y = x0, then gxy exists merely by the fact that A
separates points.



11.3 Stone-Weierstrass Theorem 281

Claim. Given � > 0 and x ∈ X there exists gx ∈ A such that gx(x) = f(x)
and f < gx + � on X.

To prove the claim, let Vy be an open neighborhood of y such that |f −
gxy| < � on Vy so in particular f < �+gxy on Vy. By compactness, there exists
Λ ⊂⊂ X such that X =

S
y∈Λ

Vy. Set

gx(z) = max{gxy(z) : y ∈ Λ},

then for any y ∈ Λ, f < � + gxy < � + gx on Vy and therefore f < � + gx on
X. Moreover, by construction f(x) = gx(x), see Figure 11.3 below.

Fig. 11.3. Constructing the funtions gx.

We now will finish the proof of the theorem. For each x ∈ X, let Ux be a
neighborhood of x such that |f − gx| < � on Ux. Choose Γ ⊂⊂ X such that
X =

S
x∈Γ

Ux and define

g = min{gx : x ∈ Γ} ∈ A.

Then f < g+ � on X and for x ∈ Γ, gx < f + � on Ux and hence g < f + � on
Ux. Since X =

S
x∈Γ

Ux, we conclude

f < g + � and g < f + � on X,

i.e. |f − g| < � on X. Since � > 0 is arbitrary it follows that f ∈ Ā = A.
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Theorem 11.47 (Complex Stone-Weierstrass Theorem). Let X be a
compact Hausdorff space. Suppose A ⊂ C(X,C) is closed in the uniform
topology, separates points, and is closed under conjugation. Then either A =
C(X,C) or A = ICx0 := {f ∈ C(X,C) : f(x0) = 0} for some x0 ∈ X.

Proof. Since

Re f =
f + f̄

2
and Im f =

f − f̄

2i
,

Re f and Im f are both in A. Therefore

AR = {Re f, Im f : f ∈ A}

is a real sub-algebra of C(X,R) which separates points. Therefore either AR =
C(X,R) or AR = Ix0 ∩ C(X,R) for some x0 and hence A = C(X,C) or ICx0
respectively.
As an easy application, Theorems 11.46 and 11.47 imply Corollaries 11.36

and 11.37 respectively.

Corollary 11.48. Suppose that X is a compact subset of Rn and µ is a finite
measure on (X,BX), then polynomials are dense in Lp(X,µ) for all 1 ≤ p <
∞.

Proof. Consider X to be a metric space with usual metric induced
from Rn. Then X is a locally compact separable metric space and there-
fore Cc(X,C) = C(X,C) is dense in Lp(µ) for all p ∈ [1,∞). Since, by the
dominated convergence theorem, uniform convergence implies Lp(µ) — conver-
gence, it follows from the Stone - Weierstrass theorem that polynomials are
also dense in Lp(µ).
Here are a couple of more applications.

Example 11.49. Let f ∈ C([a, b]) be a positive function which is injective.
Then functions of the form

PN
k=1 akf

k with ak ∈ C and N ∈ N are dense in
C([a, b]). For example if a = 1 and b = 2, then one may take f(x) = xα for
any α 6= 0, or f(x) = ex, etc.

Exercise 11.50. Let (X, d) be a separable compact metric space. Show that
C(X) is also separable. Hint: Let E ⊂ X be a countable dense set and then
consider the algebra, A ⊂ C(X), generated by {d(x, ·)}x∈E .

11.4 Locally Compact Version of Stone-Weierstrass
Theorem

Theorem 11.51. Let X be non-compact locally compact Hausdorff space. If
A is a closed subalgebra of C0(X,R) which separates points. Then either A =
C0(X,R) or there exists x0 ∈ X such that A = {f ∈ C0(X,R) : f(x0) = 0}.
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Proof. There are two cases to consider.
Case 1. There is no point x0 ∈ X such that A ⊂ {f ∈ C0(X,R) : f(x0) =

0}. In this case let X∗ = X ∪ {∞} be the one point compactification of X.
Because of Proposition 3.39 to each f ∈ A there exists a unique extension
f̃ ∈ C(X∗,R) such that f = f̃ |X and moreover this extension is given by
f̃(∞) = 0. Let eA := {f̃ ∈ C(X∗,R) : f ∈ A}. Then eA is a closed (you check)
sub-algebra of C(X∗,R) which separates points. An application of Theorem
11.46 implies eA = {F ∈ C(X∗,R) 3F (∞) = 0} and therefore by Proposition
3.39 A = {F |X : F ∈ eA} = C0(X,R).
Case 2. There exists x0 ∈ X such A ⊂ {f ∈ C0(X,R) : f(x0) = 0}. In this

case let Y := X \ {x0} and AY := {f |Y : f ∈ A} . Since X is locally compact,
one easily checksAY ⊂ C0(Y,R) is a closed subalgebra which separates points.
By Case 1. it follows that AY = C0(Y,R). So if f ∈ C0(X,R) and f(x0) = 0,
f |Y ∈ C0(Y,R) =AY , i.e. there exists g ∈ A such that g|Y = f |Y . Since
g(x0) = f(x0) = 0, it follows that f = g ∈ A and therefore A = {f ∈
C0(X,R) : f(x0) = 0}.
Example 11.52. LetX = [0,∞), λ > 0 be fixed,A be the algebra generated by
t→ e−λt. So the general element f ∈ A is of the form f(t) = p(e−λt), where
p(x) is a polynomial. Since A ⊂ C0(X,R) separates points and e−λt ∈ A is
pointwise positive, Ā = C0(X,R).

As an application of this example, we will show that the Laplace transform
is injective.

Theorem 11.53. For f ∈ L1([0,∞), dx), the Laplace transform of f is de-
fined by

Lf(λ) ≡
Z ∞
0

e−λxf(x)dx for all λ > 0.

If Lf(λ) ≡ 0 then f(x) = 0 for m -a.e. x.

Proof. Suppose that f ∈ L1([0,∞), dx) such that Lf(λ) ≡ 0. Let
g ∈ C0([0,∞),R) and � > 0 be given. Choose {aλ}λ>0 such that
#({λ > 0 : aλ 6= 0}) <∞ and

|g(x)−
X
λ>0

aλe
−λx| < � for all x ≥ 0.

Then ¯̄̄̄Z ∞
0

g(x)f(x)dx

¯̄̄̄
=

¯̄̄̄
¯
Z ∞
0

Ã
g(x)−

X
λ>0

aλe
−λx

!
f(x)dx

¯̄̄̄
¯

≤
Z ∞
0

¯̄̄̄
¯g(x)−X

λ>0

aλe
−λx

¯̄̄̄
¯ |f(x)| dx ≤ �kfk1.

Since � > 0 is arbitrary, it follows that
R∞
0

g(x)f(x)dx = 0 for all g ∈
C0([0,∞),R). The proof is finished by an application of Lemma 11.7.
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11.5 Dynkin’s Multiplicative System Theorem

This section is devoted to an extension of Theorem 9.12 based on the Weier-
strass approximation theorem. In this section X is a set.

Definition 11.54 (Multiplicative System). A collection of real valued
functions Q on a set X is a multiplicative system provided f · g ∈ Q
whenever f, g ∈ Q.

Theorem 11.55 (Dynkin’s Multiplicative System Theorem). Let H
be a linear subspace of B(X,R) which contains the constant functions and is
closed under bounded convergence. If Q ⊂ H is multiplicative system, then H
contains all bounded real valued σ(Q)-measurable functions.

Theorem 11.56 (Complex Multiplicative System Theorem). Let H
be a complex linear subspace of B(X,C) such that: 1 ∈ H, H is closed under
complex conjugation, and H is closed under bounded convergence. If Q ⊂ H is
multiplicative system which is closed under conjugation, then H contains all
bounded complex valued σ(Q)-measurable functions.

Proof. Let F be R or C. Let C be the family of all sets of the form:
B := {x ∈ X : f1(x) ∈ R1, . . . , fm(x) ∈ Rm} (11.26)

wherem = 1, 2, . . . , and for k = 1, 2, . . . ,m, fk ∈ Q and Rk is an open interval
if F = R or Rk is an open rectangle in C if F = C. The family C is easily seen
to be a π — system such that σ(Q) = σ(C). So By Theorem 9.12, to finish the
proof it suffices to show 1B ∈ H for all B ∈ C.
It is easy to construct, for each k, a uniformly bounded sequence of

continuous functions
©
φkn
ª∞
n=1

on F converging to the characteristic func-
tion 1Rk . By Weierstrass’ theorem, there exists polynomials p

k
m(x) such that¯̄

pkn(x)− φkn(x)
¯̄ ≤ 1/n for |x| ≤ kφkk∞ in the real case and polynomials

pkm(z, z̄) in z and z̄ such that
¯̄
pkn(z, z̄)− φkn(z)

¯̄ ≤ 1/n for |z| ≤ kφkk∞ in the
complex case. The functions

Fn :=p
1
n(f1)p

2
n(f2) . . . p

m
n (fm) (real case)

Fn :=p
1
n(f1f̄1)p

2
n(f2, f̄2) . . . p

m
n (fm, f̄m) (complex case)

on X are uniformly bounded, belong to H and converge pointwise to 1B as
n → ∞, where B is the set in Eq. (11.26). Thus 1B ∈ H and the proof is
complete.

Remark 11.57. Given any collection of bounded real valued functions F on
X, let H(F) be the subspace of B(X,R) generated by F , i.e. H(F) is the
smallest subspace of B(X,R) which is closed under bounded convergence and
contains F .With this notation, Theorem 11.55 may be stated as follows. If F
is a multiplicative system then H(F) = Bσ(F)(X,R) — the space of bounded
σ (F) — measurable real valued functions on X.
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11.6 Exercises

Exercise 11.58. Let (X, τ) be a topological space, µ a measure on BX =
σ(τ) and f : X → C be a measurable function. Letting ν be the measure,
dν = |f | dµ, show supp(ν) = suppµ(f), where supp(ν) is defined in Definition
10.43).

Exercise 11.59. Let (X, τ) be a topological space, µ a measure on BX = σ(τ)
such that supp(µ) = X (see Definition 10.43). Show suppµ(f) = supp(f) =

{f 6= 0} for all f ∈ C(X).

Exercise 11.60. Prove Proposition 11.25 by appealing to Corollary 8.43.

Exercise 11.61 (Integration by Parts). Suppose that (x, y) ∈ R×Rn−1 →
f(x, y) ∈ C and (x, y) ∈ R×Rn−1 → g(x, y) ∈ C are measurable functions
such that for each fixed y ∈ Rn−1, x → f(x, y) and x → g(x, y) are continu-
ously differentiable. Also assume f ·g, ∂xf ·g and f ·∂xg are integrable relative
to Lebesgue measure on R×Rn−1, where ∂xf(x, y) := d

dtf(x+ t, y)|t=0. ShowZ
R×Rn−1

∂xf(x, y) · g(x, y)dxdy = −
Z
R×Rn−1

f(x, y) · ∂xg(x, y)dxdy. (11.27)

(Note: this result and Fubini’s theorem proves Lemma 11.27.)
Hints: Let ψ ∈ C∞c (R) be a function which is 1 in a neighborhood of

0 ∈ R and set ψ�(x) = ψ(�x). First verify Eq. (11.27) with f(x, y) replaced by
ψ�(x)f(x, y) by doing the x — integral first. Then use the dominated conver-
gence theorem to prove Eq. (11.27) by passing to the limit, � ↓ 0.
Exercise 11.62. Let M <∞, show there are polynomials pn(t) such that

lim
n→∞ sup

|t|≤M
||t|− pn(t)| = 0

using the following outline.

1. Let f(x) =
√
1− x for |x| ≤ 1 and use Taylor’s theorem with integral

remainder (see Eq. A.15 of Appendix A), or analytic function theory if
you know it, to show there are constants5 cn > 0 for n ∈ N such that

√
1− x = 1−

∞X
n=1

cnx
n for all |x| < 1. (11.28)

2. Let qm(x) := 1 −Pm
n=1 cnx

n. Use (11.28) to show
P∞

n=1 cn = 1 and
conclude from this that

lim
m→∞ sup

|x|≤1
|√1− x− qm(x)| = 0. (11.29)

5 In fact αn :=
(2n−3)!!
2nn!

, but this is not needed.
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3. Let 1− x = t2/M2, i.e. x = 1− t2/M2, then

lim
m→∞ sup

|t|≤M

¯̄̄̄ |t|
M
− qm(1− t2/M2)

¯̄̄̄
= 0

so that pm(t) :=Mqm(1− t2/M2) are the desired polynomials.

Exercise 11.63. Given a continuous function f : R → C which is 2π -
periodic and � > 0. Show there exists a trigonometric polynomial, p(θ) =

nP
n=−N

αne
inθ, such that |f(θ)− P (θ)| < � for all θ ∈ R. Hint: show that there

exists a unique function F ∈ C(S1) such that f(θ) = F (eiθ) for all θ ∈ R.
Remark 11.64. Exercise 11.63 generalizes to 2π — periodic functions on Rd,
i.e. functions such that f(θ+2πei) = f(θ) for all i = 1, 2, . . . , d where {ei}di=1
is the standard basis for Rd. A trigonometric polynomial p(θ) is a function of
θ ∈ Rd of the form

p(θ) =
X
n∈Γ

αne
in·θ

where Γ is a finite subset of Zd. The assertion is again that these trigonometric
polynomials are dense in the 2π — periodic functions relative to the supremum
norm.

Exercise 11.65. Let µ be a finite measure on BRd , then D := span{eiλ·x : λ ∈
Rd} is a dense subspace of Lp(µ) for all 1 ≤ p < ∞. Hints: By Proposition
11.6, Cc(Rd) is a dense subspace of Lp(µ). For f ∈ Cc(Rd) and N ∈ N, let

fN (x) :=
X
n∈Zd

f(x+ 2πNn).

Show fN ∈ BC(Rd) and x→ fN (Nx) is 2π — periodic, so by Exercise 11.63,
x → fN (Nx) can be approximated uniformly by trigonometric polynomials.
Use this fact to conclude that fN ∈ D̄Lp(µ). After this show fN → f in Lp(µ).

Exercise 11.66. Suppose that µ and ν are two finite measures on Rd such
that Z

Rd
eiλ·xdµ(x) =

Z
Rd

eiλ·xdν(x) (11.30)

for all λ ∈ Rd. Show µ = ν.
Hint: Perhaps the easiest way to do this is to use Exercise 11.65 with the

measure µ being replaced by µ + ν. Alternatively, use the method of proof
of Exercise 11.63 to show Eq. (11.30) implies

R
Rd fdµ(x) =

R
Rd fdν(x) for all

f ∈ Cc(Rd).



11.6 Exercises 287

Exercise 11.67. Again let µ be a finite measure on BRd . Further assume that
CM :=

R
Rd e

M|x|dµ(x) < ∞ for all M ∈ (0,∞). Let P(Rd) be the space of
polynomials, ρ(x) =

P
|α|≤N ραx

α with ρα ∈ C, on Rd. (Notice that |ρ(x)|p ≤
C(ρ, p,M)eM|x|, so that P(Rd) ⊂ Lp(µ) for all 1 ≤ p < ∞.) Show P(Rd) is
dense in Lp(µ) for all 1 ≤ p <∞. Here is a possible outline.
Outline: For λ ∈ Rd and n ∈ N let fnλ (x) = (λ · x)n /n!

1. Use calculus to verify supt≥0 tαe−Mt = (α/M)α e−α for all α ≥ 0 where
(0/M)

0
:= 1. Use this estimate along with the identity

|λ · x|pn ≤ |λ|pn |x|pn =
³
|x|pn e−M|x|

´
|λ|pn eM|x|

to find an estimate on kfnλ kp .
2. Use your estimate on kfnλ kp to show

P∞
n=0 kfnλ kp <∞ and conclude

lim
N→∞

°°°°°eiλ·(·) −
NX
n=0

fnλ

°°°°°
p

= 0.

3. Now finish by appealing to Exercise 11.65.

Exercise 11.68. Again let µ be a finite measure on BRd but now assume
there exists an � > 0 such that C :=

R
Rd e

�|x|dµ(x) < ∞. Also let q > 1 and
h ∈ Lq(µ) be a function such that

R
Rd h(x)x

αdµ(x) = 0 for all α ∈ Nd0. (As
mentioned in Exercise 11.68, P(Rd) ⊂ Lp(µ) for all 1 ≤ p <∞, so x→ h(x)xα

is in L1(µ).) Show h(x) = 0 for µ— a.e. x using the following outline.
Outline: For λ ∈ Rd and n ∈ N let fλn (x) = (λ · x)n /n! and let p =

q/(q − 1) be the conjugate exponent to q.
1. Use calculus to verify supt≥0 tαe−�t = (α/�)

α
e−α for all α ≥ 0 where

(0/�)
0
:= 1. Use this estimate along with the identity

|λ · x|pn ≤ |λ|pn |x|pn =
³
|x|pn e−�|x|

´
|λ|pn e�|x|

to find an estimate on
°°fλn°°p .

2. Use your estimate on
°°fλn°°p to show there exists δ > 0 such thatP∞

n=0

°°fλn°°p < ∞ when |λ| ≤ δ and conclude for |λ| ≤ δ that eiλ·x =
Lp(µ)—

P∞
n=0 f

λ
n (x). Conclude from this thatZ

Rd
h(x)eiλ·xdµ(x) = 0 when |λ| ≤ δ.

3. Let λ ∈ Rd (|λ| not necessarily small) and set g(t) := RRd eitλ·xh(x)dµ(x)
for t ∈ R. Show g ∈ C∞(R) and

g(n)(t) =

Z
Rd
(iλ · x)neitλ·xh(x)dµ(x) for all n ∈ N.
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4. Let T = sup{τ ≥ 0 : g|[0,τ ] ≡ 0}. By Step 2., T ≥ δ. If T <∞, then

0 = g(n)(T ) =

Z
Rd
(iλ · x)neiTλ·xh(x)dµ(x) for all n ∈ N.

Use Step 3. with h replaced by eiTλ·xh(x) to conclude

g(T + t) =

Z
Rd

ei(T+t)λ·xh(x)dµ(x) = 0 for all t ≤ δ/ |λ| .

This violates the definition of T and therefore T = ∞ and in particular
we may take T = 1 to learnZ

Rd
h(x)eiλ·xdµ(x) = 0 for all λ ∈ Rd.

5. Use Exercise 11.65 to conclude thatZ
Rd

h(x)g(x)dµ(x) = 0

for all g ∈ Lp(µ). Now choose g judiciously to finish the proof.
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Construction of Measures

Now that we have developed integration theory relative to a measure on a
σ — algebra, it is time to show how to construct the measures that we have
been using. This is a bit technical because there tends to be no “explicit”
description of the general element of the typical σ — algebras. On the other
hand, we do know how to explicitly describe algebras which are generated
by some class of sets E ⊂ P(X). Therefore, we might try to define measures
on σ(E) by there restrictions to A(E). Theorem 9.5 shows this is a plausible
method.
So the strategy of this section is as follows: 1) construct finitely additive

measure on an algebra, 2) construct “integrals” associated to such finitely
additive measures, 3) extend these integrals (Daniell’s method) when possible
to a larger class of functions, 4) construct a measure from the extended integral
(Daniell — Stone construction theorem).

12.1 Finitely Additive Measures and Associated
Integrals

Definition 12.1. Suppose that E ⊂ P(X) is a collection of subsets of a set
X and µ : E → [0,∞] is a function. Then
1. µ is additive on E if µ(E) = Pn

i=1 µ(Ei) whenever E =
`n

i=1Ei ∈ E
with Ei ∈ E for i = 1, 2, . . . , n <∞.

2. µ is σ — additive (or countable additive) on E if Item 1. holds even
when n =∞.

3. µ is subadditive on E if µ(E) ≤Pn
i=1 µ(Ei) whenever E =

`n
i=1Ei ∈ E

with Ei ∈ E and n ∈ N∪ {∞} .
4. µ is σ — finite on E if there exist En ∈ E such that X = ∪nEn and

µ(En) <∞.
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The reader should check if E = A is an algebra and µ is additive on A,
then µ is σ — finite on A iff there exists Xn ∈ A such that Xn ↑ X and
µ(Xn) <∞ for all n.

Proposition 12.2. Suppose E ⊂ P(X) is an elementary family (see Defini-
tion 7.13) and A = A(E) is the algebra generated by E. Then every additive
function µ : E → [0,∞] extends uniquely to an additive measure (which we
still denote by µ) on A.
Proof. Since by Proposition 7.14, every element A ∈ A is of the form

A =
`

iEi with Ei ∈ E , it is clear that if µ extends to a measure the extension
is unique and must be given by

µ(A) =
X
i

µ(Ei). (12.1)

To prove the existence of the extension, the main point is to show that defining
µ(A) by Eq. (12.1) is well defined, i.e. if we also have A =

`
j Fj with Fj ∈ E,

then we must show X
i

µ(Ei) =
X
j

µ(Fj). (12.2)

But Ei =
`

j (Ei ∩ Fj) and the property that µ is additive on E implies
µ(Ei) =

P
j µ(Ei ∩ Fj) and henceX

i

µ(Ei) =
X
i

X
j

µ(Ei ∩ Fj) =
X
i,j

µ(Ei ∩ Fj).

By symmetry or an analogous argument,X
j

µ(Fj) =
X
i,j

µ(Ei ∩ Fj)

which combined with the previous equation shows that Eq. (12.2) holds. It
is now easy to verify that µ extended to A as in Eq. (12.1) is an additive
measure on A.
Proposition 12.3. Let X = R and E be the elementary class

E = {(a, b] ∩R : −∞ ≤ a ≤ b ≤ ∞},
and A = A(E) be the algebra of disjoint union of elements from E. Suppose
that µ0 : A → [0,∞] is an additive measure such that µ0((a, b]) < ∞ for all
−∞ < a < b < ∞. Then there is a unique increasing function F : R̄→ R̄
such that F (0) = 0, F−1({−∞}) ⊂ {−∞} , F−1({∞}) ⊂ {∞} and

µ0((a, b] ∩ R) = F (b)− F (a) ∀ a ≤ b in R̄. (12.3)

Conversely, given an increasing function F : R̄→ R̄ such that F−1({−∞}) ⊂
{−∞} , F−1({∞}) ⊂ {∞} there is a unique measure µ0 = µ0F on A such that
the relation in Eq. (12.3) holds.
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So the finitely additive measures µ0 on A(E) which are finite on bounded
sets are in one to one correspondence with increasing functions F : R̄→ R̄
such that F (0) = 0, F−1({−∞}) ⊂ {−∞} , F−1({∞}) ⊂ {∞} .
Proof. If F is going to exist, then

µ0((0, b] ∩R) = F (b)− F (0) = F (b) if b ∈ [0,∞],
µ0((a, 0]) = F (0)− F (a) = −F (a) if a ∈ [−∞, 0]

from which we learn

F (x) =

½ −µ0((x, 0]) if x ≤ 0
µ0((0, x] ∩ R) if x ≥ 0.

Moreover, one easily checks using the additivity of µ0 that Eq. (12.3) holds
for this F.
Conversely, suppose F : R̄→ R̄ is an increasing function such that

F−1({−∞}) ⊂ {−∞}, F−1({∞}) ⊂ {∞}. Define µ0 on E using the for-
mula in Eq. (12.3). I claim that µ0 is additive on E and hence has a unique
extension to A which will finish the argument. Suppose that

(a, b] =
na
i=1

(ai, bi].

By reordering (ai, bi] if necessary, we may assume that

a = a1 > b1 = a2 < b2 = a3 < · · · < an < bn = b.

Therefore,

µ0((a, b]) = F (b)− F (a) =
nX
i=1

[F (bi)− F (ai)] =
nX
i=1

µ0((ai, bi])

as desired.

12.1.1 Integrals associated to finitely additive measures

Definition 12.4. Let µ be a finitely additive measure on an algebra A ⊂
P(X), S = Sf (A, µ) be the collection of simple functions defined in Notation
11.1 and for f ∈ S defined the integral I(f) = Iµ(f) by

Iµ(f) =
X
y∈R

yµ(f = y). (12.4)

The same proof used for Proposition 8.14 shows Iµ : S→ R is linear and
positive, i.e. I(f) ≥ 0 if f ≥ 0. Taking absolute values of Eq. (12.4) gives

|I(f)| ≤
X
y∈R

|y|µ(f = y) ≤ kfk∞ µ(f 6= 0) (12.5)
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where kfk∞ = supx∈X |f(x)| . For A ∈ A, let SA := {f ∈ S : {f 6= 0} ⊂ A}.
The estimate in Eq. (12.5) implies

|I(f)| ≤ µ(A) kfk∞ for all f ∈ SA. (12.6)

The B.L.T. Theorem 2.68 then implies that I has a unique extension IA to
S̄A ⊂ B(X) for any A ∈ A such that µ(A) < ∞. The extension IA is still
positive. Indeed, let f ∈ S̄A with f ≥ 0 and let fn ∈ SA be a sequence such
that kf − fnk∞ → 0 as n→∞. Then fn ∨ 0 ∈ SA and

kf − fn ∨ 0k∞ ≤ kf − fnk∞ → 0 as n→∞.

Therefore, IA(f) = limn→∞ IA(fn ∨ 0) ≥ 0.
Suppose thatA,B ∈ A are sets such that µ(A)+µ(B) <∞, then SA∪SB ⊂

SA∪B and so S̄A ∪ S̄B ⊂ S̄A∪B. Therefore IA(f) = IA∪B(f) = IB(f) for all
f ∈ S̄A ∩ S̄B . The next proposition summarizes these remarks.
Proposition 12.5. Let (A, µ, I = Iµ) be as in Definition 12.4, then we may
extend I to

S̃ := ∪{S̄A : A ∈ A with µ(A) <∞}
by defining I(f) = IA(f) when f ∈ S̄A with µ(A) < ∞. Moreover this exten-
sion is still positive.

Notation 12.6 Suppose X = R, A=A(E), F and µ0 are as in Proposition
12.3. For f ∈ S̃, we will write I(f) as R∞−∞ fdF or

R∞
−∞ f(x)dF (x) and refer

to
R∞
−∞ fdF as the Riemann Stieljtes integral of f relative to F.

Lemma 12.7. Using the notation above, the map f ∈ S̃→ R∞−∞ fdF is linear,
positive and satisfies the estimate¯̄̄̄Z ∞

−∞
fdF

¯̄̄̄
≤ (F (b)− F (a)) kfk∞ (12.7)

if supp(f) ⊂ (a, b). Moreover Cc(R,R) ⊂ S̃.
Proof. The only new point of the lemma is to prove Cc(R,R) ⊂ S̃, the

remaining assertions follow directly from Proposition 12.5. The fact that
Cc(R,R) ⊂ S̃ has essentially already been done in Example 8.24. In more
detail, let f ∈ Cc(R,R) and choose a < b such that supp(f) ⊂ (a, b). Then
define fk ∈ S as in Example 8.24, i.e.

fk(x) =

nk−1X
l=0

min
©
f(x) : akl ≤ x ≤ akl+1

ª
1(akl ,akl+1](x)

where πk = {a = ak0 < ak1 < · · · < aknk = b}, for k = 1, 2, 3, . . . , is a sequence
of refining partitions such that mesh(πk) → 0 as k → ∞. Since supp(f)
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is compact and f is continuous, f is uniformly continuous on R. Therefore
kf − fkk∞ → 0 as k → ∞, showing f ∈ S̃. Incidentally, for f ∈ Cc(R,R), it
follows thatZ ∞

−∞
fdF = lim

k→∞

nk−1X
l=0

min
©
f(x) : akl ≤ x ≤ akl+1

ª £
F (akl+1)− F (akl )

¤
.

(12.8)

The most important special case of a Riemann Stieljtes integral is when
F (x) = x in which case

R∞
−∞ f(x)dF (x) =

R∞
−∞ f(x)dx is the ordinary Rie-

mann integral. The following Exercise is an abstraction of Lemma 12.7.

Exercise 12.8. Continue the notation of Definition 12.4 and Proposition
12.5. Further assume that X is a metric space, there exists open sets Xn ⊂o X
such that Xn ↑ X and for each n ∈ N and δ > 0 there exists a finite collection
of sets {Ai}ki=1 ⊂ A such that diam(Ai) < δ, µ(Ai) < ∞ and Xn ⊂ ∪ki=1Ai.

Then Cc(X,R) ⊂ S̃ and so I is well defined on Cc(X,R).

Proposition 12.9. Suppose that (X, τ) is locally compact Hausdorff space
and I is a positive linear functional on Cc(X,R). Then for each compact
subset K ⊂ X there is a constant CK < ∞ such that |I(f)| ≤ CK kfk∞ for
all f ∈ Cc(X,R) with supp(f) ⊂ K. Moreover, if fn ∈ Cc(X, [0,∞)) and
fn ↓ 0 (pointwise) as n→∞, then I(fn) ↓ 0 as n→∞.

Proof. Let f ∈ Cc(X,R) with supp(f) ⊂ K. By Lemma 3.22 there exists
ψK ≺ X such that ψK = 1 on K. Since kfk∞ ψK ± f ≥ 0,

0 ≤ I(kfk∞ ψK ± f) = kfk∞ I(ψK)± I(f)

from which it follows that |I(f)| ≤ I(ψK) kfk∞ . So the first assertion holds
with CK = I(ψK) <∞.
Now suppose that fn ∈ Cc(X, [0,∞)) and fn ↓ 0 as n → ∞. Let K =

supp(f1) and notice that supp(fn) ⊂ K for all n. By Dini’s Theorem (see
Exercise 2.41), kfnk∞ ↓ 0 as n→∞ and hence

0 ≤ I(fn) ≤ CK kfnk∞ ↓ 0 as n→∞.

This result applies to the Riemann Stieljtes integral in Lemma 12.7 re-
stricted to Cc(R,R). However it is not generally true in this case that I(fn) ↓ 0
for all fn ∈ S such that fn ↓ 0. Proposition 12.11 below addresses this ques-
tion.

Definition 12.10. A countably additive function µ on an algebra A ⊂ 2X is
called a premeasure.
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As for measures (see Remark 8.2 and Proposition 8.3), one easily shows if
µ is a premeasure on A, {An}∞n=1 ⊂ A and if An ↑ A ∈ A then µ (An) ↑ µ(A)
as n→∞ or if µ(A1) <∞ and An ↓ ∅ then µ(An) ↓ 0 as n→∞ Now suppose
that µ in Proposition 12.3 were a premeasure on A(E). Letting An = (a, bn]
with bn ↓ b as n→∞ we learn,

F (bn)− F (a) = µ((a, bn]) ↓ µ((a, b]) = F (b)− F (a)

from which it follows that limy↓b F (y) = F (b), i.e. F is right continuous. We
will see below that in fact µ is a premeasure on A(E) iff F is right continuous.

Proposition 12.11. Let (A, µ, S = Sf (A, µ), I = Iµ) be as in Definition 12.4.
If µ is a premeasure on A, then

∀ fn ∈ S with fn ↓ 0 =⇒ I(fn) ↓ 0 as n→∞. (12.9)

Proof. Let � > 0 be given. Then

fn = fn1fn>�f1 + fn1fn≤�f1 ≤ f11fn>�f1 + �f1,

I(fn) ≤ I (f11fn>�f1) + �I(f1) =
X
a>0

aµ (f1 = a, fn > �a) + �I(f1),

and hence

lim sup
n→∞

I(fn) ≤
X
a>0

a lim sup
n→∞

µ (f1 = a, fn > �a) + �I(f1). (12.10)

Because, for a > 0,

A 3 {f1 = a, fn > �a} := {f1 = a} ∩ { fn > �a} ↓ ∅ as n→∞

and µ (f1 = a) < ∞, lim supn→∞ µ (f1 = a, fn > �a) = 0. Combining this
with Eq. (12.10) and making use of the fact that � > 0 is arbitrary we learn
lim supn→∞ I(fn) = 0.

12.2 The Daniell-Stone Construction Theorem

Definition 12.12. A vector subspace S of real valued functions on a set X
is a lattice if it is closed under the lattice operations; f ∨ g = max(f, g) and
f ∧ g = min(f, g).
Remark 12.13. Notice that a lattice S is closed under the absolute value op-
eration since |f | = f ∨ 0 − f ∧ 0. Furthermore if S is a vector space of real
valued functions, to show that S is a lattice it suffices to show f+ = f ∨ 0 ∈ S
for all f ∈ S. This is because
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|f | = f+ + (−f)+,
f ∨ g = 1

2
(f + g + |f − g|) and

f ∧ g = 1

2
(f + g − |f − g|) .

Notation 12.14 Given a collection of extended real valued functions C on X,
let C+ := {f ∈ C : f ≥ 0} — denote the subset of positive functions f ∈ C.
Definition 12.15. A linear functional I on S is said to be positive (i.e. non-
negative) if I(f) ≥ 0 for all f ∈ S+. (This is equivalent to the statement the
I(f) ≤ I(g) if f, g ∈ S and f ≤ g.)

Definition 12.16 (Property (D)). A non-negative linear functional I on S
is said to be continuous under monotone limits if I(fn) ↓ 0 for all {fn}∞n=1 ⊂
S+ satisfying (pointwise) fn ↓ 0. A positive linear functional on S satisfying
property (D) is called a Daniell integral on S. We will also write S as D(I)
— the domain of I.

Example 12.17. Let (X, τ) be a locally compact Hausdorff space and I be
a positive linear functional on S := Cc(X,R). It is easily checked that S
is a lattice and Proposition 12.9 shows I is automatically a Daniell inte-
gral. In particular if X = R and F is an increasing function on R, then
the corresponding Riemann Stieljtes integral restricted to S := Cc(R,R)
(f ∈ Cc(R,R)→

R
R fdF ) is a Daniell integral.

Example 12.18. Let (A, µ, S = Sf (A, µ), I = Iµ) be as in Definition 12.4. It
is easily checked that S is a lattice. Proposition 12.11 guarantees that I is a
Daniell integral on S when µ is a premeasure on A.
Lemma 12.19. Let I be a non-negative linear functional on a lattice S. Then
property (D) is equivalent to either of the following two properties:

D1 If φ, φn ∈ S satisfy; φn ≤ φn+1 for all n and φ ≤ limn→∞ φn, then I(φ) ≤
limn→∞ I(φn).

D2 If uj ∈ S+ and φ ∈ S is such that φ ≤
P∞

j=1 uj then I(φ) ≤P∞j=1 I(uj).
Proof. (D) =⇒ (D1) Let φ, φn ∈ S be as in D1. Then φ ∧ φn ↑ φ and

φ− (φ ∧ φn) ↓ 0 which implies
I(φ)− I(φ ∧ φn) = I(φ− (φ ∧ φn)) ↓ 0.

Hence
I(φ) = lim

n→∞ I(φ ∧ φn) ≤ lim
n→∞ I(φn).

(D1) =⇒ (D2) Apply (D1) with φn =
Pn

j=1 uj .
(D2) =⇒ (D) Suppose φn ∈ S with φn ↓ 0 and let un = φn − φn+1. ThenPN
n=1 un = φ1 − φN+1 ↑ φ1 and hence
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I(φ1) ≤
∞X
n=1

I(un) = lim
N→∞

NX
n=1

I(un)

= lim
N→∞

I(φ1 − φN+1) = I(φ1)− lim
N→∞

I(φN+1)

from which it follows that limN→∞ I(φN+1) ≤ 0. Since I(φN+1) ≥ 0 for all N
we conclude that limN→∞ I(φN+1) = 0.
In the remainder of this section, S will denote a lattice of bounded real

valued functions on a set X and I : S→ R will be a Daniell integral on S.

Lemma 12.20. Suppose that {fn} , {gn} ⊂ S.
1. If fn ↑ f and gn ↑ g with f, g : X → (−∞,∞] such that f ≤ g, then

lim
n→∞ I(fn) ≤ lim

n→∞ I(gn). (12.11)

2. If fn ↓ f and gn ↓ g with f, g : X → [−∞,∞) such that f ≤ g, then Eq.
(12.11) still holds.

In particular, in either case if f = g, then limn→∞ I(fn) = limn→∞ I(gn).

Proof.

1. Fix n ∈ N, then gk ∧ fn ↑ fn as k →∞ and gk ∧ fn ≤ gk and hence

I(fn) = lim
k→∞

I(gk ∧ fn) ≤ lim
k→∞

I(gk).

Passing to the limit n→∞ in this equation proves Eq. (12.11).
2. Since −fn ↑ (−f) and −gn ↑ (−g) and −g ≤ (−f), what we just proved
shows

− lim
n→∞ I(gn) = lim

n→∞ I(−gn) ≤ lim
n→∞ I(−fn) = − lim

n→∞ I(fn)

which is equivalent to Eq. (12.11).

Definition 12.21. Let

S↑ = {f : X → (−∞,∞] : ∃ fn ∈ S such that fn ↑ f}

and for f ∈ S↑ let I(f) = limn→∞ I(fn) ∈ (−∞,∞].
Lemma 12.20 shows this extension of I to S↑ is well defined and positive,

i.e. I(f) ≤ I(g) if f ≤ g.

Definition 12.22. Let S↓ = {f : X → [−∞,∞) : ∃ fn ∈ S such that fn ↓ f}
and define I(f) = limn→∞ I(fn) on S↓.
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Exercise 12.23. Show S↓ = −S↑ and for f ∈ S↓ ∪ S↑ that I(−f) = −I(f) ∈
R̄.

We are now in a position to state the main construction theorem. The
theorem we state here is not as general as possible but it will suffice for our
present purposes. See Section 13 for a more general version and the full proof.

Theorem 12.24 (Daniell-Stone). Let S be a lattice of bounded functions
on a set X such that 1 ∧ φ ∈ S and let I be a Daniel integral on S. Further
assume there exists χ ∈ S↑ such that I(χ) < ∞ and χ(x) > 0 for all x ∈ X.
Then there exists a unique measure µ onM := σ(S) such that

I(f) =

Z
X

fdµ for all f ∈ S. (12.12)

Moreover, for all g ∈ L1(X,M, µ),

sup {I(f) : S↓ 3 f ≤ g} =
Z
X

gdµ = inf {I(h) : g ≤ h ∈ S↑} . (12.13)

Proof. Only a sketch of the proof will be given here. Full details may be
found in Section 13 below.
Existence. For g : X → R̄, define

Ī(g) := inf{I(h) : g ≤ h ∈ S↑},
I(g) := sup{I(f) : S↓ 3 f ≤ g}

and set
L1(I) := {g : X → R̄ : Ī(g) = I(g) ∈ R}.

For g ∈ L1(I), let Î(g) = Ī(g) = I(g). Then, as shown in Proposition 13.10,
L1(I) is a “extended” vector space and Î : L1(I) → R is linear as defined in
Definition 13.1 below. By Proposition 13.6, if f ∈ S↑ with I(f) < ∞ then
f ∈ L1(I). Moreover, Î obeys the monotone convergence theorem, Fatou’s
lemma, and the dominated convergence theorem, see Theorem 13.11, Lemma
13.12 and Theorem 13.15 respectively.
Let

R := ©A ⊂ X : 1A ∧ f ∈ L1(I) for all f ∈ Sª
and for A ∈ R set µ(A) := Ī(1A). It can then be shown: 1) R is a σ algebra
(Lemma 13.23) containing σ(S) (Lemma 13.24), µ is a measure on R (Lemma
13.25), and that Eq. (12.12) holds. In fact it is shown in Theorem 13.28 and
Proposition 13.29 below that L1(X,M, µ) ⊂ L1(I) and

Î(g) =

Z
X

gdµ for all g ∈ L1(X,M, µ).

The assertion in Eq. (12.13) is a consequence of the definition of L1(I) and Î
and this last equation.
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Uniqueness. Suppose that ν is another measure on σ(S) such that

I(f) =

Z
X

fdν for all f ∈ S.

By the monotone convergence theorem and the definition of I on S↑,

I(f) =

Z
X

fdν for all f ∈ S↑.

Therefore if A ∈ σ(S) ⊂ R,

µ(A) = Ī(1A) = inf{I(h) : 1A ≤ h ∈ S↑}
= inf{

Z
X

hdν : 1A ≤ h ∈ S↑} ≥
Z
X

1Adν = ν(A)

which shows ν ≤ µ. If A ∈ σ(S) ⊂ R with µ(A) <∞, then, by Remark 13.22
below, 1A ∈ L1(I) and therefore

µ(A) = Ī(1A) = Î(1A) = I(1A) = sup{I(f) : S↓ 3 f ≤ 1A}
= sup{

Z
X

fdν : S↓ 3 f ≤ 1A} ≤ ν(A).

Hence µ(A) ≤ ν(A) for all A ∈ σ(S) and ν(A) = µ(A) when µ(A) <∞.
To prove ν(A) = µ(A) for all A ∈ σ(S), let Xn := {χ ≥ 1/n} ∈ σ(S). Since

1Xn
≤ nχ,

µ(Xn) =

Z
X

1Xndµ ≤
Z
X

nχdµ = nI(χ) <∞.

Since χ > 0 on X, Xn ↑ X and therefore by continuity of ν and µ,

ν(A) = lim
n→∞ ν(A ∩Xn) = lim

n→∞µ(A ∩Xn) = µ(A)

for all A ∈ σ(S).
The rest of this chapter is devoted to applications of the Daniell — Stone

construction theorem.

Remark 12.25. To check the hypothesis in Theorem 12.24 that there exists
χ ∈ S↑ such that I(χ) <∞ and χ(x) > 0 for all x ∈ X, it suffices to find φn ∈
S+ such that

P∞
n=1 φn > 0 on X. To see this letMn := max (kφnku , I(φn) , 1)

and define χ :=
P∞

n=1
1

Mn2n
φn, then χ ∈ S↑, 0 < χ ≤ 1 and I(χ) ≤ 1 <∞.

12.3 Extensions of premeasures to measures I

In this section let X be a set, A be a subalgebra of 2X and µ0 : A → [0,∞]
be a premeasure on A.
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Definition 12.26. Let E be a collection of subsets of X, let Eσ denote the
collection of subsets of X which are finite or countable unions of sets from
E . Similarly let Eδ denote the collection of subsets of X which are finite or
countable intersections of sets from E. We also write Eσδ = (Eσ)δ and Eδσ =
(Eδ)σ , etc.
Remark 12.27. Let µ0 be a premeasure on an algebra A. Any A = ∪∞n=1A0n ∈
Aσ with A0n ∈ A may be written as A =

∞̀

n=1
An, with An ∈ A by setting

An := A0n \ (A01 ∪ · · · ∪A0n−1). If we also have A =
∞̀

n=1
Bn with Bn ∈ A, then

An =
`∞

k=1(An ∩Bk) and therefore because µ0 is a premeasure,

µ0(An) =
∞X
k=1

µ0(An ∩Bk).

Summing this equation on n shows,

∞X
n=1

µ0(An) =
∞X
n=1

∞X
k=1

µ0(An ∩Bk)

By symmetry (i.e. the same argument with the A’s and B’s interchanged) and
Fubini’s theorem for sums,

∞X
k=1

µ0(Bk) =
∞X
k=1

∞X
n=1

µ0(An ∩Bk) =
∞X
n=1

∞X
k=1

µ0(An ∩Bk)

and hence
P∞

n=1 µ0(An) =
P∞

k=1 µ0(Bk). Therefore we may extend µ0 to Aσ

by setting

µ0(A) :=
∞X
n=1

µ0(An)

if A =
∞̀

n=1
An, with An ∈ A. In future we will tacitly assume this extension

has been made.

Theorem 12.28. Let X be a set, A be a subalgebra of 2X and µ0 be a pre-
measure on A which is σ — finite on A, i.e. there exists Xn ∈ A such that
µ0(Xn) < ∞ and Xn ↑ X as n → ∞. Then µ0 has a unique extension to a
measure, µ, on M := σ(A). Moreover, if A ∈ M and � > 0 is given, there
exists B ∈ Aσ such that A ⊂ B and µ(B \A) < �. In particular,

µ(A) = inf{µ0(B) : A ⊂ B ∈ Aσ} (12.14)

= inf{
∞X
n=1

µ0(An) : A ⊂
∞a
n=1

An with An ∈ A}. (12.15)
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Proof. Let (A, µ0, I = Iµ0) be as in Definition 12.4. As mentioned in
Example 12.18, I is a Daniell integral on the lattice S = Sf (A, µ0). It is clear
that 1 ∧ φ ∈ S for all φ ∈ S. Since 1Xn ∈ S+ and

P∞
n=1 1Xn > 0 on X, by

Remark 12.25 there exists χ ∈ S↑ such that I(χ) < ∞ and χ > 0. So the
hypothesis of Theorem 12.24 hold and hence there exists a unique measure µ
onM such that I(f) =

R
X
fdµ for all f ∈ S. Taking f = 1A with A ∈ A and

µ0(A) <∞ shows µ(A) = µ0(A). For general A ∈ A, we have
µ(A) = lim

n→∞µ(A ∩Xn) = lim
n→∞µ0(A ∩Xn) = µ0(A).

The fact that µ is the only extension of µ0 to M follows from Theorem
9.5 or Theorem 9.8. It is also can be proved using Theorem 12.24. Indeed, if ν
is another measure onM such that ν = µ on A, then Iν = I on S. Therefore
by the uniqueness assertion in Theorem 12.24, µ = ν onM.
By Eq. (12.13), for A ∈M,

µ(A) = Ī(1A) = inf {I(f) : f ∈ S↑ with 1A ≤ f}

= inf

½Z
X

fdµ : f ∈ S↑ with 1A ≤ f

¾
.

For the moment suppose µ(A) < ∞ and � > 0 is given. Choose f ∈ S↑ such
that 1A ≤ f and Z

X

fdµ = I(f) < µ(A) + �. (12.16)

Let fn ∈ S be a sequence such that fn ↑ f as n→∞ and for α ∈ (0, 1) set
Bα := {f > α} = ∪∞n=1 {fn > α} ∈ Aσ.

Then A ⊂ {f ≥ 1} ⊂ Bα and by Chebyshev’s inequality,

µ(Bα) ≤ α−1
Z
X

fdµ = α−1I(f)

which combined with Eq. (12.16) implies µ(Bα) < µ(A)+� for all α sufficiently
close to 1. For such α we then have A ⊂ Bα ∈ Aσ and µ(Bα \A) = µ(Bα)−
µ(A) < �.
For general A ∈ A, choose Xn ↑ X with Xn ∈ A. Then there exists

Bn ∈ Aσ such that µ(Bn \ (An ∩ Xn)) < �2−n. Define B := ∪∞n=1Bn ∈ Aσ.
Then

µ(B \A) = µ (∪∞n=1 (Bn \A)) ≤
∞X
n=1

µ ((Bn \A))

≤
∞X
n=1

µ ((Bn \ (A ∩Xn)) < �.

Eq. (12.14) is an easy consequence of this result and the fact that µ(B) =
µ0(B).
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Corollary 12.29 (Regularity of µ). Let A ⊂ P(X) be an algebra of sets,
M = σ(A) and µ :M→ [0,∞] be a measure onM which is σ — finite on A.
Then

1. For all A ∈M,

µ(A) = inf {µ(B) : A ⊂ B ∈ Aσ} . (12.17)

2. If A ∈M and � > 0 are given, there exists B ∈ Aσ such that A ⊂ B and
µ(B \A) < �.

3. For all A ∈ M and � > 0 there exists B ∈ Aδ such that B ⊂ A and
µ(A \B) < �.

4. For any B ∈M there exists A ∈ Aδσ and C ∈ Aσδ such that A ⊂ B ⊂ C
and µ(C \A) = 0.

5. The linear space S := Sf (A, µ) is dense in Lp(µ) for all p ∈ [1,∞), briefly
put, Sf (A, µ)L

p(µ)
= Lp(µ).

Proof. Items 1. and 2. follow by applying Theorem 12.28 to µ0 = µ|A.
Items 3. and 4. follow from Items 1. and 2. as in the proof of Corollary 9.41
above.
Item 5. This has already been proved in Theorem 11.3 but we will give

yet another proof here. When p = 1 and g ∈ L1(µ;R), there exists, by Eq.
(12.13), h ∈ S↑ such that g ≤ h and kh− gk1 =

R
X
(h − g)dµ < �. Let

{hn}∞n=1 ⊂ S be chosen so that hn ↑ h as n → ∞. Then by the dominated
convergence theorem, khn − gk1 → kh− gk1 < � as n → ∞. Therefore for n
large we have hn ∈ S with khn − gk1 < �. Since � > 0 is arbitrary this shows,

Sf (A, µ)L
1(µ)

= L1(µ).
Now suppose p > 1, g ∈ Lp(µ;R) and Xn ∈ A are sets such that

Xn ↑ X and µ(Xn) < ∞. By the dominated convergence theorem, 1Xn ·
[(g ∧ n) ∨ (−n)]→ g in Lp(µ) as n→∞, so it suffices to consider g ∈ Lp(µ;R)
with {g 6= 0} ⊂ Xn and |g| ≤ n for some large n ∈ N. By Hölder’s inequality,
such a g is in L1(µ). So if � > 0, by the p = 1 case, we may find h ∈ S such
that kh− gk1 < �. By replacing h by (h ∧ n)∨ (−n) ∈ S, we may assume h is
bounded by n as well and hence

kh− gkpp =
Z
X

|h− g|p dµ =
Z
X

|h− g|p−1 |h− g| dµ

≤ (2n)p−1
Z
X

|h− g| dµ < (2n)
p−1

�.

Since � > 0 was arbitrary, this shows S is dense in Lp(µ;R).

Remark 12.30. If we drop the σ — finiteness assumption on µ0 we may loose
uniqueness assertion in Theorem 12.28. For example, let X = R, BR and
A be the algebra generated by E := {(a, b] ∩ R : −∞ ≤ a < b ≤ ∞}. Recall
BR = σ(E). LetD ⊂ R be a countable dense set and define µD(A) := #(D∩A).
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Then µD(A) = ∞ for all A ∈ A such that A 6= ∅. So if D0 ⊂ R is another
countable dense subset of R, µD0 = µD on A while µD 6= µD0 on BR. Also
notice that µD is σ — finite on BR but not on A.
It is now possible to use Theorem 12.28 to give a proof of Theorem 8.8, see

subsection 12.8 below. However rather than do this now let us give another
application of Theorem 12.28 based on Example 12.17 and use the result to
prove Theorem 8.8.

12.4 Riesz Representation Theorem

Definition 12.31. Given a second countable locally compact Hausdorff space
(X, τ), let M+ denote the collection of positive measures, µ, on BX := σ(τ)
with the property that µ(K) < ∞ for all compact subsets K ⊂ X. Such a
measure µ will be called a Radon measure on X. For µ ∈ M+ and f ∈
Cc(X,R) let Iµ(f) :=

R
X
fdµ.

Theorem 12.32 (Riesz Representation Theorem). Let (X, τ) be a sec-
ond countable1 locally compact Hausdorff space. Then the map µ→ Iµ taking
M+ to positive linear functionals on Cc(X,R) is bijective. Moreover every
measure µ ∈M+ has the following properties:

1. For all � > 0 and B ∈ BX , there exists F ⊂ B ⊂ U such that U is open
and F is closed and µ(U \ F ) < �. If µ(B) <∞, F may be taken to be a
compact subset of X.

2. For all B ∈ BX there exists A ∈ Fσ and C ∈ τδ (τδ is more conventionally
written as Gδ) such that A ⊂ B ⊂ C and µ(C \A) = 0.

3. For all B ∈ BX ,

µ(B) = inf{µ(U) : B ⊂ U and U is open} (12.18)

= sup{µ(K) : K ⊂ B and K is compact}. (12.19)

4. For all open subsets, U ⊂ X,

µ(U) = sup{
Z
X

fdµ : f ≺ X} = sup{Iµ(f) : f ≺ X}. (12.20)

5. For all compact subsets K ⊂ X,

µ(K) = inf{Iµ(f) : 1K ≤ f ≺ X}. (12.21)

1 The second countability is assumed here in order to avoid certain technical issues.
Recall from Lemma 3.25 that under these assumptions, σ(S) = BX . Also recall
from Uryshon’s metrizatoin theorem that X is metrizable. We will later remove
the second countability assumption.



12.4 Riesz Representation Theorem 303

6. If kIµk denotes the dual norm on Cc(X,R)∗, then kIµk = µ(X). In par-
ticular Iµ is bounded iff µ(X) <∞.

7. Cc(X,R) is dense in Lp(µ;R) for all 1 ≤ p <∞.

Proof. First notice that Iµ is a positive linear functional on S := Cc(X,R)
for all µ ∈ M+ and S is a lattice such that 1 ∧ f ∈ S for all f ∈ S. Example
12.17 shows that any positive linear functional, I, on S := Cc(X,R) is a Daniell
integral on S. By Lemma 3.16, there exists compact sets Kn ⊂ X such that
Kn ↑ X. By Urysohn’s lemma, there exists φn ≺ X such that φn = 1 on Kn.
Since φn ∈ S+ and

P∞
n=1 φn > 0 on X it follows from Remark 12.25 that

there exists χ ∈ S↑ such that χ > 0 on X and I(χ) < ∞. So the hypothesis
of the Daniell — Stone Theorem 12.24 hold and hence there exists a unique
measure µ on σ(S) =BX (Lemma 3.25) such that I = Iµ. Hence the map
µ→ Iµ taking M+ to positive linear functionals on Cc(X,R) is bijective. We
will now prove the remaining seven assertions of the theorem.

1. Suppose � > 0 and B ∈ BX satisfies µ(B) <∞. Then 1B ∈ L1(µ) so there
exists functions fn ∈ Cc(X,R) such that fn ↑ f, 1B ≤ f, andZ

X

fdµ = I(f) < µ(B) + �. (12.22)

Let α ∈ (0, 1) and Ua := {f > α} ∪∞n=1 {fn > α} ∈ τ. Since 1B ≤ f,
B ⊂ {f ≥ 1} ⊂ Uα and by Chebyshev’s inequality, µ(Uα) ≤ α−1

R
X
fdµ =

α−1I(f). Combining this estimate with Eq. (12.22) shows µ(Uα \ B) =
µ(Uα)− µ(B) < � for α sufficiently closet to 1.
For general B ∈ BX , by what we have just proved, there exists open sets
Un ⊂ X such that B ∩Kn ⊂ Un and µ(Un \ (B ∩Kn)) < �2−n for all n.
Let U = ∪∞n=1Un, then B ⊂ U ∈ τ and

µ(U \B) = µ(∪∞n=1 (Un \B)) ≤
∞X
n=1

µ(Un \B)

≤
∞X
n=1

µ(Un \ (B ∩Kn)) ≤
∞X
n=1

�2−n = �.

Applying this result to Bc shows there exists a closed set F @ X such
that Bc ⊂ F c and

µ(B \ F ) = µ(F c \Bc) < �.

So we have produced F ⊂ B ⊂ U such that µ(U \F ) = µ(U \B) + µ(B \
F ) < 2�.
If µ(B) < ∞, using B \ (Kn ∩ F ) ↑ B \ F as n → ∞, we may choose n
sufficiently large so that µ(B \ (Kn ∩ F )) < �. Hence we may replace F
by the compact set F ∩Kn if necessary.

2. Choose Fn ⊂ B ⊂ Un such Fn is closed, Un is open and µ(Un \Fn) < 1/n.
Let B = ∪nFn ∈ Fσ and C := ∩Un ∈ τδ. Then A ⊂ B ⊂ C and
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µ(C \A) ≤ µ(Fn \ Un) < 1

n
→ 0 as n→∞.

3. From Item 1, one easily concludes that

µ(B) = inf {µ(U) : B ⊂ U ⊂o X}
for all B ∈ BX and

µ(B) = sup {µ(K) : K @@ B}
for all B ∈ BX with µ(B) <∞. So now suppose B ∈ BX and µ(B) =∞.
Using the notation at the end of the proof of Item 1., we have µ(F ) =∞
and µ(F ∩Kn) ↑ ∞ as n→∞. This shows sup {µ(K) : K @@ B} =∞ =
µ(B) as desired.

4. For U ⊂o X, let
ν(U) := sup{Iµ(f) : f ≺ U}.

It is evident that ν(U) ≤ µ(U) because f ≺ U implies f ≤ 1U . Let K be a
compact subset of U. By Urysohn’s Lemma 3.22, there exists f ≺ U such
that f = 1 on K. Therefore,

µ(K) ≤
Z
X

fdµ ≤ ν(U) (12.23)

and we have

µ(K) ≤ ν(U) ≤ µ(U) for all U ⊂o X and K @@ U. (12.24)

By Item 3.,

µ(U) = sup{µ(K) : K @@ U} ≤ ν(U) ≤ µ(U)

which shows that µ(U) = ν(U), i.e. Eq. (12.20) holds.
5. Now suppose K is a compact subset of X. From Eq. (12.23),

µ(K) ≤ inf{Iµ(f) : 1K ≤ f ≺ X} ≤ µ(U)

for any open subset U such that K ⊂ U. Consequently by Eq. (12.18),

µ(K) ≤ inf{Iµ(f) : 1K ≤ f ≺ X} ≤ inf{µ(U) : K ⊂ U ⊂o X} = µ(K)

which proves Eq. (12.21).
6. For f ∈ Cc(X,R),

|Iµ(f)| ≤
Z
X

|f | dµ ≤ kfku µ(supp(f)) ≤ kfku µ(X) (12.25)

which shows kIµk ≤ µ(X). Let K @@ X and f ≺ X such that f = 1 on
K. By Eq. (12.23),
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µ(K) ≤
Z
X

fdµ = Iµ(f) ≤ kIµk kfku = kIµk

and therefore,

µ(X) = sup{µ(K) : K @@ X} ≤ kIµk .

7. This has already been proved by two methods in Proposition 11.6 but
we will give yet another proof here. When p = 1 and g ∈ L1(µ;R), there
exists, by Eq. (12.13), h ∈ S↑ = Cc(X,R)↑ such that g ≤ h and kh− gk1 =R
X
(h− g)dµ < �. Let {hn}∞n=1 ⊂ S = Cc(X,R) be chosen so that hn ↑ h

as n → ∞. Then by the dominated convergence theorem (notice that
|hn| ≤ |h1| + |h|), khn − gk1 → kh− gk1 < � as n → ∞. Therefore for n
large we have hn ∈ Cc(X,R) with khn − gk1 < �. Since � > 0 is arbitrary

this shows, Sf (A, µ)L
1(µ)

= L1(µ).
Now suppose p > 1, g ∈ Lp(µ;R) and {Kn}∞n=1 are as above. By the
dominated convergence theorem, 1Kn (g ∧ n)∨ (−n)→ g in Lp(µ) as n→
∞, so it suffices to consider g ∈ Lp(µ;R) with supp(g) ⊂ Kn and |g| ≤ n
for some large n ∈ N. By Hölder’s inequality, such a g is in L1(µ). So if
� > 0, by the p = 1 case, there exists h ∈ S such that kh− gk1 < �. By
replacing h by (h ∧ n) ∨ (−n) ∈ S, we may assume h is bounded by n in
which case

kh− gkpp =
Z
X

|h− g|p dµ =
Z
X

|h− g|p−1 |h− g| dµ

≤ (2n)p−1
Z
X

|h− g| dµ < (2n)
p−1

�.

Since � > 0 was arbitrary, this shows S is dense in Lp(µ;R).

Remark 12.33.We may give a direct proof of the fact that µ→ Iµ is injective.
Indeed, suppose µ, ν ∈ M+ satisfy Iµ(f) = Iν(f) for all f ∈ Cc(X,R). By
Proposition 11.6, if A ∈ BX is a set such that µ(A) + ν(A) <∞, there exists
fn ∈ Cc(X,R) such that fn → 1A in L1(µ+ ν). Since fn → 1A in L1(µ) and
L1(ν),

µ(A) = lim
n→∞ Iµ(fn) = lim

n→∞ Iν(fn) = ν(A).

For general A ∈ BX , choose compact subsets Kn ⊂ X such that Kn ↑ X.
Then

µ(A) = lim
n→∞µ(A ∩Kn) = lim

n→∞ ν(A ∩Kn) = ν(A)

showing µ = ν. Therefore the map µ→ Iµ is injective.

Theorem 12.34 (Lusin’s Theorem). Suppose (X, τ) is a locally compact
and second countable Hausdorff space, BX is the Borel σ — algebra on X, and



306 12 Construction of Measures

µ is a measure on (X,BX) which is finite on compact sets of X. Also let � > 0
be given. If f : X → C is a measurable function such that µ(f 6= 0) < ∞,
there exists a compact set K ⊂ {f 6= 0} such that f |K is continuous and
µ({f 6= 0} \K) < �. Moreover there exists φ ∈ Cc(X) such that µ(f 6= φ) < �
and if f is bounded the function φ may be chosen so that kφku ≤ kfku :=
supx∈X |f(x)| .
Proof. Suppose first that f is bounded, in which caseZ

X

|f | dµ ≤ kfkµ µ(f 6= 0) <∞.

By Proposition 11.6 or Item 7. of Theorem 12.32, there exists fn ∈ Cc(X) such
that fn → f in L1(µ) as n → ∞. By passing to a subsequence if necessary,
we may assume kf − fnk1 < �n−12−n for all n and thus µ

¡|f − fn| > n−1
¢
<

�2−n for all n. Let E := ∪∞n=1
©|f − fn| > n−1

ª
, so that µ(E) < �. On Ec,

|f − fn| ≤ 1/n, i.e. fn → f uniformly on Ec and hence f |Ec is continuous.
Let A := {f 6= 0} \E. By Theorem 12.32 (or see Exercises 9.47 and 9.48)

there exists a compact set K and open set V such that K ⊂ A ⊂ V such that
µ(V \K) < �. Notice that

µ({f 6= 0} \K) ≤ µ(A \K) + µ(E) < 2�.

By the Tietze extension Theorem 3.24, there exists F ∈ C(X) such that
f = F |K . By Urysohn’s Lemma 3.22 there exists ψ ≺ V such that ψ = 1 on
K. So letting φ = ψF ∈ Cc(X), we have φ = f on K, kφku ≤ kfku and since
{φ 6= f} ⊂ E ∪ (V \ K), µ(φ 6= f) < 3�. This proves the assertions in the
theorem when f is bounded.
Suppose that f : X → C is (possibly) unbounded. By Lemmas 3.25 and

3.16, there exists compact sets {KN}∞N=1 of X such that KN ↑ X. Hence
BN := KN ∩ {0 < |f | ≤ N} ↑ {f 6= 0} as N →∞. Therefore if � > 0 is given
there exists an N such that µ({f 6= 0}\BN ) < �.We now apply what we have
just proved to 1BN f to find a compact set K ⊂ {1BN f 6= 0} , and open set
V ⊂ X and φ ∈ Cc(V ) ⊂ Cc(X) such that µ(V \K) < �, µ({1BN f 6= 0}\K) <
� and φ = f on K. The proof is now complete since

{φ 6= f} ⊂ ({f 6= 0} \BN ) ∪ ({1BN f 6= 0} \K) ∪ (V \K)
so that µ(φ 6= f) < 3�.
To illustrate Theorem 12.34, suppose that X = (0, 1), µ = m is Lebesgue

measure and f = 1(0,1)∩Q. Then Lusin’s theorem asserts for any � > 0 there
exists a compact set K ⊂ (0, 1) such that m((0, 1) \K) < � and f |K is con-
tinuous. To see this directly, let {rn}∞n=1 be an enumeration of the rationales
in (0, 1),

Jn = (rn − �2−n, rn + �2−n) ∩ (0, 1) and W = ∪∞n=1Jn.
Then W is an open subset of X and µ(W ) < �. Therefore Kn := [1/n, 1 −
1/n] \W is a compact subset of X and m(X \Kn) ≤ 2

n + µ(W ). Taking n
sufficiently large we have m(X \Kn) < � and f |Kn ≡ 0 is continuous.
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12.4.1 The Riemann — Stieljtes — Lebesgue Integral

Notation 12.35 Given an increasing function F : R→ R, let F (x−) =
limy↑x F (y), F (x+) = limy↓x F (y) and F (±∞) = limx→±∞ F (x) ∈ R̄. Since
F is increasing all of theses limits exists.

Theorem 12.36. Let F : R → R be increasing and define G(x) = F (x+).
Then

1. The function G is increasing and right continuous.
2. For x ∈ R, G(x) = limy↓x F (y−).
3. The set {x ∈ R : F (x+) > F (x−)} is countable and for each N > 0, and
moreover,X

x∈(−N,N ]
[F (x+)− F (x−)] ≤ F (N)− F (−N) <∞. (12.26)

Proof.

1. The following observation shows G is increasing: if x < y then

F (x−) ≤ F (x) ≤ F (x+) = G(x) ≤ F (y−) ≤ F (y) ≤ F (y+) = G(y).
(12.27)

Since G is increasing, G(x) ≤ G(x+). If y > x then G(x+) ≤ F (y) and
hence G(x+) ≤ F (x+) = G(x), i.e. G(x+) = G(x).

2. Since G(x) ≤ F (y−) ≤ F (y) for all y > x, it follows that

G(x) ≤ lim
y↓x

F (y−) ≤ lim
y↓x

F (y) = G(x)

showing G(x) = limy↓x F (y−).
3. By Eq. (12.27), if x 6= y then

(F (x−), F (x+)] ∩ (F (y−), F (y+)] = ∅.
Therefore, {(F (x−), F (x+)]}x∈R are disjoint possible empty intervals in
R. Let N ∈ N and α ⊂⊂ (−N,N) be a finite set, thena

x∈α
(F (x−), F (x+)] ⊂ (F (−N), F (N)]

and therefore,X
x∈α

[F (x+)− F (x−)] ≤ F (N)− F (−N) <∞.

Since this is true for all α ⊂⊂ (−N,N ], Eq. (12.26) holds. Eq. (12.26)
shows

ΓN := {x ∈ (−N,N)|F (x+)− F (x−) > 0}
is countable and hence so is

Γ := {x ∈ R|F (x+)− F (x−) > 0} = ∪∞N=1ΓN .
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Theorem 12.37. If F : R→ R is an increasing function, there exists a
unique measure µ = µF on BR such thatZ ∞

−∞
fdF =

Z
R
fdµ for all f ∈ Cc(R,R), (12.28)

where
R∞
−∞ fdF is as in Notation 12.6 above. This measure may also be char-

acterized as the unique measure on BR such that

µ ((a, b]) = F (b+)− F (a+) for all −∞ < a < b <∞. (12.29)

Moreover, if A ∈ BR then

µF (A) = inf

( ∞X
i=1

(F (bi+)− F (ai+)) : A ⊂ ∪∞i=1(ai, bi]
)

= inf

( ∞X
i=1

(F (bi+)− F (ai+)) : A ⊂
∞a
i=1

(ai, bi]

)
.

Proof. An application of Theorem 12.32 implies there exists a unique
measure µ on BR such Eq. (12.28) is valid. Let −∞ < a < b < ∞, � > 0
be small and φ�(x) be the function defined in Figure 12.1, i.e. φ� is one on
[a+2�, b+�], linearly interpolates to zero on [b+�, b+2�] and on [a+�, a+2�]
and is zero on (a, b + 2�)c. Since φ� → 1(a,b] it follows by the dominated

Fig. 12.1. ).

convergence theorem that

µ((a, b]) = lim
�↓0

Z
R
φ�dµ = lim

�↓0

Z
R
φ�dF. (12.30)

On the other hand we have 1(a+2�,b+�] ≤ φ� ≤ 1(a+�,b+2�] and therefore,
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F (b+ �)− F (a+ 2�) =

Z
R
1(a+2�,b+�]dF ≤

Z
R
φ�dF

≤
Z
R
1(a+�,b+2�)dF = F (b+ 2�)− F (a+ �).

Letting � ↓ 0 in this equation and using Eq. (12.30) shows
F (b+)− F (a+) ≤ µ((a, b]) ≤ F (b+)− F (a+).

The last assertion in the theorem is now a consequence of Corollary 12.29.

Corollary 12.38. The positive linear functionals on Cc(R,R) are in one to
one correspondence with right continuous non-decreasing functions F such
that F (0) = 0.

12.5 Metric space regularity results resisted

Proposition 12.39. Let (X,d) be a metric space and µ be a measure on
M = BX which is σ — finite on τ := τd.

1. For all � > 0 and B ∈M there exists an open set V ∈ τ and a closed set
F such that F ⊂ B ⊂ V and µ(V \ F ) ≤ �.

2. For all B ∈M, there exists A ∈ Fσ and C ∈ Gδ such that A ⊂ B ⊂ C and
µ(C \A) = 0. Here Fσ denotes the collection of subsets of X which may be
written as a countable union of closed sets and Gδ = τδ is the collection
of subsets of X which may be written as a countable intersection of open
sets.

3. The space BCf (X) of bounded continuous functions on X such that µ(f 6=
0) <∞ is dense in Lp(µ).

Proof. Let S := BCf (X), I(f) :=
R
X
fdµ for f ∈ S and Xn ∈ τ be chosen

so that µ(Xn) <∞ and Xn ↑ X as n→∞. Then 1 ∧ f ∈ S for all f ∈ S and
if φn = 1 ∧ ¡ndXc

n

¢ ∈ S+, then φn ↑ 1 as n → ∞ and so by Remark 12.25
there exists χ ∈ S↑ such that χ > 0 on X and I(χ) < ∞. Similarly if V ∈ τ,
the function gn := 1 ∧ ¡nd(Xn∩V )c

¢ ∈ S and gn → 1V as n → ∞ showing
σ(S) =BX . If fn ∈ S+ and fn ↓ 0 as n → ∞, it follows by the dominated
convergence theorem that I(fn) ↓ 0 as n → ∞. So the hypothesis of the
Daniell — Stone Theorem 12.24 hold and hence µ is the unique measure on
BX such that I = Iµ and for B ∈ BX and

µ(B) = Ī(1B) = inf {I(f) : f ∈ S↑ with 1B ≤ f}

= inf

½Z
X

fdµ : f ∈ S↑ with 1B ≤ f

¾
.

Suppose � > 0 and B ∈ BX are given. There exists fn ∈ BCf (X) such
that fn ↑ f, 1B ≤ f, and µ(f) < µ(B) + �. The condition 1B ≤ f, implies
1B ≤ 1{f≥1} ≤ f and hence that
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µ(B) ≤ µ(f ≥ 1) ≤ µ(f) < µ(B) + �. (12.31)

Moreover, letting Vm := ∪∞n=1 {fn ≥ 1− 1/m} ∈ τd, we have Vm ↓ {f ≥ 1} ⊃
B hence µ(Vm) ↓ µ(f ≥ 1) ≥ µ(B) as m → ∞. Combining this observation
with Eq. (12.31), we may choose m sufficiently large so that B ⊂ Vm and

µ(Vm \B) = µ(Vm)− µ(B) < �.

Hence there exists V ∈ τ such that B ⊂ V and µ(V \ B) < �. Applying this
result to Bc shows there exists F @ X such that Bc ⊂ F c and

µ(B \ F ) = µ(F c \Bc) < �.

So we have produced F ⊂ B ⊂ V such that µ(V \F ) = µ(V \B)+µ(B \F ) <
2�.
The second assertion is an easy consequence of the first and the third

follows in similar manner to any of the proofs of Item 7. in Theorem 12.32.

12.6 Measure on Products of Metric spaces

Let {(Xn, dn)}n∈N be a sequence of compact metric spaces, for N ∈ N let
XN :=

QN
n=1Xn and πN : X → XN be the projection map πN (x) =

x|{1,2,...,N}. Recall from Exercise 2.108 and Exercise 7.80 that there is a metric
d on X :=

Q
n∈N

Xn such that τd = ⊗∞n=1τdn (= τ(πn : n ∈ N) — the product
topology on X) and X is compact in this topology. Also recall that compact
metric spaces are second countable, Exercise 3.14.

Proposition 12.40. Continuing the notation above, suppose that {µN}N∈N
are given probability measures2 on BN := BXN satisfying the compatibility
conditions, (πN )∗ µM = µN for all N ≤ M. Then there exists a unique mea-
sure µ on BX = σ(τd) = σ(πn : n ∈ N) such that (πN )∗ µ = µN for all N ∈ N,
i.e. Z

X

f(πN (x))dµ(x) =

Z
XN

f(y)dµN (y) (12.32)

for all N ∈ N and f : XN → R bounded a measurable.

Proof. An application of the Stone Weierstrass Theorem 11.46 shows that

D = {f ∈ C(X) : f = F ◦ πN with F ∈ C(XN ) and N ∈ N}

is dense in C(X). For f = F ◦ πN ∈ D let

2 A typical example of such measures, µN , is to set µN := µ1 ⊗ · · ·⊗ µN where µn
is a probablity measure on BXn for each n ∈ N.
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I(f) =

Z
XN

F ◦ πN (x)dµN (x).

Let us verify that I is well defined. Suppose that f may also be expressed as
f = G ◦ πM with M ∈ N and G ∈ C(XM ). By interchanging M and N if
necessary we may assume M ≥ N. By the compatibility assumption,Z

XM

G(z)dµM (z) =

Z
XM

F ◦ πN (x)dµM (x) =
Z
XN

Fd [(πN )∗ µM ]

=

Z
XN

F ◦ πNdµN .

Since |I(f)| ≤ kfk∞, the B.L.T. Theorem 2.68 allows us to extend I
uniquely to a continuous linear functional on C(X) which we still denote by
I. Because I was positive on D, it is easy to check that I is positive on C(X)
as well. So by the Riesz Theorem 12.32, there exists a probability measure µ
on BX such that I(f) =

R
X

fdµ for all f ∈ C(X). By the definition of I in now

follows thatZ
XN

Fd (πN )∗ µ =
Z
XN

F ◦ πNdµ = I(F ◦ πN ) =
Z
XN

FdµN

for all F ∈ C(XN ) and N ∈ N. It now follows from Theorem 11.46he unique-
ness assertion in the Riesz theorem 12.32 (applied with X replaced by XN )
that πN∗µ = µN .

Corollary 12.41. Keeping the same assumptions from Proposition 12.40.
Further assume, for each n ∈ N, there exists measurable set Yn ⊂ Xn

such that µN (YN ) = 1 with YN := Y1 × · · · × YN . Then µ(Y ) = 1 where
Y =

Q∞
i=1 Yi ⊂ X.

Proof. Since Y = ∩∞N=1π−1N (YN ), we have X \ Y = ∪∞N=1π−1N (XN \ YN )
and therefore,

µ(X \ Y ) ≤
∞X

N=1

µ
¡
π−1N (XN \ YN )

¢
=
∞X

N=1

µN (XN \ YN ) = 0.

Corollary 12.42. Suppose that {µn}n∈N are probability measures on BRd for
all n ∈ N, X :=

¡
Rd
¢N
and B := ⊗∞n=1 (BRd) . Then there exists a unique

measure µ on (X,B) such thatZ
X

f(x1, x2, . . . , xN )dµ(x) =

Z
(Rd)N

f(x1, x2, . . . , xN )dµ1(x1) . . . dµN (xN )

(12.33)
for all N ∈ N and bounded measurable functions f : ¡Rd¢N → R.
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Proof. Let
¡
Rd
¢∗
denote the Alexandrov compactification of Rd. Recall

form Exercise 3.52 that
¡
Rd
¢∗
is homeomorphic to Sd and hence

¡
Rd
¢∗
is a

compact metric space. (Alternatively see Exercise 3.55.) Let µ̄n := i∗µn =
µn ◦ i−1 where i : Rd →

¡
Rd
¢∗
is the inclusion map. Then µ̄n is a probability

measure on B(Rd)∗ such that µ̄n ({∞}) = 0. An application of Proposition
12.40 and Corollary 12.41 completes the proof.

Exercise 12.43. Extend Corollary 12.42 to construct arbitrary (not neces-
sarily countable) products of Rd.

12.7 Measures on general infinite product spaces

In this section we drop the topological assumptions used in the last section.

Proposition 12.44. Let {(Xα,Mα, µα)}α∈A be a collection of probability
spaces, that is µα(Xa) = 1 for all α ∈ A. Let X ≡ Q

α∈A
Xα,M = σ(πα : α ∈ A)

and for Λ ⊂⊂ A let XΛ :=
Q

α∈ΛXα and πΛ : X → XΛ be the projection map
πΛ(x) = x|Λ and µΛ :=

Q
α∈Λ µα be product measure on MΛ := ⊗α∈ΛMα.

Then there exists a unique measure µ on M such that (πΛ)∗ µ = µΛ for all
Λ ⊂⊂ A, i.e. if f : XΛ → R is a bounded measurable function thenZ

X

f(πΛ(x))dµ(x) =

Z
XΛ

f(y)dµΛ(y). (12.34)

Proof. Let S denote the collection of functions f : X → R such that there
exists Λ ⊂⊂ A and a bounded measurable function F : XΛ → R such that
f = F ◦ πΛ. For f = F ◦ πΛ ∈ S, let I(f) =

R
XΛ

FdµΛ.
Let us verify that I is well defined. Suppose that f may also be expressed

as f = G ◦ πΓ with Γ ⊂⊂ A and G : XΓ → R bounded and measurable. By
replacing Γ by Γ ∪Λ if necessary, we may assume that Λ ⊂ Γ. Making use of
Fubini’s theorem we learnZ

XΓ

G(z) dµΓ (z) =

Z
XΛ×XΓ\Λ

F ◦ πΛ(x) dµΛ(x)dµΓ\Λ(y)

=

Z
XΛ

F ◦ πΛ(x) dµΛ(x) ·
Z
XΓ\Λ

dµΓ\Λ(y)

= µΓ\Λ
¡
XΓ\Λ

¢ · Z
XΛ

F ◦ πΛ(x) dµΛ(x)

=

Z
XΛ

F ◦ πΛ(x) dµΛ(x),

wherein we have used the fact that µΛ(XΛ) = 1 for all Λ ⊂⊂ A since µα(Xα) =
1 for all α ∈ A. It is now easy to check that I is a positive linear functional
on the lattice S. We will now show that I is a Daniel integral.
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Suppose that fn ∈ S+ is a decreasing sequence such that infn I(fn) = � >
0.We need to show f := limn→∞ fn is not identically zero. As in the proof that
I is well defined, there exists Λn ⊂⊂ A and bounded measurable functions
Fn : XΛn → [0,∞) such that Λn is increasing in n and fn = Fn ◦πΛn for each
n. For k ≤ n, let F k

n : XΛk → [0,∞) be the bounded measurable function

F k
n (x) =

Z
XΛn\Λk

Fn(x× y)dµΛn\Λk(y)

where x×y ∈ XΛn is defined by (x× y) (α) = x(α) if α ∈ Λk and (x× y) (α) =
y(α) for α ∈ Λn \Λk. By convention we set Fn

n = Fn. Since fn is decreasing it
follows that F k

n+1 ≤ F k
n for all k and n ≥ k and therefore F k := limn→∞ F k

n

exists. By Fubini’s theorem,

F k
n (x) =

Z
XΛn\Λk

F k+1
n (x× y)dµΛk+1\Λk(y) when k + 1 ≤ n

and hence letting n→∞ in this equation shows

F k(x) =

Z
XΛn\Λk

F k+1(x× y)dµΛk+1\Λk(y) (12.35)

for all k. NowZ
XΛ1

F 1(x)dµΛ1(x) = lim
n→∞

Z
XΛ1

F 1n(x)dµΛ1(x) = lim
n→∞ I(fn) = � > 0

so there exists
x1 ∈ XΛ1 such that F

1(x1) ≥ �.

From Eq. (12.35) with k = 1 and x = x1 it follows that

� ≤
Z
XΛ2\Λ1

F 2(x1 × y)dµΛ2\Λ1(y)

and hence there exists

x2 ∈ XΛ2\Λ1 such that F
2(x1 × x2) ≥ �.

Working this way inductively using Eq. (12.35) implies there exists

xi ∈ XΛi\Λi−1 such that F
n(x1 × x2 × · · · × xn) ≥ �

for all n. Now Fn
k ≥ Fn for all k ≤ n and in particular for k = n, thus

Fn(x1 × x2 × · · · × xn) = Fn
n (x1 × x2 × · · · × xn)

≥ Fn(x1 × x2 × · · · × xn) ≥ � (12.36)

for all n. Let x ∈ X be any point such that
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πΛn(x) = x1 × x2 × · · · × xn

for all n. From Eq. (12.36) it follows that

fn(x) = Fn ◦ πΛn(x) = Fn(x1 × x2 × · · · × xn) ≥ �

for all n and therefore f(x) := limn→∞ fn(x) ≥ � showing f is not zero.
Therefore, I is a Daniel integral and there exists by Theorem 12.32 a

unique measure µ on (X,σ(S) =M) such that

I(f) =

Z
X

fdµ for all f ∈ S.

Taking f = 1A ◦ πΛ in this equation implies

µΛ(A) = I(f) = µ ◦ π−1Λ (A)

and the result is proved.

Remark 12.45. (Notion of kernel needs more explanation here.) The above
theorem may be Jazzed up as follows. Let {(Xα,Mα)}α∈A be a collection
of measurable spaces. Suppose for each pair Λ ⊂ Γ ⊂⊂ A there is a kernel
µΛ,Γ (x, dy) for x ∈ XΛ and y ∈ XΓ\Λ such that if Λ ⊂ Γ ⊂ K ⊂⊂ A then

µΛ,K(x, dy × dz) = µΛ,Γ (x, dy)µΓ,K(x× y, dz).

Then there exists a unique measure µ onM such thatZ
X

f(πΛ(x))dµ(x) =

Z
XΛ

f(y)dµ∅,Λ(y)

for all Λ ⊂⊂ A and f : XΛ → R bounded and measurable. To prove this asser-
tion, just use the proof of Proposition 12.44 replacing µΓ\Λ(dy) by µΛ,Γ (x, dy)
everywhere in the proof.

12.8 Extensions of premeasures to measures II

Proposition 12.46. Suppose that A ⊂ P(X) is an algebra of sets and µ :
A → [0,∞] is a finitely additive measure on A. Then if A,Ai ∈ A and

A =
∞̀

i=1
Ai we have

∞X
i=1

µ(Ai) ≤ µ(A). (12.37)
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Proof. Since

A =

Ã
Na
i=1

Ai

!
∪
Ã
A \

N[
i=1

Ai

!
we find using the finite additivity of µ that

µ(A) =
NX
i=1

µ(Ai) + µ

Ã
A \

N[
i=1

Ai

!
≥

NX
i=1

µ(Ai).

Letting N →∞ in this last expression shows that
∞P
i=1

µ(Ai) ≤ µ(A).

Because of Proposition 12.46, in order to prove that µ is a premeasure on
A, it suffices to show µ is subadditive on A, namely

µ(A) ≤
∞X
i=1

µ(Ai) (12.38)

whenever A =
∞̀

i=1
Ai with A ∈ A and each {Ai}∞i=1 ⊂ A.

Proposition 12.47. Suppose that E ⊂ P(X) is an elementary family (see
Definition 7.13), A = A(E) and µ : A→ [0,∞] is an additive measure. Then
the following are equivalent:

1. µ is a premeasure on A.
2. µ is subadditivity on E, i.e. whenever E ∈ E is of the form E =

`∞
i=1Ei ∈

E with Ei ∈ E then
µ(E) ≤

∞X
i=1

µ(Ei). (12.39)

Proof. Item 1. trivially implies item 2. For the converse, it suffices to

show, by Proposition 12.46, that if A =
∞̀

n=1
An with A ∈ A and each An ∈

A then Eq. (12.38) holds. To prove this, write A =`n
j=1Ej with Ej ∈ E and

An =
`Nn

i=1En,i with En,i ∈ E . Then

Ej = A ∩Ej =
∞a
n=1

An ∩Ej =
∞a
n=1

Nna
i=1

En,i ∩Ej

which is a countable union and hence by assumption,

µ(Ej) ≤
∞X
n=1

NnX
i=1

µ (En,i ∩Ej) .

Summing this equation on j and using the additivity of µ shows that
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µ(A) =
nX
j=1

µ(Ej) ≤
nX
j=1

∞X
n=1

NnX
i=1

µ (En,i ∩Ej)

=
∞X
n=1

NnX
i=1

nX
j=1

µ (En,i ∩Ej) =
∞X
n=1

NnX
i=1

µ (En,i) =
∞X
n=1

µ (An)

as desired.
The following theorem summarizes the results of Proposition 12.3, Propo-

sition 12.47 and Theorem 12.28 above.

Theorem 12.48. Suppose that E ⊂ P(X) is an elementary family and µ0 :
E → [0,∞] is a function.
1. If µ0 is additive on E , then µ0 has a unique extension to a finitely additive
measure µ0 on A = A(E).

2. If we further assume that µ0 is countably subadditive on E , then µ0 is a
premeasure on A.

3. If we further assume that µ0 is σ — finite on E, then there exists a unique
measure µ on σ(E) such that µ|E = µ0. Moreover, for A ∈ σ(E),

µ(A) = inf{µ0(B) : A ⊂ B ∈ Aσ}

= inf{
∞X
n=1

µ0(En) : A ⊂
∞a
n=1

En with En ∈ E}.

12.8.1 “Radon” measures on (R,BR) Revisited
Here we will use Theorem 12.48 to give another proof of Theorem 8.8. The
main point is to show that to each right continuous function F : R→ R there
exists a unique measure µF such that µF ((a, b]) = F (b)− F (a) for all −∞ <
a < b < ∞. We begin by extending F to a function from R̄→ R̄ by defining
F (±∞) := limx→±∞ F (x). As above let E = {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}
and set µ0 ((a, b]) = F (b)−F (a) for all a, b ∈ R̄ with a ≤ b. The proof will be
finished by Theorem 12.48 if we can show that µ0 is sub-additive on E.
First suppose that −∞ < a < b < ∞, J = (a, b], Jn = (an, bn] such that

J =
∞̀

n=1
Jn. We wish to show

µ0(J) ≤
∞X
i=1

µ0(Ji). (12.40)

To do this choose numbers ã > a, b̃n > bn and set I = (ã, b] ⊂ J, J̃n =

(an, b̃n] ⊃ Jn and J̃on = (an, b̃n). Since Ī is compact and Ī ⊂ J ⊂
∞S
n=1

J̃on there

exists N <∞ such that
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I ⊂ Ī ⊂
N[
n=1

J̃on ⊂
N[
n=1

J̃n.

Hence by finite sub-additivity of µ0,

F (b)− F (ã) = µ0(I) ≤
NX
n=1

µ0(J̃n) ≤
∞X
n=1

µ0(J̃n).

Using the right continuity of F and letting ã ↓ a in the above inequality shows
that

µ0((a, b]) = F (b)− F (a) ≤
∞X
n=1

µ0

³
J̃n

´
=
∞X
n=1

µ0 (Jn) +
∞X
n=1

µ0(J̃n \ Jn) (12.41)

Given � > 0 we may use the right continuity of F to choose b̃n so that

µ0(J̃n \ Jn) = F (b̃n)− F (bn) ≤ �2−n ∀n.
Using this in Eq. (12.41) show

µ0(J) = µ0((a, b]) ≤
∞X
n=1

µ0 (Jn) + �

and since � > 0 we have verified Eq. (12.40).
We have now done the hard work. We still have to check the cases where

a = −∞ or b =∞ or both. For example, suppose that b =∞ so that

J = (a,∞) =
∞a
n=1

Jn

with Jn = (an, bn] ∩ R. Then let IM := (a,M ], and notice that

IM = J ∩ IM =
∞a
n=1

Jn ∩ IM

So by what we have already proved,

F (M)− F (a) = µ0(IM ) ≤
∞X
n=1

µ0(Jn ∩ IM ) ≤
∞X
n=1

µ0(Jn)

Now let M →∞ in this last inequality to find that

µ0((a,∞)) = F (∞)− F (a) ≤
∞X
n=1

µ0(Jn).

The other cases where a = −∞ and b ∈ R and a = −∞ and b = ∞ are
handled similarly.
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12.9 Supplement: Generalizations of Theorem 12.37 to
Rn

Theorem 12.49. Let A ⊂ P(X) and B ⊂ P(Y ) be algebras. Suppose that

µ : A×B → C

is a function such that for each A ∈ A, the function

B ∈ B → µ(A×B) ∈ C

is an additive measure on B and for each B ∈ B, the function

A ∈ A→ µ(A×B) ∈ C

is an additive measure on A. Then µ extends uniquely to an additive measure
on the product algebra C generated by A×B.
Proof. The collection

E = A× B = {A×B : A ∈ A and B ∈ B}

is an elementary family, see Exercise 7.15. Therefore, it suffices to show µ is
additive on E. To check this suppose that A×B ∈ E and

A×B =
na

k=1

(Ak ×Bk)

with Ak ×Bk ∈ E. We wish to shows

µ(A×B) =
nX

k=1

µ(Ak ×Bk).

For this consider the finite algebras A0 ⊂ P(A) and B0 ⊂ P(B) generated
by {Ak}nk=1 and {Bk}nk=1 respectively. Let B ⊂ A0 and G ⊂ B0 be partition
of A and B respectively as found Proposition 7.22. Then for each k we may
write

Ak =
a

α∈F,α⊂Ak
α and Bk =

a
β∈G,β⊂Bk

β.

Therefore,

µ(Ak ×Bk) = µ(Ak ×
[

β⊂Bk
β) =

X
β⊂Bk

µ(Ak × β)

=
X
β⊂Bk

µ(

Ã [
α⊂Ak

α

!
× β) =

X
α⊂Ak,β⊂Bk

µ(α× β)
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so thatX
k

µ(Ak ×Bk) =
X
k

X
α⊂Ak,β⊂Bk

µ(α× β) =
X

α⊂A,β⊂B
µ(α× β)

=
X
β⊂B

µ(A× β) = µ(A×B)

as desired.

Proposition 12.50. Suppose that A ⊂ P(X) is an algebra and for each t ∈ R,
µt : A→ C is a finitely additive measure. Let Y = (u, v] ⊂ R be a finite inter-
val and B ⊂ P(Y ) denote the algebra generated by E := {(a, b] : (a, b] ⊂ Y } .
Then there is a unique additive measure µ on C, the algebra generated by A×B
such that

µ(A× (a, b]) = µb(A)− µa(A) ∀ (a, b] ∈ E and A ∈ A.

Proof. By Proposition 12.3, for each A ∈ A, the function (a, b]→ µ(A×
(a, b]) extends to a unique measure on B which we continue to denote by µ.
Now if B ∈ B, then B =

`
k Ik with Ik ∈ E, then

µ(A×B) =
X
k

µ(A× Ik)

from which we learn that A→ µ(A×B) is still finitely additive. The proof is
complete with an application of Theorem 12.49.
For a, b ∈ Rn, write a < b (a ≤ b) if ai < bi (ai ≤ bi) for all i. For a < b,

let (a, b] denote the half open rectangle:

(a, b] = (a1, b1]× (a2, b2]× · · · × (an, bn],

E = {(a, b] : a < b} ∪ {Rn}
and A (Rn) ⊂ P(Rn) denote the algebra generated by E. Suppose that F :
Rn → C is a function, we wish to define a finitely additive complex valued
measure µF on A(Rn) associated to F. Intuitively the definition is to be

µF ((a, b]) =

Z
(a,b]

F (dt1, dt2, . . . , dtn)

=

Z
(a,b]

(∂1∂2 . . . ∂nF ) (t1, t2, . . . , tn)dt1, dt2, . . . , dtn

=

Z
(ã,b̃]

(∂1∂2 . . . ∂n−1F ) (t1, t2, . . . , tn)|tn=bntn=an dt1, dt2, . . . , dtn−1,

where
(ã, b̃] = (a1, b1]× (a2, b2]× · · · × (an−1, bn−1].
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Using this expression as motivation we are led to define µF by induction on
n. For n = 1, let

µF ((a, b]) = F (b)− F (a)

and then inductively using

µF ((a, b]) = µF (·,t)((ã, b̃])|t=bnt=an .

Proposition 12.51. The function µF extends uniquely to an additive func-
tion on A(Rn). Moreover,

µF ((a, b]) =
X
Λ⊂S

(−1)|Λ|F (aΛ × bΛc) (12.42)

where S = {1, 2, . . . , n} and

(aΛ × bΛc) (i) =

½
a(i) if i ∈ Λ
b(i) if i /∈ Λ.

Proof. Both statements of the proof will be by induction. For n = 1 we
have µF ((a, b]) = F (b)− F (a) so that Eq. (12.42) holds and we have already
seen that µF extends to a additive measure on A (R) . For general n, notice
that A(Rn) = A(Rn−1)⊗A(R). For t ∈ R and A ∈ A(Rn−1), let

µt(A) = µF (·,t)(A)

where µF (·,t) is defined by the induction hypothesis. Then

µF (A× (a, b]) = µb(A)− µa(A)

and by Proposition 12.50 has a unique extension to A(Rn−1) ⊗ A(R) as a
finitely additive measure.
For n = 1, Eq. (12.42) says that

µF ((a, b]) = F (b)− F (a)

where the first term corresponds to Λ = ∅ and second to Λ = {1}. This
agrees with the definition of µF for n = 1. Now for the induction step. Let
T = {1, 2, . . . , n− 1} and suppose that a, b ∈ Rn, then

µF ((a, b]) = µF (·,t)((ã, b̃])|t=bnt=an

=
X
Λ⊂T

(−1)|Λ|F (ãΛ × b̃Λc , t)|t=bnt=an

=
X
Λ⊂T

(−1)|Λ|F (ãΛ × b̃Λc , bn)−
X
Λ⊂T

(−1)|Λ|F (ãΛ × b̃Λc , an)

=
X

Λ⊂S:n∈Λc
(−1)|Λ|F (aΛ × bΛc) +

X
Λ⊂S:n∈Λ

(−1)|Λ|F (aΛ × bΛc)

=
X
Λ⊂S

(−1)|Λ|F (aΛ × bΛc)

as desired.
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12.10 Exercises

Exercise 12.52. Let (X,A, µ) be as in Definition 12.4 and Proposition 12.5,
Y be a Banach space and S(Y ) := Sf (X,A, µ;Y ) be the collection of functions
f : X → Y such that #(f(X)) < ∞, f−1({y}) ∈ A for all y ∈ Y and
µ(f 6= 0) <∞. We may define a linear functional I : S(Y )→ Y by

I(f) =
X
y∈Y

yµ(f = y).

Verify the following statements.

1. Let kfk∞ = supx∈X kf(x)kY be the sup norm on c∞(X,Y ), then for
f ∈ S(Y ),

kI(f)kY ≤ kfk∞ µ(f 6= 0).
Hence if µ(X) < ∞, I extends to a bounded linear transformation from
S̄(Y ) ⊂ c∞(X,Y ) to Y.

2. Assuming (X,A, µ) satisfies the hypothesis in Exercise 12.8, then
C(X,Y ) ⊂ S̄(Y ).

3. Now assume the notation in Section 12.4.1, i.e. X = [−M,M ] for some
M ∈ R and µ is determined by an increasing function F. Let π ≡ {−M =
t0 < t1 < · · · < tn = M} denote a partition of J := [−M,M ] along with
a choice ci ∈ [ti, ti+1] for i = 0, 1, 2 . . . , n− 1. For f ∈ C([−M,M ], Y ), set

fπ ≡ f(c0)1[t0,t1] +
n−1X
i=1

f(ci)1(ti,ti+1].

Show that fπ ∈ S and

kf − fπkF → 0 as |π| ≡ max{(ti+1 − ti) : i = 0, 1, 2 . . . , n− 1}→ 0.

Conclude from this that

I(f) = lim
|π|→0

n−1X
i=0

f(ci)(F (ti+1)− F (ti)).

As usual we will write this integral as
RM
−M fdF and as

RM
−M f(t)dt if

F (t) = t.

Exercise 12.53. Folland problem 1.28.

Exercise 12.54. Suppose that F ∈ C1(R) is an increasing function and µF
is the unique Borel measure on R such that µF ((a, b]) = F (b) − F (a) for all
a ≤ b. Show that dµF = ρdm for some function ρ ≥ 0. Find ρ explicitly in
terms of F.



322 12 Construction of Measures

Exercise 12.55. Suppose that F (x) = e1x≥3 + π1x≥7 and µF is the is the
unique Borel measure on R such that µF ((a, b]) = F (b)− F (a) for all a ≤ b.
Give an explicit description of the measure µF .

Exercise 12.56. Let E ∈ BR with m(E) > 0. Then for any α ∈ (0, 1) there
exists an open interval J ⊂ R such that m(E ∩ J) ≥ αm(J).3 Hints: 1.
Reduce to the case where m(E) ∈ (0,∞). 2) Approximate E from the outside
by an open set V ⊂ R. 3. Make use of Exercise 2.124, which states that V
may be written as a disjoint union of open intervals.

Exercise 12.57. Let (X, τ) be a second countable locally compact Hausdorff
space and I : C0(X,R) → R be a positive linear functional. Show I is neces-
sarily bounded, i.e. there exists a C < ∞ such that |I(f)| ≤ C kfku for all
f ∈ C0(X,R). Hint: Let µ be the measure on BX coming from the Riesz Rep-
resentation theorem and for sake of contradiction suppose µ(X) = kIk =∞.
To reach a contradiction, construct a function f ∈ C0(X,R) such that
I(f) =∞.

Exercise 12.58. Suppose that I : C∞c (R,R)→ R is a positive linear func-
tional. Show

1. For each compact subset K @@ R there exists a constant CK < ∞ such
that

|I(f)| ≤ CK kfku
whenever supp(f) ⊂ K.

2. Show there exists a unique Radon measure µ on BR (the Borel σ — algebra
on R) such that I(f) =

R
R fdµ for all f ∈ C∞c (R,R).

12.10.1 The Laws of Large Number Exercises

For the rest of the problems of this section, let ν be a probability measure on
BR such that

R
R |x| dν(x) < ∞, µn := ν for n ∈ N and µ denote the infinite

product measure as constructed in Corollary 12.42. So µ is the unique measure
on (X := RN,B := BRN) such thatZ

X

f(x1, x2, . . . , xN )dµ(x) =

Z
RN

f(x1, x2, . . . , xN)dν(x1) . . . dν(xN ) (12.43)

for all N ∈ N and bounded measurable functions f : RN → R. We will also
use the following notation:

3 See also the Lebesgue differentiation Theorem 20.13 from which one may prove
the much stronger form of this theorem, namely for m -a.e. x ∈ E there exits
rα(x) > 0 such that m(E ∩ (x− r, x+ r)) ≥ αm((x− r, x+ r)) for all r ≤ rα(x).
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Sn(x) :=
1

n

nX
k=1

xk for x ∈ X,

m :=

Z
R
xdν(x) the average of ν,

σ2 :=

Z
R
(x−m)2dν(x) the variance of ν and

γ :=

Z
R
(x−m)4dν(x).

The variance may also be written as σ2 =
R
R x

2dν(x)−m2.

Exercise 12.59 (Weak Law of Large Numbers). Suppose further that
σ2 <∞, show

R
X
Sndµ = m,

kSn −mk22 =
Z
X

(Sn −m)2 dµ =
σ2

n

and µ(|Sn −m| > �) ≤ σ2

n�2 for all � > 0 and n ∈ N.
Exercise 12.60 (A simple form of the Strong Law of Large Num-
bers). Suppose now that γ :=

R
R(x−m)4dν(x) <∞. Show for all � > 0 and

n ∈ N that

kSn −mk44 =
Z
X

(Sn −m)
4
dµ =

1

n4
¡
nγ + 3n(n− 1)σ4¢

=
1

n2
£
n−1γ + 3

¡
1− n−1

¢
σ4
¤
and

µ(|Sn −m| > �) ≤ n−1γ + 3
¡
1− n−1

¢
σ4

�4n2
.

Conclude from the last estimate and the first Borel Cantelli Lemma 8.22 that
limn→∞ Sn(x) = m for µ — a.e. x ∈ X.

Exercise 12.61. Suppose γ :=
R
R(x − m)4dν(x) < ∞ and m =

R
R(x −

m)dν(x) 6= 0. For λ > 0 let Tλ : RN → RN be defined by Tλ(x) =
(λx1, λx2, . . . , λxn, . . . ), µλ = µ ◦ T−1λ and

Xλ :=

x ∈ RN : lim
n→∞

1

n

nX
j=1

xj = λ

 .

Show

µλ(Xλ0) = δλ,λ0 =

½
1 if λ = λ0

0 if λ 6= λ0

and use this to show if λ 6= 1, then dµλ 6= ρdµ for any measurable function
ρ : RN → [0,∞].
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Daniell Integral Proofs

(This section follows the exposition in Royden and Loomis.) In this section
we let X be a given set. We will be interested in certain spaces of extended
real valued functions f : X → R̄ on X.
Convention: Given functions f, g : X → R̄, let f+g denote the collection

of functions h : X → R̄ such that h(x) = f(x) + g(x) for all x for which
f(x) + g(x) is well defined, i.e. not of the form ∞−∞. For example, if X =
{1, 2, 3} and f(1) = ∞, f(2) = 2 and f(3) = 5 and g(1) = g(2) = −∞ and
g(3) = 4, then h ∈ f + g iff h(2) = −∞ and h(3) = 7. The value h(1) may be
chosen freely. More generally if a, b ∈ R and f, g : X → R̄ we will write af+bg
for the collection of functions h : X → R̄ such that h(x) = af(x) + bg(x) for
those x ∈ X where af(x)+ bg(x) is well defined with the values of h(x) at the
remaining points being arbitrary. It will also be useful to have some explicit
representatives for af + bg which we define, for α ∈ R̄, by

(af + bg)α(x) =

½
af(x) + bg(x) when defined

α otherwise.
(13.1)

We will make use of this definition with α = 0 and α =∞ below.

Definition 13.1. A set, L, of extended real valued functions on X is an ex-
tended vector space (or a vector space for short) if L is closed under scalar
multiplication and addition in the following sense: if f, g ∈ L and λ ∈ R then
(f+λg) ⊂ L. A vector space L is said to be an extended lattice (or a lattice
for short) if it is also closed under the lattice operations; f ∨ g = max(f, g)
and f ∧ g = min(f, g). A linear functional I on L is a function I : L→ R
such that

I(f + λg) = I(f) + λI(g) for all f, g ∈ L and λ ∈ R. (13.2)

Eq. (13.2) is to be interpreted as I(h) = I(f)+λI(g) for all h ∈ (f+λg), and
in particular I is required to take the same value on all members of (f + λg).
A linear functional I is positive if I(f) ≥ 0 when f ∈ L+, where L+ denotes
the non-negative elements of L as in Notation 12.14.
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Remark 13.2. Notice that an extended lattice L is closed under the absolute
value operation since |f | = f ∨ 0− f ∧ 0 = f ∨ (−f). Also if I is positive on L
then I(f) ≤ I(g) when f, g ∈ L and f ≤ g. Indeed, f ≤ g implies (g − f)0 ≥ 0,
so 0 = I(0) = I((g − f)0) = I(g)− I(f) and hence I(f) ≤ I(g).

In the remainder of this chapter we fix a lattice, S, of bounded functions,
f : X → R, and a positive linear functional I : S→ R satisfying Property (D)
of Definition 12.16.

13.1 Extension of Integrals

Proposition 13.3. The set S↑ and the extension of I to S↑ in Definition
12.21 satisfies:

1. (Monotonicity) I(f) ≤ I(g) if f, g ∈ S↑ with f ≤ g.
2. S↑ is closed under the lattice operations, i.e. if f, g ∈ S↑ then f ∧ g ∈ S↑
and f ∨ g ∈ S↑. Moreover, if I(f) <∞ and I(g) <∞, then I(f ∨ g) <∞
and I(f ∧ g) <∞.

3. (Positive Linearity) I (f + λg) = I(f)+λI(g) for all f, g ∈ S↑ and λ ≥ 0.
4. f ∈ S+↑ iff there exists φn ∈ S+ such that f =

P∞
n=1 φn. Moreover, I(f) =P∞

m=1 I(φm).
5. If fn ∈ S+↑ , then

P∞
n=1 fn =: f ∈ S+↑ and I(f) =

P∞
n=1 I(fn).

Remark 13.4. Similar results hold for the extension of I to S↓ in Definition
12.22.

Proof.

1. Monotonicity follows directly from Lemma 12.20.
2. If fn, gn ∈ S are chosen so that fn ↑ f and gn ↑ g, then fn∧gn ↑ f ∧g and

fn ∨ gn ↑ f ∨ g. If we further assume that I(g) <∞, then f ∧ g ≤ g and
hence I(f ∧g) ≤ I(g) <∞. In particular it follows that I(f∧0) ∈ (−∞, 0]
for all f ∈ S↑. Combining this with the identity,

I(f) = I (f ∧ 0 + f ∨ 0) = I (f ∧ 0) + I(f ∨ 0) ,
shows I(f) < ∞ iff I(f ∨ 0) < ∞. Since f ∨ g ≤ f ∨ 0 + g ∨ 0, if both
I(f) <∞ and I(g) <∞ then

I(f ∨ g) ≤ I (f ∨ 0) + I (g ∨ 0) <∞.

3. Let fn, gn ∈ S be chosen so that fn ↑ f and gn ↑ g, then (fn + λgn) ↑
(f + λg) and therefore

I (f + λg) = lim
n→∞ I (fn + λgn) = lim

n→∞ I(fn) + λ lim
n→∞ I(gn)

= I(f) + λI(g).
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4. Let f ∈ S+↑ and fn ∈ S be chosen so that fn ↑ f. By replacing fn by fn∨0
if necessary we may assume that fn ∈ S+. Now set φn = fn−fn−1 ∈ S for
n = 1, 2, 3, . . . with the convention that f0 = 0 ∈ S. Then

P∞
n=1 φn = f

and

I(f) = lim
n→∞ I(fn) = lim

n→∞ I(
nX

m=1

φm) = lim
n→∞

nX
m=1

I(φm) =
∞X

m=1

I(φm).

Conversely, if f =
P∞

m=1 φm with φm ∈ S+, then fn :=
Pn

m=1 φm ↑ f as
n→∞ and fn ∈ S+.

5. Using Item 4., fn =
P∞

m=1 φn,m with φn,m ∈ S+. Thus

f =
∞X
n=1

∞X
m=1

φn,m = lim
N→∞

X
m,n≤N

φn,m ∈ S↑

and

I(f) = lim
N→∞

I(
X

m,n≤N
φn,m) = lim

N→∞

X
m,n≤N

I(φn,m)

=
∞X
n=1

∞X
m=1

I(φn,m) =
∞X
n=1

I(fn).

Definition 13.5. Given an arbitrary function g : X → R̄, let

Ī(g) = inf {I(f) : g ≤ f ∈ S↑} ∈ R̄ and
I(g) = sup {I(f) : S↓ 3 f ≤ g} ∈ R̄.

with the convention that sup ∅ = −∞ and inf ∅ = +∞.

Proposition 13.6. Given functions f, g : X → R̄, then:

1. Ī(λf) = λĪ(f) for all λ ≥ 0.
2. (Chebyshev’s Inequality.) Suppose f : X → [0,∞] is a function and α ∈
(0,∞), then Ī(1{f≥α}) ≤ 1

α Ī(f) and if Ī(f) <∞ then Ī(1{f=∞}) = 0.
3. Ī is subadditive, i.e. if Ī(f)+ Ī(g) is not of the form ∞−∞ or −∞+∞,
then

Ī(f + g) ≤ Ī(f) + Ī(g). (13.3)

This inequality is to be interpreted to mean,

Ī(h) ≤ Ī(f) + Ī(g) for all h ∈ (f + g).

4. I(−g) = −Ī(g).
5. I(g) ≤ Ī(g).
6. If f ≤ g then Ī(f) ≤ Ī(g) and I(f) ≤ I(g).
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7. If g ∈ S↑ and I(g) <∞ or g ∈ S↓ and I(g) > −∞ then I(g) = Ī(g) = I(g).

Proof.

1. Suppose that λ > 0 (the λ = 0 case being trivial), then

Ī(λf) = inf {I(h) : λf ≤ h ∈ S↑} = inf
©
I(h) : f ≤ λ−1h ∈ S↑

ª
= inf {I(λg) : f ≤ g ∈ S↑} = λ inf {I(g) : f ≤ g ∈ S↑} = λĪ(f).

2. For α ∈ (0,∞), α1{f≥α} ≤ f and therefore,

αĪ(1{f≥α}) = Ī(α1{f≥α}) ≤ Ī(f).

Since N1{f=∞} ≤ f for all N ∈ (0,∞),

NĪ(1{f=∞}) = Ī(N1{f=∞}) ≤ Ī(f).

So if Ī(f) < ∞, this inequality implies Ī(1{f=∞}) = 0 because N is
arbitrary.

3. If Ī(f) + Ī(g) = ∞ the inequality is trivial so we may assume that
Ī(f), Ī(g) ∈ [−∞,∞). If Ī(f) + Ī(g) = −∞ then we may assume, by
interchanging f and g if necessary, that Ī(f) = −∞ and Ī(g) < ∞. By
definition of Ī , there exists fn ∈ S↑ and gn ∈ S↑ such that f ≤ fn and
g ≤ gn and I(fn) ↓ −∞ and I(gn) ↓ Ī(g). Since f + g ≤ fn+ gn ∈ S↑, (i.e.
h ≤ fn + gn for all h ∈ (f + g) which holds because fn, gn > −∞) and

I(fn + gn) = I(fn) + I(gn) ↓ −∞+ Ī(g) = −∞,

it follows that Ī(f+g) = −∞, i.e. Ī(h) = −∞ for all h ∈ f+g. Henceforth
we may assume Ī(f), Ī(g) ∈ R. Let k ∈ (f + g) and f ≤ h1 ∈ S↑ and
g ≤ h2 ∈ S↑. Then k ≤ h1 + h2 ∈ S↑ because if (for example) f(x) = ∞
and g(x) = −∞, then h1(x) = ∞ and h2(x) > −∞ since h2 ∈ S↑. Thus
h1(x) + h2(x) = ∞ ≥ k(x) no matter the value of k(x). It now follows
from the definitions that Ī(k) ≤ I(h1) + I(h2) for all f ≤ h1 ∈ S↑ and
g ≤ h2 ∈ S↑. Therefore,

Ī(k) ≤ inf {I(h1) + I(h2) : f ≤ h1 ∈ S↑ and g ≤ h2 ∈ S↑}
= Ī(f) + Ī(g)

and since k ∈ (f + g) is arbitrary we have proven Eq. (13.3).
4. From the definitions and Exercise 12.23,

I(−g) = sup {I(f) : f ≤ −g ∈ S↓} = sup {I(f) : g ≤ −f ∈ S↑}
= sup {I(−h) : g ≤ h ∈ S↑} = − inf {I(h) : g ≤ h ∈ S↑}
= −Ī(g).
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5. The assertion is trivially true if Ī(g) = I(g) =∞ or Ī(g) = I(g) = −∞. So
we now assume that Ī(g) and I(g) are not both∞ or −∞. Since 0 ∈ (g−g)
and Ī(g − g) ≤ Ī(g) + Ī(−g) (by Item 1),

0 = Ī(0) ≤ Ī(g) + Ī(−g) = Ī(g)− I(g)

provided the right side is well defined which it is by assumption. So again
we deduce that I(g) ≤ Ī(g).

6. If f ≤ g then

Ī(f) = inf {I(h) : f ≤ h ∈ S↑} ≤ inf {I(h) : g ≤ h ∈ S↑} = Ī(g)

and

I(f) = sup {I(h) : S↓ 3 h ≤ f} ≤ sup {I(h) : S↓ 3 h ≤ g} = I(g).

7. Let g ∈ S↑ with I(g) <∞ and choose gn ∈ S such that gn ↑ g. Then
Ī(g) ≥ I(g) ≥ I(gn)→ I(g) as n→∞.

Combining this with

Ī(g) = inf {I(f) : g ≤ f ∈ S↑} = I(g)

shows
Ī(g) ≥ I(g) ≥ I(g) = Ī(g)

and hence I(g) = I(g) = Ī(g). If g ∈ S↓ and I(g) > −∞, then by what
we have just proved,

I(−g) = I(−g) = Ī(−g).
This finishes the proof since I(−g) = −Ī(g) and I(−g) = −I(g).

Lemma 13.7. Let fn : X → [0,∞] be a sequence of functions and F :=P∞
n=1 fn. Then

Ī(F ) = Ī(
∞X
n=1

fn) ≤
∞X
n=1

Ī(fn). (13.4)

Proof. Suppose
P∞

n=1 Ī(fn) < ∞, for otherwise the result is trivial. Let
� > 0 be given and choose gn ∈ S+↑ such that fn ≤ gn and I(gn) = Ī(fn) + �n
where

P∞
n=1 �n ≤ �. (For example take �n ≤ 2−n�.) Then

P∞
n=1 gn =: G ∈ S+↑ ,

F ≤ G and so

Ī(F ) ≤ Ī(G) = I(G) =
∞X
n=1

I(gn) =
∞X
n=1

¡
Ī(fn) + �n

¢ ≤ ∞X
n=1

Ī(fn) + �.

Since � > 0 is arbitrary, the proof is complete.
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Definition 13.8. A function g : X → R̄ is integrable if I(g) = Ī(g) ∈ R.
Let

L1(I) :=
©
g : X → R̄ : I(g) = Ī(g) ∈ Rª

and for g ∈ L1(I), let Î(g) denote the common value I(g) = Ī(g).

Remark 13.9. A function g : X → R̄ is integrable iff there exists f ∈ S↓∩L1(I)
and h ∈ S↑ ∩ L1(I)1 such that f ≤ g ≤ h and I(h − f) < �. Indeed if g is
integrable, then I(g) = Ī(g) and there exists f ∈ S↓∩L1(I) and h ∈ S↑∩L1(I)
such that f ≤ g ≤ h and 0 ≤ I(g) − I(f) < �/2 and 0 ≤ I(h) − Ī(g) <
�/2. Adding these two inequalities implies 0 ≤ I(h) − I(f) = I(h − f) < �.
Conversely, if there exists f ∈ S↓ ∩ L1(I) and h ∈ S↑ ∩ L1(I) such that
f ≤ g ≤ h and I(h− f) < �, then

I(f) = I(f) ≤ I(g) ≤ I(h) = I(h) and

I(f) = Ī(f) ≤ Ī(g) ≤ Ī(h) = I(h)

and therefore

0 ≤ Ī(g)− I(g) ≤ I(h)− I(f) = I(h− f) < �.

Since � > 0 is arbitrary, this shows Ī(g) = I(g).

Proposition 13.10. The space L1(I) is an extended lattice and Î : L1(I)→ R
is linear in the sense of Definition 13.1.

Proof. Let us begin by showing that L1(I) is a vector space. Suppose that
g1, g2 ∈ L1(I), and g ∈ (g1+ g2). Given � > 0 there exists fi ∈ S↓ ∩L1(I) and
hi ∈ S↑ ∩L1(I) such that fi ≤ gi ≤ hi and I(hi − fi) < �/2. Let us now show

f1(x) + f2(x) ≤ g(x) ≤ h1(x) + h2(x) ∀x ∈ X. (13.5)

This is clear at points x ∈ X where g1(x) + g2(x) is well defined. The other
case to consider is where g1(x) = ∞ = −g2(x) in which case h1(x) = ∞
and f2(x) = −∞ while , h2(x) > −∞ and f1(x) < ∞ because h2 ∈ S↑ and
f1 ∈ S↓. Therefore, f1(x) + f2(x) = −∞ and h1(x) + h2(x) =∞ so that Eq.
(13.5) is valid no matter how g(x) is chosen.
Since f1 + f2 ∈ S↓ ∩ L1(I), h1 + h2 ∈ S↑ ∩ L1(I) and

Î(gi) ≤ I(fi) + �/2 and − �/2 + I(hi) ≤ Î(gi),

we find

Î(g1) + Î(g2)− � ≤ I(f1) + I(f2) = I(f1 + f2) ≤ I(g) ≤ Ī(g)

≤ I(h1 + h2) = I(h1) + I(h2) ≤ Î(g1) + Î(g2) + �.

1 Equivalently, f ∈ S↓ with I(f) > −∞ and h ∈ S↑ with I(h) <∞.
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Because � > 0 is arbitrary, we have shown that g ∈ L1(I) and Î(g1)+ Î(g2) =
Î(g), i.e. Î(g1 + g2) = Î(g1) + Î(g2).
It is a simple matter to show λg ∈ L1(I) and Î(λg) = λÎ(g) for all g ∈

L1(I) and λ ∈ R. For example if λ = −1 (the most interesting case), choose
f ∈ S↓ ∩ L1(I) and h ∈ S↑ ∩ L1(I) such that f ≤ g ≤ h and I(h − f) < �.
Therefore,

S↓ ∩ L1(I) 3 −h ≤ −g ≤ −f ∈ S↑ ∩ L1(I)
with I(−f − (−h)) = I(h − f) < � and this shows that −g ∈ L1(I) and
Î(−g) = −Î(g). We have now shown that L1(I) is a vector space of extended
real valued functions and Î : L1(I)→ R is linear.
To show L1(I) is a lattice, let g1, g2 ∈ L1(I) and fi ∈ S↓ ∩ L1(I) and

hi ∈ S↑ ∩ L1(I) such that fi ≤ gi ≤ hi and I(hi − fi) < �/2 as above. Then
using Proposition 13.3 and Remark 13.4,

S↓ ∩ L1(I) 3 f1 ∧ f2 ≤ g1 ∧ g2 ≤ h1 ∧ h2 ∈ S↑ ∩ L1(I).

Moreover,
0 ≤ h1 ∧ h2 − f1 ∧ f2 ≤ h1 − f1 + h2 − f2,

because, for example, if h1 ∧ h2 = h1 and f1 ∧ f2 = f2 then

h1 ∧ h2 − f1 ∧ f2 = h1 − f2 ≤ h2 − f2.

Therefore,

I (h1 ∧ h2 − f1 ∧ f2) ≤ I (h1 − f1 + h2 − f2) < �

and hence by Remark 13.9, g1 ∧ g2 ∈ L1(I). Similarly

0 ≤ h1∨h2 − f1∨f2 ≤ h1 − f1 + h2 − f2,

because, for example, if h1∨h2 = h1 and f1∨f2 = f2 then

h1∨h2 − f1∨f2 = h1 − f2 ≤ h1 − f1.

Therefore,
I (h1∨h2 − f1∨f2) ≤ I (h1 − f1 + h2 − f2) < �

and hence by Remark 13.9, g1∨g2 ∈ L1(I).

Theorem 13.11 (Monotone convergence theorem). If fn ∈ L1(I) and
fn ↑ f, then f ∈ L1(I) iff limn→∞ Î(fn) = supn Î(fn) < ∞ in which case
Î(f) = limn→∞ Î(fn).

Proof. If f ∈ L1(I), then by monotonicity Î(fn) ≤ Î(f) for all n and there-
fore limn→∞ Î(fn) ≤ Î(f) <∞. Conversely, suppose c := limn→∞ Î(fn) <∞
and let g :=

P∞
n=1(fn+1−fn)0. The reader should check that f ≤ (f1+g)∞ ∈

(f1 + g) . So by Lemma 13.7,
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Ī(f) ≤ Ī((f1 + g)∞) ≤ Ī(f1) + Ī(g)

≤ Ī(f1) +
∞X
n=1

Ī ((fn+1 − fn)0) = Î(f1) +
∞X
n=1

Î (fn+1 − fn)

= Î(f1) +
∞X
n=1

h
Î(fn+1)− Î(fn)

i
= Î(f1) + c− Î(f1) = c. (13.6)

Because fn ≤ f, it follows that Î(fn) = I(fn) ≤ I(f) which upon passing
to limit implies c ≤ I(f). This inequality and the one in Eq. (13.6) shows
Ī(f) ≤ c ≤ I(f) and therefore, f ∈ L1(I) and Î(f) = c = limn→∞ Î(fn).

Lemma 13.12 (Fatou’s Lemma). Suppose {fn} ⊂
£
L1(I)

¤+
, then inf fn ∈

L1(I). If lim infn→∞ Î(fn) <∞, then lim infn→∞ fn ∈ L1(I) and in this case

Î(lim inf
n→∞ fn) ≤ lim inf

n→∞ Î(fn).

Proof. Let gk := f1 ∧ · · · ∧ fk ∈ L1(I), then gk ↓ g := infn fn. Since
−gk ↑ −g, −gk ∈ L1(I) for all k and Î(−gk) ≤ Î(0) = 0, it follow from
Theorem 13.11 that −g ∈ L1(I) and hence so is infn fn = g ∈ L1(I).
By what we have just proved, uk := infn≥k fn ∈ L1(I) for all k. Notice

that uk ↑ lim infn→∞ fn, and by monotonicity that Î(uk) ≤ Î(fk) for all k.
Therefore,

lim
k→∞

Î(uk) = lim inf
k→∞

Î(uk) ≤ lim inf
k→∞

Î(fn) <∞
and by the monotone convergence Theorem 13.11, lim infn→∞ fn = limk→∞ uk ∈
L1(I) and

Î(lim inf
n→∞ fn) = lim

k→∞
Î(uk) ≤ lim inf

n→∞ Î(fn).

Before stating the dominated convergence theorem, it is helpful to remove
some of the annoyances of dealing with extended real valued functions. As we
have done when studying integrals associated to a measure, we can do this by
modifying integrable functions by a “null” function.

Definition 13.13. A function n : X → R̄ is a null function if Ī(|n|) = 0.
A subset E ⊂ X is said to be a null set if 1E is a null function. Given two
functions f, g : X → R̄ we will write f = g a.e. if {f 6= g} is a null set.
Here are some basic properties of null functions and null sets.

Proposition 13.14. Suppose that n : X → R̄ is a null function and f : X →
R̄ is an arbitrary function. Then

1. n ∈ L1(I) and Î(n) = 0.
2. The function n · f is a null function.
3. The set {x ∈ X : n(x) 6= 0} is a null set.
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4. If E is a null set and f ∈ L1(I), then 1Ecf ∈ L1(I) and Î(f) = Î(1Ecf).
5. If g ∈ L1(I) and f = g a.e. then f ∈ L1(I) and Î(f) = Î(g).
6. If f ∈ L1(I), then {|f | =∞} is a null set.

Proof.

1. If n is null, using ±n ≤ |n| we find Ī(±n) ≤ Ī(|n|) = 0, i.e. Ī(n) ≤ 0 and
−I(n) = Ī(−n) ≤ 0. Thus it follows that Ī(n) ≤ 0 ≤ I(n) and therefore
n ∈ L1(I) with Î (n) = 0.

2. Since |n · f | ≤ ∞ · |n| , Ī (|n · f |) ≤ Ī (∞ · |n|) . For k ∈ N, k |n| ∈ L1(I)
and Î(k |n|) = kI (|n|) = 0, so k |n| is a null function. By the monotone
convergence Theorem 13.11 and the fact k |n| ↑ ∞ · |n| ∈ L1(I) as k ↑ ∞,
Î (∞ · |n|) = limk→∞ Î (k |n|) = 0. Therefore ∞ · |n| is a null function and
hence so is n · f.

3. Since 1{n6=0} ≤ ∞ · 1{n6=0} =∞ · |n| , Ī
¡
1{n6=0}

¢ ≤ Ī (∞ · |n|) = 0 showing
{n 6= 0} is a null set.

4. Since 1Ef ∈ L1(I) and Î (1Ef) = 0,

f1Ec = (f − 1Ef)0 ∈ (f − 1Ef) ⊂ L1(I)

and Î(f1Ec) = Î(f)− Î(1Ef) = Î(f).
5. Letting E be the null set {f 6= g} , then 1Ecf = 1Ecg ∈ L1(I) and 1Ef is
a null function and therefore, f = 1Ef + 1Ecf ∈ L1(I) and

Î(f) = Î(1Ef) + Î(f1Ec) = Î(1Ecf) = Î(1Ecg) = Î(g).

6. By Proposition 13.10, |f | ∈ L1(I) and so by Chebyshev’s inequality (Item
2 of Proposition 13.6), {|f | =∞} is a null set.

Theorem 13.15 (Dominated Convergence Theorem). Suppose that
{fn : n ∈ N} ⊂ L1(I) such that f := lim fn exists pointwise and there exists
g ∈ L1(I) such that |fn| ≤ g for all n. Then f ∈ L1(I) and

lim
n→∞ Î(fn) = Î( lim

n→∞ fn) = Î(f).

Proof. By Proposition 13.14, the set E := {g =∞} is a null set and
Î(1Ecfn) = Î(fn) and Î(1Ecg) = Î(g). Since

Î(1Ec(g ± fn)) ≤ 2Î(1Ecg) = 2Î(g) <∞,

we may apply Fatou’s Lemma 13.12 to find 1Ec (g ± f) ∈ L1(I) and

Î(1Ec (g ± f)) ≤ lim inf
n→∞ Î(1Ec (g ± fn))

= lim inf
n→∞

n
Î(1Ecg)± Î(1Ecfn)

o
= lim inf

n→∞

n
Î(g)± Î(fn)

o
.
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Since f = 1Ecf a.e. and 1Ecf = 1
21Ec (g + f − (g + f)) ∈ L1(I), Proposition

13.14 implies f ∈ L1(I). So the previous inequality may be written as

Î(g)± Î(f) = Î(1Ecg)± Î(1Ecf)

= Î(1Ec (g ± f)) ≤ Î(g) +

½
lim infn→∞ Î(fn)

− lim supn→∞ Î(fn),

wherein we have used lim infn→∞(−an) = − lim sup an. These two inequal-
ities imply lim supn→∞ Î(fn) ≤ Î(f) ≤ lim infn→∞ Î(fn) which shows that
lim
n→∞ Î(fn) exists and is equal to Î(f).

13.2 The Structure of L1(I)

Let S↑↓ denote the collections of functions f : X → R̄ for which there exists
fn ∈ S↑ ∩ L1(I) such that fn ↓ f as n → ∞ and limn→∞ Î(fn) > −∞.
Applying the monotone convergence theorem to f1−fn, it follows that f1−f ∈
L1(I) and hence −f ∈ L1(I) so that S↑↓ ⊂ L1(I).

Lemma 13.16. Let f : X → R̄ be a function. If Ī(f) ∈ R, then there exists
g ∈ S↑↓ such that f ≤ g and Ī(f) = Î(g). (Consequently, n : X → [0, ,∞) is
a positive null function iff there exists g ∈ S↑↓ such that g ≥ n and Î(g) = 0.)
Moreover, f ∈ L1(I) iff there exists g ∈ S↑↓ such that g ≥ f and f = g a.e.

Proof. By definition of Ī(f) we may choose a sequence of functions gk ∈
S↑ ∩ L1(I) such that gk ≥ f and Î(gk) ↓ Ī(f). By replacing gk by g1 ∧ · · · ∧
gk if necessary (g1 ∧ · · · ∧ gk ∈ S↑ ∩ L1(I) by Proposition 13.3), we may
assume that gk is a decreasing sequence. Then limk→∞ gk =: g ≥ f and, since
limk→∞ Î(gk) = Ī(f) > −∞, g ∈ S↑↓. By the monotone convergence theorem
applied to g1 − gk,

Î(g1 − g) = lim
k→∞

Î(g1 − gk) = Î(g1)− Ī(f),

so Î(g) = Ī(f).
Now suppose that f ∈ L1(I), then (g − f)0 ≥ 0 and

Î ((g − f)0) = Î (g)− Î(f) = Î(g)− Ī(f) = 0.

Therefore (g − f)0 is a null functions and hence so is ∞ · (g − f)0. Because

1{f 6=g} = 1{f<g} ≤ ∞ · (g − f)0,

{f 6= g} is a null set so if f ∈ L1(I) there exists g ∈ S↑↓ such that f = g a.e.
The converse statement has already been proved in Proposition 13.14.
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Proposition 13.17. Suppose that I and S are as above and J is another
Daniell integral on a vector lattice T such that S ⊂ T and I = J |S. (We
abbreviate this by writing I ⊂ J.) Then L1(I) ⊂ L1(J) and Î = Ĵ on L1(I),
or in abbreviated form: if I ⊂ J then Î ⊂ Ĵ .

Proof. From the construction of the extensions, it follows that S↑ ⊂ T↑
and the I = J on S↑. Similarly, it follows that S↑↓ ⊂ T↑↓ and Î = Ĵ on S↑↓.
From Lemma 13.16 we learn, if n ≥ 0 is an I — null function then there exists
g ∈ S↑↓ ⊂ T↑↓ such that n ≤ g and 0 = I(g) = J(g). This shows that n is also
a J — null function and in particular every I — null set is a J — null set. Again
by Lemma 13.16, if f ∈ L1(I) there exists g ∈ S↑↓ ⊂ T↑↓ such that {f 6= g} is
an I — null set and hence a J — null set. So by Proposition 13.14, f ∈ L1(J)
and I(f) = I(g) = J(g) = J(f).

13.3 Relationship to Measure Theory

Definition 13.18. A function f : X → [0,∞] is said to measurable if f ∧ g ∈
L1(I) for all g ∈ L1(I).

Lemma 13.19. The set of non-negative measurable functions is closed under
pairwise minimums and maximums and pointwise limits.

Proof. Suppose that f, g : X → [0,∞] are measurable functions. The fact
that f ∧ g and f ∨ g are measurable (i.e. (f ∧ g) ∧ h and (f ∨ g) ∨ h are in
L1(I) for all h ∈ L1(I)) follows from the identities

(f ∧ g) ∧ h = f ∧ (g ∧ h) and (f ∨ g) ∧ h = (f ∧ h) ∨ (g ∧ h)

and the fact that L1(I) is a lattice. If fn : X → [0,∞] is a sequence of
measurable functions such that f = limn→∞ fn exists pointwise, then for
h ∈ L1(I), we have h ∧ fn → h ∧ f . By the dominated convergence theorem
(using |h ∧ fn| ≤ |h|) it follows that h∧f ∈ L1(I). Since h ∈ L1(I) is arbitrary
we conclude that f is measurable as well.

Lemma 13.20. A non-negative function f on X is measurable iff φ ∧ f ∈
L1(I) for all φ ∈ S.
Proof. Suppose f : X → [0,∞] is a function such that φ ∧ f ∈ L1(I)

for all φ ∈ S and let g ∈ S↑ ∩ L1(I). Choose φn ∈ S such that φn ↑ g as
n → ∞, then φn ∧ f ∈ L1(I) and by the monotone convergence Theorem
13.11, φn ∧ f ↑ g ∧ f ∈ L1(I). Similarly, using the dominated convergence
Theorem 13.15, it follows that g ∧ f ∈ L1(I) for all g ∈ S↑↓. Finally for any
h ∈ L1(I), there exists g ∈ S↑↓ such that h = g a.e. and hence h ∧ f = g ∧ f
a.e. and therefore by Proposition 13.14, h ∧ f ∈ L1(I). This completes the
proof since the converse direction is trivial.
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Definition 13.21. A set A ⊂ X is measurable if 1A is measurable and A
integrable if 1A ∈ L1(I). Let R denote the collection of measurable subsets
of X.

Remark 13.22. Suppose that f ≥ 0, then f ∈ L1(I) iff f is measurable and
Ī(f) <∞. Indeed, if f is measurable and Ī(f) <∞, there exists g ∈ S↑∩L1(I)
such that f ≤ g. Since f is measurable, f = f ∧ g ∈ L1(I). In particular if
A ∈ R, then A is integrable iff Ī(1A) <∞.

Lemma 13.23. The set R is a ring which is a σ — algebra if 1 is measurable.
(Notice that 1 is measurable iff 1 ∧ φ ∈ L1(I) for all φ ∈ S. This condition is
clearly implied by assuming 1 ∧ φ ∈ S for all φ ∈ S. This will be the typical
case in applications.)

Proof. Suppose that A,B ∈ R, then A∩B and A∪B are in R by Lemma
13.19 because

1A∩B = 1A ∧ 1B and 1A∪B = 1A ∨ 1B .
If Ak ∈ R, then the identities,

1∪∞k=1Ak = lim
n→∞ 1∪

n
k=1Ak

and 1∩∞k=1Ak = lim
n→∞ 1∩

n
k=1Ak

along with Lemma 13.19 shows that ∪∞k=1Ak and ∩∞k=1Ak are in R as well.
Also if A,B ∈ R and g ∈ S, then

g ∧ 1A\B = g ∧ 1A − g ∧ 1A∩B + g ∧ 0 ∈ L1(I) (13.7)

showing the A \ B ∈ R as well.2 Thus we have shown that R is a ring. If
1 = 1X is measurable it follows that X ∈ R and R becomes a σ — algebra.

Lemma 13.24 (Chebyshev’s Inequality). Suppose that 1 is measurable.

1. If f ∈ £L1(I)¤+ then, for all α ∈ R, the set {f > α} is measurable. More-
over, if α > 0 then {f > α} is integrable and Î(1{f>α}) ≤ α−1Î(f).

2. σ(S) ⊂ R.
Proof.

2 Indeed, for x ∈ A ∩ B, x ∈ A \ B and x ∈ Ac, Eq. (13.7) evaluated at x states,
respectively, that

g ∧ 0 = g ∧ 1− g ∧ 1 + g ∧ 0,
g ∧ 1 = g ∧ 1− g ∧ 0 + g ∧ 0 and
g ∧ 0 = g ∧ 0− g ∧ 0 + g ∧ 0,

all of which are true.
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1. If α < 0, {f > α} = X ∈ R since 1 is measurable. So now assume that
α ≥ 0. If α = 0 let g = f ∈ L1(I) and if α > 0 let g = α−1f − ¡α−1f¢∧ 1.
(Notice that g is a difference of two L1(I) — functions and hence in L1(I).)
The function g ∈ £L1(I)¤+ has been manufactured so that {g > 0} =
{f > α}. Now let φn := (ng) ∧ 1 ∈

£
L1(I)

¤+
then φn ↑ 1{f>α} as n→∞

showing 1{f>α} is measurable and hence that {f > α} is measurable.
Finally if α > 0,

1{f>α} = 1{f>α} ∧
¡
α−1f

¢ ∈ L1(I)

showing the {f > α} is integrable and
Î(1{f>α}) = Î(1{f>α} ∧

¡
α−1f

¢
) ≤ Î(α−1f) = α−1Î(f).

2. Since f ∈ S+ is R measurable by (1) and S = S+−S+, it follows that any
f ∈ S is R measurable, σ(S) ⊂ R.

Lemma 13.25. Let 1 be measurable. Define µ± : R→ [0,∞] by
µ+(A) = Ī(1A) and µ−(A) = I(1A)

Then µ± are measures on R such that µ− ≤ µ+ and µ−(A) = µ+(A) whenever
µ+(A) <∞.

Notice by Remark 13.22 that

µ+(A) =

½
Î(1A) if A is integrable
∞ if A ∈ R but A is not integrable.

Proof. Since 1∅ = 0, µ±(∅) = Î(0) = 0 and if A,B ∈ R, A ⊂ B then
µ+(A) = Ī(1A) ≤ Ī(1B) = µ+(B) and similarly, µ−(A) = I(1A) ≤ I(1B) =
µ−(B). Hence µ± are monotonic. By Remark 13.22 if µ+(A) < ∞ then A is
integrable so

µ−(A) = I(1A) = Î(1A) = Ī(1A) = µ+(A).

Now suppose that {Ej}∞j=1 ⊂ R is a sequence of pairwise disjoint sets
and let E := ∪∞j=1Ej ∈ R. If µ+(Ei) = ∞ for some i then by monotonicity

µ+(E) =∞ as well. If µ+(Ej) <∞ for all j then fn :=
Pn

j=1 1Ej ∈
£
L1(I)

¤+
with fn ↑ 1E . Therefore, by the monotone convergence theorem, 1E is inte-
grable iff

lim
n→∞ Î(fn) =

∞X
j=1

µ+(Ej) <∞

in which case 1E ∈ L1(I) and limn→∞ Î(fn) = Î(1E) = µ+(E). Thus we have
shown that µ+ is a measure and µ−(E) = µ+(E) whenever µ+(E) <∞. The
fact the µ− is a measure will be shown in the course of the proof of Theorem
13.28.
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Example 13.26. Suppose X is a set, S = {0} is the trivial vector space and
I(0) = 0. Then clearly I is a Daniel integral,

Ī(g) =

½∞ if g(x) > 0 for some x
0 if g ≤ 0

and similarly,

I(g) =

½−∞ if g(x) < 0 for some x
0 if g ≥ 0.

Therefore, L1(I) = {0} and for any A ⊂ X we have 1A ∧ 0 = 0 ∈ S so that
R = 2X . Since 1A /∈ L1(I) = {0} unless A = ∅ set, the measure µ+ in Lemma
13.25 is given by µ+(A) = ∞ if A 6= ∅ and µ+(∅) = 0, i.e. µ+(A) = Ī(1A)
while µ− ≡ 0.
Lemma 13.27. For A ∈ R, let

α(A) := sup{µ+(B) : B ∈ R, B ⊂ A and µ+(B) <∞},
then α is a measure on R such that α(A) = µ+(A) whenever µ+(A) < ∞.
If ν is any measure on R such that ν(B) = µ+(B) when µ+(B) < ∞, then
α ≤ ν. Moreover, α ≤ µ−.

Proof. Clearly α(A) = µ+(A) whenever µ+(A) < ∞. Now let A =
∪∞n=1An with{An}∞n=1 ⊂ R being a collection of pairwise disjoint subsets.
Let Bn ⊂ An with µ+(Bn) <∞, then BN := ∪Nn=1Bn ⊂ A and µ+(BN ) <∞
and hence

α(A) ≥ µ+(B
N ) =

NX
n=1

µ+(Bn)

and since Bn ⊂ An with µ+(Bn) < ∞ is arbitrary it follows that α(A) ≥PN
n=1 α(An) and hence letting N → ∞ implies α(A) ≥ P∞n=1 α(An). Con-

versely, if B ⊂ A with µ+(B) <∞, then B ∩An ⊂ An and µ+(B ∩An) <∞.
Therefore,

µ+(B) =
∞X
n=1

µ+(B ∩An) ≤
∞X
n=1

α(An)

for all such B and hence α(A) ≤P∞n=1 α(An).
Using the definition of α and the assumption that ν(B) = µ+(B) when

µ+(B) <∞,

α(A) = sup{ν(B) : B ∈ R, B ⊂ A and µ+(B) <∞} ≤ ν(A),

showing α ≤ ν. Similarly,

α(A) = sup{Î(1B) : B ∈ R, B ⊂ A and µ+(B) <∞}
= sup{I(1B) : B ∈ R, B ⊂ A and µ+(B) <∞} ≤ I(1A) = µ−(A).
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Theorem 13.28 (Stone). Suppose that 1 is measurable and µ+ and µ− are
as defined in Lemma 13.25, then:

1. L1(I) = L1(X,R, µ+) = L1(µ+) and for integrable f ∈ L1(µ+),

Î(f) =

Z
X

fdµ+. (13.8)

2. If ν is any measure on R such that S ⊂ L1(ν) and

Î(f) =

Z
X

fdν for all f ∈ S (13.9)

then µ−(A) ≤ ν(A) ≤ µ+(A) for all A ∈ R with µ−(A) = ν(A) = µ+(A)
whenever µ+(A) <∞.

3. Letting α be as defined in Lemma 13.27, µ− = α and hence µ− is a
measure. (So µ+ is the maximal and µ− is the minimal measure for which
Eq. (13.9) holds.)

4. Conversely if ν is any measure on σ(S) such that ν(A) = µ+(A) when
A ∈ σ(S) and µ+(A) <∞, then Eq. (13.9) is valid.

Proof.

1. Suppose that f ∈ £L1(I)¤+ , then Lemma 13.24 implies that f is R mea-
surable. Given n ∈ N, let

φn :=
22nX
k=1

k

2n
1{ k

2n<f≤k+1
2n } = 2

−n
22nX
k=1

1{ k
2n<f}. (13.10)

Then we know { k
2n < f} ∈ R and that 1{ k

2n<f} = 1{ k
2n<f} ∧

¡
2n

k f
¢ ∈

L1(I), i.e. µ+
¡
k
2n < f

¢
< ∞. Therefore φn ∈

£
L1(I)

¤+
and φn ↑ f. Sup-

pose that ν is any measure such that ν(A) = µ+(A) when µ+(A) < ∞,
then by the monotone convergence theorems for Î and the Lebesgue inte-
gral,

Î(f) = lim
n→∞ Î(φn) = lim

n→∞ 2
−n

22nX
k=1

Î(1{ k
2n<f}) = lim

n→∞ 2
−n

22nX
k=1

µ+

µ
k

2n
< f

¶

= lim
n→∞ 2

−n
22nX
k=1

ν

µ
k

2n
< f

¶
= lim

n→∞

Z
X

φndν =

Z
X

fdν. (13.11)

This shows that f ∈ £L1(ν)¤+ and that Î(f) = R
X
fdν. Since every f ∈

L1(I) is of the form f = f+ − f− with f± ∈ £L1(I)¤+ , it follows that
L1(I) ⊂ L1(µ+) ⊂ L1(ν) ⊂ L1(α) and Eq. (13.9) holds for all f ∈ L1(I).

Conversely suppose that f ∈ £L1(µ+)¤+ . Define φn as in Eq. (13.10).
Chebyshev’s inequality implies that µ+( k2n < f) < ∞ and hence { k

2n <
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f} is I — integrable. Again by the monotone convergence for Lebesgue
integrals and the computations in Eq. (13.11),

∞ >

Z
X

fdµ+ = lim
n→∞ Î(φn)

and therefore by the monotone convergence theorem for Î , f ∈ L1(I) andZ
X

fdµ+ = lim
n→∞ Î(φn) = Î(f).

2. Suppose that ν is any measure such that Eq. (13.9) holds. Then by the
monotone convergence theorem,

I(f) =

Z
X

fdν for all f ∈ S↑ ∪ S↓.

Let A ∈ R and assume that µ+(A) < ∞, i.e. 1A ∈ L1(I). Then there
exists f ∈ S↑ ∩ L1(I) such that 1A ≤ f and integrating this inequality
relative to ν implies

ν(A) =

Z
X

1Adν ≤
Z
X

fdν = Î(f).

Taking the infinum of this equation over those f ∈ S↑ such that 1A ≤ f
implies ν(A) ≤ Ī(1A) = µ+(A). If µ+(A) = ∞ in this inequality holds
trivially.
Similarly, if A ∈ R and f ∈ S↓ such that 0 ≤ f ≤ 1A, then

ν(A) =

Z
X

1Adν ≥
Z
X

fdν = Î(f).

Taking the supremum of this equation over those f ∈ S↓ such that 0 ≤
f ≤ 1A then implies ν(A) ≥ µ−(A). So we have shown that µ− ≤ ν ≤ µ+.

3. By Lemma 13.27, ν = α is a measure as in (2) satisfying α ≤ µ− and
therefore µ− ≤ α and hence we have shown that α = µ−. This also shows
that µ− is a measure.

4. This can be done by the same type of argument used in the proof of (1).

Proposition 13.29 (Uniqueness). Suppose that 1 is measurable and there
exists a function χ ∈ L1(I) such that χ(x) > 0 for all x. Then there is only
one measure µ on σ(S) such that

Î(f) =

Z
X

fdµ for all f ∈ S.
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Remark 13.30. The existence of a function χ ∈ L1(I) such that χ(x) > 0 for
all x is equivalent to the existence of a function χ ∈ S↑ such that Î(χ) < ∞
and χ(x) > 0 for all x ∈ X. Indeed by Lemma 13.16, if χ ∈ L1(I) there exists
χ̃ ∈ S↑ ∩ L1(I) such χ̃ ≥ χ.

Proof. As in Remark 13.30, we may assume χ ∈ S↑ ∩ L1(I). The sets
Xn := {χ > 1/n} ∈ σ(S) ⊂ R satisfy µ(Xn) ≤ nÎ(χ) < ∞. The proof is
completed using Theorem 13.28 to conclude, for any A ∈ σ(S), that

µ+(A) = lim
n→∞µ+(A ∩Xn) = lim

n→∞µ−(A ∩Xn) = µ−(A).

Since µ− ≤ µ ≤ µ+ = µ−, we see that µ = µ+ = µ−.





Part IV

Hilbert Spaces and Spectral Theory of
Compact Operators





14

Hilbert Spaces

14.1 Hilbert Spaces Basics

Definition 14.1. Let H be a complex vector space. An inner product on H is
a function, h·, ·i : H ×H → C, such that

1. hax+ by, zi = ahx, zi+ bhy, zi i.e. x→ hx, zi is linear.
2. hx, yi = hy, xi.
3. kxk2 ≡ hx, xi ≥ 0 with equality kxk2 = 0 iff x = 0.

Notice that combining properties (1) and (2) that x→ hz, xi is anti-linear
for fixed z ∈ H, i.e.

hz, ax+ byi = āhz, xi+ b̄hz, yi.

We will often find the following formula useful:

kx+ yk2 = hx+ y, x+ yi = kxk2 + kyk2 + hx, yi+ hy, xi
= kxk2 + kyk2 + 2Rehx, yi (14.1)

Theorem 14.2 (Schwarz Inequality). Let (H, h·, ·i) be an inner product
space, then for all x, y ∈ H

|hx, yi| ≤ kxkkyk

and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y 6= 0. First off
notice that if x = αy for some α ∈ C, then hx, yi = α kyk2 and hence

|hx, yi| = |α| kyk2 = kxkkyk.

Moreover, in this case α := hx,yi
kyk2 .
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Fig. 14.1. The picture behind the proof.

Now suppose that x ∈ H is arbitrary, let z ≡ x − kyk−2hx, yiy. (So z is
the “orthogonal projection” of x onto y, see Figure 14.1.) Then

0 ≤ kzk2 =
°°°°x− hx, yikyk2 y

°°°°2 = kxk2 + |hx, yi|2kyk4 kyk2 − 2Rehx, hx, yikyk2 yi

= kxk2 − |hx, yi|
2

kyk2

from which it follows that 0 ≤ kyk2kxk2 − |hx, yi|2 with equality iff z = 0 or
equivalently iff x = kyk−2hx, yiy.
Corollary 14.3. Let (H, h·, ·i) be an inner product space and kxk :=phx, xi.
Then k · k is a norm on H. Moreover h·, ·i is continuous on H ×H, where H
is viewed as the normed space (H, k·k).
Proof. The only non-trivial thing to verify that k·k is a norm is the triangle

inequality:

kx+ yk2 = kxk2 + kyk2 + 2Rehx, yi ≤ kxk2 + kyk2 + 2kxk kyk
= (kxk+ kyk)2

where we have made use of Schwarz’s inequality. Taking the square root of
this inequality shows kx+ yk ≤ kxk+ kyk. For the continuity assertion:

|hx, yi− hx0, y0i| = |hx− x0, yi+ hx0, y − y0i|
≤ kykkx− x0k+ kx0kky − y0k
≤ kykkx− x0k+ (kxk+ kx− x0k) ky − y0k
= kykkx− x0k+ kxkky − y0k+ kx− x0kky − y0k

from which it follows that h·, ·i is continuous.
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Definition 14.4. Let (H, h·, ·i) be an inner product space, we say x, y ∈ H
are orthogonal and write x ⊥ y iff hx, yi = 0. More generally if A ⊂ H is a
set, x ∈ H is orthogonal to A and write x ⊥ A iff hx, yi = 0 for all y ∈ A.
Let A⊥ = {x ∈ H : x ⊥ A} be the set of vectors orthogonal to A. We also say
that a set S ⊂ H is orthogonal if x ⊥ y for all x, y ∈ S such that x 6= y. If
S further satisfies, kxk = 1 for all x ∈ S, then S is said to be orthonormal.

Proposition 14.5. Let (H, h·, ·i) be an inner product space then
1. (Parallelogram Law)

kx+ yk2 + kx− yk2 = 2kxk2 + 2kyk2 (14.2)

for all x, y ∈ H.
2. (Pythagorean Theorem) If S ⊂ H is a finite orthonormal set, then

k
X
x∈S

xk2 =
X
x∈S

kxk2. (14.3)

3. If A ⊂ H is a set, then A⊥ is a closed linear subspace of H.

Remark 14.6. See Proposition 14.46 in the appendix below for the “converse”
of the parallelogram law.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations:

kx+ yk2 + kx− yk2 = kxk2 + kyk2 + 2Rehx, yi
+ kxk2 + kyk2 − 2Rehx, yi

= 2kxk2 + 2kyk2,

and

k
X
x∈S

xk2 = h
X
x∈S

x,
X
y∈S

yi =
X
x,y∈S

hx, yi

=
X
x∈S

hx, xi =
X
x∈S

kxk2.

Item 3. is a consequence of the continuity of h·, ·i and the fact that

A⊥ = ∩x∈A ker(h·, xi)

where ker(h·, xi) = {y ∈ H : hy, xi = 0} — a closed subspace of H.

Definition 14.7. A Hilbert space is an inner product space (H, h·, ·i) such
that the induced Hilbertian norm is complete.
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Example 14.8. Let (X,M, µ) be a measure space thenH := L2(X,M, µ) with
inner product

(f, g) =

Z
X

f · ḡdµ

is a Hilbert space. In Exercise 14.32 you will show every Hilbert space H is
“equivalent” to a Hilbert space of this form.

Definition 14.9. A subset C of a vector space X is said to be convex if for
all x, y ∈ C the line segment [x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} joining x to
y is contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 14.10. Suppose that H is a Hilbert space and M ⊂ H be a closed
convex subset of H. Then for any x ∈ H there exists a unique y ∈ M such
that

kx− yk = d(x,M) = inf
z∈M

kx− zk.
Moreover, if M is a vector subspace of H, then the point y may also be char-
acterized as the unique point in M such that (x− y) ⊥M.

Proof. By replacing M by M − x := {m − x : m ∈ M} we may assume
x = 0. Let δ := d(0,M) = infm∈M kmk and y, z ∈M, see Figure 14.2.

Fig. 14.2. The geometry of convex sets.

By the parallelogram law and the convexity of M,

2kyk2+2kzk2 = ky+zk2+ky−zk2 = 4ky + z

2
||2+ky−zk2 ≥ 4δ2+ky−zk2.

(14.4)
Hence if kyk = kzk = δ, then 2δ2+2δ2 ≥ 4δ2+ky−zk2, so that ky−zk2 = 0.
Therefore, if a minimizer for d(0, ·)|M exists, it is unique.
Existence. Let yn ∈ M be chosen such that kynk = δn → δ ≡ d(0,M).

Taking y = ym and z = yn in Eq. (14.4) shows 2δ2m+2δ
2
n ≥ 4δ2+kyn−ymk2.

Passing to the limit m,n→∞ in this equation implies,
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2δ2 + 2δ2 ≥ 4δ2 + lim sup
m,n→∞

kyn − ymk2.

Therefore {yn}∞n=1 is Cauchy and hence convergent. Because M is closed,
y := lim

n→∞ yn ∈M and because k·k is continuous,

kyk = lim
n→∞ kynk = δ = d(0,M).

So y is the desired point in M which is closest to 0.
Now for the second assertion we further assume thatM is a closed subspace

of H and x ∈ H. Let y ∈M be the closest point in M to x. Then for w ∈M,
the function

g(t) ≡ kx− (y + tw)k2 = kx− yk2 − 2tRehx− y, wi+ t2kwk2

has a minimum at t = 0. Therefore 0 = g0(0) = −2Rehx− y, wi. Since w ∈M
is arbitrary, this implies that (x− y) ⊥ M. Finally suppose y ∈ M is any
point such that (x− y) ⊥M. Then for z ∈M, by Pythagorean’s theorem,

kx− zk2 = kx− y + y − zk2 = kx− yk2 + ky − zk2 ≥ kx− yk2

which shows d(x,M)2 ≥ kx− yk2. That is to say y is the point in M closest
to x.

Definition 14.11. Suppose that A : H → H is a bounded operator. The
adjoint of A, denote A∗, is the unique operator A∗ : H → H such that
hAx, yi = hx,A∗yi. (The proof that A∗ exists and is unique will be given in
Proposition 14.16 below.) A bounded operator A : H → H is self - adjoint
or Hermitian if A = A∗.

Definition 14.12. Let H be a Hilbert space and M ⊂ H be a closed subspace.
The orthogonal projection of H ontoM is the function PM : H → H such that
for x ∈ H, PM (x) is the unique element in M such that (x− PM (x)) ⊥M .

Proposition 14.13. Let H be a Hilbert space and M ⊂ H be a closed sub-
space. The orthogonal projection PM satisfies:

1. PM is linear (and hence we will write PMx rather than PM (x).
2. P 2M = PM (PM is a projection).
3. P ∗M = PM , (PM is self-adjoint).
4. Ran(PM ) =M and ker(PM ) =M⊥.

Proof.

1. Let x1, x2 ∈ H and α ∈ F, then PMx1 + αPMx2 ∈M and

PMx1 + αPMx2 − (x1 + αx2) = [PMx1 − x1 + α(PMx2 − x2)] ∈M⊥

showing PMx1 + αPMx2 = PM (x1 + αx2), i.e. PM is linear.
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2. Obviously Ran(PM ) = M and PMx = x for all x ∈ M . Therefore P 2M =
PM .

3. Let x, y ∈ H, then since (x− PMx) and (y − PMy) are in M⊥,

hPMx, yi = hPMx, PMy + y − PMyi
= hPMx, PMyi
= hPMx+ (x− PM ), PMyi
= hx, PMyi.

4. It is clear that Ran(PM ) ⊂M. Moreover, if x ∈M, then PMx = x implies
that Ran(PM ) =M. Now x ∈ ker(PM ) iff PMx = 0 iff x = x− 0 ∈M⊥.

Corollary 14.14. Suppose that M ⊂ H is a proper closed subspace of a
Hilbert space H, then H =M ⊕M⊥.

Proof. Given x ∈ H, let y = PMx so that x − y ∈ M⊥. Then x =
y + (x− y) ∈ M +M⊥. If x ∈ M ∩M⊥, then x ⊥ x, i.e. kxk2 = hx, xi = 0.
So M ∩M⊥ = {0} .
Proposition 14.15 (Riesz Theorem). Let H∗ be the dual space of H (No-
tation 2.64). The map

z ∈ H
j−→ h·, zi ∈ H∗ (14.5)

is a conjugate linear isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x, z ∈ H,

|hx, zi| ≤ kxk kzk for all x ∈ H

with equality when x = z. This implies that kjzkH∗ = kh·, zikH∗ = kzk .
Therefore j is isometric and this shows that j is injective. To finish the proof
we must show that j is surjective. So let f ∈ H∗ which we assume with out
loss of generality is non-zero. Then M = ker(f) — a closed proper subspace
of H. Since, by Corollary 14.14, H = M ⊕M⊥, f : H/M ∼= M⊥ → F is a
linear isomorphism. This shows that dim(M⊥) = 1 and hence H =M ⊕ Fx0
where x0 ∈M⊥ \ {0} .1 Choose z = λx0 ∈M⊥ such that f(x0) = hx0, zi. (So
λ = f̄(x0)/ kx0k2 .) Then for x = m+ λx0 with m ∈M and λ ∈ F,

f(x) = λf(x0) = λhx0, zi = hλx0, zi = hm+ λx0, zi = hx, zi
which shows that f = jz.

1 Alternatively, choose x0 ∈ M⊥ \ {0} such that f(x0) = 1. For x ∈ M⊥ we have
f(x − λx0) = 0 provided that λ := f(x). Therefore x − λx0 ∈ M ∩M⊥ = {0} ,
i.e. x = λx0. This again shows that M⊥ is spanned by x0.
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Proposition 14.16 (Adjoints). Let H and K be Hilbert spaces and A :
H → K be a bounded operator. Then there exists a unique bounded operator
A∗ : K → H such that

hAx, yiK = hx,A∗yiH for all x ∈ H and y ∈ K. (14.6)

Moreover (A+ λB)∗ = A∗ + λ̄B∗, A∗∗ := (A∗)∗ = A, kA∗k = kAk and
kA∗Ak = kAk2 for all A,B ∈ L(H,K) and λ ∈ C.
Proof. For each y ∈ K, then map x → hAx, yiK is in H∗ and therefore

there exists by Proposition 14.15 a unique vector z ∈ H such that

hAx, yiK = hx, ziH for all x ∈ H.

This shows there is a unique map A∗ : K → H such that hAx, yiK =
hx,A∗(y)iH for all x ∈ H and y ∈ K. To finish the proof, we need only
show A∗ is linear and bounded. To see A∗ is linear, let y1, y2 ∈ K and λ ∈ C,
then for any x ∈ H,

hAx, y1 + λy2iK = hAx, y1iK + λ̄hAx, y2iK
= hx,A∗(y1)iK + λ̄hx,A∗(y2)iK
= hx,A∗(y1) + λA∗(y2)iK

and by the uniqueness of A∗(y1 + λy2) we find

A∗(y1 + λy2) = A∗(y1) + λA∗(y2).

This shows A∗ is linear and so we will now write A∗y instead of A∗(y). Since

hA∗y, xiH = hx,A∗yiH = hAx, yiK = hy,AxiK
it follows that A∗∗ = A. he assertion that (A+ λB)

∗
= A∗ + λ̄B∗ is left to

the reader, see Exercise 14.17.
The following arguments prove the assertions about norms of A and A∗ :

kA∗k = sup
k∈K:kkk=1

kA∗kk = sup
k∈K:kkk=1

sup
h∈H:khk=1

|hA∗k, hi|

= sup
h∈H:khk=1

sup
k∈K:kkk=1

|hk,Ahi| = sup
h∈H:khk=1

kAhk = kAk ,

kA∗Ak ≤ kA∗k kAk = kAk2 and
kAk2 = sup

h∈H:khk=1
|hAh,Ahi| = sup

h∈H:khk=1
|hh,A∗Ahi|

≤ sup
h∈H:khk=1

kA∗Ahk = kA∗Ak .
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Exercise 14.17. Let H,K,M be Hilbert space, A,B ∈ L(H,K), C ∈
L(K,M) and λ ∈ C. Show (A+ λB)

∗
= A∗ + λ̄B∗ and (CA)∗ = A∗C∗ ∈

L(M,H).

Exercise 14.18. Let H = Cn and K = Cm equipped with the usual inner
products, i.e. hz, wiH = z ·w̄ for z, w ∈ H. Let A be anm×nmatrix thought of
as a linear operator from H to K. Show the matrix associated to A∗ : K → H
is the conjugate transpose of A.

Exercise 14.19. Let K : L2(ν)→ L2(µ) be the operator defined in Exercise
10.53. Show K∗ : L2(µ)→ L2(ν) is the operator given by

K∗g(y) =
Z
X

k̄(x, y)g(x)dµ(x).

Definition 14.20. {uα}α∈A ⊂ H is an orthonormal set if uα ⊥ uβ for all
α 6= β and kuαk = 1.
Proposition 14.21 (Bessel’s Inequality). Let {uα}α∈A be an orthonormal
set, then X

α∈A
|hx, uαi|2 ≤ kxk2 for all x ∈ H. (14.7)

In particular the set {α ∈ A : hx, uαi 6= 0} is at most countable for all x ∈ H.

Proof. Let Γ ⊂ A be any finite set. Then

0 ≤ kx−
X
α∈Γ

hx, uαiuαk2 = kxk2 − 2Re
X
α∈Γ

hx, uαi huα, xi+
X
α∈Γ

|hx, uαi|2

= kxk2 −
X
α∈Γ

|hx, uαi|2

showing that X
α∈Γ

|hx, uαi|2 ≤ kxk2.

Taking the supremum of this equation of Γ ⊂⊂ A then proves Eq. (14.7).

Proposition 14.22. Suppose A ⊂ H is an orthogonal set. Then s =
P

v∈A v
exists in H iff

P
v∈A kvk2 <∞. (In particular A must be at most a countable

set.) Moreover, if
P

v∈A kvk2 <∞, then

1. ksk2 =Pv∈A kvk2 and
2. hs, xi =Pv∈Ahv, xi for all x ∈ H.

Similarly if {vn}∞n=1 is an orthogonal set, then s =
∞P
n=1

vn exists in H

iff
∞P
n=1

kvnk2 < ∞. In particular if
∞P
n=1

vn exists, then it is independent of

rearrangements of {vn}∞n=1.
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Proof. Suppose s =
P

v∈A v exists. Then there exists Γ ⊂⊂ A such that

X
v∈Λ

kvk2 =
°°°°°X
v∈Λ

v

°°°°°
2

≤ 1

for all Λ ⊂⊂ A \ Γ ,wherein the first inequality we have used Pythagorean’s
theorem. Taking the supremum over such Λ shows that

P
v∈A\Γ kvk2 ≤ 1 and

therefore X
v∈A

kvk2 ≤ 1 +
X
v∈Γ

kvk2 <∞.

Conversely, suppose that
P

v∈A kvk2 < ∞. Then for all � > 0 there exists
Γ� ⊂⊂ A such that if Λ ⊂⊂ A \ Γ�,°°°°°X

v∈Λ
v

°°°°°
2

=
X
v∈Λ

kvk2 < �2. (14.8)

Hence by Lemma 2.96,
P

v∈A v exists.
For item 1, let Γ� be as above and set s� :=

P
v∈Γ� v. Then

|ksk− ks�k| ≤ ks− s�k < �

and by Eq. (14.8),

0 ≤
X
v∈A

kvk2 − ks�k2 =
X
v/∈Γ�

kvk2 ≤ �2.

Letting � ↓ 0 we deduce from the previous two equations that ks�k→ ksk and
ks�k2 →

P
v∈A kvk2 as � ↓ 0 and therefore ksk2 =

P
v∈A kvk2.

Item 2. is a special case of Lemma 2.96.

For the final assertion, let sN ≡
NP
n=1

vn and suppose that limN→∞ sN = s

exists in H and in particular {sN}∞N=1 is Cauchy. So for N > M.

NX
n=M+1

kvnk2 = ksN − sMk2 → 0 as M,N →∞

which shows that
∞P
n=1

kvnk2 is convergent, i.e.
∞P
n=1

kvnk2 <∞.

Remark: We could use the last result to prove Item 1. Indeed, ifP
v∈A kvk2 < ∞, then A is countable and so we may writer A = {vn}∞n=1 .

Then s = limN→∞ sN with sN as above. Since the norm k·k is continuous on
H, we have
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ksk2 = lim
N→∞

ksNk2 = lim
N→∞

°°°°°
NX
n=1

vn

°°°°°
2

= lim
N→∞

NX
n=1

kvnk2

=
∞X
n=1

kvnk2 =
X
v∈A

kvk2.

Corollary 14.23. Suppose H is a Hilbert space, β ⊂ H is an orthonormal
set and M = span β. Then

PMx =
X
u∈β
hx, uiu, (14.9)

X
u∈β

|hx, ui|2 = kPMxk2 and (14.10)

X
u∈β
hx, uihu, yi = hPMx, yi (14.11)

for all x, y ∈ H.

Proof. By Bessel’s inequality,
P

u∈β |hx, ui|2 ≤ kxk2 for all x ∈ H and
hence by Proposition 14.21, Px :=

P
u∈βhx, uiu exists in H and for all x, y ∈

H,

hPx, yi =
X
u∈β
hhx, uiu, yi =

X
u∈β
hx, uihu, yi. (14.12)

Taking y ∈ β in Eq. (14.12) gives hPx, yi = hx, yi, i.e. that hx−Px, yi = 0 for
all y ∈ β. So (x− Px) ⊥ span β and by continuity we also have (x− Px) ⊥
M = span β. Since Px is also in M, it follows from the definition of PM
that Px = PMx proving Eq. (14.9). Equations (14.10) and (14.11) now follow
from (14.12), Proposition 14.22 and the fact that hPMx, yi = hP 2Mx, yi =
hPMx,PMyi for all x, y ∈ H.

14.2 Hilbert Space Basis

Definition 14.24 (Basis). Let H be a Hilbert space. A basis β of H is a
maximal orthonormal subset β ⊂ H.

Proposition 14.25. Every Hilbert space has an orthonormal basis.

Proof. Let F be the collection of all orthonormal subsets of H ordered by
inclusion. If Φ ⊂ F is linearly ordered then ∪Φ is an upper bound. By Zorn’s
Lemma (see Theorem B.7) there exists a maximal element β ∈ F .
An orthonormal set β ⊂ H is said to be complete if β⊥ = {0} . That is

to say if hx, ui = 0 for all u ∈ β then x = 0.
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Lemma 14.26. Let β be an orthonormal subset of H then the following are
equivalent:

1. β is a basis,
2. β is complete and
3. span β = H.

Proof. If β is not complete, then there exists a unit vector x ∈ β⊥ \ {0} .
The set β ∪ {x} is an orthonormal set properly containing β, so β is not
maximal. Conversely, if β is not maximal, there exists an orthonormal set
β1 ⊂ H such that β & β1. Then if x ∈ β1 \ β, we have hx, ui = 0 for all
u ∈ β showing β is not complete. This proves the equivalence of (1) and (2).
If β is not complete and x ∈ β⊥ \ {0} , then span β ⊂ x⊥ which is a proper
subspace of H. Conversely if span β is a proper subspace of H,β⊥ = span β

⊥

is a non-trivial subspace by Corollary 14.14 and β is not complete. This shows
that (2) and (3) are equivalent.

Theorem 14.27. Let β ⊂ H be an orthonormal set. Then the following are
equivalent:

1. β is complete or equivalently a basis.
2. x =

P
u∈β
hx, uiu for all x ∈ H.

3. hx, yi = P
u∈β
hx, ui hu, yi for all x, y ∈ H.

4. kxk2 = P
u∈β

|hx, ui|2 for all x ∈ H.

Proof. Let M = span β and P = PM .
(1) ⇒ (2) By Corollary 14.23,

P
u∈β
hx, uiu = PMx. Therefore

x−
X
u∈β
hx, uiu = x− PMx ∈M⊥ = β⊥ = {0} .

(2) ⇒ (3) is a consequence of Proposition 14.22.
(3) ⇒ (4) is obvious, just take y = x.
(4) ⇒ (1) If x ∈ β⊥, then by 4), kxk = 0, i.e. x = 0. This shows that β is

complete.

Proposition 14.28. A Hilbert space H is separable iff H has a countable
orthonormal basis β ⊂ H. Moreover, if H is separable, all orthonormal bases
of H are countable.

Proof. Let D ⊂ H be a countable dense set D = {un}∞n=1. By Gram-
Schmidt process there exists β = {vn}∞n=1 an orthonormal set such that
span{vn : n = 1, 2 . . . , N} ⊇ span{un : n = 1, 2 . . . , N}. So if hx, vni = 0 for
all n then hx, uni = 0 for all n. Since D ⊂ H is dense we may choose {wk} ⊂ D
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such that x = limk→∞wk and therefore hx, xi = limk→∞hx,wki = 0. That is
to say x = 0 and β is complete.
Conversely if β ⊂ H is a countable orthonormal basis, then the countable

set

D =

X
u∈β

auu : au ∈ Q+ iQ : #{u : au 6= 0} <∞


is dense in H.
Finally let β = {un}∞n=1 be an orthonormal basis and β1 ⊂ H be another

orthonormal basis. Then the sets

Bn = {v ∈ β1 : hv, uni 6= 0}

are countable for each n ∈ N and hence B :=
∞S
n=1

Bn is a countable subset

of β1. Suppose there exists v ∈ β1 \ B, then hv, uni = 0 for all n and since
β = {un}∞n=1 is an orthonormal basis, this implies v = 0 which is impossible
since kvk = 1. Therefore β1 \B = ∅ and hence β1 = B is countable.

Definition 14.29. A linear map U : H → K is an isometry if kUxkK =
kxkH for all x ∈ H and U is unitary if U is also surjective.

Exercise 14.30. Let U : H → K be a linear map, show the following are
equivalent:

1. U : H → K is an isometry,
2. hUx,Ux0iK = hx, x0iH for all x, x0 ∈ H, (see Eq. (14.21) below)
3. U∗U = idH .

Exercise 14.31. Let U : H → K be a linear map, show the following are
equivalent:

1. U : H → K is unitary
2. U∗U = idH and UU∗ = idK .
3. U is invertible and U−1 = U∗.

Exercise 14.32. Let H be a Hilbert space. Use Theorem 14.27 to show there
exists a set X and a unitary map U : H → c2(X). Moreover, if H is separable
and dim(H) = ∞, then X can be taken to be N so that H is unitarily
equivalent to c2 = c2(N).

Remark 14.33. Suppose that {un}∞n=1 is a total subset of H, i.e. span{un} =
H. Let {vn}∞n=1 be the vectors found by performing Gram-Schmidt on the set
{un}∞n=1. Then {vn}∞n=1 is an orthonormal basis for H.
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Example 14.34. 1. Let H = L2([−π, π], dm) = L2((−π, π), dm) and en(θ) =
1√
2π
einθ for n ∈ Z. Simple computations show β := {en}n∈Z is an ortho-

normal set. We now claim that β is an orthonormal basis. To see this recall
that Cc((−π, π)) is dense in L2((−π, π), dm). Any f ∈ Cc((−π, π)) may
be extended to be a continuous 2π — periodic function on R and hence by
Exercise 11.63), f may uniformly (and hence in L2) be approximated by a
trigonometric polynomial. Therefore β is a total orthonormal set, i.e. β is
an orthonormal basis. The expansion of f in this basis is the well known
Fourier series expansion of f.

2. Let H = L2([−1, 1], dm) and A := {1, x, x2, x3 . . . }. Then A is total in
H by the Stone-Weierstrass theorem and a similar argument as in the
first example or directly from Exercise 11.67. The result of doing Gram-
Schmidt on this set gives an orthonormal basis of H consisting of the
“Legendre Polynomials.”

3. Let H = L2(R, e− 1
2x

2

dx).Exercise 11.67 implies A := {1, x, x2, x3 . . . }
is total in H and the result of doing Gram-Schmidt on A now gives an
orthonormal basis for H consisting of “Hermite Polynomials.”

Remark 14.35 (An Interesting Phenomena). Let H = L2([−1, 1], dm) and
B := {1, x3, x6, x9, . . . }. Then again A is total in H by the same argument as
in item 2. Example 14.34. This is true even though B is a proper subset of A.
Notice that A is an algebraic basis for the polynomials on [−1, 1] while B is
not! The following computations may help relieve some of the reader’s anxiety.
Let f ∈ L2([−1, 1], dm), then, making the change of variables x = y1/3, shows
thatZ 1

−1
|f(x)|2 dx =

Z 1

−1

¯̄̄
f(y1/3)

¯̄̄2 1
3
y−2/3dy =

Z 1

−1

¯̄̄
f(y1/3)

¯̄̄2
dµ(y) (14.13)

where dµ(y) = 1
3y
−2/3dy. Since µ([−1, 1]) = m([−1, 1]) = 2, µ is a finite

measure on [−1, 1] and hence by Exercise 11.67 A := {1, x, x2, x3 . . . } is a
total in L2([−1, 1], dµ). In particular for any � > 0 there exists a polynomial
p(y) such that Z 1

−1

¯̄̄
f(y1/3)− p(y)

¯̄̄2
dµ(y) < �2.

However, by Eq. (14.13) we have

�2 >

Z 1

−1

¯̄̄
f(y1/3)− p(y)

¯̄̄2
dµ(y) =

Z 1

−1

¯̄
f(x)− p(x3)

¯̄2
dx.

Alternatively, if f ∈ C([−1, 1]), then g(y) = f(y1/3) is back in C([−1, 1]).
Therefore for any � > 0, there exists a polynomial p(y) such that

� > kg − pku = sup {|g(y)− p(y)| : y ∈ [−1, 1]}
= sup

©¯̄
g(x3)− p(x3)

¯̄
: x ∈ [−1, 1]ª

= sup
©¯̄
f(x)− p(x3)

¯̄
: x ∈ [−1, 1]ª .
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This gives another proof the polynomials in x3 are dense in C([−1, 1]) and
hence in L2([−1, 1]).

14.3 Fourier Series Considerations

(BRUCE: This needs work and some stuff from Section 28.1.1 should be moved
to here.) In this section we will examine item 1. of Example 14.34 in more
detail. In the process we will give a direct and constructive proof of the result
in Exercise 11.63.
For α ∈ C, let dn(α) :=

Pn
k=−n α

k. Since αdn(α)− dn(α) = αn+1 − α−n,

dn(α) :=
nX

k=−n
αk =

αn+1 − α−n

α− 1

with the convention that

αn+1 − α−n

α− 1 |α=1 = lim
α→1

αn+1 − α−n

α− 1 = 2n+ 1 =
nX

k=−n
1k.

Writing α = eiθ, we find

Dn(θ) := dn(e
iθ) =

eiθ(n+1) − e−iθn

eiθ − 1 =
eiθ(n+1/2) − e−iθ(n+1/2)

eiθ/2 − e−iθ/2

=
sin(n+ 1

2)θ

sin 12θ
.

Definition 14.36. The function

Dn(θ) :=
sin(n+ 1

2 )θ

sin 12θ
=

nX
k=−n

eikθ (14.14)

is called the Dirichlet kernel.

By the L2 — theory of the Fourier series (or other methods) one may
shows that Dn → δ0 as n→∞ when acting on smooth periodic functions of
θ. However this kernel is not positive. In order to get a positive approximate
δ — function sequence, we might try squaring Dn to find
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D2
n (θ) =

sin2(n+ 1
2)θ

sin2 12θ
=

"
nX

k=−n
αk

#2
=

nX
k,l=−n

αkαl =
nX

k,l=−n
αk+l

=
2nX

m=−2n

nX
k,l=−n

1k+l=m,k,l∈[−n,n]αm =
2nX

m=−2n

nX
k=−n

1|m−k|≤nαm

=
2nX

m=−2n
[n+ 1 + n− |m|]αm =

2nX
m=−2n

[2n+ 1− |m|]αm

=
2nX

m=−2n
[2n+ 1− |m|] eimθ.

In particular this implies

1

2n+ 1

sin2(n+ 1
2)θ

sin2 12θ
=

2nX
m=−2n

·
1− |m|

2n+ 1

¸
eimθ. (14.15)

We will show in Lemma 14.38 below that Eq. (14.15) is valid for n ∈ 1
2N.

Definition 14.37. The function

Kn(θ) :=
1

n+ 1

sin2(n+12 )θ

sin2 12θ
(14.16)

is called the Fejér kernel.

Lemma 14.38. The Fejér kernel Kn satisfies:

1.

Kn(θ) :=
nX

m=−n

·
1− |m|

n+ 1

¸
eimθ. (14.17)

2. Kn(θ) ≥ 0.
3. 1

2π

R π
−πKn(θ)dθ = 1

4. sup�≤|θ|≤πKn(θ)→ 0 as n→∞ for all � > 0, see Figure 14.3
5. For any continuous 2π — periodic function f on R,

Kn ∗ f(θ) = 1

2π

Z π

−π
Kn(θ − α)f(α)dα

=
nX

m=−n

·
1− |m|

n+ 1

¸µ
1

2π

Z π

−π
e−imαf(α)dα

¶
eimθ (14.18)

and Kn ∗ f(θ)→ f(θ) uniformly in θ as n→∞.
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2.51.250-1.25-2.5

12.5

10

7.5

5

2.5

0

x

y

x

y

Plots of Kn(θ) for n = 2, 7 and 13.

Proof. 1. Using

sin2
1

2
θ =

·
eiθ/2 − e−iθ/2

2i

¸2
=
−2 + eiθ − e−iθ

−4 =
2− eiθ − e−iθ

4

we find

4(n+ 1) sin2
1

2
θ

nX
m=−n

·
1− |m|

n+ 1

¸
eimθ

=
¡
2− eiθ − e−iθ

¢X
1|m|≤n [n+ 1− |m|] eimθ

=
X½

21|m|≤n [n+ 1− |m|]− 1|m−1|≤n [n+ 1− |m− 1|]
−1|m+1|≤n [n+ 1− |m+ 1|]

¾
eimθ

=
X

m∈{0,−n−1,n+1}

 21|m|≤n [n+ 1− |m|]
−1|m−1|≤n [n+ 1− |m− 1|]
−1|m+1|≤n [n+ 1− |m+ 1|]

 eimθ

= 2− ei(n+1)θ − e−i(n+1)θ = 4 sin2(
n+ 1

2
)θ

which verifies item 1.
2.- 4. Clearly Kn(θ) ≥ 0 being the square of a function and item 3. follows

by integrating the formula in Eq. (14.17). Item 4. is elementary to check and
is clearly indicated in Figure 14.3.
5. Items 2-4 show that Kn(θ) has the classic properties of an approximate

δ — function when acting on 2π — periodic functions. Hence it is standard that
Kn ∗ f(θ) → f(θ) uniformly in θ as n → ∞. Eq. (14.18) is a consequence of
the simple computation,
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Kn ∗ f(θ) = 1

2π

Z π

−π
Kn(θ − α)f(α)dα

=
nX

m=−n

·
1− |m|

n+ 1

¸µ
1

2π

Z π

−π
e−imαf(α)dα

¶
eimθ.

14.4 Weak Convergence

Suppose H is an infinite dimensional Hilbert space and {xn}∞n=1 is an ortho-
normal subset of H. Then, by Eq. (14.1), kxn−xmk2 = 2 for all m 6= n and in
particular, {xn}∞n=1 has no convergent subsequences. From this we conclude
that C := {x ∈ H : kxk ≤ 1} , the closed unit ball in H, is not compact. To
overcome this problems it is sometimes useful to introduce a weaker topology
on X having the property that C is compact.

Definition 14.39. Let (X, k·k) be a Banach space and X∗ be its continu-
ous dual. The weak topology, τw, on X is the topology generated by X∗. If
{xn}∞n=1 ⊂ X is a sequence we will write xn

w→ x as n → ∞ to mean that
xn → x in the weak topology.

Because τw = τ(X∗) ⊂ τk·k := τ({kx− ·k : x ∈ X} , it is harder for a
function f : X → F to be continuous in the τw — topology than in the norm
topology, τk·k. In particular if φ : X → F is a linear functional which is τw —
continuous, then φ is τk·k — continuous and hence φ ∈ X∗.

Proposition 14.40. Let {xn}∞n=1 ⊂ X be a sequence, then xn
w→ x ∈ X as

n→∞ iff φ(x) = limn→∞ φ(xn) for all φ ∈ X∗.

Proof. By definition of τw, we have xn
w→ x ∈ X iff for all Γ ⊂⊂ X∗

and � > 0 there exists an N ∈ N such that |φ(x)− φ(xn)| < � for all n ≥ N
and φ ∈ Γ. This later condition is easily seen to be equivalent to φ(x) =
limn→∞ φ(xn) for all φ ∈ X∗.
The topological space (X, τw) is still Hausdorff, however to prove this one

needs to make use of the Hahn Banach Theorem 28.16 below. For the moment
we will concentrate on the special case where X = H is a Hilbert space in
which case H∗ = {φz := h·, zi : z ∈ H} , see Propositions 14.15. If x, y ∈ H
and z := y − x 6= 0, then

0 < � := kzk2 = φz(z) = φz(y)− φz(x).

Thus Vx := {w ∈ H : |φz(x)− φz(w)| < �/2} and Vy := {w ∈ H : |φz(y)− φz(w)| < �/2}
are disjoint sets from τw which contain x and y respectively. This shows that
(H, τw) is a Hausdorff space. In particular, this shows that weak limits are
unique if they exist.
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Remark 14.41. Suppose that H is an infinite dimensional Hilbert space
{xn}∞n=1 is an orthonormal subset of H. Then Bessel’s inequality (Propo-
sition 14.21) implies xn

w→ 0 ∈ H as n → ∞. This points out the fact
that if xn

w→ x ∈ H as n → ∞, it is no longer necessarily true that
kxk = limn→∞ kxnk . However we do always have kxk ≤ lim infn→∞ kxnk
because,

kxk2 = lim
n→∞hxn, xi ≤ lim infn→∞ [kxnk kxk] = kxk lim inf

n→∞ kxnk .

Proposition 14.42. Let H be a Hilbert space, β ⊂ H be an orthonormal
basis for H and {xn}∞n=1 ⊂ H be a bounded sequence, then the following are
equivalent:

1. xn
w→ x ∈ H as n→∞.

2. hx, yi = limn→∞hxn, yi for all y ∈ H.
3. hx, yi = limn→∞hxn, yi for all y ∈ β.

Moreover, if cy := limn→∞hxn, yi exists for all y ∈ β, then
P

y∈β |cy|2 <
∞ and xn

w→ x :=
P

y∈β cyy ∈ H as n→∞.

Proof. 1. =⇒ 2. This is a consequence of Propositions 14.15 and 14.40. 2.
=⇒ 3. is trivial.
3. =⇒ 1. LetM := supn kxnk and H0 denote the algebraic span of β. Then

for y ∈ H and z ∈ H0,

|hx− xn, yi| ≤ |hx− xn, zi|+ |hx− xn, y − zi| ≤ |hx− xn, zi|+ 2M ky − zk .

Passing to the limit in this equation implies lim supn→∞ |hx− xn, yi| ≤
2M ky − zk which shows lim supn→∞ |hx− xn, yi| = 0 since H0 is dense in
H.
To prove the last assertion, let Γ ⊂⊂ β. Then by Bessel’s inequality

(Proposition 14.21),X
y∈Γ

|cy|2 = lim
n→∞

X
y∈Γ

|hxn, yi|2 ≤ lim inf
n→∞ kxnk2 ≤M2.

Since Γ ⊂⊂ β was arbitrary, we conclude that
P

y∈β |cy|2 ≤ M < ∞ and
hence we may define x :=

P
y∈β cyy. By construction we have

hx, yi = cy = lim
n→∞hxn, yi for all y ∈ β

and hence xn
w→ x ∈ H as n→∞ by what we have just proved.

Theorem 14.43. Suppose that {xn}∞n=1 ⊂ H is a bounded sequence. Then
there exists a subsequence yk := xnk of {xn}∞n=1 and x ∈ X such that yk

w→ x
as k →∞.
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Proof. This is a consequence of Proposition 14.42 and a Cantor’s diago-
nalization argument which is left to the reader, see Exercise 14.60.

Theorem 14.44 (Alaoglu’s Theorem for Hilbert Spaces). Suppose that
H is a separable Hilbert space, C := {x ∈ H : kxk ≤ 1} is the closed unit ball
in H and {en}∞n=1 is an orthonormal basis for H. Then

ρ(x, y) :=
∞X
n=1

1

2n
|hx− y, eni| (14.19)

defines a metric on C which is compatible with the weak topology on C, τC :=
(τw)C = {V ∩ C : V ∈ τw} . Moreover (C, ρ) is a compact metric space.
Proof. The routine check that ρ is a metric is left to the reader. Let τρ

be the topology on C induced by ρ. For any y ∈ H and n ∈ N, the map
x ∈ H → hx− y, eni = hx, eni− hy, eni is τw continuous and since the sum in
Eq. (14.19) is uniformly convergent for x, y ∈ C, it follows that x → ρ(x, y)
is τC — continuous. This implies the open balls relative to ρ are contained in
τC and therefore τρ ⊂ τC . For the converse inclusion, let z ∈ H, x→ φz(x) =

hz, xi be an element of H∗, and for N ∈ N let zN :=
PN

n=1hz, enien. Then
φzN =

PN
n=1hz, eniφen is ρ continuous, being a finite linear combination of

the φen which are easily seen to be ρ — continuous. Because zN → z as N →∞
it follows that

sup
x∈C

|φz(x)− φzN (x)| = kz − zNk→ 0 as N →∞.

Therefore φz|C is ρ — continuous as well and hence τC = τ(φz|C : z ∈ H) ⊂ τρ.
The last assertion follows directly from Theorem 14.43 and the fact that

sequential compactness is equivalent to compactness for metric spaces.

Theorem 14.45 (Weak and Strong Differentiability). Suppose that f ∈
L2(Rn) and v ∈ Rn \ {0} . Then the following are equivalent:
1. There exists {tn}∞n=1 ⊂ R\ {0} such that limn→∞ tn = 0 and

sup
n

°°°°f(·+ tnv)− f(·)
tn

°°°°
2

<∞.

2. There exists g ∈ L2(Rn) such that hf, ∂vφi = −hg, φi for all φ ∈ C∞c (Rn).
3. There exists g ∈ L2(Rn) and fn ∈ C∞c (Rn) such that fn

L2→ f and ∂vfn
L2→

g as n→∞.
4. There exists g ∈ L2 such that

f(·+ tv)− f(·)
t

L2→ g as t→ 0.

(See Theorem 29.18 for the Lp generalization of this theorem.)
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Proof. 1. =⇒ 2. We may assume, using Theorem 14.43 and passing to a
subsequence if necessary, that f(·+tnv)−f(·)

tn

w→ g for some g ∈ L2(Rn). Now
for φ ∈ C∞c (Rn),

hg, φi = lim
n→∞h

f(·+ tnv)− f(·)
tn

, φi = lim
n→∞hf,

φ(·− tnv)− φ(·)
tn

i

= hf, lim
n→∞

φ(·− tnv)− φ(·)
tn

i = −hf, ∂vφi,

wherein we have used the translation invariance of Lebesgue measure and the
dominated convergence theorem.
2. =⇒ 3. Let φ ∈ C∞c (Rn,R) such that

R
Rn φ(x)dx = 1 and let φm(x) =

mnφ(mx), then by Proposition 11.25, hm := φm ∗ f ∈ C∞(Rn) for all m and

∂vhm(x) = ∂vφm ∗ f(x) =
Z
Rn

∂vφm(x− y)f(y)dy = hf,−∂v [φm (x− ·)]i
= hg, φm (x− ·)i = φm ∗ g(x).

By Theorem 11.21, hm → f ∈ L2(Rn) and ∂vhm = φm ∗ g → g in L2(Rn)
as m → ∞. This shows 3. holds except for the fact that hm need not have
compact support. To fix this let ψ ∈ C∞c (Rn, [0, 1]) such that ψ = 1 in a
neighborhood of 0 and let ψ�(x) = ψ(�x) and (∂vψ)� (x) := (∂vψ) (�x). Then

∂v (ψ�hm) = ∂vψ�hm + ψ�∂vhm = � (∂vψ)� hm + ψ�∂vhm

so that ψ�hm → hm in L2 and ∂v (ψ�hm) → ∂vhm in L2 as � ↓ 0. Let fm =
ψ�mhm where �m is chosen to be greater than zero but small enough so that

kψ�mhm − hmk2 + k∂v (ψ�mhm)→ ∂vhmk2 < 1/m.

Then fm ∈ C∞c (Rn), fm → f and ∂vfm → g in L2 as m→∞.
3. =⇒ 4. By the fundamental theorem of calculus

τ−tvfm(x)− fm(x)

t
=

fm(x+ tv)− fm(x)

t

=
1

t

Z 1

0

d

ds
fm(x+ stv)ds =

Z 1

0

(∂vfm) (x+ stv)ds.

(14.20)

Let

Gt(x) :=

Z 1

0

τ−stvg(x)ds =
Z 1

0

g(x+ stv)ds

which is defined for almost every x and is in L2(Rn) by Minkowski’s inequality
for integrals, Theorem 10.29. Therefore

τ−tvfm(x)− fm(x)

t
−Gt(x) =

Z 1

0

[(∂vfm) (x+ stv)− g(x+ stv)] ds
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and hence again by Minkowski’s inequality for integrals,°°°°τ−tvfm − fm
t

−Gt

°°°°
2

≤
Z 1

0

kτ−stv (∂vfm)− τ−stvgk2 ds

=

Z 1

0

k∂vfm − gk2 ds.

Letting m→∞ in this equation implies (τ−tvf − f) /t = Gt a.e. Finally one
more application of Minkowski’s inequality for integrals implies,°°°°τ−tvf − f

t
− g

°°°°
2

= kGt − gk2 =
°°°°Z 1

0

(τ−stvg − g) ds

°°°°
2

≤
Z 1

0

kτ−stvg − gk2 ds.

By the dominated convergence theorem and Proposition 11.13, the latter term
tends to 0 as t→ 0 and this proves 4. The proof is now complete since 4. =⇒
1. is trivial.

14.5 Supplement 1: Converse of the Parallelogram Law

Proposition 14.46 (Parallelogram Law Converse). If (X, k·k) is a
normed space such that Eq. (14.2) holds for all x, y ∈ X, then there exists
a unique inner product on h·, ·i such that kxk := phx, xi for all x ∈ X. In
this case we say that k·k is a Hilbertian norm.
Proof. If k·k is going to come from an inner product h·, ·i, it follows from

Eq. (14.1) that
2Rehx, yi = kx+ yk2 − kxk2 − kyk2

and
−2Rehx, yi = kx− yk2 − kxk2 − kyk2.

Subtracting these two equations gives the “polarization identity,”

4Rehx, yi = kx+ yk2 − kx− yk2.
Replacing y by iy in this equation then implies that

4Imhx, yi = kx+ iyk2 − kx− iyk2

from which we find
hx, yi = 1

4

X
�∈G

�kx+ �yk2 (14.21)

where G = {±1,±i} — a cyclic subgroup of S1 ⊂ C. Hence if h·, ·i is going to
exists we must define it by Eq. (14.21).
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Notice that

hx, xi = 1

4

X
�∈G

�kx+ �xk2 = kxk2 + ikx+ ixk2 − ikx− ixk2

= kxk2 + i
¯̄
1 + i|2 ¯̄ kxk2 − i

¯̄
1− i|2¯̄ kxk2 = kxk2 .

So to finish the proof of (4) we must show that hx, yi in Eq. (14.21) is an inner
product. Since

4hy, xi =
X
�∈G

�ky + �xk2 =
X
�∈G

�k� (y + �x) k2

=
X
�∈G

�k�y + �2xk2

= ky + xk2 + k− y + xk2 + ikiy − xk2 − ik− iy − xk2
= kx+ yk2 + kx− yk2 + ikx− iyk2 − ikx+ iyk2
= 4hx, yi

it suffices to show x→ hx, yi is linear for all y ∈ H. (The rest of this proof may
safely be skipped by the reader.) For this we will need to derive an identity
from Eq. (14.2). To do this we make use of Eq. (14.2) three times to find

kx+ y + zk2 = −kx+ y − zk2 + 2kx+ yk2 + 2kzk2
= kx− y − zk2 − 2kx− zk2 − 2kyk2 + 2kx+ yk2 + 2kzk2
= ky + z − xk2 − 2kx− zk2 − 2kyk2 + 2kx+ yk2 + 2kzk2
= −ky + z + xk2 + 2ky + zk2 + 2kxk2
− 2kx− zk2 − 2kyk2 + 2kx+ yk2 + 2kzk2.

Solving this equation for kx+ y + zk2 gives
kx+ y+ zk2 = ky+ zk2+ kx+ yk2− kx− zk2+ kxk2+ kzk2− kyk2. (14.22)
Using Eq. (14.22), for x, y, z ∈ H,

4Rehx+ z, yi = kx+ z + yk2 − kx+ z − yk2
= ky + zk2 + kx+ yk2 − kx− zk2 + kxk2 + kzk2 − kyk2
− ¡kz − yk2 + kx− yk2 − kx− zk2 + kxk2 + kzk2 − kyk2¢
= kz + yk2 − kz − yk2 + kx+ yk2 − kx− yk2
= 4Rehx, yi+ 4Rehz, yi. (14.23)

Now suppose that δ ∈ G, then since |δ| = 1,

4hδx, yi = 1

4

X
�∈G

�kδx+ �yk2 = 1

4

X
�∈G

�kx+ δ−1�yk2

=
1

4

X
�∈G

�δkx+ δ�yk2 = 4δhx, yi (14.24)
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where in the third inequality, the substitution � → �δ was made in the sum.
So Eq. (14.24) says h±ix, yi = ±ihix, yi and h−x, yi = −hx, yi. Therefore

Imhx, yi = Re (−ihx, yi) = Reh−ix, yi

which combined with Eq. (14.23) shows

Imhx+ z, yi = Reh−ix− iz, yi = Reh−ix, yi+Reh−iz, yi
= Imhx, yi+ Imhz, yi

and therefore (again in combination with Eq. (14.23)),

hx+ z, yi = hx, yi+ hz, yi for all x, y ∈ H.

Because of this equation and Eq. (14.24) to finish the proof that x → hx, yi
is linear, it suffices to show hλx, yi = λhx, yi for all λ > 0. Now if λ = m ∈ N,
then

hmx, yi = hx+ (m− 1)x, yi = hx, yi+ h(m− 1)x, yi
so that by induction hmx, yi = mhx, yi. Replacing x by x/m then shows that
hx, yi = mhm−1x, yi so that hm−1x, yi = m−1hx, yi and so if m,n ∈ N, we
find

h n
m
x, yi = nh 1

m
x, yi = n

m
hx, yi

so that hλx, yi = λhx, yi for all λ > 0 and λ ∈ Q. By continuity, it now follows
that hλx, yi = λhx, yi for all λ > 0.

14.6 Supplement 2. Non-complete inner product spaces

Part of Theorem 14.27 goes through when H is a not necessarily complete
inner product space. We have the following proposition.

Proposition 14.47. Let (H, h·, ·i) be a not necessarily complete inner product
space and β ⊂ H be an orthonormal set. Then the following two conditions
are equivalent:

1. x =
P
u∈β
hx, uiu for all x ∈ H.

2. kxk2 = P
u∈β

|hx, ui|2 for all x ∈ H.

Moreover, either of these two conditions implies that β ⊂ H is a maximal
orthonormal set. However β ⊂ H being a maximal orthonormal set is not
sufficient to conditions for 1) and 2) hold!
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Proof. As in the proof of Theorem 14.27, 1) implies 2). For 2) implies 1)
let Λ ⊂⊂ β and consider°°°°°x−X

u∈Λ
hx, uiu

°°°°°
2

= kxk2 − 2
X
u∈Λ

|hx, ui|2 +
X
u∈Λ

|hx, ui|2

= kxk2 −
X
u∈Λ

|hx, ui|2 .

Since kxk2 = P
u∈β

|hx, ui|2, it follows that for every � > 0 there exists Λ� ⊂⊂ β

such that for all Λ ⊂⊂ β such that Λ� ⊂ Λ,°°°°°x−X
u∈Λ

hx, uiu
°°°°°
2

= kxk2 −
X
u∈Λ

|hx, ui|2 < �

showing that x =
P
u∈β
hx, uiu.

Suppose x = (x1, x2, . . . , xn, . . . ) ∈ β⊥. If 2) is valid then kxk2 = 0, i.e.
x = 0. So β is maximal. Let us now construct a counter example to prove the
last assertion.
Take H = Span{ei}∞i=1 ⊂ c2 and let ũn = e1 − (n + 1)en+1 for n =

1, 2 . . . . Applying Gramn-Schmidt to {ũn}∞n=1 we construct an orthonormal
set β = {un}∞n=1 ⊂ H. I now claim that β ⊂ H is maximal. Indeed if x =
(x1, x2, . . . , xn, . . . ) ∈ β⊥ then x ⊥ un for all n, i.e.

0 = (x, ũn) = x1 − (n+ 1)xn+1.
Therefore xn+1 = (n+ 1)

−1
x1 for all n. Since x ∈ Span{ei}∞i=1, xN = 0 for

some N sufficiently large and therefore x1 = 0 which in turn implies that
xn = 0 for all n. So x = 0 and hence β is maximal in H. On the other hand, β
is not maximal in c2. In fact the above argument shows that β⊥ in c2 is given
by the span of v = (1, 12 ,

1
3 ,

1
4 ,

1
5 , . . . ). Let P be the orthogonal projection of

c2 onto the Span(β) = v⊥. Then
∞X
i=1

hx, uniun = Px = x− hx, vikvk2 v,

so that
∞P
i=1
hx, uniun = x iff x ∈ Span(β) = v⊥ ⊂ c2. For example if x =

(1, 0, 0, . . . ) ∈ H (or more generally for x = ei for any i), x /∈ v⊥ and hence
∞P
i=1
hx, uniun 6= x.

14.7 Supplement 3: Conditional Expectation

In this section let (Ω,F , P ) be a probability space, i.e. (Ω,F , P ) is a measure
space and P (Ω) = 1. Let G ⊂ F be a sub — sigma algebra of F and write
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f ∈ Gb if f : Ω → C is bounded and f is (G,BC) — measurable. In this section
we will write

Ef :=

Z
Ω

fdP.

Definition 14.48 (Conditional Expectation). Let EG : L2(Ω,F , P ) →
L2(Ω,G, P ) denote orthogonal projection of L2(Ω,F , P ) onto the closed sub-
space L2(Ω,G, P ). For f ∈ L2(Ω,G, P ), we say that EGf ∈ L2(Ω,F , P ) is the
conditional expectation of f.

Theorem 14.49. Let (Ω,F , P ) and G ⊂ F be as above and f, g ∈
L2(Ω,F , P ).
1. If f ≥ 0, P — a.e. then EGf ≥ 0, P — a.e.
2. If f ≥ g, P — a.e. there EGf ≥ EGg, P — a.e.
3. |EGf | ≤ EG |f |, P — a.e.
4. kEGfkL1 ≤ kfkL1 for all f ∈ L2. So by the B.L.T. Theorem 2.68, EG
extends uniquely to a bounded linear map from L1(Ω,F , P ) to L1(Ω,G, P )
which we will still denote by EG .

5. If f ∈ L1(Ω,F , P ) then F = EGf ∈ L1(Ω,G, P ) iff
E(Fh) = E(fh) for all h ∈ Gb.

6. If g ∈ Gb and f ∈ L1(Ω,F , P ), then EG(gf) = g ·EGf, P — a.e.

Proof. By the definition of orthogonal projection for h ∈ Gb,
E(fh) = E(f ·EGh) = E(EGf · h).

So if f, h ≥ 0 then 0 ≤ E(fh) ≤ E(EGf · h) and since this holds for all h ≥ 0
in Gb, EGf ≥ 0, P — a.e. This proves (1). Item (2) follows by applying item
(1). to f − g. If f is real, ±f ≤ |f | and so by Item (2), ±EGf ≤ EG |f |, i.e.
|EGf | ≤ EG |f |, P — a.e. For complex f, let h ≥ 0 be a bounded and G —
measurable function. Then

E [|EGf |h] = E
h
EGf · sgn (EGf)h

i
= E

h
f · sgn (EGf)h

i
≤ E [|f |h] = E [EG |f | · h] .

Since h is arbitrary, it follows that |EGf | ≤ EG |f | , P — a.e. Integrating this
inequality implies

kEGfkL1 ≤ E |EGf | ≤ E [EG |f | · 1] = E [|f |] = kfkL1 .
Item (5). Suppose f ∈ L1(Ω,F , P ) and h ∈ Gb. Let fn ∈ L2(Ω,F , P ) be a

sequence of functions such that fn → f in L1(Ω,F , P ). Then
E(EGf · h) = E( lim

n→∞EGfn · h) = lim
n→∞E(EGfn · h)

= lim
n→∞E(fn · h) = E(f · h). (14.25)
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This equation uniquely determines EG, for if F ∈ L1(Ω,G, P ) also satisfies
E(F · h) = E(f · h) for all h ∈ Gb, then taking h = sgn (F −EGf) in Eq.
(14.25) gives

0 = E((F −EGf)h) = E(|F −EGf |).
This shows F = EGf, P — a.e. Item (6) is now an easy consequence of this
characterization, since if h ∈ Gb,

E [(gEGf)h] = E [EGf · hg] = E [f · hg] = E [gf · h] = E [EG (gf) · h] .
Thus EG (gf) = g ·EGf, P — a.e.

Proposition 14.50. If G0 ⊂ G1 ⊂ F . Then
EG0EG1 = EG1EG0 = EG0 . (14.26)

Proof. Equation (14.26) holds on L2(Ω,F , P ) by the basic properties of
orthogonal projections. It then hold on L1(Ω,F , P ) by continuity and the
density of L2(Ω,F , P ) in L1(Ω,F , P ).
Example 14.51. Suppose that (X,M, µ) and (Y,N , ν) are two σ — finite mea-
sure spaces. Let Ω = X × Y, F =M⊗N and P (dx, dy) = ρ(x, y)µ(dx)ν(dy)
where ρ ∈ L1(Ω,F , µ⊗ν) is a positive function such that R

X×Y ρd (µ⊗ ν) = 1.
Let πX : Ω → X be the projection map, πX(x, y) = x, and

G := σ(πX) = π−1X (M) = {A× Y : A ∈M} .
Then f : Ω → R is G — measurable iff f = F ◦πX for some function F : X → R
which is N — measurable, see Lemma 7.69. For f ∈ L1(Ω,F , P ), we will now
show EGf = F ◦ πX where

F (x) =
1

ρ̄(x)
1(0,∞)(ρ̄(x)) ·

Z
Y

f(x, y)ρ(x, y)ν(dy),

ρ̄(x) :=
R
Y
ρ(x, y)ν(dy). (By convention,

R
Y
f(x, y)ρ(x, y)ν(dy) := 0 ifR

Y
|f(x, y)| ρ(x, y)ν(dy) =∞.)
By Tonelli’s theorem, the set

E := {x ∈ X : ρ̄(x) =∞} ∪
½
x ∈ X :

Z
Y

|f(x, y)| ρ(x, y)ν(dy) =∞
¾

is a µ — null set. Since

E [|F ◦ πX |] =
Z
X

dµ(x)

Z
Y

dν(y) |F (x)| ρ(x, y) =
Z
X

dµ(x) |F (x)| ρ̄(x)

=

Z
X

dµ(x)

¯̄̄̄Z
Y

ν(dy)f(x, y)ρ(x, y)

¯̄̄̄
≤
Z
X

dµ(x)

Z
Y

ν(dy) |f(x, y)| ρ(x, y) <∞,
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F ◦πX ∈ L1(Ω,G, P ). Let h = H ◦πX be a bounded G — measurable function,
then

E [F ◦ πX · h] =
Z
X

dµ(x)

Z
Y

dν(y)F (x)H(x)ρ(x, y)

=

Z
X

dµ(x)F (x)H(x)ρ̄(x)

=

Z
X

dµ(x)H(x)

Z
Y

ν(dy)f(x, y)ρ(x, y)

= E [hf ]

and hence EGf = F ◦ πX as claimed.

This example shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables
in the integrand. Whereas to compute the expectation, one should integrate
over all of the variables. See also Exercise 14.54 to gain more intuition about
conditional expectations.

Theorem 14.52 (Jensen’s inequality). Let (Ω,F , P ) be a probability space
and ϕ : R→ R be a convex function. Assume f ∈ L1(Ω,F , P ;R) is a function
such that (for simplicity) ϕ(f) ∈ L1(Ω,F , P ;R), then ϕ(EGf) ≤ EG [ϕ(f)] ,
P — a.e.

Proof. Let us first assume that φ is C1 and f is bounded. In this case

ϕ(x)− ϕ(x0) ≥ ϕ0(x0)(x− x0) for all x0, x ∈ R. (14.27)

Taking x0 = EGf and x = f in this inequality implies

ϕ(f)− ϕ(EGf) ≥ ϕ0(EGf)(f −EGf)

and then applying EG to this inequality gives

EG [ϕ(f)]− ϕ(EGf) = EG [ϕ(f)− ϕ(EGf)]
≥ ϕ0(EGf)(EGf −EGEGf) = 0

The same proof works for general φ, one need only use Proposition 10.7
to replace Eq. (14.27) by

ϕ(x)− ϕ(x0) ≥ ϕ0−(x0)(x− x0) for all x0, x ∈ R
where ϕ0−(x0) is the left hand derivative of φ at x0.
If f is not bounded, apply what we have just proved to fM = f1|f |≤M , to

find
EG
£
ϕ(fM )

¤ ≥ ϕ(EGfM ). (14.28)

Since EG : L1(Ω,F , P ;R)→ L1(Ω,F , P ;R) is a bounded operator and fM →
f and ϕ(fM ) → φ(f) in L1(Ω,F , P ;R) as M → ∞, there exists {Mk}∞k=1
such that Mk ↑ ∞ and fMk → f and ϕ(fMk)→ φ(f), P — a.e. So passing to
the limit in Eq. (14.28) shows EG [ϕ(f)] ≥ ϕ(EGf), P — a.e.
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14.8 Exercises

Exercise 14.53. Let (X,M, µ) be a measure space and H := L2(X,M, µ).
Given f ∈ L∞(µ) let Mf : H → H be the multiplication operator defined by
Mfg = fg. Show M2

f =Mf iff there exists A ∈M such that f = 1A a.e.

Exercise 14.54. Suppose (Ω,F , P ) is a probability space andA := {Ai}∞i=1 ⊂
F is a partition of Ω. (Recall this means Ω =

`∞
i=1Ai.) Let G be the σ —

algebra generated by A. Show:
1. B ∈ G iff B = ∪i∈ΛAi for some Λ ⊂ N.
2. g : Ω → R is G — measurable iff g =

P∞
i=1 λi1Ai for some λi ∈ R.

3. For f ∈ L1(Ω,F , P ), let E(f |Ai) := E [1Aif ] /P (Ai) if P (Ai) 6= 0 and
E(f |Ai) = 0 otherwise. Show

EGf =
∞X
i=1

E(f |Ai)1Ai .

Exercise 14.55. Folland 5.60 on p. 177.

Exercise 14.56. Folland 5.61 on p. 178 about orthonormal basis on product
spaces.

Exercise 14.57. Folland 5.67 on p. 178 regarding the mean ergodic theorem.

Exercise 14.58 (Haar Basis). In this problem, let L2 denote L2([0, 1],m)
with the standard inner product,

ψ(x) = 1[0,1/2)(x)− 1[1/2,1)(x)

and for k, j ∈ N0 := N∪{0} with 0 ≤ j < 2k let

ψkj(x) := 2
k/2ψ(2kx− j).

The following pictures shows the graphs of ψ00, ψ1,0, ψ1,1, ψ2,1, ψ2,2 and ψ2,3
respectively.
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1. Show β := {1} ∪ ©ψkj : 0 ≤ k and 0 ≤ j < 2k
ª
is an orthonormal set, 1

denotes the constant function 1.
2. For n ∈ N, let Mn := span

¡{1} ∪ ©ψkj : 0 ≤ k < n and 0 ≤ j < 2k
ª¢

.
Show

Mn = span
¡{1[j2−n,(j+1)2−n) : and 0 ≤ j < 2n

¢
.

3. Show ∪∞n=1Mn is a dense subspace of L2 and therefore β is an orthonormal
basis for L2. Hint: see Theorem 11.3.

4. For f ∈ L2, let

Hnf := hf,1i1+
n−1X
k=0

2k−1X
j=0

hf, ψkjiψkj .

Show (compare with Exercise 14.54)

Hnf =
2n−1X
j=0

Ã
2n
Z (j+1)2−n

j2−n
f(x)dx

!
1[j2−n,(j+1)2−n)

and use this to show kf −Hnfku → 0 as n→∞ for all f ∈ C([0, 1]).
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Exercise 14.59. Let O(n) be the orthogonal groups consisting of n× n real
orthogonal matrices O, i.e. OtrO = I. For O ∈ O(n) and f ∈ L2(Rn) let
UOf(x) = f(O−1x). Show

1. UOf is well defined, namely if f = g a.e. then UOf = UOg a.e.
2. UO : L2(Rn) → L2(Rn) is unitary and satisfies UO1UO2 = UO1O2 for all
O1, O2 ∈ O(n). That is to say the map O ∈ O(n) → U(L2(Rn)) — the
unitary operators on L2(Rn) is a group homomorphism, i.e. a “unitary
representation” of O(n).

3. For each f ∈ L2(Rn), the map O ∈ O(n) → UOf ∈ L2(Rn) is continu-
ous. Take the topology on O(n) to be that inherited from the Euclidean
topology on the vector space of all n× n matrices. Hint: see the proof of
Proposition 11.13.

Exercise 14.60. Prove Theorem 14.43. Hint: Let H0 := span {xn : n ∈ N}
— a separable Hilbert subspace of H. Let {λm}∞m=1 ⊂ H0 be an orthonormal
basis and use Cantor’s diagonalization argument to find a subsequence yk :=
xnk such that cm := limk→∞hyk, λmi exists for all m ∈ N. Finish the proof by
appealing to Proposition 14.42.

Exercise 14.61. Suppose that {xn}∞n=1 ⊂ H and xn
w→ x ∈ H as n → ∞.

Show xn → x as n→∞ (i.e. limn→∞ kx− xnk = 0) iff limn→∞ kxnk = kxk .
Exercise 14.62. Show the vector space operations of X are continuous in the
weak topology. More explicitly show

1. (x, y) ∈ X ×X → x+ y ∈ X is (τw ⊗ τw, τw) — continuous and
2. (λ, x) ∈ F×X → λx ∈ X is (τF ⊗ τw, τw) — continuous.

Exercise 14.63. Euclidean group representation and its infinitesimal gener-
ators including momentum and angular momentum operators.

Exercise 14.64. Spherical Harmonics.

Exercise 14.65. The gradient and the Laplacian in spherical coordinates.

Exercise 14.66. Legendre polynomials.

Exercise 14.67. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on BH which is invariant under translations
and satisfies, m(B0(�)) > 0 for all � > 0. Show m(V ) =∞ for all non-empty
open subsets V ⊂ H.
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14.9 Fourier Series Exercises

Notation 14.68 Let Ck
per(Rd) denote the 2π — periodic functions in Ck(Rd),

Ck
per(Rd) :=

©
f ∈ Ck(Rd) : f(x+ 2πei) = f(x) for all x ∈ Rd and i = 1, 2, . . . , dª .

Also let h·, ·i denote the inner product on the Hilbert space H := L2([−π, π]d)
given by

hf, gi :=
µ
1

2π

¶d Z
[−π,π]d

f(x)ḡ(x)dx.

Recall that
©
χk(x) := eik·x : k ∈ Zdª is an orthonormal basis for H in partic-

ular for f ∈ H,

f =
X
k∈Zd

hf, χkiχk (14.29)

where the convergence takes place in L2([−π, π]d). For f ∈ L1([−π, π]d), we
will write f̃(k) for the Fourier coefficient,

f̃(k) := hf, χki =
µ
1

2π

¶d Z
[−π,π]d

f(x)e−ik·xdx. (14.30)

Lemma 14.69. Let s > 0, then the following are equivalent,X
k∈Zd

1

(1 + |k|)s <∞,
X
k∈Zd

1

(1 + |k|2)s/2 <∞ and s > d. (14.31)

Proof. Let Q := (0, 1]d and k ∈ Zd. For x = k + y ∈ (k +Q),

2 + |k| = 2 + |x− y| ≤ 2 + |x|+ |y| ≤ 3 + |x| and
2 + |k| = 2 + |x− y| ≥ 2 + |x|− |y| ≥ |x|+ 1

and therefore for s > 0,

1

(3 + |x|)s ≤
1

(2 + |k|)s ≤
1

(1 + |x|)s .

Thus we have shown

1

(3 + |x|)s ≤
X
k∈Zd

1

(2 + |k|)s 1Q+k(x) ≤
1

(1 + |x|)s for all x ∈ R
d.

Integrating this equation then showsZ
Rd

1

(3 + |x|)s dx ≤
X
k∈Zd

1

(2 + |k|)s ≤
Z
Rd

1

(1 + |x|)s dx

from which we conclude that
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k∈Zd

1

(2 + |k|)s <∞ iff s > d. (14.32)

Because the functions 1+ t, 2+ t, and
√
1 + t2 all behave like t as t→∞, the

sums in Eq. (14.31) may be compared with the one in Eq. (14.32) to finish
the proof.

Exercise 14.70 (Riemann Lebesgue Lemma for Fourier Series). Show
for f ∈ L1([−π, π]d) that f̃ ∈ c0(Zd), i.e. f̃ : Zd → C and limk→∞ f̃(k) =
0. Hint: If f ∈ H, this follows form Bessel’s inequality. Now use a density
argument.

Exercise 14.71. Suppose f ∈ L1([−π, π]d) is a function such that f̃ ∈ c1(Zd)
and set

g(x) :=
X
k∈Zd

f̃(k)eik·x (pointwise).

1. Show g ∈ Cper(Rd).
2. Show g(x) = f(x) for m — a.e. x in [−π, π]d. Hint: Show g̃(k) = f̃(k) and
then use approximation arguments to showZ

[−π,π]d
f(x)h(x)dx =

Z
[−π,π]d

g(x)h(x)dx ∀ h ∈ C([−π, π]d).

3. Conclude that f ∈ L1([−π, π]d) ∩ L∞([−π, π]d) and in particular f ∈
Lp([−π, π]d) for all p ∈ [1,∞].

Exercise 14.72. Suppose m ∈ N0, α is a multi-index such that |α| ≤ 2m and
f ∈ C2mper(Rd)2 .

1. Using integration by parts, show

(ik)αf̃(k) = h∂αf, χki.

Note: This equality implies¯̄̄
f̃(k)

¯̄̄
≤ 1

kα
k∂αfkH ≤

1

kα
k∂αfku .

2. Now let ∆f =
Pd

i=1 ∂
2f/∂x2i , Working as in part 1) show

h(1−∆)mf, χki = (1 + |k|2)mf̃(k). (14.33)

Remark 14.73. Suppose that m is an even integer, α is a multi-index and
f ∈ C

m+|α|
per (Rd), then

2 We view Cper(R) as a subspace of H by identifying f ∈ Cper(R) with f |[−π,π] ∈ H.
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k∈Zd

|kα|
¯̄̄
f̃(k)

¯̄̄2

=

X
k∈Zd

|h∂αf, χki| (1 + |k|2)m/2(1 + |k|2)−m/2

2

=

X
k∈Zd

¯̄̄
h(1−∆)m/2∂αf, χki

¯̄̄
(1 + |k|2)−m/2

2

≤
X
k∈Zd

¯̄̄
h(1−∆)m/2∂αf, χki

¯̄̄2
·
X
k∈Zd

(1 + |k|2)−m

= Cm

°°°(1−∆)m/2∂αf
°°°2
H

where Cm :=
P

k∈Zd(1 + |k|2)−m <∞ iff m > d/2. So the smoother f is the
faster f̃ decays at infinity. The next problem is the converse of this assertion
and hence smoothness of f corresponds to decay of f̃ at infinity and visa-versa.

Exercise 14.74. Suppose s ∈ R and ©ck ∈ C : k ∈ Zdª are coefficients such
that X

k∈Zd
|ck|2 (1 + |k|2)s <∞.

Show if s > d
2 +m, the function f defined by

f(x) =
X
k∈Zd

cke
ik·x

is in Cm
per(Rd). Hint: Work as in the above remark to showX

k∈Zd
|ck| |kα| <∞ for all |α| ≤ m.

Exercise 14.75 (Poisson Summation Formula). Let F ∈ L1(Rd),

E :=

x ∈ Rd :
X
k∈Zd

|F (x+ 2πk)| =∞


and set

F̂ (k) := (2π)
−d/2

Z
Rd

F (x)e−ik·xdx.

Further assume F̂ ∈ c1(Zd).

1. Show m(E) = 0 and E + 2πk = E for all k ∈ Zd. Hint: ComputeR
[−π,π]d

P
k∈Zd |F (x+ 2πk)| dx.

2. Let

f(x) :=

½P
k∈Zd F (x+ 2πk) for x /∈ E

0 if x ∈ E.

Show f ∈ L1([−π, π]d) and f̃(k) = (2π)
−d/2

F̂ (k).
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3. Using item 2) and the assumptions on F, show f ∈ L1([−π, π]d) ∩
L∞([−π, π]d) and

f(x) =
X
k∈Zd

f̃(k)eik·x =
X
k∈Zd

(2π)
−d/2

F̂ (k)eik·x for m — a.e. x,

i.e. X
k∈Zd

F (x+ 2πk) = (2π)−d/2
X
k∈Zd

F̂ (k)eik·x for m — a.e. x. (14.34)

4. Suppose we now assume that F ∈ C(Rd) and F satisfies 1) |F (x)| ≤
C(1 + |x|)−s for some s > d and C < ∞ and 2) F̂ ∈ c1(Zd), then show
Eq. (14.34) holds for all x ∈ Rd and in particularX

k∈Zd
F (2πk) = (2π)

−d/2 X
k∈Zd

F̂ (k).

For simplicity, in the remaining problems we will assume that d = 1.

Exercise 14.76 (Heat Equation 1.). Let (t, x) ∈ [0,∞)×R→ u(t, x) be a
continuous function such that u(t, ·) ∈ Cper(R) for all t ≥ 0, u̇ := ut, ux, and
uxx exists and are continuous when t > 0. Further assume that u satisfies the
heat equation u̇ = 1

2uxx. Let ũ(t, k) := hu(t, ·), χki for k ∈ Z. Show for t > 0

and k ∈ Z that ũ(t, k) is differentiable in t and d
dt ũ(t, k) = −k2ũ(t, k)/2. Use

this result to show
u(t, x) =

X
k∈Z

e−
t
2k

2

f̃(k)eikx (14.35)

where f(x) := u(0, x) and as above

f̃(k) = hf, χki = 1

2π

Z π

−π
f(y)e−ikydy.

Notice from Eq. (14.35) that (t, x)→ u(t, x) is C∞ for t > 0.

Exercise 14.77 (Heat Equation 2.). Let qt(x) :=
1
2π

P
k∈Z e

− t
2k

2

eikx.
Show that Eq. (14.35) may be rewritten as

u(t, x) =

Z π

−π
qt(x− y)f(y)dy

and
qt(x) =

X
k∈Z

pt(x+ k2π)

where pt(x) := 1√
2πt

e−
1
2tx

2

. Also show u(t, x) may be written as

u(t, x) = pt ∗ f(x) :=
Z
Rd

pt(x− y)f(y)dy.
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Hint: To show qt(x) =
P

k∈Z pt(x+k2π), use the Poisson summation formula
along with the Gaussian integration formula

p̂t(ω) =
1√
2π

Z
R
pt(x)e

iωxdx =
1√
2π

e−
t
2ω

2

.

Exercise 14.78 (Wave Equation). Let u ∈ C2(R×R) be such that u(t, ·) ∈
Cper(R) for all t ∈ R. Further assume that u solves the wave equation, utt =
uxx. Let f(x) := u(0, x) and g(x) = u̇(0, x). Show ũ(t, k) := hu(t, ·), χki for
k ∈ Z is twice continuously differentiable in t and d2

dt2 ũ(t, k) = −k2ũ(t, k). Use
this result to show

u(t, x) =
X
k∈Z

µ
f̃(k) cos(kt) + g̃(k)

sin kt

k

¶
eikx (14.36)

with the sum converging absolutely. Also show that u(t, x) may be written as

u(t, x) =
1

2
[f(x+ t) + f(x− t)] +

1

2

Z t

−t
g(x+ τ)dτ. (14.37)

Hint: To show Eq. (14.36) implies (14.37) use

cos kt =
eikt + e−ikt

2
, and sin kt =

eikt − e−ikt

2i

and
eik(x+t) − eik(x−t)

ik
=

Z t

−t
eik(x+τ)dτ.
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Exercise 14.79 (Worked Example). Let D := {z ∈ C : |z| < 1} be the
open unit disk in C ∼= R2, where we write z = x + iy = reiθ in the usual
way. Also let ∆ = ∂2

∂x2 +
∂2

∂y2 and recall that ∆ may be computed in polar
coordinates by the formula,

∆u = r−1∂r
¡
r−1∂ru

¢
+
1

r2
∂2θu.

Suppose that u ∈ C(D̄)∩C2(D) and ∆u(z) = 0 for z ∈ D. Let g = u|∂D and

g̃(k) :=
1

2π

Z π

−π
g(eikθ)e−ikθdθ.

(We are identifying S1 = ∂D :=
©
z ∈ D̄ : |z| = 1ª with [−π, π]/ (π ∼ −π) by

the map θ ∈ [−π, π]→ eiθ ∈ S1.) Let

ũ(r, k) :=
1

2π

Z π

−π
u(reiθ)e−ikθdθ (14.38)

then:
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1. ũ(r, k) satisfies the ordinary differential equation

r−1∂r (r∂rũ(r, k)) =
1

r2
k2ũ(r, k) for r ∈ (0, 1).

2. Recall the general solution to

r∂r (r∂ry(r)) = k2y(r) (14.39)

may be found by trying solutions of the form y(r) = rα which then implies
α2 = k2 or α = ±k. From this one sees that ũ(r, k) may be written as
ũ(r, k) = Akr

|k| + Bkr
−|k| for some constants Ak and Bk when k 6= 0. If

k = 0, the solution to Eq. (14.39) is gotten by simple integration and the
result is ũ(r, 0) = A0+B0 ln r. Since ũ(r, k) is bounded near the origin for
each k, it follows that Bk = 0 for all k ∈ Z.

3. So we have shown

Akr
|k| = ũ(r, k) =

1

2π

Z π

−π
u(reiθ)e−ikθdθ

and letting r ↑ 1 in this equation implies

Ak =
1

2π

Z π

−π
u(eiθ)e−ikθdθ = g̃(k).

Therefore,
u(reiθ) =

X
k∈Z

g̃(k)r|k|eikθ (14.40)

for r < 1 or equivalently,

u(z) =
X
k∈N0

g̃(k)zk +
X
k∈N

g̃(−k)z̄k.

4. Inserting the formula for g̃(k) into Eq. (14.40) gives

u(reiθ) =
1

2π

Z π

−π

ÃX
k∈Z

r|k|eik(θ−α)
!
u(eiα)dα for all r < 1.

Now by simple geometric series considerations we find, setting δ = θ− α,
thatX

k∈Z
r|k|eikδ =

∞X
k=0

rkeikδ +
∞X
k=0

rke−ikδ − 1 = 2Re
∞X
k=0

rkeikδ − 1

= Re

·
2

1

1− reiδ
− 1
¸
= Re

·
1 + reiδ

1− reiδ

¸
= Re

"¡
1 + reiδ

¢ ¡
1− re−iδ

¢
|1− reiδ|2

#
= Re

·
1− r2 + 2ir sin δ

1− 2r cos δ + r2

¸
(14.41)

=
1− r2

1− 2r cos δ + r2
.



14.10 Dirichlet Problems on D 381

Putting this altogether we have shown

u(reiθ) =
1

2π

Z π

−π
Pr(θ − α)u(eiα)dα =: Pr ∗ u(eiθ)

=
1

2π
Re

Z π

−π

1 + rei(θ−α)

1− rei(θ−α)
u(eiα)dα (14.42)

where

Pr(δ) :=
1− r2

1− 2r cos δ + r2

is the so called Poisson kernel. (The fact that 1
2π Re

R π
−π Pr(θ)dθ = 1

follows from the fact that

1

2π

Z π

−π
Pr(θ)dθ = Re

1

2π

Z π

−π

X
k∈Z

r|k|eikθdθ

= Re
1

2π

X
k∈Z

Z π

−π
r|k|eikθdθ = 1.)

Writing z = reiθ, Eq. (14.42) may be rewritten as

u(z) =
1

2π
Re

Z π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα

which shows u = ReF where

F (z) :=
1

2π

Z π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα.

Moreover it follows from Eq. (14.41) that

ImF (reiθ) =
1

π
Im

Z π

−π

r sin(θ − α)

1− 2r cos(θ − α) + r2
u(eiα)dα

=: Qr ∗ u(eiθ)

where

Qr(δ) :=
r sin(δ)

1− 2r cos(δ) + r2
.

From these remarks it follows that v is the harmonic conjugate of u and
P̃r = Qr.

Exercise 14.80. Show
P∞

k=1 k
−2 = π2/6, by taking f(x) = x on [−π, π] and

computing kfk22 directly and then in terms of the Fourier Coefficients f̃ of f.
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Polar Decomposition of an Operator

In this section H and B will be Hilbert spaces. Typically H and B will be
separable, but we will not assume this until it is needed later.

Theorem 15.1. Suppose T ∈ L(H) := L(H,H) is a bounded self-adjoint
operator, then

kTk = sup
f 6=0

|(f, Tf)|
kfk2 .

Moreover if there exists a non-zero element g ∈ H such that

|(Tg, g)|
kgk2 = kTk,

then g is an eigenvector of T with Tg = λg and λ ∈ {±kTk}.
Proof. Let

M := sup
f 6=0

|(f, Tf)|
kfk2 .

We wish to show M = kTk. Since |(f, Tf)| ≤ kfkkTfk ≤ kTkkfk2, we see
M ≤ kTk.
Conversely let f, g ∈ H and compute

(f + g, T (f + g))− (f − g, T (f − g))

= (f, Tg) + (g, Tf) + (f, Tg) + (g, Tf)

= 2[(f, Tg) + (Tg, f)] = 2[(f, Tg) + (f, Tg)]

= 4Re(f, Tg).

Therefore, if kfk = kgk = 1, it follows that

|Re(f, Tg)| ≤ M

4

©kf + gk2 + kf − gk2ª = M

4

©
2kfk2 + 2kgk2ª =M.

By replacing f be eiθf where θ is chosen so that eiθ(f, Tg) is real, we find
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|(f, Tg)| ≤M for all kfk = kgk = 1.

Hence
kTk = sup

kfk=kgk=1
|(f, Tg)| ≤M.

If g ∈ H \ {0} and kTk = |(Tg, g)|/kgk2 then, using the Cauchy Schwarz
inequality,

kTk = |(Tg, g)|
kgk2 ≤ kTgkkgk ≤ kTk. (15.1)

This implies |(Tg, g)| = kTgkkgk and forces equality in the Cauchy Schwarz
inequality. So by Theorem 14.2, Tg and g are linearly dependent, i.e. Tg = λg
for some λ ∈ C. Substituting this into (15.1) shows that |λ| = kTk. Since T
is self-adjoint,

λkgk2 = (λg, g) = (Tg, g) = (g, Tg) = (g, λg) = λ̄(g, g),

which implies that λ ∈ R and therefore, λ ∈ {±kTk}.
Definition 15.2. An operator A ∈ B(H) is said to be positive (more pre-
cisely, non-negative) if A∗ = A and (x,Ax) ≥ 0 for all x ∈ H. We say A is
strictly positive if A is positive and (x,Ax) = 0 iff x = 0. If A,B ∈ B(H)
are two self-adjoint operators, we write A ≤ B if B −A ≥ 0.
Remark 15.3. If A,B ∈ B(H) are two self-adjoint operators then A ≤ B iff
(x,Ax) ≤ (x,Bx) for all x ∈ H.

Lemma 15.4. Suppose A ∈ B(H) is a positive operator, then

1. Nul(A) = {x ∈ H : (x,Ax) = 0} .
2. Nul(A) = Nul(A2).
3. If A,B ∈ B(H) are two positive operators then Nul(A + B) = Nul(A) ∩
Nul(B).

Proof. Items 2. and 3. are fairly easy and will be left to the reader. To
prove Item 1., it suffices to show {x ∈ H : (x,Ax) = 0} ⊂ Nul(A) since the
reverse inclusion is trivial. For sake of contradiction suppose there exists x 6= 0
such that y = Ax 6= 0 and (x,Ax) = 0. Then or any λ < 0, x+λy 6= 0 because
y ⊥ x. Since

(x+ λy,A (x+ λy)) = (x,Ax) + 2λRe(x,Ay) + λ2(Ay, y)

= 2λ kyk2 + λ2(Ay, y)

it follows that (x + λy,A (x+ λy)) < 0 for λ < 0 sufficiently close to zero.
This contradicts the positivity of A.
The next few results are taken from Reed and Simon [9], see Theorem VI.9

on p. 196 and problems 14 and 15 on p. 217 of [9].
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Proposition 15.5 (Square Roots). Suppose A ∈ L(H) and A ≥ 0. Then
there exist a unique B ∈ L(H) such that B ≥ 0 and B2 = A. Moreover, if
C ∈ L(H) commutes with A then C commutes with B as well. (We write

√
A

for B and call B the square root of A.)

Proof. Existence of B. By replacing A by A/ kAk we may assume kAk ≤
1. Letting T = I−A and x ∈ H we have (x, Tx) = kxk2− (Ax, x) from which
it follows that

kxk2 ≥ (x, Tx) ≥ kxk2 − kAk kxk2 ≥ 0.
Hence T ∈ B(H), 0 ≤ T ≤ I, A = I − T and kTk ≤ 1 by Theorem 15.1.
Recall from Exercise 11.62 that there are ci > 0 such that

P∞
i=1 ci = 1.

√
1− x = 1−

∞X
i=1

cix
i for all |x| ≤ 1. (15.2)

Hence let √
A =

√
I − T := I −

∞X
i=1

ciT
i

where the sum is convergent in B(H). Since¯̄
(x, T ix)

¯̄ ≤ °°T i
°° kxk2 ≤ kTki kxk2 ≤ kxk2 ,

(x,
√
Ax) = kxk2 −

∞X
i=1

ci(x, T
ix) ≥ kxk2

"
1−

∞X
i=1

ci

#
= 0

which shows
√
A ≥ 0. Similarly, since

¡
x, T 2ix

¢
=
¡
T ix, T ix

¢ ≥ 0 and¡
x, T 2i+1x

¢
=
¡
T ix, TT ix

¢ ≥ 0 for all i it follows that
(x,
√
Ax) = kxk2 −

∞X
i=1

ci(x, T
ix) ≤ kxk2

so that 0 ≤ √A ≤ I.
Letting c0 = −1 and squaring the identity in Eq. (15.2) shows

1− x =

Ã
−
∞X
i=0

cix
i

!2
=

∞X
i,j=0

cicjx
i+j =

∞X
k=0

 X
i+j=k

cicj

xk

where the sums are absolutely and uniformly convergent for |x| ≤ 1. From
this we conclude that X

i+j=k

cicj

 =

 1 if k = 0
−1 if k = 1
0 otherwise.
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Hence

³√
A
´2
=

Ã
−
∞X
i=0

ciT
i

!2
=

∞X
i,j=0

cicjT
i+j

=
∞X
k=0

 X
i+j=k

cicj

T k = I − T = A

as desired and
√
A commutes with any operator commuting with A.

Uniqueness. Suppose B ≥ 0 and B2 = A. Then [B,A] = [B,B2] = 0
and [B,

√
A] = 0. Therefore,

0 = B2 −
³√

A
´2
=
³
B −

√
A
´³

B +
√
A
´

from which it follows
³
B −√A

´
= 0 on Ran(C) where C := B +

√
A. Using

Lemma 15.4,

Ran(C)
⊥
= Nul(C∗) = Nul(B) ∩Nul(

√
A)

and hence B − √A = 0 on Ran(C)
⊥
. Therefore B − √A = 0 on Ran(C) ⊕

Ran(C)
⊥
= H and this completes the proof.

Second proof of uniqueness. This proof is more algebraic and avoids
using Lemma 15.4. As before,

0 =
£
C2 −B2

¤
(C −B) = (C −B) (C +B) (C −B)

= (C −B)C (C −B) + (C −B)B (C −B)

and since both terms in the last line of this equation are positive it follows
that each term individually is zero, see Theorem 15.1. Subtracting these two
terms then shows (C −B)3 = 0 which implies (C −B)4 = 0. This completes

the proof since, by Proposition 14.16, kC −Bk4 =
°°°(C −B)4

°°° = 0.
Definition 15.6. The absolute value of an operator A ∈ L(H,B) is defined
to be

|A| :=
√
A∗A ∈ L(H).

Proposition 15.7 (Properties of the Square Root). Suppose that An

and A are positive operators on H and kA − AnkB(H) → 0 as n → ∞, then√
An →

√
A in B(H) also. Moreover, An and A are general bounded operators

on H and An → A in the operator norm then |An|→ |A|.
Proof. With out loss of generality, assume that kAnk ≤ 1 for all n. This

implies also that that kAk ≤ 1. Then
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√
A−

p
An =

∞X
i=1

ci{(An − I)i − (A− I)i}

and hence

k
√
A−

p
Ank ≤

∞X
i=1

cik(An − I)i − (A− I)ik. (15.3)

For the moment we will make the additional assumption that An ≥ �I, where
� ∈ (0, 1). Then 0 ≤ I−An ≤ (1−�)I and in particular kI−AnkB(H) ≤ (1−�).
Now suppose that Q, R, S, T are operators on H, then QR − ST =

(Q− S)R+ S(R− T ) and hence

kQR− STk ≤ kQ− SkkRk+ kSkkR− Tk.
Setting Q = An − I, R ≡ (An − I)i−1, S ≡ (A − I) and T = (A − I)i−1 in
this last inequality gives

k(An − I)i − (A− I)ik
≤ kAn −Akk(An − I)i−1k+ k(A− I)kk(An − I)i−1 − (A− I)i−1k
≤ kAn −Ak(1− �)i−1 + (1− �)k(An − I)i−1 − (A− I)i−1k. (15.4)

It now follows by induction that

k(An − I)i − (A− I)ik ≤ i(1− �)i−1kAn −Ak.
Inserting this estimate into (15.3) shows that

k
√
A−

p
Ank ≤

∞X
i=1

cii(1− �)i−1kAn −Ak

=
1

2

1p
1− (1− �)

kA−Ank = 1

2

1√
�
kA−Ank→ 0.

Therefore we have shown if An ≥ �I for all n and An → A in norm then√
An →

√
A in norm.

For the general case where An ≥ 0, we find that for all � > 0
lim
n→∞

p
An + � =

√
A+ �. (15.5)

By the spectral theorem1

1 It is possible to give a more elementary proof here. Indeed, assume further that
kAk ≤ α < 1, then for � ∈ (0, 1− α), k√A+ �−√Ak ≤P∞

i=1 cik(A+ �)i −Aik.
But

k(A+ �)i −Aik ≤
iX

k=1

Ã
i

k

!
�kkAi−kk ≤

iX
k=1

Ã
i

k

!
�kkAki−k = (kAk+ �)i − kAki,

so that k√A+ �−√Ak ≤ pkAk+ �−pkAk → 0 as �→ 0 uniformly in A ≥ 0
such that kAk ≤ α < 1.
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k√A+ �−
√
Ak ≤ max

x∈σ(A)
|√x+ �−√x|

≤ max
0≤x≤kAk

|√x+ �−√x|→ 0 as �→ 0.

Since the above estimates are uniform in A ≥ 0 such that kAk is bounded, it
is now an easy matter to conclude that Eq. (15.5) holds even when � = 0.
Now suppose that An → A in B(H) and An and A are general operators.

Then A∗nAn → A∗A in B(H). So by what we have already proved,

|An| ≡
p
A∗nAn → |A| ≡

√
A∗A in B(H) as n→∞.

Definition 15.8. An operator u ∈ L(H,B) is a partial isometry if
u|Nul(u)⊥ : Nul(u)⊥ → B is an isometry. We say Nul(u)⊥ is the initial space
and Ran(u) is the final subspace of u. (The reader should verify that Ran(u)
is a closed subspace.) Let Pi and Pf denote orthogonal projections onto the
initial final subspaces.

Lemma 15.9. Let u ∈ L(H,B), then u is a partial isometry iff u∗u and uu∗

are orthogonal projections. Moreover if u is a partial isometry then uu∗ = Pf
and u∗u = Pi.

Proof. Suppose u is a partial isometry then relative to the decompositions
of H and B as H = Nul(u)⊥⊕Nul(u) and B = Ran(u)⊕Ran(u)⊥, u has the
block diagonal form

u =

µ
u0 0
0 0

¶
where u0 : Nul(u)⊥ → Ran(u) is a unitary map. Hence

uu∗ =
µ
u0 0
0 0

¶µ
u∗0 0
0 0

¶
=

µ
u0u
∗
0 0

0 0

¶
=

µ
IRan(u) 0
0 0

¶
= Pf

and similarly,

u∗u =
µ
u∗0u0 0
0 0

¶
=

µ
INul(u)⊥ 0
0 0

¶
= Pi.

Now suppose that u ∈ L(H,B) and Pi := u∗u ∈ L(H) and Pf := uu∗ ∈
L(B) are orthogonal projection maps. Notice that

Ran(Pi) = Nul(Pi)
⊥ = Nul(u)⊥.

Hence if h ∈ Nul(u)⊥,
kuhk2 = (h, u∗uh) = (h, Pih) = khk2

which shows u is a partial isometry.
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Theorem 15.10 (Polar Decomposition). Let A ∈ L(H,B). Then

1. there exists a partial isometry u ∈ L(H,B) such that A = u |A| and u is
unique if we further require Nul(u) = Nul(A).

2. If B ∈ L(H) is a positive operator and u ∈ L(H,B) is a partial isometry
such that A = uB and Nul(u)⊥ = Ran(B), then B = |A| and u is the
isometry in item 1.

Proof. Suppose that B and u are as in item 2., then

A∗A = Bu∗uB = BPiB = B2.

Therefore by Proposition 15.5, B = |A| . If there exists u ∈ L(H,B) such that
A = u |A| it is clear that u is uniquely determined on Ran(|A|) by requiring

u |A|h = Ah for all h ∈ H. (15.6)

Since kAhk2 = (A∗Ah, h) = k|A|hk2 it follows that defining u on Ran(|A|) by
Eq. (15.6) is well defined and u : Ran(|A|)→ B is an isometry. By the B.L.T.
Theorem, we may extend u uniquely to an isometry from Ran(|A|)→ B and

make u into a partial isometry by setting u = 0 on Ran(|A|)⊥. Since this
uniquely determines u, Nul(u) = Ran(|A|)⊥ and

Ran(|A|)⊥ = Nul(|A|) = Nul(|A|2) = Nul(A∗A) = Nul(A)

the proof is complete.

Remark 15.11.When B = H, we will see using the spectral theorem that u is
a strong limit of polynomials in A and A∗, i.e. u is the von Neumann algebra
generated by A. To prove this let fn(x) := min(x−1, n−1) for x ≥ 0. Then
notice that un := Afn(|A|) converges strongly to u as n→∞. Since fn may be
uniformly approximated by polynomials, un is the norm limit of polynomials
in A and |A| . Finally |A| is the norm limit of polynomials in A∗A and so un
is the norm limit of polynomias in A and A∗. Moreover these polynomials are
of the form Apn(A

∗A).
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Compact Operators

Proposition 16.1. Let M be a finite dimensional subspace of a Hilbert space
H then

1. M is complete (hence closed).
2. Closed bounded subsets of M are compact.

Proof. Using the Gram-Schmidt procedure, we may choose an orthonor-
mal basis {φ1, . . . , φn} of M. Define U : M → Cn to be the unique unitary
map such that Uφi = ei where ei is the ith standard basis vector in Cn. It
now follows that M is complete and that closed bounded subsets of M are
compact since the same is true for Cn.

Definition 16.2. A bounded operator K : H → B is compact if K maps
bounded sets into precompact sets, i.e. K(U) is compact in B, where U := {x ∈
H : kxk < 1} is the unit ball in H. Equivalently, for all bounded sequences
{xn}∞n=1 ⊂ H, the sequence {Kxn}∞n=1 has a convergent subsequence in B.

Notice that if dim(H) = ∞ and T : H → B is invertible, then T is not
compact.

Definition 16.3. K : H → B is said to have finite rank if Ran(K) ⊂ B is
finite dimensional.

Corollary 16.4. If K : H → B is a finite rank operator, then K is compact.
In particular if either dim(H) <∞ or dim(B) <∞ then any bounded operator
K : H → B is finite rank and hence compact.

Example 16.5. Let (X,µ) be a measure space, H = L2(X,µ) and

k(x, y) ≡
nX
i=1

fi(x)gi(y)

where
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fi, gi ∈ L2(X,µ) for i = 1, . . . , n.

Define (Kf)(x) =
R
X
k(x, y)f(y)dµ(y), then K : L2(X,µ) → L2(X,µ) is a

finite rank operator and hence compact.

Lemma 16.6. Let K := K(H,B) denote the compact operators from H to
B. Then K(H,B) is a norm closed subspace of L(H,B).

Proof. The fact that K is a vector subspace of L(H,B) will be left to the
reader. Now let Kn : H → B be compact operators and K : H → B be a
bounded operator such that limn→∞ kKn −Kkop = 0. We will now show K
is compact.
First Proof. Given � > 0, choose N = N(�) such that kKN −Kk < �.

Using the fact that KNU is precompact, choose a finite subset Λ ⊂ U such
that minx∈Λ ky −KNxk < � for all y ∈ KN (U) . Then for z = Kx0 ∈ K(U)
and x ∈ Λ,

kz −Kxk = k(K −KN )x0 +KN (x0 − x) + (KN −K)xk
≤ 2�+ kKNx0 −KNxk.

Therefore minx∈Λ kz −KNxk < 3�, which shows K(U) is 3� bounded for all
� > 0, K(U) is totally bounded and hence precompact.
Second Proof. Suppose {xn}∞n=1 is a bounded sequence in H. By com-

pactness, there is a subsequence
©
x1n
ª∞
n=1

of {xn}∞n=1 such that
©
K1x

1
n

ª∞
n=1

is convergent in B. Working inductively, we may construct subsequences

{xn}∞n=1 ⊃
©
x1n
ª∞
n=1
⊃ ©x2nª∞n=1 · · · ⊃ {xmn }∞n=1 ⊃ . . .

such that {Kmx
m
n }∞n=1 is convergent in B for each m. By the usual Cantor’s

diagonalization procedure, let yn := xnn, then {yn}∞n=1 is a subsequence of
{xn}∞n=1 such that {Kmyn}∞n=1 is convergent for all m. Since

kKyn −Kylk ≤ k(K −Km) ynk+ kKm(yn − yl)k+ k(Km −K) yl)k
≤ 2 kK −Kmk+ kKm(yn − yl)k ,

lim sup
n,l→∞

kKyn −Kylk ≤ 2 kK −Kmk→ 0 as m→∞,

which shows {Kyn}∞n=1 is Cauchy and hence convergent.
Proposition 16.7. A bounded operator K : H → B is compact iff there exists
finite rank operators, Kn : H → B, such that kK −Knk→ 0 as n→∞.

Proof. Since K(U) is compact it contains a countable dense subset and
from this it follows that K (H) is a separable subspace of B. Let {φn} be an
orthonormal basis for K (H) ⊂ B and PNy =

NP
n=1

(y, φn)φn be the orthogonal

projection of y onto span{φn}Nn=1. Then limN→∞ kPNy − yk = 0 for all y ∈
K(H).
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Define Kn ≡ PnK — a finite rank operator on H. For sake of contradiction
suppose that lim supn→∞ kK−Knk = � > 0, in which case there exists xnk ∈
U such that k(K −Knk)xnkk ≥ � for all nk. Since K is compact, by passing
to a subsequence if necessary, we may assume {Kxnk}∞nk=1 is convergent in
B. Letting y ≡ limk→∞Kxnk ,

k(K −Knk)xnkk = k(1− Pnk)Kxnkk
≤ k(1− Pnk)(Kxnk − y)k+ k(1− Pnk)yk
≤ kKxnk − yk+ k(1− Pnk)yk→ 0 as k →∞.

But this contradicts the assumption that � is positive and hence we must
have limn→∞ kK −Knk = 0, i.e. K is an operator norm limit of finite rank
operators. The converse direction follows from Corollary 16.4 and Lemma
16.6.

Corollary 16.8. If K is compact then so is K∗.

Proof. First Proof. Let Kn = PnK be as in the proof of Proposition
16.7, then K∗n = K∗Pn is still finite rank. Furthermore, using Proposition
14.16,

kK∗ −K∗nk = kK −Knk→ 0 as n→∞
showing K∗ is a limit of finite rank operators and hence compact.
Second Proof. Let {xn}∞n=1 be a bounded sequence in B, then

kK∗xn −K∗xmk2 = (xn − xm,KK∗ (xn − xm)) ≤ 2C kKK∗ (xn − xm)k
(16.1)

where C is a bound on the norms of the xn. Since {K∗xn}∞n=1 is also a bounded
sequence, by the compactness of K there is a subsequence {x0n} of the {xn}
such that KK∗x0n is convergent and hence by Eq. (16.1), so is the sequence
{K∗x0n} .
Corollary 16.9. If K ∈ L(H,B) then |K| is compact.
Proof. Since K is compact then any polynomial inK∗K is compact. Since

|K| is the norm limit of polynomials in K∗K, it follows that |K| is compact
as well.

16.1 Hilbert Schmidt and Trace Class Operators

Proposition 16.10. Let H and B be a separable Hilbert spaces, K : H → B
be a bounded linear operator, {en}∞n=1 and {um}∞m=1 be orthonormal basis for
H and B respectively. Then:
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1.
P∞

n=1 kKenk2 =
P∞

m=1 kK∗umk2 allowing for the possibility that the
sums are infinite. In particular the Hilbert Schmidt norm of K,

kKk2HS :=
∞X
n=1

kKenk2 ,

is well defined independent of the choice of orthonormal basis {en}∞n=1.
We say K : H → B is a Hilbert Schmidt operator if kKkHS <∞ and
let HS(H,B) denote the space of Hilbert Schmidt operators from H to B.

2. For all K ∈ L(H,B), kKkHS = kK∗kHS and

kKkHS ≥ kKkop := sup {kKhk : h ∈ H 3 khk = 1} .

3. The set HS(H,B) is a subspace of K(H,B) and k·kHS is a norm on
HS(H,B) for which (HS(H,B), k·kHS) is a Hilbert space. The inner prod-
uct on HS(H,B) is given by

(K1,K2)HS =
∞X
n=1

(K1en,K2en). (16.2)

4. Let PNx :=
PN

n=1(x, en)en be orthogonal projection onto span {ei : i ≤ N} ⊂
H and for K ∈ HS(H,B), let Kn := KPn. Then

kK −KNk2op ≤ kK −KNk2HS → 0 as N →∞,

which shows that finite rank operators are dense in (HS(H,B), k·kHS) .
5. If L is another Hilbert space and A : L→ H and C : B → L are bounded
operators, then

kKAkHS ≤ kKkHS kAkop and kCKkHS ≤ kKkHS kCkop .

Proof. Items 1. and 2. By Parseval’s equality and Fubini’s theorem for
sums,

∞X
n=1

kKenk2 =
∞X
n=1

∞X
m=1

|(Ken, um)|2

=
∞X

m=1

∞X
n=1

|(en,K∗um)|2 =
∞X

m=1

kK∗umk2 .

This proves kKkHS is well defined independent of basis and that kKkHS =
kK∗kHS . For x ∈ H \ {0} , x/ kxk may be taken to be the first element in an
orthonormal basis for H and hence°°°°K x

kxk
°°°° ≤ kKkHS .
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Multiplying this inequality by kxk shows kKxk ≤ kKkHS kxk and hence
kKkop ≤ kKkHS .
Item 3. For K1,K2 ∈ L(H,B),

kK1 +K2kHS =

vuut ∞X
n=1

kK1en +K2enk2

≤
vuut ∞X

n=1

[kK1enk+ kK2enk]2

= k{kK1enk+ kK2enk}∞n=1kc2
≤ k{kK1enk}∞n=1kc2 + k{kK2enk}∞n=1kc2
= kK1kHS + kK2kHS .

From this triangle inequality and the homogeneity properties of k·kHS , we
now easily see that HS(H,B) is a subspace of K(H,B) and k·kHS is a norm
on HS(H,B). Since

∞X
n=1

|(K1en,K2en)| ≤
∞X
n=1

kK1enk kK2enk

≤
vuut ∞X

n=1

kK1enk2
vuut ∞X

n=1

kK2enk2 = kK1kHS kK2kHS ,

the sum in Eq. (16.2) is well defined and is easily checked to define an inner
product onHS(H,B) such that kKk2HS = (K1,K2)HS . To see thatHS(H,B)
is complete in this inner product suppose {Km}∞m=1 is a k·kHS — Cauchy se-
quence in HS(H,B). Because L(H,B) is complete, there exists K ∈ L(H,B)
such that kKm −Kkop → 0 as m→∞. Since

NX
n=1

k(K −Km) enk2 = lim
l→∞

NX
n=1

k(Kl −Km) enk2 ≤ lim sup
l→∞

kKl −KmkHS ,

kKm −Kk2HS =
∞X
n=1

k(K −Km) enk2 = lim
N→∞

NX
n=1

k(K −Km) enk2

≤ lim sup
l→∞

kKl −KmkHS → 0 as m→∞.

Item 4. Simply observe,

kK −KNk2op ≤ kK −KNk2HS =
X
n>N

kKenk2 → 0 as N →∞.
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Item 5. For C ∈ L(B,L) and K ∈ L(H,B) then

kCKk2HS =
∞X
n=1

kCKenk2 ≤ kCk2op
∞X
n=1

kKenk2 = kCk2op kKk2HS

and for A ∈ L (L,H) ,

kKAkHS = kA∗K∗kHS ≤ kA∗kop kK∗kHS = kAkop kKkHS .

Remark 16.11. The separability assumptions made in Proposition 16.10 are
unnecessary. In general, we define

kKk2HS =
X
e∈Γ

kKek2

where Γ ⊂ H is an orthonormal basis. The same proof of Item 1. of
Proposition 16.10 shows kKkHS is well defined and kKkHS = kK∗kHS .

If kKk2HS < ∞, then there exists a countable subset Γ0 ⊂ Γ such that
Ke = 0 if e ∈ Γ \ Γ0. Let H0 := span(Γ0) and B0 := K(H0). Then
K (H) ⊂ B0, K|H⊥0 = 0 and hence by applying the results of Proposition
16.10 to K|H0 : H0 → B0 one easily sees that the separability of H and B are
unnecessary in Proposition 16.10.

Exercise 16.12. Suppose that (X,µ) is a σ—finite measure space such that
H = L2(X,µ) is separable and k : X ×X → R is a measurable function, such
that

kkk2L2(X×X,µ⊗µ) ≡
Z
X×X

|k(x, y)|2dµ(x)dµ(y) <∞.

Define, for f ∈ H,

Kf(x) =

Z
X

k(x, y)f(y)dµ(y),

when the integral makes sense. Show:

1. Kf(x) is defined for µ—a.e. x in X.
2. The resulting function Kf is in H and K : H → H is linear.
3. kKkHS = kkkL2(X×X,µ⊗µ) <∞. (This implies K ∈ HS(H,H).)

Solution 16.13 (16.12). SinceZ
X

dµ(x)

µZ
X

|k(x, y)f(y)| dµ(y)
¶2

≤
Z
X

dµ(x)

µZ
X

|k(x, y)|2 dµ(y)
¶µZ

X

|f(y)|2 dµ(y)
¶

≤ kkk22 kfk22 <∞, (16.3)
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we learn Kf is almost everywhere defined and that Kf ∈ H. The linearity
of K is a consequence of the linearity of the Lebesgue integral. Now suppose
{φn}∞n=1 is an orthonormal basis for H. From the estimate in Eq. (16.3),
k(x, ·) ∈ H for µ — a.e. x ∈ X and therefore

kKk2HS =
∞X
n=1

Z
X

dµ(x)

¯̄̄̄Z
X

k(x, y)φn(y)dµ(y)

¯̄̄̄2
=
∞X
n=1

Z
X

dµ(x)
¯̄
(φn, k̄(x, ·))

¯̄2
=

Z
X

dµ(x)
∞X
n=1

¯̄
(φn, k̄(x, ·))

¯̄2
=

Z
X

dµ(x)
°°k̄(x, ·)°°2

H
=

Z
X

dµ(x)

Z
X

dµ(y) |k(x, y)|2 = kkk22 .

Example 16.14. Suppose that Ω ⊂ Rn is a bounded set, α < n, then the
operator K : L2(Ω,m)→ L2(Ω,m) defined by

Kf(x) :=

Z
Ω

1

|x− y|α f(y)dy

is compact.

Proof. For � ≥ 0, let

K�f(x) :=

Z
Ω

1

|x− y|α + �
f(y)dy = [g� ∗ (1Ωf)] (x)

where g�(x) =
1

|x|α+�1C(x) with C ⊂ Rn a sufficiently large ball such that
Ω −Ω ⊂ C. Since α < n, it follows that

g� ≤ g0 = |·|−α 1C ∈ L1(Rn,m).

Hence it follows by Proposition 11.12 that

k(K −K�) fkL2(Ω) ≤ k(g0 − g�) ∗ (1Ωf)kL2(Rn)
≤ k(g0 − g�)kL1(Rn) k1ΩfkL2(Rn)
= k(g0 − g�)kL1(Rn) kfkL2(Ω)

which implies

kK −K�kB(L2(Ω)) ≤ kg0 − g�kL1(Rn)
=

Z
C

¯̄̄̄
1

|x|α + �
− 1

|x|α
¯̄̄̄
dx→ 0 as � ↓ 0 (16.4)

by the dominated convergence theorem. For any � > 0,Z
Ω×Ω

·
1

|x− y|α + �

¸2
dxdy <∞,

and hence K� is Hilbert Schmidt and hence compact. By Eq. (16.4), K� → K
as � ↓ 0 and hence it follows that K is compact as well.
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16.2 The Spectral Theorem for Self Adjoint Compact
Operators

Lemma 16.15. Suppose T : H → B is a bounded operator, then Nul(T ∗) =
Ran(T )⊥ and Ran(T ) = Nul(T ∗)⊥. Moreover if B = H and V ⊂ H is a T —
invariant subspace (i.e. T (V ) ⊂ V ), then V ⊥ is T ∗ — invariant.

Proof. An element y ∈ B is in Nul(T ∗) iff 0 = (T ∗y, x) = (y,Ax) for
all x ∈ H which happens iff y ∈ Ran(T )⊥. Because Ran(T ) = Ran(T )⊥⊥,
Ran(T ) = Nul(T ∗)⊥.
Now suppose T (V ) ⊂ V and y ∈ V ⊥, then

(T ∗y, x) = (y, Tx) = 0 for all x ∈ V

which shows T ∗y ∈ V ⊥.
For the rest of this section, T ∈ K(H) := K(H,H) will be a self-adjoint

compact operator or S.A.C.O. for short.

Example 16.16 (Model S.A.C.O.). Let H = c2 and T be the diagonal matrix

T =


λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...
...
. . .
. . .

 ,

where limn→∞ |λn| = 0 and λn ∈ R. Then T is a self-adjoint compact operator.
(Prove!)

The main theorem of this subsection states that up to unitary equivalence,
Example 16.16 is essentially the most general example of an S.A.C.O.

Theorem 16.17. Let T be a S.A.C.O., then either λ = kTk or λ = − kTk is
an eigenvalue of T.

Proof.Without loss of generality we may assume that T is non-zero since
otherwise the result is trivial. By Theorem 15.1, there exists fn ∈ H such that
kfnk = 1 and

|(fn, Tfn)|
kfnk2 = |(fn, Tfn)| −→ kTk as n→∞. (16.5)

By passing to a subsequence if necessary, we may assume that λ :=
limn→∞(fn, Tfn) exists and λ ∈ {±kTk}. By passing to a further subse-
quence if necessary, we may assume, using the compactness of T, that Tfn is
convergent as well. We now compute:
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0 ≤ kTfn − λfnk2 = kTfnk2 − 2λ(Tfn, fn) + λ2

≤ λ2 − 2λ(Tfn, fn) + λ2

→ λ2 − 2λ2 + λ2 = 0 as n→∞.

Hence
Tfn − λfn → 0 as n→∞ (16.6)

and therefore
f ≡ lim

n→∞ fn =
1

λ
lim
n→∞Tfn

exists. By the continuity of the inner product, kfk = 1 6= 0. By passing to the
limit in Eq. (16.6) we find that Tf = λf.

Lemma 16.18. Let T : H → H be a self-adjoint operator and M be a T —
invariant subspace of H, i.e. T (M) ⊂ M. Then M⊥ is also a T — invariant
subspace, i.e. T (M⊥) ⊂M⊥.

Proof. Let x ∈M and y ∈M⊥, then Tx ∈M and hence

0 = (Tx, y) = (x, Ty) for all x ∈M.

Thus Ty ∈M⊥.

Theorem 16.19 (Spectral Theorem). Suppose that T : H → H is a non-
zero S.A.C.O., then

1. there exists at least one eigenvalue λ ∈ {±kTk}.
2. There are at most countable many non-zero eigenvalues, {λn}Nn=1, where

N =∞ is allowed. (Unless T is finite rank, N will be infinite.)
3. The λn’s (including multiplicities) may be arranged so that |λn| ≥ |λn+1|
for all n. If N =∞ then limn→∞ |λn| = 0. (In particular any eigenspace
for T with non-zero eigenvalue is finite dimensional.)

4. The eigenvectors {φn}Nn=1 can be chosen to be an O.N. set such that H =
span{φn}⊕Nul(T ).

5. Using the {φn}Nn=1 above,

Tψ =
NX
n=1

λn(ψ, φn)φn for all ψ ∈ H.

6. The spectrum of T is σ(T ) = {0} ∪ ∪∞n=1{λn}.
Proof. We will find λn’s and φn’s recursively. Let λ1 ∈ {±kTk} and

φ1 ∈ H such that Tφ1 = λ1φ1 as in Theorem 16.17. Take M1 = span(φ1) so
T (M1) ⊂ M1. By Lemma 16.18, TM⊥1 ⊂ M⊥1 . Define T1 : M⊥1 → M⊥1 via
T1 = T |M⊥1 . Then T1 is again a compact operator. If T1 = 0, we are done.
If T1 6= 0, by Theorem 16.17 there exists λ2 ∈ {±kTk1} and φ2 ∈ M⊥1

such that kφ2k = 1 and T1φ2 = Tφ2 = λ2φ2. Let M2 ≡ span(φ1, φ2). Again
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T (M2) ⊂M2 and hence T2 ≡ T |M⊥2 :M⊥2 →M⊥2 is compact. Again if T2 = 0
we are done.
If T2 6= 0. Then by Theorem 16.17 there exists λ3 ∈ {±kTk2} and φ3 ∈M⊥2

such that kφ3k = 1 and T2φ3 = Tφ3 = λ3φ3. Continuing this way indefinitely
or until we reach a point where Tn = 0, we construct a sequence {λn}Nn=1
of eigenvalues and orthonormal eigenvectors {φn}Nn=1 such that |λi| ≥ |λi+1|
with the further property that

|λi| = sup
φ⊥{φ1,φ2,...φi−1}

kTφk
kφk (16.7)

If N =∞ then limi→∞ |λi| = 0 for if not there would exist � > 0 such that
|λi| ≥ � > 0 for all i. In this case {φi/λi}∞i=1 is sequence in H bounded by �−1.
By compactness of T, there exists a subsequence ik such that φik = Tφik/λik
is convergent. But this is impossible since {φik} is an orthonormal set. Hence
we must have that � = 0.
LetM ≡ span{φi}Ni=1 with N =∞ possible. Then T (M) ⊂M and hence

T (M⊥) ⊂M⊥. Using Eq. (16.7),

kT |M⊥k ≤ kT |M⊥n k = |λn| −→ 0 as n→∞

showing T |M⊥ ≡ 0.
Define P0 to be orthogonal projection onto M⊥. Then for ψ ∈ H,

ψ = P0ψ + (1− P0)ψ = P0ψ +
NX
i=1

(ψ, φi)φi

and

Tψ = TP0ψ + T
NX
i=1

(ψ, φi)φi =
NX
i=1

λi(ψ, φi)φi.

Since {λn} ⊂ σ(T ) and σ(T ) is closed, it follows that 0 ∈ σ(T ) and hence
{λn}∞n=1 ∪ {0} ⊂ σ(T ). Suppose that z /∈ {λn}∞n=1 ∪ {0} and let d be the
distance between z and {λn}∞n=1∪{0}.Notice that d > 0 because limn→∞ λn =
0. A few simple computations show that:

(T − zI)ψ =
NX
i=1

(ψ, φi)(λi − z)φi − zP0ψ,

(T − z)−1 exists,

(T − zI)−1ψ =
NX
i=1

(ψ, φi)(λi − z)−1φi − z−1P0ψ,

and



16.4 Trace Class Operators 401

k(T − zI)−1ψk2 =
NX
i=1

|(ψ, φi)|2 1

|λi − z|2 +
1

|z|2 kP0ψk
2

≤
µ
1

d

¶2Ã NX
i=1

|(ψ, φi)|2 + kP0ψk2
!
=
1

d2
kψk2.

We have thus shown that (T − zI)−1 exists, k(T − zI)−1k ≤ d−1 < ∞ and
hence z /∈ σ(T ).

16.3 Structure of Compact Operators

Theorem 16.20. Let K : H → B be a compact operator. Then there exists
N ∈ N∪ {∞} , orthonormal subsets {φn}Nn=1 ⊂ H and {ψn}Nn=1 ⊂ B and a
sequences {λn}Nn=1 ⊂ R+ such that λ1 ≥ λ2 ≥ . . . , limn→∞ λn = 0 if N =∞,
kψnk ≤ 1 for all n and

Kf =
NX
n=1

λn(f, φn)ψn for all f ∈ H. (16.8)

Proof. Let K = u |K| be the polar decomposition of K. Then |K| is self-
adjoint and compact, by Corollary 16.9, and hence by Theorem 16.19 there
exists an orthonormal basis {φn}Nn=1 for Nul(|K|)⊥ = Nul(K)⊥ such that
|K|φn = λnφn, λ1 ≥ λ2 ≥ . . . and limn→∞ λn = 0 if N =∞. For f ∈ H,

Kf = u |K|
NX
n=1

(f, φn)φn =
NX
n=1

(f, φn)u |K|φn =
NX
n=1

λn(f, φn)uφn

which is Eq. (16.8) with ψn := uφn.

16.4 Trace Class Operators

See B. Simon [11] for more details and ideals of compact operators.

Theorem 16.21. Let A ∈ B(H) be a non-negative operator, {en}∞n=1 be an
orthonormal basis for H and

tr(A) :=
∞X
n=1

(Aen, en) .

Then tr(A) =
°°°√A°°°2

HS
∈ [0,∞] is well defined independent of the choice

of orthonormal basis for H. Moreover if tr(A) < ∞, then A is a compact
operator.
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Proof. Let B :=
√
A, then

tr(A) =
∞X
n=1

(Aen, en) =
∞X
n=1

¡
B2en, en

¢
=
∞X
n=1

(Ben, Ben) = kBk2HS .

This shows tr(A) is well defined and that tr(A) =
°°°√A°°°2

HS
. If tr(A) < ∞

then
√
A is Hilbert Schmidt and hence compact. Therefore A =

³√
A
´2
is

compact as well.

Definition 16.22. An operator A ∈ L(H,B) is trace class if tr(|A|) =
tr(
√
A∗A) <∞.

Proposition 16.23. If A ∈ L(H,B) is trace class then A is compact.

Proof. By the polar decomposition Theorem 15.10, A = u |A| where u is
a partial isometry and by Corollary 16.9 |A| is also compact. Therefore A is
compact as well.

Proposition 16.24. If A ∈ L(B) is trace class and {en}∞n=1 is an orthonor-
mal basis for H, then

tr(A) :=
∞X
n=1

(Aen, en)

is absolutely convergent and the sum is independent of the choice of orthonor-
mal basis for H.

Proof. Let A = u |A| be the polar decomposition of A and {φn}∞n=1 be an
orthonormal basis of eigenvectors for Nul(|A|)⊥ = Nul(A)⊥ such that

|A|φm = λmφm

with λm ↓ 0 and
P∞

m=1 λm <∞. Then

X
n

|(Aen, en)| =
X
n

|(|A| en, u∗en)| =
X
n

¯̄̄̄
¯X
m

(|A| en, φm) (φm, u∗en)
¯̄̄̄
¯

=
X
n

¯̄̄̄
¯X
m

λm (en, φm) (φm, u
∗en)

¯̄̄̄
¯

≤
X
m

λm
X
n

|(en, φm) (uφm, en)|

=
X
m

λm |(φm, uφm)| ≤
X
m

λm <∞.

Moreover,
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n

(Aen, en) =
X
n

(|A| en, u∗en) =
X
n

X
m

λm (en, φm) (φm, u
∗en)

=
X
m

λm
X
n

(uφm, en) (en, φm)

=
X
m

λm (uφm, φm)

showing
P

n (Aen, en) =
P

m λm (uφm, φm) which proves tr(A) is well defined
independent of basis.

Remark 16.25. Suppose K is a compact operator written in the form

Kf =
NX
n=1

λn(f, φn)ψn for all f ∈ H. (16.9)

where {φn}∞n=1 ⊂ H, {ψn}∞n=1 ⊂ B are bounded sets and λn ∈ C such thatP∞
n=1 |λn| <∞. Then K is trace class and

tr(K) =
NX
n=1

λn(ψn, φn).

BRUCE STOP Indeed, K∗g =
PN

n=1 λ̄n(g, ψn)φn and hence

K∗Kf =
NX
n=1

λ̄n(Kf,ψn)φn

Kf =
NX
n=1

λn(f, φn)ψn for all f ∈ H. (16.10)

We will say K ∈ K(H) is trace class if

tr(
√
K∗K) :=

NX
n=1

λn <∞

in which case we define

tr(K) =
NX
n=1

λn(ψn, φn).

Notice that if {em}∞m=1 is any orthonormal basis in H (or for the Ran(K) if
H is not separable) then

MX
m=1

(Kem, em) =
MX
m=1

(
NX
n=1

λn(em, φn)ψn, em) =
NX
n=1

λn

MX
m=1

(em, φn)(ψn, em)

=
NX
n=1

λn(PMψn, φn)
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where PM is orthogonal projection onto Span(e1, . . . , eM ). Therefore by dom-
inated convergence theorem ,

∞X
m=1

(Kem, em) = lim
M→∞

NX
n=1

λn(PMψn, φn) =
NX
n=1

λn lim
M→∞

(PMψn, φn)

=
NX
n=1

λn(ψn, φn) = tr(K).

16.5 Fredholm Operators

Lemma 16.26. Let M ⊂ H be a closed subspace and V ⊂ H be a fi-
nite dimensional subspace. Then M + V is closed as well. In particular if
codim(M) ≡ dim(H/M) < ∞ and W ⊂ H is a subspace such that M ⊂ W,
then W is closed and codim(W ) <∞.

Proof. Let P : H →M be orthogonal projection and let V0 := (I − P )V.
Since dim(V0) ≤ dim(V ) < ∞, V0 is still closed. Also it is easily seen that

M + V = M
⊥⊕ V0 from which it follows that M + V is closed because

{zn = mn + vn} ⊂ M
⊥⊕ V0 is convergent iff {mn} ⊂ M and {vn} ⊂ V0 are

convergent.
If codim(M) < ∞ and M ⊂ W, there is a finite dimensional subspace

V ⊂ H such that W = M + V and so by what we have just proved, W is
closed as well. It should also be clear that codim(W ) ≤ codim(M) <∞.

Lemma 16.27. If K : H → B is a finite rank operator, then there exists
{φn}kn=1 ⊂ H and {ψn}kn=1 ⊂ B such that

1. Kx =
Pk

n=1(x, φn)ψn for all x ∈ H.

2. K∗y =
Pk

n=1(y, ψn)φn for all y ∈ B, in particular K∗ is still finite rank.
For the next two items, further assume B = H.

3. dimNul(I +K) <∞.
4. dim coker(I +K) <∞, Ran(I +K) is closed and

Ran(I +K) = Nul(I +K∗)⊥.

Proof.

1. Choose {ψn}k1 to be an orthonormal basis for Ran(K). Then for x ∈ H,

Kx =
kX

n=1

(Kx,ψn)ψn =
kX

n=1

(x,K∗ψn)ψn =
kX

n=1

(x, φn)ψn

where φn ≡ K∗ψn.
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2. Item 2. is a simple computation left to the reader.
3. SinceNul(I+K) = {x ∈ H | x = −Kx} ⊂ Ran(K) it is finite dimensional.
4. Since x = (I +K)x ∈ Ran(I +K)for x ∈ Nul(K), Nul(K) ⊂ Ran(I +K).
Since {φ1, φ2, . . . , φk}⊥ ⊂ Nul(K), H = Nul(K) + span ({φ1, φ2, . . . , φk})
and thus codim (Nul(K)) <∞. From these comments and Lemma 16.26,
Ran(I + K) is closed and codim (Ran(I +K)) ≤ codim (Nul(K)) < ∞.
The assertion that Ran(I+K) = Nul(I+K∗)⊥ is a consequence of Lemma
16.15 below.

Definition 16.28. A bounded operator F : H → B is Fredholmiff the
dimNul(F ) < ∞, dim coker(F ) < ∞ and Ran(F ) is closed in B. (Recall:
coker(F ) := B/Ran(F ).) The indexof F is the integer,

index(F ) = dimNul(F )− dim coker(F ) (16.11)

= dimNul(F )− dimNul(F ∗). (16.12)

Notice that equations (16.11) and (16.12) are the same since, (using
Ran(F ) is closed)

B = Ran(F )⊕Ran(F )⊥ = Ran(F )⊕Nul(F ∗)

so that coker(F ) = B/Ran(F ) ∼= Nul(F ∗).
Lemma 16.29. The requirement that Ran(F ) is closed in Definition 16.28 is
redundant.

Proof. By restricting F to Nul(F )⊥, we may assume without loss of gen-
erality that Nul(F ) = {0}. Assuming dim coker(F ) <∞, there exists a finite
dimensional subspace V ⊂ B such that B = Ran(F ) ⊕ V. Since V is finite
dimensional, V is closed and hence B = V ⊕ V ⊥. Let π : B → V ⊥ be the
orthogonal projection operator onto V ⊥ and let G ≡ πF : H → V ⊥ which is
continuous, being the composition of two bounded transformations. Since G is
a linear isomorphism, as the reader should check, the open mapping theorem
implies the inverse operator G−1 : V ⊥ → H is bounded.
Suppose that hn ∈ H is a sequence such that limn→∞ F (hn) =: b

exists in B. Then by composing this last equation with π, we find that
limn→∞G(hn) = π(b) exists in V ⊥. Composing this equation with G−1 shows
that h := limn→∞ hn = G−1π(b) exists in H. Therefore, F (hn) → F (h) ∈
Ran(F ), which shows that Ran(F ) is closed.

Remark 16.30. It is essential that the subspace M ≡ Ran(F ) in Lemma 16.29
is the image of a bounded operator, for it is not true that every finite codi-
mensional subspace M of a Banach space B is necessarily closed. To see this
suppose that B is a separable infinite dimensional Banach space and let A ⊂ B
be an algebraic basis for B, which exists by a Zorn’s lemma argument. Since
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dim(B) = ∞ and B is complete, A must be uncountable. Indeed, if A were
countable we could write B = ∪∞n=1Bn where Bn are finite dimensional (nec-
essarily closed) subspaces of B. This shows that B is the countable union of
nowhere dense closed subsets which violates the Baire Category theorem.
By separability of B, there exists a countable subset A0 ⊂ A such that the

closure of M0 ≡ span(A0) is equal to B. Choose x0 ∈ A \ A0, and let M ≡
span(A \ {x0}). Then M0 ⊂ M so that B = M̄0 = M̄, while codim(M) = 1.
Clearly this M can not be closed.

Example 16.31. Suppose that H and B are finite dimensional Hilbert spaces
and F : H → B is Fredholm. Then

index(F ) = dim(B)− dim(H). (16.13)

The formula in Eq. (16.13) may be verified using the rank nullity theorem,

dim(H) = dimNul(F ) + dimRan(F ),

and the fact that

dim(B/Ran(F )) = dim(B)− dimRan(F ).

Theorem 16.32. A bounded operator F : H → B is Fredholm iff there exists
a bounded operator A : B → H such that AF −I and FA−I are both compact
operators. (In fact we may choose A so that AF −I and FA−I are both finite
rank operators.)

Proof. (⇒) Suppose F is Fredholm, then F : Nul(F )⊥ → Ran(F ) is a
bijective bounded linear map between Hilbert spaces. (Recall that Ran(F ) is
a closed subspace of B and hence a Hilbert space.) Let F̃ be the inverse of this
map–a bounded map by the open mapping theorem. Let P : H → Ran(F )
be orthogonal projection and set A ≡ F̃P . Then AF − I = F̃PF − I =
F̃F − I = −Q where Q is the orthogonal projection onto Nul(F ). Similarly,
FA−I = FF̃P−I = −(I−P ). Because I−P and Q are finite rank projections
and hence compact, both AF − I and FA− I are compact.
(⇐) We first show that the operator A : B → H may be modified so

that AF − I and FA − I are both finite rank operators. To this end let
G ≡ AF − I (G is compact) and choose a finite rank approximation G1 to G
such that G = G1 + E where kEk < 1. Define AL : B → H to be the operator
AL ≡ (I + E)−1A. Since AF = (I + E) +G1,

ALF = (I + E)−1AF = I + (I + E)−1G1 = I +KL

where KL is a finite rank operator. Similarly there exists a bounded operator
AR : B → H and a finite rank operator KR such that FAR = I +KR. Notice
that ALFAR = AR+KLAR on one hand and ALFAR = AL+ALKR on the
other. Therefore, AL − AR = ALKR −KLAR =: S is a finite rank operator.
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Therefore FAL = F (AR+S) = I+KR+FS, so that FAL− I = KR−FS is
still a finite rank operator. Thus we have shown that there exists a bounded
operator Ã : B → H such that ÃF − I and FÃ − I are both finite rank
operators.
We now assume that A is chosen such that AF − I = G1, FA − I = G2

are finite rank. Clearly Nul(F ) ⊂ Nul(AF ) = Nul(I + G1) and Ran(F ) ⊇
Ran(FA) = Ran(I + G2). The theorem now follows from Lemma 16.26 and
Lemma 16.27.

Corollary 16.33. If F : H → B is Fredholm then F ∗ is Fredholm and
index(F ) = −index(F ∗).
Proof. Choose A : B → H such that both AF−I and FA−I are compact.

Then F ∗A∗−I and A∗F ∗−I are compact which implies that F ∗ is Fredholm.
The assertion, index(F ) = −index(F ∗), follows directly from Eq. (16.12).

Lemma 16.34. A bounded operator F : H → B is Fredholm if and only if
there exists orthogonal decompositions H = H1 ⊕H2 and B = B1 ⊕ B2 such
that

1. H1 and B1 are closed subspaces,
2. H2 and B2 are finite dimensional subspaces, and
3. F has the block diagonal form

F =

µ
F11 F12
F21 F22

¶
:
H1 B1
⊕ −→ ⊕
H2 B2

(16.14)

with F11 : H1 → B1 being a bounded invertible operator.

Furthermore, given this decomposition, index(F ) = dim(H2)− dim(B2).
Proof. If F is Fredholm, set H1 = Nul(F )

⊥,H2 = Nul(F ), B1 = Ran(F ),

and B2 = Ran(F )⊥. Then F =

µ
F11 0
0 0

¶
, where F11 ≡ F |H1 : H1 → B1 is

invertible.
For the converse, assume that F is given as in Eq. (16.14). Let A ≡µ

F−111 0
0 0

¶
then

AF =

µ
I F−111 F12
0 0

¶
=

µ
I 0
0 I

¶
+

µ
0 F−111 F12
0 −I

¶
,

so that AF − I is finite rank. Similarly one shows that FA− I is finite rank,
which shows that F is Fredholm.

Now to compute the index of F, notice that
µ
x1
x2

¶
∈ Nul(F ) iff
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F11x1 + F12x2 = 0
F21x1 + F22x2 = 0

which happens iff x1 = −F−111 F12x2 and (−F21F−111 F12 + F22)x2 = 0. Let
D ≡ (F22 − F21F

−1
11 F12) : H2 → B2, then the mapping

x2 ∈ Nul(D)→
µ−F−111 F12x2

x2

¶
∈ Nul(F )

is a linear isomorphism of vector spaces so that Nul(F ) ∼= Nul(D). Since

F ∗ =
µ
F ∗11 F ∗21
F ∗12 F

∗
22

¶ B1 H1

⊕ −→ ⊕
B2 H2

,

similar reasoning implies Nul(F ∗) ∼= Nul(D∗). This shows that index(F ) =
index(D). But we have already seen in Example 16.31 that index(D) =
dimH2 − dimB2.

Proposition 16.35. Let F be a Fredholm operator and K be a compact op-
erator from H → B. Further assume T : B → X (where X is another Hilbert
space) is also Fredholm. Then

1. the Fredholm operators form an open subset of the bounded operators.
Moreover if E : H → B is a bounded operator with kEk sufficiently small
we have index(F ) =index(F + E).

2. F +K is Fredholm and index(F ) = index(F +K).
3. TF is Fredholm and index(TF ) = index(T ) + index(F )

Proof.

1. We know F may be written in the block form given in Eq. (16.14) with
F11 : H1 → B1 being a bounded invertible operator. Decompose E into
the block form as

E =
µE11 E12
E21 E22

¶
and choose kEk sufficiently small such that kE11k is sufficiently small to
guarantee that F11 + E11 is still invertible. (Recall that the invertible
operators form an open set.) Thus F + E =

µ
F11 + E11 ∗
∗ ∗

¶
has the block

form of a Fredholm operator and the index may be computed as:

index(F + E) = dimH2 − dimB2 = index(F ).

2. Given K : H → B compact, it is easily seen that F +K is still Fredholm.
Indeed if A : B → H is a bounded operator such that G1 ≡ AF − I and
G2 ≡ FA − I are both compact, then A(F + K) − I = G1 + AK and
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(F +K)A− I = G2 +KA are both compact. Hence F +K is Fredholm
by Theorem 16.32. By item 1., the function f(t) ≡ index(F + tK) is a
continuous locally constant function of t ∈ R and hence is constant. In
particular, index(F +K) = f(1) = f(0) = index(F ).

3. It is easily seen, using Theorem 16.32 that the product of two Fredholm
operators is again Fredholm. So it only remains to verify the index formula
in item 3.
For this let H1 ≡ Nul(F )⊥, H2 ≡ Nul(F ), B1 ≡ Ran(T ) = T (H1), and
B2 ≡ Ran(T )⊥ = Nul(T ∗). Then F decomposes into the block form:

F =

µ
F̃ 0
0 0

¶
:

H1 B1
⊕ −→ ⊕
H2 B2

,

where F̃ = F |H1 : H1 → B1 is an invertible operator. Let Y1 ≡ T (B1)
and Y2 ≡ Y ⊥1 = T (B1)

⊥. Notice that Y1 = T (B1) = TQ(B1), where
Q : B → B1 ⊂ B is orthogonal projection onto B1. Since B1 is closed
and B2 is finite dimensional, Q is Fredholm. Hence TQ is Fredholm and
Y1 = TQ(B1) is closed in Y and is of finite codimension. Using the above
decompositions, we may write T in the block form:

T =

µ
T11 T12
T21 T22

¶
:

B1 Y1
⊕ −→ ⊕
B2 Y2

.

Since R =

µ
0 T12
T21 T22

¶
: B → Y is a finite rank operator and hence

RF : H → Y is finite rank, index(T − R) = index(T ) and index(TF −
RF ) = index(TF ). Hence without loss of generality we may assume that

T has the form T =

µ
T̃ 0
0 0

¶
, (T̃ = T11) and hence

TF =

µ
T̃ F̃ 0
0 0

¶
:
H1 Y1
⊕ −→ ⊕
H2 Y2

.

We now compute the index(T ). Notice that Nul(T ) = Nul(T̃ ) ⊕ B2 and
Ran(T ) = T̃ (B1) = Y1. So

index(T ) = index(T̃ ) + dim(B2)− dim(Y2).

Similarly,

index(TF ) = index(T̃ F̃ ) + dim(H2)− dim(Y2),

and as we have already seen
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index(F ) = dim(H2)− dim(B2).
Therefore,

index(TF )− index(T )− index(F ) = index(T̃ F̃ )− index(T̃ ).
Since F̃ is invertible, Ran(T̃ ) = Ran(T̃ F̃ ) and Nul(T̃ ) ∼= Nul(T̃ F̃ ). Thus
index(T̃ F̃ )− index(T̃ ) = 0 and the theorem is proved.

16.6 Tensor Product Spaces

References for this section are Reed and Simon [9] (Volume 1, Chapter VI.5),
Simon [12], and Schatten [10]. See also Reed and Simon [8] (Volume 2 § IX.4
and §XIII.17).
Let H and K be separable Hilbert spaces and H ⊗ K will denote the

usual Hilbert completion of the algebraic tensors H ⊗f K. Recall that the
inner product on H ⊗K is determined by (h⊗ k, h0⊗ k0) = (h, h0)(k, k0). The
following proposition is well known.

Proposition 16.36 (Structure of H ⊗K). There is a bounded linear map
T : H ⊗K → B(K,H) determined by

T (h⊗ k)k0 ≡ (k, k0)h for all k, k0 ∈ K and h ∈ H.

Moreover T (H⊗K) = HS(K,H)– the Hilbert Schmidt operators from K to
H. The map T : H⊗K → HS(K,H) is unitary equivalence of Hilbert spaces.
Finally, any A ∈ H ⊗K may be expressed as

A =
∞X
n=1

λnhn ⊗ kn, (16.15)

where {hn} and {kn} are orthonormal sets in H and K respectively and
{λn} ⊂ R such that kAk2 =

P |λn|2 <∞.

Proof. Let A ≡P ajihj ⊗ki, where {hi} and {kj} are orthonormal bases
for H and K respectively and {aji} ⊂ R such that kAk2 = P |aji|2 < ∞.
Then evidently, T (A)k ≡P ajihj(ki, k) and

kT (A)kk2 =
X
j

|
X
i

aji(ki, k)|2 ≤
X
j

X
i

|aji|2|(ki, k)|2

≤
X
j

X
i

|aji|2kkk2.

Thus T : H ⊗K → B(K,H) is bounded. Moreover,
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kT (A)k2HS ≡
X

kT (A)kik2 =
X
ij

|aji|2 = kAk2,

which proves the T is an isometry.
We will now prove that T is surjective and at the same time prove Eq.

(16.15). To motivate the construction, suppose that Q = T (A) where A is
given as in Eq. (16.15). Then

Q∗Q = T (
∞X
n=1

λnkn ⊗ hn)T (
∞X
n=1

λnhn ⊗ kn) = T (
∞X
n=1

λ2nkn ⊗ kn).

That is {kn} is an orthonormal basis for (nulQ∗Q)⊥ with Q∗Qkn = λ2nkn.
Also Qkn = λnhn, so that hn = λ−1n Qkn.
We will now reverse the above argument. Let Q ∈ HS(K,H). Then Q∗Q

is a self-adjoint compact operator on K. Therefore there is an orthonormal
basis {kn}∞n=1 for the (nulQ∗Q)⊥ which consists of eigenvectors of Q∗Q. Let
λn ∈ (0,∞) such that Q∗Qkn = λ2nkn and set hn = λ−1n Qkn. Notice that

(hn, hm) = (λ
−1
n Qkn, λ

−1
m Qkm)

= (λ−1n kn, λ
−1
m Q∗Qkm) = (λ−1n kn, λ

−1
m λ2mkm) = δmn,

so that {hn} is an orthonormal set in H. Define

A =
∞X
n=1

λnhn ⊗ kn

and notice that T (A)kn = λnhn = Qkn for all n and T (A)k = 0 for all
k ∈ nulQ = nulQ∗Q. That is T (A) = Q. Therefore T is surjective and Eq.
(16.15) holds.

Notation 16.37 In the future we will identify A ∈ H ⊗ K with T (A) ∈
HS(K,H) and drop T from the notation. So that with this notation we have
(h⊗ k)k0 = (k, k0)h.

Let A ∈ H ⊗H, we set kAk1 ≡ tr
√
A∗A ≡ trpT (A)∗T (A) and we let

H ⊗1 H ≡ {A ∈ H ⊗H : kAk1 <∞}.

We will now compute kAk1 for A ∈ H ⊗H described as in Eq. (16.15). First
notice that A∗ =

P∞
n=1 λnkn ⊗ hn and

A∗A =
∞X
n=1

λ2nkn ⊗ kn.

Hence
√
A∗A =

P∞
n=1 |λn|kn ⊗ kn and hence kAk1 =

P∞
n=1 |λn|. Also notice

that kAk2 =P∞n=1 |λn|2 and kAkop = maxn |λn|. Since
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kAk21 = {
∞X
n=1

|λn|}2 ≥
∞X
n=1

|λn|2 = kAk2,

we have the following relations among the various norms,

kAkop ≤ kAk ≤ kAk1. (16.16)

Proposition 16.38. There is a continuous linear map C : H⊗1H → R such
that C(h⊗ k) = (h, k) for all h, k ∈ H. If A ∈ H ⊗1 H, then

CA =
X
(em ⊗ em, A), (16.17)

where {em} is any orthonormal basis for H. Moreover, if A ∈ H ⊗1 H is
positive, i.e. T (A) is a non-negative operator, then kAk1 = CA.

Proof. Let A ∈ H ⊗1 H be given as in Eq. (16.15) with
P∞

n=1 |λn| =
kAk1 < ∞. Then define CA ≡ P∞

n=1 λn(hn, kn) and notice that |CA| ≤P |λn| = kAk1, which shows that C is a contraction on H ⊗1 H. (Using the
universal property of H ⊗f H it is easily seen that C is well defined.) Also
notice that for M ∈ Z+ that

MX
m=1

(em ⊗ em, A) =
∞X
n=1

MX
m=1

(em ⊗ em, λnhn ⊗ kn, ), (16.18)

=
∞X
n=1

λn(PMhn, kn), (16.19)

where PM denotes orthogonal projection onto span{em}Mm=1. Since |λn(PMhn, kn)| ≤
|λn| and

P∞
n=1 |λn| = kAk1 < ∞, we may let M → ∞ in Eq. (16.19) to find

that ∞X
m=1

(em ⊗ em, A) =
∞X
n=1

λn(hn, kn) = CA.

This proves Eq. (16.17).
For the final assertion, suppose that A ≥ 0. Then there is an orthonormal

basis {kn}∞n=1 for the (nulA)⊥ which consists of eigenvectors of A. That is
A =

P
λnkn ⊗ kn and λn ≥ 0 for all n. Thus CA =

P
λn and kAk1 =

P
λn.

Proposition 16.39 (Noncommutative Fatou’ s Lemma). Let An be a
sequence of positive operators on a Hilbert space H and An → A weakly as
n→∞, then

trA ≤ lim inf
n→∞ trAn. (16.20)

Also if An ∈ H ⊗1 H and An → A in B(H), then

kAk1 ≤ lim inf
n→∞ kAnk1. (16.21)
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Proof. Let An be a sequence of positive operators on a Hilbert space H
and An → A weakly as n →∞ and {ek}∞k=1 be an orthonormal basis for H.
Then by Fatou’s lemma for sums,

trA =
∞X
k=1

(Aek, ek) =
∞X
k=1

lim
n→∞(Anek, ek)

≤ lim inf
n→∞

∞X
k=1

(Anek, ek) = lim inf
n→∞ trAn.

Now suppose that An ∈ H ⊗1H and An → A in B(H). Then by Proposi-
tion 15.7, |An| → |A| in B(H) as well. Hence by Eq. (16.20), kAk1 ≡tr|A| ≤
lim infn→∞tr|An| ≤ lim infn→∞ kAnk1.
Proposition 16.40. Let X be a Banach space, B : H×K → X be a bounded
bi-linear form, and kBk ≡ sup{|B(h, k)| : khkkkk ≤ 1}. Then there is a unique
bounded linear map B̃ : H⊗1K → X such that B̃(h⊗k) = B(h, k). Moreover
kB̃kop = kB̃k.
Proof. Let A =

P∞
n=1 λnhn ⊗ kn ∈ H ⊗1 K as in Eq. (16.15). Clearly, if

B̃ is to exist we must have B̃(A) ≡P∞n=1 λnB(hn, kn). Notice that
∞X
n=1

|λn||B(hn, kn)| ≤
∞X
n=1

|λn|kBk = kAk1 · kBk.

This shows that B̃(A) is well defined and that kB̃kop ≤ kB̃k. The opposite
inequality follows from the trivial computation:

kBk = sup{|B(h, k)| : khkkkk = 1}
= sup{|B̃(h⊗ k)| : kh⊗1 kk1 = 1} ≤ kB̃kop.

Lemma 16.41. Suppose that P ∈ B(H) and Q ∈ B(K), then P ⊗ Q : H ⊗
K → H⊗K is a bounded operator. Moreover, P ⊗Q(H⊗1K) ⊂ H⊗1K and
we have the norm equalities

kP ⊗QkB(H⊗K) = kPkB(H)kQkB(K)
and

kP ⊗QkB(H⊗1K) = kPkB(H)kQkB(K).
Proof. We will give essentially the same proof of kP ⊗ QkB(H⊗K) =

kPkB(H)kQkB(K) as the proof on p. 299 of Reed and Simon [9]. Let A ∈ H⊗K
as in Eq. (16.15). Then
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(P ⊗ I)A =
∞X
n=1

λnPhn ⊗ kn

and hence

(P ⊗ I)A{(P ⊗ I)A}∗ =
∞X
n=1

λ2nPhn ⊗ Phn.

Therefore,

k(P ⊗ I)Ak2 = tr(P ⊗ I)A{(P ⊗ I)A}∗

=
∞X
n=1

λ2n(Phn, Phn) ≤ kPk2
∞X
n=1

λ2n

= kPk2kAk21,

which shows that Thus kP ⊗ IkB(H⊗K) ≤ kPk. By symmetry, kI ⊗
QkB(H⊗K) ≤ kQk. Since P ⊗Q = (P ⊗ I)(I ⊗Q), we have

kP ⊗QkB(H⊗K) ≤ kPkB(H)kQkB(K).

The reverse inequality is easily proved by considering P ⊗ Q on elements of
the form h⊗ k ∈ H ⊗K.
Now suppose that A ∈ H ⊗1 K as in Eq. (16.15). Then

k(P ⊗Q)Ak1 ≤
∞X
n=1

|λn|kPhn ⊗Qknk1

≤ kPkkQk
∞X
n=1

|λn| = kPkkQkkAk,

which shows that

kP ⊗QkB(H⊗1K) ≤ kPkB(H)kQkB(K).

Again the reverse inequality is easily proved by considering P⊗Q on elements
of the form h⊗ k ∈ H ⊗1 K.

Lemma 16.42. Suppose that Pm and Qm are orthogonal projections on H
and K respectively which are strongly convergent to the identity on H and K
respectively. Then Pm ⊗Qm : H ⊗1 K → H ⊗1 K also converges strongly to
the identity in H ⊗1 K.

Proof. Let A =
P∞

n=1 λnhn ⊗ kn ∈ H ⊗1 K as in Eq. (16.15). Then
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kPm ⊗QmA−Ak1

≤
∞X
n=1

|λn|kPmhn ⊗Qmkn − hn ⊗ knk1

=
∞X
n=1

|λn|k(Pmhn − hn)⊗Qmkn + hn ⊗ (Qmkn − kn)k1

≤
∞X
n=1

|λn|{kPmhn − hnkkQmknk+ khnkkQmkn − knk}

≤
∞X
n=1

|λn|{kPmhn − hnk+ kQmkn − knk}→ 0 as m→∞

by the dominated convergence theorem.
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Spectral Theorem for Self-Adjoint Operators

To Rough to include at this time. Sorry.
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Complex Measures, Radon-Nikodym Theorem
and the Dual of Lp

Definition 18.1. A signed measure ν on a measurable space (X,M) is a
function ν :M→ R such that

1. Either ν(M) ⊂ (−∞,∞] or ν(M) ⊂ [−∞,∞).
2. ν is countably additive, this is to say if E =

`∞
j=1Ej with Ej ∈M, then

ν(E) =
∞P
j=1

ν(Ej).
1

3. ν(∅) = 0.
If there exists Xn ∈M such that |ν(Xn)| <∞ and X = ∪∞n=1Xn, then ν

is said to be σ — finite and if ν(M) ⊂ R then ν is said to be a finite signed
measure. Similarly, a countably additive set function ν :M → C such that
ν(∅) = 0 is called a complex measure.
A finite signed measure is clearly a complex measure.

Example 18.2. Suppose that µ+ and µ− are two positive measures onM such
that either µ+(X) <∞ or µ−(X) <∞, then ν = µ+−µ− is a signed measure.
If both µ+(X) and µ−(X) are finite then ν is a finite signed measure.

Example 18.3. Suppose that g : X → R is measurable and either
R
E
g+dµ orR

E
g−dµ <∞, then

ν(A) =

Z
A

gdµ∀A ∈M (18.1)

defines a signed measure. This is actually a special case of the last example
with µ±(A) ≡

R
A
g±dµ. Notice that the measure µ± in this example have the

property that they are concentrated on disjoint sets, namely µ+ “lives” on
{g > 0} and µ− “lives” on the set {g < 0} .
1 If ν(E) ∈ R then the series

∞P
j=1

ν(Ej) is absolutely convergent since it is indepen-

dent of rearrangements.
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Example 18.4. Suppose that µ is a positive measure on (X,M) and g ∈ L1(µ),
then ν given as in Eq. (18.1) is a complex measure on (X,M). Also if

©
µr±, µi±

ª
is any collection of four positive measures on (X,M), then

ν := µr+ − µr− + i
¡
µi+ − µi−

¢
(18.2)

is a complex measure.

If ν is given as in Eq. 18.1, then ν may be written as in Eq. (18.2) with
dµr± = (Re g)± dµ and dµi± = (Im g)± dµ.

Definition 18.5. Let ν be a complex or signed measure on (X,M). A set
E ∈M is a null set or precisely a ν — null set if ν(A) = 0 for all A ∈M such
that A ⊂ E, i.e. ν|ME = 0. Recall that ME := {A ∩ E : A ∈M} = i−1E (M)
is the “trace of M on E.

18.1 Radon-Nikodym Theorem I

We will eventually show that every complex and σ — finite signed measure ν
may be described as in Eq. (18.1). The next theorem is the first result in this
direction.

Theorem 18.6. Suppose (X,M) is a measurable space, µ is a positive finite
measure on M and ν is a complex measure on M such that |ν(A)| ≤ µ(A)
for all A ∈ M. Then dν = ρdµ where |ρ| ≤ 1. Moreover if ν is a positive
measure, then 0 ≤ ρ ≤ 1.
Proof. For a simple function, f ∈ S(X,M), let ν(f) :=

P
a∈C aν(f = a).

Then

|ν(f)| ≤
X
a∈C

|a| |ν(f = a)| ≤
X
a∈C

|a|µ(f = a) =

Z
X

|f | dµ.

So, by the B.L.T. Theorem 2.68, ν extends to a continuous linear functional
on L1(µ) satisfying the bounds

|ν(f)| ≤
Z
X

|f | dµ ≤
p
µ(X) kfkL2(µ) for all f ∈ L1(µ).

The Riesz representation Theorem (Proposition 14.15) then implies there ex-
ists a unique ρ ∈ L2(µ) such that

ν(f) =

Z
X

fρdµ for all f ∈ L2(µ).

Taking f = sgn(ρ)1A in this equation showsZ
A

|ρ| dµ = ν(sgn(ρ)1A) ≤ µ(A) =

Z
A

1dµ
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from which it follows that |ρ| ≤ 1, µ — a.e. If ν is a positive measure, then
for real f, 0 = Im [ν(f)] =

R
X
Im ρfdµ and taking f = Im ρ shows 0 =R

X
[Im ρ]

2
dµ, i.e. Im(ρ(x)) = 0 for µ — a.e. x and we have shown ρ is real a.e.

Similarly,

0 ≤ ν(Re ρ < 0) =

Z
{Re ρ<0}

ρdµ ≤ 0,

shows ρ ≥ 0 a.e.
Definition 18.7. Let µ and ν be two signed or complex measures on (X,M).
Then µ and ν are mutually singular (written as µ ⊥ ν) if there exists
A ∈M such that A is a ν — null set and Ac is a µ — null set. The measure
ν is absolutely continuous relative to µ (written as ν ¿ µ) provided
ν(A) = 0 whenever A is a µ — null set, i.e. all µ — null sets are ν — null sets
as well.

Remark 18.8. If µ1, µ2 and ν are signed measures on (X,M) such that µ1 ⊥ ν
and µ2 ⊥ ν and µ1 + µ2 is well defined, then (µ1 + µ2) ⊥ ν. If {µi}∞i=1 is a
sequence of positive measures such that µi ⊥ ν for all i then µ =

P∞
i=1 µi ⊥ ν

as well.

Proof. In both cases, choose Ai ∈M such that Ai is ν — null and Ac
i is

µi-null for all i. Then by Lemma 18.17, A := ∪iAi is still a ν —null set. Since

Ac = ∩iAc
i ⊂ Ac

m for all m

we see that Ac is a µi - null set for all i and is therefore a null set for µ =P∞
i=1 µi. This shows that µ ⊥ ν.
Throughout the remainder of this section µ will be always be a positive

measure.

Definition 18.9 (Lebesgue Decomposition). Suppose that ν is a signed
(complex) measure and µ is a positive measure on (X,M). Two signed (com-
plex) measures νa and νs form a Lebesgue decomposition of ν relative to
µ if

1. If ν = νa + νs where implicit in this statement is the assertion that if ν
takes on the value ∞ (−∞) then νa and νs do not take on the value −∞
(∞).

2. νa ¿ µ and νs ⊥ µ.

Lemma 18.10. Let ν is a signed (complex) measure and µ is a positive mea-
sure on (X,M). If there exists a Lebesgue decomposition of ν relative to µ
then it is unique. Moreover, if ν is a positive measure and ν = νs + νa is the
Lebesgue decomposition of ν relative to µ then:

1. if ν is positive then νs and νa are positive.
2. If ν is a σ — finite measure then so are νs and νa.
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Proof. Since νs ⊥ µ, there exists A ∈M such that µ(A) = 0 and Ac is
νs — null and because νa ¿ µ, A is also a null set for νa. So for C ∈ M,
νa(C ∩A) = 0 and νs (C ∩Ac) = 0 from which it follows that

ν(C) = ν(C ∩A) + ν(C ∩Ac) = νs(C ∩A) + νa(C ∩Ac)

and hence,

νs(C) = νs(C ∩A) = ν(C ∩A) and
νa(C) = νa(C ∩Ac) = ν(C ∩Ac). (18.3)

Item 1. is now obvious from Eq. (18.3). For Item 2., if ν is a σ — finite measure
then there exists Xn ∈M such that X = ∪∞n=1Xn and |ν(Xn)| <∞ for all n.
Since ν(Xn) = νa(Xn) + νs(Xn), we must have νa(Xn) ∈ R and νs(Xn) ∈ R
showing νa and νs are σ — finite as well.
For the uniqueness assertion, if we have another decomposition ν = ν̃a+ ν̃s

with ν̃s ⊥ µ̃ and ν̃a ¿ µ̃ we may choose Ã ∈M such that µ(Ã) = 0 and Ãc

is ν̃s — null. Letting B = A ∪ Ã we have

µ(B) ≤ µ(A) + µ(Ã) = 0

and Bc = Ac ∩ Ãc is both a νs and a ν̃s null set. Therefore by the same
arguments that proves Eqs. (18.3), for all C ∈M,

νs(C) = ν(C ∩B) = ν̃s(C) and

νa(C) = ν(C ∩Bc) = ν̃a(C).

Lemma 18.11. Suppose µ is a positive measure on (X,M) and f, g : X → R̄
are extended integrable functions such thatZ

A

fdµ =

Z
A

gdµ for all A ∈M, (18.4)

R
X
f−dµ < ∞,

R
X
g−dµ < ∞, and the measures |f | dµ and |g| dµ are σ —

finite. Then f(x) = g(x) for µ — a.e. x.

Proof. By assumption there exists Xn ∈ M such that Xn ↑ X andR
Xn
|f | dµ < ∞ and

R
Xn
|g| dµ < ∞ for all n. Replacing A by A ∩ Xn in

Eq. (18.4) impliesZ
A

1Xnfdµ =

Z
A∩Xn

fdµ =

Z
A∩Xn

gdµ =

Z
A

1Xngdµ

for all A ∈ M. Since 1Xnf and 1Xng are in L1(µ) for all n, this equation
implies 1Xnf = 1Xng, µ — a.e. Letting n→∞ then shows that f = g, µ — a.e.
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Remark 18.12. Suppose that f and g are two positive measurable functions
on (X,M, µ) such that Eq. (18.4) holds. It is not in general true that f = g,
µ — a.e. A trivial counter example is to take M = P(X), µ(A) = ∞ for all
non-empty A ∈M, f = 1X and g = 2 · 1X . Then Eq. (18.4) holds yet f 6= g.

Theorem 18.13 (Radon Nikodym Theorem for Positive Measures).
Suppose that µ, ν are σ — finite positive measures on (X,M). Then ν has a
unique Lebesgue decomposition ν = νa + νs relative to µ and there exists a
unique (modulo sets of µ — measure 0) function ρ : X → [0,∞) such that
dνa = ρdµ. Moreover, νs = 0 iff ν ¿ µ.

Proof. The uniqueness assertions follow directly from Lemmas 18.10 and
18.11.
Existence. (Von-Neumann’s Proof.) First suppose that µ and ν are finite

measures and let λ = µ+ ν. By Theorem 18.6, dν = hdλ with 0 ≤ h ≤ 1 and
this implies, for all non-negative measurable functions f, that

ν(f) = λ(fh) = µ(fh) + ν(fh) (18.5)

or equivalently
ν(f(1− h)) = µ(fh). (18.6)

Taking f = 1{h=1} and f = g1{h<1}(1− h)−1 with g ≥ 0 in Eq. (18.6)

µ ({h = 1}) = 0 and ν(g1{h<1}) = µ(g1{h<1}(1− h)−1h) = µ(ρg)

where ρ := 1{h<1} h
1−h and νs(g) := ν(g1{h=1}). This gives the desired decom-

position2 since

ν(g) = ν(g1{h=1}) + ν(g1{h<1}) = νs(g) + µ(ρg)

and
2 Here is the motivation for this construction. Suppose that dν = dνs + ρdµ is
the Radon-Nikodym decompostion and X = A

`
B such that νs(B) = 0 and

µ(A) = 0. Then we find

νs(f) + µ(ρf) = ν(f) = λ(fg) = ν(fg) + µ(fg).

Letting f → 1Af then implies that

νs(1Af) = ν(1Afg)

which show that g = 1 ν —a.e. on A. Also letting f → 1Bf implies that

µ(ρ1Bf(1− g)) = ν(1Bf(1− g)) = µ(1Bfg) = µ(fg)

which shows that
ρ(1− g) = ρ1B(1− g) = g µ− a.e..

This shows that ρ = g
1−g µ — a.e.
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νs (h 6= 1) = 0 while µ (h = 1) = µ({h 6= 1}c) = 0.
If ν ¿ µ, then µ (h = 1) = 0 implies ν (h = 1) = 0 and hence that νs = 0.

If νs = 0, then dν = ρdµ and so if µ(A) = 0, then ν(A) = µ(ρ1A) = 0 as well.
For the σ — finite case, write X =

`∞
n=1Xn where Xn ∈ M are chosen

so that µ(Xn) < ∞ and ν(Xn) < ∞ for all n. Let dµn = 1Xndµ and dνn =
1Xndν. Then by what we have just proved there exists ρn ∈ L1(X,µn) and
measure νsn such that dνn = ρndµn + dνsn with νsn ⊥ µn, i.e. there exists
An, Bn ∈MXn and µ(An) = 0 and νsn(Bn) = 0. Define νs :=

P∞
n=1 ν

s
n and

ρ :=
P∞

n=1 1Xn
ρn, then

ν =
∞X
n=1

νn =
∞X
n=1

(ρnµn + νsn) =
∞X
n=1

(ρn1Xnµ+ νsn) = ρµ+ νs

and letting A := ∪∞n=1An and B := ∪∞n=1Bn, we have A = Bc and

µ(A) =
∞X
n=1

µ(An) = 0 and ν(B) =
∞X
n=1

ν(Bn) = 0.

Theorem 18.14 (Dual of Lp — spaces). Let (X,M, µ) be a σ — finite mea-
sure space and suppose that p, q ∈ [1,∞] are conjugate exponents. Then for
p ∈ [1,∞), the map g ∈ Lq → φg ∈ (Lp)∗ is an isometric isomorphism of Ba-
nach spaces. (Recall that φg(f) :=

R
X

fgdµ.) We summarize this by writing
(Lp)∗ = Lq for all 1 ≤ p <∞.

Proof. The only point that we have not yet proved is the surjectivity of
the map g ∈ Lq → φg ∈ (Lp)∗. When p = 2 the result follows directly from
the Riesz theorem. We will begin the proof under the extra assumption that
µ(X) < ∞ in which cased bounded functions are in Lp(µ) for all p. So let
φ ∈ (Lp)∗ . We need to find g ∈ Lq(µ) such that φ = φg. When p ∈ [1, 2],
L2(µ) ⊂ Lp(µ) so that we may restrict φ to L2(µ) and again the result follows
fairly easily from the Riesz Theorem, see Exercise 18.44 below.
To handle general p ∈ [1,∞), define ν(A) := φ(1A). If A =

`∞
n=1An with

An ∈M, then

k1A −
NX
n=1

1AnkLp = k1∪∞n=N+1An
kLp =

£
µ(∪∞n=N+1An)

¤ 1
p → 0 as N →∞.

Therefore

ν(A) = φ(1A) =
∞X
1

φ(1An) =
∞X
1

ν(An)

showing ν is a complex measure.3

3 It is at this point that the proof breaks down when p =∞.
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For A ∈M, let |ν| (A) be the “total variation” of A defined by

|ν| (A) := sup {|φ(f1A)| : |f | ≤ 1}

and notice that

|ν(A)| ≤ |ν| (A) ≤ kφk(Lp)∗ µ(A)1/p for all A ∈M. (18.7)

You are asked to show in Exercise 18.45 that |ν| is a measure on (X,M).
(This can also be deduced from Lemma 18.31 and Proposition 18.35 below.)
By Eq. (18.7) |ν| ¿ µ, by Theorem 18.6 dν = hd |ν| for some |h| ≤ 1 and by
Theorem 18.13 d |ν| = ρdµ for some ρ ∈ L1(µ). Hence, letting g = ρh ∈ L1(µ),
dν = gdµ or equivalently

φ(1A) =

Z
X

g1Adµ ∀ A ∈M. (18.8)

By linearity this equation implies

φ(f) =

Z
X

gfdµ (18.9)

for all simple functions f on X. Replacing f by 1{|g|≤M}f in Eq. (18.9) shows

φ(f1{|g|≤M}) =
Z
X

1{|g|≤M}gfdµ

holds for all simple functions f and then by continuity for all f ∈ Lp(µ). By
the converse to Holder’s inequality, (Proposition 10.28) we learn that°°1{|g|≤M}g

°°
q
= sup
kfkp=1

¯̄
φ(f1{|g|≤M})

¯̄
≤ sup
kfkp=1

kφk(Lp)∗
°°f1{|g|≤M}

°°
p
≤ kφk(Lp)∗ .

Using the monotone convergence theorem we may letM →∞ in the previous
equation to learn kgkq ≤ kφk(Lp)∗ .With this result, Eq. (18.9) extends by
continuity to hold for all f ∈ Lp(µ) and hence we have shown that φ = φg.
Case 2. Now suppose that µ is σ — finite and Xn ∈M are sets such that

µ(Xn) < ∞ and Xn ↑ X as n → ∞. We will identify f ∈ Lp(Xn, µ) with
f1Xn ∈ Lp(X,µ) and this way we may consider Lp(Xn, µ) as a subspace of
Lp(X,µ) for all n and p ∈ [1,∞].
By Case 1. there exists gn ∈ Lq(Xn, µ) such that

φ(f) =

Z
Xn

gnfdµ for all f ∈ Lp(Xn, µ)

and
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kgnkq = sup
©|φ(f)| : f ∈ Lp(Xn, µ) and kfkLp(Xn,µ) = 1

ª ≤ kφk[Lp(µ)]∗ .
It is easy to see that gn = gm a.e. on Xn ∩ Xm for all m,n so that g :=
limn→∞ gn exists µ — a.e. By the above inequality and Fatou’s lemma, kgkq ≤
kφk[Lp(µ)]∗ < ∞ and since φ(f) =

R
Xn

gfdµ for all f ∈ Lp(Xn, µ) and n

and ∪∞n=1Lp(Xn, µ) is dense in Lp(X,µ) it follows by continuity that φ(f) =R
X
gfdµ for all f ∈ Lp(X,µ),i.e. φ = φg.

Example 18.15. Theorem 18.14 fails in general when p = ∞. Consider X =
[0, 1], M = B, and µ = m. Then (L∞)∗ 6= L1.

Proof. Let M := C([0, 1])“ ⊂ ”L∞([0, 1], dm). It is easily seen for f ∈M,
that kfk∞ = sup {|f(x)| : x ∈ [0, 1]} for all f ∈ M. Therefore M is a closed
subspace of L∞. Define c(f) = f(0) for all f ∈ M. Then c ∈ M∗ with
norm 1. Appealing to the Hahn-Banach Theorem 28.16 below, there exists an
extension L ∈ (L∞)∗ such that L = c on M and kLk = 1. If L 6= φg for some
g ∈ L1, i.e.

L(f) = φg(f) =

Z
[0,1]

fgdm for all f ∈ L∞,

then replacing f by fn(x) = (1− nx) 1x≤n−1 and letting n → ∞ implies,
(using the dominated convergence theorem)

1 = lim
n→∞L(fn) = lim

n→∞

Z
[0,1]

fngdm =

Z
{0}

gdm = 0.

From this contradiction, we conclude that L 6= φg for any g ∈ L1.

18.2 Signed Measures

Definition 18.16. Let ν be a signed measure on (X,M) and E ∈M, then

1. E is positive if for all A ∈M such that A ⊂ E, ν(A) ≥ 0, i.e. ν|ME
≥ 0.

2. E is negative if for all A ∈M such that A ⊂ E, ν(A) ≤ 0, i.e. ν|ME ≤ 0.
Lemma 18.17. Suppose that ν is a signed measure on (X,M). Then

1. Any subset of a positive set is positive.
2. The countable union of positive (negative or null) sets is still positive
(negative or null).

3. Let us now further assume that ν(M) ⊂ [−∞,∞) and E ∈ M is a set
such that ν (E) ∈ (0,∞). Then there exists a positive set P ⊂ E such that
ν(P ) ≥ ν(E).
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Proof. The first assertion is obvious. If Pj ∈ M are positive sets, let

P =
∞S
n=1

Pn. By replacing Pn by the positive set Pn\
Ã
n−1S
j=1

Pj

!
we may assume

that the {Pn}∞n=1 are pairwise disjoint so that P =
∞̀

n=1
Pn. Now if E ⊂ P and

E ∈M, E =
∞̀

n=1
(E ∩ Pn) so ν(E) =

P∞
n=1 ν(E ∩ Pn) ≥ 0.which shows that

P is positive. The proof for the negative and the null case is analogous.
The idea for proving the third assertion is to keep removing “big” sets of

negative measure from E. The set remaining from this procedure will be P.
We now proceed to the formal proof.
For all A ∈ M let n(A) = 1 ∧ sup{−ν(B) : B ⊂ A}. Since ν(∅) = 0,

n(A) ≥ 0 and n(A) = 0 iff A is positive. Choose A0 ⊂ E such that −ν(A0) ≥
1
2n(E) and set E1 = E \ A0, then choose A1 ⊂ E1 such that −ν(A1) ≥
1
2n(E1) and set E2 = E \ (A0 ∪A1) . Continue this procedure inductively,
namely if A0, . . . , Ak−1 have been chosen let Ek = E \

³ k−1̀

i=0
Ai

´
and choose

Ak ⊂ Ek such that −ν(Ak) ≥ 1
2n(Ek). Let P := E \

∞̀

k=0

Ak =
∞T
k=0

Ek, then

E = P ∪
∞̀

k=0

Ak and hence

(0,∞) 3 v(E) = ν(P ) +
∞X
k=0

ν(Ak) = ν(P )−
∞X
k=0

−ν(Ak) ≤ ν(P ). (18.10)

From Eq. (18.10) we learn that
P∞

k=0−ν(Ak) < ∞ and in particular that
limk→∞(−ν(Ak)) = 0. Since 0 ≤ 1

2n(Ek) ≤ −ν(Ak), this also implies
limk→∞ n(Ek) = 0. If A ⊂ P, then A ⊂ Ek for all k and so, for k large
so that n(Ek) < 1, we find −ν(A) ≤ n(Ek). Letting k → ∞ in this estimate
shows −ν(A) ≤ 0 or equivalently ν(A) ≥ 0. Since A ⊂ P was arbitrary, we
conclude that P is a positive set such that ν(P ) ≥ ν(E).

18.2.1 Hahn Decomposition Theorem

Definition 18.18. Suppose that ν is a signed measure on (X,M). A Hahn
decomposition for ν is a partition {P,N} of X such that P is positive and
N is negative.

Theorem 18.19 (Hahn Decomposition Theorem). Every signed mea-
sure space (X,M, ν) has a Hahn decomposition, {P,N}. Moreover, if {P̃ , Ñ}
is another Hahn decomposition, then P∆P̃ = N∆Ñ is a null set, so the de-
composition is unique modulo null sets.

Proof.With out loss of generality we may assume that ν(M) ⊂ [−∞,∞).
If not just consider −ν instead. Let us begin with the uniqueness assertion.
Suppose that A ∈M, then
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ν(A) = ν(A ∩ P ) + ν(A ∩N) ≤ ν(A ∩ P ) ≤ ν(P )

and similarly ν(A) ≤ ν(P̃ ) for all A ∈M. Therefore

ν(P ) ≤ ν(P ∪ P̃ ) ≤ ν(P̃ ) and ν(P̃ ) ≤ ν(P ∪ P̃ ) ≤ ν(P )

which shows that
s := ν(P̃ ) = ν(P ∪ P̃ ) = ν(P ).

Since

s = ν(P ∪ P̃ ) = ν(P ) + ν(P̃ )− ν(P ∩ P̃ ) = 2s− ν(P ∩ P̃ )

we see that ν(P ∩ P̃ ) = s and since

s = ν(P ∪ P̃ ) = ν(P ∩ P̃ ) + ν(P̃∆P )

it follows that ν(P̃∆P ) = 0. Thus N∆Ñ = P̃∆P is a positive set with
zero measure, i.e. N∆Ñ = P̃∆P is a null set and this proves the uniqueness
assertion.
Let

s ≡ sup{ν(A) : A ∈M}
which is non-negative since ν(∅) = 0. If s = 0, we are done since P = ∅ and
N = X is the desired decomposition. So assume s > 0 and choose An ∈M
such that ν(An) > 0 and limn→∞ ν(An) = s. By Lemma 18.17here exists
positive sets Pn ⊂ An such that ν(Pn) ≥ ν(An). Then s ≥ ν(Pn) ≥ ν(An)→ s
as n→∞ implies that s = limn→∞ ν(Pn). The set P ≡ ∪∞n=1Pn is a positive
set being the union of positive sets and since Pn ⊂ P for all n,

ν(P ) ≥ ν(Pn)→ s as n→∞.

This shows that ν(P ) ≥ s and hence by the definition of s, s = ν(P ) <∞.
We now claim that N = P c is a negative set and therefore, {P,N} is the

desired Hahn decomposition. If N were not negative, we could find E ⊂ N =
P c such that ν(E) > 0. We then would have

ν(P ∪E) = ν(P ) + ν(E) = s+ ν(E) > s

which contradicts the definition of s.

18.2.2 Jordan Decomposition

Definition 18.20. Let X = P ∪N be a Hahn decomposition of ν and define

ν+(E) = ν(P ∩E) and ν−(E) = −ν(N ∩E) ∀ E ∈M.
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Suppose X = eP ∪ eN is another Hahn Decomposition and eν± are define as
above with P and N replaced by eP and eN respectively. Then

eν+(E) = ν(E ∩ eP ) = ν(E ∩ eP ∩ P ) + ν((E ∩ eP ∩N) = ν(E ∩ eP ∩ P )
since N ∩ P̃ is both positive and negative and hence null. Similarly ν+(E) =
ν(E ∩ eP ∩ P ) showing that ν+ = eν+ and therefore also that ν− = eν−.
Theorem 18.21 (Jordan Decomposition). There exists unique positive
measure ν± such that ν+ ⊥ ν− and ν = ν+ − ν−.

Proof. Existence has been proved. For uniqueness suppose ν = ν+ − ν−
is a Jordan Decomposition. Since ν+ ⊥ ν− there exists P,N = P c ∈M such
that ν+(N) = 0 and ν−(P ) = 0. Then clearly P is positive for ν and N is
negative for ν. Now ν(E∩P ) = ν+(E) and ν(E∩N) = ν−(E). The uniqueness
now follows from the remarks after Definition 18.20.

Definition 18.22. |ν|(E) = ν+(E) + ν−(E) is called the total variation of ν.
A signed measure is called σ — finite provided that |ν| := ν++ν− is a σ finite
measure.

(BRUCE: Use Exercise 18.50 to prove the uniqueness of the Jordan de-
compositions, or make an exercise.)

Lemma 18.23. Let ν be a signed measure on (X,M) and A ∈M. If ν(A) ∈
R then ν(B) ∈ R for all B ⊂ A. Moreover, ν(A) ∈ R iff |ν| (A) < ∞. In
particular, ν is σ finite iff |ν| is σ — finite. Furthermore if P,N ∈ M is a
Hahn decomposition for ν and g = 1P − 1N , then dν = gd |ν| , i.e.

ν(A) =

Z
A

gd |ν| for all A ∈M.

Proof. Suppose that B ⊂ A and |ν(B)| = ∞ then since ν(A) = ν(B) +
ν(A \B) we must have |ν(A)| =∞. Let P,N ∈M be a Hahn decomposition
for ν, then

ν(A) = ν(A ∩ P ) + ν(A ∩N) = |ν(A ∩ P )|− |ν(A ∩N)| and
|ν| (A) = ν(A ∩ P )− ν(A ∩N) = |ν(A ∩ P )|+ |ν(A ∩N)| . (18.11)

Therefore ν(A) ∈ R iff ν(A ∩ P ) ∈ R and ν(A ∩ N) ∈ R iff |ν| (A) < ∞.
Finally,

ν(A) = ν(A ∩ P ) + ν(A ∩N)
= |ν|(A ∩ P )− |ν|(A ∩N)
=

Z
A

(1P − 1N )d|ν|

which shows that dν = gd |ν| .
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Definition 18.24. Let ν be a signed measure on (X,M), let

L1(ν) := L1(ν+) ∩ L1(ν−) = L1(|ν|)

and for f ∈ L1(ν) we defineZ
X

fdν =

Z
X

fdν+ −
Z
X

fdν−.

Lemma 18.25. Let µ be a positive measure on (X,M), g be an extended
integrable function on (X,M, µ) and dν = gdµ. Then L1(ν) = L1(|g| dµ) and
for f ∈ L1(ν), Z

X

fdν =

Z
X

fgdµ.

Proof. We have already seen that dν+ = g+dµ, dν− = g−dµ, and d |ν| =
|g| dµ so that L1(ν) = L1(|ν|) = L1(|g| dµ) and for f ∈ L1(ν),Z

X

fdν =

Z
X

fdν+ −
Z
X

fdν− =
Z
X

fg+dµ−
Z
X

fg−dµ

=

Z
X

f (g+ − g−) dµ =
Z
X

fgdµ.

Lemma 18.26. Suppose that µ is a positive measure on (X,M) and g : X →
R is an extended integrable function. If ν is the signed measure dν = gdµ,
then dν± = g±dµ and d |ν| = |g| dµ. We also have

|ν|(A) = sup{
Z
A

f dν : |f | ≤ 1} for all A ∈M. (18.12)

Proof. The pair, P = {g > 0} and N = {g ≤ 0} = P c is a Hahn decom-
position for ν. Therefore

ν+(A) = ν(A ∩ P ) =
Z
A∩P

gdµ =

Z
A

1{g>0}gdµ =
Z
A

g+dµ,

ν−(A) = −ν(A ∩N) = −
Z
A∩N

gdµ = −
Z
A

1{g≤0}gdµ = −
Z
A

g−dµ.

and

|ν| (A) = ν+(A) + ν−(A) =
Z
A

g+dµ−
Z
A

g−dµ

=

Z
A

(g+ − g−) dµ =
Z
A

|g| dµ.

If A ∈M and |f | ≤ 1, then



18.2 Signed Measures 433¯̄̄̄Z
A

f dν

¯̄̄̄
=

¯̄̄̄Z
A

f dν+ −
Z
A

f dν−
¯̄̄̄
≤
¯̄̄̄Z
A

f dν+

¯̄̄̄
+

¯̄̄̄Z
A

f dν−
¯̄̄̄

≤
Z
A

|f |dν+ +
Z
A

|f |dν− =
Z
A

|f | d|ν| ≤ |ν| (A).

For the reverse inequality, let f ≡ 1P − 1N thenZ
A

f dν = ν(A ∩ P )− ν(A ∩N) = ν+(A) + ν−(A) = |ν|(A).

Lemma 18.27. Suppose ν is a signed measure, µ is a positive measure and
ν = νa+νs is a Lebesgue decomposition of ν relative to µ, then |ν| = |νa|+|νs| .
Proof. Let A ∈ M be chosen so that A is a null set for νa and Ac is

a null set for νs. Let A = P 0
`

N 0 be a Hahn decomposition of νs|MA
and

Ac = P̃
`

Ñ be a Hahn decomposition of νa|MAc
. Let P = P 0 ∪ P̃ and

N = N 0 ∪ Ñ. Since for C ∈M,

ν(C ∩ P ) = ν(C ∩ P 0) + ν(C ∩ P̃ )
= νs(C ∩ P 0) + νa(C ∩ P̃ ) ≥ 0

and

ν(C ∩N) = ν(C ∩N 0) + ν(C ∩ Ñ)
= νs(C ∩N 0) + νa(C ∩ Ñ) ≤ 0

we see that {P,N} is a Hahn decomposition for ν. It also easy to see that
{P,N} is a Hahn decomposition for both νs and νa as well. Therefore,

|ν| (C) = ν(C ∩ P )− ν(C ∩N)
= νs(C ∩ P )− νs(C ∩N) + νa(C ∩ P )− νa(C ∩N)
= |νs| (C) + |νa| (C).

Lemma 18.28. 1) Let ν be a signed measure and µ be a positive measure on
(X,M) such that ν ¿ µ and ν ⊥ µ, then ν ≡ 0. 2) Suppose that ν =P∞i=1 νi
where νi are positive measures on (X,M) such that νi ¿ µ, then ν ¿ µ.
Also if ν1 and ν2 are two signed measure such that νi ¿ µ for i = 1, 2 and
ν = ν1 + ν2 is well defined, then ν ¿ µ.

Proof. (1) Because ν ⊥ µ, there exists A ∈M such that A is a ν — null
set and B = Ac is a µ - null set. Since B is µ — null and ν ¿ µ, B is also ν
— null. This shows by Lemma 18.17 that X = A ∪B is also ν — null, i.e. ν is
the zero measure. The proof of (2) is easy and is left to the reader.
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Theorem 18.29 (Radon Nikodym Theorem for Signed Measures).
Let ν be a σ — finite signed measure and µ be a σ — finite positive measure on
(X,M). Then ν has a unique Lebesgue decomposition ν = νa + νs relative to
µ and there exists a unique (modulo sets of µ — measure 0) extended integrable
function ρ : X → R such that dνa = ρdµ. Moreover, νs = 0 iff ν ¿ µ, i.e.
dν = ρdµ iff ν ¿ µ.

Proof. Uniqueness. Is a direct consequence of Lemmas 18.10 and 18.11.
Existence. Let ν = ν+ − ν− be the Jordan decomposition of ν. Assume,

without loss of generality, that ν+(X) <∞, i.e. ν(A) <∞ for all A ∈M. By
the Radon Nikodym Theorem 18.13 for positive measures there exist functions
f± : X → [0,∞) and measures λ± such that ν± = µf± + λ± with λ± ⊥ µ.
Since

∞ > ν+(X) = µf+(X) + λ+(X),

f+ ∈ L1(µ) and λ+(X) < ∞ so that f = f+ − f− is an extended integrable
function, dνa := fdµ and νs = λ+−λ− are signed measures. This finishes the
existence proof since

ν = ν+ − ν− = µf+ + λ+ −
¡
µf− + λ−

¢
= νa + νs

and νs = (λ+ − λ−) ⊥ µ by Remark 18.8.
For the final statement, if νs = 0, then dν = ρdµ and hence ν ¿ µ.

Conversely if ν ¿ µ, then dνs = dν − ρdµ ¿ µ, so by Lemma 18.17, νs =
0. Alternatively just use the uniqueness of the Lebesgue decomposition to
conclude νa = ν and νs = 0. Or more directly, choose B ∈ M such that
µ(Bc) = 0 and B is a νs — null set. Since ν ¿ µ, Bc is also a ν — null set so
that, for A ∈M,

ν(A) = ν(A ∩B) = νa(A ∩B) + νs(A ∩B) = νa(A ∩B).

Notation 18.30 The function f is called the Radon-Nikodym derivative of ν
relative to µ and we will denote this function by dν

dµ .

18.3 Complex Measures II

Suppose that ν is a complex measure on (X,M), let νr := Re ν, νi := Im ν
and µ := |νr| + |νi|. Then µ is a finite positive measure on M such that
νr ¿ µ and νi ¿ µ. By the Radon-Nikodym Theorem 18.29, there exists
real functions h, k ∈ L1(µ) such that dνr = h dµ and dνi = k dµ. So letting
g := h+ ik ∈ L1(µ),

dν = (h+ ik)dµ = gdµ

showing every complex measure may be written as in Eq. (18.1).
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Lemma 18.31. Suppose that ν is a complex measure on (X,M), and for
i = 1, 2 let µi be a finite positive measure on (X,M) such that dν = gidµi
with gi ∈ L1(µi). ThenZ

A

|g1| dµ1 =
Z
A

|g2| dµ2 for all A ∈M.

In particular, we may define a positive measure |ν| on (X,M) by

|ν| (A) =
Z
A

|g1| dµ1 for all A ∈M.

The finite positive measure |ν| is called the total variation measure of ν.
Proof. Let λ = µ1+µ2 so that µi ¿ λ. Let ρi = dµi/dλ ≥ 0 and hi = ρigi.

Since

ν(A) =

Z
A

gidµi =

Z
A

giρidλ =

Z
A

hidλ for all A ∈M,

h1 = h2, λ —a.e. ThereforeZ
A

|g1| dµ1 =
Z
A

|g1| ρ1dλ =
Z
A

|h1| dλ

=

Z
A

|h2| dλ =
Z
A

|g2| ρ2dλ =
Z
A

|g2| dµ2.

Definition 18.32. Given a complex measure ν, let νr = Re ν and νi = Im ν
so that νr and νi are finite signed measures such that

ν(A) = νr(A) + iνi(A) for all A ∈M.

Let L1(ν) := L1(νr) ∩ L1(νi) and for f ∈ L1(ν) defineZ
X

fdν :=

Z
X

fdνr + i

Z
X

fdνi.

Example 18.33. Suppose that µ is a positive measure on (X,M), g ∈ L1(µ)
and ν(A) =

R
A
gdµ as in Example 18.4, then L1(ν) = L1(|g| dµ) and for

f ∈ L1(ν) Z
X

fdν =

Z
X

fgdµ. (18.13)

To check Eq. (18.13), notice that dνr = Re g dµ and dνi = Im g dµ so that
(using Lemma 18.25)

L1(ν) = L1(Re gdµ)∩L1(Im gdµ) = L1(|Re g| dµ)∩L1(|Im g| dµ) = L1(|g| dµ).
If f ∈ L1(ν), thenZ

X

fdν :=

Z
X

f Re gdµ+ i

Z
X

f Im gdµ =

Z
X

fgdµ.
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Remark 18.34. Suppose that ν is a complex measure on (X,M) such that
dν = gdµ and as above d |ν| = |g| dµ. Letting

ρ = sgn(ρ) :=

½ g
|g| if |g| 6= 0
1 if |g| = 0

we see that
dν = gdµ = ρ |g| dµ = ρd |ν|

and |ρ| = 1 and ρ is uniquely defined modulo |ν| — null sets. We will denote ρ
by dν/d |ν| . With this notation, it follows from Example 18.33 that L1(ν) :=
L1 (|ν|) and for f ∈ L1(ν),Z

X

fdν =

Z
X

f
dν

d |ν|d |ν| .

Proposition 18.35 (Total Variation). Suppose A ⊂ P(X) is an algebra,
M = σ(A), ν is a complex (or a signed measure which is σ — finite on A) on
(X,M) and for E ∈M let

µ0(E) = sup

(
nX
1

|ν(Ej)| : Ej ∈ AE 3 Ei ∩Ej = δijEi, n = 1, 2, . . .

)

µ1(E) = sup

(
nX
1

|ν(Ej)| : Ej ∈ME 3 Ei ∩Ej = δijEi, n = 1, 2, . . .

)

µ2(E) = sup

( ∞X
1

|ν(Ej)| : Ej ∈ME 3 Ei ∩Ej = δijEi

)

µ3(E) = sup

½¯̄̄̄Z
E

fdν

¯̄̄̄
: f is measurable with |f | ≤ 1

¾
µ4(E) = sup

½¯̄̄̄Z
E

fdν

¯̄̄̄
: f ∈ Sf (A, |ν|) with |f | ≤ 1

¾
.

then µ0 = µ1 = µ2 = µ3 = µ4 = |ν| .
Proof. Let ρ = dν/d |ν| and recall that |ρ| = 1, |ν| — a.e. We will start by

showing |ν| = µ3 = µ4. If f is measurable with |f | ≤ 1 then¯̄̄̄Z
E

f dν

¯̄̄̄
=

¯̄̄̄Z
E

f ρd |ν|
¯̄̄̄
≤
Z
E

|f | d|ν| ≤
Z
E

1d|ν| = |ν|(E)

from which we conclude that µ4 ≤ µ3 ≤ |ν|. Taking f = ρ̄ above shows¯̄̄̄Z
E

f dν

¯̄̄̄
=

Z
E

ρ̄ ρ d|ν| =
Z
E

1 d|ν| = |ν| (E)

which shows that |ν| ≤ µ3 and hence |ν| = µ3. To show |ν| = µ4 as well
let Xm ∈ A be chosen so that |ν| (Xm) < ∞ and Xm ↑ X as m → ∞.
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By Theorem 11.3 of Corollary 12.29, there exists ρn ∈ Sf (A, µ) such that
ρn → ρ1Xm in L1(|ν|) and each ρn may be written in the form

ρn =
NX
k=1

zk1Ak (18.14)

where zk ∈ C and Ak ∈ A and Ak ∩ Aj = ∅ if k 6= j. I claim that we may
assume that |zk| ≤ 1 in Eq. (18.14) for if |zk| > 1 and x ∈ Ak,

|ρ(x)− zk| ≥
¯̄̄
ρ(x)− |zk|−1 zk

¯̄̄
.

This is evident from Figure 18.1 and formally follows from the fact that

d

dt

¯̄̄
ρ(x)− t |zk|−1 zk

¯̄̄2
= 2

h
t−Re(|zk|−1 zkρ(x))

i
≥ 0

when t ≥ 1.

Fig. 18.1. Sliding points to the unit circle.

Therefore if we define

wk :=

½ |zk|−1 zk if |zk| > 1
zk if |zk| ≤ 1

and ρ̃n =
NP
k=1

wk1Ak then

|ρ(x)− ρn(x)| ≥ |ρ(x)− ρ̃n(x)|
and therefore ρ̃n → ρ1Xm in L1(|ν|). So we now assume that ρn is as in Eq.
(18.14) with |zk| ≤ 1.
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Now¯̄̄̄Z
E

ρ̄ndν −
Z
E

ρ̄1Xmdν

¯̄̄̄
≤
¯̄̄̄Z
E

(ρ̄ndν − ρ̄1Xm) ρd |ν|
¯̄̄̄

≤
Z
E

|ρ̄n − ρ̄1Xm
| d |ν|→ 0 as n→∞

and hence

µ4(E) ≥
¯̄̄̄Z
E

ρ̄1Xm
dν

¯̄̄̄
= |ν| (E ∩Xm) for all m.

Letting m ↑ ∞ in this equation shows µ4 ≥ |ν| .
We will now show µ0 = µ1 = µ2 = |ν| . Clearly µ0 ≤ µ1 ≤ µ2. Suppose

Ej ∈ME such that Ei ∩Ej = δijEi, thenX
|ν(Ej)| =

X
|
Z
Ej

ρd |ν| ≤
X

|ν|(Ej) = |ν|(∪Ej) ≤ |ν| (E)

which shows that µ2 ≤ |ν| = µ4. So it suffices to show µ4 ≤ µ0. But if
f ∈ Sf (A, |ν|) with |f | ≤ 1, then f may be expressed as f =

PN
k=1 zk1Ak

with |zk| ≤ 1 and Ak ∩Aj = δijAk. Therefore,¯̄̄̄Z
E

fdν

¯̄̄̄
=

¯̄̄̄
¯
NX
k=1

zkν(Ak ∩E)
¯̄̄̄
¯ ≤

NX
k=1

|zk| |ν(Ak ∩E)|

≤
NX
k=1

|ν(Ak ∩E)| ≤ µ0(A).

Since this equation holds for all f ∈ Sf (A, |ν|) with |f | ≤ 1, µ4 ≤ µ0 as
claimed.

Theorem 18.36 (Radon Nikodym Theorem for Complex Measures).
Let ν be a complex measure and µ be a σ — finite positive measure on (X,M).
Then ν has a unique Lebesgue decomposition ν = νa+νs relative to µ and there
exists a unique element ρ ∈ L1(µ) such that such that dνa = ρdµ. Moreover,
νs = 0 iff ν ¿ µ, i.e. dν = ρdµ iff ν ¿ µ.

Proof. Uniqueness. Is a direct consequence of Lemmas 18.10 and 18.11.
Existence. Let g : X → S1 ⊂ C be a function such that dν = gd |ν| .

By Theorem 18.13, there exists h ∈ L1(µ) and a positive measure |ν|s such
that |ν|s ⊥ µ and d |ν| = hdµ + d |ν|s . Hence we have dν = ρdµ + dνs with
ρ := gh ∈ L1(µ) and dνs := gd |ν|s . This finishes the proof since, as is easily
verified, νs ⊥ µ.

18.4 Absolute Continuity on an Algebra

The following results will be useful in Section 20.4 below.
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Lemma 18.37. Let ν be a complex or a signed measure on (X,M). Then
A ∈M is a ν — null set iff |ν| (A) = 0. In particular if µ is a positive measure
on (X,M), ν ¿ µ iff |ν| ¿ µ.

Proof. In all cases we have |ν(A)| ≤ |ν| (A) for all A ∈M which clearly
shows that |ν| (A) = 0 implies A is a ν — null set. Conversely if A is a ν — null
set, then, by definition, ν|MA ≡ 0 so by Proposition 18.35

|ν| (A) = sup
( ∞X

1

|ν(Ej)| : Ej ∈MA 3 Ei ∩Ej = δijEi

)
= 0.

since Ej ⊂ A implies µ(Ej) = 0 and hence ν(Ej) = 0.
Alternate Proofs that A is ν — null implies |ν| (A) = 0.
1) Suppose ν is a signed measure and {P,N = P c} ⊂ M is a Hahn de-

composition for ν. Then

|ν| (A) = ν(A ∩ P )− ν(A ∩N) = 0.
Now suppose that ν is a complex measure. Then A is a null set for both
νr := Re ν and νi := Im ν. Therefore |ν| (A) ≤ |νr| (A) + |νi| (A) = 0.
2) Here is another proof in the complex case. Let ρ = dν

d|ν| , then by as-
sumption of A being ν — null,

0 = ν(B) =

Z
B

ρd |ν| for all B ∈MA.

This shows that ρ1A = 0, |ν| — a.e. and hence

|ν| (A) =
Z
A

|ρ| d |ν| =
Z
X

1A |ρ| d |ν| = 0.

Theorem 18.38 (� — δ Definition of Absolute Continuity). Let ν be a
complex measure and µ be a positive measure on (X,M). Then ν ¿ µ iff for
all � > 0 there exists a δ > 0 such that |ν(A)| < � whenever A ∈ M and
µ(A) < δ.

Proof. (⇐=) If µ(A) = 0 then |ν(A)| < � for all � > 0 which shows that
ν(A) = 0, i.e. ν ¿ µ.
(=⇒) Since ν ¿ µ iff |ν| ¿ µ and |ν(A)| ≤ |ν|(A) for all A ∈M, it suffices

to assume ν ≥ 0 with ν(X) <∞. Suppose for the sake of contradiction there
exists � > 0 and An ∈M such that ν(An) ≥ � > 0 while µ(An) ≤ 1

2n . Let

A = {An i.o.} =
∞\

N=1

[
n≥N

An

so that
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µ(A) = lim
N→∞

µ (∪n≥NAn) ≤ lim
N→∞

∞X
n=N

µ(An) ≤ lim
N→∞

2−(N−1) = 0.

On the other hand,

ν(A) = lim
N→∞

ν (∪n≥NAn) ≥ lim
n→∞ inf ν(An) ≥ � > 0

showing that ν is not absolutely continuous relative to µ.

Corollary 18.39. Let µ be a positive measure on (X,M) and f ∈ L1(dµ).

Then for all � > 0 there exists δ > 0 such that

¯̄̄̄R
A

f dµ

¯̄̄̄
< � for all A ∈ M

such that µ(A) < δ.

Proof. Apply theorem 18.38 to the signed measure ν(A) =
R
A

f dµ for all

A ∈M.

Theorem 18.40 (Absolute Continuity on an Algebra). Let ν be a com-
plex measure and µ be a positive measure on (X,M). Suppose that A ⊂M
is an algebra such that σ(A) =M and that µ is σ — finite on A. Then ν ¿ µ
iff for all � > 0 there exists a δ > 0 such that |ν(A)| < � for all A ∈ A with
µ(A) < δ.

Proof. (=⇒) This implication is a consequence of Theorem 18.38.
(⇐=) Let us begin by showing the hypothesis |ν(A)| < � for all A ∈ A

with µ(A) < δ implies |ν| (A) ≤ 4� for all A ∈ A with µ(A) < δ. To prove this
decompose ν into its real and imaginary parts; ν = νr + iνi.and suppose that
A =

`n
j=1Aj with Aj ∈ A. Then

nX
j=1

|νr(Aj)| =
X

j:νr(Aj)≥0
νr(Aj)−

X
j:νr(Aj)≤0

νr(Aj)

= νr(∪j:νr(Aj)≥0Aj)− νr(∪j:νr(Aj)≤0Aj)

≤ ¯̄ν(∪j:νr(Aj)≥0Aj)
¯̄
+
¯̄
ν(∪j:νr(Aj)≤0Aj)

¯̄
< 2�

using the hypothesis and the fact µ
¡∪j:νr(Aj)≥0Aj

¢ ≤ µ(A) < δ and
µ
¡∪j:νr(Aj)≤0Aj

¢ ≤ µ(A) < δ. Similarly,
Pn

j=1 |νi(Aj)| < 2� and therefore
nX
j=1

|ν(Aj)| ≤
nX
j=1

|νr(Aj)|+
nX
j=1

|νi(Aj)| < 4�.

Using Proposition 18.35, it follows that

|ν| (A) = sup


nX
j=1

|ν(Aj)| : A =
na
j=1

Aj with Aj ∈ A and n ∈ N
 ≤ 4�.



18.5 Dual Spaces and the Complex Riesz Theorem 441

Because of this argument, we may now replace ν by |ν| and hence we may
assume that ν is a positive finite measure.
Let � > 0 and δ > 0 be such that ν(A) < � for all A ∈ A with µ(A) < δ.

Suppose that B ∈ M with µ(B) < δ. Use the regularity Theorem 9.40 or
Corollary 12.29 to find A ∈ Aσ such that B ⊂ A and µ(B) ≤ µ(A) < δ.
Write A = ∪nAn with An ∈ A. By replacing An by ∪nj=1Aj if necessary we
may assume that An is increasing in n. Then µ(An) ≤ µ(A) < δ for each n
and hence by assumption ν(An) < �. Since B ⊂ A = ∪nAn it follows that
ν(B) ≤ ν(A) = limn→∞ ν(An) ≤ �. Thus we have shown that ν(B) ≤ � for all
B ∈M such that µ(B) < δ.

18.5 Dual Spaces and the Complex Riesz Theorem

Proposition 18.41. Let S be a vector lattice of bounded real functions on a
set X. We equip S with the sup-norm topology and suppose I ∈ S∗. Then there
exists I± ∈ S∗ which are positive such that then I = I+ − I−.

Proof. For f ∈ S+, let

I+(f) := sup
©
I(g) : g ∈ S+ and g ≤ f

ª
.

One easily sees that |I+(f)| ≤ kIk kfk for all f ∈ S+ and I+(cf) = cI+(f) for
all f ∈ S+ and c > 0. Let f1, f2 ∈ S+. Then for any gi ∈ S+ such that gi ≤ fi,
we have S+ 3 g1 + g2 ≤ f1 + f2 and hence

I(g1) + I(g2) = I(g1 + g2) ≤ I+(f1 + f2).

Therefore,

I+(f1) + I+(f2) = sup{I(g1) + I(g2) : S+ 3 gi ≤ fi} ≤ I+(f1 + f2). (18.15)

For the opposite inequality, suppose g ∈ S+ and g ≤ f1 + f2. Let g1 = f1 ∧ g,
then

0 ≤ g2 := g − g1 = g − f1 ∧ g =
½

0 if g ≤ f1
g − f1 if g ≥ f1

≤
½

0 if g ≤ f1
f1 + f2 − f1 if g ≥ f1

≤ f2.

Since g = g1 + g2 with S+ 3 gi ≤ fi,

I(g) = I(g1) + I(g2) ≤ I+(f1) + I+(f2)

and since S+ 3 g ≤ f1 + f2 was arbitrary, we may conclude

I+(f1 + f2) ≤ I+(f1) + I+(f2). (18.16)
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Combining Eqs. (18.15) and (18.16) shows that

I+(f1 + f2) = I+(f1) + I+(f2) for all fi ∈ S+. (18.17)

We now extend I+ to S by defining, for f ∈ S,
I+(f) = I+(f+)− I+(f−)

where f+ = f ∨ 0 and f− = − (f ∧ 0) = (−f)∨ 0. (Notice that f = f+ − f−.)
We will now shows that I+ is linear.
If c ≥ 0, we may use (cf)± = cf± to conclude that

I+(cf) = I+(cf+)− I+(cf−) = cI+(f+)− cI+(f−) = cI+(f).

Similarly, using (−f)± = f∓ it follows that I+(−f) = I+(f−) − I+(f+) =
−I+(f). Therefore we have shown

I+(cf) = cI+(f) for all c ∈ R and f ∈ S.
If f = u− v with u, v ∈ S+ then

v + f+ = u+ f− ∈ S+

and so by Eq. (18.17), I+(v) + I+(f+) = I+(u) + I+(f−) or equivalently

I+(f) = I+(f+)− I+(f−) = I+(u)− I+(v). (18.18)

Now if f, g ∈ S, then
I+(f + g) = I+(f+ + g+ − (f− + g−))

= I+(f+ + g+)− I+(f− + g−)
= I+(f+) + I+(g+)− I+(f−)− I+(g−)
= I+(f) + I+(g),

wherein the second equality we used Eq. (18.18).
The last two paragraphs show I+ : S→ R is linear. Moreover,

|I+(f)| = |I+(f+)− I+(f−)| ≤ max (|I+(f+)| , |I+(f−)|)
≤ kIkmax (kf+k , kf−k) = kIk kfk

which shows that kI+k ≤ kIk . That is I+ is a bounded positive linear
functional on S. Let I− = I+ − I ∈ S∗. Then by definition of I+(f),
I−(f) = I+(f) − I(f) ≥ 0 for all S 3 f ≥ 0. Therefore I = I+ − I− with
I± being positive linear functionals on S.

Corollary 18.42. Suppose X is a second countable locally compact Hausdorff
space and I ∈ C0(X,R)∗, then there exists µ = µ+ − µ− where µ is a finite
signed measure on BR such that I(f) =

R
R fdµ for all f ∈ C0(X,R). Similarly

if I ∈ C0(X,C)∗ there exists a complex measure µ such that I(f) =
R
R fdµ

for all f ∈ C0(X,C). TODO Add in the isometry statement here.
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Proof. Let I = I+ − I− be the decomposition given as above. Then we
know there exists finite measure µ± such that

I±(f) =
Z
X

fdµ± for all f ∈ C0(X,R).

and therefore I(f) =
R
X
fdµ for all f ∈ C0(X,R) where µ = µ+ − µ−.

Moreover the measure µ is unique. Indeed if I(f) =
R
X
fdµ for some finite

signed measure µ, then the next result shows that I±(f) =
R
X
fdµ± where µ±

is the Hahn decomposition of µ. Now the measures µ± are uniquely determined
by I±. The complex case is a consequence of applying the real case just proved
to Re I and Im I.

Proposition 18.43. Suppose that µ is a signed Radon measure and I = Iµ.
Let µ+ and µ− be the Radon measures associated to I±, then µ = µ+ − µ− is
the Jordan decomposition of µ.

Proof. Let X = P ∪P c where P is a positive set for µ and P c is a negative
set. Then for A ∈ BX ,

µ(P ∩A) = µ+(P ∩A)− µ−(P ∩A) ≤ µ+(P ∩A) ≤ µ+(A). (18.19)

To finish the proof we need only prove the reverse inequality. To this end let
� > 0 and choose K @@ P ∩ A ⊂ U ⊂o X such that |µ| (U \ K) < �. Let
f, g ∈ Cc(U, [0, 1]) with f ≤ g, then

I(f) = µ(f) = µ(f : K) + µ(f : U \K) ≤ µ(g : K) +O(�)

≤ µ(K) +O(�) ≤ µ(P ∩A) +O(�).

Taking the supremum over all such f ≤ g, we learn that I+(g) ≤ µ(P ∩A) +
O(�) and then taking the supremum over all such g shows that

µ+(U) ≤ µ(P ∩A) +O(�).

Taking the infimum over all U ⊂o X such that P ∩A ⊂ U shows that

µ+(P ∩A) ≤ µ(P ∩A) +O(�) (18.20)

From Eqs. (18.19) and (18.20) it follows that µ(P ∩A) = µ+(P ∩A). Since

I−(f) = sup
0≤g≤f

I(g)−I(f) = sup
0≤g≤f

I(g−f) = sup
0≤g≤f

−I(f−g) = sup
0≤h≤f

−I(h)

the same argument applied to −I shows that

−µ(P c ∩A) = µ−(P c ∩A).

Since
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µ(A) = µ(P ∩A) + µ(P c ∩A) = µ+(P ∩A)− µ−(P c ∩A) and
µ(A) = µ+(A)− µ−(A)

it follows that
µ+(A \ P ) = µ−(A \ P c) = µ−(A ∩ P ).

Taking A = P then shows that µ−(P ) = 0 and taking A = P c shows that
µ+(P

c) = 0 and hence

µ(P ∩A) = µ+(P ∩A) = µ+(A) and

−µ(P c ∩A) = µ−(P c ∩A) = µ−(A)

as was to be proved.

18.6 Exercises

Exercise 18.44. Prove Theorem 18.14 for p ∈ [1, 2] by directly applying the
Riesz theorem to φ|L2(µ).
Exercise 18.45. Show |ν| be defined as in Eq. (18.7) is a positive measure.
Here is an outline.

1. Show
|ν| (A) + |ν| (B) ≤ |ν| (A ∪B). (18.21)

when A,B are disjoint sets inM.
2. If A =

`∞
n=1An with An ∈M then

|ν| (A) ≤
∞X
n=1

|ν| (An). (18.22)

3. From Eqs. (18.21) and (18.22) it follows that ν is finitely additive, and
hence

|ν| (A) =
NX
n=1

|ν| (An) + |ν| (∪n>NAn) ≥
NX
n=1

|ν| (An).

Letting N → ∞ in this inequality shows |ν| (A) ≥ P∞n=1 |ν| (An) which
combined with Eq. (18.22) shows |ν| is countable additive.

Exercise 18.46. Suppose µi, νi are σ — finite positive measures on measurable
spaces, (Xi,Mi), for i = 1, 2. If νi ¿ µi for i = 1, 2 then ν1 ⊗ ν2 ¿ µ1 ⊗ µ2
and in fact

d(ν1 ⊗ ν2)

d(µ1 ⊗ µ2)
(x1, x2) = ρ1 ⊗ ρ2(x1, x2) := ρ1(x1)ρ2(x2)

where ρi := dνi/dµi for i = 1, 2.
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Exercise 18.47. Folland 3.13 on p. 92.

Exercise 18.48. Let ν be a σ — finite signed measure, f ∈ L1(|ν|) and defineZ
X

fdν =

Z
X

fdν+ −
Z
X

fdν−.

Suppose that µ is a σ — finite measure and ν ¿ µ. ShowZ
X

fdν =

Z
X

f
dν

dµ
dµ. (18.23)

Exercise 18.49. Suppose that ν is a signed or complex measure on (X,M)
and An ∈M such that either An ↑ A or An ↓ A and ν(A1) ∈ R, then show
ν(A) = limn→∞ ν(An).

Exercise 18.50. Suppose that µ and λ are positive measures and µ(X) <∞.
Let ν := λ− µ, then show λ ≥ ν+ and µ ≥ ν−.

Exercise 18.51. Folland Exercise 3.5 on p. 88 showing |ν1 + ν2| ≤ |ν1|+ |ν2| .
Exercise 18.52. Folland Exercise 3.7a on p. 88.

Exercise 18.53. Show Theorem 18.38 may fail if ν is not finite. (For a hint,
see problem 3.10 on p. 92 of Folland.)

Exercise 18.54. Folland 3.14 on p. 92.

Exercise 18.55. Folland 3.15 on p. 92.

Exercise 18.56. Folland 3.20 on p. 94.
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Banach Space Calculus

In this section, X and Y will be Banach space and U will be an open subset
of X.

Notation 19.1 (�, O, and o notation) Let 0 ∈ U ⊂o X, and f : U → Y be
a function. We will write:

1. f(x) = �(x) if limx→0 kf(x)k = 0.
2. f(x) = O(x) if there are constants C < ∞ and r > 0 such that
kf(x)k ≤ Ckxk for all x ∈ B(0, r). This is equivalent to the condition
that lim supx→0

kf(x)k
kxk <∞, where

lim sup
x→0

kf(x)k
kxk ≡ lim

r↓0
sup{kf(x)k : 0 < kxk ≤ r}.

3. f(x) = o(x) if f(x) = �(x)O(x), i.e. limx→0 kf(x)k/kxk = 0.
Example 19.2. Here are some examples of properties of these symbols.

1. A function f : U ⊂o X → Y is continuous at x0 ∈ U if f(x0 + h) =
f(x0) + �(h).

2. If f(x) = �(x) and g(x) = �(x) then f(x) + g(x) = �(x).
Now let g : Y → Z be another function where Z is another Banach space.

3. If f(x) = O(x) and g(y) = o(y) then g ◦ f(x) = o(x).
4. If f(x) = �(x) and g(y) = �(y) then g ◦ f(x) = �(x).

19.1 The Differential

Definition 19.3. A function f : U ⊂o X → Y is differentiable at x0+h0 ∈
U if there exists a linear transformation Λ ∈ L(X,Y ) such that

f(x0 + h)− f(x0 + h0)− Λh = o(h). (19.1)

We denote Λ by f 0(x0) or Df(x0) if it exists. As with continuity, f is dif-
ferentiable on U if f is differentiable at all points in U.
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Remark 19.4. The linear transformation Λ in Definition 19.3 is necessarily
unique. Indeed if Λ1 is another linear transformation such that Eq. (19.1)
holds with Λ replaced by Λ1, then

(Λ− Λ1)h = o(h),

i.e.

lim sup
h→0

k(Λ− Λ1)hk
khk = 0.

On the other hand, by definition of the operator norm,

lim sup
h→0

k(Λ− Λ1)hk
khk = kΛ− Λ1k.

The last two equations show that Λ = Λ1.

Exercise 19.5. Show that a function f : (a, b) → X is a differentiable at
t ∈ (a, b) in the sense of Definition 4.6 iff it is differentiable in the sense of
Definition 19.3. Also show Df(t)v = vḟ(t) for all v ∈ R.
Example 19.6. Assume that GL(X,Y ) is non-empty. Then f : GL(X,Y ) →
GL(Y,X) defined by f(A) ≡ A−1 is differentiable and

f 0(A)B = −A−1BA−1 for all B ∈ L(X,Y ).

Indeed (by Eq. (4.19)),

f(A+H)− f(A) = (A+H)−1 −A−1 = (A
¡
I +A−1H

¢
)−1 −A−1

=
¡
I +A−1H

¢
)−1A−1 −A−1 =

∞X
n=0

(−A−1H)n ·A−1 −A−1

= −A−1HA−1 +
∞X
n=2

(−A−1H)n.

Since

k
∞X
n=2

(−A−1H)nk ≤
∞X
n=2

kA−1Hkn ≤ kA
−1k2kHk2

1− kA−1Hk ,

we find that
f(A+H)− f(A) = −A−1HA−1 + o(H).

19.2 Product and Chain Rules

The following theorem summarizes some basic properties of the differential.

Theorem 19.7. The differential D has the following properties:
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Linearity D is linear, i.e. D(f + λg) = Df + λDg.
Product Rule If f : U ⊂o X → Y and A : U ⊂o X → L(X,Z) are differen-

tiable at x0 then so is x→ (Af)(x) ≡ A(x)f(x) and

D(Af)(x0)h = (DA(x0)h)f(x0) +A(x0)Df(x0)h.

Chain Rule If f : U ⊂o X → V ⊂o Y is differentiable at x0 ∈ U, and g : V ⊂o
Y → Z is differentiable at y0 ≡ f(ho), then g ◦ f is differentiable at x0
and (g ◦ f)0(x0) = g0(y0)f 0(x0).

Converse Chain Rule Suppose that f : U ⊂o X → V ⊂o Y is continuous at
x0 ∈ U, g : V ⊂o Y → Z is differentiable y0 ≡ f(ho), g

0(y0) is invertible,
and g ◦ f is differentiable at x0, then f is differentiable at x0 and

f 0(x0) ≡ [g0(x0)]−1(g ◦ f)0(x0). (19.2)

Proof. For the proof of linearity, let f, g : U ⊂o X → Y be two functions
which are differentiable at x0 ∈ U and c ∈ R, then

(f + cg)(x0 + h)

= f(x0) +Df(x0)h+ o(h) + c(g(x0) +Dg(x0)h+ o(h)

= (f + cg)(x0) + (Df(x0) + cDg(x0))h+ o(h),

which implies that (f + cg) is differentiable at x0 and that

D(f + cg)(x0) = Df(x0) + cDg(x0).

For item 2, we have

A(x0 + h)f(x0 + h)

= (A(x0) +DA(x0)h+ o(h))(f(x0) + f 0(x0)h+ o(h))

= A(x0)f(x0) +A(x0)f
0(x0)h+ [DA(x0)h]f(x0) + o(h),

which proves item 2.
Similarly for item 3,

(g◦f)(x0 + h)

= g(f(x0)) + g0(f(x0))(f(x0 + h)− f(x0)) + o(f(x0 + h)− f(x0))

= g(f(x0)) + g0(f(x0))(Df(x0)x0 + o(h)) + o(f(x0 + h)− f(x0)

= g(f(x0)) + g0(f(x0))Df(x0)h+ o(h),

where in the last line we have used the fact that f(x0 + h) − f(x0) = O(h)
(see Eq. (19.1)) and o(O(h)) = o(h).
Item 4. Since g is differentiable at y0 = f(x0),

g(f(x0 + h))− g(f(x0))

= g0(f(x0))(f(x0 + h)− f(x0)) + o(f(x0 + h)− f(x0)).
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And since g ◦ f is differentiable at x0,

(g ◦ f)(x0 + h)− g(f(x0)) = (g ◦ f)0(x0)h+ o(h).

Comparing these two equations shows that

f(x0 + h)− f(x0)

= g0(f(x0))−1{(g ◦ f)0(x0)h+ o(h)− o(f(x0 + h)− f(x0))}
= g0(f(x0))−1(g ◦ f)0(x0)h+ o(h)

− g0(f(x0))−1o(f(x0 + h)− f(x0)). (19.3)

Using the continuity of f, f(x0 + h)− f(x0) is close to 0 if h is close to zero,
and hence ko(f(x0+h)−f(x0))k ≤ 1

2kf(x0+h)−f(x0)k for all h sufficiently
close to 0. (We may replace 12 by any number α > 0 above.) Using this remark,
we may take the norm of both sides of equation (19.3) to find

kf(x0 + h)− f(x0)k
≤ kg0(f(x0))−1(g ◦ f)0(x0)kkhk+ o(h) +

1

2
kf(x0 + h)− f(x0)k

for h close to 0. Solving for kf(x0 + h) − f(x0)k in this last equation shows
that

f(x0 + h)− f(x0) = O(h). (19.4)

(This is an improvement, since the continuity of f only guaranteed that f(x0+
h)− f(x0) = �(h).) Because of Eq. (49.18), we now know that o(f(x0 + h)−
f(x0)) = o(h), which combined with Eq. (19.3) shows that

f(x0 + h)− f(x0) = g0(f(x0))−1(g ◦ f)0(x0)h+ o(h),

i.e. f is differentiable at x0 and f 0(x0) = g0(f(x0))−1(g ◦ f)0(x0).
Corollary 19.8. Suppose that σ : (a, b) → U ⊂o X is differentiable at t ∈
(a, b) and f : U ⊂o X → Y is differentiable at σ(t) ∈ U. Then f ◦ σ is
differentiable at t and

d(f ◦ σ)(t)/dt = f 0(σ(t))σ̇(t).

Example 19.9. Let us continue on with Example 19.6 but now let X = Y to
simplify the notation. So f : GL(X)→ GL(X) is the map f(A) = A−1 and

f 0(A) = −LA−1RA−1 , i.e. f
0 = −LfRf .

where LAB = AB and RAB = AB for all A,B ∈ L(X). As the reader may
easily check, the maps

A ∈ L(X)→ LA, RA ∈ L(L(X))



19.3 Partial Derivatives 451

are linear and bounded. So by the chain and the product rule we find f 00(A)
exists for all A ∈ L(X) and

f 00(A)B = −Lf 0(A)BRf − LfRf 0(A)B.

More explicitly

[f 00(A)B]C = A−1BA−1CA−1 +A−1CA−1BA−1. (19.5)

Working inductively one shows f : GL(X)→ GL(X) defined by f(A) ≡ A−1

is C∞.

19.3 Partial Derivatives

Definition 19.10 (Partial or Directional Derivative). Let f : U ⊂o X →
Y be a function, x0 ∈ U, and v ∈ X. We say that f is differentiable at x0 in
the direction v iff d

dt |0(f(x0 + tv)) =: (∂vf)(x0) exists. We call (∂vf)(x0) the
directional or partial derivative of f at x0 in the direction v.

Notice that if f is differentiable at x0, then ∂vf(x0) exists and is equal to
f 0(x0)v, see Corollary 19.8.

Proposition 19.11. Let f : U ⊂o X → Y be a continuous function and
D ⊂ X be a dense subspace of X. Assume ∂vf(x) exists for all x ∈ U and
v ∈ D, and there exists a continuous function A : U → L(X,Y ) such that
∂vf(x) = A(x)v for all v ∈ D and x ∈ U ∩ D. Then f ∈ C1(U, Y ) and
Df = A.

Proof. Let x0 ∈ U, � > 0 such that B(x0, 2�) ⊂ U and M ≡ sup{kA(x)k :
x ∈ B(x0, 2�)} < ∞1. For x ∈ B(x0, �) ∩ D and v ∈ D ∩ B(0, �), by the
fundamental theorem of calculus,

f(x+ v)− f(x) =

Z 1

0

df(x+ tv)

dt
dt

=

Z 1

0

(∂vf)(x+ tv) dt =

Z 1

0

A(x+ tv) v dt. (19.6)

1 It should be noted well, unlike in finite dimensions closed and bounded sets
need not be compact, so it is not sufficient to choose � sufficiently small so that
B(x0, 2�) ⊂ U. Here is a counter example. Let X ≡ H be a Hilbert space, {en}∞n=1
be an orthonormal set. Define f(x) ≡P∞

n=1 nφ(kx− enk), where φ is any contin-
uous function on R such that φ(0) = 1 and φ is supported in (−1, 1). Notice that
ken−emk2 = 2 for all m 6= n, so that ken−emk =

√
2. Using this fact it is rather

easy to check that for any x0 ∈ H, there is an � > 0 such that for all x ∈ B(x0, �),
only one term in the sum defining f is non-zero. Hence, f is continuous. However,
f(en) = n→∞ as n→∞.
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For general x ∈ B(x0, �) and v ∈ B(0, �), choose xn ∈ B(x0, �) ∩ D and
vn ∈ D ∩B(0, �) such that xn → x and vn → v. Then

f(xn + vn)− f(xn) =

Z 1

0

A(xn + tvn) vn dt (19.7)

holds for all n. The left side of this last equation tends to f(x+ v)− f(x) by
the continuity of f. For the right side of Eq. (19.7) we have

k
Z 1

0

A(x+ tv) v dt−
Z 1

0

A(xn + tvn) vn dtk

≤
Z 1

0

kA(x+ tv)−A(xn + tvn) kkvk dt+Mkv − vnk.

It now follows by the continuity of A, the fact that kA(x+tv)−A(xn+tvn) k ≤
M, and the dominated convergence theorem that right side of Eq. (19.7)
converges to

R 1
0
A(x + tv) v dt. Hence Eq. (19.6) is valid for all x ∈ B(x0, �)

and v ∈ B(0, �). We also see that

f(x+ v)− f(x)−A(x)v = �(v)v, (19.8)

where �(v) ≡ R 1
0
[A(x+ tv) −A(x)] dt. Now

k�(v)k ≤
Z 1

0

kA(x+ tv) −A(x)k dt
≤ max

t∈[0,1]
kA(x+ tv) −A(x)k → 0 as v → 0,

by the continuity of A. Thus, we have shown that f is differentiable and that
Df(x) = A(x).

19.4 Smooth Dependence of ODE’s on Initial Conditions

In this subsection, letX be a Banach space, U ⊂o X and J be an open interval
with 0 ∈ J.

Lemma 19.12. If Z ∈ C(J ×U,X) such that DxZ(t, x) exists for all (t, x) ∈
J × U and DxZ(t, x) ∈ C(J × U,X) then Z is locally Lipschitz in x, see
Definition 6.12.

Proof. Suppose I @@ J and x ∈ U. By the continuity of DZ, for every
t ∈ I there an open neighborhoodNt of t ∈ I and �t > 0 such thatB(x, �t) ⊂ U
and

sup {kDxZ(t
0, x0)k : (t0, x0) ∈ Nt ×B(x, �t)} <∞.
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By the compactness of I, there exists a finite subset Λ ⊂ I such that I ⊂
∪t∈INt. Let �(x, I) := min {�t : t ∈ Λ} and

K(x, I) ≡ sup {kDZ(t, x0)k(t, x0) ∈ I ×B(x, �(x, I))} <∞.

Then by the fundamental theorem of calculus and the triangle inequality,

kZ(t, x1)− Z(t, x0)k ≤
µZ 1

0

kDxZ(t, x0 + s(x1 − x0)k ds
¶
kx1 − x0k

≤ K(x, I)kx1 − x0k

for all x0, x1 ∈ B(x, �(x, I)) and t ∈ I.

Theorem 19.13 (Smooth Dependence of ODE’s on Initial Condi-
tions). Let X be a Banach space, U ⊂o X, Z ∈ C(R × U,X) such that
DxZ ∈ C(R×U,X) and φ : D(Z) ⊂ R×X → X denote the maximal solution
operator to the ordinary differential equation

ẏ(t) = Z(t, y(t)) with y(0) = x ∈ U, (19.9)

see Notation 6.15 and Theorem 6.21. Then φ ∈ C1(D(Z), U), ∂tDxφ(t, x)
exists and is continuous for (t, x) ∈ D(Z) and Dxφ(t, x) satisfies the linear
differential equation,

d

dt
Dxφ(t, x) = [(DxZ) (t, φ(t, x))]Dxφ(t, x) with Dxφ(0, x) = IX (19.10)

for t ∈ Jx.

Proof. Let x0 ∈ U and J be an open interval such that 0 ∈ J ⊂ J̄ @@ Jx0 ,
y0 := y(·, x0)|J and

O� := {y ∈ BC(J, U) : ky − y0k∞ < �} ⊂o BC(J,X).

By Lemma 19.12, Z is locally Lipschitz and therefore Theorem 6.21 is applica-
ble. By Eq. (6.30) of Theorem 6.21, there exists � > 0 and δ > 0 such that
G : B(x0, δ)→ O� defined by G(x) ≡ φ(·, x)|J is continuous. By Lemma 19.14
below, for � > 0 sufficiently small the function F : O� → BC(J,X) defined by

F (y) ≡ y −
Z ·

0

Z(t, y(t))dt. (19.11)

is C1 and

DF (y)v = v −
Z ·

0

DyZ(t, y(t))v(t)dt. (19.12)

By the existence and uniqueness Theorem 6.5 for linear ordinary differen-
tial equations, DF (y) is invertible for any y ∈ BC(J, U). By the definition



454 19 Banach Space Calculus

of φ, F (G(x)) = h(x) for all x ∈ B(x0, δ) where h : X → BC(J,X) is de-
fined by h(x)(t) = x for all t ∈ J, i.e. h(x) is the constant path at x. Since
h is a bounded linear map, h is smooth and Dh(x) = h for all x ∈ X.
We may now apply the converse to the chain rule in Theorem 19.7 to con-
cludeG ∈ C1 (B(x0, δ),O) andDG(x) = [DF (G(x))]−1Dh(x) or equivalently,
DF (G(x))DG(x) = h which in turn is equivalent to

Dxφ(t, x)−
Z t

0

[DZ(φ(τ, x)]Dxφ(τ, x) dτ = IX .

As usual this equation implies Dxφ(t, x) is differentiable in t, Dxφ(t, x) is
continuous in (t, x) and Dxφ(t, x) satisfies Eq. (19.10).

Lemma 19.14. Continuing the notation used in the proof of Theorem 19.13
and further let

f(y) ≡
Z ·

0

Z(τ, y(τ)) dτ for y ∈ O�.

Then f ∈ C1(O�, Y ) and for all y ∈ O�,

f 0(y)h =
Z ·

0

DxZ(τ, y(τ))h(τ) dτ =: Λyh.

Proof. Let h ∈ Y be sufficiently small and τ ∈ J, then by fundamental
theorem of calculus,

Z(τ,y(τ) + h(τ))− Z(τ, y(τ))

=

Z 1

0

[DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))]dr

and therefore,

f(y + h)− f(y)− Λyh(t)

=

Z t

0

[Z(τ, y(τ) + h(τ))− Z(τ, y(τ))−DxZ(τ, y(τ))h(τ) ] dτ

=

Z t

0

dτ

Z 1

0

dr[DxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))]h(τ).

Therefore,
k(f(y + h)− f(y)− Λyh)k∞ ≤ khk∞δ(h) (19.13)

where

δ(h) :=

Z
J

dτ

Z 1

0

dr kDxZ(τ, y(τ) + rh(τ))−DxZ(τ, y(τ))k .

With the aide of Lemmas 19.12 and Lemma 6.13,



19.5 Higher Order Derivatives 455

(r, τ, h) ∈ [0, 1]× J × Y → kDxZ(τ, y(τ) + rh(τ))k
is bounded for small h provided � > 0 is sufficiently small. Thus it follows
from the dominated convergence theorem that δ(h)→ 0 as h→ 0 and hence
Eq. (19.13) implies f 0(y) exists and is given by Λy. Similarly,

||f 0(y + h)− f 0(y)||op
≤
Z
J

kDxZ(τ, y(τ) + h(τ))−DxZ(τ, y(τ))k dτ → 0 as h→ 0

showing f 0 is continuous.

Remark 19.15. If Z ∈ Ck(U,X), then an inductive argument shows that
φ ∈ Ck(D(Z),X). For example if Z ∈ C2(U,X) then (y(t), u(t)) :=
(φ(t, x),Dxφ(t, x)) solves the ODE,

d

dt
(y(t), u(t)) = Z̃ ((y(t), u(t))) with (y(0), u(0)) = (x, IdX)

where Z̃ is the C1 — vector field defined by

Z̃ (x, u) = (Z(x),DxZ(x)u) .

Therefore Theorem 19.13 may be applied to this equation to deduce:D2
xφ(t, x)

and D2
xφ̇(t, x) exist and are continuous. We may now differentiate Eq. (19.10)

to find D2
xφ(t, x) satisfies the ODE,

d

dt
D2
xφ(t, x) = [

¡
∂Dxφ(t,x)DxZ

¢
(t, φ(t, x))]Dxφ(t, x)

+ [(DxZ) (t, φ(t, x))]D
2
xφ(t, x)

with D2
xφ(0, x) = 0.

19.5 Higher Order Derivatives

As above, let f : U ⊂o X → Y be a function. If f is differentiable
on U, then the differential Df of f is a function from U to the Banach
space L(X,Y ). If the function Df : U → L(X,Y ) is also differentiable
on U, then its differential D2f = D(Df) : U → L(X,L(X,Y )). Similarly,
D3f = D(D(Df)) : U → L(X,L(X,L(X,Y ))) if the differential of D(Df)
exists. In general, let L1(X,Y ) ≡ L(X,Y ) and Lk(X,Y ) be defined induc-
tively by Lk+1(X,Y ) = L(X,Lk(X,Y )). Then (Dkf)(x) ∈ Lk(X,Y ) if it
exists. It will be convenient to identify the space Lk(X,Y ) with the Banach
space defined in the next definition.

Definition 19.16. For k ∈ {1, 2, 3, . . .}, letMk(X,Y ) denote the set of func-
tions f : Xk → Y such that
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1. For i ∈ {1, 2, . . . , k}, v ∈ X → fhv1, v2, . . . , vi−1, v, vi+1, . . . , vki ∈ Y is
linear 2 for all {vi}ni=1 ⊂ X.

2. The norm kfkMk(X,Y ) should be finite, where

kfkMk(X,Y ) ≡ sup{
kfhv1, v2, . . . , vkikY
kv1kkv2k · · · kvkk : {vi}ki=1 ⊂ X \ {0}}.

Lemma 19.17. There are linear operators jk : Lk(X,Y ) → Mk(X,Y )
defined inductively as follows: j1 = IdL(X,Y ) (notice that M1(X,Y ) =
L1(X,Y ) = L(X,Y )) and

(jk+1A)hv0, v1, . . . , vki = (jk(Av0))hv1, v2, . . . , vki ∀vi ∈ X.

(Notice that Av0 ∈ Lk(X,Y ).) Moreover, the maps jk are isometric isomor-
phisms.

Proof. To get a feeling for what jk is let us write out j2 and j3 explicitly.
If A ∈ L2(X,Y ) = L(X,L(X,Y )), then (j2A)hv1, v2i = (Av1)v2 and if A ∈
L3(X,Y ) = L(X,L(X,L(X,Y ))), (j3A)hv1, v2, v3i = ((Av1)v2)v3 for all vi ∈
X.
It is easily checked that jk is linear for all k.We will now show by induction

that jk is an isometry and in particular that jk is injective. Clearly this is true
if k = 1 since j1 is the identity map. For A ∈ Lk+1(X,Y ),

kjk+1AkMk+1(X,Y )

:= sup{k(jk(Av0))hv1, v2, . . . , vkikYkv0kkv1kkv2k · · · kvkk : {vi}ki=0 ⊂ X \ {0}}

= sup{k(jk(Av0))kMk(X,Y )

kv0k : v0 ∈ X \ {0}}

= sup{kAv0kLk(X,Y )kv0k : v0 ∈ X \ {0}}
= kAkL(X,Lk(X,Y )) ≡ kAkLk+1(X,Y ),

wherein the second to last inequality we have used the induction hypothesis.
This shows that jk+1 is an isometry provided jk is an isometry.
To finish the proof it suffices to shows that jk is surjective for all k. Again

this is true for k = 1. Suppose that jk is invertible for some k ≥ 1. Given
f ∈ Mk+1(X,Y ) we must produce A ∈ Lk+1(X,Y ) = L(X,Lk(X,Y )) such
that jk+1A = f. If such an equation is to hold, then for v0 ∈ X, we would
have jk(Av0) = fhv0, · · · i. That is Av0 = j−1k (fhv0, · · · i). It is easily checked
that A so defined is linear, bounded, and jk+1A = f.
From now on we will identify Lk with Mk without further mention. In

particular, we will view Dkf as function on U with values in Mk(X,Y ).

2 I will routinely write fhv1, v2, . . . , vki rather than f(v1, v2, . . . , vk) when the func-
tion f depends on each of variables linearly, i.e. f is a multi-linear function.
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Theorem 19.18 (Differentiability). Suppose k ∈ {1, 2, . . .} and D is
a dense subspace of X, f : U ⊂o X → Y is a function such that
(∂v1∂v2 · · · ∂vlf)(x) exists for all x ∈ D ∩ U, {vi}li=1 ⊂ D, and l = 1, 2, . . . k.
Further assume there exists continuous functions Al : U ⊂o X → Ml(X,Y )
such that such that (∂v1∂v2 · · · ∂vlf)(x) = Al(x)hv1, v2, . . . , vli for all x ∈
D ∩ U, {vi}li=1 ⊂ D, and l = 1, 2, . . . k. Then Dlf(x) exists and is equal
to Al(x) for all x ∈ U and l = 1, 2, . . . , k.

Proof. We will prove the theorem by induction on k. We have already
proved the theorem when k = 1, see Proposition 19.11. Now suppose that
k > 1 and that the statement of the theorem holds when k is replaced by k−1.
Hence we know that Dlf(x) = Al(x) for all x ∈ U and l = 1, 2, . . . , k− 1. We
are also given that

(∂v1∂v2 · · ·∂vkf)(x) = Ak(x)hv1, v2, . . . , vki ∀x ∈ U ∩D, {vi} ⊂ D. (19.14)

Now we may write (∂v2 · · · ∂vkf)(x) as (Dk−1f)(x)hv2, v3, . . . , vki so that Eq.
(19.14) may be written as

∂v1(D
k−1f)(x)hv2, v3, . . . , vki)

= Ak(x)hv1, v2, . . . , vki ∀x ∈ U ∩D, {vi} ⊂ D. (19.15)

So by the fundamental theorem of calculus, we have that

((Dk−1f)(x+ v1)− (Dk−1f)(x))hv2, v3, . . . , vki

=

Z 1

0

Ak(x+ tv1)hv1, v2, . . . , vki dt (19.16)

for all x ∈ U ∩ D and {vi} ⊂ D with v1 sufficiently small. By the same
argument given in the proof of Proposition 19.11, Eq. (19.16) remains valid
for all x ∈ U and {vi} ⊂ X with v1 sufficiently small. We may write this last
equation alternatively as,

(Dk−1f)(x+ v1)− (Dk−1f)(x) =
Z 1

0

Ak(x+ tv1)hv1, · · · i dt. (19.17)

Hence

(Dk−1f)(x+ v1)− (Dk−1f)(x)−Ak(x)hv1, · · · i

=

Z 1

0

[Ak(x+ tv1)−Ak(x)]hv1, · · · i dt

from which we get the estimate,

k(Dk−1f)(x+ v1)− (Dk−1f)(x)−Ak(x)hv1, · · · ik ≤ �(v1)kv1k (19.18)

where �(v1) ≡
R 1
0
kAk(x + tv1) − Ak(x)k dt. Notice by the continuity of Ak

that �(v1) → 0 as v1 → 0. Thus it follow from Eq. (19.18) that Dk−1f is
differentiable and that (Dkf)(x) = Ak(x).
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Example 19.19. Let f : L∗(X,Y )→ L∗(Y,X) be defined by f(A) ≡ A−1.We
assume that L∗(X,Y ) is not empty. Then f is infinitely differentiable and

(Dkf)(A)hV1, V2, . . . , Vki
= (−1)k

X
σ

{B−1Vσ(1)B−1Vσ(2)B−1 · · ·B−1Vσ(k)B−1}, (19.19)

where sum is over all permutations of σ of {1, 2, . . . , k}.
Let me check Eq. (19.19) in the case that k = 2. Notice that we have

already shown that (∂V1f)(B) = Df(B)V1 = −B−1V1B−1. Using the product
rule we find that

(∂V2∂V1f)(B) = B−1V2B−1V1B−1 +B−1V1B−1V2B−1 =: A2(B)hV1, V2i.

Notice that kA2(B)hV1, V2ik ≤ 2kB−1k3kV1k · kV2k, so that kA2(B)k ≤
2kB−1k3 <∞. Hence A2 : L∗(X,Y )→M2(L(X,Y ), L(Y,X)). Also

k(A2(B)−A2(C))hV1, V2ik ≤ 2kB−1V2B−1V1B−1 − C−1V2C−1V1C−1k
≤ 2kB−1V2B−1V1B−1 −B−1V2B−1V1C−1k
+ 2kB−1V2B−1V1C−1 −B−1V2C−1V1C−1k
+ 2kB−1V2C−1V1C−1 − C−1V2C−1V1C−1k

≤ 2kB−1k2kV2kkV1kkB−1 − C−1k
+ 2kB−1kkC−1kkV2kkV1kkB−1 − C−1k
+ 2kC−1k2kV2kkV1kkB−1 − C−1k.

This shows that

kA2(B)−A2(C)k ≤ 2kB−1 − C−1k{kB−1k2 + kB−1kkC−1k+ kC−1k2}.

Since B → B−1 is differentiable and hence continuous, it follows that A2(B)
is also continuous in B. Hence by Theorem 19.18 D2f(A) exists and is given
as in Eq. (19.19)

Example 19.20. Suppose that f : R → R is a C∞— function and F (x) ≡R 1
0
f(x(t)) dt for x ∈ X ≡ C([0, 1],R) equipped with the norm kxk ≡

maxt∈[0,1] |x(t)|. Then F : X → R is also infinitely differentiable and

(DkF )(x)hv1, v2, . . . , vki =
Z 1

0

f (k)(x(t))v1(t) · · · vk(t) dt, (19.20)

for all x ∈ X and {vi} ⊂ X.

To verify this example, notice that
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(∂vF )(x) ≡ d

ds
|0F (x+ sv) =

d

ds
|0
Z 1

0

f(x(t) + sv(t)) dt

=

Z 1

0

d

ds
|0f(x(t) + sv(t)) dt =

Z 1

0

f 0(x(t))v(t) dt.

Similar computations show that

(∂v1∂v2 · · · ∂vkf)(x) =
Z 1

0

f (k)(x(t))v1(t) · · · vk(t) dt =: Ak(x)hv1, v2, . . . , vki.

Now for x, y ∈ X,

|Ak(x)hv1, v2, . . . , vki−Ak(y)hv1, v2, . . . , vki| ≤
Z 1

0

|f (k)(x(t))− f (k)(y(t))| · |v1(t) · · · vk(t) |dt

≤
kY
i=1

kvik
Z 1

0

|f (k)(x(t))− f (k)(y(t))|dt,

which shows that

kAk(x)−Ak(y)k ≤
Z 1

0

|f (k)(x(t))− f (k)(y(t))|dt.

This last expression is easily seen to go to zero as y → x in X. Hence Ak is
continuous. Thus we may apply Theorem 19.18 to conclude that Eq. (19.20)
is valid.

19.6 Contraction Mapping Principle

Theorem 19.21. Suppose that (X,ρ) is a complete metric space and S : X →
X is a contraction, i.e. there exists α ∈ (0, 1) such that ρ(S(x), S(y)) ≤
αρ(x, y) for all x, y ∈ X. Then S has a unique fixed point in X, i.e. there
exists a unique point x ∈ X such that S(x) = x.

Proof. For uniqueness suppose that x and x0 are two fixed points of S,
then

ρ(x, x0) = ρ(S(x), S(x0)) ≤ αρ(x, x0).

Therefore (1− α)ρ(x, x0) ≤ 0 which implies that ρ(x, x0) = 0 since 1− α > 0.
Thus x = x0.
For existence, let x0 ∈ X be any point in X and define xn ∈ X inductively

by xn+1 = S(xn) for n ≥ 0. We will show that x ≡ limn→∞ xn exists in X
and because S is continuous this will imply,

x = lim
n→∞xn+1 = lim

n→∞S(xn) = S( lim
n→∞xn) = S(x),

showing x is a fixed point of S.
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So to finish the proof, because X is complete, it suffices to show {xn}∞n=1
is a Cauchy sequence in X. An easy inductive computation shows, for n ≥ 0,
that

ρ(xn+1, xn) = ρ(S(xn), S(xn−1)) ≤ αρ(xn, xn−1) ≤ · · · ≤ αnρ(x1, x0).

Another inductive argument using the triangle inequality shows, for m > n,
that,

ρ(xm, xn) ≤ ρ(xm, xm−1) + ρ(xm−1, xn) ≤ · · · ≤
m−1X
k=n

ρ(xk+1, xk).

Combining the last two inequalities gives (using again that α ∈ (0, 1)),

ρ(xm, xn) ≤
m−1X
k=n

αkρ(x1, x0) ≤ ρ(x1, x0)α
n
∞X
l=0

αl = ρ(x1, x0)
αn

1− α
.

This last equation shows that ρ(xm, xn)→ 0 as m,n →∞, i.e. {xn}∞n=0 is a
Cauchy sequence.

Corollary 19.22 (Contraction Mapping Principle II). Suppose that
(X, ρ) is a complete metric space and S : X → X is a continuous map such
that S(n) is a contraction for some n ∈ N. Here

S(n) ≡
n timesz }| {

S ◦ S ◦ . . . ◦ S
and we are assuming there exists α ∈ (0, 1) such that ρ(S(n)(x), S(n)(y)) ≤
αρ(x, y) for all x, y ∈ X. Then S has a unique fixed point in X.

Proof. Let T ≡ S(n), then T : X → X is a contraction and hence T has
a unique fixed point x ∈ X. Since any fixed point of S is also a fixed point of
T, we see if S has a fixed point then it must be x. Now

T (S(x)) = S(n)(S(x)) = S(S(n)(x)) = S(T (x)) = S(x),

which shows that S(x) is also a fixed point of T. Since T has only one fixed
point, we must have that S(x) = x. So we have shown that x is a fixed point
of S and this fixed point is unique.

Lemma 19.23. Suppose that (X, ρ) is a complete metric space, n ∈ N, Z is
a topological space, and α ∈ (0, 1). Suppose for each z ∈ Z there is a map
Sz : X → X with the following properties:

Contraction property ρ(S(n)z (x), S
(n)
z (y)) ≤ αρ(x, y) for all x, y ∈ X and z ∈

Z.
Continuity in z For each x ∈ X the map z ∈ Z → Sz(x) ∈ X is continuous.
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By Corollary 19.22 above, for each z ∈ Z there is a unique fixed point
G(z) ∈ X of Sz.
Conclusion: The map G : Z → X is continuous.

Proof. Let Tz ≡ S
(n)
z . If z, w ∈ Z, then

ρ(G(z),G(w)) = ρ(Tz(G(z)), Tw(G(w)))

≤ ρ(Tz(G(z)), Tw(G(z))) + ρ(Tw(G(z)), Tw(G(w)))

≤ ρ(Tz(G(z)), Tw(G(z))) + αρ(G(z), G(w)).

Solving this inequality for ρ(G(z), G(w)) gives

ρ(G(z), G(w)) ≤ 1

1− α
ρ(Tz(G(z)), Tw(G(z))).

Since w → Tw(G(z)) is continuous it follows from the above equation that
G(w)→ G(z) as w→ z, i.e. G is continuous.

19.7 Inverse and Implicit Function Theorems

In this section, let X be a Banach space, U ⊂ X be an open set, and F : U →
X and � : U → X be continuous functions. Question: under what conditions
on � is F (x) := x+ �(x) a homeomorphism from B0(δ) to F (B0(δ)) for some
small δ > 0? Let’s start by looking at the one dimensional case first. So for
the moment assume that X = R, U = (−1, 1), and � : U → R is C1. Then
F will be one to one iff F is monotonic. This will be the case, for example, if
F 0 = 1+�0 > 0. This in turn is guaranteed by assuming that |�0| ≤ α < 1. (This
last condition makes sense on a Banach space whereas assuming 1 + �0 > 0 is
not as easily interpreted.)

Lemma 19.24. Suppose that U = B = B(0, r) (r > 0) is a ball in X and
� : B → X is a C1 function such that kD�k ≤ α < ∞ on U. Then for all
x, y ∈ U we have:

k�(x)− �(y)k ≤ αkx− yk. (19.21)

Proof. By the fundamental theorem of calculus and the chain rule:

�(y)− �(x) =

Z 1

0

d

dt
�(x+ t(y − x))dt

=

Z 1

0

[D�(x+ t(y − x))](y − x)dt.

Therefore, by the triangle inequality and the assumption that kD�(x)k ≤ α
on B,

k�(y)− �(x)k ≤
Z 1

0

kD�(x+ t(y − x))kdt · k(y − x)k ≤ αk(y − x)k.
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Remark 19.25. It is easily checked that if � : B = B(0, r) → X is C1 and
satisfies (19.21) then kD�k ≤ α on B.

Using the above remark and the analogy to the one dimensional example,
one is lead to the following proposition.

Proposition 19.26. Suppose that U = B = B(0, r) (r > 0) is a ball in X,
α ∈ (0, 1), � : U → X is continuous, F (x) ≡ x+�(x) for x ∈ U, and � satisfies:

k�(x)− �(y)k ≤ αkx− yk ∀x, y ∈ B. (19.22)

Then F (B) is open in X and F : B → V := F (B) is a homeomorphism.

Proof. First notice from (19.22) that

kx− yk = k(F (x)− F (y))− (�(x)− �(y))k
≤ kF (x)− F (y)k+ k�(x)− �(y)k
≤ kF (x)− F (y)k+ αk(x− y)k

from which it follows that kx − yk ≤ (1 − α)−1kF (x) − F (y)k. Thus F is
injective on B. Let V .

= F (B) and G = F−1 : V → B denote the inverse
function which exists since F is injective.
We will now show that V is open. For this let x0 ∈ B and z0 = F (x0) =

x0 + �(x0) ∈ V. We wish to show for z close to z0 that there is an x ∈ B such
that F (x) = x+ �(x) = z or equivalently x = z − �(x). Set Sz(x)

.
= z − �(x),

then we are looking for x ∈ B such that x = Sz(x), i.e. we want to find a
fixed point of Sz. We will show that such a fixed point exists by using the
contraction mapping theorem.
Step 1. Sz is contractive for all z ∈ X. In fact for x, y ∈ B,

kSz(x)− Sz(y)k = k�(x)− �(y))k ≤ αkx− yk. (19.23)

Step 2. For any δ > 0 such the C .
= B(x0, δ) ⊂ B and z ∈ X such that

kz − z0k < (1− α)δ, we have Sz(C) ⊂ C. Indeed, let x ∈ C and compute:

kSz(x)− x0k = kSz(x)− Sz0(x0)k
= kz − �(x)− (z0 − �(x0))k
= kz − z0 − (�(x)− �(x0))k
≤ kz − z0k+ αkx− x0k
< (1− α)δ + αδ = δ.

wherein we have used z0 = F (x0) and (19.22).
Since C is a closed subset of a Banach space X, we may apply the con-

traction mapping principle, Theorem 19.21 and Lemma 19.23, to Sz to show
there is a continuous function G : B(z0, (1− α)δ)→ C such that

G(z) = Sz(G(z)) = z − �(G(z)) = z − F (G(z)) +G(z),
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i.e. F (G(z)) = z. This shows that B(z0, (1 − α)δ) ⊂ F (C) ⊂ F (B) = V.
That is z0 is in the interior of V. Since F−1|B(z0,(1−α)δ) is necessarily equal
to G which is continuous, we have also shown that F−1 is continuous in a
neighborhood of z0. Since z0 ∈ V was arbitrary, we have shown that V is
open and that F−1 : V → U is continuous.

Theorem 19.27 (Inverse Function Theorem). Suppose X and Y are Ba-
nach spaces, U ⊂o X, f ∈ Ck(U → X) with k ≥ 1, x0 ∈ U and Df(x0) is
invertible. Then there is a ball B = B(x0, r) in U centered at x0 such that

1. V = f(B) is open,
2. f |B : B → V is a homeomorphism,
3. g .

= (f |B)−1 ∈ Ck(V,B) and

g0(y) = [f 0(g(y))]−1 for all y ∈ V. (19.24)

Proof. Define F (x) ≡ [Df(x0)]
−1f(x+ x0) and �(x) ≡ x− F (x) ∈ X for

x ∈ (U−x0). Notice that 0 ∈ U−x0, DF (0) = I, and that D�(0) = I−I = 0.
Choose r > 0 such that B̃ ≡ B(0, r) ⊂ U−x0 and kD�(x)k ≤ 1

2 for x ∈ B̃. By
Lemma 19.24, � satisfies (19.23) with α = 1/2. By Proposition 19.26, F (B̃)
is open and F |B̃ : B̃ → F (B̃) is a homeomorphism. Let G ≡ F |−1

B̃
which we

know to be a continuous map from F (B̃)→ B̃.
Since kD�(x)k ≤ 1/2 for x ∈ B̃, DF (x) = I + D�(x) is invertible, see

Corollary 4.21. Since H(z) .
= z is C1 and H = F ◦G on F (B̃), it follows from

the converse to the chain rule, Theorem 19.7, that G is differentiable and

DG(z) = [DF (G(z))]−1DH(z) = [DF (G(z))]−1.

Since G, DF, and the map A ∈ GL(X) → A−1 ∈ GL(X) are all continuous
maps, (see Example 19.6) the map z ∈ F (B̃) → DG(z) ∈ L(X) is also
continuous, i.e. G is C1.
Let B = B̃ + x0 = B(x0, r) ⊂ U. Since f(x) = [Df(x0)]F (x − x0) and

Df(x0) is invertible (hence an open mapping), V := f(B) = [Df(x0)]F (B̃) is
open in X. It is also easily checked that f |−1B exists and is given by

f |−1B (y) = x0 +G([Df(x0)]
−1y) (19.25)

for y ∈ V = f(B). This shows that f |B : B → V is a homeomorphism and
it follows from (19.25) that g .

= (f |B)−1 ∈ C1(V,B). Eq. (19.24) now follows
from the chain rule and the fact that

f ◦ g(y) = y for all y ∈ B.

Since f 0 ∈ Ck−1(B,L(X)) and i(A) := A−1 is a smooth map by Example
19.19, g0 = i ◦ f 0 ◦ g is C1 if k ≥ 2, i.e. g is C2 if k ≥ 2. Again using
g0 = i◦f 0◦g, we may conclude g0 is C2 if k ≥ 3, i.e. g is C3 if k ≥ 3. Continuing
bootstrapping our way up we eventually learn g

.
= (f |B)−1 ∈ Ck(V,B) if f is

Ck.
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Theorem 19.28 (Implicit Function Theorem). Now suppose that X, Y,
and W are three Banach spaces, k ≥ 1, A ⊂ X × Y is an open set, (x0, y0)
is a point in A, and f : A → W is a Ck — map such f(x0, y0) = 0. Assume
that D2f(x0, y0) ≡ D(f(x0, ·))(y0) : Y → W is a bounded invertible linear
transformation. Then there is an open neighborhood U0 of x0 in X such that
for all connected open neighborhoods U of x0 contained in U0, there is a unique
continuous function u : U → Y such that u(x0) = yo, (x, u(x)) ∈ A and
f(x, u(x)) = 0 for all x ∈ U. Moreover u is necessarily Ck and

Du(x) = −D2f(x, u(x))
−1D1f(x, u(x)) for all x ∈ U. (19.26)

Proof. Proof of 19.28. By replacing f by (x, y) → D2f(x0, y0)
−1f(x, y)

if necessary, we may assume with out loss of generality that W = Y and
D2f(x0, y0) = IY . Define F : A → X × Y by F (x, y) ≡ (x, f(x, y)) for all
(x, y) ∈ A. Notice that

DF (x, y) =

·
I D1f(x, y)
0 D2f(x, y)

¸
which is invertible iff D2f(x, y) is invertible and if D2f(x, y) is invertible then

DF (x, y)−1 =
·
I −D1f(x, y)D2f(x, y)

−1

0 D2f(x, y)
−1

¸
.

Since D2f(x0, y0) = I is invertible, the implicit function theorem guarantees
that there exists a neighborhood U0 of x0 and V0 of y0 such that U0×V0 ⊂ A,
F (U0 × V0) is open in X × Y, F |(U0×V0) has a Ck—inverse which we call F−1.
Let π2(x, y) ≡ y for all (x, y) ∈ X × Y and define Ck — function u0 on U0 by
u0(x) ≡ π2 ◦F−1(x, 0). Since F−1(x, 0) = (x̃, u0(x)) iff (x, 0) = F (x̃, u0(x)) =
(x̃, f(x̃, u0(x))), it follows that x = x̃ and f(x, u0(x)) = 0. Thus (x, u0(x)) =
F−1(x, 0) ∈ U0 × V0 ⊂ A and f(x, u0(x)) = 0 for all x ∈ U0. Moreover, u0 is
Ck being the composition of the Ck— functions, x → (x, 0), F−1, and π2. So
if U ⊂ U0 is a connected set containing x0, we may define u ≡ u0|U to show
the existence of the functions u as described in the statement of the theorem.
The only statement left to prove is the uniqueness of such a function u.
Suppose that u1 : U → Y is another continuous function such that

u1(x0) = y0, and (x, u1(x)) ∈ A and f(x, u1(x)) = 0 for all x ∈ U. Let

O ≡ {x ∈ U |u(x) = u1(x)} = {x ∈ U |u0(x) = u1(x)}.
Clearly O is a (relatively) closed subset of U which is not empty since x0 ∈ O.
Because U is connected, if we show that O is also an open set we will have
shown that O = U or equivalently that u1 = u0 on U. So suppose that x ∈ O,
i.e. u0(x) = u1(x). For x̃ near x ∈ U,

0 = 0− 0 = f(x̃, u0(x̃))− f(x̃, u1(x̃)) = R(x̃)(u1(x̃)− u0(x̃)) (19.27)

where
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R(x̃) ≡
Z 1

0

D2f((x̃, u0(x̃) + t(u1(x̃)− u0(x̃)))dt. (19.28)

From Eq. (19.28) and the continuity of u0 and u1, limx̃→xR(x̃) =
D2f(x, u0(x)) which is invertible3 . Thus R(x̃) is invertible for all x̃ sufficiently
close to x. Using Eq. (19.27), this last remark implies that u1(x̃) = u0(x̃) for
all x̃ sufficiently close to x. Since x ∈ O was arbitrary, we have shown that O
is open.

19.8 More on the Inverse Function Theorem

In this section X and Y will denote two Banach spaces, U ⊂o X, k ≥ 1, and
f ∈ Ck(U, Y ). Suppose x0 ∈ U, h ∈ X, and f 0(x0) is invertible, then

f(x0 + h)− f(x0) = f 0(x0)h+ o(h) = f 0(x0) [h+ �(h)]

where
�(h) = f 0(x0)−1 [f(x0 + h)− f(x0)]− h = o(h).

In fact by the fundamental theorem of calculus,

�(h) =

Z 1

0

¡
f 0(x0)−1f 0(x0 + th)− I

¢
hdt

but we will not use this here.
Let h, h0 ∈ BX(0, R) and apply the fundamental theorem of calculus to

t→ f(x0 + t(h0 − h)) to conclude

�(h0)− �(h) = f 0(x0)−1 [f(x0 + h0)− f(x0 + h)]− (h0 − h)

=

·Z 1

0

¡
f 0(x0)−1f 0(x0 + t(h0 − h))− I

¢
dt

¸
(h0 − h).

Taking norms of this equation gives

k�(h0)− �(h)k ≤
·Z 1

0

°°f 0(x0)−1f 0(x0 + t(h0 − h))− I
°° dt¸ kh0 − hk ≤ α kh0 − hk

where
α := sup

x∈BX(x0,R)

°°f 0(x0)−1f 0(x)− I
°°
L(X)

. (19.29)

We summarize these comments in the following lemma.

3 Notice that DF (x, u0(x)) is invertible for all x ∈ U0 since F |U0×V0 has a C1

inverse. Therefore D2f(x, u0(x)) is also invertible for all x ∈ U0.
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Lemma 19.29. Suppose x0 ∈ U, R > 0, f : BX(x0, R) → Y be a C1

— function such that f 0(x0) is invertible, α is as in Eq. (19.29) and � ∈
C1
¡
BX(0, R),X

¢
is defined by

f(x0 + h) = f(x0) + f 0(x0) (h+ �(h)) . (19.30)

Then

k�(h0)− �(h)k ≤ α kh0 − hk for all h, h0 ∈ BX(0, R). (19.31)

Furthermore if α < 1 (which may be achieved by shrinking R if necessary)
then f 0(x) is invertible for all x ∈ BX(x0, R) and

sup
x∈BX(x0,R)

°°f 0(x)−1°°
L(Y,X)

≤ 1

1− α

°°f 0(x0)−1°°L(Y,X) . (19.32)

Proof. It only remains to prove Eq. (19.32), so suppose now that α < 1.
Then by Proposition 4.20 f 0(x0)−1f 0(x) is invertible and°°°£f 0(x0)−1f 0(x)¤−1°°° ≤ 1

1− α
for all x ∈ BX(x0, R).

Since f 0(x) = f 0(x0)
£
f 0(x0)−1f 0(x)

¤
this implies f 0(x) is invertible and°°f 0(x)−1°° = °°°£f 0(x0)−1f 0(x)¤−1 f 0(x0)−1°°° ≤ 1

1− α

°°f 0(x0)−1°° for all x ∈ BX(x0, R).

Theorem 19.30 (Inverse Function Theorem). Suppose U ⊂o X, k ≥ 1
and f ∈ Ck(U, Y ) such that f 0(x) is invertible for all x ∈ U. Then:

1. f : U → Y is an open mapping, in particular V := f(U) ⊂o Y.
2. If f is injective, then f−1 : V → U is also a Ck — map and¡

f−1
¢0
(y) =

£
f 0(f−1(y))

¤−1
for all y ∈ V.

3. If x0 ∈ U and R > 0 such that BX(x0, R) ⊂ U and

sup
x∈BX(x0,R)

°°f 0(x0)−1f 0(x)− I
°° = α < 1

(which may always be achieved by taking R sufficiently small by continuity
of f 0(x)) then f |BX(x0,R) : B

X(x0, R) → f(BX(x0, R)) is invertible and
f |−1
BX(x0,R)

: f
¡
BX(x0, R)

¢→ BX(x0, R) is Ck.

4. Keeping the same hypothesis as in item 3. and letting y0 = f(x0) ∈ Y,

f(BX(x0, r)) ⊂ BY (y0, kf 0(x0)k (1 + α)r) for all r ≤ R

and
BY (y0, δ) ⊂ f(BX(x0, (1− α)

−1 °°f 0(x0)−1°° δ))
for all δ < δ(x0) := (1− α)R/

°°f 0(x0)−1°° .
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Proof. Let x0 and R > 0 be as in item 3. above and � be as defined in
Eq. (19.30) above, so that for x, x0 ∈ BX(x0, R),

f(x) = f(x0) + f 0(x0) [(x− x0) + �(x− x0)] and

f(x0) = f(x0) + f 0(x0) [(x0 − x0) + �(x0 − x0)] .

Subtracting these two equations implies

f(x0)− f(x) = f 0(x0) [x0 − x+ �(x0 − x0)− �(x− x0)]

or equivalently

x0 − x = f 0(x0)−1 [f(x0)− f(x)] + �(x− x0)− �(x0 − x0).

Taking norms of this equation and making use of Lemma 19.29 implies

kx0 − xk ≤ °°f 0(x0)−1°° kf(x0)− f(x)k+ α kx0 − xk
which implies

kx0 − xk ≤
°°f 0(x0)−1°°
1− α

kf(x0)− f(x)k for all x, x0 ∈ BX(x0, R). (19.33)

This shows that f |BX(x0,R) is injective and that f |−1BX(x0,R)
: f
¡
BX(x0, R)

¢→
BX(x0, R) is Lipschitz continuous because

||f |−1
BX(x0,R)

(y0)− f |−1
BX(x0,R)

(y)||

≤
°°f 0(x0)−1°°
1− α

ky0 − yk for all y, y0 ∈ f
¡
BX(x0, R)

¢
.

Since x0 ∈ X was chosen arbitrarily, if we know f : U → Y is injective, we
then know that f−1 : V = f(U)→ U is necessarily continuous. The remaining
assertions of the theorem now follow from the converse to the chain rule in
Theorem 19.7 and the fact that f is an open mapping (as we shall now show)
so that in particular f

¡
BX(x0, R)

¢
is open.

Let y ∈ BY (0, δ), with δ to be determined later, we wish to solve the
equation, for x ∈ BX(0, R),

f(x0) + y = f(x0 + x) = f(x0) + f 0(x0) (x+ �(x)) .

Equivalently we are trying to find x ∈ BX(0, R) such that

x = f 0(x0)−1y − �(x) =: Sy(x).

Now using Lemma 19.29 and the fact that �(0) = 0,

kSy(x)k ≤
°°f 0(x0)−1y°°+ k�(x)k ≤ °°f 0(x0)−1°° kyk+ α kxk

≤ °°f 0(x0)−1°° δ + αR.
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Therefore if we assume δ is chosen so that°°f 0(x0)−1°° δ + αR < R, i.e. δ < (1− α)R/
°°f 0(x0)−1°° := δ(x0),

then Sy : BX(0, R)→ BX(0, R) ⊂ BX(0, R).

Similarly by Lemma 19.29, for all x, z ∈ BX(0, R),

kSy(x)− Sy(z)k = k�(z)− �(x)k ≤ α kx− zk

which shows Sy is a contraction on BX(0, R). Hence by the contraction map-
ping principle in Theorem 19.21, for every y ∈ BY (0, δ) there exists a unique
solution x ∈ BX(0, R) such that x = Sy(x) or equivalently

f(x0 + x) = f(x0) + y.

Letting y0 = f(x0), this last statement implies there exists a unique function
g : BY (y0, δ(x0)) → BX(x0, R) such that f(g(y)) = y ∈ BY (y0, δ(x0)). From
Eq. (19.33) it follows that

kg(y)− x0k = kg(y)− g(y0)k

≤
°°f 0(x0)−1°°
1− α

kf(g(y))− f(g(y0))k

=

°°f 0(x0)−1°°
1− α

ky − y0k .

This shows

g(BY (y0, δ)) ⊂ BX(x0, (1− α)−1
°°f 0(x0)−1°° δ)

and therefore

BY (y0, δ) = f
¡
g(BY (y0, δ))

¢ ⊂ f
³
BX(x0, (1− α)

−1 °°f 0(x0)−1°° δ)´
for all δ < δ(x0).
This last assertion implies f(x0) ∈ f(W )o for any W ⊂o U with x0 ∈ W.

Since x0 ∈ U was arbitrary, this shows f is an open mapping.

19.8.1 Alternate construction of g

Suppose U ⊂o X and f : U → Y is a C2 — function. Then we are looking for
a function g(y) such that f(g(y)) = y. Fix an x0 ∈ U and y0 = f(x0) ∈ Y.
Suppose such a g exists and let x(t) = g(y0 + th) for some h ∈ Y. Then
differentiating f(x(t)) = y0 + th implies

d

dt
f(x(t)) = f 0(x(t))ẋ(t) = h
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or equivalently that

ẋ(t) = [f 0(x(t))]−1 h = Z(h, x(t)) with x(0) = x0 (19.34)

where Z(h, x) = [f 0(x(t))]−1 h. Conversely if x solves Eq. (19.34) we have
d
dtf(x(t)) = h and hence that

f(x(1)) = y0 + h.

Thus if we define
g(y0 + h) := eZ(h,·)(x0),

then f(g(y0+h)) = y0+h for all h sufficiently small. This shows f is an open
mapping.

19.9 Applications

A detailed discussion of the inverse function theorem on Banach and Fréchet
spaces may be found in Richard Hamilton’s, “The Inverse Function Theorem
of Nash and Moser.” The applications in this section are taken from this
paper.

Theorem 19.31 (Hamilton’s Theorem on p. 110.). Let p : U :=
(a, b) → V := (c, d) be a smooth function with p0 > 0 on (a, b). For every
g ∈ C∞2π(R, (c, d)) there exists a unique function y ∈ C∞2π(R, (a, b)) such that

ẏ(t) + p(y(t)) = g(t).

Proof. Let Ṽ := C02π(R, (c, d)) ⊂o C02π(R,R) and Ũ ⊂o C12π(R, (a, b)) be
given by

Ũ :=
©
y ∈ C12π(R,R) : a < y(t) < b & c < ẏ(t) + p(y(t)) < d ∀ tª .

The proof will be completed by showing P : Ũ → Ṽ defined by

P (y)(t) = ẏ(t) + p(y(t)) for y ∈ Ũ and t ∈ R

is bijective.
Step 1. The differential of P is given by P 0(y)h = ḣ+p0(y)h, see Exercise

19.37. We will now show that the linear mapping P 0(y) is invertible. Indeed
let f = p0(y) > 0, then the general solution to the Eq. ḣ+ fh = k is given by

h(t) = e−
R t
0
f(τ)dτh0 +

Z t

0

e−
R t
τ
f(s)dsk(τ)dτ

where h0 is a constant. We wish to choose h0 so that h(2π) = h0, i.e. so that
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h0

³
1− e−c(f)

´
=

Z 2π

0

e−
R t
τ
f(s)dsk(τ)dτ

where

c(f) =

Z 2π

0

f(τ)dτ =

Z 2π

0

p0(y(τ))dτ > 0.

The unique solution h ∈ C12π(R,R) to P 0(y)h = k is given by

h(t) =
³
1− e−c(f)

´−1
e−

R t
0
f(τ)dτ

Z 2π

0

e−
R t
τ
f(s)dsk(τ)dτ +

Z t

0

e−
R t
τ
f(s)dsk(τ)dτ

=
³
1− e−c(f)

´−1
e−

R t
0
f(s)ds

Z 2π

0

e−
R t
τ
f(s)dsk(τ)dτ +

Z t

0

e−
R t
τ
f(s)dsk(τ)dτ.

Therefore P 0(y) is invertible for all y. Hence by the implicit function theorem,
P : Ũ → Ṽ is an open mapping which is locally invertible.
Step 2. Let us now prove P : Ũ → Ṽ is injective. For this suppose

y1, y2 ∈ Ũ such that P (y1) = g = P (y2) and let z = y2 − y1. Since

ż(t) + p(y2(t))− p(y1(t)) = g(t)− g(t) = 0,

if tm ∈ R is point where z(tm) takes on its maximum, then ż(tm) = 0 and
hence

p(y2(tm))− p(y1(tm)) = 0.

Since p is increasing this implies y2(tm) = y1(tm) and hence z(tm) = 0. This
shows z(t) ≤ 0 for all t and a similar argument using a minimizer of z shows
z(t) ≥ 0 for all t. So we conclude y1 = y2.
Step 3. Let W := P (Ũ), we wish to show W = Ṽ . By step 1., we know

W is an open subset of Ṽ and since Ṽ is connected, to finish the proof it
suffices to show W is relatively closed in Ṽ . So suppose yj ∈ Ũ such that
gj := P (yj)→ g ∈ Ṽ .Wemust now show g ∈W, i.e. g = P (y) for some y ∈W.
If tm is a maximizer of yj , then ẏj(tm) = 0 and hence gj(tm) = p(yj(tm)) < d
and therefore yj(tm) < b because p is increasing. A similar argument works
for the minimizers then allows us to conclude Ranp ◦ yj) ⊂ Rangj) @@ (c, d)
for all j. Since gj is converging uniformly to g, there exists c < γ < δ < d
such that Ran(p ◦ yj) ⊂ Ran(gj) ⊂ [γ, δ] for all j. Again since p0 > 0,

Ran(yj) ⊂ p−1 ([γ, δ]) = [α, β] @@ (a, b) for all j.

In particular sup {|ẏj(t)| : t ∈ R and j} <∞ since

ẏj(t) = gj(t)− p(yj(t)) ⊂ [γ, δ]− [γ, δ] (19.35)

which is a compact subset of R. The Ascoli-Arzela Theorem 2.86 now allows
us to assume, by passing to a subsequence if necessary, that yj is converging
uniformly to y ∈ C02π(R, [α, β]). It now follows that
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ẏj(t) = gj(t)− p(yj(t))→ g − p(y)

uniformly in t. Hence we concluded that y ∈ C12π(R,R)∩C02π(R, [α, β]), ẏj → y
and P (y) = g. This has proved that g ∈ W and hence that W is relatively
closed in Ṽ .

19.10 Exercises

Exercise 19.32. Suppose that A : R → L(X) is a continuous function and
V : R→ L(X) is the unique solution to the linear differential equation

V̇ (t) = A(t)V (t) with V (0) = I. (19.36)

Assuming that V (t) is invertible for all t ∈ R, show that V −1(t) ≡ [V (t)]−1
must solve the differential equation

d

dt
V −1(t) = −V −1(t)A(t) with V −1(0) = I. (19.37)

See Exercise 6.39 as well.

Exercise 19.33 (Differential Equations with Parameters). Let W be
another Banach space, U × V ⊂o X ×W and Z ∈ C1(U × V,X). For each
(x,w) ∈ U × V, let t ∈ Jx,w → φ(t, x, w) denote the maximal solution to the
ODE

ẏ(t) = Z(y(t), w) with y(0) = x (19.38)

and
D := {(t, x, w) ∈ R× U × V : t ∈ Jx,w}

as in Exercise 6.43.

1. Prove that φ is C1 and that Dwφ(t, x, w) solves the differential equation:

d

dt
Dwφ(t, x, w) = (DxZ)(φ(t, x, w), w)Dwφ(t, x,w)+(DwZ)(φ(t, x, w), w)

with Dwφ(0, x, w) = 0 ∈ L(W,X). Hint: See the hint for Exercise 6.43
with the reference to Theorem 6.21 being replace by Theorem 19.13.

2. Also show with the aid of Duhamel’s principle (Exercise 6.41) and Theo-
rem 19.13 that

Dwφ(t, x, w) = Dxφ(t, x, w)

Z t

0

Dxφ(τ, x, w)
−1(DwZ)(φ(τ, x, w), w)dτ

Exercise 19.34. (Differential of eA) Let f : L(X) → L∗(X) be the expo-
nential function f(A) = eA. Prove that f is differentiable and that



472 19 Banach Space Calculus

Df(A)B =

Z 1

0

e(1−t)ABetA dt. (19.39)

Hint: Let B ∈ L(X) and define w(t, s) = et(A+sB) for all t, s ∈ R. Notice that

dw(t, s)/dt = (A+ sB)w(t, s) with w(0, s) = I ∈ L(X). (19.40)

Use Exercise 19.33 to conclude that w is C1 and that w0(t, 0) ≡ dw(t, s)/ds|s=0
satisfies the differential equation,

d

dt
w0(t, 0) = Aw0(t, 0) +BetA with w(0, 0) = 0 ∈ L(X). (19.41)

Solve this equation by Duhamel’s principle (Exercise 6.41) and then apply
Proposition 19.11 to conclude that f is differentiable with differential given
by Eq. (19.39).

Exercise 19.35 (Local ODE Existence). Let Sx be defined as in Eq. (6.22)
from the proof of Theorem 6.10. Verify that Sx satisfies the hypothesis of
Corollary 19.22. In particular we could have used Corollary 19.22 to prove
Theorem 6.10.

Exercise 19.36 (Local ODE Existence Again). Let J = [−1, 1], Z ∈
C1(X,X), Y := C(J,X) and for y ∈ Y and s ∈ J let ys ∈ Y be defined by
ys(t) := y(st). Use the following outline to prove the ODE

ẏ(t) = Z(y(t)) with y(0) = x (19.42)

has a unique solution for small t and this solution is C1 in x.

1. If y solves Eq. (19.42) then ys solves

ẏs(t) = sZ(ys(t)) with ys(0) = x

or equivalently

ys(t) = x+ s

Z t

0

Z(ys(τ))dτ. (19.43)

Notice that when s = 0, the unique solution to this equation is y0(t) = x.
2. Let F : J × Y → J × Y be defined by

F (s, y) := (s, y(t)− s

Z t

0

Z(y(τ))dτ).

Show the differential of F is given by

F 0(s, y)(a, v) =
µ
a, t→ v(t)− s

Z t

0

Z0(y(τ))v(τ)dτ − a

Z ·

0

Z(y(τ))dτ

¶
.
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3. Verify F 0(0, y) : R×Y → R×Y is invertible for all y ∈ Y and notice that
F (0, y) = (0, y).

4. For x ∈ X, let Cx ∈ Y be the constant path at x, i.e. Cx(t) = x for all
t ∈ J. Use the inverse function Theorem 19.27 to conclude there exists
� > 0 and a C1 map φ : (−�, �)×B(x0, �)→ Y such that

F (s, φ(s, x)) = (s,Cx) for all (s, x) ∈ (−�, �)×B(x0, �).

5. Show, for s ≤ � that ys(t) := φ(s, x)(t) satisfies Eq. (19.43). Now define
y(t, x) = φ(�/2, x)(2t/�) and show y(t, x) solve Eq. (19.42) for |t| < �/2
and x ∈ B(x0, �).

Exercise 19.37. Show P defined in Theorem 19.31 is continuously differen-
tiable and P 0(y)h = ḣ+ p0(y)h.
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Lebesgue Differentiation and the Fundamental
Theorem of Calculus

Notation 20.1 In this chapter, let B = BRn denote the Borel σ — algebra
on Rn and m be Lebesgue measure on B. If V is an open subset of Rn, let
L1loc(V ) := L1loc(V,m) and simply write L

1
loc for L

1
loc(Rn). We will also write

|A| for m(A) when A ∈ B.
Definition 20.2. A collection of measurable sets {E}r>0 ⊂ B is said to shrink
nicely to x ∈ Rn if (i) Er ⊂ Bx(r) for all r > 0 and (ii) there exists α > 0
such that m(Er) ≥ αm(Bx(r)). We will abbreviate this by writing Er ↓ {x}
nicely. (Notice that it is not required that x ∈ Er for any r > 0.

The main result of this chapter is the following theorem.

Theorem 20.3. Suppose that ν is a complex measure on (Rn,B) , then there
exists g ∈ L1(Rn,m) and a complex measure νs such that νs ⊥ m, dν =
gdm+ dνs, and for m - a.e. x,

g(x) = lim
r↓0

ν(Er)

m(Er)
(20.1)

for any collection of {Er}r>0 ⊂ B which shrink nicely to {x} .
Proof. The existence of g and νs such that νs ⊥ m and dν = gdm+ dνs

is a consequence of the Radon-Nikodym Theorem 18.36. Since

ν(Er)

m(Er)
=

1

m(Er)

Z
Er

g(x)dm(x) +
νs(Er)

m(Er)

Eq. (20.1) is a consequence of Theorem 20.13 and Corollary 20.15 below.
The rest of this chapter will be devoted to filling in the details of the proof

of this theorem.



476 20 Lebesgue Differentiation and the Fundamental Theorem of Calculus

20.1 A Covering Lemma and Averaging Operators

Lemma 20.4 (Covering Lemma). Let E be a collection of open balls in Rn
and U = ∪B∈EB. If c < m(U), then there exists disjoint balls B1, . . . , Bk ∈ E
such that c < 3n

kP
j=1

m(Bj).

Proof. Choose a compact set K ⊂ U such that m(K) > c and then let
E1 ⊂ E be a finite subcover of K. Choose B1 ∈ E1 to be a ball with largest
diameter in E1. Let E2 = {A ∈ E1 : A ∩ B1 = ∅}. If E2 is not empty, choose
B2 ∈ E2 to be a ball with largest diameter in E2. Similarly let E3 = {A ∈ E2 :
A ∩B2 = ∅} and if E3 is not empty, choose B3 ∈ E3 to be a ball with largest
diameter in E3. Continue choosing Bi ∈ E for i = 1, 2, . . . , k this way until
Ek+1 is empty, see Figure 20.1 below.

Fig. 20.1. Picking out the large disjoint balls.

If B = B(x0, r) ⊂ Rn, let B∗ = B(x0, 3r) ⊂ Rn, that is B∗ is the ball
concentric with B which has three times the radius of B. We will now show
K ⊂ ∪ki=1B∗i . For each A ∈ E1 there exists a first i such that Bi ∩ A 6= ∅. In
this case diam(A) ≤ diam(Bi) and A ⊂ B∗i . Therefore A ⊂ ∪ki=1B∗i and hence
K ⊂ ∪{A : A ∈ E1} ⊂ ∪ki=1B∗i . Hence by subadditivity,

c < m(K) ≤
kX
i=1

m(B∗i ) ≤ 3n
kX
i=1

m(Bi).

Definition 20.5. For f ∈ L1loc, x ∈ Rn and r > 0 let

(Arf)(x) =
1

|Bx(r)|
Z

Bx(r)

fdm (20.2)

where Bx(r) = B(x, r) ⊂ Rn, and |A| := m(A).
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Lemma 20.6. Let f ∈ L1loc, then for each x ∈ Rn, (0,∞)such that r →
(Arf)(x) is continuous and for each r > 0, Rn such that x → (Arf) (x) is
measurable.

Proof. Recall that |Bx(r)| = m(E1)r
n which is continuous in r. Also

limr→r0 1Bx(r)(y) = 1Bx(r0)(y) if |y| 6= r0 and since m ({y : |y| 6= r0}) = 0
(you prove!), limr→r0 1Bx(r)(y) = 1Bx(r0)(y) form -a.e. y. So by the dominated
convergence theorem,

lim
r→r0

Z
Bx(r)

fdm =

Z
Bx(r0)

fdm

and therefore

(Arf)(x) =
1

m(E1)rn

Z
Bx(r)

fdm

is continuous in r. Let gr(x, y) := 1Bx(r)(y) = 1|x−y|<r. Then gr is B ⊗ B —
measurable (for example write it as a limit of continuous functions or just
notice that F : Rn×Rn → R defined by F (x, y) := |x− y| is continuous) and
so that by Fubini’s theorem

x→
Z

Bx(r)

fdm =

Z
Bx(r)

gr(x, y)f(y)dm(y)

is B — measurable and hence so is x→ (Arf) (x).

20.2 Maximal Functions

Definition 20.7. For f ∈ L1(m), the Hardy - Littlewood maximal function
Hf is defined by

(Hf)(x) = sup
r>0

Ar|f |(x).

Lemma 20.6 allows us to write

(Hf)(x) = sup
r∈Q, r>0

Ar|f |(x)

and then to concluded that Hf is measurable.

Theorem 20.8 (Maximal Inequality). If f ∈ L1(m) and α > 0, then

m (Hf > α) ≤ 3
n

α
kfkL1 .



478 20 Lebesgue Differentiation and the Fundamental Theorem of Calculus

This should be compared with Chebyshev’s inequality which states that

m (|f | > α) ≤ kfkL1
α

.

Proof. Let Eα ≡ {Hf > α}. For all x ∈ Eα there exists rx such that
Arx |f |(x) > α, i.e.

|Bx(rx)| < 1

α

Z
Bx(rx)

fdm.

Since Eα ⊂ ∪x∈EαBx(rx), if c < m(Eα) ≤ m(∪x∈EαBx(rx)) then, using
Lemma 20.4, there exists x1, . . . , xk ∈ Eα and disjoint balls Bi = Bxi(rxi) for
i = 1, 2, . . . , k such that

c <
kX
i=1

3n |Bi| <
X 3n

α

Z
Bi

|f |dm ≤ 3
n

α

Z
Rn
|f |dm =

3n

α
kfkL1 .

This shows that c < 3nα−1kfkL1 for all c < m(Eα) which proves m(Eα) ≤
3nα−1kfk.
Theorem 20.9. If f ∈ L1loc then lim

r↓0
(Arf)(x) = f(x) for m — a.e. x ∈ Rn.

Proof. With out loss of generality we may assume f ∈ L1(m). We now
begin with the special case where f = g ∈ L1(m) is also continuous. In this
case we find:

|(Arg)(x)− g(x)| ≤ 1

|Bx(r)|
Z
Bx(r)

|g(y)− g(x)|dm(y)

≤ sup
y∈Bx(r)

|g(y)− g(x)|→ 0 as r→ 0.

In fact we have shown that (Arg)(x) → g(x) as r → 0 uniformly for x in
compact subsets of Rn.
For general f ∈ L1(m),

|Arf(x)− f(x)| ≤ |Arf(x)−Arg(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
= |Ar(f − g)(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
≤ H(f − g)(x) + |Arg(x)− g(x)|+ |g(x)− f(x)|

and therefore,

lim
r↓0
|Arf(x)− f(x)| ≤ H(f − g)(x) + |g(x)− f(x)|.

So if α > 0, then

Eα ≡
½
lim
r↓0
|Arf(x)− f(x)| > α

¾
⊂
n
H(f − g) >

α

2

o
∪
n
|g − f | > α

2

o
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and thus

m(Eα) ≤ m
³
H(f − g) >

α

2

´
+m

³
|g − f | > α

2

´
≤ 3n

α/2
kf − gkL1 + 1

α/2
kf − gkL1

≤ 2(3n + 1)α−1kf − gkL1 ,
where in the second inequality we have used the Maximal inequality (Theorem
20.8) and Chebyshev’s inequality. Since this is true for all continuous g ∈
C(Rn) ∩ L1(m) and this set is dense in L1(m), we may make kf − gkL1 as
small as we please. This shows that

m

µ½
x : lim

r↓0
|Arf(x)− f(x)| > 0

¾¶
= m(∪∞n=1E1/n) ≤

∞X
n=1

m(E1/n) = 0.

Corollary 20.10. If dµ = gdm with g ∈ L1loc then

µ(Bx(r))

|Bx(r)| = Arg(x)→ g(x) for m — a.e. x.

20.3 Lebesque Set

Definition 20.11. For f ∈ L1loc(m), the Lebesgue set of f is

Lf :=

x ∈ Rn : lim
r↓0

1

|Bx(r)|
Z

Bx(r)

|f(y)− f(x)|dy = 0


=

½
x ∈ Rn : lim

r↓0
(Ar |f(·)− f(x)|) (x) = 0

¾
.

Theorem 20.12. Suppose 1 ≤ p <∞ and f ∈ Lploc(m), then m
³
Rd \ Lpf

´
=

0 where

Lpf :=

x ∈ Rn : lim
r↓0

1

|Bx(r)|
Z

Bx(r)

|f(y)− f(x)|pdy = 0

 .

Proof. For w ∈ C define gw(x) = |f(x)−w|p andEw ≡ {x : limr↓0 (Argw) (x) 6= gw(x)} .
Then by Theorem 20.9 m(Ew) = 0 for all w ∈ C and therefore m(E) = 0
where

E =
[

w∈Q+iQ
Ew.
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By definition of E, if x /∈ E then.

lim
r↓0
(Ar|f(·)− w|p)(x) = |f(x)− w|p

for all w ∈ Q+ iQ. Letting q := p
p−1 we have

|f(·)− f(x)|p ≤ (|f(·)− w|+ |w − f(x)|)p ≤ 2q (|f(·)− w|p + |w − f(x)|p) ,

(Ar|f(·)− f(x)|p)(x) ≤ 2q (Ar |f(·)− w|p) (x) + (Ar|w − f(x)|p) (x)
= 2q (Ar |f(·)− w|p) (x) + 2q|w − f(x)|

and hence for x /∈ E,

lim
r↓0
(Ar|f(·)− f(x)|p)(x) ≤ 2q|f(x)− w|p + 2q|w − f(x)|p = 22q|f(x)− w|p.

Since this is true for all w ∈ Q+ iQ, we see that

lim
r↓0
(Ar|f(·)− f(x)|p)(x) = 0 for all x /∈ E,

i.e. Ec ⊂ Lpf or equivalently
³
Lpf
´c
⊂ E. So m

³
Rd \ Lpf

´
≤ m(E) = 0.

Theorem 20.13 (Lebesque Differentiation Theorem). Suppose f ∈ L1loc
for all x ∈ Lf (so in particular for m — a.e. x)

lim
r↓0

1

m(Er)

Z
Er

|f(y)− f(x)|dy = 0

and

lim
r↓0

1

m(Er)

Z
Er

f(y)dy = f(x)

when Er ↓ {x} nicely.
Proof. For all x ∈ Lf ,¯̄̄̄

1

m(Er)

Z
Er

f(y)dy − f(x)

¯̄̄̄
=

¯̄̄̄
1

m(Er)

Z
Er

(f(y)− f(x)) dy

¯̄̄̄
≤ 1

m(Er)

Z
Er

|f(y)− f(x)|dy

≤ 1

αm(Bx(r))

Z
Bx(r)

|f(y)− f(x)|dy

which tends to zero as r ↓ 0 by Theorem 20.12. In the second inequality we
have used the fact that m(Bx(r) \Bx(r)) = 0.
BRUCE: ADD an Lp — version of this theorem.
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Lemma 20.14. Suppose λ is positive σ — finite measure on B ≡ BRn such
that λ ⊥ m. Then for m — a.e. x,

lim
r↓0

λ(Bx(r))

m(Bx(r))
= 0.

Proof. Let A ∈ B such that λ(A) = 0 and m(Ac) = 0. By the regularity
theorem (Corollary 12.29 or Exercise 9.47), for all � > 0 there exists an open
set V� ⊂ Rn such that A ⊂ V� and λ(V�) < �. Let

Fk ≡
½
x ∈ A : lim

r↓0
λ(Bx(r))

m(Bx(r))
>
1

k

¾
the for x ∈ Fk choose rx > 0 such that Bx(rx) ⊂ V� (see Figure 20.2) and
λ(Bx(rx))
m(Bx(rx))

> 1
k , i.e.

m(Bx(rx)) < k λ(Bx(rx)).

Fig. 20.2. Covering a small set with balls.

Let E = {Bx(rx)}x∈Fk and U ≡ S
x∈Fk

Bx(rx) ⊂ V�. Heuristically if all the

balls in E were disjoint and E were countable, then

m(Fk) ≤
X
x∈Fk

m(Bx(rx)) < k
X
x∈Fk

λ(Bx(rx))

= kλ(U) ≤ k λ(V�) ≤ k�.

Since � > 0 is arbitrary this would imply that m(Fk) = 0.
To fix the above argument, suppose that c < m(U) and use the covering

lemma to find disjoint balls B1, . . . , BN ∈ E such that
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c < 3n
NX
i=1

m(Bi) < k3n
NX
i=1

λ(Bi)

≤ k3nλ(U) ≤ k3nλ(V�) ≤ k3n�.

Since c < m(U) is arbitrary we learn that m(Fk) ≤ m(U) ≤ k3n� and in par-
ticular thatm(Fk) ≤ k3n�. Since � > 0 is arbitrary, this shows thatm(Fk) = 0
and therefore, m(F∞) = 0 where

F∞ ≡
½
x ∈ A : lim

r↓0
λ(Bx(r))

m(Bx(r))
> 0

¾
= ∪∞k=1Fk.

Since

{x ∈ Rn : lim
r↓0

λ(Bx(r))

m(Bx(r))
> 0} ⊂ F∞ ∪Ac

and m(Ac) = 0, we have shown

m({x ∈ Rn : lim
r↓0

λ(Bx(r))

m(Bx(r))
> 0}) = 0.

Corollary 20.15. Let λ be a complex or a σ — finite signed measure such that
λ ⊥ m. Then for m — a.e. x,

lim
r↓0

λ(Er)

m(Er)
= 0

whenever Er ↓ {x} nicely.
Proof. Recalling the λ ⊥ m implies |λ| ⊥ m, Lemma 20.14 and the

inequalities,

|λ(Er)|
m(Er)

≤ |λ|(Er)

αm(Bx(r))
≤ |λ|(Bx(r))

αm(Bx(r))
≤ |λ|(Bx(2r))

α2−nm(Bx(2r))

proves the result.

Proposition 20.16. TODO Add in almost everywhere convergence result of
convolutions by approximate δ — functions.

20.4 The Fundamental Theorem of Calculus

In this section we will restrict the results above to the one dimensional setting.
The following notation will be in force for the rest of this chapter: m denotes
one dimensional Lebesgue measure on B := BR, −∞ ≤ α < β ≤ ∞, A =
A[α,β] denote the algebra generated by sets of the form (a, b] ∩ [α, β] with
−∞ ≤ a < b ≤ ∞, Ac denotes those sets in A which are bounded, and B[α,β]
is the Borel σ — algebra on [α, β] ∩R.
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Notation 20.17 Given a function F : R→ R̄ or F : R→ C, let F (x−) =
limy↑x F (y), F (x+) = limy↓x F (y) and F (±∞) = limx→±∞ F (x) whenever
the limits exist. Notice that if F is a monotone functions then F (±∞) and
F (x±) exist for all x.
Theorem 20.18. Let F : R → R be increasing and define G(x) = F (x+).
Then

1. {x ∈ R : F (x+) > F (x−)} is countable.
2. The function G increasing and right continuous.
3. For m — a.e. x, F 0(x) and G0(x) exists and F 0(x) = G0(x).
4. The function F 0 is in L1loc(m) and there exists a unique positive measure

νs on (R,BR) such that

F (b+)− F (a+) =

Z b

a

F 0dm+ νs((a, b]) for all −∞ < a < b <∞.

Moreover the measure νs is singular relative to m.

Proof. Properties (1) and (2) have already been proved in Theorem 12.36.
(3) Let νG denote the unique measure on B such that νG((a, b]) = G(b)−

G(a) for all a < b. By Theorem 20.3, for m - a.e. x, for all sequences {Er}r>0
which shrink nicely to {x} , lim

r↓0
(νG(Er)/m(Er)) exists and is independent of

the choice of sequence {Er}r>0 shrinking to {x} . Since (x, x + r] ↓ {x} and
(x− r, x] ↓ {x} nicely,

lim
r↓0

νG(x, x+ r])

m((x, x+ r])
= lim

r↓0
G(x+ r)−G(x)

r
=

d

dx+
G(x) (20.3)

and

lim
r↓0

νG((x− r, x])

m((x− r, x])
= lim

r↓0
G(x)−G(x− r)

r

= lim
r↓0

G(x− r)−G(x)

−r =
d

dx−
G(x) (20.4)

exist and are equal for m - a.e. x, i.e. G0(x) exists for m -a.e. x.
For x ∈ R, let

H(x) ≡ G(x)− F (x) = F (x+)− F (x) ≥ 0.
Since F (x) = G(x) − H(x), the proof of (3) will be complete once we show
H 0(x) = 0 for m — a.e. x.
From Theorem 12.36,

Λ := {x ∈ R : F (x+) > F (x)} ⊂ {x ∈ R : F (x+) > F (x−)}
is a countable set and
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x∈(−N,N)

H(x) =
X

x∈(−N,N)
(F (x+)−F (x)) ≤

X
x∈(−N,N)

(F (x+)−F (x−)) <∞

for all N < ∞. Therefore λ :=
P
x∈R

H(x)δx (i.e. λ(A) :=
P

x∈AH(x) for all

A ∈ BR) defines a Radon measure on BR. Since λ(Λc) = 0 and m(Λ) = 0, the
measure λ ⊥ m. By Corollary 20.15 for m - a.e. x,¯̄̄̄

H(x+ r)−H(x)

r

¯̄̄̄
≤ |H(x+ r)|+ |H(x)|

|r|
≤ H(x+ |r|) +H(x− |r|) +H(x)

|r|
≤ 2λ([x− |r| , x+ |r|])

2 |r|
and the last term goes to zero as r → 0 because {[x− r, x+ r]}r>0 shrinks
nicely to {x} as r ↓ 0 and m([x− |r| , x+ |r|]) = 2 |r| . Hence we conclude for
m — a.e. x that H 0(x) = 0.
(4) From Theorem 20.3, item (3) and Eqs. (20.3) and (20.4), F 0 = G0 ∈

L1loc(m) and dνG = F 0dm + dνs where νs is a positive measure such that
νs ⊥ m. Applying this equation to an interval of the form (a, b] gives

F (b+)− F (a+) = νG((a, b]) =

Z b

a

F 0dm+ νs((a, b]).

The uniqueness of νs such that this equation holds is a consequence of Theo-
rem 9.8.
Our next goal is to prove an analogue of Theorem 20.18 for complex valued

F.

Definition 20.19. For −∞ ≤ a < b < ∞, a partition P of [a, b] is a fi-
nite subset of [a, b] ∩ R such that {a, b} ∩ R ⊂ P. For x ∈ P\ {b} , let
x+ = min {y ∈ P : y > x} and if x = b let x+ = b.

Proposition 20.20. Let ν be a complex measure on BR and let F be a func-
tion such that

F (b)− F (a) = ν((a, b]) for all a < b,

for example let F (x) = ν((−∞, x]) in which case F (−∞) = 0. The function
F is right continuous and for −∞ < a < b <∞,

|ν|(a, b] = sup
P

X
x∈P

|ν(x, x+]| = sup
P

X
x∈P

|F (x+)− F (x)| (20.5)

where supremum is over all partitions P of [a, b]. Moreover ν ¿ m iff for all
� > 0 there exists δ > 0 such that

nX
i=1

|ν ((ai, bi])| =
nX
i=1

|F (bi)− F (ai)| < � (20.6)
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whenever {(ai, bi) ∩ (a, b]}ni=1 are disjoint open intervals in (a, b] such that
nP
i=1
(bi − ai) < δ.

Proof. Eq. (20.5) follows from Proposition 18.35 and the fact that B =
σ(A) where A is the algebra generated by (a, b] ∩ R with a, b ∈ R̄. Equation
(20.6) is a consequence of Theorem 18.40 withA being the algebra of half open
intervals as above. Notice that {(ai, bi) ∩ (a, b]}ni=1 are disjoint intervals iff
{(ai, bi] ∩ (a, b]}ni=1 are disjoint intervals,

nP
i=1
(bi−ai) = m ((a, b] ∩ ∪ni=1(ai, bi])

and the general element A ∈ A(a,b] is of the form A = (a, b] ∩ ∪ni=1(ai, bi].
Definition 20.21. Given a function F : R ∩ [α, β]→ C let νF be the unique
additive measure on Ac such that νF ((a, b]) = F (b)−F (a) for all a, b ∈ [α, β]
with a < b and also define

TF ([a, b]) = sup
P

X
x∈P

|νF (x, x+]| = sup
P

X
x∈P

|F (x+)− F (x)|

where supremum is over all partitions P of [a, b]. We will also abuse no-
tation and define TF (b) := TF ([α, b]). A function F : R ∩ [α, β]→ C is
said to be of bounded variation if TF (β) := TF ([α, β]) < ∞ and we
write F ∈ BV ([α, β]). If α = −∞ and β = +∞, we will simply denote
BV ([−∞,+∞]) by BV.
Definition 20.22. A function F : R→ C is said to be of normalized bounded
variation if F ∈ BV, F is right continuous and F (−∞) := limx→−∞ F (x) = 0.
We will abbreviate this by saying F ∈ NBV. (The condition: F (−∞) = 0 is
not essential and plays no role in the discussion below.)

Definition 20.23. A function F : R ∩ [α, β]→ C is absolutely continuous
if for all � > 0 there exists δ > 0 such that

nX
i=1

|F (bi)− F (ai)| < � (20.7)

whenever {(ai, bi)}ni=1 are disjoint open intervals in R∩[α, β] such that
nP
i=1
(bi−

ai) < δ.

Lemma 20.24. Let F : R∩ [α, β]→ C be any function and and a < b < c with
a, b, c ∈ R ∩ [α, β] then
1.

TF ([a, c]) = TF ([a, b]) + TF ([b, c]). (20.8)

2. Letting a = α in this expression implies

TF (c) = TF (b) + TF ([b, c]) (20.9)

and in particular TF is monotone increasing.
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3. If TF (b) <∞ for some b ∈ R ∩ [α, β] then
TF (a+)− TF (a) ≤ lim sup

y↓a
|F (y)− F (a)| (20.10)

for all a ∈ R ∩ [α, b). In particular TF is right continuous if F is right
continuous.

4. If α = −∞ and TF (b) < ∞ for some b ∈ (−∞, β] ∩ R then TF (−∞) :=
limb↓−∞ TF (b) = 0.

Proof. (1 — 2) By the triangle inequality, if P and P0 are partition of [a, c]
such that P ⊂ P0, thenX

x∈P
|F (x+)− F (x)| ≤

X
x∈P0

|F (x+)− F (x)|.

So if P is a partition of [a, c], then P ⊂ P0 := P∪ {b} impliesX
x∈P

|F (x+)− F (x)| ≤
X
x∈P0

|F (x+)− F (x)|

=
X

x∈P0∩[a,b]
|F (x+)− F (x)|+

X
x∈P0∩[b,c]

|F (x+)− F (x)|

≤ TF ([a, b]) + TF ([b, c]).

Thus we see that TF ([a, c]) ≤ TF ([a, b])+TF ([b, c]). Similarly if P1 is a partition
of [a, b] and P2 is a partition of [b, c], then P = P1 ∪ P2 is a partition of [a, c]
andX
x∈P1

|F (x+)−F (x)|+
X
x∈P2

|F (x+)−F (x)| =
X
x∈P

|F (x+)−F (x)| ≤ TF ([a, c]).

From this we conclude TF ([a, b]) + TF ([b, c]) ≤ TF ([a, c]) which finishes the
proof of Eqs. (20.8) and (20.9).
(3) Let a ∈ R∩[α, b) and given � > 0 let P be a partition of [a, b] such that

TF (b)− TF (a) = TF ([a, b]) ≤
X
x∈P

|F (x+)− F (x)|+ �. (20.11)

Let y ∈ (a, a+), thenX
x∈P

|F (x+)− F (x)|+ � ≤
X

x∈P∪{y}
|F (x+)− F (x)|+ �

= |F (y)− F (a)|+
X

x∈P\{y}
|F (x+)− F (x)|+ �

≤ |F (y)− F (a)|+ TF ([y, b]) + �. (20.12)

Combining Eqs. (20.11) and (20.12) shows
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TF (y)− TF (a) + TF ([y, b]) = TF (b)− TF (a)

≤ |F (y)− F (a)|+ TF ([y, b]) + �.

Since y ∈ (a, a+) is arbitrary we conclude that
TF (a+)− TF (a) = lim sup

y↓a
TF (y)− TF (a) ≤ lim sup

y↓a
|F (y)− F (a)|+ �.

Since � > 0 is arbitrary this proves Eq. (20.10).
(4) Suppose that TF (b) <∞ and given � > 0 let P be a partition of [α, b]

such that
TF (b) ≤

X
x∈P

|F (x+)− F (x)|+ �.

Let x0 = minP then by the previous equation

TF (x0) + TF ([x0, b]) = TF (b) ≤
X
x∈P

|F (x+)− F (x)|+ �

≤ TF ([x0, b]) + �

which shows, using the monotonicity of TF , that TF (−∞) ≤ TF (x0) ≤ �.
Since � > 0 we conclude that TF (−∞) = 0.
The following lemma should help to clarify Proposition 20.20 and Defini-

tion 20.23.

Lemma 20.25. Let ν and F be as in Proposition 20.20 and A be the algebra
generated by (a, b] ∩R with a, b ∈ R̄.. Then the following are equivalent:
1. ν ¿ m
2. |ν| ¿ m
3. For all � > 0 there exists a δ > 0 such that TF (A) < � whenever m(A) < δ.
4. For all � > 0 there exists a δ > 0 such that |νF (A)| < � whenever m(A) <

δ.

Moreover, condition 4. shows that we could replace the last statement in
Proposition 20.20 by: ν ¿ m iff for all � > 0 there exists δ > 0 such that¯̄̄̄

¯
nX
i=1

ν ((ai, bi])

¯̄̄̄
¯ =

¯̄̄̄
¯
nX
i=1

[F (bi)− F (ai)]

¯̄̄̄
¯ < �

whenever {(ai, bi) ∩ (a, b]}ni=1 are disjoint open intervals in (a, b] such that
nP
i=1
(bi − ai) < δ.

Proof. This follows directly from Lemma 18.37 and Theorem 18.40.

Lemma 20.26.

1. Monotone functions F : R ∩ [α, β]→ R are in BV ([α, β]).
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2. Linear combinations of functions in BV are in BV, i.e. BV is a vector
space.

3. If F : R ∩ [α, β]→ C is absolutely continuous then F is continuous and
F ∈ BV ([α, β]).

4. If −∞ < α < β < ∞ and F : R ∩ [α, β]→ R is a differentiable function
such that supx∈R |F 0(x)| = M < ∞, then F is absolutely continuous and
TF ([a, b]) ≤M(b− a) for all α ≤ a < b ≤ β.

5. Let f ∈ L1(R ∩ [α, β],m) and set

F (x) =

Z
(α,x]

fdm (20.13)

for x ∈ [α, b] ∩ R. Then F : R ∩ [α, β]→ C is absolutely continuous.

Proof.

1. If F is monotone increasing and P is a partition of (a, b] thenX
x∈P

|F (x+)− F (x)| =
X
x∈P

(F (x+)− F (x)) = F (b)− F (a)

so that TF ([a, b]) = F (b) − F (a). Also note that F ∈ BV iff F (∞) −
F (−∞) <∞.

2. Item 2. follows from the triangle inequality.
3. Since F is absolutely continuous, there exists δ > 0 such that whenever

a < b < a+ δ and P is a partition of (a, b],X
x∈P

|F (x+)− F (x)| ≤ 1.

This shows that TF ([a, b]) ≤ 1 for all a < b with b−a < δ. Thus using Eq.
(20.8), it follows that TF ([a, b]) ≤ N <∞ if b− a < Nδ for an N ∈ N.

4. Suppose that {(ai, bi)}ni=1 ⊂ (a, b] are disjoint intervals, then by the mean
value theorem,

nX
i=1

|F (bi)− F (ai)| ≤
nX
i=1

|F 0(ci)| (bi − ai) ≤Mm (∪ni=1(ai, bi))

≤M
nX
i=1

(bi − ai) ≤M(b− a)

form which it clearly follows that F is absolutely continuous. Moreover
we may conclude that TF ([a, b]) ≤M(b− a).

5. Let ν be the positive measure dν = |f | dm on (a, b]. Let {(ai, bi)}ni=1 ⊂
(a, b] be disjoint intervals as above, then
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nX
i=1

|F (bi)− F (ai)| =
nX
i=1

¯̄̄̄
¯
Z
(ai,bi]

fdm

¯̄̄̄
¯

≤
nX
i=1

Z
(ai,bi]

|f | dm

=

Z
∪ni=1(ai,bi]

|f | dm = ν(∪ni=1(ai, bi]). (20.14)

Since ν is absolutely continuous relative to m for all � > 0 there exist
δ > 0 such that ν(A) < � if m(A) < δ. Taking A = ∪ni=1(ai, bi] in Eq.
(20.14) shows that F is absolutely continuous. It is also easy to see from
Eq. (20.14) that TF ([a, b]) ≤

R
(a,b]

|f | dm.

Theorem 20.27. Let F : R→ C be a function, then

1. F ∈ BV iff ReF ∈ BV and ImF ∈ BV.
2. If F : R→ R is in BV then the functions F± := (TF ± F ) /2 are bounded
and increasing functions.

3. F : R → R is in BV iff F = F+ − F− where F± are bounded increasing
functions.

4. If F ∈ BV then F (x±) exist for all x ∈ R̄. Let G(x) := F (x+).
5. F ∈ BV then {x : limy→x F (y) 6= F (x)} is a countable set and in partic-
ular G(x) = F (x+) for all but a countable number of x ∈ R.

6. If F ∈ BV, then for m — a.e. x, F 0(x) and G0(x) exist and F 0(x) = G0(x).

Proof.

1. Item 1. is a consequence of the inequalities

|F (b)− F (a)| ≤ |ReF (b)−ReF (a)|+|ImF (b)− ImF (a)| ≤ 2 |F (b)− F (a)| .
2. By Lemma 20.24, for all a < b,

TF (b)− TF (a) = TF ([a, b]) ≥ |F (b)− F (a)| (20.15)

and therefore
TF (b)± F (b) ≥ TF (a)± F (a)

which shows that F± are increasing. Moreover from Eq. (20.15), for b ≥ 0
and a ≤ 0,

|F (b)| ≤ |F (b)− F (0)|+ |F (0)| ≤ TF (0, b] + |F (0)|
≤ TF (0,∞) + |F (0)|

and similarly
|F (a)| ≤ |F (0)|+ TF (−∞, 0)

which shows that F is bounded by |F (0)| + TF (∞). Therefore F± is
bounded as well.
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3. By Lemma 20.26 if F = F+ − F−, then

TF ([a, b]) ≤ TF+([a, b]) + TF−([a, b])

= |F+(b)− F+(a)|+ |F−(b)− F−(a)|
which is bounded showing that F ∈ BV. Conversely if F is bounded
variation, then F = F+ − F− where F± are defined as in Item 2.

Items 4. — 6. follow from Items 1. — 3. and Theorem 20.18.

Theorem 20.28. Suppose that F : R→ C is in BV, then

|TF (x+)− TF (x)| ≤ |F (x+)− F (x)| (20.16)

for all x ∈ R. If we further assume that F is right continuous then there exists
a unique measure ν on B = BR. such that

ν((−∞, x]) = F (x)− F (−∞) for all x ∈ R. (20.17)

Proof. Since F ∈ BV, F (x+) exists for all x ∈ R and hence Eq. (20.16) is
a consequence of Eq. (20.10). Now assume that F is right continuous. In this
case Eq. (20.16) shows that TF (x) is also right continuous. By considering
the real and imaginary parts of F separately it suffices to prove there exists a
unique finite signed measure ν satisfying Eq. (20.17) in the case that F is real
valued. Now let F± = (TF ± F ) /2, then F± are increasing right continuous
bounded functions. Hence there exists unique measure ν± on B such that

ν±((−∞, x]) = F±(x)− F±(−∞) ∀x ∈ R.
The finite signed measure ν ≡ ν+−ν− satisfies Eq. (20.17). So it only remains
to prove that ν is unique.
Suppose that ν̃ is another such measure such that (20.17) holds with ν

replaced by ν̃. Then for (a, b],

|ν| (a, b] = sup
P

X
x∈P

|F (x+)− F (x)| = |ν̃| (a, b]

where the supremum is over all partition of (a, b]. This shows that |ν| = |ν̃|
on A ⊂ B — the algebra generated by half open intervals and hence |ν| = |ν̃| .
It now follows that |ν| + ν and |ν̃| + ν̃ are finite positive measure on B such
that

(|ν|+ ν) ((a, b]) = |ν| ((a, b]) + (F (b)− F (a))

= |ν̃| ((a, b]) + (F (b)− F (a))

= (|ν̃|+ ν̃) ((a, b])

from which we infer that |ν|+ ν = |ν̃|+ ν̃ = |ν|+ ν̃ on B. Thus ν = ν̃.
Alternatively, one may prove the uniqueness by showing that C := {A ∈

B : ν(A) = eν(A)} is a monotone class which contains A or using the π — λ
theorem.



20.4 The Fundamental Theorem of Calculus 491

Theorem 20.29. Suppose that F ∈ NBV and νF is the measure defined by
Eq. (20.17), then

dνF = F 0dm+ dνs (20.18)

where νs ⊥ m and in particular for −∞ < a < b <∞,

F (b)− F (a) =

Z b

a

F 0dm+ νs((a, b]). (20.19)

Proof. By Theorem 20.3, there exists f ∈ L1(m) and a complex measure
νs such that for m -a.e. x,

f(x) = lim
r↓0

ν(Er)

m(Er)
, (20.20)

for any collection of {Er}r>0 ⊂ B which shrink nicely to {x} , νs ⊥ m and

dνF = fdm+ dνs.

From Eq. (20.20) it follows that

lim
h↓0

F (x+ h)− F (x)

h
= lim

h↓0
νF ((x, x+ h])

h
= f(x) and

lim
h↓0

F (x− h)− F (x)

−h = lim
h↓0

νF ((x− h, x])

h
= f(x)

for m — a.e. x, i.e. d
dx+F (x) =

d
dx−F (x) = f(x) for m —a.e. x. This implies

that F is m — a.e. differentiable and F 0(x) = f(x) for m — a.e. x.

Corollary 20.30. Let F : R→ C be in NBV, then

1. νF ⊥ m iff F 0 = 0 m a.e.
2. νF ¿ m iff νs = 0 iff

νF ((a, b]) =

Z
(a,b]

F 0(x)dm(x) for all a < b. (20.21)

Proof.

1. If F 0(x) = 0 for m a.e. x, then by Eq. (20.18), νF = νs ⊥ m. If νF ⊥ m,
then by Eq. (20.18), F 0dm = dνF − dνs ⊥ dm and by Remark 18.8
F 0dm = 0, i.e. F 0 = 0 m -a.e.

2. If νF ¿ m, then dνs = dνF − F 0dm ¿ dm which implies, by Lemma
18.28, that νs = 0. Therefore Eq. (20.19) becomes (20.21). Now let

ρ(A) :=

Z
A

F 0(x)dm(x) for all A ∈ B.
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Recall by the Radon - Nikodym theorem that
R
R |F 0(x)| dm(x) < ∞ so

that ρ is a complex measure on B. So if Eq. (20.21) holds, then ρ = νF on
the algebra generated by half open intervals. Therefore ρ = νF as in the
uniqueness part of the proof of Theorem 20.28. Therefore dνF = F 0dm
and hence νs = 0.

Theorem 20.31. Suppose that F : [a, b]→ C is a measurable function. Then
the following are equivalent:

1. F is absolutely continuous on [a, b].
2. There exists f ∈ L1([a, b]), dm) such that

F (x)− F (a) =

Z x

a

fdm ∀x ∈ [a, b] (20.22)

3. F 0 exists a.e., F 0 ∈ L1([a, b], dm) and

F (x)− F (a) =

Z x

a

F 0dm∀x ∈ [a, b]. (20.23)

Proof. In order to apply the previous results, extend F to R by F (x) =
F (b) if x ≥ b and F (x) = F (a) if x ≤ a.
1. =⇒ 3. If F is absolutely continuous then F is continuous on [a, b] and

F − F (a) = F − F (−∞) ∈ NBV by Lemma 20.26. By Proposition 20.20,
νF ¿ m and hence Item 3. is now a consequence of Item 2. of Corollary
20.30. The assertion 3. =⇒ 2. is trivial.
2. =⇒ 1. If 2. holds then F is absolutely continuous on [a, b] by Lemma

20.26.

Corollary 20.32 (Integration by parts). Suppose −∞ < a < b < ∞ and
F,G : [a, b]→ C are two absoutely continuous functions. ThenZ b

a

F 0Gdm = −
Z b

a

FG0dm+ FG|ba.

Proof. Suppose that {(ai, bi)}ni=1 is a sequence of disjoint intervals in [a, b],
then

nX
i=1

|F (bi)G(bi)− F (ai)G(ai)|

≤
nX
i=1

|F (bi)| |G(bi)−G(ai)|+
nX
i=1

|F (bi)− F (ai)| |G(ai)|

≤ kFku
nX
i=1

|G(bi)−G(ai)|+ kGku
nX
i=1

|F (bi)− F (ai)| .
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From this inequality, one easily deduces the absolutely continuity of the prod-
uct FG from the absolutely continuity of F and G. Therefore,

FG|ba =
Z b

a

(FG)0dm =

Z b

a

(F 0G+ FG0)dm.

20.5 Alternative method to the Fundamental Theorem
of Calculus

For simplicity assume that α = −∞, β = ∞ and F ∈ BV. Let ν0 = ν0F be
the finitely additive set function on Ac such that ν0((a, b]) = F (b)− F (a) for
all −∞ < a < b <∞.As in the real increasing case (Notation 12.6 above) we
may define a linear functional, IF : Sc(A)→ C, by

IF (f) =
X
λ∈C

λν0(f = λ).

If we write f =
PN

i=1 λi1(ai,bi] with {(ai, bi]}Ni=1 pairwise disjoint subsets of
Ac inside (a, b] we learn

|IF (f)| =
¯̄̄̄
¯
NX
i=1

λi(F (bi)− F (ai)

¯̄̄̄
¯ ≤

NX
i=1

|λi| |F (bi)− F (ai)| ≤ kfku TF ((a, b]).
(20.24)

In the usual way this estimate allows us to extend IF to the those compactly
supported functions Sc(A) in the closure of Sc(A). As usual we will still denote
the extension of IF to Sc(A) by IF and recall that Sc(A) contains Cc(R,C).
The estimate in Eq. (20.24) still holds for this extension and in particular we
have |I(f)| ≤ TF (∞) · kfku for all f ∈ Cc(R,C). Therefore I extends uniquely
by continuity to an element of C0(R,C)∗. So by appealing to the complex Riesz
Theorem (Corollary 18.42) there exists a unique complex measure ν = νF such
that

IF (f) =

Z
R
fdν for all f ∈ Cc(R). (20.25)

This leads to the following theorem.

Theorem 20.33. To each function F ∈ BV there exists a unique mea-
sure ν = νF on (R,BR) such that Eq. (20.25) holds. Moreover, F (x+) =
limy↓x F (y) exists for all x ∈ R and the measure ν satisfies

ν((a, b]) = F (b+)− F (a+) for all −∞ < a < b <∞. (20.26)

Remark 20.34. By applying Theorem 20.33 to the function x → F (−x) one
shows every F ∈ BV has left hand limits as well, i.e F (x−) = limy↑x F (y)
exists for all x ∈ R.
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Proof. We must still prove F (x+) exists for all x ∈ R and Eq. (20.26)
holds. To prove let ψb and φ� be the functions shown in Figure 20.3 below.
The reader should check that ψb ∈ Sc(A). Notice that

Fig. 20.3. A couple of functions in Sc(A).

IF (ψb+�) = IF (ψα + 1(α,b+�]) = IF (ψα) + F (b+ �)− F (α)

and since kφ� − ψb+�ku = 1,
|I(φ�)− IF (ψb+�)| = |IF (φ� − ψb+�)|

≤ TF ([b+ �, b+ 2�]) = TF (b+ 2�)− TF (b+ �),

which implies O(�) := I(φ�)−IF (ψb+�)→ 0 as � ↓ 0 because TF is monotonic.
Therefore,

I(φ�) = IF (ψb+�) + I(φ�)− IF (ψb+�)

= IF (ψα) + F (b+ �)− F (α) +O(�). (20.27)

Because φ� converges boundedly to ψb as � ↓ 0, the dominated convergence
theorem implies

lim
�↓0

I(φ�) = lim
�↓0

Z
R
φ�dν =

Z
R
ψbdν =

Z
R
ψαdν + ν((α, b]).

So we may let � ↓ 0 in Eq. (20.27) to learn F (b+) exists and
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R
ψαdν + ν((α, b]) = IF (ψα) + F (b+)− F (α).

Similarly this equation holds with b replaced by a, i.e.Z
R
ψαdν + ν((α, a]) = IF (ψα) + F (a+)− F (α).

Subtracting the last two equations proves Eq. (20.26).

20.5.1 Proof of Theorem 20.29.

Proof. Given Theorem 20.33 we may now prove Theorem 20.29 in the same
we proved Theorem 20.18.

20.6 Examples:

These are taken from I. P. Natanson,“Theory of functions of a real variable,”
p.269. Note it is proved in Natanson or in Rudin that the fundamental theorem
of calculus holds for f ∈ C([0, 1]) such that f 0(x) exists for all x ∈ [0, 1] and
f 0 ∈ L1. Now we give a couple of examples.

Example 20.35. In each case f ∈ C([−1, 1]).
1. Let f(x) = |x|3/2 sin 1

x with f(0) = 0, then f is everywhere differentiable
but f 0 is not bounded near zero. However, the function f 0 ∈ L1([−1, 1]).

2. Let f(x) = x2 cos π
x2 with f(0) = 0, then f is everywhere differentiable

but f 0 /∈ L1loc(−�, �). Indeed, if 0 /∈ (α, β) thenZ β

α

f 0(x)dx = f(β)− f(α) = β2 cos
π

β2
− α2 cos

π

α2
.

Now take αn :=
q

2
4n+1 and βn = 1/

√
2n. Then

Z βn

αn

f 0(x)dx =
2

4n+ 1
cos

π(4n+ 1)

2
− 1

2n
cos 2nπ =

1

2n

and noting that {(αn, βn)}∞n=1 are all disjoint, we find
R �
0
|f 0(x)| dx =∞.

Example 20.36. Let C ⊂ [0, 1] denote the cantor set constructed as follows.
Let C1 = [0, 1] \ (1/3, 2/3), C2 := C1 \ [(1/9, 2/9) ∪ (7/9, 8/9)] , etc., so that
we keep removing the middle thirds at each stage in the construction. Then

C := ∩∞n=1Cn =

x =
∞X
j=0

aj3
−j : aj ∈ {0, 2}
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and

m(C) = 1−
µ
1

3
+
2

9
+
22

33
+ . . .

¶
= 1− 1

3

∞X
n=0

µ
2

3

¶n
= 1− 1

3

1

1− 2/3 = 0.

Associated to this set is the so called cantor function F (x) := limn→∞ fn(x)
where the {fn}∞n=1 are continuous non-decreasing functions such that fn(0) =
0, fn(1) = 1 with the fn pictured in Figure 20.4 below. From the pictures one

Fig. 20.4. Constructing the Cantor function.

sees that {fn} are uniformly Cauchy, hence there exists F ∈ C([0, 1]) such
that F (x) := limn→∞ fn(x). The function F has the following properties,

1. F is continuous and non-decreasing.
2. F 0(x) = 0 for m — a.e. x ∈ [0, 1] because F is flat on all of the middle third
open intervals used to construct the cantor set C and the total measure
of these intervals is 1 as proved above.
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3. The measure on B[0,1] associated to F, namely ν([0, b]) = F (b) is singular
relative to Lebesgue measure and ν ({x}) = 0 for all x ∈ [0, 1]. Notice that
ν ([0, 1]) = 1.

20.7 Exercises

Exercise 20.37. Folland 3.22 on p. 100.

Exercise 20.38. Folland 3.24 on p. 100.

Exercise 20.39. Folland 3.25 on p. 100.

Exercise 20.40. Folland 3.27 on p. 107.

Exercise 20.41. Folland 3.29 on p. 107.

Exercise 20.42. Folland 3.30 on p. 107.

Exercise 20.43. Folland 3.33 on p. 108.

Exercise 20.44. Folland 3.35 on p. 108.

Exercise 20.45. Folland 3.37 on p. 108.

Exercise 20.46. Folland 3.39 on p. 108.

Exercise 20.47. Folland 3.40 on p. 108.

Exercise 20.48. Folland 8.4 on p. 239.

Solution 20.49. 20.48Notice that

Arf =
1

|B0(r)|1B0(r) ∗ f

and there for x→ Arf(x) ∈ C0(Rn) for all r > 0 by Proposition 11.18. Since

Arf(x)− f(x) =
1

|B0(r)|
Z
B0(r)

f(x+ y)− f(x)dy

=
1

|B0(r)|
Z
B0(r)

(τ−yf − f) (x)dy

it follows from Minikowski’s inequality for integrals (Theorem 10.29) that

kArf − fk∞ ≤
1

|B0(r)|
Z
B0(r)

kτ−yf − fk∞ dy ≤ sup
|y|≤r

kτyf − fk∞

and the latter goes to zero as r ↓ 0 by assumption. In particular we learn that
kArf −Aρfku ≤ kArf − fk∞ + kf −Aρfk∞ → 0 as r, ρ→ 0

showing {Arf}r>0 is uniformly Cauchy as r ↓ 0. Therefore limr↓0Arf(x) =
g(x) exists for all x ∈ Rn and g = f a.e.
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The Change of Variable Theorem

This section is devoted to the proof of the change of variables theorem 9.31.
For convenience we restate the theorem here.

Theorem 21.1 (Change of Variables Theorem). Let Ω ⊂o Rd be an open
set and T : Ω → T (Ω) ⊂o Rd be a C1 — diffeomorphism. Then for any Borel
measurable f : T (Ω)→ [0,∞] we haveZ

Ω

f ◦ T |detT 0|dm =

Z
T (Ω)

f dm. (21.1)

Proof. We will carry out the proof in a number of steps.
Step 1. Eq. (21.1) holds when Ω = Rd and T is linear and invertible. This

was proved in Theorem 9.33 above using Fubini’s theorem, the scaling and
translation invariance properties of one dimensional Lebesgue measure and
the fact that by row reduction arguments T may be written as a product of
“elementary” transformations.
Step 2. For all A ∈ BΩ ,

m(T (A)) ≤
Z
A

|detT 0| dm. (21.2)

This will be proved in Theorem 21.4below.
Step 3. Step 2. implies the general case. To see this, let B ∈ BT (Ω) and

A = T−1(B) in Eq. (21.2) to learn thatZ
Ω

1Adm = m(A) ≤
Z
T−1(A)

|detT 0| dm =

Z
Ω

1A ◦ T |detT 0| dm.

Using linearity we may conclude from this equation thatZ
T (Ω)

fdm ≤
Z
Ω

f ◦ T |detT 0| dm (21.3)
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for all non-negative simple functions f on T (Ω). Using Theorem 8.12 and the
monotone convergence theorem one easily extends this equation to hold for
all nonnegative measurable functions f on T (Ω).
Applying Eq. (21.3) with Ω replaced by T (Ω), T replaced by T−1 and f

by g : Ω → [0,∞], we see thatZ
Ω

gdm =

Z
T−1(T (Ω))

gdm ≤
Z
T (Ω)

g ◦ T−1
¯̄̄
det

¡
T−1

¢0 ¯̄̄
dm (21.4)

for all Borel measurable g. Taking g = (f ◦ T ) |detT 0| in this equation shows,Z
Ω

f ◦ T |detT 0| dm ≤
Z
T (Ω)

f
¯̄
detT 0 ◦ T−1 ¯̄ ¯̄̄det ¡T−1¢0 ¯̄̄ dm

=

Z
T (Ω)

fdm (21.5)

wherein the last equality we used the fact that T ◦ T−1 = id so that¡
T 0 ◦ T−1¢ ¡T−1¢0 = id and hence detT 0 ◦ T−1 det ¡T−1¢0 = 1.
Combining Eqs. (21.3) and (21.5) proves Eq. (21.1). Thus the proof is

complete modulo Eq. (21.3) which we prove in Theorem 21.4 below.

Notation 21.2 For a, b ∈ Rd we will write a ≤ b is ai ≤ bi for all i and a < b
if ai < bi for all i. Given a < b let [a, b] =

Qd
i=1[ai, bi] and (a, b] =

Qd
i=1(ai, bi].

(Notice that the closure of (a, b] is [a, b].) We will say that Q = (a, b] is a cube
provided that bi − ai = 2δ > 0 is a constant independent of i. When Q is a
cube, let

xQ := a+ (δ, δ, . . . , δ)

be the center of the cube.

Notice that with this notation, if Q is a cube of side length 2δ,

Q̄ = {x ∈ Rd : |x− xQ| ≤ δ} (21.6)

and the interior (Q0) of Q may be written as

Q0 = {x ∈ Rd : |x− xQ| < δ}.

Notation 21.3 For a ∈ Rd, let |a| = maxi |ai| and if T is a d× d matrix let
kTk = maxi

P
j |Tij | .

A key point of this notation is that

|Ta| = max
i

¯̄̄̄
¯̄X
j

Tijaj

¯̄̄̄
¯̄ ≤ maxi X

j

|Tij | |aj |

≤ kTk |a| . (21.7)
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Theorem 21.4. Let Ω ⊂o Rd be an open set and T : Ω → T (Ω) ⊂o Rd be a
C1 — diffeomorphism. Then for any A ∈ BΩ,

m(T (A)) ≤
Z
A

|detT 0(x)|dx. (21.8)

Proof. Step 1. We will first assume that A = Q = (a, b] is a cube such
that Q̄ = [a, b] ⊂ Ω. Let δ = (bi − ai)/2 be half the side length of Q. By the
fundamental theorem of calculus (for Riemann integrals) for x ∈ Q,

T (x) = T (xQ) +

Z 1

0

T 0(xQ + t(x− xQ))(x− xQ)dt

= T (xQ) + T 0(xQ)S(x)

where

S(x) =

·Z 1

0

T 0(xQ)−1T 0(xQ + t(x− xQ))dt

¸
(x− xQ).

Therefore T (Q) = T (xQ) + T 0(xQ)S(Q) and hence

m(T (Q)) = m (T (xQ) + T 0(xQ)S(Q)) = m (T 0(xQ)S(Q))
= |detT 0(xQ)|m (S(Q)) . (21.9)

Now for x ∈ Q̄, i.e. |x− xQ| ≤ δ,

|S(x)| ≤
°°°°Z 1

0

T 0(xQ)−1T 0(xQ + t(x− xQ))dt

°°°° |x− xQ|

≤ h(xQ, x)δ

where

h(xQ, x) :=

Z 1

0

°°T 0(xQ)−1T 0(xQ + t(x− xQ))
°° dt. (21.10)

Hence
S(Q) ⊂ max

x∈Q
h(xQ, x){x ∈ Rd : |x| ≤ δmax

x∈Q
hd(xQ, x)}

and

m(S(Q)) ≤ max
x∈Q

h(xQ, x)
d (2δ)d = max

x∈Q
hd(xQ, x)m(Q). (21.11)

Combining Eqs. (21.9) and (21.11) shows that

m(T (Q)) ≤ |detT 0(xQ)|m(Q) ·max
x∈Q

hd(xQ, x). (21.12)

To refine this estimate, we will subdivide Q into smaller cubes, i.e. for
n ∈ N let
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Qn =

½
(a, a+

2

n
(δ, δ, . . . , δ)] +

2δ

n
ξ : ξ ∈ {0, 1, 2, . . . , n}d

¾
.

Notice that Q =
`

A∈Qn
A. By Eq. (21.12),

m(T (A)) ≤ |detT 0(xA)|m(A) ·max
x∈A

hd(xA, x)

and summing the equation on A gives

m(T (Q)) =
X
A∈Qn

m(T (A)) ≤
X
A∈Qn

|detT 0(xA)|m(A) ·max
x∈A

hd(xA, x).

Since hd(x, x) = 1 for all x ∈ Q̄ and hd : Q̄ × Q̄ → [0,∞) is continuous
function on a compact set, for any � > 0 there exists n such that if x, y ∈ Q̄
and |x− y| ≤ δ/n then hd(x, y) ≤ 1+�. Using this in the previously displayed
equation, we find that

m(T (Q) ≤ (1 + �)
X
A∈Qn

|detT 0(xA)|m(A)

= (1 + �)

Z
Q

X
A∈Qn

|detT 0(xA)| 1A(x)dm(x). (21.13)

Since |detT 0(x)| is continuous on the compact set Q̄, it easily follows by uni-
form continuity thatX

A∈Qn

|detT 0(xA)| 1A(x)→ |detT 0(x)| as n→∞

and the convergence in uniform on Q̄. Therefore the dominated convergence
theorem enables us to pass to the limit, n→∞, in Eq. (21.13) to find

m(T (Q)) ≤ (1 + �)

Z
Q

|detT 0(x)| dm(x).

Since � > 0 is arbitrary we are done we have shown that

m(T (Q)) ≤
Z
Q

|detT 0(x)| dm(x).

Step 2.We will now show that Eq. (21.8) is valid when A = U is an open
subset of Ω. For n ∈ N, let

Qn =
©
(0, (δ, δ, . . . , δ)] + 2−nξ : ξ ∈ Zdª

so that Qn is a partition of Rd. Let F1 :=
©
A ∈ Q1 : Ā ⊂ U

ª
and define

Fn ⊂ ∪nk=1Qk inductively as follows. Assuming Fn−1 has been defined, let
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Fig. 21.1. Filling out an open set with half open disjoint cubes. We have drawn
F2.

Fn = Fn−1 ∪
©
A ∈ Qn : Ā ⊂ U and A ∩B = ∅ for all B ∈ Fn−1

ª
= Fn−1 ∪

©
A ∈ Qn : Ā ⊂ U and A * B for any B ∈ Fn−1

ª
Now set F = ∪Fn (see Figure 21.1) and notice that U =

`
A∈F A. Indeed by

construction, the sets in F are pairwise disjoint subset of U so that`A∈F A ⊂
U. If x ∈ U, there exists an n and A ∈ Qn such that x ∈ A and Ā ⊂ U. Then
by construction of F , either A ∈ F or there is a set B ∈ F such that A ⊂ B.
In either case x ∈`A∈F A which shows that U =

`
A∈F A. Therefore by step

1.,

m(T (U)) = m(T (∪A∈FA)) = m((∪A∈FT (A)))
=
X
A∈F

m(T (A)) ≤
X
A∈F

Z
A

|detT 0(x)| dm(x)

=

Z
U

|detT 0(x)| dm(x)

which proves step 2.
Step 3. For general A ∈ BΩ let µ be the measure,

µ(A) :=

Z
A

|detT 0(x)| dm(x).

Then m ◦ T and µ are (σ — finite measures as you should check) on BΩ such
thatm◦T ≤ µ on open sets. By regularity of these measures, we may conclude
that m ◦ T ≤ µ. Indeed, if A ∈ BΩ,

m (T (A)) = inf
U⊂oΩ

m (T (U)) ≤ inf
U⊂oΩ

µ(U) = µ(A) =

Z
A

|detT 0(x)| dm(x).
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21.1 Appendix: Other Approaches to proving Theorem
21.1

Replace f by f ◦ T−1 in Eq. (21.1) givesZ
Ω

f |detT 0|dm =

Z
T (Ω)

f ◦ T−1 dm =

Z
Ω

fd(m ◦ T )

so we are trying to prove d(m◦T ) = |detT 0|dm. Since both sides are measures
it suffices to show that they agree on a multiplicative system which generates
the σ — algebra. So for example it is enough to showm(T (Q)) =

R
Q
|detT 0|dm

when Q is a small rectangle.
As above reduce the problem to the case where T (0) = 0 and T 0(0) = id.

Let �(x) = T (x) − x and set Tt(x) = x + t�(x). (Notice that detT 0 > 0 in
this case so we will not need absolute values.) Then Tt : Q→ Tt(Q) is a C1 —
morphism for Q small and Tt(Q) contains some fixed smaller cube C for all
t. Let f ∈ C1c (C

o), then it suffices to show

d

dt

Z
Q

f ◦ Tt |detT 0t | dm = 0

for thenZ
Q

f ◦ T detT 0dm =

Z
Q

f ◦ T0 detT 00dm =

Z
Q

fdm =

Z
T (Q)

fdm.

So we are left to compute

d

dt

Z
Q

f ◦ Tt detT 0tdm =

Z
Q

½
(∂�f) (Tt) detT

0
t + f ◦ Tt d

dt
detT 0t

¾
dm

=

Z
Q

{(∂�f) (Tt) + f ◦ Tt · tr (T 0t�)}detT 0tdm.

Now let Wt := (T
0
t)
−1 �, then

Wt(f ◦ Tt) =Wt(f ◦ Tt) =
¡
∂T 0tWt

f
¢
(Tt) = (∂�f) (Tt).

Therefore,

d

dt

Z
Q

f ◦ Tt detT 0tdm =

Z
Q

{Wt(f ◦ Tt) + f ◦ Tt · tr (T 0t�)}detT 0tdm.

Let us now do an integration by parts,Z
Q

Wt(f ◦ Tt) detT 0tdm = −
Z
Q

(f ◦ Tt) {Wt detT
0
t +∇ ·Wt detT

0
t} dm
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so that

d

dt

Z
Q

f◦Tt detT 0tdm =

Z
Q

{tr (T 0t�) detT 0t −Wt detT
0
t −∇ ·Wt detT

0
t} f◦Ttdm.

Finally,

Wt detT
0
t = detT

0
t · tr((T 0t)−1WtT

0
t) = detT

0
t · tr((T 0t)−1 T 00t (T 0t)−1 �)

while

∇ ·Wt = trW 0
t = −tr

h
(T 0t)

−1
T 00t (T

0
t)
−1

�
i
+ tr

h
(T 0t)

−1
�0
i
.

so that
Wt detT

0
t +∇ ·Wt detT

0
t = −detT 0t · tr

h
(T 0t)

−1
�0
i

and therefore
d

dt

Z
Q

f ◦ Tt detT 0tdm = 0

as desired.
The problem with this proof is that it requires T or equivalently � to be

twice continuously differentiable. I guess this can be overcome by smoothing
a C1 — � and then removing the smoothing after the result is proved.
Proof. Take care of lower bounds also.
(1) Show m(T (Q)) =

R
Q
(T 0(x))dx =: λ(Q) for all Q ⊂ Ω

(2) Fix Q. Claim mT = λ on BQ = {A ∩Q : A ∈ B}
Proof Equality holds on a k. Rectangles contained in Q. Therefore the

algebra of finite disjoint unison of such of rectangles here as σ({rectangle
contained in Q}. But σ({rectangle ⊂ Q} = BQ.
(3) Since Ω =

∞S
i=1

of such rectangles (even cubes) it follows that mJ(E) =P
mT (E ∩Qi) =

P
λ(E ∩Qi) = λ(E) for all E ∈ BΩ .

Now for general open sets ∪ ⊂ Ω write ∪ =
∞S
j=1

Qj almost disjoint union.

Then

m(T (∪)) ≤ m(
[
j=1

T (Qj)) ≤
X
j

mTQj −
X
j

Z
Qj

|T 0|dm =

Z
∪
|T 0|dm

so m(T (∪)) ≤ R
∪ |T 0|d, for all ∪ ∈ Ω. Let E ⊂ Ω such that E bounded.

Choose ∪nCΩ such that ∪n ↓ and m(E \∪n) ↓ 0. Then m(TE) ≤ m(T∪n) ≤R
∪n |T 0|dm ↓

R
E
|T 0|dm som(T (E)) ≤ R

E
|T 0|dm for all E bounded for general

E ⊂ Ω

m(T (E)) = lim
n→∞m(T (E ∩Bn)) ≤ lim

n→∞

Z
E∩Bn

|T 0|dm =

Z
E

|T 0|dm.

Therefore m(T (E)) ≤ R
E
|T 0|dm for all E ⊂ Ω measurable.
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21.2 Sard’s Theorem

See p. 538 of Taylor and references. Also see Milnor’s topology book. Add
in the Brower Fixed point theorem here as well. Also Spivak’s calculus on
manifolds.

Theorem 21.5. Let U ⊂o Rm, f ∈ C∞(U,Rd) and C := {x ∈ U : rank(f 0(x)) < n}
be the set of critical points of f. Then the critical values, f(C), is a Borel mea-
suralbe subset of Rd of Lebesgue measure 0.

Remark 21.6. This result clearly extends to manifolds.

For simplicity in the proof given below it will be convenient to use the
norm, |x| := maxi |xi| . Recall that if f ∈ C1(U,Rd) and p ∈ U, then

f(p+x) = f(p)+

Z 1

0

f 0(p+tx)xdt = f(p)+f 0(p)x+
Z 1

0

[f 0(p+ tx)− f 0(p)]xdt

so that if

R(p, x) := f(p+ x)− f(p)− f 0(p)x =
Z 1

0

[f 0(p+ tx)− f 0(p)]xdt

we have

|R(p, x)| ≤ |x|
Z 1

0

|f 0(p+ tx)− f 0(p)| dt = |x| �(p, x).

By uniform continuity, it follows for any compact subset K ⊂ U that

sup {|�(p, x)| : p ∈ K and |x| ≤ δ}→ 0 as δ ↓ 0.
Proof. Notice that if x ∈ U \ C, then f 0(x) : Rm → Rn is surjective,

which is an open condition, so that U \C is an open subset of U. This shows
C is relatively closed in U, i.e. there exists C̃ @ Rm such that C = C̃ ∩ U.
Let Kn ⊂ U be compact subsets of U such that Kn ↑ U, then Kn ∩ C ↑ C
and Kn ∩ C = Kn ∩ C̃ is compact for each n. Therefore, f(Kn ∩ C) ↑ f(C)
i.e. f(C) = ∪nf(Kn ∩ C) is a countable union of compact sets and therefore
is Borel measurable. Moreover, since m(f(C)) = limn→∞m(f(Kn ∩ C)), it
suffices to show m(f(K)) = 0 for all compact subsets K ⊂ C.
Case 1. (n ≤ m) Let K = [a, a + γ] be a cube contained in U and by

scaling the domain we may assume γ = (1, 1, 1, . . . , 1). For N ∈ N and j ∈
SN := {0, 1, . . . , N − 1}n let Kj = j/N + [a, a+ γ/N ] so that K = ∪j∈SNKj

with Ko
j ∩ Ko

j0 = ∅ if j 6= j0. Let {Qj : j = 1 . . . ,M} be the collection of
those {Kj : j ∈ SN} which intersect C. For each j, let pj ∈ Qj ∩ C and for
x ∈ Qj − pj we have

f(pj + x) = f(pj) + f 0(pj)x+Rj(x)
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where |Rj(x)| ≤ �j(N)/N and �(N) := maxj �j(N)→ 0 as N →∞. Now

m (f(Qj)) = m (f(pj) + (f
0(pj) +Rj) (Qj − pj))

= m ((f 0(pj) +Rj) (Qj − pj))

= m (Oj (f
0(pj) +Rj) (Qj − pj)) (21.14)

where Oj ∈ SO(n) is chosen so that Ojf
0(pj)Rn ⊂ Rm−1 × {0} . Now

Ojf
0(pj)(Qj − pj) is contained in Γ × {0} where Γ ⊂ Rm−1 is a cube

cetered at 0 ∈ Rm−1 with side length at most 2 |f 0(pj)| /N ≤ 2M/N where
M = maxp∈K |f 0(p)| . It now follows that Oj (f

0(pj) +Rj) (Qj − pj) is con-
tained the set of all points within �(N)/N of Γ × {0} and in particular

Oj (f
0(pj) +Rj) (Qj − pj) ⊂ (1 + �(N)/N)Γ × [�(N)/N, �(N)/N ].

From this inclusion and Eq. (21.14) it follows that

m (f(Qj)) ≤
·
2
M

N
(1 + �(N)/N)

¸m−1
2�(N)/N

= 2mMm−1 [(1 + �(N)/N)]
m−1

�(N)
1

Nm

and therefore,

m (f(C ∩K)) ≤
X
j

m (f(Qj)) ≤ Nn2mMm−1 [(1 + �(N)/N)]m−1 �(N)
1

Nm

= 2nMn−1 [(1 + �(N)/N)]n−1 �(N)
1

Nm−n → 0 as N →∞

since m ≥ n. This proves the easy case since we may write U as a countable
union of cubes K as above.
Remark. The case (m < n) also follows brom the case m = n as follows.

When m < n, C = U and we must show m(f(U)) = 0. Letting F : U ×
Rn−m → Rn be the map F (x, y) = f(x). Then F 0(x, y)(v,w) = f 0(x)v, and
hence CF := U ×Rn−m. So if the assetion holds for m = n we have

m(f(U)) = m(F (U ×Rn−m)) = 0.
Case 2. (m > n) This is the hard case and the case we will need in the

co-area formula to be proved later. Here I will follow the proof in Milnor. Let

Ci := {x ∈ U : ∂αf(x) = 0 when |α| ≤ i}
so that C ⊃ C1 ⊃ C2 ⊃ C3 ⊃ . . . . The proof is by induction on n and goes by
the following steps:

1. m(f(C \ C1)) = 0.
2. m(f(Ci \ Ci+1)) = 0 for all i ≥ 1.



508 21 The Change of Variable Theorem

3. m(f(Ci)) = 0 for all i sufficiently large.

Step 1. Ifm = 1, there is nothing to prove since C = C1 so we may assume
m ≥ 2. Suppose that x ∈ C \ C1, then f 0(p) 6= 0 and so by reordering the
components of x and f(p) if necessary we may assume that ∂f1(p)/∂x1 6= 0.
The map h(x) := (f1(x), x2, . . . , xn) has differential

h0(p) =


∂f1(p)/∂x1 ∂f1(p)/∂x2 . . . ∂f1(p)/∂xn

0 1 0 0
...

...
. . .

...
0 0 0 1


which is not singular. So by the implicit function theorem, there exists there
exists V ∈ τp such that h : V → h(V ) ∈ τh(p) is a diffeomorphism and in
particular ∂f1(x)/∂x1 6= 0 for x ∈ V and hence V ⊂ U \ C1. Consider the
map g := f ◦ h−1 : V 0 := h(V )→ Rm, which satisfies

(f1(x), f2(x), . . . , fm(x)) = f(x) = g(h(x)) = g((f1(x), x2, . . . , xn))

which implies g(t, y) = (t, u(t, y)) for (t, y) ∈ V 0 := h(V ) ∈ τh(p), see Figure
21.2 below where p = x̄ and m = p. Since

Fig. 21.2. Making a change of variable so as to apply induction.

g0(t, y) =
·

1 0
∂tu(t, y) ∂yu(t, y)

¸
it follows that (t, y) is a critical point of g iff y ∈ C0t — the set of critical points
of y → u(t, y). Since h is a diffeomorphism we have C0 := h(C ∩ V ) are the
critical points of g in V 0 and

f(C ∩ V ) = g(C 0) = ∪t [{t} × ut(C
0
t)] .
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By the induction hypothesis, mm−1(ut(C0t)) = 0 for all t, and therefore by
Fubini’s theorem,

m(f(C ∩ V )) =
Z
R
mm−1(ut(C 0t))1V 0

t 6=∅dt = 0.

Since C \C1 may be covered by a countable collection of open sets V as above,
it follows that m(f(C \ C1)) = 0.
Step 2. Suppose that p ∈ Ck\Ck+1, then there is an α such that |α| = k+1

such that ∂αf(p) = 0 while ∂βf(p) = 0 for all |β| ≤ k. Again by permuting
coordinates we may assume that α1 6= 0 and ∂αf1(p) 6= 0. Let w(x) :=
∂α−e1f1(x), then w(p) = 0 while ∂1w(p) 6= 0. So again the implicit function
theorem there exists V ∈ τp such that h(x) := (w (x) , x2, . . . , xn) maps V →
V 0 := h(V ) ∈ τh(p) in diffeomorphic way and in particular ∂1w(x) 6= 0 on
V so that V ⊂ U \ Ck+1. As before, let g := f ◦ h−1 and notice that C0k :=
h(Ck ∩ V ) ⊂ {0} ×Rn−1 and

f(Ck ∩ V ) = g(C 0k) = ḡ (C 0k)

where ḡ := g|({0}×Rn−1)∩V 0 . Clearly C0k is contained in the critical points of ḡ,
and therefore, by induction

0 = m(ḡ(C 0k)) = m(f(Ck ∩ V )).
Since Ck\Ck+1 is covered by a countable collection of such open sets, it follows
that

m(f(Ck \ Ck+1)) = 0 for all k ≥ 1.
Step 3. Supppose that Q is a closed cube with edge length δ contained in

U and k > n/m− 1.We will show m(f(Q∩Ck)) = 0 and since Q is arbitrary
it will forllow that m(f(Ck)) = 0 as desired.
By Taylor’s theorem with (integral) remainder, it follows for x ∈ Q ∩ Ck

and h such that x+ h ∈ Q that

f(x+ h) = f(x) +R(x, h)

where
|R(x, h)| ≤ c khkk+1

where c = c(Q, k). Now subdivide Q into rn cubes of edge size δ/r and let
Q0 be one of the cubes in this subdivision such that Q0 ∩ Ck 6= ∅ and let
x ∈ Q0 ∩ Ck. It then follows that f(Q0) is contained in a cube centered at
f(x) ∈ Rm with side length at most 2c (δ/r)k+1 and hence volume at most
(2c)

m
(δ/r)

m(k+1)
. Therefore, f(Q∩Ck) is contained in the union of at most

rn cubes of volume (2c)m (δ/r)m(k+1) and hence meach

m (f(Q ∩ Ck)) ≤ (2c)m (δ/r)m(k+1) rn = (2c)m δm(k+1)rn−m(k+1) → 0 as r ↑ ∞
provided that n−m(k + 1) < 0, i.e. provided k > n/m− 1.





22

Surfaces, Surface Integrals and Integration by
Parts

Definition 22.1. A subsetM ⊂ Rn is a n−1 dimensional Ck-Hypersurface
if for all x0 ∈ M there exists � > 0 an open set 0 ∈ D ⊂ Rn and a Ck-
diffeomorphism ψ : D→ B(x0, �) such that ψ(D ∩ {xn = 0}) = B(x0, �) ∩M.
See Figure 22.1 below.

Fig. 22.1. An embedded submanifold of R2.

Example 22.2. Suppose V ⊂0 Rn−1 and g : V
Ck−→ R. Then M := Γ (g) =

{(y, g(y)) : y ∈ V } is a Ck hypersurface. To verify this assertion, given x0 =
(y0, g(y0)) ∈ Γ (g) define

ψ(y, z) := (y + y0, g(y + y0)− z).
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Then ψ : {V − y0)×R Ck−→ V × R diffeomorphism
ψ((V − y0)× {0}) = {(y + y0, g(y + y0)) : y ∈ V − y0} = Γ (g).

Proposition 22.3 (Parametrized Surfaces). Let k ≥ 1, D ⊂0 Rn−1 and
Σ ∈ Ck(D,Rn) satisfy

1. Σ : D→M := Σ(D) is a homeomorphism and
2. Σ0(y) : Rn−1 → Rn is injective for all y ∈ D. (We will call M a Ck —
parametrized surface and Σ : D→M a parametrization of M.)

Then M is a Ck-hypersurface in Rn. Moreover if f ∈ C(W ⊂0 Rd,Rn) is
a continuous function such that f(W ) ⊂M, then f ∈ Ck(W,Rn) iff Σ−1◦f ∈
Ck(U,D).

Proof. Let y0 ∈ D and x0 = Σ(y0) and n0 be a normal vector to M at
x0, i.e. n0 ⊥ Ran (Σ0(y0)) , and let

ψ(t, y) := Σ(y0 + y) + t n0 for t ∈ R and y ∈ D − y0,

see Figure 22.2 below. Since Dyψ(0, 0) = Σ0(y0) and ∂ψ
∂t (0, 0) = n0 /∈

Fig. 22.2. Showing a parametrized surface is an embedded hyper-surface.

Ran (Σ0(y0)) , ψ0(0, 0) is invertible. so by the inverse function theorem there
exists a neighborhood V of (0, 0) ∈ Rn such that ψ|V : V → Rn is a Ck —
diffeomorphism.
Choose an � > 0 such that B(x0, �)∩M ⊂ Σ(V ∩{t = 0}) and B(x0, �) ⊂

ψ(V ). Then set U := ψ−1(B(x0, �)). One finds ψ|U : U → B(x0, �) has the
desired properties.
Now suppose f ∈ C(W ⊂0 Rd,Rn) such that f(W ) ⊂M, a ∈W and x0 =

f(a) ∈M. By shrinkingW if necessary we may assume f(W ) ⊂ B(x0, �)where
B(x0, �) is the ball used previously. (This is where we used the continuity of
f.) Then

Σ−1 ◦ f = π ◦ ψ−1 ◦ f
where π is projection onto {t = 0}. Form this identity it clearly follows Σ−1◦f
is Ck if f is Ck. The converse is easier since if Σ−1 ◦ f is Ck then f =
Σ ◦ (Σ−1 ◦ f) is Ck as well.
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22.1 Surface Integrals

Definition 22.4. Suppose Σ : D ⊂0 Rn−1 →M ⊂ Rn is a C1- parameterized
hypersurface of Rn and f ∈ Cc(M,R). Then the surface integral of f over M,R
M

f dσ, is defined by

Z
M

f dσ =

Z
D

f ◦Σ(y)
¯̄̄̄
det[

∂Σ(y)

∂y1
|, . . . , ∂Σ(y)

∂yn−1
|n(y)]

¯̄̄̄
dy

=

Z
D

f ◦Σ(y) |det[Σ0(y)e1| . . . |Σ0(y)en−1|n(y)]| dy

where n(y) ∈ Rn is a unit normal vector perpendicular of ran(Σ0(y)) for each
y ∈ D. We will abbreviate this formula by writing

dσ =

¯̄̄̄
det[

∂Σ(y)

∂y1
|, . . . , ∂Σ(y)

∂yn−1
|n(y)]

¯̄̄̄
dy, (22.1)

see Figure 22.3 below for the motivation.

Fig. 22.3. The approximate area spanned by Σ([y, y + dy]) should be equal to
the area spaced by ∂Σ(y)

∂y1
dy1 and

∂Σ(y)
∂y2

dy2 which is equal to the volume of the

parallelepiped spanned by ∂Σ(y)
∂y1

dy1,
∂Σ(y)
∂y2

dy2 and n(Σ(y)) and hence the formula
in Eq. (22.1).

Remark 22.5. Let A = A(y) := [Σ0(y)e1, . . . , Σ0(y)en−1, n(y)]. Then
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AtrA =


∂1Σ

t

∂2Σ
t

...
∂n−1Σt

nt

 [∂1Σ| . . . |∂n−1Σ|n]

=


∂1Σ · ∂1Σ ∂1Σ · ∂2Σ . . . ∂1Σ · ∂n−1Σ 0
∂2Σ · ∂1Σ ∂2Σ · ∂2Σ . . . ∂2Σ · ∂n−1Σ 0

...
...

...
...

...
∂n−1Σ · ∂1Σ ∂n−1Σ · ∂2Σ . . . ∂n−1Σ · ∂n−1Σ 0

0 0 . . . 0 1


and therefore¯̄̄̄

det[
∂Σ(y)

∂y1
|, . . . , ∂Σ(y)

∂yn−1
|n(y)]

¯̄̄̄
= |det(A)| dy =

p
det (AtrA)dy

=

r
det

h
(∂iΣ · ∂jΣ)n−1i,j=1

i
=

r
det

h
(Σ0)trΣ0

i
.

This implies dσ = ρΣ(y)dy or more precisely thatZ
M

f dσ =

Z
D

f ◦Σ(y)ρΣ(y)dy

where

ρΣ(y) :=

r
det

h
(∂iΣ · ∂jΣ)n−1i,j=1

i
=

r
det

h
(Σ0)trΣ0

i
.

The next lemma shows that
R
M

f dσ is well defined, i.e. independent of how

M is parametrized.

Example 22.6. Suppose V ⊂0 Rn−1 and g : V
Ck−→ R and M := Γ (g) =

{(y, g(y)) : y ∈ V } as in Example 22.2. We now compute dσ in the para-
metrization Σ : V → M defined by Σ(y) = (y, g(y)). To simplify notation,
let

∇g(y) := (∂1g(y), . . . , ∂n−1g(y)) .
As is standard from multivariable calculus (and is easily verified),

n(y) :=
(∇g(y),−1)q
1 + |∇g(y)|2

is a normal vector toM at Σ(y), i.e. n(y)·∂kΣ(y) = 0 for all k = 1, 2 . . . , n−1.
Therefore,
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dσ = |det [∂1Σ| . . . |∂n−1Σ|n]| dy

=
1q

1 + |∇g(y)|2
¯̄̄̄
det

·
In−1 (∇g)tr
∇g −1

¸¯̄̄̄
dy

=
1q

1 + |∇g(y)|2
¯̄̄̄
det

·
In−1 0

∇g −1− |∇g|2
¸¯̄̄̄
dy

=
1q

1 + |∇g(y)|2
³
1 + |∇g(y)|2

´
dy =

q
1 + |∇g(y)|2dy.

Hence if g :M → R, we haveZ
M

gdσ =

Z
V

g(Σ(y))

q
1 + |∇g(y)|2dy.

Example 22.7. Keeping the same notation as in Example 22.6, but now taking

V := B(0, r) ⊂ Rn−1 and g(y) :=

q
r2 − |y|2. In this case M = Sn−1+ , the

upper-hemisphere of Sn−1, ∇g(y) = −y/g(y),

dσ =

q
1 + |y|2 /g2(y)dy = r

g(y)
dy

and so Z
Sn−1+

gdσ =

Z
|y|<r

g(y,

q
r2 − |y|2) rq

r2 − |y|2
dy.

A similar computation shows, with Sn−1− being the lower hemisphere, thatZ
Sn−1−

gdσ =

Z
|y|<r

g(y,−
q
r2 − |y|2) rq

r2 − |y|2
dy.

Lemma 22.8. If eΣ : eD→M is another Ck — parametrization of M, thenZ
D

f ◦Σ(y)ρΣ(y)dy =
Z
eD
f ◦ eΣ(y)ρΣ̃(y)dy.

Proof. By Proposition 22.3, φ := Σ−1 ◦ eΣ : D̃ → D is a Ck — diffeo-
morphism. By the change of variables theorem on Rn−1 with y = φ(ỹ) (usingeΣ = Σ ◦ φ, see Figure 22.4) we find
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eD
f ◦ eΣ(ỹ)ρΣ̃(ỹ)dỹ = Z

eD
f ◦ eΣrdet³ eΣ0

´tr eΣ0dỹ

=

Z
eD
f ◦Σ ◦ φ

q
det (Σ ◦ φ)0tr (Σ ◦ φ)0dỹ

=

Z
eD
f ◦Σ ◦ φ

r
det

h
(Σ0(φ)φ0)trΣ0(φ)φ0

i
dỹ

=

Z
eD
f ◦Σ ◦ φ

q
det[φ0tr [Σ0(φ)trΣ0(φ) ]φ0dỹ

=

Z
eD (f ◦Σ ◦ φ) ·

³√
detΣ0trΣ0

´
◦ φ · |detφ0| dỹ

=

Z
D

f ◦Σ
√
detΣ0trΣ0dy.

Fig. 22.4. Verifying surface integrals are independent of parametrization.

Definition 22.9. Let M be a C1-embedded hypersurface and f ∈ Cc(M).
Then we define the surface integral of f over M asZ

M

f dσ =
nX
i=1

Z
Mi

φif dσ

where φi ∈ C1c (M, [0, 1]) are chosen so that
P

iϕi ≤ 1 with equality on supp(f)
and the supp(φif) ⊂ Mi ⊂ M where Mi is a subregion of M which may be
viewed as a parametrized surface.
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Remark 22.10. The integral
R
M

f dσ is well defined for if ψj ∈ C1c (M, [0, 1]) is

another sequence satisfying the properties of {φi} with supp(ψj) ⊂ M 0
j ⊂ M

then (using Lemma 22.8 implicitly)X
i

Z
Mi

φif dσ =
X
i

Z
Mi

X
j

ψjφif dσ =
X
ij

Z
Mi∩M 0

j

ψjφif dσ

with a similar computation showingX
j

Z
M 0
j

ψif dσ =
X
ji

Z
Mi∩M 0

j

ψjφif dσ =
X
ij

Z
Mi∩M 0

j

ψjφif dσ.

Remark 22.11. By the Reisz theorem, there exists a unique Radon measure σ
on M such that Z

M

f dσ =

Z
M

f dσ.

This σ is called surface measure on M.

Lemma 22.12 (Surface Measure). LetM be a C2 — embedded hypersurface
in Rn and B ⊂M be a measurable set such that B̄ is compact and contained
inside Σ(D) where Σ : D→M ⊂ Rn is a parametrization. Then

σ(B) = lim
�↓0

m(B�) =
d

d�
|0+m(B�)

where
B� := {x+ t n(x) : x ∈ B, 0 ≤ t ≤ �}

and n(x) is a unit normal to M at x ∈M, see Figure 22.5.

Fig. 22.5. Computing the surface area of B as the volume of an � - fattened neigh-
borhood of B.
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Proof. Let A := Σ−1(B) and ν(y) := n(Σ(y)) so that ν ∈ Ck−1(D,Rn)
if Σ ∈ Ck(D,Rn). Define

ψ(y, t) = Σ(y) + tn(Σ(y)) = Σ(y) + tν(y)

so that B� = ψ(A× [0, �]). Hence by the change of variables formula

m(B�) =

Z
A×[0,�]

|detψ0(y, t)|dy dt =

Z �

0

dt

Z
A

dy|detψ0(y, t)| (22.2)

so that by the fundamental theorem of calculus,

d

d�
|0+m(B�) =

d

d�
|0+
Z �

0

dt

Z
A

dy|detψ0(y, t)| =
Z
A

|detψ0(y, 0)|dy.

But
|detψ0(y, 0)| = |det[Σ0(y)|n(Σ(y))]| = ρΣ(y)

which shows

d

d�
|0+m(B�) =

Z
A

ρΣ(y)dy =

Z
D

1B(Σ(y))ρΣ(y)dy =: σ(B).

Example 22.13. Let Σ = rSn−1 be the sphere of radius r > 0 contained in Rn
and for B ⊂ Σ and α > 0 let

Bα := {tω : ω ∈ B and 0 ≤ t ≤ α} = αB1.

Assuming N(ω) = ω/r is the outward pointing normal to rSn−1, we have

B� = B(1+�/r) \B1 = [(1 + �/r)B1] \B1
and hence

m(B�) = m ([(1 + �/r)B1] \B1) = m ([(1 + �/r)B1])−m(B1)

= [(1 + �/r)n − 1]m(B1).

Therefore,

σ(B) =
d

d�
|0 [(1 + �/r)n − 1]m(B1) = n

r
m(B1)

= nrn−1m
¡
r−1B1

¢
= rn−1σ(r−1B),

i.e.
σ(B) =

n

r
m(B1) = nrn−1m

¡
r−1B1

¢
= rn−1σ(r−1B).
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Fig. 22.6. Computing the area of region B on the surface of the sphere of radiur r.

Theorem 22.14. If f : Rn → [0,∞] is a (BRn ,B)—measurable function thenZ
Rn

f(x)dm(x) =

Z
[0,∞)×Sn−1

f(r ω) rn−1drdσ(ω). (22.3)

In particular if f : R+ → R+ is measurable thenZ
Rn

f(|x|)dx =
Z ∞
0

f(r)dV (r) (22.4)

where V (r) = m (B(0, r)) = rnm (B(0, 1)) = n−1σ
¡
Sn−1

¢
rn.

Proof. Let B ⊂ Sn−1, 0 < a < b and let f(x) = 1Bb\Ba(x), see Figure
22.7. Then

Fig. 22.7. The region Bb \Ba.
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[0,∞)×Sn−1

f(r ω) rn−1drdσ(ω) =
Z

[0,∞)×Sn−1
1B(ω)1[a,b](r) r

n−1drdσ(ω)

= σ(B)

Z b

a

rn−1dr = n−1σ(B) (bn − an)

= m(B1) (b
n − an) = m (Bb \Ba)

=

Z
Rn

f(x)dm(x).

Since sets of the form Bb\Ba generate BRn and are closed under intersections,
this suffices to prove the theorem.
Alternatively one may show that any f ∈ Cc (Rn) may be uniformly ap-

proximated by linear combinations of characteristic functions of the form

1Bb\Ba . Indeed, let S
n−1 =

KS
i=1

Bi be a partition of Sn−1 with Bi small and

choose wi ∈ Bi. Let 0 < r1 < r2 < r3 < · · · < rn = R < ∞. Assume
supp(f) ⊂ B(0, R). Then {(Bi)rj+1 \ (Bi)rj}i,j partitions Rn into small re-
gions. ThereforeZ

Rn
f(x)dx ∼=

X
f(rjωi)m((Bi)rj+1 \ (Bi)rj )

=
X

f
¡
rjωi)(r

n
j+1 − rnj

¢
m((Bi)1)

=
X

f(rjωi)

Z rj+1

rj

rn−1dr nm((Bi)1)

=
XZ rj+1

rj

f(rjωi)r
n−1dr σ(Bi)

∼=
X
ij

Z rj+1

rj

 Z
Sn−1

f(rjω)dσ(ω)

 rn−1dr

∼=
Z ∞
0

 Z
Sn−1

f(rω)dσ(ω)

 rn−1dr.

Eq. (22.4) is a simple special case of Eq. (22.3). It can also be proved
directly as follows. Suppose first f ∈ C1c ([0,∞)) thenZ

Rn

f(|x|)dx = −
Z
Rn

dx

Z ∞
|x|

drf 0(r) = −
Z
Rn

dx

Z
R
1|x|≤rf 0(r)dr

= −
Z ∞
0

V (r)f 0(r)dr =
Z ∞
0

V 0(r)f(r)dr.

The result now extends to general f by a density argument.
We are now going to work out some integrals using Eq. (22.3). The first

we leave as an exercise.
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Exercise 22.15. Use the results of Example 22.7 and Theorem 22.14 to show,

σ(Sn−1) = 2σ(Sn−2)
Z 1

0

1p
1− ρ2

ρn−2dρ.

The result in Exercise 22.15 may be used to compute the volume of spheres
in any dimension. This method will be left to the reader. We will do this in
another way. The first step will be to directly compute the following Gaussian
integrals. The result will also be needed for later purposes.

Lemma 22.16. Let a > 0 and

In(a) :=

Z
Rn

e−a|x|
2

dm(x). (22.5)

Then In(a) = (π/a)
n/2.

Proof. By Tonelli’s theorem and induction,

In(a) =

Z
Rn−1×R

e−a|y|
2

e−at
2

mn−1(dy) dt

= In−1(a)I1(a) = In1 (a). (22.6)

So it suffices to compute:

I2(a) =

Z
R2

e−a|x|
2

dm(x) =

Z
R2\{0}

e−a(x
2
1+x

2
2)dx1dx2.

We now make the change of variables,

x1 = r cos θ and x2 = r sin θ for 0 < r <∞ and 0 < θ < 2π.

In vector form this transform is

x = T (r, θ) =

µ
r cos θ
r sin θ

¶
and the differential and the Jacobian determinant are given by

T 0(r, θ) =
µ
cos θ −r sin θ
sin θ r cos θ

¶
and detT 0(r, θ) = r cos2 θ + r sin2 θ = r.

Notice that T : (0,∞)×(0, 2π)→ R2\c where c is the ray, c := {(x, 0) : x ≥ 0}
which is am2 — null set. Hence by Tonelli’s theorem and the change of variable
theorem, for any Borel measurable function f : R2 → [0,∞] we haveZ

R2
f(x)dx =

Z 2π

0

Z ∞
0

f(r cos θ, r sin θ) rdrdθ.
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In particular,

I2(a) =

Z ∞
0

dr r

Z 2π

0

dθ e−ar
2

= 2π

Z ∞
0

re−ar
2

dr

= 2π lim
M→∞

Z M

0

re−ar
2

dr = 2π lim
M→∞

e−ar
2

−2a
Z M

0

=
2π

2a
= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (22.6).

Corollary 22.17. Let Sn−1 ⊂ Rn be the unit sphere in Rn and

Γ (x) :=

Z ∞
0

ux−1e−udu for x > 0

be the gamma function. Then

1. The surface area σ(Sn−1) of the unit sphere Sn−1 ⊂ Rn is

σ(Sn−1) =
2πn/2

Γ (n/2)
. (22.7)

2. The Γ — function satisfies
a) Γ (1/2) =

√
π, Γ (1) = 1 and Γ (x+ 1) = xΓ (x) for x > 0.

b) For n ∈ N,

Γ (n+ 1) = n! and Γ (n+ 1/2) =
(2n− 1)!!

2n
·√π. (22.8)

3. For n ∈ N,

σ(S2n+1) =
2πn+1

n!
and σ(S2n) =

2 (2π)n

(2n− 1)!! . (22.9)

Proof. Let In be as in Lemma 22.16. Using Theorem 22.14 we may alter-
natively compute πn/2 = In(1) as

πn/2 = In(1) =

Z ∞
0

dr rn−1e−r
2

Z
Sn−1

dσ = σ(Sn−1)
Z ∞
0

rn−1e−r
2

dr.

We simplify this last integral by making the change of variables u = r2 so
that r = u1/2 and dr = 1

2u
−1/2du. The result isZ ∞

0

rn−1e−r
2

dr =

Z ∞
0

u
n−1
2 e−u

1

2
u−1/2du

=
1

2

Z ∞
0

u
n
2−1e−udu =

1

2
Γ (n/2). (22.10)

Collecting these observations implies that
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πn/2 = In(1) =
1

2
σ(Sn−1)Γ (n/2)

which proves Eq. (22.7).
The computation of Γ (1) is easy and is left to the reader. By Eq. (22.10),

Γ (1/2) = 2

Z ∞
0

e−r
2

dr =

Z ∞
−∞

e−r
2

dr

= I1(1) =
√
π.

The relation, Γ (x+ 1) = xΓ (x) is the consequence of integration by parts:

Γ (x+ 1) =

Z ∞
0

e−u ux+1
du

u
=

Z ∞
0

ux
µ
− d

du
e−u

¶
du

= x

Z ∞
0

ux−1 e−u du = x Γ (x).

Eq. (22.8) follows by induction from the relations just proved. Eq. (22.9) is a
consequence of items 1. and 2. as follows:

σ(S2n+1) =
2π(2n+2)/2

Γ ((2n+ 2)/2)
=

2πn+1

Γ (n+ 1)
=
2πn+1

n!

and

σ(S2n) =
2π(2n+1)/2

Γ ((2n+ 1)/2)
=

2πn+1/2

Γ (n+ 1/2)
=

2πn+1/2

(2n−1)!!
2n ·√π

=
2 (2π)n

(2n− 1)!! .

22.2 More spherical coordinates

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r, θ) ∈ (0,∞) ×
[0, 2π) so that µ

x1
x2

¶
=

µ
r cos θ
r sin θ

¶
= ψ2(θ, r).

For n = 3 we let x3 = r cosφ1 and thenµ
x1
x2

¶
= ψ2(θ, r sinφ1),

as can be seen from Figure 22.8, so that
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Fig. 22.8. Setting up polar coordinates in two and three dimensions.

x1
x2
x3

 =

µ
ψ2(θ, r sinφ1)

r cosφ1

¶
=

 r sinφ1 cos θ
r sinφ1 sin θ
r cosφ1

 =: ψ3(θ, φ1, r, ).

We continue to work inductively this way to define
x1
...
xn
xn+1

 =

µ
ψn(θ, φ1, . . . , φn−2, r sinφn−1, )

r cosφn−1

¶
= ψn+1(θ, φ1, . . . , φn−2, φn−1, r).

So for example,

x1 = r sinφ2 sinφ1 cos θ

x2 = r sinφ2 sinφ1 sin θ

x3 = r sinφ2 cosφ1

x4 = r cosφ2

and more generally,

x1 = r sinφn−2 . . . sinφ2 sinφ1 cos θ
x2 = r sinφn−2 . . . sinφ2 sinφ1 sin θ
x3 = r sinφn−2 . . . sinφ2 cosφ1
...

xn−2 = r sinφn−2 sinφn−3 cosφn−4
xn−1 = r sinφn−2 cosφn−3
xn = r cosφn−2. (22.11)

By the change of variables formula,
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Rn

f(x)dm(x)

=

Z ∞
0

dr

Z
0≤φi≤π,0≤θ≤2π

dφ1 . . . dφn−2dθ∆n(θ, φ1, . . . , φn−2, r)f(ψn(θ, φ1, . . . , φn−2, r))

(22.12)

where
∆n(θ, φ1, . . . , φn−2, r) := |detψ0n(θ, φ1, . . . , φn−2, r)| .

Proposition 22.18. The Jacobian, ∆n is given by

∆n(θ, φ1, . . . , φn−2, r) = rn−1 sinn−2 φn−2 . . . sin2 φ2 sinφ1. (22.13)

If f is a function on rSn−1 — the sphere of radius r centered at 0 inside of
Rn, thenZ
rSn−1

f(x)dσ(x) = rn−1
Z
Sn−1

f(rω)dσ(ω)

=

Z
0≤φi≤π,0≤θ≤2π

f(ψn(θ, φ1, . . . , φn−2, r))∆n(θ, φ1, . . . , φn−2, r)dφ1 . . . dφn−2dθ

(22.14)

Proof. We are going to compute ∆n inductively. Letting ρ := r sinφn−1
and writing ∂ψn

∂ξ for ∂ψn
∂ξ (θ, φ1, . . . , φn−2, ρ) we have

∆n+1(θ,φ1, . . . , φn−2, φn−1, r)

=

¯̄̄̄· ∂ψn
∂θ

∂ψn
∂φ1

0 0

. . . ∂ψn
∂φn−2

. . . 0

∂ψn
∂ρ r cosφn−1
−r sinφn−1

∂ψn
∂ρ sinφn−1
cosφn−1

¸¯̄̄̄
= r

¡
cos2 φn−1 + sin2 φn−1

¢
∆n(, θ, φ1, . . . , φn−2, ρ)

= r∆n(θ, φ1, . . . , φn−2, r sinφn−1),

i.e.

∆n+1(θ, φ1, . . . , φn−2, φn−1, r) = r∆n(θ, φ1, . . . , φn−2, r sinφn−1). (22.15)

To arrive at this result we have expanded the determinant along the bottom
row.
Staring with the well known and easy to compute fact that ∆2(θ, r) = r,

Eq. (22.15) implies

∆3(θ, φ1, r) = r∆2(θ, r sinφ1) = r2 sinφ1

∆4(θ, φ1, φ2, r) = r∆3(θ, φ1, r sinφ2) = r3 sin2 φ2 sinφ1

...

∆n(θ, φ1, . . . , φn−2, r) = rn−1 sinn−2 φn−2 . . . sin2 φ2 sinφ1
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which proves Eq. (22.13). Eq. (22.14) now follows from Eqs. (22.3), (22.12)
and (22.13).
As a simple application, Eq. (22.14) implies

σ(Sn−1) =
Z
0≤φi≤π,0≤θ≤2π

sinn−2 φn−2 . . . sin2 φ2 sinφ1dφ1 . . . dφn−2dθ

= 2π
n−2Y
k=1

γk = σ(Sn−2)γn−2 (22.16)

where γk :=
R π
0
sink φdφ. If k ≥ 1, we have by integration by parts that,

γk =

Z π

0

sink φdφ = −
Z π

0

sink−1 φ d cosφ = 2δk,1 + (k − 1)
Z π

0

sink−2 φ cos2 φdφ

= 2δk,1 + (k − 1)
Z π

0

sink−2 φ
¡
1− sin2 φ¢ dφ = 2δk,1 + (k − 1) [γk−2 − γk]

and hence γk satisfies γ0 = π, γ1 = 2 and the recursion relation

γk =
k − 1
k

γk−2 for k ≥ 2.

Hence we may conclude

γ0 = π, γ1 = 2, γ2 =
1

2
π, γ3 =

2

3
2, γ4 =

3

4

1

2
π, γ5 =

4

5

2

3
2, γ6 =

5

6

3

4

1

2
π

and more generally by induction that

γ2k = π
(2k − 1)!!
(2k)!!

and γ2k+1 = 2
(2k)!!

(2k + 1)!!
.

Indeed,

γ2(k+1)+1 =
2k + 2

2k + 3
γ2k+1 =

2k + 2

2k + 3
2
(2k)!!

(2k + 1)!!
= 2

[2(k + 1)]!!

(2(k + 1) + 1)!!

and

γ2(k+1) =
2k + 1

2k + 1
γ2k =

2k + 1

2k + 2
π
(2k − 1)!!
(2k)!!

= π
(2k + 1)!!

(2k + 2)!!
.

The recursion relation in Eq. (22.16) may be written as

σ(Sn) = σ
¡
Sn−1

¢
γn−1 (22.17)

which combined with σ
¡
S1
¢
= 2π implies
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σ
¡
S1
¢
= 2π,

σ(S2) = 2π · γ1 = 2π · 2,

σ(S3) = 2π · 2 · γ2 = 2π · 2 · 1
2
π =

22π2

2!!
,

σ(S4) =
22π2

2!!
· γ3 = 22π2

2!!
· 22
3
=
23π2

3!!

σ(S5) = 2π · 2 · 1
2
π · 2
3
2 · 3
4

1

2
π =

23π3

4!!
,

σ(S6) = 2π · 2 · 1
2
π · 2
3
2 · 3
4

1

2
π · 4
5

2

3
2 =

24π3

5!!

and more generally that

σ(S2n) =
2 (2π)n

(2n− 1)!! and σ(S2n+1) =
(2π)n+1

(2n)!!
(22.18)

which is verified inductively using Eq. (22.17). Indeed,

σ(S2n+1) = σ(S2n)γ2n =
2 (2π)

n

(2n− 1)!!π
(2n− 1)!!
(2n)!!

=
(2π)

n+1

(2n)!!

and

σ(S(n+1)) = σ(S2n+2) = σ(S2n+1)γ2n+1 =
(2π)

n+1

(2n)!!
2
(2n)!!

(2n+ 1)!!
=
2 (2π)

n+1

(2n+ 1)!!
.

Using
(2n)!! = 2n (2(n− 1)) . . . (2 · 1) = 2nn!

we may write σ(S2n+1) = 2πn+1

n! which shows that Eqs. (22.9) and (22.18) are
in agreement. We may also write the formula in Eq. (22.18) as

σ(Sn) =


2(2π)n/2

(n−1)!! for n even
(2π)

n+1
2

(n−1)!! for n odd.

22.3 n — dimensional manifolds with boundaries

Definition 22.19. A set Ω ⊂ Rn is said to be a Ck — manifold with
boundary if for each x0 ∈ ∂Ω := Ω \Ωo (here Ωo is the interior of Ω) there
exists � > 0 an open set 0 ∈ D ⊂ Rn and a Ck-diffeomorphism ψ : D →
B(x0, �) such that ψ(D ∩ {yn ≥ 0}) = B(x0, �) ∩ Ω. See Figure 22.9 below.
We call ∂Ω the manifold boundary of Ω.
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Fig. 22.9. Flattening out a neighborhood of a boundary point.

Remarks 22.20 1. In Definition 22.19 we have defined ∂Ω = Ω \Ωo which
is not the topological boundary of Ω, defined by bd(Ω) := Ω̄ \Ω0. Clearly
we always have ∂Ω ⊂ bd(Ω) with equality iff Ω is closed.

2. It is easily checked that if Ω ⊂ Rn is a Ck — manifold with boundary, then
∂Ω is a Ck — hypersurface in Rn.

The reader is left to verify the following examples.

Example 22.21. Let Hn = {x ∈ Rn : xn > 0}.
1. H̄n is a C∞ — manifold with boundary and

∂H̄n = bd
¡
H̄n
¢
= Rn−1 × {0}.

2. Ω = B(ξ, r) is a C∞ — manifold with boundary and ∂Ω = bd (B(ξ, r)), as
the reader should verify. See Exercise 22.23 for a general result containing
this statement.

3. Let U be the open unit ball in Rn−1, then Ω = Hn ∪ (U ×{0}) is a C∞ —
manifold with boundary and ∂Ω = U × {0} while bd(Ω) = Rn−1 × {0}.

4. Now let Ω = Hn∪(Ū×{0}), then Ω is not a C1 — manifold with boundary.
The bad points are bd(U)× {0} .

5. Suppose V is an open subset of Rn−1 and g : V → R is a Ck — function
and set

Ω := {(y, z) ∈ V ×R ⊂ Rn : z ≥ g(y)} ,
then Ω is a Ck — manifold with boundary and ∂Ω = Γ (g) — the graph of
g. Again the reader should check this statement.
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6. Let
Ω = [(0, 1)× (0, 1)] ∪ [(−1, 0)× (−1, 0)] ∪ [(−1, 1)× {0}]

in which case

Ωo = [(0, 1)× (0, 1)] ∪ [(−1, 0)× (−1, 0)]
and hence ∂Ω = (−1, 1)× {0} is a Ck — hypersurface in R2. Nevertheless
Ω is not a Ck — manifold with boundary as can be seen by looking at the
point (0, 0) ∈ ∂Ω.

7. If Ω = Sn−1 ⊂ Rn, then ∂Ω = Ω is a C∞ - hypersurface. However, as
in the previous example Ω is not an n — dimensional Ck — manifold with
boundary despite the fact that Ω is now closed. (Warning: there is a
clash of notation here with that of the more general theory of manifolds
where ∂Sn−1 = ∅ when viewing Sn−1 as a manifold in its own right.)

Lemma 22.22. Suppose Ω ⊂o Rn such that bd(Ω) is a Ck — hypersur-
face, then Ω̄ is Ck — manifold with boundary. (It is not necessarily true
that ∂Ω̄ = bd(Ω). For example, let Ω := B(0, 1) ∪ {x ∈ Rn : 1 < |x| < 2} .
In this case Ω̄ = B(0, 2) so ∂Ω̄ = {x ∈ Rn : |x| = 2} while bd(Ω) =
{x ∈ Rn : |x| = 2 or |x| = 1} .)
Proof. Claim: Suppose U = (−1, 1)n ⊂o Rn and V ⊂o U such that

bd(V ) ∩ U = ∂Hn ∩ U. Then V is either, U+ := U ∩ Hn = U ∩ {xn > 0} or
U− := U ∩ {xn < 0} or U \ ∂Hn = U+ ∪ U−.
To prove the claim, first observe that V ⊂ U \ ∂Hn and V is not empty,

so either V ∩ U+ or V ∩ U− is not empty. Suppose for example there exists
ξ ∈ V ∩ U+. Let σ : [0, 1)→ U ∩Hn be a continuous path such that σ(0) = ξ
and

T = sup {t < 1 : σ([0, t]) ⊂ V } .
If T 6= 1, then η := σ(T ) is a point in U+ which is also in bd(V ) = V̄ \ V. But
this contradicts bd(V ) ∩ U = ∂Hn ∩ U and hence T = 1. Because U+ is path
connected, we have shown U+ ⊂ V. Similarly if V ∩ U− 6= ∅, then U− ⊂ V as
well and this completes the proof of the claim.
We are now ready to show Ω̄ is a Ck — manifold with boundary. To this

end, suppose

ξ ∈ ∂Ω̄ = bd(Ω̄) = Ω̄ \ Ω̄o ⊂ Ω̄ \Ω = bd(Ω).

Since bd(Ω) is a Ck — hypersurface, we may find an open neighborhood O
of ξ such that there exists a Ck — diffeomorphism ψ : U → O such that
ψ (O ∩ bd(Ω)) = U ∩Hn. Recall that

O ∩ bd(Ω) = O ∩ Ω̄ ∩Ωc = Ω ∩OO \ (O \Ω) = bdO (Ω ∩O)

where A
O
and bdO(A) denotes the closure and boundary of a set A ⊂ O in

the relative topology on A. Since ψ is a Ck — diffeomorphism, it follows that
V := ψ (O ∩Ω) is an open set such that
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bd(V ) ∩ U = bdU (V ) = ψ (bdO (Ω ∩O)) = ψ (O ∩ bd(Ω)) = U ∩Hn.

Therefore by the claim, we learn either V = U+ of U− or U+ ∪ U−. However
the latter case can not occur because in this case ξ would be in the interior
of Ω̄ and hence not in bd(Ω̄). This completes the proof, since by changing
the sign on the nth coordinate of ψ if necessary, we may arrange it so that
ψ
¡
Ω̄ ∩O¢ = U+.

Exercise 22.23. Suppose F : Rn → R is a Ck — function such that

{F < 0} := {x ∈ Rn : F (x) < 0} 6= ∅
and F 0(ξ) : Rn → R is surjective (or equivalently ∇F (ξ) 6= 0) for all

ξ ∈ {F = 0} := {x ∈ Rn : F (x) = 0} .
Then Ω := {F ≤ 0} is a Ck — manifold with boundary and ∂Ω = {F = 0} .
Hint: For ξ ∈ {F = 0} , let A : Rn → Rn−1 be a linear transformation

such that A|Nul(F 0(ξ)) : Nul(F
0(ξ))→ Rn−1 is invertible and A|Nul(F 0(ξ))⊥ ≡ 0

and then define

φ(x) := (A (x− ξ) ,−F (x)) ∈ Rn−1 ×R = Rn.
Now use the inverse function theorem to construct ψ.

Definition 22.24 (Outward pointing unit normal vector). Let Ω be a
C1 — manifold with boundary, the outward pointing unit normal to ∂Ω is
the unique function n : ∂Ω → Rn satisfying the following requirements.

1. (Unit length.) |n(x)| = 1 for all x ∈ ∂Ω.
2. (Orthogonality to ∂Ω.) If x0 ∈ ∂Ω and ψ : D → B(x0, �) is as in the
Definition 22.19, then n(xo) ⊥ ψ0(0) (∂Hn) , i.e. n(x0) is perpendicular of
∂Ω.

3. (Outward Pointing.) If φ := ψ−1, then φ0(0)n(xo) · en < 0 or equivalently
put ψ0(0)en · n(x0) < 0, see Figure 22.11 below.

22.4 Divergence Theorem

Theorem 22.25 (Divergence Theorem). Let Ω ⊂ Rn be a manifold with
C2 — boundary and n : ∂Ω → Rn be the unit outward pointing normal to Ω.
If Z ∈ Cc(Ω,Rn) ∩C1(Ωo,Rn) andZ

Ω

|∇ · Z|dm <∞ (22.19)

then Z
∂Ω

Z(x) · n(x)dσ(x) =
Z
Ω

∇ · Z(x) dx. (22.20)
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The proof of Theorem 22.25 will be given after stating a few corollaries
and then a number preliminary results.

Example 22.26. Let

f(x) =

½
x sin

¡
1
x

¢
on [0, 1],

0 if x = 0

then f ∈ C([0, 1])∩C∞((0, 1)) and f 0(x) = sin ¡ 1x¢− 1
x sin

¡
1
x

¢
for x > 0. Since

1Z
0

1

x

¯̄̄̄
sin

µ
1

x

¶¯̄̄̄
dx =

∞Z
1

u| sin(u)| 1
u2

du =

∞Z
1

| sin(u)|
u

du =∞,

1R
0

|f 0(x)| dx =∞ and the integrability assumption,
R
Ω

|∇ · Z|dx < ∞, in The-

orem 22.25 is necessary.

Corollary 22.27. Let Ω ⊂ Rn be a closed manifold with C2 — boundary and
n : ∂Ω → Rn be the outward pointing unit normal to Ω. If Z ∈ C(Ω,Rn) ∩
C1(Ωo,Rn) and Z

Ω

{|Z|+ |∇ · Z|} dm+

Z
∂Ω

|Z · n| dσ <∞ (22.21)

then Eq. (22.20) is valid, i.e.Z
∂Ω

Z(x) · n(x)dσ(x) =
Z
Ω

∇ · Z(x) dx.

Proof. Let ψ ∈ C∞c (Rn, [0, 1]) such that ψ = 1 in a neighborhood of 0
and set ψk(x) := ψ(x/k) and Zk := ψkZ. We have supp(Zk) ⊂ supp(ψk) ∩Ω
— which is a compact set since Ω is closed. Since ∇ψk(x) = 1

k (∇ψ) (x/k) is
bounded, Z

Ω

|∇ · Zk| dm =

Z
Ω

|∇ψk · Z + ψk∇ · Z| dm

≤ C

Z
Ω

|Z| dm+

Z
Ω

|∇ · Z| dm <∞.

Hence Theorem 22.25 impliesZ
Ω

∇ · Zkdm =

Z
∂Ω

Zk · ndσ. (22.22)

By the D.C.T.,
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Ω

∇ · Zkdm =

Z
Ω

·
1

k
(∇ψ) (x/k) · Z(x) + ψ(x/k)∇ · Z(x)

¸
dx

→
Z
Ω

∇ · Zdm

and Z
∂Ω

Zk · n dσ =

Z
∂Ω

ψkZ · n dσ →
Z
∂Ω

Z · n dσ,

which completes the proof by passing the limit in Eq. (22.22).

Corollary 22.28 (Integration by parts I). Let Ω ⊂ Rn be a closed mani-
fold with C2 — boundary, n : ∂Ω → Rn be the outward pointing normal to Ω,
Z ∈ C(Ω,Rn) ∩C1(Ωo,Rn) and f ∈ C(Ω,R) ∩ C1(Ωo,R) such thatZ

Ω

{|f | [|Z|+ |∇ · Z|] + |∇f | |Z|} dm+

Z
∂Ω

|f | |Z · n| dσ <∞

then Z
Ω

f(x)∇ · Z(x) dx = −
Z
Ω

∇f(x) · Z(x) dx+
Z
∂Ω

Z(x) · n(x)dσ(x).

Proof. Apply Corollary 22.27 with Z replaced by fZ.

Corollary 22.29 (Integration by parts II). Let Ω ⊂ Rn be a closed man-
ifold with C2 — boundary , n : ∂Ω → Rn be the outward pointing normal to Ω
and f, g ∈∈ C(Ω,R) ∩ C1(Ωo,R) such thatZ

Ω

{|f | |g|+ |∂if | |g|+ |f | |∂ig|} dm+

Z
∂Ω

|fgni| dσ <∞

thenZ
Ω

f(x)∂ig(x) dm = −
Z
Ω

∂if(x) · g(x) dm+

Z
∂Ω

f(x)g(x)ni(x)dσ(x).

Proof. Apply Corollary 22.28 with Z chosen so that Zj = 0 if j 6= i and
Zi = g, (i.e. Z = (0, . . . , g, 0 . . . , 0)).

Proposition 22.30. Let Ω be as in Corollary 22.27 and suppose u, v ∈
C2(Ωo) ∩ C1(Ω) such that u, v,∇u,∇v,∆u,∆v ∈ L2(Ω) and u, v, ∂u∂n ,

∂v
∂n ∈

L2(∂Ω, dσ) thenZ
Ω

4u · vdm = −
Z
Ω

∇u ·∇vdm+

Z
∂Ω

v
∂u

∂n
dσ (22.23)

and Z
Ω

(4uv −4v u)dm =

Z
∂Ω

µ
v
∂u

∂n
− ∂v

∂n
u

¶
dσ. (22.24)
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Proof. Eq. (22.23) follows by applying Corollary 22.28 with f = v and
Z = ∇u. Similarly applying Corollary 22.28 with f = u and Z = ∇v impliesZ

Ω

4v · udm = −
Z
Ω

∇u ·∇vdm+

Z
∂Ω

u
∂v

∂n
dσ

and subtracting this equation from Eq. (22.23) implies Eq. (22.24).

Lemma 22.31. Let Ωt = φt(Ω) be a smoothly varying domain and f : Rn →
R. Then

d

dt

Z
Ωt

f dx =

Z
∂Ωt

f (Yt · n) dσ

where Yt(x) = d
d�

¯̄̄
0
φt+�(φ

−1
t (x)) as in Figure 22.10.

φ
φ

Ω

Ω

Fig. 22.10. The vector-field Yt(x) measures the velocity of the boundary point x
at time t.

Proof.With out loss of generality we may compute the derivative at t = 0
and replace Ω by φ0(Ω) and φt by φt ◦φ−10 if necessary so that φ0(x) = x and

Y (x) = d
dt

¯̄̄
0
φt(x). By the change of variables theorem,Z

Ωt

f dx =

Z
f dx =

Z
Ω

f ◦ φt(x) det[φ0t(x)]dx

and hence
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d

dt

¯̄̄
0

Z
Ωt

f dx =

Z
Ω0

[Y f(x) +
d

dt

¯̄̄
0
det[φ0t(x)]f(x)]dx

=

Z
Ω0

[Y f(x) + (∇ · Y (x)) f(x)]dx

=

Z
Ω0

∇ · (fY )(x)dx =
Z

∂Ω0

f(x)Y (x) · n(x) dσ(x).

In the second equality we have used the fact that

d

dt

¯̄̄
0
det[φ0t(x)] = tr

·
d

dt

¯̄̄
0
φ0t(x)

¸
= tr [Y 0(x)] = ∇ · Y (x).

22.5 The proof of the Divergence Theorem

Lemma 22.32. Suppose Ω ⊂o Rn and Z ∈ C1(Ω,Rn) and f ∈ C1c (Ω,R),
then Z

Ω

f∇ · Z dx = −
Z
Ω

∇f · Z dx.

Proof. Let W := fZ on Ω and W = 0 on Ωc, then W ∈ Cc(Rn,Rn). By
Fubini’s theorem and the fundamental theorem of calculus,Z

Ω

∇ · (fZ) dx =
Z
Rn

(∇ ·W )dx =
nX
i=1

Z
Rn

∂W i

∂xi
dx1 . . . dxn = 0.

This completes the proof because ∇ · (fZ) = ∇f · Z + f∇ · Z.
Corollary 22.33. If Ω ⊂ Rn, Z ∈ C1(Ω,Rn) and g ∈ C(Ω,R) then g = ∇·Z
iff Z

Ω

gf dx = −
Z
Ω

Z ·∇f dx for all f ∈ C1c (Ω). (22.25)

Proof. By Lemma 22.32, Eq. (22.25) holds iffZ
Ω

gf dx =

Z
Ω

∇ · Z f dx for all f ∈ C1c (Ω)

which happens iff g = ∇ · Z.
Proposition 22.34 (Behavior of ∇ under coordinate transforma-
tions). Let ψ : W → Ω is a C2 — diffeomorphism where W and Ω and
open subsets of Rn. Given f ∈ C1(Ω,R) and Z ∈ C1(Ω,Rn) let fψ = f ◦ψ ∈
C1(W,R) and Zψ ∈ C1(W,Rn) be defined by Zψ(y) = ψ0(y)−1Z(ψ(y)). Then
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1. ∇fψ = ∇(f ◦ ψ) = (ψ0)tr (∇f) ◦ ψ and
2. ∇ · [detψ0 Zψ] = (∇ · Z) ◦ ψ · detψ0. (Notice that we use ψ is C2 at this
point.)

Proof. 1. Let v ∈ Rn, then by definition of the gradient and using the
chain rule,

∇(f ◦ ψ) · v = ∂v(f ◦ ψ) = ∇f(ψ) · ψ0v = (ψ0)tr∇f(ψ) · v.
2. Let f ∈ C1c (Ω). By the change of variables formula,Z

Ω

f∇ · Zdm =

Z
W

f ◦ ψ (∇ · Z) ◦ ψ |detψ0| dm

=

Z
W

fψ (∇ · Z) ◦ ψ |detψ0| dm. (22.26)

On the other handZ
Ω

f∇ · Zdm = −
Z
Ω

∇f · Zdm = −
Z
W

∇f(ψ) · Z(ψ) |detψ0| dm

= −
Z
W

h
(ψ0)tr

i−1
∇fψ · Z(ψ) |detψ0| dm

= −
Z
W

∇fψ · (ψ0)−1 Z(ψ) |detψ0| dm

= −
Z
W

¡∇fψ · Zψ
¢ |detψ0| dm

=

Z
W

fψ∇ · ¡|detψ0| Zψ
¢
dm. (22.27)

Since Eqs. (22.26) and (22.27) hold for all f ∈ C1c (Ω) we may conclude

∇ · ¡|detψ0| Zψ
¢
= (∇ · Z) ◦ ψ |detψ0|

and by linearity this proves item 2.

Lemma 22.35. Eq. (22.20 of the divergence Theorem 22.25 holds when Ω =
H̄n = {x ∈ Rn : xn ≥ 0} and Z ∈ Cc(H̄n,Rn) ∩ C1(Hn,Rn) satisfiesZ

Hn

|∇ · Z| dx <∞

Proof. In this case ∂Ω = Rn−1 × {0} and n(x) = −en for x ∈ ∂Ω is
the outward pointing normal to Ω. By Fubini’s theorem and the fundamental
theorem of calculus,

n−1X
i=1

Z
xn>δ

∂Zi

∂xi
dx = 0
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and Z
xn>δ

∂Zn
∂xn

dx = −
Z

Rn−1

Zn(y, δ)dy.

Therefore. using the dominated convergence theorem,Z
Hn

∇ · Z dx = lim
δ↓0

Z
xn>δ

∇ · Z dx = − lim
δ↓0

Z
Rn−1

Zn(y, δ)dy

= −
Z

Rn−1

Zn(y, 0)dy =

Z
∂Hn

Z(x) · n(x) dσ(x).

Remark 22.36. The same argument used in the proof of Lemma 22.35 shows
Theorem 22.25 holds when

Ω = R̄n+ := {x ∈ Rn : xi ≥ 0 for all i} .

Notice that R̄n+ has a corners and edges, etc. and so ∂Ω is not smooth in this
case.

22.5.1 The Proof of the Divergence Theorem 22.25

Proof. First suppose that supp(Z) is a compact subset of B(x0, �) ∩ Ω for
some x0 ∈ ∂Ω and � > 0 is sufficiently small so that there exists V ⊂o Rn
and C2 — diffeomorphism ψ : V −→ B(x0, �) (see Figure 22.11) such that
ψ(V ∩ {yn > 0}) = B(x0, �) ∩Ωo and

ψ(V ∩ {yn = 0}) = B(x0, �) ∩ ∂Ω.

Because n is the outward pointing normal, n(ψ(y)) · ψ0(y)en < 0 on yn = 0.
Since V is connected and detψ0(y) is never zero on V, ς := sgn (detψ0(y)) ∈
{±1} is constant independent of y ∈ V. For y ∈ ∂H̄n,

(Z · n)(ψ(y)) |det[ψ0(y)e1| . . . |ψ0(y)en−1|n(ψ(y))]|
= −ς(Z · n)(ψ(y)) det[ψ0(y)e1| . . . |ψ0(y)en−1|n(ψ(y))]
= −ς det[ψ0(y)e1| . . . |ψ0(y)en−1|Z(ψ(y))]
= −ς det[ψ0(y)e1| . . . |ψ0(y)en−1|ψ0(y)Zψ(y)]

= −ς detψ0(y) · det[e1| . . . |en−1|Zψ(y)]

= − |detψ0(y)|Zψ(y) · en,

wherein the second equality we used the linearity properties of the determinant
and the identity
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Fig. 22.11. Reducing the divergence theorem for general Ω to Ω = Hn.

Z(ψ(y)) = Z · n(ψ(y)) +
n−1X
i=1

αiψ
0(y)ei for some αi.

Starting with the definition of the surface integral we findZ
∂Ω

Z · ndσ =
Z

∂H̄n

(Z · n)(ψ(y)) |det[ψ0(y)e1| . . . |ψ0(y)en−1|n(ψ(y))]| dy

=

Z
∂H̄n

detψ0(y)Zψ(y) · (−en) dy

=

Z
Hn

∇ · £detψ0Zψ
¤
dm (by Lemma 22.35)

=

Z
Hn

[(∇ · Z) ◦ ψ] detψ0dm (by Proposition 22.34)

=

Z
Ω

(∇ · Z) dm (by the Change of variables theorem).

2) We now prove the general case where Z ∈ Cc(Ω,Rn)∩C1(Ωo,Rn) andR
Ω
|∇ · Z|dm <∞. Using Theorem 42.26, we may choose φi ∈ C∞c (Rn) such

that

1.
NP
i=1

φi ≤ 1 with equality in a neighborhood of K = Supp (Z).

2. For all i either supp(φi) ⊂ Ω or supp(φi) ⊂ B(x0, �) where x0 ∈ ∂Ω and
� > 0 are as in the previous paragraph.

Then by special cases proved in the previous paragraph and in Lemma
22.32,
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Ω

∇ · Z dx =

Z
Ω

∇ · (
X
i

φi Z) dx =
X
i

Z
Ω

∇ · (φiZ)dx

=
X
i

Z
∂Ω

(φiZ) · n dσ

=

Z
∂Ω

X
i

φiZ · n dσ =

Z
∂Ω

Z · n dσ.

22.5.2 Extensions of the Divergence Theorem to Lipschitz domains

The divergence theorem holds more generally for manifolds Ω with Lipschitz
boundary. By this we mean, locally near a boundary point, Ω should be of
the form

Ω := {(y, z) ∈ D ×R ⊂ Rn : z ≥ g(y)} = {z ≥ g}
where g : D → R is a Lipschitz function and D is the open unit ball in Rn−1.
To prove this remark, first suppose that Z ∈ C1c (Rn,Rn) such that

supp(Z) ⊂ D × R. Let δm(x) = mnρ(mx) where ρ ∈ C∞c (B(0, 1), [0,∞))
such that

R
Rn ρdm = 1 and let gm := g ∗ δm defined on D1−1/m — the open

ball of radius 1− 1/m in Rn−1 and let Ωm := {z ≥ gm} . For m large enough
we will have supp(Z) ⊂ D1−1/m × R and so by the divergence theorem we
have already proved,Z

Ωm

∇ · Zdm =

Z
∂Ωm

Z · ndσ =
Z
D

Z(y, gm(y)) · (∇gm(y),−1) dy.

Now ¯̄̄
1z>g − lim

m→∞ 1z>gm
¯̄̄
≤ 1z=g(y)

and by Fubini’s theorem,Z
D×R

1z=g(y)dydz =

Z
D

dy

Z
R
1z=g(y)dz = 0.

Hence by the dominated convergence theorem,

lim
m→∞

Z
Ωm

∇ · Zdm = lim
m→∞

Z
1z>gm∇ · Zdm =

Z
lim

m→∞ 1z>gm∇ · Zdm

=

Z
1z>g∇ · Zdm =

Z
Ω

∇ · Zdm.

Moreover we also have from results to be proved later in the course that∇g(y)
exists for a.e. y and is bounded by the Lipschitz constant K for g and

∇gm = ∇g ∗ δm → ∇g in Lploc for any 1 ≤ p <∞.
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Therefore,

lim
m→∞

Z
D

Z(y, gm(y)) · (∇gm(y),−1) dy =
Z
D

Z(y, g(y)) · (∇g(y),−1) dy

=

Z
∂Ω

Z · ndσ

where ndσ is the vector valued measure on ∂Ω determined in local coordinates
by (∇gm(y),−1) dy.
Finally if Z ∈ C1(Ωo) ∩ Cc(Ω) with

R
Ω
|∇ · Z| dm <∞ with Ω as above.

We can use the above result applied to the vector field Z�(y, z) := Z(y, z + �)
which we may now view as an element of C1c (Ω). We then haveZ

Ω

∇ · Z(·, ·+ �)dm =

Z
D

Z(y, g(y) + �) · (∇g(y),−1) dy

→
Z
D

Z(y, g(y)) · (∇g(y),−1) dy =
Z
∂Ω

Z · ndσ.
(22.28)

And again by the dominated convergence theorem,

lim
�↓0

Z
Ω

∇ · Z(·, ·+ �)dm = lim
�↓0

Z
Rn
1Ω(y, z)∇ · Z(y, z + �)dydz

= lim
�↓0

Z
Rn
1Ω(y, z − �)∇ · Z(y, z)dydz

=

Z
Rn
lim
�↓0
1Ω(y, z − �)∇ · Z(y, z)dydz

=

Z
Rn
1Ω(y, z)∇ · Z(y, z)dydz =

Z
Ω

∇ · Zdm
(22.29)

wherein we have used

lim
�↓0
1Ω(y, z − �) = lim

�↓0
1
z>g(y)+� = 1z>g(y).

Comparing Eqs. (22.28) and (22.29) finishes the proof of the extension.

22.6 Application to Holomorphic functions

Let Ω ⊂ C ∼= R2 be a compact manifold with C2 — boundary.

Definition 22.37. Let Ω ⊂ C ∼= R2 be a compact manifold with C2 — bound-
ary and f ∈ C(∂Ω,C). The contour integral,

R
∂Ω

f(z)dz, of f along ∂Ω is
defined by
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Fig. 22.12. The induced direction for countour integrals along boundaries of re-
gions.

Z
∂Ω

f(z)dz := i

Z
∂Ω

f n dσ

where n : ∂Ω → S1 ⊂ C is chosen so that n := (Ren, Imn) is the outward
pointing normal, see Figure 22.12.

In order to carry out the integral in Definition 22.37 more effectively,
suppose that z = γ(t) with a ≤ t ≤ b is a parametrization of a part of the
boundary of Ω and γ is chosen so that T := γ̇(t)/ |γ̇(t)| = in(γ(t)). That is
to say T is gotten from n by a 90o rotation in the counterclockwise direction.
Combining this with dσ = |γ̇(t)| dt we see that

i n dσ = T |γ̇(t)| dt = γ̇(t)dt =: dz

so that Z
γ

f(z)dz =

Z b

a

f(γ(t))γ̇(t)dt.

Proposition 22.38. Let f ∈ C1(Ω̄,C) and ∂̄ := 1
2 (∂x + i∂y) , thenZ

∂Ω

f(z)dz = 2i

Z
Ω

∂̄fdm. (22.30)

Now suppose w ∈ Ω, then

f(w) =
1

2πi

Z
∂Ω

f(z)

z − w
dz − 1

π

Z
Ω

∂̄f(z)

z − w
dm(z). (22.31)

Proof. By the divergence theorem,
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Ω

∂̄fdm =
1

2

Z
Ω

(∂x + i∂y) fdm =
1

2

Z
∂Ω

f (n1 + in2) dσ

=
1

2

Z
∂Ω

fndσ = − i

2

Z
∂Ω

f(z)dz.

Given � > 0 small, let Ω� := Ω \B(w, �). Eq. (22.30) with Ω = Ω� and f

being replaced by f(z)
z−w impliesZ

∂Ω�

f(z)

z − w
dz = 2i

Z
Ω�

∂̄f

z − w
dm (22.32)

wherein we have used the product rule and the fact that ∂̄(z − w)−1 = 0 to
conclude

∂̄

·
f(z)

z − w

¸
=

∂̄f(z)

z − w
.

Noting that ∂Ω� = ∂Ω ∪ ∂B(w, �) and ∂B(w, �) may be parametrized by
z = w + �e−iθ with 0 ≤ θ ≤ 2π, we haveZ

∂Ω�

f(z)

z − w
dz =

Z
∂Ω

f(z)

z − w
dz +

Z 2π

0

f(w + �e−iθ)
�e−iθ

(−i�) e−iθdθ

=

Z
∂Ω

f(z)

z − w
dz − i

Z 2π

0

f(w + �e−iθ)dθ

and henceZ
∂Ω

f(z)

z − w
dz − i

Z 2π

0

f(w + �e−iθ)dθ = 2i
Z
Ω�

∂̄f(z)

z − w
dm(z) (22.33)

Since

lim
�↓0

Z 2π

0

f(w + �e−iθ)dθ = 2πf(w)

and

lim
�↓0

Z
Ω�

∂̄f

z − w
dm =

Z
Ω

∂̄f(z)

z − w
dm(z).

we may pass to the limit in Eq. (22.33) to findZ
∂Ω

f(z)

z − w
dz − 2πif(w) = 2i

Z
Ω

∂̄f(z)

z − w
dm(z)

which is equivalent to Eq. (22.31).

Remark 22.39. Eq. (22.31) implies ∂̄ 1z = πδ(z). Indeed if f ∈ C∞c
¡
C ∼= R2¢ ,

then by Eq. (22.31)

h∂̄ 1
πz

, fi := h 1
πz

,−∂̄fi = − 1
π

Z
C

1

z
∂̄f(z)dm(z) = f(0)

which is equivalent to ∂̄ 1z = πδ(z).
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Exercise 22.40. Let Ω be as above and assume f ∈ C1(Ω̄,C) satisfies g :=
∂̄f ∈ C∞(Ω,C). Show f ∈ C∞(Ω,C). Hint, let w0 ∈ Ω and � > 0 be small
and choose φ ∈ C∞c (B(z0, �)) such that φ = 1 in a neighborhood of w0 and
let ψ = 1− φ. Then by Eq. (22.31),

f(w) =
1

2πi

Z
∂Ω

f(z)

z − w
dz − 1

π

Z
Ω

g(z)

z − w
φ(z)dm(z)

− 1
π

Z
Ω

g(z)

z − w
ψ(z)dm(z).

Now show each of the three terms above are smooth in w for w near w0. To
handle the middle term notice thatZ

Ω

g(z)

z − w
φ(z)dm(z) =

Z
C

g(z + w)

z
φ(z + w)dm(z)

for w near w0.

Definition 22.41. A function f ∈ C1(Ω,C) is said to be holomorphic if ∂̄f =
0.

By Proposition 22.38, if f ∈ C1(Ω̄,C) and ∂̄f = 0 on Ω, then Cauchy’s
integral formula holds for w ∈ Ω, namely

f(w) =
1

2πi

Z
∂Ω

f(z)

z − w
dz

and f ∈ C∞(Ω,C). For more details on Holomorphic functions, see the com-
plex variable appendix.

22.7 Dirichlet Problems on D

Let D := {z ∈ C : |z| < 1} be the open unit disk in C ∼= R2, where we write
z = x+ iy = reiθ in the usual way. Also let ∆ = ∂2

∂x2 +
∂2

∂y2 and recall that ∆
may be computed in polar coordinates by the formula,

∆u = r−1∂r
¡
r−1∂ru

¢
+
1

r2
∂2θu. (22.34)

Indeed if v ∈ C1c (D), thenZ
D

∆uvdm = −
Z
D

∇u ·∇vdm = −
Z
10≤θ≤2π10≤r<1

µ
urvr +

1

r2
uθvθ

¶
rdrdθ

=

Z
10≤θ≤2π10≤r<1

µ
(rur)r v +

1

r
uθθv

¶
drdθ

=

Z
10≤θ≤2π10≤r<1

µ
1

r
(rur)r +

1

r2
uθθ

¶
vr2drdθ

=

Z
D

µ
1

r
(rur)r +

1

r2
uθθ

¶
vdm
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which shows Eq. (22.34) is valid. See Exercises 22.45 and 22.47 for more
details.
Suppose that u ∈ C(D̄) ∩ C2(D) and ∆u(z) = 0 for z ∈ D. Let g = u|∂D

and

Ak := ĝ(k) :=
1

2π

Z π

−π
g(eikθ)e−ikθdθ.

(We are identifying S1 = ∂D :=
©
z ∈ D̄ : |z| = 1ª with [−π, π]/ (π ∼ −π) by

the map θ ∈ [−π, π]→ eiθ ∈ S1.) Let

û(r, k) :=
1

2π

Z π

−π
u(reiθ)e−ikθdθ (22.35)

then:

1. ũ(r, k) satisfies the ordinary differential equation

r−1∂r (r∂rû(r, k)) =
1

r2
k2û(r, k) for r ∈ (0, 1).

2. Recall the general solution to

r∂r (r∂ry(r)) = k2y(r) (22.36)

may be found by trying solutions of the form y(r) = rα which then implies
α2 = k2 or α = ±k. From this one sees that ũ(r, k) may be written as
û(r, k) = Akr

|k| + Bkr
−|k| for some constants Ak and Bk when k 6= 0. If

k = 0, the solution to Eq. (22.36) is gotten by simple integration and the
result is û(r, 0) = A0+B0 ln r. Since û(r, k) is bounded near the origin for
each k, it follows that Bk = 0 for all k ∈ Z.

3. So we have shown

Akr
|k| = û(r, k) =

1

2π

Z π

−π
u(reiθ)e−ikθdθ

and letting r ↑ 1 in this equation implies

Ak =
1

2π

Z π

−π
u(eiθ)e−ikθdθ =

1

2π

Z π

−π
f(eiθ)e−ikθdθ.

Therefore,
u(reiθ) =

X
k∈Z

Akr
|k|eikθ (22.37)

for r < 1 or equivalently,

u(z) =
X
k∈N0

Akz
k +

X
k∈N

A−kz̄k = A0 +
X
k≥1

Akz
k +

X
k≥1

Akz̄
k

= Re

A0 + 2
X
k≥1

Akz
k
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In particular ∆u = 0 implies u(z) is the sum of a holomorphic and an anti-
holomorphic functions and also that u is the real part of a holomorphic
function F (z) := A0+

1
2

P
k≥1Akz

k. The imaginary part v(z) := ImF (z)
is harmonic as well and is given by

v(z) = 2 Im
X
k≥1

Akz
k =

1

i

X
k≥1

Akz
k −

X
k≥1

Akz̄
k


=
1

i

X
k≥1

Akz
k −

X
k≥1

A−kz̄k


=
1

i

X
k≥1

Akr
keikθ −

X
k≥1

A−krke−ikθ


=
X
k 6=0

1

i
sgn(k)Akr

keikθ = −isgn(1
i

d

dθ
)u(z)

wherein we are writing z as reiθ. Here sgn( 1i
d
dθ ) is the bounded self-adoint

operator on L2(S1) which satisfies

sgn(
1

i

d

dθ
)einθ = sgn(n)einθ

and

sgn(x) =

 1 if x > 0
0 if x = 0
−1 if x < 0

.

4. Inserting the formula for Ak into Eq. (22.37) gives

u(reiθ) =
1

2π

Z π

−π

ÃX
k∈Z

r|k|eik(θ−α)
!
u(eiα)dα for all r < 1.

Now by simple geometric series considerations we find, setting δ = θ− α,
thatX

k∈Z
r|k|eikδ =

∞X
k=0

rkeikδ +
∞X
k=0

rke−ikδ − 1 = 2Re
∞X
k=0

rkeikδ − 1

= Re

·
2

1

1− reiδ
− 1
¸
= Re

·
1 + reiδ

1− reiδ

¸
= Re

"¡
1 + reiδ

¢ ¡
1− re−iδ

¢
|1− reiδ|2

#
= Re

·
1− r2 + 2ir sin δ

1− 2r cos δ + r2

¸
(22.38)

=
1− r2

|1− reiδ|2 =
1− r2

1− 2r cos δ + r2
.
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Putting this altogether we have shown

u(reiθ) =
1

2π

Z π

−π
Pr(θ − α)u(eiα)dα =: Pr ∗ u(eiθ)

=
1

2π
Re

Z π

−π

1 + rei(θ−α)

1− rei(θ−α)
u(eiα)dα (22.39)

where

Pr(δ) :=
1− r2

1− 2r cos δ + r2
(22.40)

is the so called Poisson kernel. The fact that 1
2π Re

R π
−π Pr(θ)dθ = 1 follows

from the fact that

1

2π

Z π

−π
Pr(θ)dθ = Re

1

2π

Z π

−π

X
k∈Z

r|k|eikθdθ

= Re
1

2π

X
k∈Z

Z π

−π
r|k|eikθdθ = 1.

Writing z = reiθ, Eq. (22.39) may be rewritten as

420-2-4

8

6

4

2

0

x

y

x

y

Fig. 22.13. Here is a plot of pr(x) for r = .5 and r = .8.

u(z) =
1

2π
Re

Z π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα

which shows u = ReF where

F (z) :=
1

2π

Z π

−π

1 + ze−iα

1− ze−iα
u(eiα)dα.
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Moreover it follows from Eq. (22.38) that

ImF (reiθ) =
1

π
Im

Z π

−π

r sin(θ − α)

1− 2r cos(θ − α) + r2
u(eiα)dα

=: Qr ∗ u(eiθ)
where

Qr(δ) :=
r sin(δ)

1− 2r cos(δ) + r2
.

From these remarks it follows that v is the harmonic conjugate of u and
P̃r = Qr. Summarizing these results gives

f̃(eiθ) = −isgn(1
i

d

dθ
)f(eiθ) = lim

r↑1
(Qr ∗ f) (eiθ)

22.7.1 Appendix: More Proofs of Proposition 22.34

Exercise 22.42. det0(A)B = det(A) tr(A−1B).

Solution 22.43 (22.42).

d

dt

¯̄̄
0
det(A+ tB) = det(A)

d

dt

¯̄̄
0
det(A+ tA−1B)

= det(A) tr(A−1B).

Proof. 2nd Proof of Proposition 22.34 by direct computation. Letting
A = ψ0,

1

det A
∇ · (detAZψ) =

1

det A
{Zψ ·∇detA+ detA ∇ · Zψ}

= tr[A−1∂ZψA] +∇ · Zψ (22.41)

and

∇ · Zψ = ∇ · (A−1Z ◦ ψ) = ∂i(A
−1Z ◦ ψ) · ei

= ei · (−A−1∂iAA−1Z ◦ ψ) + ei ·A−1(Z0 ◦ ψ)Aei
= −ei · (A−1ψ00hei, A−1Z ◦ ψi) + tr(A−1(Z0 ◦ ψ)A)
= −ei · (A−1ψ00hei, A−1Z ◦ ψi) + tr(Z 0 ◦ ψ)
= −tr(A−1ψ00hZψ,−i) + (∇ · Z) ◦ ψ
= −tr £A−1∂ZψA¤+ (∇ · Z) ◦ ψ. (22.42)

Combining Eqs. (22.41) and (22.42) gives the desired result:

∇ · (detψ0 Zψ) = detψ0(∇ · Z) ◦ ψ.
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Lemma 22.44 (Flow interpretation of the divergence). Let Z ∈
C1(Ω,Rn). Then

∇ · Z = d

dt

¯̄̄
0
det(etZ)0

and Z
Ω

∇ · (f Z)dm =
d

dt

¯̄
0

Z
etZ(Ω)

f dm.

Proof. By Exercise 22.42 and the change of variables formula,

d

dt

¯̄̄
0
det(etZ)0 = tr

µ
d

dt

¯̄̄
0
(etZ)0

¶
= tr(Z0) = ∇ · Z

and

d

dt

¯̄̄
0

Z
etZ(Ω)

f(x)dx =
d

dt

¯̄̄
0

Z
Ω

f(etZ(y)) det(etZ)0(y)dy

=

Z
Ω

{∇f(y) · Z(y) + f(y)∇ · Z(y)} dy

=

Z
Ω

∇ · (f Z) dm.

Proof. 3rd Proof of Proposition 22.34. Using Lemma 22.44 with f =
detψ0 and Z = Zψ and the change of variables formula,Z

Ω

∇ · (detψ0 Zψ)dm =
d

dt

¯̄̄
0

Z
etZ(Ω)

detψ0 dm

=
d

dt

¯̄̄
0
m(ψ ◦ etZψ(Ω))

=
d

dt

¯̄̄
0
m(ψ ◦ ψ−1 ◦ etZ ◦ ψ(Ω))

=
d

dt

¯̄̄
0
m(etZ (ψ(Ω)))

=
d

dt

¯̄̄
0

Z
etZ(ψ(Ω))

1 dm =

Z
ψ(Ω)

∇ · Zdm

=

Z
Ω

(∇ · Z) ◦ ψ det ψ0 dm.

Since this is true for all regionsΩ, it follows that∇·(detψ0 Zψ) = detψ0(∇·
Zψ).
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22.8 Exercises

Exercise 22.45. Let x = (x1, . . . , xn) = ψ(y1, . . . , yn) = ψ(y) be a C2 —
diffeomorphism, ψ : V → W where V and W are open subsets of Rn. For
y ∈ V define

gij(y) =
∂ψ

∂yi
(y) · ∂ψ

∂yj
(y)

gij(y) = (gij(y))
−1
ij and

√
g(y) = det (gij(y)) .

Show

1. gij = (ψ0trψ0)ij and
√
g = |detψ0| . (So in the making the change of

variables x = ψ(y) we have dx =
√
gdy.)

2. Given functions f, h ∈ C1(W ), let fψ = f ◦ ψ and hψ = h ◦ ψ. Show

∇f(ψ) ·∇h(ψ) = gij
∂fψ

∂yi

∂hψ

∂yj
.

3. For f ∈ C2(W ), show

(∆f) ◦ ψ = 1√
g

∂

∂yj

µ√
ggij

∂fψ

∂yi

¶
. (22.43)

Hint: for h ∈ C2c (W ) compute we haveZ
W

∆f(x)h(x)dx = −
Z
W

∇f(x) ·∇h(x)dx.

Now make the change of variables x = ψ(y) in both of the above integrals
and then do some more integration by parts to prove Eq. (22.43).

Notation 22.46 We will usually abuse notation in the future and write the
above equation as

∆f =
1√
g

∂

∂yj

µ√
ggij

∂f

∂yi

¶
.

Exercise 22.47. Let ψ(θ, φ1, . . . , φn−2, r) = (x1, . . . , xn) where (x1, . . . , xn)
are as in Eq. (22.11). Show:

1. The vectors
n
∂ψ
∂θ ,

∂ψ
∂φ1

, . . . , ∂ψ
∂φn−2

, ∂ψ∂r

o
form an orthogonal set and that¯̄̄̄

∂ψ

∂r

¯̄̄̄
= 1,

¯̄̄̄
∂ψ

∂φn−2

¯̄̄̄
= r,

¯̄̄̄
∂ψ

∂θ

¯̄̄̄
= r sinφn−2 . . . sinφ1 and¯̄̄̄

∂ψ

∂φj

¯̄̄̄
= r sinφn−2 . . . sinφj+1 for j = 1, . . . , n− 3.
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2. Use item 1. to give another derivation of Eq. (22.13), i.e.
√
g = |detψ0| = rn−1 sinn−2 φn−2 . . . sin2 φ2 sinφ1

3. Use Eq. (22.43) to conclude

∆f =
1

rn−1
∂

∂r

µ
rn−1

∂f

∂r

¶
+
1

r2
∆Sn−1f.

where

∆Sn−1f :=
n−2X
j=1

1

sin2 φn−2 . . . sin2 φj+1

1

sinj φj

∂

∂φj

µ
sinj φj

∂f

∂φj

¶

+
1

sin2 φn−2 . . . sin2 φ1

∂2f

∂θ2

and
1

sin2 φn−2 . . . sin2 φj+1
:= 1 if j = n− 2.

In particular if f = F (r, φn−2) we have

∆f =
1

rn−1
∂

∂r

µ
rn−1

∂f

∂r

¶
+
1

r2
1

sinn−2 φn−2

∂

∂φn−2

µ
sinn−2 φn−2

∂f

∂φn−2

¶
.

(22.44)
It is also worth noting that

∆Sn−1f :=
1

sinn−2 φn−2

∂

∂φn−2

µ
sinn−2 φn−2

∂f

∂φn−2

¶
+

1

sinn−2 φn−2
∆Sn−2f.

Let us write ψ := φn−2 and suppose f = rλw(ψ). According to Eq.
(22.44),

∆f =
1

rn−1
∂

∂r

Ã
rn−1

∂
¡
rλw(ψ)

¢
∂r

!
+
1

r2
1

sinn−2 ψ
∂

∂ψ

Ã
sinn−2 ψ

∂
¡
rλw(ψ)

¢
∂ψ

!

= w(ψ)
1

rn−1
∂

∂r

¡
λrn−1+λ−1

¢
+ rλ−2

1

sinn−2 ψ
∂

∂ψ

µ
sinn−2 ψ

∂w

∂ψ

¶
= w(ψ)λ (n+ λ− 2) rλ−2 + rλ−2

1

sinn−2 ψ
∂

∂ψ

µ
sinn−2 ψ

∂w

∂ψ

¶
= rλ−2

·
λ (n+ λ− 2)w(ψ) + 1

sinn−2 ψ
∂

∂ψ

µ
sinn−2 ψ

∂w

∂ψ

¶¸
.

Write w(ψ) =W (x) where x = cosψ, then ∂w
∂ψ = −W 0(x) sinψ and hence

1

sinn−2 ψ
∂

∂ψ

µ
sinn−2 ψ

∂w

∂ψ

¶
= − 1

sinn−2 ψ
∂

∂ψ

¡
sinn−1 ψW 0(x)

¢
=
−(n− 1) sinn−2 ψ cosψW 0(x)

sinn−2 ψ
− sin

n−1 ψ
sinn−2 ψ

{−W 00(x) sinψ}

= −(n− 1)xW 0(x) + (1− x2)W 00(x).
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Hence we have shown, with x = cosψ that

∆
£
rλW (x)

¤
= rλ−2

£
λ (n+ λ− 2)W (x)− (n− 1)xW 0(x) + (1− x2)W 00(x)

¤
.



23

Inverse Function Theorem and Embedded
Submanifolds

This section is devoted to inverse function theorem arguments and their rela-
tionship to “embedded submanifolds”

23.1 Embedded Submanifolds

Theorem 23.1. Let M be a d—dimensional manifold, N be a subset of M,
i : N →M be the inclusion map, k be a positive integer less than d, and

τ(N) = {V ⊂ N : ∃U ∈ τ(M) 3 V = U ∩N}.
That is we give N the induced topology from M. Then the following are equiv-
alent:

1. For each point n ∈ N there exists U ∈ τn(M) and f ∈ C∞(U,Rd−k) such
that f is a submersion (i.e. f∗m is surjective for all m ∈ D(f) = U) and

U ∩N = {f = 0} ≡ {m ∈M : f(m) = 0}.
2. For each point n ∈ N there exists a chart x ∈ An(M) such that

D(x) ∩N = {x> = 0} = {m ∈M : xl(m) = 0 for k + 1 ≤ l ≤ d},
where x> ≡ (xk+1, . . . , xn).

3. There exists a manifold structure (A(N)) on the topological space
(N, τ(N)) such N is a k—dimensional manifold, i : N → M is a smooth
immersion, i.e. i∗n is injective for all n ∈ N.

Proof. (1 ⇒ 2) Choose a chart y ∈ An(M) such that x̃ ≡ (y1, . . . , yk, f)
has an invertible differential at n. (This can be done since {df1n, . . . , dfn−kn }
are linearly independent in T ∗nM and {dyin}di=1 is a basis for T ∗nM.) Then by
the implicit function theorem, ∃ V ∈ τn(M) such that V ⊂ D(x) ∩ U and
x ≡ x̃|V is in An(M). Furthermore,
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{x> = 0} = {f |V = 0} = V ∩ {f = 0} = V ∩ (U ∩N) = V ∩N.

(2⇒ 1) Take f ≡ (xk+1, . . . , xd) on D(x).
(2 ⇒ 3) Let x ∈ An(M) as in item 2 above. Set x< ≡ (x1, . . . , xk) and

x> ≡ (xk+1, . . . , xd). We define the manifold structure on M by requiring
x̄ ≡ x< ◦ i with D(x̄) ≡ N ∩ D(x) to be a chart on N. We must show this
defines a manifold structure on N. For this let y ∈ An(M) be another chart
on M such that D(y)∩N = {y> = 0}. Then for a ∈ x̄(D(x̄)∩D(ȳ)) we have:
ȳ ◦ x̄−1(a) = y< ◦ x(a, 0) which is clearly smooth. Thus N is now endowed
with a manifold structure, i.e. a collection of C∞—related charts covering N.
To see that i is smooth with injective differential near n ∈ N it suffices to
notice that x ◦ i ◦ x̄−1 = id on R(x̄) ⊂ Rk, where x ∈ An(M) is a chart as
above.

(3 ⇒ 2) We now assume that N is a smooth manifold with the topology
on N (τ(N)) being the induced topology coming from M , and i : N → M
is a smooth immersion. Let n ∈ N and z ∈ An(M) such that z̄ = z< ◦ i has
an invertible differential at n ∈ N. By shrinking the domain of z if necessary
(using the implicit function theorem and the fact that N has the relative
topology) we may assume that z̄ with D(z̄) ≡ D(z) ∩ N is a chart on N .
Let h ≡ z> ◦ i ◦ z̄−1 on R(z̄) ≡ z̄(D(z̄)). Then h is smooth on R(z̄) and
z> ◦ i = h ◦ z̄. Let x ≡ (z<, z> − h ◦ z<) on D(x) ≡ z−1< (R(z̄)) ∈ τ(M). It
is easy to check that n ∈ D(x), x is injective, x ◦ z−1(a, b) = (a, b − h(a)),
and z ◦ x−1(a, b) = (a, b + h(a)). This clearly shows that x ∈ An(M). So to
finish the proof it suffices to show that {x> = 0} = D(x) ∩ N. It should be
clear that x> = 0 on N ∩ D(x) so that {x> = 0} ⊃ D(x) ∩N. Now suppose
that m ∈ {x> = 0} so that z>(m) = h(z<(m)) and z<(m) ∈ R(z̄). Let
n ≡ z̄−1(z<(m)) ∈ N, then

z<(n) = z<(m) and z>(n) = h(z<(n)) = h(z<(m)) = z>(m).

Therefore z(n) = z(m), so that m = n ∈ N. This shows that {x> = 0} ⊂
D(x) ∩N.

Remark 23.2. As can be seen from the above proof, the manifold structure on
N , for which item 3 of the theorem holds, is unique. Furthermore, a collection
of charts covering N were described in the proof of 2⇒ 3.

Definition 23.3. A k-dimensional embedded submanifold of a manifoldM
is a subset N of M satisfying one and hence all of the properties in Theorem
23.1 above.

23.2 Exercises

1. Show Sk ≡ {x ∈ Rk+1 : |x|2 ≡ Pk+1
i=1 x

2
i = 1} is an embedded submani-

fold of Rk+1.
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2. Show that a torus (N) of revolution in R3 is an embedded submanifold.
More explicitly, let b > a > 0 and N be the surface of revolution found
by revolving the circle (x− b)2 + y2 = a2 around the y-axis.

3. Suppose that P ⊂ N ⊂ M, N is an embedded submanifold of M, and
P is an embedded submanifold of N. Show that P is also an embedded
submanifold of M.

4. Suppose that Ni ⊂ Mi is an embedded submanifold of Mi for i = 1, 2.
Show that N1 ×N2 is an embedded submanifold of M1 ×M2.

5. Show that the k-dimensional torus

T k ≡ {z ∈ Ck||zi| = 1 for i = 1, 2, . . . , k}

is an embedded submanifold of Ck ∼= R2k.

23.3 Construction of Embedded Submanifolds

Theorem 23.4. Suppose that M and Q are manifolds, f ∈ C∞(M,Q), and
P is an embedded submanifold of Q. Let N ≡ f−1(P ) which is assumed
to be non-empty. Assume for each n ∈ N, f∗n(TnM) + Tf(n)P = Tf(n)Q.
Then N is an embedded submanifold of M and codim(N) = codim(P ), that
is codim(f−1(P )) = codim(P ), where codim(N) ≡ dim(M) − dim(N), and
codim(P ) ≡ dim(Q)− dim(P ).
Proof. Case 1) First assume that Q is an open subset of Rn = Rk×Rn−k

and P = (Rk × {0}) ∩ Q. Let p : Q → Rn−k denote projection onto the
last Rn−k factor in Rn = Rk × Rn−k. Then N = (p ◦ f)−1(0). So it suffices
to show that p ◦ f is a submersion. By assumption dfhTnMi + Rk × {0} =
Rk ×Rn−k. Hence it easily follows that d(p ◦ f)hTnMi = Rn−k. Therefore N
is and embedded submanifold of M and the dim(N) = dim(M) − (n − k) =
dim(M)− (dim(Q)− dim(P )).
Case 2) (General case.) Let n ∈ N, and q ≡ f(n). Choose x ∈ Ap(Q)

such that P ∩ D(x) = {x> = 0}, where x = (x<, x>). Set Q̃ ≡ R(x) ≡
x(Q) ⊂ Rn = Rk × Rn−k, P̃ ≡ R(x) ∩ (Rk × {0}) = x(P ∩ D(x)), and
f̃ ≡ x ◦ f |f−1(D(x)). Notice that f̃−1(P̃ ) = f−1(D(x) ∩ P ), and hence by
case one it follows that N ∩ f−1(D(x)) = f−1(D(x) ∩ P ) is an embedded
submanifold of f−1(D(x)) — an open submanifold of M. Hence there is an
open subset V of f−1(D(x)), and a smooth submersion h : V → Rn−k such
that V ∩N = V ∩ (N ∩ f−1(D(x))) = {h = 0}. From this it follows that N is
an embedded submanifold of M.

Theorem 23.5. Suppose that Mk+d and Nk+l are smooth manifolds and f ∈
C∞(M,N). Let m ∈M , and suppose that rankf∗p = k is a constant for p in
a neighborhood of m. Then there are charts x ∈ Am(M) and y ∈ Af(m)(N)

such that y ◦ f ◦x−1 : Rk×Rd → Rk×Rl is given by y ◦ f ◦x−1(a, b) = (a, 0).
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Proof. Let z ∈ Af(m)(N) be chosen such that the differential of z< ◦ f
has rank k near m, where z ≡ (z<, z>), z< = (z1, . . . , zk), and z> =
(zk+1, . . . zk+l). Set x< ≡ (x1, . . . , xk), where xi ≡ zi ◦ f for i = 1, . . . , k.
Choose smooth functions xk+1, . . . , xk+d on M such that x = (x<, x>) has
an invertible differential at m, where x> = (xk+1, . . . , xk+d). By the implicit
function theorem, it follows that x is a chart when restricted to a sufficiently
small neighborhood D(x) of m. Set F ≡ z ◦f ◦x−1 : Rk×Rd → Rk×Rl, then
F (a, b) = (a, g(a, b)) for some smooth function g : Rk × Rd → Rl. Since f∗
has rank k near m it follows that F∗ has rank near x(m). But F∗(a,b)(v, w) =
(v,D1g(a, b)v +D2g(a, b)w)F (a,b), which has rank k iff D2g(a, b) ≡ 0. There-
fore, F in fact has the form F (a, b) = (a, g(a)) where g : Rk → Rl. Rewriting
this result in terms of f shows that z ◦ f = (x<, g ◦ x<) and hence

z< ◦ f = x< and z> ◦ f = g ◦ x< = g ◦ z< ◦ f. (23.1)

Define a new chart y = (y<, y>) ∈ Af(m)(N) via: y< ≡ z< and y> ≡ z> − g ◦
z<. It now follows that y ◦ f = (x<, z> ◦ f − g ◦ z< ◦ f) = (x<, 0).
Corollary 23.6. Suppose that M and N are smooth manifolds and that f ∈
C∞(M,N). Let n ∈ ranf and set P ≡ f−1(n). If f∗m has constant rank
k in a neighborhood of P, then P is an embedded submanifold of M with
dim(P ) = dim(M)− rank(f∗).

Proof. Let m ∈ P, and x ∈ Am(M) and y ∈ An(M) be charts as in
the above theorem. Without loss of generality we may assume that y(n) = 0.
Then

P∩D(x) = {m ∈M : y◦f(m) = y(n) = 0} = {m ∈M : (x<, 0)(m) = 0} = {x< = 0}.

This clearly shows that P is an embedded submanifold and dim(P ) =
dim(M)− k.
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The Flow of a Vector Fields on Manifolds

For the purposes of this sectionM will be a C∞−manifold. The next theorem
is basic existence theorem for ordinary differential equations on manifolds.

Theorem 24.1. Let X be a smooth vector field on M, then for each point
x ∈M there exist an open interval Jx ⊂ R containing 0 and a path σx : Jx →
M such that

1. σ solves σ̇x(t) = X(σx(t)) with σx(0) = o.
2. If τ : I →M is also solves the differential equation

τ̇(t) = X(τ(t)) with τ(0) = o,

then I ⊂ Jx and τ = σx|I .
3. If Jx is bounded above then for all compact subsets K ⊂ M, there exists

T = T (K) ∈ Jx such that for all t > T in Jx, σx(t) /∈ K.
4. If Jx is bounded below then for all compact subsets K ⊂ M, there exists

T = T (K) ∈ Jx such that for all t < T in Jx, σx(t) /∈ K.

Set D(X) = ∪x∈M (Jx × {x}) ⊂ R × M, and define φ : D(X) → M
via φ(t, x) = σx(t). Then D(X) is an open set in R ×M and φ is a smooth
function on D(X). Furthermore if t ∈ Jx and s ∈ Jφ(t,x), then t+ s ∈ Jx and

φ(s, φ(t, x)) = φ(t+ s, x). (24.1)

Let Dt(X) ≡ {x ∈ M |(t, x) ∈ D(X)} (notice that Dt(X) is open in M). We
now write etX for the function x→ φ(t, x), x ∈ Dt(X). Then etX : Dt(X)→
D−t(X) is a diffeomorphism with inverse e−tX .With this notation (24.1) may
be rephrased as

esX ◦ etX(x) = e(s+t)X(x). (24.2)

I will give a sketch of the proof and refer the reader to Chapter IV of Lang
[5], Chapter 5. of Spivak, or Theorem 1.48 of Warner [15] for a detailed proof.
The main ingredient in the proof is the local properties of O.D.E.’s proved in
the last section. For convenience, we state the properties we will use in the
proof:
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Lemma 24.2. For all x ∈M there is an �x > 0 and neighborhood Ux ∈ τx(M)
such that for all y ∈ Ux the differential equation

σ̇(t; y) = X(σ(t; y)) with σ(0; y) = y

has a unique solution for |t| < �x. Furthermore, the function (t, y) → σ(t; y)
is smooth.

Proof. Let Jx be the union over all open intervals I = (a(I), b(I)) such
that: 0 ∈ I and there is a C1—curve σI : I →M such that

σ̇I(t) = X(σI(t)) with σI(0) = x.

Suppose that I and J are two such intervals and b(I) < b(J). By local unique-
ness we know that σI = σJ for 0 ≤ t ≤ �x. Let β = sup{T < b(I) : σI =
σJ on [0, T ]} ≥ �x. If β < b(I), set z = σI(β) = σJ(β), � = �z and U = Uz.
Choose T < β such that β − T < �/2 and w = σI(T ) = σJ(T ) ∈ U. Set
ρI(t) = σI(t− T ) and ρJ(t) = σ(t− T ). Then ρI and ρJ both satisfy

ρ̇(t) = X(ρ(t)) with ρ(0) = w.

By the local uniqueness theorem it follows that ρI(t) = ρJ(t) when |t| < �
provided both ρI(t) and ρJ(t) are defined. But this implies that

σI(t) = σJ(t) for 0 ≤ t < min(β + �/2, b(I)),

which contradicts the definition of β. From this argument and a similar ar-
gument for t < 0, it follows that σI = σJ in I ∩ J. Therefore σx(t) ≡ σI(t) if
t ∈ I is a well defined solution to

σ̇(t) = X(σ(t)) with σ(0) = x,

and clearly by construction (σx, Jx) satisfies items 1 and 2 of the theorem.
Now write Jx = (ax, bx), and assume that bx < ∞. Suppose that there is

a compact set K in M a sequence tn ↑ bx such that σx(tn) ∈ K for all n.
Then by compactness, we can find a subsequence (which we still call {tn})
such that z ≡ limn→∞ σx(tn) exists in K. Again let � = �z and U = Uz as in
Lemma 24.2. Choose n > 0 such that w ≡ σx(tn) ∈ Uz and bx− tn < �/2. Let
ρ(t) solve

ρ̇(t) = X(ρ(t)) with ρ(0) = w.

By local uniqueness it follows that σx(t + tn) = ρ(t) when both sides are
defined so that

σ(t) =

½
σx(t) if t ∈ Jx
ρ(t− tn) |t− tn| < �

solves σ̇(t) = X(σ(t)) for t ∈ (ax, bx + �/2). This contradicts the definition of
bx and hence proves item 3. Item 4 has a similar proof.
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To verify that D(X) is open and φ : D(X) → M is smooth let x ∈ M,
and define β to be the supremum of all times T < bx such that there exists
an open subset V ∈ τx(M) such that T < by for y ∈ U, and φ|(−�x,T )×V
is smooth. By Lemma 24.2 it follows that β ≥ �x. We wish to show that
β = bx. For contradiction, assume that β < bx and set z = σx(β), U = Uz,
and � = �z. Choose a T > 0 such that 0 < β − T < �/2 and σ(T ) ∈ U.
Also choose T1 ∈ (T, β), then by the definition of β there is an open subset
V1 ∈ τx(M) such that φ̃ ≡ φ|(−�x,T1)×V1 is smooth. Set φ̃T (y) ≡ φ̃(T, y) and
V ≡ φ̃−1T (U) ∈ τx(M). (Note V ⊂ V1.) For (t, y) ∈ (−�x, T + �/2)× V, set

Ψ(t, y) ≡
½
φ(t, y) if t < T1
φ(t− T, φ(T, y)) if T < t < T + �

. (24.3)

By uniqueness of solutions already proved it is easily verified that Ψ is well
defined. Since Ψ satisfies

Ψ̇(t, y) = X(Ψ(t, y)) with Ψ(0, y) = y

it follows that (−�x, T+�/2)×V ⊂ D(X) and Ψ = φ|(−�x,T+�)×V . The formula
(24.3) shows that Ψ = φ|(−�x,T+�/2)×V is smooth on (−�x, T+�)×V. But since
T + � > β, this contradicts the definition of β. Therefore in fact β = bx.
To summarize, we have shown for all x ∈ M and 0 < T < bx, there is

an open set V ∈ τx(M) such that (−�x, T ) × V ⊂ D(X) and φ|(−�x,T )×V is
smooth. As similar argument for t < 0 shows if ax < T < 0, there exists
W ∈ τx(M) such that (T, �x) ×W ⊂ D(X) and φ|(T,�x)×W is smooth. From
these two assertions it follows for all bounded open intervals J such that
J̄ ⊂ Jx, there exists V ∈ τx(M) such that J × V ⊂ D(X), and φ|J×V is
smooth. This clearly implies thatD(X) is open and φ : D(X)→M is smooth.
The rest of the assertions of the theorem are left as exercise for the reader.

(The remaining assertions only use the smoothness uniqueness results that
have already been proven.)

Definition 24.3. A vector field X on M is said to be complete if D(X) =
R×M.

Definition 24.4. A one parameter group of diffeomorphisms on a smooth
manifold M is a smooth function φ : R×M → M (write φt(m) for φ(t,m))
such that φt ◦ φs = φt+s for all t, s ∈ R and φ0 = id|M .

Notice that φ−t ◦ φt = φt ◦ φ−t = φ0 = id|M shows, for each t ∈ R, that
φt is a diffeomorphism on M with inverse φ−t.

Proposition 24.5. There is a one to one correspondence between one para-
meter groups of diffeomorphisms on M and complete vector fields on M.

Proof. If X is a complete vector field, set φt ≡ etX . Conversely, if φt is a
one parameter group of diffeomorphisms, set X(m) = d

dt |0φt(m).
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Corollary 24.6. If M is a compact manifold, then all smooth vector fields
on M are complete.

Proof. According to item 3. in Theorem 24.1, for each x ∈ M , Jx must
not be bounded above. Otherwise σx(t) would have to eventually leave the
compact set M, which is clearly impossible. Similarly by item 4. of Theorem
24.1 we must have that Jx is not bounded below. Hence Jx = R for all x ∈M.

Remark 24.7. Notice that for all x ∈ M that etX(x) is the unique maximal
path solving the differential equation

d

dt
etX(x) = X(etX(x)) with e0X(x) = x.

The next few sections of these notes comes from co-area.tex.
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Co-Area Formula in Riemannian Geometry

The co-area material is from “C:\driverdat\Bruce\DATA\MATHFILE\qft-
notes\co-area.tex.” for this material. For Stokes theorem, see Whitney’s "Geo-
metric Integration Theory," p. 100. for a fairly genral form of Stokes Theorem
allowing for rough boundaries.
In this sectionW and X are smooth manifolds and p :W → X is a smooth

map.

Definition 25.1. A map p :W → X is a submersion if p∗w(TwW ) = Tp(w)X
for all w ∈W.

Let us begin by noting that a submersion need not be a fiber bundle. In
fact given x0 ∈ X it need not be the case that there is a neighborhood V
about x0 such that p : p−1(V ) → V is a fiber bundle, see Figures 25.1 and
25.2 below.

Fig. 25.1. For x > 0, π−1 (x) consists of two points while for π−1(x) consists of one
point for x ≤ 0.

We do have the following theorem however.

Theorem 25.2. Suppose p :Wm → Xn is a submersion, then
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Fig. 25.2. For x 6= 0, π−1 (x) is diffeomorphic to a circle while π−1 (0) is diffeomor-
phic to a R.

1. p is an open mapping.
2. To each w ∈ W there exists O ∈ τw and a smooth map φ : O → Rm−n
such that (p, φ) : O→ p(O)× Rm−n is a diffeomorphism.
Proof. Since this is a local theorem, we map assume W = Rm, X = Rn,

w = 0 and p(0) = 0. By precomposing p with a linear transformation, we may
also assume that

p0(0) =
£
In×n 0

¤
: Rm = Rn ×Rm−n → Rn.

Letting ψ(x, y) := (p(x, y), y), we have ψ0(0, 0) = Im×m and so by the implicit
function theorem, there is an open neighborhood O ⊂ Rm of 0 such that
ψ : O → Q := ψ(O) is a diffeomorphism with O be chosen so that Q is an
open cube in Rm centered at 0. Given V ⊂o O, we then have p(V ) = π1(ψ(V )),
where π1 : Rn × Rm−n → Rn is the canonical projection map. Since π1 is an
open mapping and ψ is a diffeomorphism, it follows that p(V ) is open and
hence p is an open mapping. To finish the proof let π2 : Rn ×Rm−n → Rm−n
be projection onto the second factor and φ := π2 ◦ ψ. Then ψ = (p, φ) and
φ(O) is an open cube inside of Rm−n which is diffeomorphic to Rm−n.
Suppose now that we are given a smooth measure λ on W. Our next goal

is to describe the measure p∗λ. This will be done in the most intrinsic way in
the next subsection. Here we will put Riemannian metrics on both W and X
and use these structures to describe the answer.

Theorem 25.3 (Co-Area Formula). Assume both W and X are Rie-
mannian manifolds, λW and λX are the Riemann volume measures on W
and X respectively, dλ = gdλW for some function g : W → [0,∞) and
p :W → X is a smooth submersion. Further, for each x ∈ X, let σx denote the
Riemannian volume measure on Wx determined by the induced Riemannian
metric on Wx and for w ∈W let
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J(w) :=
p
det (p∗wptr∗w). (25.1)

Then
d (p∗λ)
dλX

(x) =

Z
Wx

1

J(w)
g(w)dσx(w),

i.e., if f : X → [0,∞) is a measurable function thenZ
W

(f ◦ p) gdλW =

Z
X

dλX(x) f(x)

Z
Wx

1

J(w)
g(w)dσx(w). (25.2)

Remark 25.4. Since we may absorb f ◦ p into the function g in Eq. (25.2), the
co-area formula is equivalent toZ

W

gdλW =

Z
X

·Z
Wx

1

J(w)
g(w)dσx(w)

¸
dλX(x). (25.3)

holding for all positive measurable functions g on W.

Before going to the formal proof, let us make a few comments to under-
stand co-area formula intuitively. First suppose that X = R and W = R2
(or Rn more generally) in which case J(w) = |∇p(w)| . Let Q ⊂ R be a
small interval centered at x ∈ Q, then p−1(Q) is a tubular neighborhood of
Wx = p−1 ({x}) , see Figure 25.3 below.

Fig. 25.3. Computing the measure p∗λ.

Referring to Figure 25.3, we should haveZ
p−1(Q)

g(w)dw ∼=
Z
Wx

g(w)dwσx(dw)

where dw denotes the width of the tubular neighborhood at w ∈Wx. Now by
the definition of the gradient, we have 2∆ ∼= |∇p(w)| dw since if N = ∇p(w)

|∇p(w)|
is the unit normal to Wx at w, we have
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∆ = p(w +
1

2
dwN)− p(w) ∼= ∇p(w) · 1

2
dwN =

1

2
|∇p(w)| dw.

Therefore, Z
p−1(Q)

g(w)dw ∼= 2∆
Z
Wx

1

|∇p(w)|g(w)σx(dw)

= |Q|
Z
Wx

1

|∇p(w)|g(w)σx(dw)

and so
1

|Q|
Z
p−1(Q)

g(w)dw→
Z
Wx

1

|∇p(w)|g(w)σx(dw)

asQ shrinks to {x} . So letting µ(A) = (p∗λ) (A) :=
R
p−1(A) g(w)dw, we expect

dµ

dm
(x) =

Z
Wx

1

|∇p(w)|g(w)σx(dw)

and thereforeZ
W

g(w)dw = µ(W ) =

Z
X

dµ

dm
(x)dm(x) =

Z
X

dµ

dm
(x)dm(x)

=

Z
X

·Z
Wx

1

|∇p(w)|g(w)σx(dw)
¸
dm(x).

As a concrete example of this form, let p(w) = φ (|w|) where φ(0) = 0 and
φ is monotonically increasing and limr→∞ φ(r) = ∞. In this case ∇p(w) =
φ0(|w|)ŵ, |∇p(w)| = φ0(|w|) and Wx = {p = x} = φ−1(x)S where S is the
unit circle in W. Parametrizing Wx = φ−1(x)S by φ−1(x)(cos θ, sin θ), we find
dσx = φ−1(x)dθ and the co-area formula then says,Z

W

g(w)dw =

Z ∞
0

dx

·Z 2π

θ=0

1

φ0(φ−1(x))
g(φ−1(x)(cos θ, sin θ))φ−1(x)

¸
dθ.

Letting r = φ−1(x) above or x = φ(r) so dx = φ0(r)dr, we findZ
W

g(w)dw =

Z ∞
0

φ0(r)dr
·Z 2π

θ=0

1

φ0(r)
g(r(cos θ, sin θ))r

¸
dθ

=

Z ∞
0

dr

·Z 2π

θ=0

g(r(cos θ, sin θ))r

¸
dθ

which is the usual polar coordinates formula.
As a better example, let (θ, r) be polar coordinates on W = R2 and take

p(w) = θ(w). Since p is constant along rays emanating from the origin, if we
let w(t) = r(cos t, sin t), then p(w(t)) = t and so so

1 =
d

dt
t = ∇p(w(t)) · ẇ(t) = |∇p(w(t))| · |ẇ(t)| = |∇p(w(t))| r.
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Therefore, |∇p(w)| = 1
r(w) and the co-area formula says thatZ

W

g(w)dw =

Z π

−π
dθ

·Z ∞
0

1

1/r
g(r(cos θ, sin θ))dr

¸
=

Z π

−π
dθ

·Z ∞
0

g(r(cos θ, sin θ))rdr

¸
which is the usual polar coordinates formula. Here we are using the area =
length measure on {p = θ} parameterized by r→ r(cos θ, sin θ) is simply given
by dr, since

dσ =

q
[dr cos θ]2 + [dr sin θ]2 = dr.

Let us now consider another special case, namely W = R3 and X = R2,
see Figure 25.3 below. Working similarly to the last example let Q now be a

Fig. 25.4. Computing p∗λ again.

small ball in R2 centered at x ∈ X and let Aw denote the area of the almost
elliptical cross section of p−1(Q) at w ∈ Wx in the plane, Pw, normal to Wx

at w. Then we should have

p∗λ(Q) =
Z
p−1(Q)

g(w)dw ∼=
Z
Wx

g(w)Awσx(dw).

So we now have to compute Aw. To this end, notice that p : Pw∩p−1(Q)→ Q
is bijective and since Q is a small ball, we should have

m2(Q) = m2(p(Pw ∩ p−1(Q))) ∼= J(w) ·Area(Pw ∩ p−1(Q)) = J(w) ·Aw

where J(w) denotes the dilation factor for p0(w) : Pw → R2. To compute this
factor, let O : R2 → Pw be an orthogonal map, then
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J(w) = |det (p0(w)O)| =
r
det

³
p0(w)O [p0(w)O]tr

´
=

r
det

³
p0(w) [p0(w)]tr

´
.

Combining these remarks then gives

p∗λ(Q)
m2(Q)

∼= 1

m2(Q)

Z
Wx

g(w)Awσx(dw)

∼= 1

m2(Q)

Z
Wx

g(w)
m2(Q)

J(w)
σx(dw).

So letting Q shrink to {x} we find
d (p∗λ)
dm2

(x) =

Z
Wx

g(w)
1

J(w)
σx(dw)

which is again the co-area formula.
As an explicit example in this category, let W = R3, X = S2 be the unit

sphere in W and p : W → S2 be given by p(w) = w/ |w| . In this case Wx is
the ray through x ∈ S2 and

∂vp(w) =
1

|w| [v − (v · ŵ)ŵ] =
1

|w|Qwv

where Qwv is orthogonal projection of v onto TŵS
2. Since QwQ

∗
w = Q2w =

Qw = id on TŵS
2, we have

J :=

r
det

h
p0 (p0)tr

i
=

vuutdet"µ 1

|w|
¶2

I2×2

#
=

µ
1

|w|
¶2

.

So parametrizing Wx by r ∈ [0,∞) → rx ∈ Wx and using dσx = dr in this
case we learn from the co-area formula thatZ
W

g(w)dw =

Z
S2

·Z ∞
0

1

J(rx)
g(rx)dr

¸
dλS2(x) =

Z
S2

·Z ∞
0

g(rx)r2dr

¸
dλS2(x)

which is the usual polar coordinates formula on R3. This same method works
in any dimension to giveZ

Rn
g(w)dw =

Z
Sn−1

·Z ∞
0

g(rx)rn−1dr
¸
dλSn−1(x).

Lemma 25.5. Suppose that A : V →W and B :W → V are linear transfor-
mations of finite dimensional vector spaces, then det(AB) = det(BA).

Proof. If dim(V ) 6= dim(W ), then neither AB or BA can be invertible
so that det(AB) = det(BA) = 0 and the lemma holds. So now suppose
dim(V ) = dim(W ) = n, {vi}ni=1 be a basis for V and {wi}ni=1 be a basis for
W and let aij and bij be defined so that
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Avi = wjaji and Bwi = vjbji

so that
BAvi = Bwjaji = vkbkjaji = vk(ba)ki.

That is to say the matrix associated to BA is ba. By a similar computation
the matrix associated to AB is ab, so that det(BA) := det(ba) = det(ab) =:
det(AB).
Before starting the formal proof of Theorem 25.3, let us recall the meaning

of the measures that are involved in the theorem. SupposeM is a Riemannian
manifold which is diffeomorphic to some open subset O of Rd and let φ : O→
M be a diffeomorphism. Then given f :M → R we want to defineZ

M

fdλM =

Z
O
f ◦ φ(x) ρφ(x) dx

where ρφ(x) = V ol(φ0(x)Q) where Q is a unit cube in Rd. To compute this
volume for each x ∈ O let ux : Tφ(x)M → Rd be an orthogonal transformation,
then

ρφ(x) = V olTφ(x)M (φ
0(x)Q) = md(Oxφ

0(x)Q) = |det(Oxφ
0(x))| .

Using the basic properties of the determinant we have

ρφ(x) =

q
det([Oxφ0(x)]

tr
Oxφ0(x))

=

q
det([φ0(x)]tr φ0(x)) =

q
det(φ0(x) [φ0(x)]tr).

To simplify the linear algebra in the proof of Theorem 25.3 given below it will
be useful to introduce

ρM (v1, . . . , vd) := det([Omv1|Omv2| . . . |Omvd])

for vi ∈ TmM. It should be noted that ρM is well defined modulo a sign and
that

ρφ(x) = |ρM (φ0(x)e1, . . . , φ0(x)ed)| =
q
det ({φ0(x)ei, φ0(x)ej})

where {ei}di=1 is the standard orthonormal basis for Rd.

25.0.1 Formal Proof of Theorem 25.3

The heart of the proof is contained in the following Lemma.

Lemma 25.6. Let w ∈ W, x = p(w), {vi}mi=1 ⊂ TwW be a collection of
vectors such that vi ∈ nul(p0(w)) = TwWx for i > n, then

ρW (v1, . . . , vm) = ± 1

J(w)
ρX(p

0(w)v1, . . . , p0(w)vn)ρWx(vn+1, . . . , vm).

(25.4)
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Proof. Since both sides of Eq. (25.4) are multi-linear in (v1, v2, . . . , vn) it
suffices to prove Eq. (25.4) under the additional assumption that {vi}ni=1 is
an orthonormal basis for nul(p0(w))⊥ = (TwWx)

⊥ . Assuming this we have

ρW (v1, . . . , vm) = ±
s
det

·
In×n 0
0 {vj · vk}mj,k=n+1

¸
= ±ρWx(vn+1, . . . , vm). (25.5)

Letting q := p0(w)|(TwW )⊥ , we have

[ρX(p
0(w)v1, . . . , p0(w)vn)]

2
= det ((p0(w)vi, p0(w)vj))
= det ((vi, q

∗qvj))
= det (q∗q) = det (qq∗)

= det (p0(w)p0(w)∗) = J2(w)

so that
1 = ± 1

J(w)
ρX(p

0(w)v1, . . . , p0(w)vn). (25.6)

Combining Eqs. (25.5) and (25.6) proves Eq. (25.4).
Proof. (Proof of Theorem 25.3.)
Using a partition of unity argument we may suppose that supp(g) is

“small,” i.e. it is enough to prove the assertion on a countable neighborhood
base of W. So we now assume that W is an open subset of Rm and X is
an open neighborhood of Rn. Let w0 ∈ W, k := m − n, Y := Rk = Rm−n
and choose a smooth map (a linear map will do) ψ : W → Y such that
(p, ψ)0(w0) : Rm → X × Y ∼= Rm is invertible. By the implicit function the-
orem, we may shrink the W if necessary, so that (p, ψ) : W → (p, ψ)(W )
is a diffeomorphism. Moreover, by shrinking W more, we may assume that
(p, ψ)(W ) is a rectangle in X × Y, i.e. (p, ψ)(W ) = p(W ) × ψ(W ) =: U × V
so we now have that

(p, ψ) :W → U × V ⊂ X × Y ⊂ Rm

is a diffeomorphism. Let φ := (p, ψ)−1 : U × V →W be the inverse map and
assume that supp(g) is compactly contained in W, see Figure 25.5 below.
Let w = φ(x, y), vi := φ0(x, y)ei for i = 1, 2, . . . , n, n + 1, . . .m then by

definition of λW , λX and λWx
, Lemma 25.6 we have

dλW = |ρW (v1, . . . , vm)| dxdy
=

1

J(w)
ρX(p

0(w)v1, . . . , p0(w)vn)ρWx(vn+1, . . . , vm)dxdy (25.7)

and
dσx = ρWx(vn+1, . . . , vm)dy (25.8)
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Fig. 25.5. The geometry behind the surface area measure σx and the proof of the
co-area formula.

Since p ◦ φ(x, y) = x, it follows that

ei = p0(φ(x, y))φ0(x, y)ei = p0(φ(x, y))vi for i = 1, 2, . . . , n

and therefore

ρX(p
0(w)v1, . . . , p0(w)vn)dx = ρX(e1, . . . , en)dx = dλX . (25.9)

Hence if f : X → R is a function, then by the definitions, Eqs. (25.7), (25.8)
and (25.9) and Fubini’s theorem,Z

W

f ◦ p dλ =

Z
W

f ◦ p gdλW

=

Z
U×V

f(x)g(φ(x, y))
1

J(φ(x, y))
×½

ρX(p
0(φ(x, y))v1, . . . , p0(φ(x, y))vn)
·ρWx(vn+1, . . . , vm)

¾
dxdy

=

Z
U×V

f(x)g(φ(x, y))
1

J(φ(x, y))
×

ρWx(vn+1, . . . , vm)dy · ρX(e1, . . . , en)dx

=

Z
U

f(x)

µZ
Wx

g
1

J
dσx

¶
· ρX(e1, . . . , en)dx

=

Z
X

f

µZ
Wx

g
1

J
dσx

¶
· dσx.
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Corollary 25.7 (Co-Area Formula). Let p : W → X be any smooth
map of Riemannian manifolds (not necessarily a submersion), J(w) :=p
det (p∗wptr∗w),

C := {w ∈W : J(w) = 0}
and σx be the measure on Wx such than σx is surface measure on (W \C)x :=
Wx\C and σx(Wx∩C) = 0. Then for any measurable function g :W → [0,∞)
we haveZ

W

(f ◦ p) gJdλW =

Z
X

f(x)

·Z
Wx

g(w)dσx(w)

¸
dλX(x), (25.10)

which we abbreviate by

J(w)dλW (w) = dσx(w)dλX(x).

Proof. Let us first observe that J(w) = 0 iff p∗wptr∗w is not invertible which
happens iff rank(p∗w) < dim(X). Hence C is the set of critical points of p and
p : W \ C → p(W \ C) ⊂ X is a submersion. By applying Theorem 25.3 to
p :W \ C → p(W \ C) we findZ

W

(f ◦ p) gJdλW =

Z
W\C

(f ◦ p) gJdλW

=

Z
p(W\C)

dλX(x) f(x)

Z
(W\C)x

g(w)dσx(w)

=

Z
p(W\C)

dλX(x) f(x)

Z
Wx

g(w)dσx(w).

By Sard’s theorem, λX(p(C)) = 0 so the the integral over p(W \ C) in the
last line may be replaced by an integral over p(W \ C) ∪ p(C) = p(W ) = X
which completes the proof.

25.1 Special case of the Co-area formula when X = R

Corollary 25.8. Suppose W is a Riemannian manifold and u ∈ C∞c (W ),
then Z

W

|∇u| dλW =

Z ∞
0

σt (|u| = t) dt.

Proof. Referring to Corollary 25.7 with X = R, g = 1, f = 1 and p = u
we have J =

p
det (u∗utr∗ ) = |∇u| because u∗v = ∇u · v and utr∗ 1 = ∇u.

Therefore by Eq. (25.10),Z
W

|∇u| dλW =

Z
R
σ ({u = t}) dt =

Z ∞
0

σ (|u| = t) dt,
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where σ is used to denote the Riemann surface measure. (By Sard’s theorem,
{|u| = t} = {u = t} ∪ {u = −t} is a smooth co-dimension one submanifold of
W for almost every t. This completes the proof.
Second Proof following Maz’ya. Let X be a smooth vector field on

W and Nt := {w ∈W : |u(w)| ≥ t} . By Sard’s theorem, for almost every t,
∇u(w) 6= 0 for all

w ∈ {u = t} ∪ {u = −t} = {|u| = t} .
For these non-exceptional t, we have ∂Nt = {|u| = t} is a smooth co-dimension
one submanifold of W. Indeed we always have

∂Nt = Nt ∩Nc
t = {|u| ≤ t} ∩ {|u| > t} ⊂ {|u| ≤ t} ∩ {|u| ≥ t} = {|u| = t} .

The reverse inclusion is not always true since u could have a flat spot in which
case {|u| > t} Ã {|u| ≥ t} . However for non-exceptional t, where ∇u(w) 6= 0
for all w ∈ {|u| = t} , no such flat spots exist and one easily shows {|u| > t} =
{|u| ≥ t} and therefore that ∂Nt = {|u| = t} as desired.
Let X be a smooth vector field on W with compact support, then by the

divergence theorem,Z
W

X ·∇u dλW = −
Z
W

∇ ·X u dλW

= −
Z
u>0

∇ ·X u dλW −
Z
u<0

∇ ·X u dλW .

Now letting n := − ∇u|∇u| be the outward normal to {u ≥ t} on the boundary
{u = t} we haveZ
u>0

∇ ·X u dλW =

Z ∞
0

dt

Z
W

dλW 1t≤u∇ ·X =

Z ∞
0

dt

Z
{u≥t}

∇ ·X dλW

=

Z ∞
0

dt

Z
{u=t}

X · n dσt = −
Z ∞
0

dt

Z
{u=t}

X · ∇u|∇u| dσt.

Applying this equality to −u showsZ
u<0

∇ ·X (−u) dλW = −
Z ∞
0

dt

Z
{−u=t}

X · ∇(−u)|∇u| dσ

and combining all of these identities the givesZ
W

X ·∇u dλW =

Z ∞
0

dt

Z
{u=t}

X · ∇u|∇u| dσt

+

Z ∞
0

dt

Z
{−u=t}

X · ∇u|∇u| dσ

=

Z ∞
0

dt

Z
{|u|=t}

X · ∇u|∇u| dσ. (25.11)
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Now, formally, we want to take X = ∇u
|∇u| in which caseZ

W

|∇u| dλW =

Z ∞
0

dt

Z
{|u|=t}

1 dσt =

Z ∞
0

σ ({|u| = t}) dt

as desired. This is not quite correct since X is not smooth with compact
support. In order to fix this let � > 0 and choose φ� ∈ C∞c (W, [0, 1]) such that
φ� ↑ 1 as � ↓ 0. Then set X� := φ�

∇u
(|∇u|2+�)1/2

in Eq. (25.11) to find

Z
W

φ�
|∇u|2³

|∇u|2 + �
´1/2 dλW =

Z ∞
0

dt

Z
{|u|=t}

φ�
|∇u|³

|∇u|2 + �
´1/2 dσ

and pass to the limit �→ 0 using the monotone convergence theorem on each
side to concludeZ

W

|∇u| dλW =

Z ∞
0

dt

Z
{|u|=t}

dσt =

Z ∞
0

σ ({|u| = t}) dt

as desired where again we have used Sard’s theorem in showing for almost
ever t,

lim
�↓0
1{|u|=t}φ�

|∇u|³
|∇u|2 + �

´1/2 = 1{|u|=t} |∇u| .

Corollary 25.9. Suppose W is a Riemannian manifold, u ∈ C∞c (W ) and
φ ∈ C (W, [0,∞)) thenZ

W

φ |∇u| dλW =

Z ∞
0

"Z
{|u|=t}=∂{|u|≥t}

φdσ

#
dt.

Proof. This proof is a consequence of the following identitiesZ
W

φ |∇u| dλW =

Z
W

dλW

Z ∞
0

dt1t<φ |∇u| =
Z ∞
0

dt

Z
W∩{t<φ}

|∇u| dλW

=

Z ∞
0

dt

Z ∞
0

dτσ ({|u| = τ, and t < φ})

=

Z ∞
0

dt

Z ∞
0

dτ

Z
{|u|=τ}

1t<φdσ =

Z ∞
0

dτ

Z
{|u|=τ}

φdσ

as claimed, where Corollary 25.8 in the third equality.
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25.2 Differential Geometric Version of Co-Area Formula

In this subsection we will remove the superfluous Riemannian geometry used
above and give a more pure form of the Co-area formula. Using this result, it
is possible to recover the results in Theorem 25.3. Recall that absolutely con-
tinuous measures are in one to one correspondence with measurable densities.
So let ρ be the density corresponding to and absolutely continuous measure
λ on W.

Theorem 25.10. Suppose that p : Wm → Xn is a submersion and λ is
an absolutely continuous positive measure on W, then p∗λ is an absolutely
continuous measure on X. If λ is described by the density ρ on W then p∗λ
is described by the density ρ̄ on X defined by

ρ̄(ηx) =

Z
Wx

ρ(—, η̃)

where Wx := p−1 ({x}) , η ∈ Λn(TxX) and η̃w is chosen in Λn(TwW ) so that
p∗η̃w = η for all w ∈Wx.

Proof. First notice that if λ =
P∞

i=1 λi then p∗λ =
P∞

i=1 p∗λi and

ρ̄(ηx) =

Z
Wx

ρ(—, η̃) =
∞X
i=1

Z
Wx

ρi(—, η̃) =
∞X
i=1

ρ̄i(ηx).

Therefore by a partition of unity argument, we may assume without loss of
generality that supp(ρ) is contained in an open set O as described in Theorem
25.2. Using Theorem 25.2, we may find a diffeomorphism ψ of the form ψ =
(p, φ) : O → p(O) ×Q where Q is a cube in Rm−n centered at 0. Let x be a
chart for p(O) and y be a chart for Q and f : p(O)→ [0,∞) be a measurable
function, thenZ

p(O)

fdp∗λ =
Z
O

f ◦ p dλ :=

Z
p(O)×Q

f ◦ p ◦ ψ−1 dψ∗λ

=

Z
p(O)×Q

f dψ∗λ.

Now the density for ψ∗λ is ρ̃(ξ) := ρ(ψ−1∗ ξ), soZ
p(O)×Q

f dψ∗λ =
Z
p(O)×Q

f ρ(ψ−1∗ (∂x ⊗ ∂y))dxdy

=

Z
p(O)

dx f

Z
Q

ρ(ψ−1∗ ∂x ⊗ ψ−1∗ ∂y)dy.

On the other hand,
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Ox

ρ(ψ−1∗ ∂x ⊗ —) =
Z
Ox

ρ(ψ−1∗ ∂x ⊗ ψ−1∗(x,·)∂y)dy = ρ̄(∂x)

where the last equality follows from the identity, p∗ψ−1∗ ∂x = ∂x. Putting the
last three displayed equations together givesZ

p(O)

fdp∗λ =
Z
p(O)

fρ̄(∂x)dx

from which we conclude that ρ̄ is indeed the density associated to p∗λ.

Remark 25.11. If λ is a finite measure, then p∗λ is a finite measure and there-
fore ρ̄ is an integrable density. On the other hand if λ is an infinite measure, it
is possible that ρ̄ is identically infinite. For example if λ is Lebesgue measure
on R2 and p : R2 → R is projection onto the first factor, then p∗λ = ∞dm1,
showing ρ̄ is the infinite density.
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Application of the Co-Area Formulas

26.1 Existence of Densities for Push Forwards of
Measures

Theorem 26.1. Let W and X be Riemannian manifolds, λW and λX be the
Riemann volume measures on W and X respectively, dλ = gdλW for some
measurable function g : W → [0,∞) and p : W → X be smooth map. Then
p∗λ¿ λX iff λ(C) = 0 where

C := {w ∈W : J(w) = 0} = {Critical points of p}
and J(w) :=

p
det (p∗wptr∗w) as above. Moreover if λ(C) = 0 then

d (p∗λ)
dλX

(x) =

"Z
Wx\C

ρ(w)

J(w)
dσx(w)

#
.

Proof. By Sard’s theorem λX (p(C)) = 0 so if p∗λW ¿ λX then

0 = p∗λ(p(C)) = λ(p−1(p(C))) ≥ λ(C)

which shows λ(C) = 0.
Conversely if λ(C) = 0, then J > 0 λW — a.e. on the set {ρ > 0} . Hence if

g := ρ
J 1J>0, then J(w)g(w) = ρ(w) for λW — a.e. w ∈W. Using this function

g in Eq. (25.10) of Corollary 25.9,Z
W

fd (p∗λ) =
Z
W

(f ◦ p) dλ =
Z
W

(f ◦ p) ρdλW =

Z
W

(f ◦ p) gJdλW

=

Z
X

f(x)

·Z
Wx

g(w)dσx(w)

¸
dλX(x)

for all non-negative measurable functions on X. From this we conclude

d (p∗λ) =
·Z

Wx

g(w)dσx(w)

¸
dλX(x)
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which completes the proof of the theorem.
Let us work out some examples.

Example 26.2. In these examples, let W = R2, dλ = ρdm2, X = R, p : W →
X be a smooth map and C be the critical point set for p.

1. Suppose p(x, y) = 3, then p∗λ = λ(W )δ3 which is clearly not absolutely
continuous. Notice that C =W in this example.

2. Suppose p(x, y) = x, then d(p∗λ)
dm (x) =

R
R ρ(x, y)dy. For example if

ρ(x, y) =
1

2π
e−

1
2 (x

2+y2) (26.1)

we would find
d (p∗λ)
dm

(x) =
1√
2π

e−
1
2x

2

.

3. Again let ρ(x, y) be as in Eq. (26.1), but now take p(x, y) = x3. In this
caseZ

R
fd (p∗λ) =

Z
W

f(x3)
1

2π
e−

1
2 (x

2+y2)dxdy =

Z
W

f(x3)
1√
2π

e−
1
2x

2

dx

=

Z
W

f(z)
1√
2π

e−
1
2z

2/3 1

3
z−2/3dz.

In this case
d (p∗λ)
dm

(x) =
1

3
√
2πx2/3

e−
1
2x

2/3

.

Notice the density is smooth away from the origin where it blows up.
4. Let ρ(x, y) be as in Eq. (26.1) and p(x, y) = xy. We will make the change
of variables u = xy and v = y on W \ {y = 0} which satisfies y = v and
x = u/v and

dudv =

¯̄̄̄
det

·
y x
0 1

¸¯̄̄̄
dxdy = |y| dxdy = |v| dxdy.

SoZ
R
fd (p∗λ) =

Z
W

f(xy)
1

2π
e−

1
2 (x

2+y2)dxdy =

Z
W

f(u)
1

2π
e−

1
2 (u

2/v2+v2) dudv

|v| .

Therefore,
d (p∗λ)
dm

(u) =

Z
R

1

2π
e−

1
2 (u

2/v2+v2) dv

|v| .

Again notice that C = {y = 0} , p(C) = {0} , ρ(0) = ∞ and ρ is smooth
away from 0.
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5. Let ρ(x, y) be as in Eq. (26.1) and p(x, y) = x2 + y2. Since ∇p = 2(x, y),
C = {0} and p(C) = {0} . By computing in polar coordinates we findZ

R
fd (p∗λ) =

Z
W

f(x2 + y2)
1

2π
e−

1
2 (x

2+y2)dxdy

=

Z
r≥0,|θ|≤π

f(r2)
1

2π
e−

1
2 r

2

rdrdθ =

Z
r≥0

f(r2)e−
1
2 r

2

rdr.

Letting x = r2 in the last integral showsZ
R
fd (p∗λ) =

1

2

Z
x≥0

f(x)e−
1
2xdx

so that
d (p∗λ)
dm

(x) =
1

2
1x≥0e−

1
2x.

6. Let ρ(x, y) be as in Eq. (26.1) and let p(x, y) = eh(x,y) for some function
h. Then

z = p(x, y) = eh(x,y) iff h(x, y) = ln z.

In this case, J = |∇p| = p |∇h| and dσz =
p
dx2 + dy2 is the element of

arc — length on Wz := {h = ln z} . Since dh = ∂xhdx+ ∂yhdy and dh = 0
when restricted to Wz,

dy = −∂xh
∂yh

dx

and hence

dσz =

s
(1 +

µ
∂xh

∂yh

¶2
dx =

1

|∂yh|
q
(∂yh)2 + (∂xh)

2dx

=
1

|∂yh| |∇h| dx =
1

|∂yh|
J

p
dx =

1

|∂yh|
J

z
dx.

So by the co-area formula we find

dp∗λ(z)
dz

=
1

2πz

Z
R

1

|∂yh|e
− 1
2 (x

2+y2)

¯̄̄̄
y=y(x,z)

dx

where y(x, z) is the solution to h(x, y(x, z)) = z.
To be more concrete, suppose h(x, y) = 1

4 (y − x2). Then h(x, y) = ln z
implies

y(x, z) = 4 ln z + x2

and ∂yh = 1/4. Therefore,
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dp∗λ(z)
dz

=
1

2πz

Z
R

1

1/4
e−

1
2 (x

2+y2)

¯̄̄̄
y=y(x,z)

dx

=
2

πz

Z
R
e−

1
2 (x

2+(4 ln z+x2)2)dx

=
2

πz

Z
R
e−

1
2 (x

4+(1+8 ln z)x2+16 ln2 z)dx

=
2

πz

Z
R
z−4x

2

e−
1
2 (x

4+x2+16 ln2 z)dx

=
2z−8 ln z

πz

Z
R
z−4x

2

e−
1
2(x

4+x2)dx.

Once upon a time I had claimed that dp∗λ(z)
dz is smooth near z = 0. I am

not so sure about this at this point. In this example we haveZ
W

J−pdλ =
Z
W

=

Z
W

|∇p|−p dλ =
Z
W

e−ph |(−x/2, 1/4)|−p dλ

=
1

2π

Z
W

¯̄
x2/4 + 1/16

¯̄−p/2
e−p

1
4 (y−x2)e−

1
2 (x

2+y2)dxdy

which is finite iff p ≤ 2.

26.2 Sobolev Inequalities and Isoperimetric Inequalities

Lemma 26.3. Suppose ψ : [0,∞) → [0,∞) is a decreasing function and q ∈
[1,∞), then Z ∞

0

ψq(t)dtq ≤
µZ ∞

0

ψ(τ)dτ

¶q
. (26.2)

Proof. Because ψ is decreasing, ψ(t) ≤ ψ(τ) for all τ ≥ t and hence

tψ(t) =

Z t

0

ψ(t)dτ ≤
Z t

0

ψ(τ)dτ.

Therefore, Z ∞
0

ψq(t)dtq = q

Z ∞
0

ψ(t)tq−1ψq−1(t)dt

≤ q

Z ∞
0

ψ(t)

µZ t

0

ψ(τ)dτ

¶q−1
dt.

So to finish the proof is suffices to show

q

Z ∞
0

ψ(t)

µZ t

0

ψ(τ)dτ

¶q−1
dt =

µZ ∞
0

ψ(τ)dτ

¶q
. (26.3)
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To verify Eq. (26.3), let ψM (t) = 1t≤Mψ(t)∧M and FM (t) =
R t
0
ψM (τ)dτ

for any M <∞. Then FM is absolutely continuous and ḞM (t) = ψ(t) for a.e.
t. Therefore,

q

Z ∞
0

ψM (t)

µZ t

0

ψM (τ)dτ

¶q−1
dt

= q

Z ∞
0

ψ(t)F q−1
M (t)dt = q

Z ∞
0

ḞM (t)F
q−1
M (t)dt

=

Z ∞
0

d

dt
F q
M (t)dt = F q

M (∞) =
µZ ∞

0

1τ≤Mψ(τ) ∧Mdτ

¶q
.

Now use the monotone convergence theorem to let M ↑ ∞ to conclude Eq. (
26.3) holds.

Lemma 26.4. Let (Ω,M, µ) be a measure space and u : Ω → C be a mea-
surable function. Then for 1 ≤ q <∞,

kukqq =
Z
Ω

|u|q dµ =
Z ∞
0

µ (|u| > t) dtq := q

Z ∞
0

µ (|u| > t) tq−1dt (26.4)

and

kukq ≤
Z ∞
0

µ (|u| > t)1/q dt. (26.5)

Proof. By the fundamental theorem of calculus,Z
Ω

|u|q dµ =
Z ∞
0

qtq−1dt
Z

dµ1|u|>t =
Z ∞
0

µ (|u| > t) dtq

proving Eq. (26.4). Equation (26.5) follows from Eq. (26.4) and Eq. (26.2)
with ψ(t) := µ (|u| > t)

1/q
.

Theorem 26.5. Let (W,g) be a Riemannian manifold, λ = λW be the Rie-
mann volume measure on W, µ be any radon measure on W, and

C0 := sup

½
µ(O)1/q

σ(∂O)
: O ⊂ Ō @@M and ∂O is smooth

¾
. (26.6)

Then C0 is the best constant in the inequality

kukLq(µ) ≤ C k|∇u|kL1(λ) for all u ∈ C∞c (W ). (26.7)

Proof. Let σ be the area measure on co-dimension one sub-manifolds of
W. Given u ∈ C∞c (W ), by Eq. (26.5) we have

kukLq(µ) ≤
Z ∞
0

µ (|u| > t)1/q dt =

Z ∞
0

µ (Ot)
1/q dt (26.8)
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where Ot := {|u| > t} . Notice that Ot is a relatively compact open subset
of W for all t ∈ (0,∞) and by Sard’s theorem, ∂Ot = {|u| = t} and ∂Ot is
smooth for a.e. t ∈ (0,∞). For the non-exceptional t we have from Eq. (26.6)
that

µ (Ot)
1/q ≤ σ(∂Ot) = σ (|u| = t)

and using this in Eq. (26.8) implies

kukLq(µ) ≤ C0

Z ∞
0

σ (|u| = t) dt = C0

Z
W

|∇u| dλ

where we have used the Co-area formula in the last equality. This shows that
the best constant C in Eq. (26.7) is less than or equal to C0, C ≤ C0.
To prove the reverse inequality, let O ⊂ Ō @@M with smooth boundary.

Formally we would like to take u = 1O and we expect that |∇u| = δ∂O.
Assuming this we would learn form Eq. (26.7) that

µ(O)1/q ≤ Cσ(∂O).

Since this holds for all pre-compact open sets with smooth boundary, it follows
that C ≥ C0.
To make this last argument rigorous, we must regularize the function 1O.

To do this let N denote the outward normal field to ∂O and then extend N
to be a non-zero vector field in a neighborhood of ∂O. By compactness of ∂O
there exists � > 0 such that etN (w) exists for |t| < �. By shrinking � more if
necessary, one shows that

(t, w) ∈ J × ∂O = (−�, �)× ∂O→ etN (w) ∈ U ⊂o W

is a diffemorphism onto some “tubular neighborhood” U of ∂O. Let ψ =
(T, p) : U → J × ∂O be the inverse map. Given δ ∈ (0, �), choose α = αδ ∈
C∞(R, [0, 1]) such that α(1) = 1 and α ([δ,∞)) = {0} and define

uδ(w) :=

αδ(T (w)) if w ∈ U and T (w) > 0
1 if w ∈ O
0 otherwise.

Then uδ ∈ C∞(W ), uδ → 1Ō as δ ↓ 0. (I think we may need to assume that
µ is a smooth measure here or at least that µ does not charge hypersurface
in W.) So by the dominated convergence theorem,Z

W

|uδ|q dµ→
Z
W

|1Ō|q dµ = µ(Ō) = µ(O).

Also
∇uδ(w) = α0δ(T (w))∇T (w)

so on one hand
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W

|∇uδ(w)| dλ =
Z
U

|α0δ(T (w))| |∇T (w)| dλ(w)

→
Z
W

δ0(T (w))dλ(w) = σ(∂O)

since |∇T (w)| = 1 for w ∈ ∂O and −α0δ → δ0 as δ ↓ 0. To prove this rigorously
we invoke the co-area formula again, to findZ

W

|∇uδ| dλ =
Z ∞
0

σ (|uδ| = t) dt =

Z 1

0

σ
¡
T = α−1δ (t)

¢
dt.

Now make the change of variables, t = αδ(τ) for 0 ≤ τ ≤ δ to findZ
W

|∇uδ| dλ =
Z δ

0

σ (T = τ) |α0δ(τ)| dt→ σ (T = 0) = σ(∂O).
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27

More Point Set Topology

27.1 Product Spaces

Let {(Xα, τα)}α∈A be a collection of topological spaces (we assume Xα 6= ∅)
and let XA =

Q
α∈A

Xα. Recall that x ∈ XA is a function

x : A→
a
α∈A

Xα

such that xα := x(α) ∈ Xα for all α ∈ A. An element x ∈ XA is called a
choice function and the axiom of choice states that XA 6= ∅ provided that
Xα 6= ∅ for each α ∈ A. If each Xα above is the same set X, we will denote
XA =

Q
α∈A

Xα by XA. So x ∈ XA is a function from A to X.

Notation 27.1 For α ∈ A, let πα : XA → Xα be the canonical projection
map, πα(x) = xα. The product topology τ = ⊗α∈Aτα is the smallest topology
on XA such that each projection πα is continuous. Explicitly, τ is the topology
generated by

E = {π−1α (Vα) : α ∈ A, Vα ∈ τα}. (27.1)

A “basic” open set in this topology is of the form

V = {x ∈ XA : πα(x) ∈ Vα for α ∈ Λ} (27.2)

where Λ is a finite subset of A and Vα ∈ τα for all α ∈ Λ. We will sometimes
write V above as

V =
Y
α∈Λ

Vα ×
Y
α/∈Λ

Xα = VΛ ×XA\Λ.

Proposition 27.2. Suppose Y is a topological space and f : Y → XA is a
map. Then f is continuous iff πα ◦ f : Y → Xα is continuous for all α ∈ A.
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Proof. If f is continuous then πα ◦f is the composition of two continuous
functions and hence is continuous. Conversely if πα ◦ f is continuous for all
α ∈ A, the (πα ◦ f)−1(Vα) = f−1(π−1α (Vα)) is open in Y for all α ∈ A and
Vα ⊂o Xα. That is to say, f−1(E) consists of open sets, and therefore f is
continuous since E is a sub-basis for the product topology.
Proposition 27.3. Suppose that (X, τ) is a topological space and {fn} ⊂ XA

is a sequence. Then fn → f in the product topology of XA iff fn(α) → f(α)
for all α ∈ A.

Proof. Since πα is continuous, if fn → f then fn(α) = πα(fn)→ πα(f) =
f(α) for all α ∈ A. Conversely, fn(α)→ f(α) for all α ∈ A iff πα(fn)→ πα(f)
for all α ∈ A. Therefore if V = π−1α (Vα) ∈ E and f ∈ V, then πα(f) ∈ Vα and
πα(fn) ∈ Vα a.a. and hence fn ∈ V a.a.. This shows that fn → f as n→∞.

Proposition 27.4. Let (Xα, τα) be topological spaces and XA be the product
space with the product topology.

1. If Xα is Hausdorff for all α ∈ A, then so is XA.
2. If each Xα is connected for all α ∈ A, then so is XA.

Proof.

1. Let x, y ∈ XA be distinct points. Then there exists α ∈ A such that
πα(x) = xα 6= yα = πα(y). Since Xα is Hausdorff, there exists disjoint
open sets U, V ⊂ Xα such πα(x) ∈ U and πα(y) ∈ V. Then π−1α (U) and
π−1α (V ) are disjoint open sets in XA containing x and y respectively.

2. Let us begin with the case of two factors, namely assume that X and
Y are connected topological spaces, then we will show that X × Y is
connected as well. To do this let p = (x0, y0) ∈ X × Y and E denote the
connected component of p. Since {x0}×Y is homeomorphic to Y, {x0}×Y
is connected in X ×Y and therefore {x0}×Y ⊂ E, i.e. (x0, y) ∈ E for all
y ∈ Y. A similar argument now shows that X × {y} ⊂ E for any y ∈ Y,
that is to X × Y = E. By induction the theorem holds whenever A is a
finite set.
For the general case, again choose a point p ∈ XA = XA and let C = Cp

be the connected component of p in XA. Recall that Cp is closed and
therefore if Cp is a proper subset of XA, then XA \ Cp is a non-empty
open set. By the definition of the product topology, this would imply that
XA \ Cp contains an open set of the form

V := ∩α∈Λπ−1α (Vα) = VΛ ×XA\Λ

where Λ ⊂⊂ A and Vα ∈ τα for all α ∈ Λ. We will now show that no such
V can exist and hence XA = Cp, i.e. XA is connected.
Define φ : XΛ → XA by φ(y) = x where
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xα =

½
yα if α ∈ Λ
pα if α /∈ Λ.

If α ∈ Λ, πα ◦ φ(y) = yα = πα(y) and if α ∈ A \ Λ then πα ◦ φ(y) = pα
so that in every case πα ◦ φ : XΛ → Xα is continuous and therefore φ is
continuous.
Since XΛ is a product of a finite number of connected spaces it is con-
nected by step 1. above. Hence so is the continuous image, φ(XΛ) =
XΛ×{pα}α∈A\Λ , of XΛ. Now p ∈ φ(XΛ) and φ(XΛ) is connected implies
that φ(XΛ) ⊂ C. On the other hand one easily sees that

∅ 6= V ∩ φ(XΛ) ⊂ V ∩ C
contradicting the assumption that V ⊂ Cc.

27.2 Tychonoff’s Theorem

The main theorem of this subsection is that the product of compact spaces is
compact. Before going to the general case an arbitrary number of factors let
us start with only two factors.

Proposition 27.5. Suppose that X and Y are non-empty compact topological
spaces, then X × Y is compact in the product topology.

Proof. Let U be an open cover of X × Y. Then for each (x, y) ∈ X × Y
there exist U ∈ U such that (x, y) ∈ U. By definition of the product topology,
there also exist Vx ∈ τXx and Wy ∈ τYy such that Vx ×Wy ⊂ U. Therefore
V := {Vx ×Wy : (x, y) ∈ X × Y } is also an open cover of X ×Y. We will now
show that V has a finite sub-cover, say V0 ⊂⊂ V. Assuming this is proved
for the moment, this implies that U also has a finite subcover because each
V ∈ V0 is contained in some UV ∈ U . So to complete the proof it suffices to
show every cover V of the form V = {Vα ×Wα : α ∈ A} where Vα ⊂o X and
Wα ⊂o Y has a finite subcover.
Given x ∈ X, let fx : Y → X × Y be the map fx(y) = (x, y) and notice

that fx is continuous since πX ◦ fx(y) = x and πY ◦ fx(y) = y are continuous
maps. From this we conclude that {x} × Y = fx(Y ) is compact. Similarly, it
follows that X × {y} is compact for all y ∈ Y.
Since V is a cover of {x} × Y, there exist Γx ⊂⊂ A such that {x} × Y ⊂S

α∈Γx
(Vα×Wα) without loss of generality we may assume that Γx is chosen so

that x ∈ Vα for all α ∈ Γx. Let Ux ≡
T

α∈Γx
Vα ⊂o X, and notice that

[
α∈Γx

(Vα ×Wα) ⊃
[
α∈Γx

(Ux ×Wα) = Ux × Y, (27.3)
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Fig. 27.1. Constructing the open set Ux.

see Figure 27.1 below.
Since {Ux}x∈X is now an open cover of X and X is compact, there exists

Λ ⊂⊂ X such that X = ∪x∈ΛUx. The finite subcollection, V0 := {Vα ×Wα :
α ∈ ∪x∈ΛΓx}, of V is the desired finite subcover. Indeed using Eq. (27.3),

∪V0 = ∪x∈Λ ∪α∈Γx (Vα ×Wα) ⊃ ∪x∈Λ (Ux × Y ) = X × Y.

The results of Exercises 2.108 and 7.80 prove Tychonoff’s Theorem for a
countable product of compact metric spaces. We now state the general version
of the theorem.

Theorem 27.6 (Tychonoff ’s Theorem). Let {Xα}α∈A be a collection of
non-empty compact spaces. Then X := XA =

Q
α∈A

Xα is compact in the prod-

uct space topology.

Proof. The proof requires Zorn’s lemma which is equivalent to the axiom
of choice, see Theorem B.7 of Appendix B below. For α ∈ A let πα denote
the projection map from X to Xα. Suppose that F is a family of closed
subsets of X which has the finite intersection property, see Definition 2.31.
By Proposition 2.32 the proof will be complete if we can show ∩F 6= ∅.
The first step is to apply Zorn’s lemma to construct a maximal collection

F0 of (not necessarily closed) subsets ofX with the finite intersection property.
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To do this, let Γ :=
©G ⊂ 2X : F ⊂ Gª equipped with the partial order, G1 <

G2 if G1 ⊂ G2. If Φ is a linearly ordered subset of Γ, then G:= ∪Φ is an upper
bound for Γ which still has the finite intersection property as the reader should
check. So by Zorn’s lemma, Γ has a maximal element F0.
The maximal F0 has the following properties.

1. If {Fi}ni=1 ⊂ F0 then ∩ni=1Fi ∈ F0 as well. Indeed, if we let (F0)f denote
the collection of all finite intersections of elements from F0, then (F0)f
has the finite intersection property and contains F0. Since F0 is maximal,
this implies (F0)f = F0.

2. If A ⊂ X and A ∩ F 6= ∅ for all F ∈ F0 then A ∈ F0. For if not
F0 ∪ {A} would still satisfy the finite intersection property and would
properly contain F0. this would violate the maximallity of F0.

3. For each α ∈ A, πa(F0) := {πα(F ) ⊂ Xα : F ∈ F0} has the finite intersec-
tion property. Indeed, if {Fi}ni=1 ⊂ F0, then ∩ni=1πα(Fi) ⊃ πα (∩ni=1Fi) 6=
∅.
Since Xα is compact, item 3. above along with Proposition 2.32 implies

∩F∈F0πα(F ) 6= ∅. Since this true for each α ∈ A, using the axiom of choice,
there exists p ∈ X such that pα = πα(p) ∈ ∩F∈F0πα(F ) for all α ∈ A. The
proof will be completed by showing p ∈ ∩F , hence ∩F is not empty as desired.
Since ∩©F̄ : F ∈ F0ª ⊂ ∩F , it suffices to show p ∈ C := ∩©F̄ : F ∈ F0ª .
For this suppose that U is an open neighborhood of p in X. By the definition
of the product topology, there exists Λ ⊂⊂ A and open sets Uα ⊂ Xα for all
α ∈ Λ such that p ∈ ∩α∈Λπ−1α (Uα) ⊂ U. Since pα ∈ ∩F∈F0πα(F ) and pα ∈ Uα
for all α ∈ Λ, it follows that Uα ∩ πα(F ) 6= ∅ for all F ∈ F0 and all α ∈ Λ
and this implies π−1α (Uα) ∩ F 6= ∅ for all F ∈ F0 and all α ∈ Λ. By item 2.
above we concluded that π−1α (Uα) ∈ F0 for all α ∈ Λ and by then by item 1.,
∩α∈Λπ−1α (Uα) ∈ F0. In particular ∅ 6= F ∩ ¡∩α∈Λπ−1α (Uα)

¢ ⊂ F ∩ U for all
F ∈ F0 which shows p ∈ F̄ for each F ∈ F0.

27.3 Baire Category Theorem

Definition 27.7. Let (X, τ) be a topological space. A set E ⊂ X is said to be
nowhere dense if

¡
Ē
¢o
= ∅ i.e. Ē has empty interior.

Notice that E is nowhere dense is equivalent to

X =
¡¡
Ē
¢o¢c

=
¡
Ē
¢c
= (Ec)

o
.

That is to say E is nowhere dense iff Ec has dense interior.

Theorem 27.8 (Baire Category Theorem). Let (X,ρ) be a complete met-
ric space.
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1. If {Vn}∞n=1 is a sequence of dense open sets, then G :=
∞T
n=1

Vn is dense in

X.
2. If {En}∞n=1 is a sequence of nowhere dense sets, then

S∞
n=1En ⊂S∞

n=1 Ēn & X and in particular X 6= S∞n=1En.

Proof. 1) We must shows that Ḡ = X which is equivalent to showing
that W ∩ G 6= ∅ for all non-empty open sets W ⊂ X. Since V1 is dense,
W ∩ V1 6= ∅ and hence there exists x1 ∈ X and �1 > 0 such that

B(x1, �1) ⊂W ∩ V1.

Since V2 is dense, B(x1, �1)∩V2 6= ∅ and hence there exists x2 ∈ X and �2 > 0
such that

B(x2, �2) ⊂ B(x1, �1) ∩ V2.
Continuing this way inductively, we may choose {xn ∈ X and �n > 0}∞n=1 such
that

B(xn, �n) ⊂ B(xn−1, �n−1) ∩ Vn ∀n.
Furthermore we can clearly do this construction in such a way that �n ↓ 0 as
n ↑ ∞. Hence {xn}∞n=1 is Cauchy sequence and x = lim

n→∞xn exists in X since

X is complete. Since B(xn, �n) is closed, x ∈ B(xn, �n) ⊂ Vn so that x ∈ Vn
for all n and hence x ∈ G. Moreover, x ∈ B(x1, �1) ⊂ W ∩ V1 implies x ∈ W
and hence x ∈W ∩G showing W ∩G 6= ∅.
2) The second assertion is equivalently to showing

∅ 6=
Ã ∞[
n=1

Ēn

!c

=
∞\
n=1

¡
Ēn

¢c
=
∞\
n=1

(Ec
n)

o .

As we have observed, En is nowhere dense is equivalent to (Ec
n)

o being a dense
open set, hence by part 1),

T∞
n=1 (E

c
n)

o is dense in X and hence not empty.
Here is another version of the Baire Category theorem when X is a locally

compact Hausdorff space.

Proposition 27.9. Let X be a locally compact Hausdorff space.

1. If {Vn}∞n=1 is a sequence of dense open sets, then G :=
∞T
n=1

Vn is dense in

X.
2. If {En}∞n=1 is a sequence of nowhere dense sets, then X 6= S∞n=1En.

Proof. As in the previous proof, the second assertion is a consequence of
the first. To finish the proof, if suffices to show G ∩W 6= ∅ for all open sets
W ⊂ X. Since V1 is dense, there exists x1 ∈ V1 ∩W and by Proposition 3.19
there exists U1 ⊂o X such that x1 ∈ U1 ⊂ Ū1 ⊂ V1∩W with Ū1 being compact.
Similarly, there exists a non-empty open set U2 such that U2 ⊂ Ū2 ⊂ U1 ∩V2.
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Working inductively, we may find non-empty open sets {Uk}∞k=1 such that
Uk ⊂ Ūk ⊂ Uk−1∩Vk. Since ∩nk=1Ūk = Ūn 6= ∅ for all n, the finite intersection
characterization of Ū1 being compact implies that

∅ 6= ∩∞k=1Ūk ⊂ G ∩W.

Definition 27.10. A subset E ⊂ X is meager or of the first category if

E =
∞S
n=1

En where each En is nowhere dense. And a set R ⊂ X is called

residual if Rc is meager.

Remarks 27.11 The reader should think of meager as being the topological
analogue of sets of measure 0 and residual as being the topological analogue of
sets of full measure.

1. R is residual iff R contains a countable intersection of dense open sets.
Indeed if R is a residual set, then there exists nowhere dense sets {En}
such that

Rc = ∪∞n=1En ⊂ ∪∞n=1Ēn.

Taking complements of this equation shows that

∩∞n=1Ēc
n ⊂ R,

i.e. R contains a set of the form ∩∞n=1Vn with each Vn (= Ēc
n) being an

open dense subset of X.
Conversely, if ∩∞n=1Vn ⊂ R with each Vn being an open dense subset of X,
then Rc ⊂ ∪∞n=1V c

n and hence R
c = ∪∞n=1En where each En = Rc ∩ V c

n , is
a nowhere dense subset of X.

2. A countable union of meager sets is meager and any subset of a meager
set is meager.

3. A countable intersection of residual sets is residual.

Remarks 27.12 The Baire Category Theorems may now be stated as follows.
If X is a complete metric space or X is a locally compact Hausdorff space,
then

Remark 27.13. 1. all residual sets are dense in X and
2. X is not meager.
It should also be remarked that incomplete metric spaces may be meager.

For example, let X ⊂ C([0, 1]) be the subspace of polynomial functions on
[0, 1] equipped with the supremum norm. Then X = ∪∞n=1En where En ⊂ X
denotes the subspace of polynomials of degree less than or equal to n. You
are asked to show in Exercise 27.20 below that En is nowhere dense for all n.
Hence X is meager and the empty set is residual in X.

Here is an application of Theorem 27.8.
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Theorem 27.14. Let N ⊂ C([0, 1],R) be the set of nowhere differentiable
functions. (Here a function f is said to be differentiable at 0 if f 0(0) :=
limt↓0

f(t)−f(0)
t exists and at 1 if f 0(1) := limt↑0

f(1)−f(t)
1−t exists.) Then N is

a residual set so the “generic” continuous functions is nowhere differentiable.

Proof. If f /∈ N , then f 0(x0) exists for some x0 ∈ [0, 1] and by the
definition of the derivative and compactness of [0, 1], there exists n ∈ N such
that |f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]. Thus if we define

En := {f ∈ C([0, 1]) : ∃ x0 ∈ [0, 1] 3 |f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]} ,

then we have just shown N c ⊂ E := ∪∞n=1En. So to finish the proof it suffices
to show (for each n) En is a closed subset of C([0, 1],R) with empty interior.
1) To prove En is closed, let {fm}∞m=1 ⊂ En be a sequence of functions

such that there exists f ∈ C([0, 1],R) such that kf − fmku → 0 as m → ∞.
Since fm ∈ En, there exists xm ∈ [0, 1] such that

|fm(x)− fm(xm)| ≤ n|x− xm| ∀ x ∈ [0, 1]. (27.4)

Since [0, 1] is a compact metric space, by passing to a subsequence if neces-
sary, we may assume x0 = limm→∞ xm ∈ [0, 1] exists. Passing to the limit
in Eq. (27.4), making use of the uniform convergence of fn → f to show
limm→∞ fm(xm) = f(x0), implies

|f(x)− f(x0)| ≤ n|x− x0| ∀ x ∈ [0, 1]

and therefore that f ∈ En. This shows En is a closed subset of C([0, 1],R).
2) To finish the proof, we will show E0n = ∅ by showing for each f ∈ En

and � > 0 given, there exists g ∈ C([0, 1],R) \En such that kf − gku < �. We
now construct g.
Since [0, 1] is compact and f is continuous there exists N ∈ N such that

|f(x)− f(y)| < �/2 whenever |y − x| < 1/N. Let k denote the piecewise
linear function on [0, 1] such that k(mN ) = f(mN ) for m = 0, 1, . . . , N and
k00(x) = 0 for x /∈ πN := {m/N : m = 0, 1, . . . ,N} . Then it is easily seen that
kf − kku < �/2 and for x ∈ (mN , m+1N ) that

|k0(x)| = |f(m+1N )− f(mN )|
1
N

< N�/2.

We now make k “rougher” by adding a small wiggly function h which we define
as follows. Let M ∈ N be chosen so that 4�M > 2n and define h uniquely
by h(mM ) = (−1)m�/2 for m = 0, 1, . . . ,M and h00(x) = 0 for x /∈ πM . Then
khku < � and |h0(x)| = 4�M > 2n for x /∈ πM . See Figure 27.2 below.
Finally define g := k + h. Then

kf − gku ≤ kf − kku + khku < �/2 + �/2 = �
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Fig. 27.2. Constgructing a rough approximation, g, to a continuous function f.

and
|g0(x)| ≥ |h0(x)|− |k0 (x)| > 2n− n = n ∀x /∈ πM ∪ πN .

It now follows from this last equation and the mean value theorem that for
any x0 ∈ [0, 1], ¯̄̄̄

g(x)− g(x0)

x− x0

¯̄̄̄
> n

for all x ∈ [0, 1] sufficiently close to x0. This shows g /∈ En and so the proof is
complete.
Here is an application of the Baire Category Theorem in Proposition 27.9.

Proposition 27.15. Suppose that f : R→ R is a function such that f 0(x)
exists for all x ∈ R. Let

U := ∪�>0
(
x ∈ R : sup

|y|<�
|f 0(x+ y)| <∞

)
.

Then U is a dense open set. (It is not true that U = R in general, see Example
20.35 above.)

Proof. It is easily seen from the definition of U that U is open. LetW ⊂o R
be an open subset of R. For k ∈ N, let

Ek :=

½
x ∈W : |f(y)− f(x)| ≤ k |y − x| when |y − x| ≤ 1

k

¾
=

\
z:|z|≤k−1

{x ∈W : |f(x+ z)− f(x)| ≤ k |z|} ,

which is a closed subset of R since f is continuous. Moreover, if x ∈ W and
M = |f 0(x)| , then
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|f(y)− f(x)| = |f 0(x) (y − x) + o (y − x)|
≤ (M + 1) |y − x|

for y close to x. (Here o(y − x) denotes a function such that limy→x o(y −
x)/(y − x) = 0.) In particular, this shows that x ∈ Ek for all k sufficiently
large. ThereforeW= ∪∞k=1Ek and sinceW is not meager by the Baire category
Theorem in Proposition 27.9, some Ek has non-empty interior. That is there
exists x0 ∈ Ek ⊂W and � > 0 such that

J := (x0 − �, x0 + �) ⊂ Ek ⊂W.

For x ∈ J, we have |f(x+ z)− f(x)| ≤ k |z| provided that |z| ≤ k−1 and
therefore that |f 0(x)| ≤ k for x ∈ J. Therefore x0 ∈ U ∩W showing U is
dense.

Remark 27.16. This proposition generalizes to functions f : Rn → Rm in an
obvious way.

For our next application of Theorem 27.8, let X := BC∞ ((−1, 1)) denote
the set of smooth functions f on (−1, 1) such that f and all of its derivatives
are bounded. In the metric

ρ(f, g) :=
∞X
k=0

2−k
°°f (k) − g(k)

°°
∞

1 +
°°f (k) − g(k)

°°
∞
for f, g ∈ X,

X becomes a complete metric space.

Theorem 27.17. Given an increasing sequence of positive numbers {Mn}∞n=1 ,
the set

F :=
½
f ∈ X : lim sup

n→∞

¯̄̄̄
f (n)(0)

Mn

¯̄̄̄
≥ 1

¾
is dense in X. In particular, there is a dense set of f ∈ X such that the power
series expansion of f at 0 has zero radius of convergence.

Proof. Step 1. Let n ∈ N. Choose g ∈ C∞c ((−1, 1)) such that kgk∞ < 2−n

while g0(0) = 2Mn and define

fn(x) :=

Z x

0

dtn−1
Z tn−1

0

dtn−2 . . .
Z t2

0

dt1g(t1).

Then for k < n,

f (k)n (x) =

Z x

0

dtn−k−1
Z tn−k−1

0

dtn−k−2 . . .
Z t2

0

dt1g(t1),

f (n)(x) = g0(x), f (n)n (0) = 2Mn and f
(k)
n satisfies
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°°°
∞
≤ 2−n

(n− 1− k)!
≤ 2−n for k < n.

Consequently,

ρ(fn, 0) =
∞X
k=0

2−k

°°°f (k)n

°°°
∞

1 +
°°°f (k)n

°°°
∞

≤
n−1X
k=0

2−k2−n +
∞X
k=n

2−k · 1 ≤ 2 ¡2−n + 2−n¢ = 4 · 2−n.
Thus we have constructed fn ∈ X such that limn→∞ ρ(fn, 0) = 0 while
f
(n)
n (0) = 2Mn for all n.
Step 2. The set

Gn := ∪m≥n
n
f ∈ X :

¯̄̄
f (m)(0)

¯̄̄
> Mm

o
is a dense open subset ofX. The fact that Gn is open is clear. To see that Gn is
dense, let g ∈ X be given and define gm := g+�mfm where �m := sgn(g(m)(0)).
Then ¯̄̄

g(m)m (0)
¯̄̄
=
¯̄̄
g(m)(0)

¯̄̄
+
¯̄̄
f (m)m (0)

¯̄̄
≥ 2Mm > Mm for all m.

Therefore, gm ∈ Gn for all m ≥ n and since

ρ(gm, g) = ρ(fm, 0)→ 0 as m→∞
it follows that g ∈ Ḡn.
Step 3. By the Baire Category theorem, ∩Gn is a dense subset of X. This

completes the proof of the first assertion since

F =
½
f ∈ X : lim sup

n→∞

¯̄̄̄
f (n)(0)

Mn

¯̄̄̄
≥ 1

¾
= ∩∞n=1

½
f ∈ X :

¯̄̄̄
f (n)(0)

Mn

¯̄̄̄
≥ 1 for some n ≥ m

¾
⊃ ∩∞n=1Gn.

Step 4. Take Mn = (n!)
2 and recall that the power series expansion for f

near 0 is given by
P∞

n=0
fn(0)
n! xn. This series can not converge for any f ∈ F

and any x 6= 0 because

lim sup
n→∞

¯̄̄̄
fn(0)

n!
xn
¯̄̄̄
= lim sup

n→∞

¯̄̄̄
¯fn(0)(n!)2

n!xn

¯̄̄̄
¯

= lim sup
n→∞

¯̄̄̄
¯fn(0)(n!)

2

¯̄̄̄
¯ · limn→∞n! |xn| =∞

where we have used limn→∞ n! |xn| =∞ and lim supn→∞
¯̄̄
fn(0)

(n!)2

¯̄̄
≥ 1.
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Remark 27.18. Given a sequence of real number {an}∞n=0 there always exists
f ∈ X such that f (n)(0) = an. To construct such a function f, let φ ∈
C∞c (−1, 1) be a function such that φ = 1 in a neighborhood of 0 and �n ∈ (0, 1)
be chosen so that �n ↓ 0 as n → ∞ and

P∞
n=0 |an| �nn < ∞. The desired

function f can then be defined by

f(x) =
∞X
n=0

an
n!

xnφ(x/�n) =:
∞X
n=0

gn(x). (27.5)

The fact that f is well defined and continuous follows from the estimate:

|gn(x)| =
¯̄̄an
n!

xnφ(x/�n)
¯̄̄
≤ kφk∞

n!
|an| �nn

and the assumption that
P∞

n=0 |an| �nn <∞. The estimate

|g0n(x)| =
¯̄̄̄

an
(n− 1)!x

n−1φ(x/�n) +
an
n!�n

xnφ0(x/�n)
¯̄̄̄

≤ kφk∞
(n− 1)! |an| �

n−1
n +

kφ0k∞
n!

|an| �nn
≤ (kφk∞ + kφ0k∞) |an| �nn

and the assumption that
P∞

n=0 |an| �nn < ∞ shows f ∈ C1(−1, 1) and
f 0(x) =

P∞
n=0 g

0
n(x). Similar arguments show f ∈ Ck

c (−1, 1) and f (k)(x) =P∞
n=0 g

(k)
n (x) for all x and k ∈ N. This completes the proof since, using

φ(x/�n) = 1 for x in a neighborhood of 0, g
(k)
n (0) = δk,nak and hence

f (k)(0) =
∞X
n=0

g(k)n (0) = ak.

27.4 Exercises

Exercise 27.19. Folland 5.27. Hint: Consider the generalized cantor sets
discussed on p. 39 of Folland.

Exercise 27.20. Let (X, k·k) be an infinite dimensional normed space and
E ⊂ X be a finite dimensional subspace. Show that E ⊂ X is nowhere dense.

Exercise 27.21. Now suppose that (X, k·k) is an infinite dimensional Banach
space. Show that X can not have a countable algebraic basis. More explicitly,
there is no countable subset S ⊂ X such that every element x ∈ X may be
written as a finite linear combination of elements from S. Hint: make use of
Exercise 27.20 and the Baire category theorem.



28

Three Fundamental Principles of Banach
Spaces

28.1 The Open Mapping Theorem

Theorem 28.1 (Open Mapping Theorem). Let X,Y be Banach spaces,
T ∈ L(X,Y ). If T is surjective then T is an open mapping, i.e. T (V ) is open
in Y for all open subsets V ⊂ X.

Proof. For all α > 0 let BX
α = {x ∈ X : kxkX < α} ⊂ X, BY

α =
{y ∈ Y : kykY < α} ⊂ Y and Eα = T (BX

α ) ⊂ Y. The proof will be carried out
by proving the following three assertions.

1. There exists δ > 0 such that BY
δα ⊂ Eα for all α > 0.

2. For the same δ > 0, BY
δα ⊂ Eα, i.e. we may remove the closure in assertion

1.
3. The last assertion implies T is an open mapping.

1. Since Y =
∞S
n−1

En, the Baire category Theorem 27.8 implies there exists

n such that E
0
n 6= ∅, i.e. there exists y ∈ En and � > 0 such that BY (y, �) ⊂

En. Suppose ky0k < � then y and y + y0 are in BY (y, �) ⊂ En hence there
exists x0, x ∈ BX

n such that kTx0 − (y + y0)k and kTx− yk may be made as
small as we please, which we abbreviate as follows

kTx0 − (y + y0)k ≈ 0 and kTx− yk ≈ 0.

Hence by the triangle inequality,

kT (x0 − x)− y0k = kTx0 − (y + y0)− (Tx− y)k
≤ kTx0 − (y + y0)k+ kTx− yk ≈ 0

with x0 − x ∈ BX
2n. This shows that y

0 ∈ E2n which implies BY (0, �) ⊂ E2n.
Since the map φα : Y → Y given by φα(y) =

α
2ny is a homeomorphism,
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φα(E2n) = Eα and φα(B
Y (0, �)) = BY (0, α�2n), it follows that BY

δα ⊂ Eα

where δ ≡ �
2n > 0.

2. Let δ be as in assertion 1., y ∈ BY
δ and α1 ∈ (kyk /δ, 1). Choose

{αn}∞n=2 ⊂ (0,∞) such that
P∞

n=1 αn < 1. Since y ∈ BY
α1δ
⊂ Eα1 = T

¡
BX
α1

¢
by assertion 1. there exists x1 ∈ BX

α1 such that ky − Tx1k < α2δ. (Notice that
ky − Tx1k can be made as small as we please.) Similarly, since y − Tx1 ∈
BY
α2δ
⊂ Ēα2 = T

¡
BX
α2

¢
there exists x2 ∈ BX

α2 such that ky − Tx1 − Tx2k <
α3δ. Continuing this way inductively, there exists xn ∈ BX

αn such that

ky −
nX

k=1

Txkk < αn+1δ for all n ∈ N. (28.1)

Since
∞P
n=1

kxnk <
∞P
n=1

αn < 1, x ≡
∞P
n=1

xn exists and kxk < 1, i.e. x ∈ BX
1 .

Passing to the limit in Eq. (28.1) shows, ky−Txk = 0 and hence y ∈ T (BX
1 ) =

E1. Therefore we have shown BX
δ ⊂ E1. The same scaling argument as above

then shows BX
αδ ⊂ Eα for all α > 0.

3. If x ∈ V ⊂o X and y = Tx ∈ TV we must show that TV contains a
ball BY (y, �) = Tx + BY

� for some � > 0. Now BY (y, �) = Tx + BY
� ⊂ TV

iff BY
� ⊂ TV − Tx = T (V − x). Since V − x is a neighborhood of 0 ∈ X,

there exists α > 0 such that BX
α ⊂ (V − x) and hence by assertion 2., BY

αδ ⊂
TBX

α ⊂ T (V − x) and therefore BY (y, �) ⊂ TV with � := αδ.

Corollary 28.2. If X,Y are Banach spaces and T ∈ L(X,Y ) is invertible
(i.e. a bijective linear transformation) then the inverse map, T−1, is bounded,
i.e. T−1 ∈ L(Y,X). (Note that T−1 is automatically linear.)

Theorem 28.3 (Closed Graph Theorem). Let X and Y be Banach space
T : X → Y linear is continuous iff T is closed i.e. Γ (T ) ⊂ X × Y is closed.

Proof. If T is continuous and (xn, Txn)→ (x, y) ∈ X×Y as n→∞ then
Txn → Tx = y which implies (x, y) = (x, Tx) ∈ Γ (T ).
Conversely suppose T is closed and let Γ (x) := (x, Tx). The map π2 : X×

Y → X is continuous and π1|Γ (T ) : Γ (T ) → X is continuous bijection which
implies π1|−1Γ (T ) is bounded by the open mapping Theorem 28.1. Therefore

T = π2 ◦ π1|−1Γ (T ) is bounded, being the composition of bounded operators
sincethe following diagram commutes

Γ (T )
Γ % & π2

X −→ Y
T

.

As an application we have the following proposition.
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Proposition 28.4. Let H be a Hilbert space. Suppose that T : H → H is a
linear (not necessarily bounded) map such that there exists T ∗ : H → H such
that

hTx, Y i = hx, T ∗Y i ∀ x, y ∈ H.

Then T is bounded.

Proof. It suffices to show T is closed. To prove this suppose that xn ∈ H
such that (xn, Txn)→ (x, y) ∈ H ×H. Then for any z ∈ H,

hTxn, zi = hxn, T ∗zi −→ hx, T ∗zi = hTx, zi as n→∞.

On the other hand limn→∞hTxn, zi = hy, zi as well and therefore hTx, zi =
hy, zi for all z ∈ H. This shows that Tx = y and proves that T is closed.
Here is another example.

Example 28.5. Suppose thatM ⊂ L2([0, 1],m) is a closed subspace such that
each element of M has a representative in C([0, 1]). We will abuse notation
and simply writeM ⊂ C([0, 1]). Then

1. There exists A ∈ (0,∞) such that kfk∞ ≤ AkfkL2 for all f ∈M.
2. For all x ∈ [0, 1] there exists gx ∈M such that

f(x) = hf, gxi for all f ∈M.

Moreover we have kgxk ≤ A.
3. The subspaceM is finite dimensional and dim(M) ≤ A2.

Proof. 1) I will give a two proofs of part 1. Each proof requires that we
first show that (M, k·k∞) is a complete space. To prove this it suffices to show
M is a closed subspace of C([0, 1]). So let {fn} ⊂M and f ∈ C([0, 1]) such
that kfn − fk∞ → 0 as n → ∞. Then kfn − fmkL2 ≤ kfn − fmk∞ → 0 as
m,n→∞, and sinceM is closed in L2([0, 1]), L2− limn→∞ fn = g ∈M. By
passing to a subsequence if necessary we know that g(x) = limn→∞ fn(x) =
f(x) for m - a.e. x. So f = g ∈M.
i)Let i : (M, k · k∞)→ (M, k · k2) be the identity map. Then i is bounded

and bijective. By the open mapping theorem, j = i−1 is bounded as well.
Hence there exists A <∞ such that kfk∞ = kj(f)k ≤ A kfk2 for all f ∈M.
ii) Let j : (M, k · k2) → (M, k · k∞) be the identity map. We will shows

that j is a closed operator and hence bounded by the closed graph theorem.
Suppose that fn ∈M such that fn → f in L2 and fn = j(fn)→ g in C([0, 1]).
Then as in the first paragraph, we conclude that g = f = j(f) a.e. showing j
is closed. Now finish as in last line of proof i).
2) For x ∈ [0, 1], let ex : M → C be the evaluation map ex(f) = f(x).

Then
|ex(f)| ≤ |f(x)| ≤ kfk∞ ≤ AkfkL2

which shows that ex ∈M∗. Hence there exists a unique element gx ∈M such
that
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f(x) = ex(f) = hf, gxi for all f ∈M.

Moreover kgxkL2 = kexkM∗ ≤ A.
3) Let {fj}nj=1 be an L2 — orthonormal subset ofM. Then

A2 ≥ kexk2M∗ = kgxk2L2 ≥
nX
j=1

|hfj, gxi|2 =
nX
j=1

|fj(x)|2

and integrating this equation over x ∈ [0, 1] implies that

A2 ≥
nX
j=1

Z 1

0

|fj(x)|2dx =
nX
j=1

1 = n

which shows that n ≤ A2. Hence dim(M) ≤ A2.

Remark 28.6. Keeping the notation in Example 28.5, G(x, y) = gx(y) for all
x, y ∈ [0, 1]. Then

f(x) = ex(f) =

Z 1

0

f(y)G(x, y)dy for all f ∈M.

The function G is called the reproducing kernel forM.

The above example generalizes as follows.

Proposition 28.7. Suppose that (X,M, µ) is a finite measure space, p ∈
[1,∞) and W is a closed subspace of Lp(µ) such that W ⊂ Lp(µ) ∩ L∞(µ).
Then dim(W ) <∞.

Proof. With out loss of generality we may assume that µ(X) = 1. As
in Example 28.5, we shows that W is a closed subspace of L∞(µ) and hence
by the open mapping theorem, there exists a constant A < ∞ such that
kfk∞ ≤ A kfkp for all f ∈W. Now if 1 ≤ p ≤ 2, then

kfk∞ ≤ A kfkp ≤ A kfk2

and if p ∈ (2,∞), then kfkpp ≤ kfk22 kfkp−2∞ or equivalently,

kfkp ≤ kfk2/p2 kfk1−2/p∞ ≤ kfk2/p2

³
A kfkp

´1−2/p
from which we learn that kfkp ≤ A1−2/p kfk2 and therefore that kfk∞ ≤
AA1−2/p kfk2 so that in any case there exists a constant B < ∞ such that
kfk∞ ≤ B kfk2 .
Let {fn}Nn=1 be an orthonormal subset of W and f =

PN
n=1 cnfn with

cn ∈ C, then



28.1 The Open Mapping Theorem 599°°°°°
NX
n=1

cnfn

°°°°°
2

∞
≤ B2

NX
n=1

|cn|2 ≤ B2 |c|2

where |c|2 :=PN
n=1 |cn|2 . For each c ∈ CN , there is an exception set Ec such

that for x /∈ Ec, ¯̄̄̄
¯
NX
n=1

cnfn(x)

¯̄̄̄
¯
2

≤ B2 |c|2 .

Let D := (Q+ iQ)N and E = ∩c∈DEc. Then µ(E) = 0 and for x /∈ E,¯̄̄PN
n=1 cnfn(x)

¯̄̄
≤ B2 |c|2 for all c ∈ D. By continuity it then follows for

x /∈ E that ¯̄̄̄
¯
NX
n=1

cnfn(x)

¯̄̄̄
¯
2

≤ B2 |c|2 for all c ∈ CN .

Taking cn = fn(x) in this inequality implies that¯̄̄̄
¯
NX
n=1

|fn(x)|2
¯̄̄̄
¯
2

≤ B2
NX
n=1

|fn(x)|2 for all x /∈ E

and therefore that

NX
n=1

|fn(x)|2 ≤ B2 for all x /∈ E.

Integrating this equation over x then implies that N ≤ B2, i.e. dim(W ) ≤ B2.

Theorem 28.8 (Uniform Boundedness Principle). Let X and Y be a
normed vector spaces, A ⊂ L(X,Y ) be a collection of bounded linear operators
from X to Y,

F = FA = {x ∈ X : sup
A∈A

kAxk <∞} and

R = RA = F c = {x ∈ X : sup
A∈A

kAxk =∞}. (28.2)

1. If sup
A∈A

kAk <∞ then F = X.

2. If F is not meager, then sup
A∈A

kAk <∞.

3. If X is a Banach space, F is not meager iff sup
A∈A

kAk <∞. In particular,

if sup
A∈A

kAxk <∞ for all x ∈ X then sup
A∈A

kAk <∞.
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4. If X is a Banach space, then sup
A∈A

kAk =∞ iff R is residual. In particular

if sup
A∈A

kAk =∞ then sup
A∈A

kAxk =∞ for x in a dense subset of X.

Proof. 1. If M := sup
A∈A

kAk < ∞, then sup
A∈A

kAxk ≤ M kxk < ∞ for all

x ∈ X showing F = X.
2. For each n ∈ N, let En ⊂ X be the closed sets given by

En = {x : sup
A∈A

kAxk ≤ n} =
\
A∈A

{x : kAxk ≤ n}.

Then F = ∪∞n=1En which is assumed to be non-meager and hence there exists
an n ∈ N such that En has non-empty interior. Let Bx(δ) be a ball such that
Bx(δ) ⊂ En. Then for y ∈ X with kyk = δ we know x− y ∈ Bx(δ) ⊂ En, so
that Ay = Ax−A(x− y) and hence for any A ∈ A,

kAyk ≤ kAxk+ kA(x− y)k ≤ n+ n = 2n.

Hence it follows that kAk ≤ 2n/δ for all A ∈ A, i.e. sup
A∈A

kAk ≤ 2n/δ <∞.

3. If X is a Banach space, F = X is not meager by the Baire Category
Theorem 27.8. So item 3. follows from items 1. and 2 and the fact that F = X
iff sup

A∈A
kAxk <∞ for all x ∈ X.

4. Item 3. is equivalent to F is meager iff sup
A∈A

kAk =∞. Since R = F c, R

is residual iff F is meager, so R is residual iff sup
A∈A

kAk =∞.

Remarks 28.9 Let S ⊂ X be the unit sphere in X, fA(x) = Ax for x ∈ S
and A ∈ A.
1. The assertion sup

A∈A
kAxk < ∞ for all x ∈ X implies sup

A∈A
kAk < ∞ may

be interpreted as follows. If supA∈A kfA (x)k < ∞ for all x ∈ S, then
sup
A∈A

kfAku <∞ where kfAku := supx∈S kfA (x)k = kAk .
2. If dim(X) < ∞ we may give a simple proof of this assertion. Indeed
if {en}Nn=1 ⊂ S is a basis for X there is a constant � > 0 such that°°°PN

n=1 λnen

°°° ≥ �
PN

n=1 |λn| and so the assumption supA∈A kfA (x)k <

∞ implies

sup
A∈A

kAk = sup
A∈A

sup
λ6=0

°°°PN
n=1 λnAen

°°°°°°PN
n=1 λnen

°°° ≤ sup
A∈A

sup
λ6=0

PN
n=1 |λn| kAenk
�
PN

n=1 |λn|
≤ �−1 sup

A∈A
sup
n
kAenk = �−1 sup

n
sup
A∈A

kAenk <∞.

Notice that we have used the linearity of each A ∈ A in a crucial way.
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3. If we drop the linearity assumption, so that fA ∈ C(S, Y ) for all A ∈ A
— some index set, then it is no longer true that supA∈A kfA (x)k < ∞
for all x ∈ S, then sup

A∈A
kfAku < ∞. The reader is invited to construct a

counter example when X = R2 and Y = R by finding a sequence {fn}∞n=1
of continuous functions on S1 such that limn→∞ fn(x) = 0 for all x ∈ S1

while limn→∞ kfnkC(S1) =∞.
4. The assumption that X is a Banach space in item 3.of Theorem 28.8 can
not be dropped. For example, let X ⊂ C([0, 1]) be the polynomial functions
on [0, 1] equipped with the uniform norm k·ku and for t ∈ (0, 1], let ft(x) :=
(x(t)− x(0)) /t for all x ∈ X. Then limt→0 ft(x) = d

dt |0x(t) and therefore
supt∈(0,1] |ft(x)| < ∞ for all x ∈ X. If the conclusion of Theorem 28.8
(item 3.) were true we would have M := supt∈(0,1] kftk <∞. This would
then imply¯̄̄̄

x(t)− x(0)

t

¯̄̄̄
≤M kxku for all x ∈ X and t ∈ (0, 1].

Letting t ↓ 0 in this equation gives, |ẋ(0)| ≤ M kxku for all x ∈ X. But
taking x(t) = tn in this inequality shows M =∞.

Example 28.10. Suppose that {cn}∞n=1 ⊂ C is a sequence of numbers such that

lim
N→∞

NX
n=1

ancn exists in C for all a ∈ c1.

Then c ∈ c∞.

Proof. Let fN ∈
¡
c1
¢∗
be given by fN (a) =

PN
n=1 ancn and set MN :=

max {|cn| : n = 1, . . . , N} . Then

|fN(a)| ≤MN kakc1
and by taking a = ek with k such MN = |ck| , we learn that kfNk = MN .
Now by assumption, limN→∞ fN (a) exists for all a ∈ c1 and in particular,

sup
N
|fN (a)| <∞ for all a ∈ c1.

So by the Theorem 28.8,

∞ > sup
N
kfNk = sup

N
MN = sup {|cn| : n = 1, 2, 3, . . . } .
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28.1.1 Applications to Fourier Series

Let T = S1 be the unit circle in S1 and m denote the normalized arc length
measure on T. So if f : T → [0,∞) is measurable, thenZ

T

f(w)dw :=

Z
T

fdm :=
1

2π

Z π

−π
f(eiθ)dθ.

Also let φn(z) = zn for all n ∈ Z. Recall that {φn}n∈Z is an orthonormal basis
for L2(T ). For n ∈ N let

sn(f, z) :=
nX

k=−n
hf, φniφk(z) =

nX
k=−n

hf, φnizk =
nX

k=−n

µZ
T

f(w)w̄kdw

¶
zk

=

Z
T

f(w)

Ã
nX

k=−n
w̄kzk

!
dw =

Z
T

f(w)dn(zw̄)dw

where dn(α) :=
Pn

k=−n α
k. Now αdn(α)− dn(α) = αn+1 − α−n, so that

dn(α) :=
nX

k=−n
αk =

αn+1 − α−n

α− 1

with the convention that

αn+1 − α−n

α− 1 |α=1 = lim
α→1

αn+1 − α−n

α− 1 = 2n+ 1 =
nX

k=−n
1k.

Writing α = eiθ, we find

Dn(θ) := dn(e
iθ) =

eiθ(n+1) − e−iθn

eiθ − 1 =
eiθ(n+1/2) − e−iθ(n+1/2)

eiθ/2 − e−iθ/2

=
sin(n+ 1

2)θ

sin 12θ
.

Recall by Hilbert space theory, L2(T ) — limn→∞ sn(f, ·) = f for all f ∈ L2(T ).
We will now show that the convergence is not pointwise for all f ∈ C(T ) ⊂
L2(T ).

Proposition 28.11. For each z ∈ T, there exists a residual set Rz ⊂ C(T )
such that supn |sn(f, z)| = ∞ for all f ∈ Rz. Recall that C(T ) is a complete
metric space, hence Rz is a dense subset of C(T ).

Proof. By symmetry considerations, it suffices to take z = 1 ∈ T. Let
Λn : C(T )→ C be given by

Λnf := sn(f, 1) =

Z
T

f(w)dn(w̄)dw.
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From Corollary 18.42 we know that

kΛnk = kdnk1 =
Z
T

|dn(w̄)| dw

=
1

2π

Z π

−π

¯̄
dn(e

−iθ)
¯̄
dθ =

1

2π

Z π

−π

¯̄̄̄
sin(n+ 1

2 )θ

sin 12θ

¯̄̄̄
dθ. (28.3)

which can also be proved directly as follows. Since

|Λnf | =
¯̄̄̄Z
T

f(w)dn(w̄)dw

¯̄̄̄
≤
Z
T

|f(w)dn(w̄)| dw ≤ kfk∞
Z
T

|dn(w̄)| dw,

we learn kΛnk ≤
R
T
|dn(w̄)| dw. Since C(T ) is dense in L1(T ), there exists fk ∈

C(T,R) such that fk(w)→ sgndk(w̄) in L1. By replacing fk by (fk ∧ 1)∨(−1)
we may assume that kfkk∞ ≤ 1. It now follows that

kΛnk ≥ |Λnfk|
kfkk∞

≥
¯̄̄̄Z
T

fk(w)dn(w̄)dw

¯̄̄̄
and passing to the limit as k →∞ implies that kΛnk ≥

R
T
|dn(w̄)| dw.

Since

sinx =

Z x

0

cos ydy ≤
Z x

0

|cos y| dy ≤ x

for all x ≥ 0. Since sinx is odd, |sinx| ≤ |x| for all x ∈ R. Using this in Eq.
(28.3) implies that

kΛnk ≥ 1

2π

Z π

−π

¯̄̄̄
sin(n+ 1

2)θ
1
2θ

¯̄̄̄
dθ =

2

π

Z π

0

¯̄̄̄
sin(n+

1

2
)θ

¯̄̄̄
dθ

θ
.

=
2

π

Z π

0

¯̄̄̄
sin(n+

1

2
)θ

¯̄̄̄
dθ

θ
=

Z (n+ 1
2 )π

0

|sin y| dy
y
→∞ as n→∞

and hence supn kΛnk =∞. So by Theorem 28.8,

R1 = {f ∈ C(T ) : sup
n
|Λnf | =∞}

is a residual set.
See Rudin Chapter 5 for more details.

Lemma 28.12. For f ∈ L1(T ), let

f̃(n) := hf, φni =
Z
T

f(w)w̄ndw.

Then f̃ ∈ c0 := C0(Z) (i.e limn→∞ f̃(n) = 0) and the map f ∈ L1(T )→ f̃ ∈
c0 is a one to one bounded linear transformation into but not onto c0.
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Proof. By Bessel’s inequality,
P

n∈Z
¯̄̄
f̃(n)

¯̄̄2
< ∞ for all f ∈ L2(T ) and

in particular lim|n|→∞
¯̄̄
f̃(n)

¯̄̄
= 0. Given f ∈ L1(T ) and g ∈ L2(T ) we have¯̄̄

f̃(n)− ĝ(n)
¯̄̄
=

¯̄̄̄Z
T

[f(w)− g(w)] w̄ndw

¯̄̄̄
≤ kf − gk1

and hence

lim sup
n→∞

¯̄̄
f̃(n)

¯̄̄
= lim sup

n→∞

¯̄̄
f̃(n)− ĝ(n)

¯̄̄
≤ kf − gk1

for all g ∈ L2(T ). Since L2(T ) is dense in L1(T ), it follows that

lim supn→∞
¯̄̄
f̃(n)

¯̄̄
= 0 for all f ∈ L1, i.e. f̃ ∈ c0.

Since
¯̄̄
f̃(n)

¯̄̄
≤ kfk1 , we have

°°°f̃°°°
c0
≤ kfk1 showing that Λf := f̃ is a

bounded linear transformation from L1(T ) to c0.
To see that Λ is injective, suppose f̃ = Λf ≡ 0, then R

T
f(w)p(w, w̄)dw = 0

for all polynomials p in w and w̄. By the Stone - Wierestrass and the dominated
convergence theorem, this implies thatZ

T

f(w)g(w)dw = 0

for all g ∈ C(T ). Lemma 11.7 now implies f = 0 a.e.
If Λ were surjective, the open mapping theorem would imply that Λ−1 :

c0 → L1(T ) is bounded. In particular this implies there exists C < ∞ such
that

kfkL1 ≤ C
°°°f̃°°°

c0
for all f ∈ L1(T ). (28.4)

Taking f = dn, we find
°°°d̃n°°°

c0
= 1 while limn→∞ kdnkL1 =∞ contradicting

Eq. (28.4). Therefore RanΛ) 6= c0.

28.2 Hahn Banach Theorem

Our next goal is to show that continuous dual X∗ of a Banach space X is
always large. This will be the content of the Hahn — Banach Theorem 28.16
below.

Proposition 28.13. Let X be a complex vector space over C. If f ∈ X∗ and
u = Ref ∈ X∗R then

f(x) = u(x)− iu(ix). (28.5)

Conversely if u ∈ X∗R and f is defined by Eq. (28.5), then f ∈ X∗ and
kukX∗R = kfkX∗ . More generally if p is a semi-norm on X, then

|f | ≤ p iff u ≤ p.
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Proof. Let v(x) = Im f(x), then

v(ix) = Im f(ix) = Im(if(x)) = Ref(x) = u(x).

Therefore

f(x) = u(x) + iv(x) = u(x) + iu(−ix) = u(x)− iu(ix).

Conversely for u ∈ X∗R let f(x) = u(x)− iu(ix). Then

f((a+ ib)x) = u(ax+ ibx)− iu(iax− bx)

= au(x) + bu(ix)− i(au(ix)− bu(x))

while
(a+ ib)f(x) = au(x) + bu(ix) + i(bu(x)− au(ix)).

So f is complex linear.
Because |u(x)| = |Ref(x)| ≤ |f(x)|, it follows that kuk ≤ kfk. For x ∈ X

choose λ ∈ S1 ⊂ C such that |f(x)| = λf(x) so

|f(x)| = f(λx) = u(λx) ≤ kuk kλxk = kukkxk.
Since x ∈ X is arbitrary, this shows that kfk ≤ kuk so kfk = kuk.1
For the last assertion, it is clear that |f | ≤ p implies that u ≤ |u| ≤ |f | ≤ p.

Conversely if u ≤ p and x ∈ X, choose λ ∈ S1 ⊂ C such that |f(x)| = λf(x).
Then

|f(x)| = λf(x) = f(λx) = u(λx) ≤ p(λx) = p(x)

holds for all x ∈ X.

Definition 28.14 (Minkowski functional). p : X → R is a Minkowski
functional if

1

Proof. To understand better why kfk = kuk, notice that
kfk2 = sup

kxk=1
|f(x)|2 = sup

kxk=1
(|u(x)|2 + |u(ix)|2).

Supppose that M = sup
kxk=1

|u(x)| and this supremum is attained at x0 ∈ X with

kx0k = 1. Replacing x0 by −x0 if necessary, we may assume that u(x0) = M.
Since u has a maximum at x0,

0 =
d

dt

¯̄̄̄
0

u

µ
x0 + itx0
kx0 + itx0k

¶
=

d

dt

¯̄̄̄
0

½
1

|1 + it| (u(x0) + tu(ix0))

¾
= u(ix0)

since d
dt
|0|1 + it| = d

dt
|0
√
1 + t2 = 0.This explains why kfk = kuk.
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1. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X and
2. p(cx) = cp(x) for all c ≥ 0 and x ∈ X.

Example 28.15. Suppose that X = R and

p(x) = inf {λ ≥ 0 : x ∈ λ[−1, 2] = [−λ, 2λ]} .
Notice that if x ≥ 0, then p(x) = x/2 and if x ≤ 0 then p(x) = −x, i.e.

p(x) =

½
x/2 if x ≥ 0
|x| if x ≤ 0.

From this formula it is clear that p(cx) = cp(x) for all c ≥ 0 but not for c < 0.
Moreover, p satisfies the triangle inequality, indeed if p(x) = λ and p(y) = µ,
then x ∈ λ[−1, 2] and y ∈ µ[−1, 2] so that

x+ y ∈ λ[−1, 2] + µ[−1, 2] ⊂ (λ+ µ) [−1, 2]
which shows that p(x+y) ≤ λ+µ = p(x)+p(y). To check the last set inclusion
let a, b ∈ [−1, 2], then

λa+ µb = (λ+ µ)

µ
λ

λ+ µ
a+

µ

λ+ µ
b

¶
∈ (λ+ µ) [−1, 2]

since [−1, 2] is a convex set and λ
λ+µ +

µ
λ+µ = 1.

TODO: Add in the relationship to convex sets and separation theorems,
see Reed and Simon Vol. 1. for example.

Theorem 28.16 (Hahn-Banach). Let X be a real vector space, M ⊂ X be
a subspace f : M → R be a linear functional such that f ≤ p on M . Then
there exists a linear functional F : X → R such that F |M = f and F ≤ p.

Proof. Step (1) We show for all x ∈ X \M there exists and extension
F to M ⊕Rx with the desired properties. If F exists and α = F (x), then for
all y ∈ M and λ ∈ R we must have f(y) + λα = F (y + λx) ≤ p(y + λx) i.e.
λα ≤ p(y + λx)− f(y). Equivalently put we must find α ∈ R such that

α ≤ p(y + λx)− f(y)

λ
for all y ∈M and λ > 0

α ≥ p(z − µx)− f(z)

µ
for all z ∈M and µ > 0.

So if α ∈ R is going to exist, we have to prove, for all y, z ∈ M and λ, µ >
0 that

f(z)− p(z − µx)

µ
≤ p(y + λx)− f(y)

λ

or equivalently
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f(λz + µy) ≤ µp(y + λx) + λp(z − µx) (28.6)

= p(µy + µλx) + p(λz − λµx).

But by assumtion and the triangle inequality for p,

f(λz + µy) ≤ p(λz + µy) = p(λz + µλx+ λz − λµx)

≤ p(λz + µλx) + p(λz − λµx)

which shows that Eq. (28.6) is true and by working backwards, there exist an
α ∈ R such that f(y) + λα ≤ p(y + λx). Therefore F (y + λx) := f(y) + λα is
the desired extension.
Step (2) Let us now write F : X → R to mean F is defined on a linear

subspace D(F ) ⊂ X and F : D(F ) → R is linear. For F,G : X → R we will
say F ≺ G if D(F ) ⊂ D(G) and F = G|D(F ), that is G is an extension of F.
Let

F = {F : X → R : f ≺ F and F ≤ p on D(F )}.
Then (F ,≺) is a partially ordered set. If Φ ⊂ F is a chain (i.e. a linearly
ordered subset of F) then Φ has an upper bound G ∈ F defined by D(G) =S
F∈Φ

D(F ) and G(x) = F (x) for x ∈ D(F ). Then it is easily checked that

D(G) is a linear subspace, G ∈ F , and F ≺ G for all F ∈ Φ. We may now
apply Zorn’s Lemma (see Theorem B.7) to conclude there exists a maximal
element F ∈ F . Necessarily, D(F ) = X for otherwise we could extend F by
step (1), violating the maximality of F. Thus F is the desired extension of f.

The use of Zorn’s lemma in Step (2) above may be avoided in the case
that X may be written as M ⊕ span(β) where β := {xn}∞n=1 is a countable
subset of X. In this case f : M → R may be extended to a linear functional
F : X → R with the desired properties by step (1) and induction. If p(x) is
a norm on X and X = M ⊕ span(β) with β as above, then this function F
constructed above extends by continuity to X.

Corollary 28.17. Suppose that X is a complex vector space, p : X → [0,∞)
is a semi-norm, M ⊂ X is a linear subspace, and f : M → C is linear
functional such that |f(x)| ≤ p(x) for all x ∈M. Then there exists F ∈ X 0 (X 0

is the algebraic dual of X) such that F |M = f and |F | ≤ p.

Proof. Let u = Ref then u ≤ p on M and hence by Theorem 28.16,
there exists U ∈ X 0

R such that U |M = u and U ≤ p on M . Define F (x) =
U(x)− iU(ix) then as in Proposition 28.13, F = f on M and |F | ≤ p.

Theorem 28.18. Let X be a normed space M ⊂ X be a closed subspace and
x ∈ X \M . Then there exists f ∈ X∗ such that kfk = 1, f(x) = δ = d(x,M)
and f = 0 on M .
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Proof. Defineh :M ⊕ Cx→ Cby h(m + λx) ≡ λδ for all m ∈ M and
λ ∈ C. Then

khk := sup
m∈M and λ6=0

|λ| δ
km+ λxk = sup

m∈M and λ6=0
δ

kx+m/λk =
δ

δ
= 1

and by the Hahn-Banach theorem there exists f ∈ X∗ such that f |M⊕Cx = h
and kfk ≤ 1. Since 1 = khk ≤ kfk ≤ 1, it follows that kfk = 1.
Corollary 28.19. The linear map x ∈ X → x̂ ∈ X∗∗ where x̂(f) = f(x) for
all x ∈ X is an isometry. (This isometry need not be surjective.)

Proof. Since |x̂(f)| = |f(x)| ≤ kfkX∗ kxkX for all f ∈ X∗, it follows
that kx̂kX∗∗ ≤ kxkX . Now applying Theorem 28.18 with M = {0} , there
exists f ∈ X∗ such that kfk = 1 and |x̂(f)| = f(x) = kxk , which shows that
kx̂kX∗∗ ≥ kxkX . This shows that x ∈ X → x̂ ∈ X∗∗ is an isometry. Since
isometries are necessarily injective, we are done.

Definition 28.20. A Banach space X is reflexive if the map x ∈ X → x̂ ∈
X∗∗ is surjective.

Example 28.21. Every Hilbert space H is reflexive. This is a consequence of
the Riesz Theorem, Proposition 14.15.

Example 28.22. Suppose that µ is a σ — finite measure on a measurable space
(X,M), then Lp(X,M, µ) is reflexive for all p ∈ (1,∞), see Theorem 18.14.

Example 28.23 (Following Riesz and Nagy, p. 214). The Banach space X :=
C([0, 1]) is not reflexive. To prove this recall that X∗ may be identified with
complex measures µ on [0, 1] which may be identified with right continuous
functions of bounded variation (F ) on [0, 1], namely

F → µF → (f ∈ X →
Z
[0,1]

fdµF =

Z 1

0

fdF ).

Define λ ∈ X∗∗ by

λ(µ) =
X

x∈[0,1]
µ({x}) =

X
x∈[0,1]

(F (x)− F (x−)) ,

so λ(µ) is the sum of the “atoms” of µ. Suppose there existed an f ∈ X such
that λ(µ) =

R
[0,1]

fdµ for all µ ∈ X∗. Choosing µ = δx for some x ∈ (0, 1)
would then imply that

f(x) =

Z
[0,1]

fδx = λ(δx) = 1

showing f would have to be the constant function,1, which clearly can not
work.
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Example 28.24. The Banach space X := L1([0, 1],m) is not reflexive. As we
have seen in Theorem 18.14, X∗ ∼= L∞([0, 1],m). The argument in Example
18.15 shows (L∞([0, 1],m))∗ À L1([0, 1],m). Recall in that example, we show
there exists L ∈ X∗∗ ∼= (L∞([0, 1],m))∗ such that L(f) = f(0) for all f in
the closed subspace, C([0, 1]) of X∗. If there were to exist a g ∈ X such that
ĝ = L, we would have

f(0) = L(f) = ĝ(φf ) = φf (g) :=

Z 1

0

f(x)g(x)dx (28.7)

for all f ∈ C([0, 1]) ⊂ L∞([0, 1],m). Taking f ∈ Cc((0, 1]) in this equation and
making use of Lemma 11.7, it would follow that g(x) = 0 for a.e. x ∈ (0, 1].
But this is clearly inconsistent with Eq. (28.7).

28.3 Banach — Alaoglu’s Theorem

28.3.1 Weak and Strong Topologies

Definition 28.25. Let X and Y be be a normed vector spaces and L(X,Y )
the normed space of bounded linear transformations from X to Y.

1. The weak topology on X is the topology generated by X∗, i.e. sets of the
form

N = ∩ni=1{x ∈ X : |fi(x)− fi(x0)| < �}
where fi ∈ X∗ and � > 0 form a neighborhood base for the weak topology
on X at x0.

2. The weak-∗ topology on X∗ is the topology generated by X, i.e.

N ≡ ∩ni=1{g ∈ X∗ : |f(xi)− g(xi)| < �}
where xi ∈ X and � > 0 forms a neighborhood base for the weak—∗ topology
on X∗ at f ∈ X∗.

3. The strong operator topology on L(X,Y ) is the smallest topology such
that T ∈ L(X,Y ) −→ Tx ∈ Y is continuous for all x ∈ X.

4. The weak operator topology on L(X,Y ) is the smallest topology such
thatT ∈ L(X,Y ) −→ f(Tx) ∈ C is continuous for all x ∈ X and f ∈ Y ∗.

Theorem 28.26 (Alaoglu’s Theorem). If X is a normed space the unit
ball in X∗ is weak - ∗ compact.
Proof. For all x ∈ X let Dx = {z ∈ C : |z| ≤ kxk}. Then Dx ⊂ C is a

compact set and so by Tychonoff’s Theorem Ω ≡ Q
x∈X

Dx is compact in the

product topology. If f ∈ C∗ := {f ∈ X∗ : kfk ≤ 1}, |f(x)| ≤ kfk kxk ≤ kxk
which implies that f(x) ∈ Dx for all x ∈ X, i.e. C∗ ⊂ Ω. The topology on
C∗ inherited from the weak—∗ topology on X∗ is the same as that relative
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topology coming from the product topology on Ω. So to finish the proof it
suffices to show C∗ is a closed subset of the compact space Ω. To prove this
let πx(f) = f(x) be the projection maps. Then

C∗ = {f ∈ Ω : f is linear}
= {f ∈ Ω : f(x+ cy)− f(x)− cf(y) = 0 for all x, y ∈ X and c ∈ C}
=

\
x,y∈X

\
c∈C
{f ∈ Ω : f(x+ cy)− f(x)− cf(y) = 0}

=
\

x,y∈X

\
c∈C

(πx+cy − πx − cπy)
−1 ({0})

which is closed because (πx+cy − πx − cπy) : Ω → C is continuous.

Theorem 28.27 (Alaoglu’s Theorem for separable spaces). Suppose
that X is a separable Banach space, C∗ := {f ∈ X∗ : kfk ≤ 1} is the
closed unit ball in X∗ and {xn}∞n=1 is an countable dense subset of C :=
{x ∈ X : kxk ≤ 1} . Then

ρ(f, g) :=
∞X
n=1

1

2n
|f(xn)− g(xn)| (28.8)

defines a metric on C∗ which is compatible with the weak topology on C∗,
τC∗ := (τw∗)C∗ = {V ∩ C : V ∈ τw∗} . Moreover (C∗, ρ) is a compact metric
space.

Proof. The routine check that ρ is a metric is left to the reader. Let τρ
be the topology on C∗ induced by ρ. For any g ∈ X and n ∈ N, the map
f ∈ X∗ → (f(xn)− g(xn))∈C is τw∗ continuous and since the sum in Eq.
(28.8) is uniformly convergent for f ∈ C∗, it follows that f → ρ(f, g) is τC∗ —
continuous. This implies the open balls relative to ρ are contained in τC∗ and
therefore τρ ⊂ τC∗ .
We now wish to prove τC∗ ⊂ τρ. Since τC∗ is the topology generated by

{x̂|C∗ : x ∈ C} , it suffices to show x̂ is τρ — continuous for all x ∈ C. But given
x ∈ C there exists a subsequence yk := xnk of {xn}∞n=1 such that such that
x = limk→∞ yk. Since

sup
f∈C∗

|x̂(f)− ŷk(f)| = sup
f∈C∗

|f(x− yk)| ≤ kx− ykk→ 0 as k →∞,

ŷk → x̂ uniformly on C∗ and using ŷk is τρ — continuous for all k (as is easily
checked) we learn x̂ is also τρ continuous. Hence τC∗ = τ(x̂|C∗ : x ∈ X) ⊂ τρ.
The compactness assertion follows from Theorem 28.26. The compactness

assertion may also be verified directly using: 1) sequential compactness is
equivalent to compactness for metric spaces and 2) a Cantor’s diagonalization
argument as in the proof of Theorem 14.44. (See Proposition 29.16 below.)
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28.3.2 Weak Convergence Results

The following is an application of theorem 2.73 characterizing compact sets
in metric spaces.

Proposition 28.28. Suppose that (X, ρ) is a complete separable metric space
and µ is a probability measure on B = σ(τρ). Then for all � > 0, there exists
K� @@ X such that µ(K�) ≥ 1− �.

Proof. Let {xk}∞k=1 be a countable dense subset of X. Then X =
∪kCxk(1/n) for all n ∈ N. Hence by continuity of µ, there exists, for all
n ∈ N, Nn <∞ such that µ(Fn) ≥ 1− �2−n where Fn := ∪Nn

k=1Cxk(1/n). Let
K := ∩∞n=1Fn then

µ(X \K) = µ(∪∞n=1F c
n)

≤
∞X
n=1

µ(F c
n) =

∞X
n=1

(1− µ(Fn)) ≤
∞X
n=1

�2−n = �

so that µ(K) ≥ 1 − �. Moreover K is compact since K is closed and totally
bounded; K ⊂ Fn for all n and each Fn is 1/n — bounded.

Definition 28.29. A sequence of probability measures {Pn}∞n=1 is said to con-
verge to a probability P if for every f ∈ BC(X), Pn(f) → P (f). This is
actually weak-* convergence when viewing Pn ∈ BC(X)∗.

Proposition 28.30. The following are equivalent:

1. Pn
w→ P as n→∞

2. Pn(f)→ P (f) for every f ∈ BC(X) which is uniformly continuous.
3. lim supn→∞ Pn(F ) ≤ P (F ) for all F @ X.
4. lim infn→∞ Pn(G) ≥ P (G) for all G ⊂o X.
5. limn→∞ Pn(A) = P (A) for all A ∈ B such that P (bd(A)) = 0.
Proof. 1. =⇒ 2. is obvious. For 2. =⇒ 3.,

φ(t) :=

 1 if t ≤ 0
1− t if 0 ≤ t ≤ 1
0 if t ≥ 1

(28.9)

and let fn(x) := φ(nd(x,F )). Then fn ∈ BC(X, [0, 1]) is uniformly continu-
ous, 0 ≤ 1F ≤ fn for all n and fn ↓ 1F as n→∞. Passing to the limit n→∞
in the equation

0 ≤ Pn(F ) ≤ Pn(fm)

gives
0 ≤ lim sup

n→∞
Pn(F ) ≤ P (fm)

and then letting m→∞ in this inequality implies item 3.
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3. ⇐⇒ 4. Assuming item 3., let F = Gc, then

1− lim inf
n→∞Pn(G) = lim sup

n→∞
(1− Pn(G)) = lim sup

n→∞
Pn(G

c)

≤ P (Gc) = 1− P (G)

which implies 4. Similarly 4. =⇒ 3.
3. ⇐⇒ 5. Recall that bd(A) = Ā \ Ao, so if P (bd(A)) = 0 and 3. (and

hence also 4. holds) we have

lim sup
n→∞

Pn(A) ≤ lim sup
n→∞

Pn(Ā) ≤ P (Ā) = P (A) and

lim inf
n→∞Pn(A) ≥ lim inf

n→∞Pn(A
o) ≥ P (Ao) = P (A)

from which it follows that limn→∞ Pn(A) = P (A). Conversely, let F @ X and
set Fδ := {x ∈ X : ρ(x,F ) ≤ δ} . Then

bd(Fδ) ⊂ Fδ \ {x ∈ X : ρ(x, F ) < δ} = Aδ

where Aδ :== {x ∈ X : ρ(x, F ) = δ} . Since {Aδ}δ>0 are all disjoint, we must
have X

δ>0

P (Aδ) ≤ P (X) ≤ 1

and in particular the set Λ := {δ > 0 : P (Aδ) > 0} is at most countable. Let
δn /∈ Λ be chosen so that δn ↓ 0 as n→∞, then

P (Fδm) = lim
n→∞Pn(Fδn) ≥ lim sup

n→∞
Pn(F ).

Let m→∞ this equation to conclude P (F ) ≥ lim supn→∞ Pn(F ) as desired.
To finish the proof we will now show 3. =⇒ 1. By an affine change of

variables it suffices to consider f ∈ C(X, (0, 1)) in which case we have

kX
i=1

(i− 1)
k

1{ (i−1)k ≤f< i
k} ≤ f ≤

kX
i=1

i

k
1{ (i−1)k ≤f< i

k}. (28.10)

Let Fi :=
©
i
k ≤ f

ª
and notice that Fk = ∅, then we for any probability P

that

kX
i=1

(i− 1)
k

[P (Fi−1)− P (Fi)] ≤ P (f) ≤
kX
i=1

i

k
[P (Fi−1)− P (Fi)] . (28.11)

Now
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kX
i=1

(i− 1)
k

[P (Fi−1)− P (Fi)]

=
kX
i=1

(i− 1)
k

P (Fi−1)−
kX
i=1

(i− 1)
k

P (Fi)

=
k−1X
i=1

i

k
P (Fi)−

kX
i=1

i− 1
k

P (Fi) =
1

k

k−1X
i=1

P (Fi)

and

kX
i=1

i

k
[P (Fi−1)− P (Fi)]

=
kX
i=1

i− 1
k

[P (Fi−1)− P (Fi)] +
kX
i=1

1

k
[P (Fi−1)− P (Fi)]

=
k−1X
i=1

P (Fi) +
1

k

so that Eq. (28.11) becomes,

1

k

k−1X
i=1

P (Fi) ≤ P (f) ≤ 1

k

k−1X
i=1

P (Fi) + 1/k.

Using this equation with P = Pn and then with P = P we find

lim sup
n→∞

Pn(f) ≤ lim sup
n→∞

"
1

k

k−1X
i=1

Pn(Fi) + 1/k

#

≤ 1

k

k−1X
i=1

P (Fi) + 1/k ≤ P (f) + 1/k.

≤
Since k is arbitary,

lim sup
n→∞

Pn(f) ≤ P (f).

This inequality also hold for 1− f and this implies lim infn→∞ Pn(f) ≥ P (f)
and hence limn→∞ Pn(f) = P (f) as claimed.
Let Q := [0, 1]N and for a, b ∈ Q let

d(a, b) :=
∞X
n=1

1

2n
|an − bn|

as in Notation 3.27 and recall that in this metric (Q, d) is a complete metric
space that τd is the product topology on Q, see Exercises 2.108 and 7.80.
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Theorem 28.31. To every separable metric space (X,ρ), there exists a con-
tinuous injective map G : X → Q such that G : X → G(X) ⊂ Q is a homeo-
morphism. In short, any separable metrizable space X is homeomorphic to a
subset of (Q, d).

Remark 28.32. Notice that if we let ρ0(x, y) := d(G(x), G(y)), then ρ0 induces
the same topology on X as ρ and G : (X, ρ0)→ (Q, d) is isometric.

Proof. Let D = {xn}∞n=1 be a countable dense subset of X and for m,n ∈
N let

fm,n(x) := 1− φ (mρ(xn, x)),

where φ is as in Eq. (28.9). Then fm,n = 0 if ρ(x, xn) < 1/m and fm,n = 1
if ρ(x, xn) > 2/m. Let {gk}∞k=1 be an enumeration of {fm,n : m,n ∈ N} and
define G : X → Q by

G(x) = (g1(x), g2(x), . . . ) ∈ Q.

We will now show G : X → G(X) ⊂ Q is a homeomorphism. To show G
is injective suppose x, y ∈ X and ρ(x, y) = δ ≥ 1/m. In this case we may
find xn ∈ X such that ρ(x, xn) ≤ 1

2m , ρ(y, xn) ≥ δ − 1
2m ≥ 1

2m and hence
f4m,n(y) = 1 while f4m,n(y) = 0. From this it follows that G(x) 6= G(y) if
x 6= y and hence G is injective.
The continuity of G is a consequence of the continuity of each of the com-

ponents gi of G. So it only remains to show G−1 : G(X)→ X is continuous.
Given a = G(x) ∈ G(X) ⊂ Q and � > 0, choose m ∈ N and xn ∈ X such that
ρ(xn, x) <

1
2m < �

2 . Then fm,n(x) = 0 and for y /∈ B(xn,
2
m), fm,n(y) = 1. So

if k is chosen so that gk = fm,n, we have shown that for

d(G(y), G(x)) ≥ 2−k for y /∈ B(xn, 2/m)

or equivalently put, if

d(G(y), G(x)) < 2−k then y ∈ B(xn, 2/m) ⊂ B(x, 1/m) ⊂ B(x, �).

This shows that if G(y) is sufficiently close to G(x) then ρ(y, x) < �, i.e. G−1

is continuous at a = G(x).

Definition 28.33. Let X be a topological space. A collection of probability
measures Λ on (X,BX) is said to be tight if for every � > 0 there exists a
compact set K� ∈ BX such that P (K�) ≥ 1− � for all P ∈ Λ.

Theorem 28.34. Suppose X is a separable metrizable space and Λ =
{Pn}∞n=1 is a tight sequence of probability measures on BX . Then there exists
a subsequence {Pnk}∞k=1 which is weakly convergent to a probability measure
P on BX .
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Proof. First suppose that X is compact. In this case C(X) is a Banach
space which is separable by the Stone — Weirstrass theorem. By the Riesz
theorem, Corollary 18.42, we know that C(X)∗ is in one to one correspon-
dence with complex measure on (X,BX). We have also seen that C(X)∗ is
metrizable and the unit ball in C(X)∗ is weak - * compact. Hence there exists
a subsequence {Pnk}∞k=1 which is weak -* convergent to a probability measure
P on X. Alternatively, use the cantor’s diagonalization procedure on a count-
able dense set Γ ⊂ C(X) so find {Pnk}∞k=1 such that Λ(f) := limk→∞ Pnk(f)
exists for all f ∈ Γ. Then for g ∈ C(X) and f ∈ Γ, we have

|Pnk(g)− Pnl(g)| ≤ |Pnk(g)− Pnk(f)|+ |Pnk(f)− Pnl(f)|
+ |Pnl(f)− Pnl(g)|

≤ 2 kg − fk∞ + |Pnk(f)− Pnl(f)|

which shows
lim sup

k,l→∞
|Pnk(g)− Pnl(g)| ≤ 2 kg − fk∞ .

Letting f ∈ Λ tend to g in C(X) shows lim supk,l→∞ |Pnk(g)− Pnl(g)| = 0
and hence Λ(g) := limk→∞ Pnk(g) for all g ∈ C(X). It is now clear that
Λ(g) ≥ 0 for all g ≥ 0 so that Λ is a positive linear functional on X and thus
there is a probability measure P such that Λ(g) = P (g).
For the general case, by Theorem 28.31 we may assume that X is a subset

of a compact metric space which we will denote by X̄. We now extend Pn
to X̄ by setting P̄n(A) := P̄n(A ∩ X̄) for all A ∈ BX̄ . By what we have just
proved, there is a subsequence

©
P̄ 0k := P̄nk

ª∞
k=1

such that P̄ 0k converges weakly
to a probability measure P̄ on X̄. The main thing we now have to prove is
that “P̄ (X) = 1,” this is where the tightness assumption is going to be used.
Given � > 0, let K� ⊂ X be a compact set such that P̄n(K�) ≥ 1 − � for

all n. Since K� is compact in X it is compact in X̄ as well and in particular
a closed subset of X̄. Therefore by Proposition 28.30

P̄ (K�) ≥ lim sup
k→∞

P̄
0
k(K�) = 1− �.

Since � > 0 is arbitrary, this shows with X0 := ∪∞n=1K1/n satisfies P̄ (X0) = 1.
Because X0 ∈ BX ∩ BX̄ , we may view P̄ as a measure on BX by letting
P (A) := P̄ (A ∩X0) for all A ∈ BX .
Given a closed subset F ⊂ X, choose F̃ @ X̄ such that F = F̃ ∩X. Then

lim sup
k→∞

P 0k(F ) = lim sup
k→∞

P̄ 0k(F̃ ) ≤ P̄ (F̃ ) = P̄ (F̃ ∩X0) = P (F ),

which shows P 0k
w→ P.



616 28 Three Fundamental Principles of Banach Spaces

28.4 Supplement: Quotient spaces, adjoints, and more
reflexivity

Definition 28.35. Let X and Y be Banach spaces and A : X → Y be a linear
operator. The transpose of A is the linear operator A† : Y ∗ → X∗ defined
by
¡
A†f

¢
(x) = f(Ax) for f ∈ Y ∗ and x ∈ X. The null space of A is the

subspace Nul(A) := {x ∈ X : Ax = 0} ⊂ X. For M ⊂ X and N ⊂ X∗ let

M0 := {f ∈ X∗ : f |M = 0} and
N⊥ := {x ∈ X : f(x) = 0 for all f ∈ N}.

Proposition 28.36 (Basic Properties).

1. kAk = °°A†°° and A††x̂ = cAx for all x ∈ X.
2. M0 and N⊥ are always closed subspace of X∗ and X respectively.
3.
¡
M0

¢⊥
= M̄.

4. N̄ ⊂ ¡N⊥¢0 with equality when X is reflexive.
5. Nul(A) = RanA†)⊥ and Nul(A†) = Ran(A)0. Moreover, Ran(A) =
Nul(A†)⊥ and if X is reflexive, then Ran(A†) = Nul(A)0.

6. X is reflexive iff X∗ is reflexive. More generally X∗∗∗ = cX∗ ⊕ X̂0.

Proof.

1.

kAk = sup
kxk=1

kAxk = sup
kxk=1

sup
kfk=1

|f(Ax)|

= sup
kfk=1

sup
kxk=1

¯̄
A†f(x)

¯̄
= sup
kfk=1

°°A†f°° = °°A†°° .
2. This is an easy consequence of the assumed continuity off all linear func-
tionals involved.

3. If x ∈ M, then f(x) = 0 for all f ∈ M0 so that x ∈ ¡M0
¢⊥

. Therefore

M̄ ⊂ ¡
M0

¢⊥
. If x /∈ M̄, then there exists f ∈ X∗ such that f |M = 0

while f(x) 6= 0, i.e. f ∈M0 yet f(x) 6= 0. This shows x /∈ ¡M0
¢⊥
and we

have shown
¡
M0

¢⊥ ⊂ M̄.

4. It is again simple to show N ⊂ ¡
N⊥

¢0
and therefore N̄ ⊂ ¡

N⊥
¢0
.

Moreover, as above if f /∈ N̄ there exists ψ ∈ X∗∗ such that ψ|N̄ = 0
while ψ(f) 6= 0. If X is reflexive, ψ = x̂ for some x ∈ X and since
g(x) = ψ(g) = 0 for all g ∈ N̄ , we have x ∈ N⊥. On the other hand,
f(x) = ψ(f) 6= 0 so f /∈ ¡N⊥¢0 . Thus again ¡N⊥¢0 ⊂ N̄ .

5.
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Nul(A) = {x ∈ X : Ax = 0} = {x ∈ X : f(Ax) = 0 ∀ f ∈ X∗}
=
©
x ∈ X : A†f(x) = 0 ∀ f ∈ X∗

ª
=
©
x ∈ X : g(x) = 0 ∀ g ∈ Ran(A†)ª = Ran(A†)⊥.

Similarly,

Nul(A†) =
©
f ∈ Y ∗ : A†f = 0

ª
=
©
f ∈ Y ∗ : (A†f)(x) = 0 ∀ x ∈ X

ª
= {f ∈ Y ∗ : f(Ax) = 0 ∀ x ∈ X}
=
©
f ∈ Y ∗ : f |Ran(A) = 0

ª
= Ran(A)0.

6. Let ψ ∈ X∗∗∗ and define fψ ∈ X∗ by fψ(x) = ψ(x̂) for all x ∈ X and set
ψ0 := ψ − f̂ψ. For x ∈ X (so x̂ ∈ X∗∗) we have

ψ0(x̂) = ψ(x̂)− f̂ψ(x̂) = fψ(x)− x̂(fψ) = fψ(x)− fψ(x) = 0.

This shows ψ0 ∈ X̂0 and we have shown X∗∗∗ = cX∗+X̂0. If ψ ∈ cX∗∩X̂0,
then ψ = f̂ for some f ∈ X∗ and 0 = f̂(x̂) = x̂(f) = f(x) for all x ∈ X,

i.e. f = 0 so ψ = 0. Therefore X∗∗∗ = cX∗ ⊕ X̂0 as claimed. If X is
reflexive, then X̂ = X∗∗ and so X̂0 = {0} showing X∗∗∗ = cX∗, i.e. X∗
is reflexive. Conversely if X∗ is reflexive we conclude that X̂0 = {0} and
therefore X∗∗ = {0}⊥ =

³
X̂0
´⊥

= X̂, so that X is reflexive.

Alternative proof. Notice that fψ = J†ψ, where J : X → X∗∗ is given
by Jx = x̂, and the composition

f ∈ X∗ ˆ→ f̂ ∈ X∗∗∗ J†→ J†f̂ ∈ X∗

is the identity map since
³
J†f̂

´
(x) = f̂(Jx) = f̂(x̂) = x̂(f) = f(x) for all

x ∈ X. Thus it follows that X∗ ˆ→ X∗∗∗ is invertible iff J† is its inverse
which can happen iff Nul(J†) = {0} . But as above Nul(J†) = RanJ)0

which will be zero iff Ran(J) = X∗∗ and since J is an isometry this is
equivalent to saying RanJ) = X∗∗. So we have again shown X∗ is reflexive
iff X is reflexive.

Theorem 28.37. Let X be a Banach space, M ⊂ X be a proper closed
subspace, X/M the quotient space, π : X → X/M the projection map
π(x) = x+M for x ∈ X and define the quotient norm on X/M by

kπ(x)kX/M = kx+MkX/M = inf
m∈M

kx+mkX .

Then

1. k·kX/M is a norm on X/M.
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2. The projection map π : X → X/M has norm 1, kπk = 1.
3. (X/M, k·kX/M ) is a Banach space.
4. If Y is another normed space and T : X → Y is a bounded linear trans-
formation such that M ⊂ Nul(T ), then there exists a unique linear trans-
formation S : X/M → Y such that T = S ◦ π and moreover kTk = kSk .
Proof. 1) Clearly kx+Mk ≥ 0 and if kx +Mk = 0, then there exists

mn ∈ M such that kx +mnk → 0 as n → ∞, i.e. x = lim
n→∞mn ∈ M̄ = M.

Since x ∈M, x+M = 0 ∈ X/M. If c ∈ C\ {0} , x ∈ X, then

kcx+Mk = inf
m∈M

kcx+mk = |c| inf
m∈M

kx+m/ck = |c| kx+Mk

because m/c runs through M as m runs through M. Let x1, x2 ∈ X and
m1,m2 ∈M then

kx1 + x2 +Mk ≤ kx1 + x2 +m1 +m2k ≤ kx1 +m1k+ kx2 +m2k.

Taking infinums over m1,m2 ∈M then implies

kx1 + x2 +Mk ≤ kx1 +Mk+ kx2 +Mk.

and we have completed the proof the (X/M, k · k) is a normed space.
2) Since kπ(x)k = infm∈M kx+mk ≤ kxk for all x ∈ X, kπk ≤ 1. To see

kπk = 1, let x ∈ X \M so that π(x) 6= 0. Given α ∈ (0, 1), there exists m ∈M
such that

kx+mk ≤ α−1 kπ(x)k .
Therefore,

kπ(x+m)k
kx+mk =

kπ(x)k
kx+mk ≥

α kx+mk
kx+mk = α

which shows kπk ≥ α. Since α ∈ (0, 1) is arbitrary we conclude that kπ(x)k =
1.
3) Let π(xn) ∈ X/M be a sequence such that

P kπ(xn)k < ∞. As above
there exists mn ∈ M such that kπ(xn)k ≥ 1

2kxn +mnk and hence
P kxn +

mnk ≤ 2
P kπ(xn)k < ∞. Since X is complete, x :=

∞P
n=1
(xn +mn) exists in

X and therefore by the continuity of π,

π(x) =
∞X
n=1

π(xn +mn) =
∞X
n=1

π(xn)

showing X/M is complete.
4) The existence of S is guaranteed by the “factor theorem” from linear

algebra. Moreover kSk = kTk because

kTk = kS ◦ πk ≤ kSk kπk = kSk
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and

kSk = sup
x/∈M

kS(π(x))k
kπ(x)k = sup

x/∈M

kTxk
kπ(x)k

≥ sup
x/∈M

kTxk
kxk = sup

x 6=0
kTxk
kxk = kTk .

Theorem 28.38. Let X be a Banach space. Then

1. Identifying X with X̂ ⊂ X∗∗, the weak — ∗ topology on X∗∗ induces the
weak topology on X. More explicitly, the map x ∈ X → x̂ ∈ X̂ is a
homeomorphism when X is equipped with its weak topology and X̂ with
the relative topology coming from the weak-∗ topology on X∗∗.

2. X̂ ⊂ X∗∗ is dense in the weak-∗ topology on X∗∗.
3. Letting C and C∗∗ be the closed unit balls in X and X∗∗ respectively, then

Ĉ := {x̂ ∈ C∗∗ : x ∈ C} is dense in C∗∗ in the weak — ∗ topology on X∗∗..
4. X is reflexive iff C is weakly compact.

Proof.

1. The weak — ∗ topology on X∗∗ is generated byn
f̂ : f ∈ X∗

o
= {ψ ∈ X∗∗ → ψ(f) : f ∈ X∗} .

So the induced topology on X is generated by

{x ∈ X → x̂ ∈ X∗∗ → x̂(f) = f(x) : f ∈ X∗} = X∗

and so the induced topology on X is precisely the weak topology.
2. A basic weak - ∗ neighborhood of a point λ ∈ X∗∗ is of the form

N := ∩nk=1 {ψ ∈ X∗∗ : |ψ(fk)− λ(fk)| < �} (28.12)

for some {fk}nk=1 ⊂ X∗ and � > 0. be given. We must now find x ∈ X
such that x̂ ∈ N , or equivalently so that

|x̂(fk)− λ(fk)| = |fk(x)− λ(fk)| < � for k = 1, 2, . . . , n. (28.13)

In fact we will show there exists x ∈ X such that λ(fk) = fk(x) for
k = 1, 2, . . . , n. To prove this stronger assertion we may, by discard-
ing some of the fk’s if necessary, assume that {fk}nk=1 is a linearly
independent set. Since the {fk}nk=1 are linearly independent, the map
x ∈ X → (f1(x), . . . , fn(x)) ∈ Cn is surjective (why) and hence there
exists x ∈ X such that

(f1(x), . . . , fn(x)) = Tx = (λ (f1) , . . . , λ(fn)) (28.14)

as desired.
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3. Let λ ∈ C∗∗ ⊂ X∗∗ and N be the weak - ∗ open neighborhood of λ as
in Eq. (28.12). Working as before, given � > 0, we need to find x ∈ C
such that Eq. (28.13). It will be left to the reader to verify that it suffices
again to assume {fk}nk=1 is a linearly independent set. (Hint: Suppose that
{f1, . . . , fm} were a maximal linearly dependent subset of {fk}nk=1 , then
each fk with k > m may be written as a linear combination {f1, . . . , fm} .)
As in the proof of item 2., there exists x ∈ X such that Eq. (28.14)
holds. The problem is that x may not be in C. To remedy this, let N :=
∩nk=1Nul(fk) = Nul(T ), π : X → X/N ∼= Cn be the projection map and
f̄k ∈ (X/N)

∗ be chosen so that fk = f̄k ◦ π for k = 1, 2, . . . , n. Then we
have produced x ∈ X such that

(λ (f1) , . . . , λ(fn)) = (f1(x), . . . , fn(x)) = (f̄1(π(x)), . . . , f̄n(π(x))).

Since
©
f̄1, . . . , f̄n

ª
is a basis for (X/N)

∗ we find

kπ(x)k = sup
α∈Cn\{0}

¯̄Pn
i=1 αif̄i(π(x))

¯̄°°Pn
i=1 αif̄i

°° = sup
α∈Cn\{0}

|Pn
i=1 αiλ(fi)|

kPn
i=1 αifik

= sup
α∈Cn\{0}

|λ(Pn
i=1 αifi)|

kPn
i=1 αifik

≤ kλk sup
α∈Cn\{0}

kPn
i=1 αifik

kPn
i=1 αifik

= 1.

Hence we have shown kπ(x)k ≤ 1 and therefore for any α > 1 there
exists y = x + n ∈ X such that kyk < α and (λ (f1) , . . . , λ(fn)) =
(f1(y), . . . , fn(y)). Hence

|λ(fi)− fi(y/α)| ≤
¯̄
fi(y)− α−1fi(y)

¯̄ ≤ (1− α−1) |fi(y)|

which can be arbitrarily small (i.e. less than �) by choosing α sufficiently
close to 1.

4. Let Ĉ := {x̂ : x ∈ C} ⊂ C∗∗ ⊂ X∗∗. If X is reflexive, Ĉ = C∗∗ is weak -
∗ compact and hence by item 1., C is weakly compact in X. Conversely
if C is weakly compact, then Ĉ ⊂ C∗∗ is weak — ∗ compact being the
continuous image of a continuous map. Since the weak — ∗ topology on
X∗∗ is Hausdorff, it follows that Ĉ is weak — ∗ closed and so by item 3,

C∗∗ = Ĉ
weak—∗

= Ĉ. So if λ ∈ X∗∗, λ/ kλk ∈ C∗∗ = Ĉ, i.e. there exists
x ∈ C such that x̂ = λ/ kλk . This shows λ = (kλkx)ˆ and therefore
X̂ = X∗∗.
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28.5 Exercises

28.5.1 More Examples of Banach Spaces

Exercise 28.39. Let (X,M) be a measurable space and M(X) denote the
space of complex measures on (X,M) and for µ ∈ M(X) let kµk ≡ |µk(X).
Show (M(X), k·k) is a Banach space. (Move to Section 20.)
Exercise 28.40. Folland 5.9, p. 155.

Exercise 28.41. Folland 5.10, p. 155.

Exercise 28.42. Folland 5.11, p. 155.

28.5.2 Hahn-Banach Theorem Problems

Exercise 28.43. Folland 5.17, p. 159.

Exercise 28.44. Folland 5.18, p. 159.

Exercise 28.45. Folland 5.19, p. 160.

Exercise 28.46. Folland 5.20, p. 160.

Exercise 28.47. Folland 5.21, p. 160.

Exercise 28.48. Let X be a Banach space such that X∗ is separable. Show
X is separable as well. (Folland 5.25.) Hint: use the greedy algorithm, i.e.
suppose D ⊂ X∗ \ {0} is a countable dense subset of X∗, for c ∈ D choose
xc ∈ X such that kxck = 1 and |c(xc)| ≥ 1

2kck.
Exercise 28.49. Folland 5.26.

Exercise 28.50. Give another proof Corollary 4.10 based on Remark 4.8.
Hint: the Hahn Banach theorem implies

kf(b)− f(a)k = sup
λ∈X∗, λ6=0

|λ(f(b))− λ(f(a))|
kλk .

28.5.3 Baire Category Result Problems

Exercise 28.51. Folland 5.29, p. 164.

Exercise 28.52. Folland 5.30, p. 164.

Exercise 28.53. Folland 5.31, p. 164.

Exercise 28.54. Folland 5.32, p. 164.
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Exercise 28.55. Folland 5.33, p. 164.

Exercise 28.56. Folland 5.34, p. 164.

Exercise 28.57. Folland 5.35, p. 164.

Exercise 28.58. Folland 5.36, p. 164.

Exercise 28.59. Folland 5.37, p. 165.

Exercise 28.60. Folland 5.38, p. 165.

Exercise 28.61. Folland 5.39, p. 165.

Exercise 28.62. Folland 5.40, p. 165.

Exercise 28.63. Folland 5.41, p. 165.

28.5.4 Weak Topology and Convergence Problems

Exercise 28.64. Folland 5.47, p. 171.

Definition 28.65. A sequence {xn}∞n=1 ⊂ X is weakly Cauchy if for all
V ∈ τw such that 0 ∈ V, xn− xm ∈ V for all m,n sufficiently large. Similarly
a sequence {fn}∞n=1 ⊂ X∗ is weak—∗ Cauchy if for all V ∈ τw∗ such that
0 ∈ V, fn − fm ∈ V for all m,n sufficiently large.

Remark 28.66. These conditions are equivalent to {f(xn)}∞n=1 being Cauchy
for all f ∈ X∗ and {fn(x)}∞n=1 being Cauchy for all x ∈ X respectively.

Exercise 28.67. Folland 5.48, p. 171.

Exercise 28.68. Folland 5.49, p. 171.

Exercise 28.69. land 5.50, p. 172.

Exercise 28.70. Let X be a Banach space. Show every weakly compact sub-
set of X is norm bounded and every weak—∗ compact subset of X∗ is norm
bounded.

Exercise 28.71. Folland 5.51, p. 172.

Exercise 28.72. Folland 5.53, p. 172.
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Weak and Strong Derivatives

For this section, let Ω be an open subset of Rd, p, q, r ∈ [1,∞], Lp(Ω) =
Lp(Ω,BΩ,m) and Lploc(Ω) = Lploc(Ω,BΩ ,m), where m is Lebesgue measure
on BRd and BΩ is the Borel σ — algebra on Ω. If Ω = Rd, we will simply write
Lp and Lploc for L

p(Rd) and Lploc(Rd) respectively. Also let

hf, gi :=
Z
Ω

fgdm

for any pair of measurable functions f, g : Ω → C such that fg ∈ L1(Ω).
For example, by Hölder’s inequality, if hf, gi is defined for f ∈ Lp(Ω) and
g ∈ Lq(Ω) when q = p

p−1 .

Definition 29.1. A sequence {un}∞n=1 ⊂ Lploc(Ω) is said to converge to u ∈
Lploc(Ω) if limn→∞ ku− unkLq(K) = 0 for all compact subsets K ⊂ Ω.

The following simple but useful remark will be used (typically without
further comment) in the sequel.

Remark 29.2. Suppose r, p, q ∈ [1,∞] are such that r−1 = p−1 + q−1 and
ft → f in Lp(Ω) and gt → g in Lq(Ω) as t → 0, then ftgt → fg in Lr(Ω).
Indeed,

kftgt − fgkr = k(ft − f) gt + f (gt − g)kr
≤ kft − fkp kgtkq + kfkp kgt − gkq → 0 as t→ 0

29.1 Basic Definitions and Properties

Definition 29.3 (Weak Differentiability). Let v ∈ Rd and u ∈ Lp(Ω)
(u ∈ Lploc(Ω)) then ∂vu is said to exist weakly in Lp(Ω) (Lploc(Ω)) if there
exists a function g ∈ Lp(Ω) (g ∈ Lploc(Ω)) such that
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hu, ∂vφi = −hg, φi for all φ ∈ C∞c (Ω). (29.1)

The function g if it exists will be denoted by ∂
(w)
v u. Similarly if α ∈ Nd0 and

∂α is as in Notation 11.10, we say ∂αu exists weakly in Lp(Ω) (Lploc(Ω)) iff
there exists g ∈ Lp(Ω) (Lploc(Ω)) such that

hu, ∂αφi = (−1)|α|hg, φi for all φ ∈ C∞c (Ω).

More generally if p(ξ) =
P
|α|≤N aαξ

α is a polynomial in ξ ∈ Rn, then p(∂)u

exists weakly in Lp(Ω) (Lploc(Ω)) iff there exists g ∈ Lp(Ω) (Lploc(Ω)) such
that

hu, p(−∂)φi = hg, φi for all φ ∈ C∞c (Ω) (29.2)

and we denote g by w−p(∂)u.
By Corollary 11.29, there is at most one g ∈ L1loc(Ω) such that Eq. (29.2)

holds, so w−p(∂)u is well defined.
Lemma 29.4. Let p(ξ) be a polynomial on Rd, k = deg (p) ∈ N, and u ∈
L1loc(Ω) such that p(∂)u exists weakly in L1loc(Ω). Then

1. suppm(w−p(∂)u) ⊂ suppm(u), where suppm(u) is the essential support of
u relative to Lebesgue measure, see Definition 11.14.

2. If deg p = k and u|U ∈ Ck (U,C) for some open set U ⊂ Ω, then
w−p(∂)u = p (∂)u a.e. on U.

Proof.

1. Since

hw−p(∂)u, φi = −hu, p(−∂)φi = 0 for all φ ∈ C∞c (Ω \ suppm(u)),
an application of Corollary 11.29 shows w−p(∂)u = 0 a.e. on Ω \
suppm(u). So by Lemma 11.15, Ω \ suppm(u) ⊂ Ω \ suppm(w−p(∂)u),
i.e. suppm(w−p(∂)u) ⊂ suppm(u).

2. Suppose that u|U is Ck and let ψ ∈ C∞c (U). (We view ψ as a function
in C∞c (Rd) by setting ψ ≡ 0 on Rd \ U.) By Corollary 11.26, there exists
γ ∈ C∞c (Ω) such that 0 ≤ γ ≤ 1 and γ = 1 in a neighborhood of supp(ψ).
Then by setting γu = 0 on Rd \ supp(γ) we may view γu ∈ Ck

c (Rd) and
so by standard integration by parts (see Lemma 11.27) and the ordinary
product rule,

hw−p(∂)u, ψi = hu, p(−∂)ψi = −hγu, p(−∂)ψi
= hp(∂) (γu) , ψi = hp(∂)u, ψi (29.3)

wherein the last equality we have γ is constant on supp(ψ). Since Eq.
(29.3) is true for all ψ ∈ C∞c (U), an application of Corollary 11.29 with
h = w−p(∂)u− p (∂)u and µ = m shows w−p(∂)u = p (∂)u a.e. on U.
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Notation 29.5 In light of Lemma 29.4 there is no danger in simply writing
p (∂)u for w−p(∂)u. So in the sequel we will always interpret p(∂)u in the
weak or “distributional” sense.

Example 29.6. Suppose u(x) = |x| for x ∈ R, then ∂u(x) = sgn(x) in L1loc (R)
while ∂2u(x) = 2δ(x) so ∂2u(x) does not exist weakly in L1loc (R) .

Example 29.7. Suppose d = 2 and u(x, y) = 1y>x. Then u ∈ L1loc
¡
R2
¢
, while

∂x1y>x = −δ (y − x) and ∂y1y>x = δ (y − x) and so that neither ∂xu or ∂yu
exists weakly. On the other hand (∂x + ∂y)u = 0 weakly. To prove these as-
sertions, notice u ∈ C∞

¡
R2 \∆¢ where ∆ =

©
(x, x) : x ∈ R2ª . So by Lemma

29.4, for any polynomial p (ξ) without constant term, if p (∂)u exists weakly
then p (∂)u = 0. However,

hu,−∂xφi = −
Z
y>x

φx(x, y)dxdy = −
Z
R
φ(y, y)dy,

hu,−∂yφi = −
Z
y>x

φy(x, y)dxdy =

Z
R
φ(x, x)dx and

hu,−(∂x + ∂y)φi = 0
from which it follows that ∂xu and ∂yu can not be zero while (∂x + ∂y)u = 0.
On the other hand if p(ξ) and q (ξ) are two polynomials and u ∈ L1loc (Ω)

is a function such that p(∂)u exists weakly in L1loc (Ω) and q (∂) [p (∂)u] exists
weakly in L1loc (Ω) then (qp) (∂)u exists weakly in L1loc (Ω) . This is because

hu, (qp) (−∂)φi = hu, p (−∂) q(−∂)φi
= hp (∂)u, q(−∂)φi = hq(∂)p (∂)u, φi for all φ ∈ C∞c (Ω) .

Example 29.8. Let u(x, y) = 1x>0 +1y>0 in L1loc
¡
R2
¢
. Then ∂xu(x, y) = δ(x)

and ∂yu(x, y) = δ(y) so ∂xu(x, y) and ∂yu(x, y) do not exist weakly in
L1loc

¡
R2
¢
. However ∂y∂xu does exists weakly and is the zero function. This

shows ∂y∂xu may exists weakly despite the fact both ∂xu and ∂yu do not
exists weakly in L1loc

¡
R2
¢
.

Lemma 29.9. Suppose u ∈ L1loc (Ω) and p(ξ) is a polynomial of degree k such
that p (∂)u exists weakly in L1loc (Ω) then

hp (∂)u, φi = hu, p (−∂)φi for all φ ∈ Ck
c (Ω) . (29.4)

Note: The point here is that Eq. (29.4) holds for all φ ∈ Ck
c (Ω) not just

φ ∈ C∞c (Ω) .

Proof. Let φ ∈ Ck
c (Ω) and choose η ∈ C∞c (B (0, 1)) such thatR

Rd η(x)dx = 1 and let η�(x) := �−dη(x/�). Then η� ∗ φ ∈ C∞c (Ω) for � suffi-
ciently small and p (−∂) [η� ∗ φ] = η� ∗ p (−∂)φ → p (−∂)φ and η� ∗ φ → φ
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uniformly on compact sets as � ↓ 0. Therefore by the dominated convergence
theorem,

hp (∂)u, φi = lim
�↓0
hp (∂)u, η� ∗ φi = lim

�↓0
hu, p (−∂) (η� ∗ φ)i = hu, p (−∂)φi.

Lemma 29.10 (Product Rule). Let u ∈ L1loc(Ω), v ∈ Rd and φ ∈ C1(Ω).

If ∂(w)v u exists in L1loc(Ω), then ∂
(w)
v (φu) exists in L1loc(Ω) and

∂(w)v (φu) = ∂vφ · u+ φ∂(w)v u a.e.

Moreover if φ ∈ C1c (Ω) and F := φu ∈ L1 (here we define F on Rd by setting
F = 0 on Rd \Ω ), then ∂(w)F = ∂vφ · u+ φ∂

(w)
v u exists weakly in L1(Rd).

Proof. Let ψ ∈ C∞c (Ω), then using Lemma 29.9,

−hφu, ∂vψi = −hu, φ∂vψi = −hu, ∂v (φψ)− ∂vφ · ψi
= h∂(w)v u, φψi+ h∂vφ · u, ψi
= hφ∂(w)v u, ψi+ h∂vφ · u, ψi.

This proves the first assertion. To prove the second assertion let γ ∈ C∞c (Ω)
such that 0 ≤ γ ≤ 1 and γ = 1 on a neighborhood of supp(φ). So for ψ ∈
C∞c (Rd), using ∂vγ = 0 on supp(φ) and γψ ∈ C∞c (Ω), we find

hF, ∂vψi = hγF, ∂vψi = hF, γ∂vψi = h(φu) , ∂v (γψ)− ∂vγ · ψi
= h(φu) , ∂v (γψ)i = −h∂(w)v (φu) , (γψ)i
= −h∂vφ · u+ φ∂(w)v u, γψi = −h∂vφ · u+ φ∂(w)v u,ψi.

This show ∂
(w)
v F = ∂vφ · u+ φ∂

(w)
v u as desired.

Lemma 29.11. Suppose q ∈ [1,∞), p(ξ) is a polynomial in ξ ∈ Rd and
u ∈ Lqloc(Ω). If there exists {um}∞m=1 ⊂ Lqloc(Ω) such that p (∂)um exists in
Lqloc(Ω) for all m and there exists g ∈ Lqloc(Ω) such that for all φ ∈ C∞c (Ω),

lim
m→∞hum, φi = hu, φi and lim

m→∞hp (∂)um, φi = hg, φi

then p (∂)u exists in Lqloc(Ω) and p (∂)u = g.

Proof. Since

hu, p (∂)φi = lim
m→∞hum, p (∂)φi = − lim

m→∞hp (∂)um, φi = hg, φi

for all φ ∈ C∞c (Ω), p (∂)u exists and is equal to g ∈ Lqloc(Ω).
Conversely we have the following proposition.
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Proposition 29.12 (Mollification). Suppose q ∈ [1,∞), p1(ξ), . . . , pN (ξ) is
a collection of polynomials in ξ ∈ Rd and u ∈ Lqloc(Ω) such that pl(∂)u exists
weakly in Lqloc(Ω) for l = 1, 2, . . . , N. Then there exists un ∈ C∞c (Ω) such that
un → u in Lqloc(Ω) and pl (∂)un → pl (∂)u in Lqloc(Ω) for l = 1, 2, . . . , N.

Proof. Let η ∈ C∞c (B(0, 1)) such that
R
Rd ηdm = 1 and η�(x) :=

�−dη(x/�) be as in the proof of Lemma 29.9. For any function f ∈ L1loc (Ω) ,
� > 0 and x ∈ Ω� := {y ∈ Ω : dist(y,Ωc) > �} , let

f�(x) := f ∗ η�(x) := 1Ωf ∗ η�(x) =
Z
Ω

f(y)η�(x− y)dy.

Notice that f� ∈ C∞(Ω�) and Ω� ↑ Ω as � ↓ 0.
Given a compact set K ⊂ Ω let K� := {x ∈ Ω : dist(x,K) ≤ �} . Then

K� ↓ K as � ↓ 0, there exists �0 > 0 such that K0 := K�0 is a compact subset
of Ω0 := Ω�0 ⊂ Ω (see Figure 29.1) and for x ∈ K,

f ∗ η�(x) :=
Z
Ω

f(y)η�(x− y)dy =

Z
K�

f(y)η�(x− y)dy.

Therefore, using Theorem 11.21,

0

Ω

Fig. 29.1. The geomentry of K ⊂ K0 ⊂ Ω0 ⊂ Ω.

kf ∗ η� − fkLp(K) = k(1K0f) ∗ η� − 1K0fkLp(K)
≤ k(1K0f) ∗ η� − 1K0fkLp(Rd) → 0 as � ↓ 0.

Hence, for all f ∈ Lqloc(Ω), f ∗ η� ∈ C∞(Ω�) and

lim
�↓0
kf ∗ η� − fkLp(K) = 0. (29.5)
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Now let p(ξ) be a polynomial on Rd, u ∈ Lqloc(Ω) such that p (∂)u ∈ Lqloc(Ω)
and v� := η� ∗ u ∈ C∞(Ω�) as above. Then for x ∈ K and � < �0,

p(∂)v�(x) =

Z
Ω

u(y)p(∂x)η�(x− y)dy =

Z
Ω

u(y)p(−∂y)η�(x− y)dy

=

Z
Ω

u(y)p(−∂y)η�(x− y)dy = hu, p(∂)η�(x− ·)i
= hp(∂)u, η�(x− ·)i = (p(∂)u)� (x). (29.6)

From Eq. (29.6) we may now apply Eq. (29.5) with f = u and f = pl(∂)u for
1 ≤ l ≤ N to find

kv� − ukLp(K) +
NX
l=1

kpl(∂)v� − pl(∂)ukLp(K) → 0 as � ↓ 0.

For n ∈ N, let
Kn := {x ∈ Ω : |x| ≤ n and d(x,Ωc) ≥ 1/n}

(so Kn ⊂ Ko
n+1 ⊂ Kn+1 for all n and Kn ↑ Ω as n→∞ or see Lemma 3.16)

and choose ψn ∈ C∞c (K
o
n+1, [0, 1]), using Corollary 11.26, so that ψn = 1 on

a neighborhood of Kn. Choose �n ↓ 0 such that Kn+1 ⊂ Ω�n and

kv�n − ukLp(Kn)
+

NX
l=1

kpl(∂)v�n − pl(∂)ukLp(Kn)
≤ 1/n.

Then un := ψn · v�n ∈ C∞c (Ω) and since un = v�n on Kn we still have

kun − ukLp(Kn)
+

NX
l=1

kpl(∂)un − pl(∂)ukLp(Kn)
≤ 1/n. (29.7)

Since any compact set K ⊂ Ω is contained in Ko
n for all n sufficiently large,

Eq. (29.7) implies

lim
n→∞

"
kun − ukLp(K) +

NX
l=1

kpl(∂)un − pl(∂)ukLp(K)
#
= 0.

The following proposition is another variant of Proposition 29.12 which
the reader is asked to prove in Exercise 29.32 below.

Proposition 29.13. Suppose q ∈ [1,∞), p1(ξ), . . . , pN (ξ) is a collection of
polynomials in ξ ∈ Rd and u ∈ Lq = Lq

¡
Rd
¢
such that pl(∂)u ∈ Lq for

l = 1, 2, . . . , N. Then there exists un ∈ C∞c
¡
Rd
¢
such that

lim
n→∞

"
kun − ukLq +

NX
l=1

kpl(∂)un − pl(∂)ukLq
#
= 0.
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Notation 29.14 (Difference quotients) For v ∈ Rd and h ∈ R \ {0} and
a function u : Ω → C, let

∂hvu(x) :=
u(x+ hv)− u(x)

h

for those x ∈ Ω such that x + hv ∈ Ω. When v is one of the standard basis
elements, ei for 1 ≤ i ≤ d, we will write ∂hi u(x) rather than ∂heiu(x). Also let

∇hu(x) :=
¡
∂h1 u(x), . . . , ∂

h
nu(x)

¢
be the difference quotient approximation to the gradient.

Definition 29.15 (Strong Differentiability). Let v ∈ Rd and u ∈ Lp, then
∂vu is said to exist strongly in Lp if the limh→0 ∂hvu exists in Lp. We will
denote the limit by ∂(s)v u.

It is easily verified that if u ∈ Lp, v ∈ Rd and ∂(s)v u ∈ Lp exists then ∂(w)v u

exists and ∂
(w)
v u = ∂

(s)
v u. The key to checking this assetion is the identity,

h∂hvu, φi =
Z
Rd

u(x+ hv)− u(x)

h
φ(x)dx

=

Z
Rd

u(x)
φ(x− hv)− φ(x)

h
dx = hu, ∂h−vφi. (29.8)

Hence if ∂(s)v u = limh→0 ∂hv u exists in Lp and φ ∈ C∞c (Rd), then

h∂(s)v u, φi = lim
h→0

h∂hvu, φi = lim
h→0

hu, ∂h−vφi =
d

dh
|0hu, φ (·− hv)i = −hu, ∂vφi

wherein Corollary 8.43 has been used in the last equality to bring the deriva-
tive past the integral. This shows ∂(w)v u exists and is equal to ∂(s)v u. What is
somewhat more surprising is that the converse assertion that if ∂(w)v u exists
then so does ∂(s)v u. Theorem 29.18 is a generalization of Theorem 14.45 from
L2 to Lp. For the reader’s convenience, let us give a self-contained proof of
the version of the Banach - Alaoglu’s Theorem which will be used in the proof
of Theorem 29.18. (This is the same as Theorem 28.27 above.)

Proposition 29.16 (Weak-∗ Compactness: Banach - Alaoglu’s The-
orem). Let X be a separable Banach space and {fn} ⊂ X∗ be a bounded
sequence, then there exist a subsequence {f̃n} ⊂ {fn} such that lim

n→∞ fn(x) =

f(x) for all x ∈ X with f ∈ X∗.

Proof. Let D ⊂ X be a countable linearly independent subset of X such
that span(D) = X. Using Cantor’s diagonal trick, choose {f̃n} ⊂ {fn} such
that λx := lim

n→∞ f̃n(x) exist for all x ∈ D. Define f : span(D) → R by the

formula
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f(
X
x∈D

axx) =
X
x∈D

axλx

where by assumption #({x ∈ D : ax 6= 0}) < ∞. Then f : span(D) → R is
linear and moreover f̃n(y)→ f(y) for all y ∈ span(D). Now

|f(y)| = lim
n→∞ |f̃n(y)| ≤ lim supn→∞

kf̃nk kyk ≤ Ckyk for all y ∈ span(D).

Hence by the B.L.T. Theorem 2.68, f extends uniquely to a bounded linear
functional on X. We still denote the extension of f by f ∈ X∗. Finally, if
x ∈ X and y ∈ span(D)

|f(x)− f̃n(x)| ≤ |f(x)− f(y)|+ |f(y)− f̃n(y)|+ |f̃n(y)− f̃n(x)|
≤ kfk kx− yk+ kf̃nk kx− yk+ |f(y)− f̃n(y)k
≤ 2Ckx− yk+ |f(y)− f̃n(y)|→ 2Ckx− yk as n→∞.

Therefore lim sup
n→∞

|f(x)− f̃n(x)| ≤ 2Ckx− yk→ 0 as y → x.

Corollary 29.17. Let p ∈ (1,∞] and q = p
p−1 . Then to every bounded se-

quence {un}∞n=1 ⊂ Lp (Ω) there is a subsequence {ũn}∞n=1 and an element
u ∈ Lp(Ω) such that

lim
n→∞hũn, gi = hu, gi for all g ∈ Lq (Ω) .

Proof. By Theorem 18.14, the map

v ∈ Lp(Ω)→ hv, ·i ∈ (Lq(Ω))∗

is an isometric isomorphism of Banach spaces. By Theorem 11.3, Lq(Ω) is
separable for all q ∈ [1,∞) and hence the result now follows from Proposition
29.16.

Theorem 29.18 (Weak and Strong Differentiability). Suppose p ∈
[1,∞), u ∈ Lp(Rd) and v ∈ Rd \ {0} . Then the following are equivalent:
1. There exists g ∈ Lp(Rd) and {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0
and

lim
n→∞h∂

hn
v u, φi = hg, φi for all φ ∈ C∞c (Rd).

2. ∂(w)v u exists and is equal to g ∈ Lp(Rd), i.e. hu, ∂vφi = −hg, φi for all
φ ∈ C∞c (Rd).

3. There exists g ∈ Lp(Rd) and un ∈ C∞c (Rd) such that un
Lp→ u and ∂vun

Lp→
g as n→∞.

4. ∂(s)v u exists and is is equal to g ∈ Lp(Rd), i.e. ∂hvu→ g in Lp as h→ 0.

Moreover if p ∈ (1,∞) any one of the equivalent conditions 1. — 4. above
are implied by the following condition.
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10. There exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and supn
°°∂hnv u

°°
p
<

∞.

Proof. 4. =⇒ 1. is simply the assertion that strong convergence implies
weak convergence.
1. =⇒ 2. For φ ∈ C∞c (Rd), Eq. (29.8) and the dominated convergence

theorem implies

hg, φi = lim
n→∞h∂

hn
v u, φi = lim

n→∞hu, ∂
hn−vφi = −hu, ∂vφi.

2. =⇒ 3. Let η ∈ C∞c (Rd,R) such that
R
Rd η(x)dx = 1 and let ηm(x) =

mdη(mx), then by Proposition 11.25, hm := ηm ∗ u ∈ C∞(Rd) for all m and

∂vhm(x) = ∂vηm ∗ u(x) =
Z
Rd

∂vηm(x− y)u(y)dy

= hu,−∂v [ηm (x− ·)]i = hg, ηm (x− ·)i = ηm ∗ g(x).

By Theorem 11.21, hm → u ∈ Lp(Rd) and ∂vhm = ηm ∗ g → g in Lp(Rd)
as m → ∞. This shows 3. holds except for the fact that hm need not have
compact support. To fix this let ψ ∈ C∞c (Rd, [0, 1]) such that ψ = 1 in a
neighborhood of 0 and let ψ�(x) = ψ(�x) and (∂vψ)� (x) := (∂vψ) (�x). Then

∂v (ψ�hm) = ∂vψ�hm + ψ�∂vhm = � (∂vψ)� hm + ψ�∂vhm

so that ψ�hm → hm in Lp and ∂v (ψ�hm) → ∂vhm in Lp as � ↓ 0. Let um =
ψ�mhm where �m is chosen to be greater than zero but small enough so that

kψ�mhm − hmkp + k∂v (ψ�mhm)→ ∂vhmkp < 1/m.

Then um ∈ C∞c (Rd), um → u and ∂vum → g in Lp as m→∞.
3. =⇒ 4. By the fundamental theorem of calculus

∂hvum(x) =
um(x+ hv)− um(x)

h

=
1

h

Z 1

0

d

ds
um(x+ shv)ds =

Z 1

0

(∂vum) (x+ shv)ds. (29.9)

and therefore,

∂hv um(x)− ∂vum(x) =

Z 1

0

[(∂vum) (x+ shv)− ∂vum(x)] ds.

So by Minkowski’s inequality for integrals, Theorem 10.29,

°°∂hvum(x)− ∂vum
°°
p
≤
Z 1

0

k(∂vum) (·+ shv)− ∂vumkp ds

and letting m→∞ in this equation then implies
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°°∂hvu− g
°°
p
≤
Z 1

0

kg(·+ shv)− gkp ds.

By the dominated convergence theorem and Proposition 11.13, the right mem-
ber of this equation tends to zero as h→ 0 and this shows item 4. holds.
(10. =⇒ 1. when p > 1) This is a consequence of Corollary 29.17 (or see

Theorem 28.27 above) which asserts, by passing to a subsequence if necessary,
that ∂hnv u

w→ g for some g ∈ Lp(Rd).

Example 29.19. The fact that (10) does not imply the equivalent conditions 1
— 4 in Theorem 29.18 when p = 1 is demonstrated by the following example.
Let u := 1[0,1], thenZ

R

¯̄̄̄
u(x+ h)− u(x)

h

¯̄̄̄
dx =

1

|h|
Z
R

¯̄
1[−h,1−h](x)− 1[0,1](x)

¯̄
dx = 2

for |h| < 1. On the other hand the distributional derivative of u is ∂u(x) =
δ(x)− δ(x− 1) which is not in L1.
Alternatively, if there exists g ∈ L1(R, dm) such that

lim
n→∞

u(x+ hn)− u(x)

hn
= g(x) in L1

for some sequence {hn}∞n=1 as above. Then for φ ∈ C∞c (R) we would have on
one hand,Z

R

u(x+ hn)− u(x)

hn
φ(x)dx =

Z
R

φ(x− hn)− φ(x)

hn
u(x)dx

→ −
Z 1

0

φ0(x)dx = (φ(0)− φ(1)) as n→∞,

while on the other hand,Z
R

u(x+ hn)− u(x)

hn
φ(x)dx→

Z
R
g(x)φ(x)dx.

These two equations implyZ
R
g(x)φ(x)dx = φ(0)− φ(1) for all φ ∈ C∞c (R) (29.10)

and in particular that
R
R g(x)φ(x)dx = 0 for all φ ∈ Cc(R\ {0, 1}). By Corol-

lary 11.29, g(x) = 0 for m — a.e. x ∈ R\ {0, 1} and hence g(x) = 0 for m —
a.e. x ∈ R. But this clearly contradicts Eq. (29.10). This example also shows
that the unit ball in L1(R, dm) is not weakly sequentially compact. Compare
with Example 28.24.

Corollary 29.20. If 1 ≤ p <∞, u ∈ Lp such that ∂vu ∈ Lp, then
°°∂hvu°°Lp ≤

k∂vukLp for all h 6= 0 and v ∈ Rd.
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Proof. By Minkowski’s inequality for integrals, Theorem 10.29, we may
let m→∞ in Eq. (29.9) to find

∂hvu(x) =

Z 1

0

(∂vu) (x+ shv)ds for a.e. x ∈ Rd

and °°∂hvu°°Lp ≤ Z 1

0

k(∂vu) (·+ shv)kLp ds = k∂vukLp .

Proposition 29.21 (A weak form of Weyls Lemma). If u ∈ L2(Rd) such
that f := 4u ∈ L2(Rd) then ∂αu ∈ L2

¡
Rd
¢
for |α| ≤ 2. Furthermore if k ∈ N0

and ∂βf ∈ L2
¡
Rd
¢
for all |β| ≤ k, then ∂αu ∈ L2

¡
Rd
¢
for |α| ≤ k + 2.

Proof. By Proposition 29.13, there exists un ∈ C∞c
¡
Rd
¢
such that un → u

and ∆un → ∆u = f in L2
¡
Rd
¢
. By integration by parts we findZ

Rd
|∇(un − um)|2 dm = (−∆(un − um), (un − um))L2

→ − (f − f, u− u) = 0 as m,n→∞

and hence by item 3. of Theorem 29.18, ∂iu ∈ L2 for each i. Since

k∇uk2L2 = lim
n→∞

Z
Rd
|∇un|2 dm = (−∆un, un)L2 → −(f, u) as n→∞

we also learn that

k∇uk2L2 = −(f, u) ≤ kfkL2 · kukL2 . (29.11)

Let us now consider

dX
i,j=1

Z
Rd
|∂i∂jun|2 dm = −

dX
i,j=1

Z
Rd

∂jun∂
2
i ∂jundm

= −
dX

j=1

Z
Rd

∂jun∂j∆undm =
dX

j=1

Z
Rd

∂2j un∆undm

=

Z
Rd
|∆un|2 dm = k∆unk2L2 .

Replacing un by un − um in this calculation shows

dX
i,j=1

Z
Rd
|∂i∂j(un − um)|2 dm = k∆(un − um)k2L2 → 0 as m,n→∞
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and therefore by Lemma 29.4 (also see Exercise 29.34), ∂i∂ju ∈ L2
¡
Rd
¢
for

all i, j and
dX

i,j=1

Z
Rd
|∂i∂ju|2 dm = k∆uk2L2 = kfk2L2 . (29.12)

Combining Eqs. (29.11) and (29.12) gives the estimateX
|α|≤2

k∂αuk2L2 ≤ kuk2L2 + kfkL2 · kukL2 + kfk2L2

= kuk2L2 + k∆ukL2 · kukL2 + k∆uk2L2 . (29.13)

Let us now further assume ∂if = ∂i∆u ∈ L2
¡
Rd
¢
. Then for h ∈ R \ {0} ,

∂hi u ∈ L2(Rd) and ∆∂hi u = ∂hi ∆u = ∂hi f ∈ L2(Rd) and hence by Eq. (29.13)
and what we have just proved, ∂α∂hi u = ∂hi ∂

αu ∈ L2 andX
|α|≤2

°°∂hi ∂αu°°2L2(Rd) ≤ °°∂hi u°°2L2 + °°∂hi f°°L2 · °°∂hi u°°L2 + °°∂hi f°°2L2
≤ k∂iuk2L2 + k∂ifkL2 · k∂iukL2 + k∂ifk2L2

where the last inequality follows from Corollary 29.20. Therefore applying
Theorem 29.18 again we learn that ∂i∂αu ∈ L2(Rd) for all |α| ≤ 2 andX

|α|≤2
k∂i∂αuk2L2(Rd) ≤ k∂iuk2L2 + k∂ifkL2 · k∂iukL2 + k∂ifk2L2

≤ k∇uk2L2 + k∂ifkL2 · k∇ukL2 + k∂ifk2L2
≤ kfkL2 · kukL2

+ k∂ifkL2 ·
q
kfkL2 · kukL2 + k∂ifk2L2 .

The remainder of the proof, which is now an induction argument using the
above ideas, is left as an exercise to the reader.

Theorem 29.22. Suppose that Ω is an open subset of Rd and V is an open
precompact subset of Ω.

1. If 1 ≤ p <∞, u ∈ Lp(Ω) and ∂iu ∈ Lp(Ω), then k∂hi ukLp(V ) ≤ k∂iukLp(Ω)
for all 0 < |h| < 1

2dist(V,Ω
c).

2. Suppose that 1 < p ≤ ∞, u ∈ Lp(Ω) and assume there exists a constants
CV <∞ and �V ∈ (0, 12dist(V,Ωc)) such that

k∂hi ukLp(V ) ≤ CV for all 0 < |h| < �V .

Then ∂iu ∈ Lp(V ) and k∂iukLp(V ) ≤ CV .Moreover if C := supV⊂⊂Ω CV <
∞ then in fact ∂iu ∈ Lp(Ω) and k∂iukLp(Ω) ≤ C.
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Proof. 1. Let U ⊂o Ω such that V̄ ⊂ U and Ū is a compact subset of Ω.
For u ∈ C1 (Ω) ∩ Lp(Ω), x ∈ B and 0 < |h| < 1

2dist(V,U
c),

∂hi u(x) =
u(x+ hei)− u(x)

h
=

Z 1

0

∂iu(x+ thei) dt

and in particular,

|∂hi u(x)| ≤
Z 1

0

|∂u(x+ thei)|dt.

Therefore by Minikowski’s inequality for integrals,

k∂hi ukLp(V ) ≤
Z 1

0

k∂u(·+ thei)kLp(V )dt ≤ k∂iukLp(U). (29.14)

For general u ∈ Lp(Ω) with ∂iu ∈ Lp(Ω), by Proposition 29.12, there
exists un ∈ C∞c (Ω) such that un → u and ∂iun → ∂iu in Lploc(Ω). Therefore
we may replace u by un in Eq. (29.14) and then pass to the limit to find

k∂hi ukLp(V ) ≤ k∂iukLp(U) ≤ k∂iukLp(Ω).

2. If k∂hi ukLp(V ) ≤ CV for all h sufficiently small then by Corollary 29.17
there exists hn → 0 such that ∂hni u

w→ v ∈ Lp(V ). Hence if ϕ ∈ C∞c (V ),Z
V

vϕdm = lim
n→∞

Z
Ω

∂hni uϕdm = lim
n→∞

Z
Ω

u∂−hni ϕdm

= −
Z
Ω

u∂iϕ dm = −
Z
V

u∂iϕ dm.

Therefore ∂iu = v ∈ Lp(V ) and k∂iukLp(V ) ≤ kvkLp(V ) ≤ CV .
1 Finally if

C := supV⊂⊂Ω CV <∞, then by the dominated convergence theorem,

k∂iukLp(Ω) = lim
V ↑Ω

k∂iukLp(V ) ≤ C.

We will now give a couple of applications of Theorem 29.18.

1 Here we have used the result that if f ∈ Lp and fn ∈ Lp such that hfn, φi→ hf, φi
for all φ ∈ C∞c (V ) , then kfkLp(V ) ≤ lim infn→∞ kfnkLp(V ) . To prove this, we
have with q = p

p−1 that

|hf, φi| = lim
n→∞

|hfn, φi| ≤ lim inf
n→∞

kfnkLp(V ) · kφkLq(V )
and therefore,

kfkLp(V ) = sup
φ6=0

|hf, φi|
kφkLq(V )

≤ lim inf
n→∞

kfnkLp(V ) .
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Lemma 29.23. Let v ∈ Rd.
1. If h ∈ L1 and ∂vh exists in L1, then

R
Rd ∂vh(x)dx = 0.

2. If p, q, r ∈ [1,∞) satisfy r−1 = p−1+q−1, f ∈ Lp and g ∈ Lq are functions
such that ∂vf and ∂vg exists in Lp and Lq respectively, then ∂v(fg) exists
in Lr and ∂v(fg) = ∂vf · g + f · ∂vg. Moreover if r = 1 we have the
integration by parts formula,

h∂vf, gi = −hf, ∂vgi. (29.15)

3. If p = 1, ∂vf exists in L1 and g ∈ BC1(Rd) (i.e. g ∈ C1(Rd) with
g and its first derivatives being bounded) then ∂v(gf) exists in L1 and
∂v(fg) = ∂vf · g + f · ∂vg and again Eq. (29.15) holds.
Proof. 1) By item 3. of Theorem 29.18 there exists hn ∈ C∞c (Rd) such

that hn → h and ∂vhn → ∂vh in L1. ThenZ
Rd

∂vhn(x)dx =
d

dt
|0
Z
Rd

hn(x+ hv)dx =
d

dt
|0
Z
Rd

hn(x)dx = 0

and letting n→∞ proves the first assertion.
2) Similarly there exists fn, gn ∈ C∞c (Rd) such that fn → f and ∂vfn →

∂vf in Lp and gn → g and ∂vgn → ∂vg in Lq as n→∞. So by the standard
product rule and Remark 29.2, fngn → fg ∈ Lr as n→∞ and

∂v(fngn) = ∂vfn · gn + fn · ∂vgn → ∂vf · g + f · ∂vg in Lr as n→∞.

It now follows from another application of Theorem 29.18 that ∂v(fg) exists
in Lr and ∂v(fg) = ∂vf ·g+f ·∂vg. Eq. (29.15) follows from this product rule
and item 1. when r = 1.
3) Let fn ∈ C∞c (Rd) such that fn → f and ∂vfn → ∂vf in L1 as n→∞.

Then as above, gfn → gf in L1 and ∂v(gfn)→ ∂vg ·f+g∂vf in L1 as n→∞.
In particular if φ ∈ C∞c (Rd), then

hgf, ∂vφi = lim
n→∞hgfn, ∂vφi = − lim

n→∞h∂v (gfn) , φi
= − lim

n→∞h∂vg · fn + g∂vfn, φi = −h∂vg · f + g∂vf, φi.

This shows ∂v(fg) exists (weakly) and ∂v(fg) = ∂vf · g + f · ∂vg. Again Eq.
(29.15) holds in this case by item 1. already proved.

Lemma 29.24. Let p, q, r ∈ [1,∞] satisfy p−1+q−1 = 1+r−1, f ∈ Lp, g ∈ Lq

and v ∈ Rd.
1. If ∂vf exists strongly in Lr, then ∂v(f ∗ g) exists strongly in Lp and

∂v(f ∗ g) = (∂vf) ∗ g.
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2. If ∂vg exists strongly in Lq, then ∂v(f ∗ g) exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg.

3. If ∂vf exists weakly in Lp and g ∈ C∞c (Rd), then f ∗g ∈ C∞(Rd), ∂v(f ∗g)
exists strongly in Lr and

∂v(f ∗ g) = f ∗ ∂vg = (∂vf) ∗ g.

Proof. Items 1 and 2. By Young’s inequality (Theorem 11.19) and simple
computations: °°°°τ−hv(f ∗ g)− f ∗ g

h
− (∂vf) ∗ g

°°°°
r

=

°°°°τ−hvf ∗ g − f ∗ g
h

− (∂vf) ∗ g
°°°°
r

=

°°°°·τ−hvf − f

h
− (∂vf)

¸
∗ g
°°°°
r

≤
°°°°τ−hvf − f

h
− (∂vf)

°°°°
p

kgkq

which tends to zero as h→ 0. The second item is proved analogously, or just
make use of the fact that f ∗ g = g ∗ f and apply Item 1.
Using the fact that g(x − ·) ∈ C∞c (Rd) and the definition of the weak

derivative,

f ∗ ∂vg(x) =
Z
Rd

f(y) (∂vg) (x− y)dy = −
Z
Rd

f(y) (∂vg(x− ·)) (y)dy

=

Z
Rd

∂vf(y)g(x− y)dy = ∂vf ∗ g(x).

Item 3. is a consequence of this equality and items 1. and 2.

29.2 The connection of Weak and pointwise derivatives

Proposition 29.25. Let Ω = (α, β) ⊂ R be an open interval and f ∈ L1loc(Ω)
such that ∂(w)f = 0 in L1loc(Ω). Then there exists c ∈ C such that f = c a.e.
More generally, suppose F : C∞c (Ω) → C is a linear functional such that
F (φ0) = 0 for all φ ∈ C∞c (Ω), where φ0(x) =

d
dxφ(x), then there exists c ∈ C

such that

F (φ) = hc, φi =
Z
Ω

cφ(x)dx for all φ ∈ C∞c (Ω). (29.16)
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Proof. Before giving a proof of the second assertion, let us show it includes
the first. Indeed, if F (φ) :=

R
Ω
φfdm and ∂(w)f = 0, then F (φ0) = 0 for all

φ ∈ C∞c (Ω) and therefore there exists c ∈ C such thatZ
Ω

φfdm = F (φ) = chφ, 1i = c

Z
Ω

φfdm.

But this implies f = c a.e. So it only remains to prove the second assertion.
Let η ∈ C∞c (Ω) such that

R
Ω
ηdm = 1. Given φ ∈ C∞c (Ω) ⊂ C∞c (R) ,

let ψ(x) =
R x
−∞ (φ(y)− η(y)hφ, 1i) dy. Then ψ0(x) = φ(x) − η(x)hφ, 1i and

ψ ∈ C∞c (Ω) as the reader should check. Therefore,

0 = F (ψ) = F (φ− hφ, ηiη) = F (φ)− hφ, 1iF (η)
which shows Eq. (29.16) holds with c = F (η). This concludes the proof, how-
ever it will be instructive to give another proof of the first assertion.
Alternative proof of first assertion. Suppose f ∈ L1loc(Ω) and ∂

(w)f =
0 and fm := f∗ηm as is in the proof of Lemma 29.9. Then f 0m = ∂(w)f∗ηm = 0,
so fm = cm for some constant cm ∈ C. By Theorem 11.21, fm → f in L1loc(Ω)
and therefore if J = [a, b] is a compact subinterval of Ω,

|cm − ck| = 1

b− a

Z
J

|fm − fk| dm→ 0 as m,k →∞.

So {cm}∞m=1 is a Cauchy sequence and therefore c := limm→∞ cm exists and
f = limm→∞ fm = c a.e.

Theorem 29.26. Suppose f ∈ L1loc(Ω). Then there exists a complex measure
µ on BΩ such that

−hf, φ0i = µ(φ) :=

Z
Ω

φdµ for all φ ∈ C∞c (Ω) (29.17)

iff there exists a right continuous function F of bounded variation such that
F = f a.e. In this case µ = µF , i.e. µ((a, b]) = F (b)−F (a) for all −∞ < a <
b <∞.

Proof. Suppose f = F a.e. where F is as above and let µ = µF be the
associated measure on BΩ. Let G(t) = F (t) − F (−∞) = µ((−∞, t]), then
using Fubini’s theorem and the fundamental theorem of calculus,

−hf, φ0i = −hF, φ0i = −hG,φ0i = −
Z
Ω

φ0(t)
·Z

Ω

1(−∞,t](s)dµ(s)

¸
dt

= −
Z
Ω

Z
Ω

φ0(t)1(−∞,t](s)dtdµ(s) =

Z
Ω

φ(s)dµ(s) = µ(φ).

Conversely if Eq. (29.17) holds for some measure µ, let F (t) := µ((−∞, t])
then working backwards from above,
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−hf, φ0i = µ(φ) =

Z
Ω

φ(s)dµ(s) = −
Z
Ω

Z
Ω

φ0(t)1(−∞,t](s)dtdµ(s)

= −
Z
Ω

φ0(t)F (t)dt.

This shows ∂(w) (f − F ) = 0 and therefore by Proposition 29.25, f = F + c
a.e. for some constant c ∈ C. Since F + c is right continuous with bounded
variation, the proof is complete.

Proposition 29.27. Let Ω ⊂ R be an open interval and f ∈ L1loc(Ω). Then
∂wf exists in L1loc(Ω) iff f has a continuous version f̃ which is absolutely
continuous on all compact subintervals of Ω. Moreover, ∂wf = f̃ 0 a.e., where
f̃ 0(x) is the usual pointwise derivative.

Proof. If f is locally absolutely continuous and φ ∈ C∞c (Ω) with
supp(φ) ⊂ [a, b] ⊂ Ω, then by integration by parts, Corollary 20.32,Z

Ω

f 0φdm =

Z b

a

f 0φdm = −
Z b

a

fφ0dm+ fφ|ba = −
Z
Ω

fφ0dm.

This shows ∂wf exists and ∂wf = f 0 ∈ L1loc(Ω).
Now suppose that ∂wf exists in L1loc(Ω) and a ∈ Ω. Define F ∈ C (Ω)

by F (x) :=
R x
a
∂wf(y)dy. Then F is absolutely continuous on compacts and

therefore by fundamental theorem of calculus for absolutely continuous func-
tions (Theorem 20.31), F 0(x) exists and is equal to ∂wf(x) for a.e. x ∈ Ω.
Moreover, by the first part of the argument, ∂wF exists and ∂wF = ∂wf, and
so by Proposition 29.25 there is a constant c such that

f̃(x) := F (x) + c = f(x) for a.e. x ∈ Ω.

Definition 29.28. Let X and Y be metric spaces. A function u : X → Y is
said to be Lipschitz if there exists C <∞ such that

dY (u(x), u(x0)) ≤ CdX(x, x0) for all x, x0 ∈ X

and said to be locally Lipschitz if for all compact subsets K ⊂ X there exists
CK <∞ such that

dY (u(x), u(x0)) ≤ CKd
X(x, x0) for all x, x0 ∈ K.

Proposition 29.29. Let u ∈ L1loc(Ω). Then there exists a locally Lipschitz
function ũ : Ω → C such that ũ = u a.e. iff ∂iu ∈ L1loc(Ω) exists and is locally
(essentially) bounded for i = 1, 2, . . . , d.
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Proof. Suppose u = ũ a.e. and ũ is Lipschitz and let p ∈ (1,∞) and V be a
precompact open set such that V̄ ⊂W and let V� :=

©
x ∈ Ω : dist(x, V̄ ) ≤ �

ª
.

Then for � < dist(V̄ , Ωc), V� ⊂ Ω and therefore there is constant C(V, �) <∞
such that |ũ(y)− ũ(x)| ≤ C(V, �) |y − x| for all x, y ∈ V�. So for 0 < |h| ≤ 1
and v ∈ Rd with |v| = 1,Z

V

¯̄̄̄
u(x+ hv)− u(x)

h

¯̄̄̄p
dx =

Z
V

¯̄̄̄
ũ(x+ hv)− ũ(x)

h

¯̄̄̄p
dx ≤ C(V, �) |v|p .

Therefore Theorem 29.18 may be applied to conclude ∂vu exists in Lp and
moreover,

lim
h→0

ũ(x+ hv)− ũ(x)

h
= ∂vu(x) for m — a.e. x ∈ V.

Since there exists {hn}∞n=1 ⊂ R\ {0} such that limn→∞ hn = 0 and

|∂vu(x)| = lim
n→∞

¯̄̄̄
ũ(x+ hnv)− ũ(x)

hn

¯̄̄̄
≤ C(V ) for a.e. x ∈ V,

it follows that k∂vuk∞ ≤ C(V ) where C(V ) := lim�↓0C(V, �).
Conversely, letΩ� := {x ∈ Ω : dist(x,Ωc) > �} and η ∈ C∞c (B(0, 1), [0,∞))

such that
R
Rn η(x)dx = 1, ηm(x) = mnη(mx) and um := u ∗ ηm as in the

proof of Theorem 29.18. Suppose V ⊂o Ω with V̄ ⊂ Ω and � is sufficiently
small. Then um ∈ C∞(Ω�), ∂vum = ∂vu ∗ ηm, |∂vum(x)| ≤ k∂vukL∞(Vm−1 ) =:
C(V,m) <∞ and therefore for x, y ∈ V̄ with |y − x| ≤ �,

|um(y)− um(x)| =
¯̄̄̄Z 1

0

d

dt
um(x+ t(y − x))dt

¯̄̄̄
=

¯̄̄̄Z 1

0

(y − x) ·∇um(x+ t(y − x))dt

¯̄̄̄
≤
Z 1

0

|y − x| · |∇um(x+ t(y − x))| dt ≤ C(V,m) |y − x|
(29.18)

By passing to a subsequence if necessary, we may assume that limm→∞ um(x) =
u(x) for m — a.e. x ∈ V̄ and then letting m→∞ in Eq. (29.18) implies

|u(y)− u(x)| ≤ C(V ) |y − x| for all x, y ∈ V \E and |y − x| ≤ � (29.19)

where E ⊂ V̄ is a m — null set. Define ũV : V̄ → C by ũV = u on V̄ \Ec and
ũV (x) = limy→x

y/∈E
u(y) if x ∈ E. Then clearly ũV = u a.e. on V̄ and it is easy

to show ũV is well defined and ũV : V̄ → C is continuous and still satisfies

|ũV (y)− ũV (x)| ≤ CV |y − x| for x, y ∈ V̄ with |y − x| ≤ �.
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Since ũV is continuous on V̄ there exists MV < ∞ such that |ũV | ≤ MV on
V̄ . Hence if x, y ∈ V̄ with |x− y| ≥ �, we find

|ũV (y)− ũV (x)|
|y − x| ≤ 2M

�

and hence

|ũV (y)− ũV (x)| ≤ max
½
CV ,

2MV

�

¾
|y − x| for x, y ∈ V̄

showing ũV is Lipschitz on V̄ . To complete the proof, choose precompact
open sets Vn such that Vn ⊂ V̄n ⊂ Vn+1 ⊂ Ω for all n and for x ∈ Vn let
ũ(x) := ũVn(x).
Here is an alternative way to construct the function ũV above. For x ∈

V \E,

|um(x)− u(x)| =
¯̄̄̄Z
V

u(x− y)η(my)mndy − u(x)

¯̄̄̄
=

¯̄̄̄Z
V

[u(x− y/m)− u(x)] η(y)dy

¯̄̄̄
≤
Z
V

|u(x− y/m)− u(x)| η(y)dy ≤ C

m

Z
V

|y| η(y)dy

wherein the last equality we have used Eq. (29.19) with V replaced by V� for
some small � > 0. Letting K := C

R
V
|y| η(y)dy <∞ we have shown

kum − uk∞ ≤ K/m→ 0 as m→∞
and consequently

kum − unku = kum − unk∞ ≤ 2K/m→ 0 as m→∞.

Therefore, un converges uniformly to a continuous function ũV .
The next theorem is from Chapter 1. of Maz’ja [6].

Theorem 29.30. Let p ≥ 1 and Ω be an open subset of Rd, x ∈ Rd be written
as x = (y, t) ∈ Rd−1 ×R,

Y :=
©
y ∈ Rd−1 : ({y} ×R) ∩Ω 6= ∅ª

and u ∈ Lp(Ω). Then ∂tu exists weakly in Lp(Ω) iff there is a version ũ of
u such that for a.e. y ∈ Y the function t → ũ(y, t) is absolutely continuous,
∂tu(y, t) =

∂ũ(y,t)
∂t a.e., and

°°∂ũ
∂t

°°
Lp(Ω)

<∞.

Proof. For the proof of Theorem 29.30, it suffices to consider the case
where Ω = (0, 1)d. Write x ∈ Ω as x = (y, t) ∈ Y × (0, 1) = (0, 1)d−1 × (0, 1)
and ∂tu for the weak derivative ∂edu. By assumptionZ

Ω

|∂tu(y, t)| dydt = k∂tuk1 ≤ k∂tukp <∞
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and so by Fubini’s theorem there exists a set of full measure, Y0 ⊂ Y, such
that Z 1

0

|∂tu(y, t)| dt <∞ for y ∈ Y0.

So for y ∈ Y0, the function v(y, t) :=
R t
0
∂tu(y, τ)dτ is well defined and ab-

solutely continuous in t with ∂
∂tv(y, t) = ∂tu(y, t) for a.e. t ∈ (0, 1). Let

ξ ∈ C∞c (Y ) and η ∈ C∞c ((0, 1)) , then integration by parts for absolutely
functions impliesZ 1

0

v(y, t)η̇(t)dt = −
Z 1

0

∂

∂t
v(y, t)η(t)dt for all y ∈ Y0.

Multiplying both sides of this equation by ξ(y) and integrating in y showsZ
Ω

v(x)η̇(t)ξ(y)dydt = −
Z
Ω

∂

∂t
v(y, t)η(t)ξ(y)dydt

= −
Z
Ω

∂tu(y, t)η(t)ξ(y)dydt.

Using the definition of the weak derivative, this equation may be written asZ
Ω

u(x)η̇(t)ξ(y)dydt = −
Z
Ω

∂tu(x)η(t)ξ(y)dydt

and comparing the last two equations showsZ
Ω

[v(x)− u(x)] η̇(t)ξ(y)dydt = 0.

Since ξ ∈ C∞c (Y ) is arbitrary, this implies there exists a set Y1 ⊂ Y0 of full
measure such thatZ

Ω

[v(y, t)− u(y, t)] η̇(t)dt = 0 for all y ∈ Y1

from which we conclude, using Proposition 29.25, that u(y, t) = v(y, t)+C(y)
for t ∈ Jy where md−1 (Jy) = 1, here mk denotes k — dimensional Lebesgue
measure. In conclusion we have shown that

u(y, t) = ũ(y, t) :=

Z t

0

∂tu(y, τ)dτ + C(y) for all y ∈ Y1 and t ∈ Jy. (29.20)

We can be more precise about the formula for ũ(y, t) by integrating both
sides of Eq. (29.20) on t we learn

C(y) =

Z 1

0

dt

Z t

0

∂τu(y, τ)dτ −
Z 1

0

u(y, t)dt

=

Z 1

0

(1− τ) ∂τu(y, τ)dτ −
Z 1

0

u(y, t)dt

=

Z 1

0

[(1− t) ∂tu(y, t)− u(y, t)] dt
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and hence

ũ(y, t) :=

Z t

0

∂τu(y, τ)dτ +

Z 1

0

[(1− τ) ∂τu(y, τ)− u(y, τ)] dτ

which is well defined for y ∈ Y0.
For the converse suppose that such a ũ exists, then for φ ∈ C∞c (Ω) ,Z

Ω

u(y, t)∂tφ(y, t)dydt =

Z
Ω

ũ(y, t)∂tφ(y, t)dtdy

= −
Z
Ω

∂ũ(y, t)

∂t
φ(y, t)dtdy

wherein we have used integration by parts for absolutely continuous functions.
From this equation we learn the weak derivative ∂tu(y, t) exists and is given
by ∂ũ(y,t)

∂t a.e.

29.3 Exercises

Exercise 29.31. Give another proof of Lemma 29.10 base on Proposition
29.12.

Exercise 29.32. Prove Proposition 29.13. Hints: 1. Use u� as defined in
the proof of Proposition 29.12 to show it suffices to consider the case where
u ∈ C∞

¡
Rd
¢ ∩ Lq

¡
Rd
¢
with ∂αu ∈ Lq

¡
Rd
¢
for all α ∈ Nd0. 2. Then let

ψ ∈ C∞c (B(0, 1), [0, 1]) such that ψ = 1 on a neighborhood of 0 and let
un(x) := u(x)ψ(x/n).

Exercise 29.33. Suppose p(ξ) is a polynomial in ξ ∈ Rd, p ∈ (1,∞), q :=
p

p−1 , u ∈ Lp such that p(∂)u ∈ Lp and v ∈ Lq such that p (−∂) v ∈ Lq. Show
hp (∂)u, vi = hu, p (−∂) vi.
Exercise 29.34. Let p ∈ [1,∞), α be a multi index (if α = 0 let ∂0 be the
identity operator on Lp),

D(∂α) := {f ∈ Lp(Rn) : ∂αf exists weakly in Lp(Rn)}
and for f ∈ D(∂α) (the domain of ∂α) let ∂αf denote the α — weak derivative
of f. (See Definition 29.3.)

1. Show ∂α is a densely defined operator on Lp, i.e. D(∂α) is a dense linear
subspace of Lp and ∂α : D(∂α)→ Lp is a linear transformation.

2. Show ∂α : D(∂α)→ Lp is a closed operator, i.e. the graph,

Γ (∂α) := {(f, ∂αf) ∈ Lp × Lp : f ∈ D(∂α)} ,
is a closed subspace of Lp × Lp.
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3. Show ∂α : D(∂α) ⊂ Lp → Lp is not bounded unless α = 0. (The norm on
D(∂α) is taken to be the Lp — norm.)

Exercise 29.35. Let p ∈ [1,∞), f ∈ Lp and α be a multi index. Show ∂αf
exists weakly (see Definition 29.3) in Lp iff there exists fn ∈ C∞c (Rn) and
g ∈ Lp such that fn → f and ∂αfn → g in Lp as n → ∞. Hints: See
exercises 29.32 and 29.34.

Exercise 29.36. Folland 8.8 on p. 246.

Exercise 29.37. Assume n = 1 and let ∂ = ∂e1 where e1 = (1) ∈ R1 = R.
1. Let f(x) = |x| , show ∂f exists weakly in L1loc(R) and ∂f(x) = sgn(x) for
m — a.e. x.

2. Show ∂(∂f) does not exists weakly in L1loc(R).
3. Generalize item 1. as follows. Suppose f ∈ C(R,R) and there exists a
finite set Λ := {t1 < t2 < · · · < tN} ⊂ R such that f ∈ C1(R \ Λ,R).
Assuming ∂f ∈ L1loc (R) , show ∂f exists weakly and ∂(w)f(x) = ∂f(x)
for m — a.e. x.

Exercise 29.38. Suppose that f ∈ L1loc(Ω) and v ∈ Rd and {ej}nj=1 is the
standard basis for Rd. If ∂jf := ∂ejf exists weakly in L1loc(Ω) for all j =
1, 2, . . . , n then ∂vf exists weakly in L1loc(Ω) and ∂vf =

Pn
j=1 vj∂jf.

Exercise 29.39. Suppose, f ∈ L1loc(Rd) and ∂vf exists weakly and ∂vf = 0
in L1loc(Rd) for all v ∈ Rd. Then there exists λ ∈ C such that f(x) = λ for m
— a.e. x ∈ Rd. Hint: See steps 1. and 2. in the outline given in Exercise 29.40
below.

Exercise 29.40 (A generalization of Exercise 29.39). Suppose Ω is a
connected open subset of Rd and f ∈ L1loc(Ω). If ∂

αf = 0 weakly for α ∈ Zn+
with |α| = N +1, then f(x) = p(x) for m — a.e. x where p(x) is a polynomial
of degree at most N. Here is an outline.

1. Suppose x0 ∈ Ω and � > 0 such that C := Cx0(�) ⊂ Ω and let ηn be a
sequence of approximate δ — functions such supp(ηn) ⊂ B0(1/n) for all n.
Then for n large enough, ∂α(f ∗ ηn) = (∂αf) ∗ ηn on C for |α| = N + 1.
Now use Taylor’s theorem to conclude there exists a polynomial pn of
degree at most N such that fn = pn on C.

2. Show p := limn→∞ pn exists on C and then let n→∞ in step 1. to show
there exists a polynomial p of degree at most N such that f = p a.e. on
C.

3. Use Taylor’s theorem to show if p and q are two polynomials on Rd which
agree on an open set then p = q.

4. Finish the proof with a connectedness argument using the results of steps
2. and 3. above.
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Exercise 29.41. Suppose Ω ⊂o Rd and v, w ∈ Rd. Assume f ∈ L1loc(Ω)
and that ∂v∂wf exists weakly in L1loc(Ω), show ∂w∂vf also exists weakly and
∂w∂vf = ∂v∂wf.

Exercise 29.42. Let d = 2 and f(x, y) = 1x≥0. Show ∂(1,1)f = 0 weakly in
L1loc despite the fact that ∂1f does not exist weakly in L1loc!





Part VII

Complex Variable Theory





30

Complex Differentiable Functions

30.1 Basic Facts About Complex Numbers

Definition 30.1. C = R2 and we write 1 = (1, 0) and i = (0, 1). As usual C
becomes a field with the multiplication rule determined by 12 = 1 and i2 = −1,
i.e.

(a+ ib)(c+ id) ≡ (ac− bd) + i(bc+ ad).

Notation 30.2 If z = a+ ib with a, b ∈ R let z̄ = a− ib and

|z|2 ≡ zz̄ = a2 + b2.

Also notice that if z 6= 0, then z is invertible with inverse given by

z−1 =
1

z
=

z̄

|z|2 .

Given w = a + ib ∈ C, the map z ∈ C → wz ∈ C is complex and hence
real linear so we may view this a linear transformation Mw : R2 → R2. To
work out the matrix of this transformation, let z = c + id, then the map
is c + id → wz = (ac− bd) + i (bc+ ad) which written in terms of real and
imaginary parts is equivalent toµ

a −b
b a

¶µ
c
d

¶
=

µ
ac− bd
bc+ ad

¶
.

Thus

Mw =

µ
a −b
b a

¶
= aI + bJ where J =

µ
0 −1
1 0

¶
.

Remark 30.3. Continuing the notation above, M tr
w = Mw, det(Mw) = a2 +

b2 = |w|2, and MwMz = Mwz for all w, z ∈ C. Moreover the ready may
easily check that a real 2 × 2 matrix A is equal to Mw for some w ∈ C iff
0 = [A, J ] =: AJ − JA. Hence C and the set of real 2 × 2 matrices A such
that 0 = [A, J ] are algebraically isomorphic objects.
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30.2 The complex derivative

Definition 30.4. A function F : Ω ⊂o C → C is complex differentiable
at z0 ∈ Ω if

lim
z→z0

F (z)− F (z0)

z − z0
= w (30.1)

exists.

Proposition 30.5. A function F : Ω ⊂o C → C is complex differentiable iff
F : Ω → C is differentiable (in the real sense as a function from Ω ⊂o R2 →
R2) and [F 0(z0), J ] = 0, i.e. by Remark 30.3,

F 0(z0) =Mw =

µ
a −b
b a

¶
for some w = a+ ib ∈ C.
Proof. Eq. (30.1) is equivalent to the equation:

F (z) = F (z0) + w(z − z0) + o(z − z0)

= F (z0) +Mw(z − z0) + o(z − z0) (30.2)

and hence F is complex differentiable iff F is differentiable and the differential
is of the form F 0(z0) =Mw for some w ∈ C.
Corollary 30.6 (Cauchy Riemann Equations). F : Ω → C is complex
differentiable at z0 ∈ Ω iff F 0(z0) exists1 and, writing z0 = x0 + iy0,

i
∂F (x0 + iy0)

∂x
=

∂F

∂y
(x0 + iy0) (30.3)

or in short we write ∂F
∂x + i∂F∂y = 0.

Proof. The differential F 0(z0) is, in general, an arbitrary matrix of the
form

F 0(z0) =
·
a c
b d

¸
where

∂F

∂x
(z0) = a+ ib and

∂F

∂y
(z0) = c+ id. (30.4)

Since F is complex differentiable at z0 iff d = a and c = −b which is easily
seen to be equivalent to Eq. (30.3) by Eq. (30.4) and comparing the real and
imaginary parts of iFx(z0) and Fy(z0).

1 For example this is satisfied if If F : Ω → C is continuous at z0, Fx and Fy exists
in a neighborhood of z0 and are continuous near z0.
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Second Proof. If F is complex differentiable at z0 = x0 + iy0, then by
the chain rule,

∂F

∂y
(x0 + iy0) = iF 0(x0 + iy0) = i

∂F (x0 + iy0)

∂x
.

Conversely if F is real differentiable at z0 there exists a real linear transfor-
mation Λ : C ∼= R2 → C such that

F (z) = F (z0) + Λ(z − z0) + o(z − z0) (30.5)

and as usual this implies

∂F (z0)

∂x
= Λ(1) and

∂F (z0)

∂y
= Λ(i)

where 1 = (1, 0) and i = (0, 1) under the identification of C with R2. So if Eq.
(30.3) holds, we have

Λ(i) = iΛ(1)

from which it follows that Λ is complex linear. Hence if we set λ := Λ(1), we
have

Λ(a+ ib) = aΛ(1) + bΛ(i) = aΛ(1) + ibΛ(1) = λ(a+ ib),

which shows Eq. (30.5) may be written as

F (z) = F (z0) + λ(z − z0) + o(z − z0).

This is equivalent to saying F is complex differentiable at z0 and F 0(z0) = λ.

Notation 30.7 Let

∂ =
1

2

µ
∂

∂x
+ i

∂

∂y

¶
and ∂ =

1

2

µ
∂

∂x
− i

∂

∂y

¶
.

With this notation we have

∂fdz + ∂̄fdz̄ =
1

2

µ
∂

∂x
− i

∂

∂y

¶
f (dx+ idy) +

1

2

µ
∂

∂x
+ i

∂

∂y

¶
f (dx− idy)

=
∂f

∂x
dx+

∂f

∂y
dy = df.

In particular if σ(s) ∈ C is a smooth curve, then
d

ds
f(σ(s)) = ∂f(σ(s))σ0(s) + ∂̄f(σ(s))σ̄0(s).

Corollary 30.8. Let Ω ⊂o C be a given open set and f : Ω → C be a C1 —
function in the real variable sense. Then the following are equivalent:
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1. The complex derivative df(z)/dz exists for all z ∈ Ω.2

2. The real differential f 0(z) satisfies [f 0(z), J ] = 0 for all z ∈ Ω.
3. The function f satisfies the Cauchy Riemann equations ∂̄f = 0 on Ω.

Notation 30.9 A function f ∈ C1(Ω,C) satisfying any and hence all of the
conditions in Corollary 30.8 is said to be a holomorphic or an analytic
function on Ω. We will let H(Ω) denote the space of holomorphic functions
on Ω.

Corollary 30.10. The chain rule holds for complex differentiable functions.
In particular, Ω ⊂o C f−→ D ⊂o C g−→ C are functions, z0 ∈ Ω and w0 =
f(z0) ∈ D. Assume that f 0(z0) exists, g0(w0) exists then (g ◦f)0(z0) exists and
is given by

(g ◦ f)0(z0) = g0(f(z0))f 0(z0) (30.6)

Proof. This is a consequence of the chain rule for F : R2 → R2 when
restricted to those functions whose differentials commute with J. Alternatively,
one can simply follow the usual proof in the complex category as follows:

g ◦ f(z) = g(f(z)) = g(w0) + g0(w0)(f(z)− f(z0)) + o(f(z)− f(z0))

and hence

g ◦ f(z)− g(f(z0))

z − z0
= g0(w0)

f(z)− f(z0)

z − z0
+

o(f(z)− f(z0))

z − z0
. (30.7)

Since o(f(z)−f(z0))
z−z0 → 0 as z → z0 we may pass to the limit z → z0 in Eq.

(30.7) to prove Eq. (30.6).

Lemma 30.11 (Converse to the Chain rule). Suppose f : Ω ⊂o
C→U ⊂o C and g : U ⊂o C→ C are functions such that f is continu-
ous, g ∈ H(U) and h := g ◦ f ∈ H(Ω), then f ∈ H(Ω \ {z : g0(f(z)) = 0}).
Moreover f 0(z) = h0(z)/g0(f(z)) when z ∈ Ω and g0(f(z)) 6= 0.
Proof. This follow from the previous converse to the chain rule or directly

as follows3. Suppose that z0 ∈ Ω and g0(f(z0)) 6= 0. On one hand
h(z) = h(z0) + h0(z0)(z − z0) + o(z − z0)

while on the other

h(z) = g(f(z)) = g(f(z0)) + g0(f(z0)(f(z)− f(z0)) + o(f(z)− f(z0)).

Combining these equations shows

2 As we will see later in Theorem 30.48, the assumption that f is C1 in this condition
is redundant. Complex differentiablity of f at all points z ∈ Ω already implies
that f is C∞(Ω,C)!!

3 One could also apeal to the inverse function theorem here as well.
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h0(z0)(z− z0) = g0(f(z0))(f(z)− f(z0))+ o(f(z)− f(z0))+ o(z− z0). (30.8)

Since g0(f(z0)) 6= 0 we may conclude that

f(z)− f(z0) = o(f(z)− f(z0)) +O(z − z0),

in particular it follow that

|f(z)− f(z0)| ≤ 1
2
|f(z)− f(z0)|+O(z − z0) for z near z0

and hence that f(z)− f(z0) = O(z − z0). Using this back in Eq. (30.8) then
shows that

h0(z0)(z − z0) = g0(f(z0))(f(z)− f(z0)) + o(z − z0)

or equivalently that

f(z)− f(z0) =
h0(z0)

g0(f(z0))
(z − z0) + o(z − z0).

Example 30.12. Here are some examples.

1. f(z) = z is analytic and more generally f(z) =
kP

n=0
anz

n with an ∈ C are
analytic on C.

2. If f, g ∈ H(Ω) then f · g, f + g, cf ∈ H(Ω) and f/g ∈ H(Ω \ {g = 0}).
3. f(z) = z̄ is not analytic and f ∈ C1(C,R) is analytic iff f is constant.

The next theorem shows that analytic functions may be averaged to pro-
duce new analytic functions.

Theorem 30.13. Let g : Ω ×X → C be a function such that

1. g(·, x) ∈ H(Ω) for all x ∈ X and write g0(z, x) for d
dz g(z, x).

2. There exists G ∈ L1(X,µ) such that |g0(z, x)| ≤ G(x) on Ω ×X.
3. g(z, ·) ∈ L1(X,µ) for z ∈ Ω.

Then

f(z) :=

Z
X

g(z, ξ)dµ(ξ)

is holomorphic on Ω and the complex derivative is given by

f 0(z) =
Z
X

g0(z, ξ)dµ(ξ).
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Exercise 30.14. Prove Theorem 30.13 using the dominated convergence the-
orem along with the mean value inequality of Corollary 4.10. Alternatively
one may use the corresponding real variable differentiation theorem to show
∂xf and ∂yf exists and are continuous and then to show ∂̄f = 0.

As an application we will shows that power series give example of complex
differentiable functions.

Corollary 30.15. Suppose that {an}∞n=0 ⊂ C is a sequence of complex num-
bers such that series

f(z) :=
∞X
n=0

an(z − z0)
n

is convergent for |z − z0| < R, where R is some positive number. Then f :
D(z0, R)→ C is complex differentiable on D(z0, R) and

f 0(z) =
∞X
n=0

nan(z − z0)
n−1 =

∞X
n=1

nan(z − z0)
n−1. (30.9)

By induction it follows that f (k) exists for all k and that

f (k)(z) =
∞X
n=0

n(n− 1) . . . (n− k + 1)an(z − z0)
n−1.

Proof. Let ρ < R be given and choose r ∈ (ρ,R). Since z = z0 + r ∈
D(z0, R), by assumption the series

∞P
n=0

anr
n is convergent and in particular

M := supn |anrn| < ∞. We now apply Theorem 30.13 with X = N∪ {0} , µ
being counting measure, Ω = D(z0, ρ) and g(z, n) := an(z − z0)

n. Since

|g0(z, n)| = |nan(z − z0)
n−1| ≤ n |an| ρn−1

≤ 1
r
n
³ρ
r

´n−1
|an| rn ≤ 1

r
n
³ρ
r

´n−1
M

and the function G(n) := M
r n
¡
ρ
r

¢n−1
is summable (by the Ratio test for

example), we may use G as our dominating function. It then follows from
Theorem 30.13

f(z) =

Z
X

g(z, n)dµ(n) =
∞X
n=0

an(z − z0)
n

is complex differentiable with the differential given as in Eq. (30.9).

Example 30.16. Let w ∈ C, Ω := C\ {w} and f(z) = 1
w−z . Then f ∈ H(Ω).

Let z0 ∈ Ω and write z = z0 + h, then
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f(z) =
1

w − z
=

1

w − z0 − h
=

1

w − z0

1

1− h/(w − z0)

=
1

w − z0

∞X
n=0

µ
h

w − z0

¶n
=
∞X
n=0

µ
1

w − z0

¶n+1
(z − z0)

n

which is valid for |z − z0| < |w − z0| . Summarizing this computation we have
shown

1

w − z
=
∞X
n=0

µ
1

w − z0

¶n+1
(z − z0)

n for |z − z0| < |w − z0| . (30.10)

Proposition 30.17. The exponential function ez =
∞P
n=0

zn

n! is holomorphic on

C and d
dz e

z = ez. Moreover,

1. e(z+w) = ezew for all z, w ∈ C.
2. (Euler’s Formula) eiθ = cos θ + i sin θ for all θ ∈ R and |eiθ| = 1 for all

θ∈R.
3. ex+iy = ex (cos y + i sin y) for all x, y ∈ R.
4. ez = ez.

Proof. By the chain rule for functions of a real variable,

d

dt
[e−twe(z+tw)] = −we−twe(z+tw) + e−twwe(z+tw) = 0

and hence e−twe(z+tw) is constant in t. So by evaluating this expression at
t = 0 and t = 1 we find

e−we(z+w) = ez for all w, z ∈ C. (30.11)

Choose z = 0 in Eq. (30.11) implies e−wew = 1, i.e. e−w = 1/ew which used
back in Eq. (30.11 proves item 1. Similarly,

d

dθ
[e−iθ(cos θ + i sin θ)]

= −ie−iθ(cos θ + i sin θ) + e−iθ(− sin θ + i cos θ) = 0.

Hence e−iθ(cos θ+ i sin θ) = e−iθ(cos θ+ i sin θ)|θ=0 = 1 which proves item 2.
Item 3. is a consequence of items 1) and 2) and item 4) follows from item 3)
or directly from the power series expansion.

Remark 30.18. One could define ez by ez = ex(cos(y) + i sin(y)) when z =
x + iy and then use the Cauchy Riemann equations to prove ez is complex
differentiable.
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Exercise 30.19. By comparing the real and imaginary parts of the equality
eiθeiα = ei(θ+α) prove the formulas:

cos(θ + α) = cos θ cosα− sin θ sinα and
sin(θ + α) = cos θ sinα+ cosα sin θ

for all θ, α ∈ R.
Exercise 30.20. Find all possible solutions to the equation ez = w where
z and w are complex numbers. Let log(w) ≡ {z : ez = w}. Note that log :
C→ (subsets of C). One often writes log : C→ C and calls log a multi-valued
function. A continuous function l defined on some open subset Ω of C is called
a branch of log if l(w) ∈ log(w) for all w ∈ Ω. Use the reverse chain rule to
show any branch of log is holomorphic on its domain of definition and that
l0(z) = 1/z for all z ∈ Ω.

Exercise 30.21. Let Ω = {w = reiθ ∈ C : r > 0, and − π < θ < π} =
C \ (−∞, 0], and define Ln : Ω → C by Ln(reiθ) ≡ ln(r) + iθ for r > 0 and
|θ| < π. Show that Ln is a branch of log . This branch of the log function is
often called the principle value branch of log . The line (−∞, 0] where Ln is
not defined is called a branch cut.

Exercise 30.22. Let n
√
w ≡ {z ∈ C : zn = w}. The “function” w → n

√
w

is another example of a multi-valued function. Let h(w) be any branch of
n
√
w, that is h is a continuous function on an open subset Ω of C such that

h(w) ∈ n
√
w. Show that h is holomorphic away from w = 0 and that h0(w) =

1
nh(w)/w.

Exercise 30.23. Let l be any branch of the log function. Define wz ≡ ezl(w)

for all z ∈ C and w ∈ D(l) where D(l) denotes the domain of l. Show that
w1/n is a branch of n

√
w and also show that d

dww
z = zwz−1.

30.3 Contour integrals

Definition 30.24. Suppose that σ : [a, b]→ Ω is a Piecewise C1 function and
f : Ω → C is continuous, we define the contour integral of f along σ (writtenR
σ

f(z)dz) by Z
σ

f(z)dz :=

Z b

a

f(σ(t))σ̇(t)dt.

Notation 30.25 Given Ω ⊂o C and a C2 map σ : [a, b] × [0, 1] → Ω, let
σs := σ(·, s) ∈ C1([a, b] → Ω). In this way, the map σ may be viewed as a
map

s ∈ [0, 1]→ σs := σ(·, s) ∈ C2([a, b]→ Ω),

i.e. s→ σs is a path of contours in Ω.
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Definition 30.26. Given a region Ω and α, β ∈ C2 ([a, b]→ Ω) , we will write
α ' β in Ω provided there exists a C2 — map σ : [a, b]× [0, 1]→ Ω such that
σ0 = α, σ1 = β, and σ satisfies either of the following two conditions:

1. d
dsσ(a, s) =

d
dsσ(b, s) = 0 for all s ∈ [0, 1], i.e. the end points of the paths

σs for s ∈ [0, 1] are fixed.
2. σ(a, s) = σ(b, s) for all s ∈ [0, 1], i.e. σs is a loop in Ω for all s ∈ [0, 1].
Proposition 30.27. Let Ω be a region and α, β ∈ C2([a, b], Ω) be two con-
tours such that α ' β in Ω. ThenZ

α

f(z)dz =

Z
β

f(z)dz for all f ∈ H(Ω).

Proof. Let σ : [a, b]× [0, 1]→ Ω be as in Definition 30.26, then it suffices
to show the function

F (s) :=

Z
σs

f(z)dz

is constant for s ∈ [0, 1]. For this we compute:

F 0(s) =
d

ds

Z b

a

f(σ(t, s))σ̇(t, s)dt =

Z b

a

d

ds
[f(σ(t, s))σ̇(t, s)] dt

=

Z b

a

{f 0(σ(t, s))σ0(t, s)σ̇(t, s) + f(σ(t, s))σ̇0(t, s)} dt

=

Z b

a

d

dt
[f(σ(t, s))σ0(t, s)] dt

= [f(σ(t, s))σ0(t, s)]
¯̄̄t=b
t=a

= 0

where the last equality is a consequence of either of the two endpoint assump-
tions of Definition 30.26.

Remark 30.28. For those who know about differential forms and such we may
generalize the above computation to f ∈ C1(Ω) using df = ∂fdz + ∂̄fdz̄. We
then find
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F 0(s) =
d

ds

Z b

a

f(σ(t, s))σ̇(t, s)dt =

Z b

a

d

ds
[f(σ(t, s))σ̇(t, s)] dt

=

Z b

a

½£
∂f(σ(t, s))σ0(t, s) + ∂̄f(σ(t, s))σ̄0(t, s)

¤
σ̇(t, s)

+f(σ(t, s))σ̇0(t, s)

¾
dt

=

Z b

a

½£
∂f(σ(t, s))σ̇(t, s)σ0(t, s) + ∂̄f(σ(t, s))σ̄t(t, s)σ

0(t, s)
¤

+f(σ(t, s))σ̇0(t, s)

¾
dt

+

Z b

a

∂̄f(σ(t, s)) (σ̄0(t, s)σ̇(t, s)− σ̄t(t, s)σ
0(t, s)) dt

=

Z b

a

d

dt
[f(σ(t, s))σ0(t, s)] dt

+

Z b

a

∂̄f(σ(t, s)) (σ̄0(t, s)σ̇(t, s)− σ̄t(t, s)σ
0(t, s)) dt

= [f(σ(t, s))σ0(t, s)]
¯̄̄t=b
t=a

+

Z b

a

∂̄f(σ(t, s)) (σ̄0(t, s)σ̇(t, s)− σ̄t(t, s)σ
0(t, s)) dt

=

Z b

a

∂̄f(σ(t, s)) (σ̄0(t, s)σ̇(t, s)− σ̄t(t, s)σ
0(t, s)) dt.

Integrating this expression on s then shows thatZ
σ1

fdz −
Z
σ0

fdz =

Z 1

0

ds

Z b

a

dt∂̄f(σ(t, s)) (σ̄0(t, s)σ̇(t, s)− σ̄t(t, s)σ
0(t, s))

=

Z
σ

∂̄(fdz) =

Z
σ

∂̄fdz̄ ∧ dz

We have just given a proof of Green’s theorem in this context.

The main point of this section is to prove the following theorem.

Theorem 30.29. Let Ω ⊂o C be an open set and f ∈ C1(Ω,C), then the
following statements are equivalent:

1. f ∈ H(Ω),
2. For all disks D = D(z0, ρ) such that D̄ ⊂ Ω,

f(z) =
1

2πi

I
∂D

f(w)

w − z
dw for all z ∈ D. (30.12)

3. For all disks D = D(z0, ρ) such that D̄ ⊂ Ω, f(z) may be represented as
a convergent power series

f(z) =
∞X
n=0

an(z − z0)
n for all z ∈ D. (30.13)

In particular f ∈ C∞(Ω,C).
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Moreover if D is as above, we have

f (n)(z) =
n!

2πi

I
∂D

f(w)

(w − z)
n dw for all z ∈ D (30.14)

and the coefficients an in Eq. (30.13) are given by

an = f (n)(z0)/n! =
1

2πi

I
∂D

f(w)

(w − z0)n+1
dw.

Proof. 1) =⇒ 2) For s ∈ [0, 1], let zs = (1−s)z0+sz, ρs := dist(zs, ∂D) =
ρ − s |z − z0| and σs(t) = zs + ρse

it for 0 ≤ t ≤ 2π. Notice that σ0 is a
parametrization of ∂D, σ0 ' σ1 in Ω \ {z} , w → f(w)

w−z is in H (Ω \ {z}) and
hence by Proposition 30.27,I

∂D

f(w)

w − z
dw =

Z
σ0

f(w)

w − z
dw =

Z
σ1

f(w)

w − z
dw.

Now let τs(t) = z + sρ1e
it for 0 ≤ t ≤ 2π and s ∈ (0, 1]. Then τ1 = σ1 and

τ1 ' τs in Ω \ {z} and so again by Proposition 30.27,I
∂D

f(w)

w − z
dw =

Z
σ1

f(w)

w − z
dw =

Z
τs

f(w)

w − z
dw

=

Z 2π

0

f(z + sρ1e
it)

sρ1eit
isρ1e

itdt

= i

Z 2π

0

f(z + sρ1e
it)dt→ 2πif(z) as s ↓ 0.

2) =⇒ 3) By 2) and Eq. (30.10)

f(z) =
1

2πi

I
∂D

f(w)

w − z
dw

=
1

2πi

I
∂D

f(w)
∞X
n=0

µ
1

w − z0

¶n+1
(z − z0)

ndw

=
1

2πi

∞X
n=0

ÃI
∂D

f(w)

µ
1

w − z0

¶n+1
dw

!
(z − z0)

n.

(The reader should justify the interchange of the sum and the integral.) The
last equation proves Eq. (30.13) and shows that

an =
1

2πi

I
∂D

f(w)

(w − z0)n+1
dw.

Also using Theorem 30.13 we may differentiate Eq. (30.12) repeatedly to find
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f (n)(z) =
n!

2πi

I
∂D

f(w)

(w − z)n+1
dw for all z ∈ D (30.15)

which evaluated at z = z0 shows that an = f (n)(z0)/n!.
3) =⇒ 1)This follows from Corollary 30.15 and the fact that being complex

differentiable is a local property.
The proof of the theorem also reveals the following corollary.

Corollary 30.30. If f ∈ H(Ω) then f 0 ∈ H(Ω) and by induction f (n) ∈
H(Ω) with f (n) defined as in Eq. (30.15).

Corollary 30.31 (Cauchy Estimates). Suppose that f ∈ H(Ω) where
Ω ⊂o C and suppose that D(z0, ρ) ⊂ Ω, then¯̄̄

f (n)(z0)
¯̄̄
≤ n!

ρn
sup

|ξ−z0|=ρ
|f(ξ)|. (30.16)

Proof. From Eq. (30.15) evaluated at z = z0 and letting σ(t) = z0 + ρeit

for 0 ≤ t ≤ 2π, we find

f (n)(z0) =
n!

2πi

I
∂D

f(w)

(w − z0)
n+1 dw =

n!

2πi

Z
σ

f(w)

(w − z0)
n+1 dw

=
n!

2πi

Z 2π

0

f(z0 + ρeit)

(ρeit)
n+1 iρeitdt

=
n!

2πρn

Z 2π

0

f(z0 + ρeit)

eint
dt. (30.17)

Therefore,¯̄̄
f (n)(z0)

¯̄̄
≤ n!

2πρn

Z 2π

0

¯̄̄̄
f(z0 + ρeit)

eint

¯̄̄̄
dt =

n!

2πρn

Z 2π

0

¯̄
f(z0 + ρeit)

¯̄
dt

≤ n!

ρn
sup

|ξ−z0|=ρ
|f(ξ)|.

Exercise 30.32. Show that Theorem 30.13 is still valid with conditions 2)
and 3) in the hypothesis being replaced by: there exists G ∈ L1(X,µ) such
that | |g(z, x)| ≤ G(x).
Hint: Use the Cauchy estimates.

Corollary 30.33 ( Liouville’s Theorem). If f ∈ H(C) and f is bounded
then f is constant.

Proof. This follows from Eq. (30.16) with n = 1 and the letting n → ∞
to find f 0(z0) = 0 for all z0 ∈ C.
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Corollary 30.34 (Fundamental theorem of algebra). Every polynomial
p(z) of degree larger than 0 has a root in C.

Proof. Suppose that p(z) is polynomial with no roots in z. Then f(z) =
1/p(z) is a bounded holomorphic function and hence constant. This shows
that p(z) is a constant, i.e. p has degree zero.

Definition 30.35.We say that Ω is a region if Ω is a connected open subset
of C.

Corollary 30.36. Let Ω be a region and f ∈ H(Ω) and Z(f) = f−1({0})
denote the zero set of f. Then either f ≡ 0 or Z(f) has no accumulation
points in Ω. More generally if f, g ∈ H(Ω) and the set {z ∈ Ω : f(z) = g(z)}
has an accumulation point in Ω, then f ≡ g.

Proof. The second statement follows from the first by considering the
function f − g. For the proof of the first assertion we will work strictly in Ω
with the relative topology.
Let A denote the set of accumulation points of Z(f) (in Ω). By continuity

of f, A ⊂ Z(f) and A is a closed4 subset of Ω with the relative topology. The
proof is finished by showing that A is open and thus A = ∅ or A = Ω because
Ω is connected.
Suppose that z0 ∈ A, and express f(z) as its power series expansion

f(z) =
∞X
n=0

an(z − z0)
n

for z near z0. Since 0 = f(z0) it follows that a0 = 0. Let zk ∈ Z(f)\{z0} such
that lim zk = z0. Then

0 =
f(zk)

zk − z0
=
∞X
n=1

an(zk − z0)
n−1 → a1 as k →∞

so that f(z) =
P∞

n=2 an(z − z0)
n. Similarly

0 =
f(zk)

(zk − z0)
2 =

∞X
n=2

an(zk − z0)
n−2 → a2 as k →∞

and continuing by induction, it follows that an ≡ 0, i.e. f is zero in a neigh-
borhood of z0.

Definition 30.37. For z ∈ C, let

cos(z) =
eiz + eiz

2
and sin(z) =

eiz − eiz

2i
.

4 Recall that x ∈ A iff V 0
x ∩Z 6= ∅ for all x ∈ Vx ⊂o C where V 0

x := Vx \ {x} . Hence
x /∈ A iff there exists x ∈ Vx ⊂o C such that V 0

x ∩ Z = ∅. Since V 0
x is open, it

follows that V 0
x ⊂ Ac and thus Vx ⊂ Ac. So Ac is open, i.e. A is closed.
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Exercise 30.38. Show the these formula are consistent with the usual def-
inition of cos and sin when z is real. Also shows that the addition formula
in Exercise 30.19 are valid for θ, α ∈ C. This can be done with no additional
computations by making use of Corollary 30.36.

Exercise 30.39. Let

f(z) :=
1√
2π

Z
R
exp(−1

2
x2 + zx)dm(x) for z ∈ C.

Show f(z) = exp( 12z
2) using the following outline:

1. Show f ∈ H(Ω).
2. Show f(z) = exp(12z

2) for z ∈ R by completing the squares and using the
translation invariance of m. Also recall that you have proved in the first
quarter that f(0) = 1.

3. Conclude f(z) = exp(12z
2) for all z ∈ C using Corollary 30.36.

Corollary 30.40 (Mean vaule property). Let Ω ⊂o C and f ∈ H(Ω),
then f satisfies the mean value property

f(z0) =
1

2π

Z 2π

0

f(z0 + ρeiθ)dθ (30.18)

which holds for all z0 and ρ ≥ 0 such that D(z0, ρ) ⊂ Ω.

Proof. Take n = 0 in Eq. (30.17).

Proposition 30.41. Suppose that Ω is a connected open subset of C. If f ∈
H(Ω) is a function such that |f | has a local maximum at z0 ∈ Ω, then f is
constant.

Proof. Let ρ > 0 such that D̄ = D(z0, ρ) ⊂ Ω and |f(z)| ≤ |f(z0)| =: M
for z ∈ D̄. By replacing f by eiθf with an appropriate θ ∈ R we may assume
M = f(z0). Letting u(z) = Re f(z) and v(z) = Im f(z), we learn from Eq.
(30.18) that

M = f(z0) = Re f(z0) =
1

2π

Z 2π

0

u(z0 + ρeiθ)dθ

≤ 1

2π

Z 2π

0

min(u(z0 + ρeiθ), 0)dθ ≤M

since
¯̄
u(z0 + ρeiθ)

¯̄ ≤ ¯̄f(z0 + ρeiθ)
¯̄ ≤M for all θ. From the previous equation

it follows that

0 =

Z 2π

0

©
M −min(u(z0 + ρeiθ), 0)

ª
dθ
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which in turn implies thatM = min(u(z0+ρe
iθ), 0), since θ →M−min(u(z0+

ρeiθ), 0) is positive and continuous. So we have proved M = u(z0 + ρeiθ) for
all θ. Since

M2 ≥ ¯̄f(z0 + ρeiθ)
¯̄2
= u2(z0 + ρeiθ) + v2(z0 + ρeiθ) =M2 + v2(z0 + ρeiθ),

we find v(z0 + ρeiθ) = 0 for all θ. Thus we have shown f(z0 + ρeiθ) = M for
all θ and hence by Corollary 30.36, f(z) =M for all z ∈ Ω.
The following lemma makes the same conclusion as Proposition 30.41 using

the Cauchy Riemann equations. This Lemma may be skipped.

Lemma 30.42. Suppose that f ∈ H(D) where D = D(z0, ρ) for some ρ > 0.
If |f(z)| = k is constant on D then f is constant on D.

Proof. If k = 0 we are done, so assume that k > 0. By assumption

0 = ∂k2 = ∂ |f |2 = ∂(f̄f) = ∂f̄ · f + f̄∂f

= f̄∂f = f̄f 0

wherein we have used

∂f̄ =
1

2
(∂x − i∂y) f̄ =

1

2
(∂x + i∂y) f(z) = ∂̄f = 0

by the Cauchy Riemann equations. Hence f 0 = 0 and f is constant.

Corollary 30.43 (Maximum modulous principle). Let Ω be a bounded
region and f ∈ C(Ω) ∩ H(Ω). Then for all z ∈ Ω, |f(z)| ≤ sup

z∈∂Ω
|f(z)|.

Furthermore if there exists z0 ∈ Ω such that |f(z0)| = sup
z∈∂Ω

|f(z)| then f is

constant.

Proof. If there exists z0 ∈ Ω such that |f(z0)| = maxz∈∂Ω |f(z)|, then
Proposition 30.41 implies that f is constant and hence |f(z)| = sup

z∈∂Ω
|f(z)|.

If no such z0 exists then |f(z)| ≤ sup
z∈∂Ω

|f(z)| for all z ∈ Ω̄.

30.4 Weak characterizations of H(Ω)

The next theorem is the deepest theorem of this section.

Theorem 30.44. Let Ω ⊂o C and f : Ω → C is a function which is complex
differentiable at each point z ∈ Ω. Then

H
∂T

f(z)dz = 0 for all solid triangles

T ⊂ Ω.
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Fig. 30.1. Spliting T into four similar triangles of equal size.

Proof. Write T = S1 ∪ S2 ∪ S3 ∪ S4 as in Figure 30.1 below.
Let T1 ∈ {S1, S2, S3, S4} such that |

R
∂T

f(z)dz| = max{| R
∂Si

f(z)dz| : i =
1, 2, 3, 4}, then

|
Z
∂T

f(z)dz| = |
4X
i=1

Z
∂Si

f(z)dz| ≤
4X
i=1

|
Z
∂Si

f(z)dz| ≤ 4|
Z
∂T1

f(z)dz|.

Repeating the above argument with T replaced by T1 again and again, we
find by induction there are triangles {Ti}∞i=1 such that
1. T ⊇ T1 ⊇ T2 ⊇ T3 ⊇ . . .
2. c(∂Tn) = 2−nc(∂T ) where c(∂T ) denotes the length of the boundary of T,
3. diam(Tn) = 2−n diam(T ) and

|
Z
∂T

f(z)dz| ≤ 4n|
Z
∂Tn

f(z)dz|. (30.19)

By finite intersection property of compact sets there exists z0 ∈
∞T
n=1

Tn.

Because
f(z) = f(z0) + f 0(z0)(z − z0) + o(z − z0)

we find
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¯̄4n Z

∂Tn

f(z)dz

¯̄̄̄
¯̄ = 4n

¯̄̄̄
¯̄ Z
∂Tn

f(z0)dz +

Z
∂Tn

f 0(z0)(z − z0)dz +

Z
∂Tn

o(z − z0)dz

¯̄̄̄
¯̄

= 4n

¯̄̄̄
¯̄ Z
∂Tn

o(z − z0)dz

¯̄̄̄
¯̄ ≤ C�n4

n

Z
∂Tn

|z − z0| d|z|

where �n → 0 as n→∞. SinceZ
∂Tn

|z − z0| d|z| ≤ diam(Tn)c(∂Tn) = 2−ndiam(T )2−nc(∂T )

= 4−ndiam(T )c(∂T )

we see

4n

¯̄̄̄
¯̄ Z
∂Tn

f(z)dz

¯̄̄̄
¯̄ ≤ C�n4

n4−ndiam(T )c(∂T ) = C�n → 0 as n→∞.

Hence by Eq. (30.19),
R
∂T

f(z)dz = 0.

Theorem 30.45 (Morera’s Theorem). Suppose that Ω ⊂o C and f ∈
C(Ω) is a complex function such thatZ

∂T

f(z)dz = 0 for all solid triangles T ⊂ Ω, (30.20)

then f ∈ H(Ω).

Proof. Let D = D(z0, ρ) be a disk such that D̄ ⊂ Ω and for z ∈ D let

F (z) =

Z
[z0,z]

f(ξ)dξ

where [z0, z] is by definition the contour, σ(t) = (1− t)z0 + tz for 0 ≤ t ≤ 1.
For z, w ∈ D we have, using Eq. (30.20),

F (w)− F (z) =

Z
[z,w]

f(ξ)dξ =

Z 1

0

f(z + t(w − z))(w − z)dt

= (w − z)

Z 1

0

f(z + t(w − z))dt.

From this equation and the dominated convergence theorem we learn that
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F (w)− F (z)

w − z
=

Z 1

0

f(z + t(w − z))dt→ f(z) as w→ z.

Hence F 0 = f so that F ∈ H(D). Corollary 30.30 now implies f = F 0 ∈ H(D).
Since D was an arbitrary disk contained in Ω and the condition for being in
H(Ω) is local we conclude that f ∈ H(Ω).
The method of the proof above also gives the following corollary.

Corollary 30.46. Suppose that Ω ⊂o C is convex open set. Then for every
f ∈ H(Ω) there exists F ∈ H(Ω) such that F 0 = f. In fact fixing a point
z0 ∈ Ω, we may define F by

F (z) =

Z
[z0,z]

f(ξ)dξ for all z ∈ Ω.

Exercise 30.47. Let Ω ⊂o C and {fn} ⊂ H(Ω) be a sequence of functions
such that f(z) = limn→∞ fn(z) exists for all z ∈ Ω and the convergence is
uniform on compact subsets of Ω. Show f ∈ H(Ω) and f 0(z) = limn→∞ f 0n(z).
Hint: Use Morera’s theorem to show f ∈ H(Ω) and then use Eq. (30.14)

with n = 1 to prove f 0(z) = limn→∞ f 0n(z).

Theorem 30.48. Let Ω ⊂o C be an open set. Then

H(Ω) =

½
f : Ω → C such that

df(z)

dz
exists for all z ∈ Ω

¾
. (30.21)

In other words, if f : Ω → C is complex differentiable at all points of Ω then
f 0 is automatically continuous and hence C∞ by Theorem 30.29!!!

Proof. Combine Theorems 30.44 and 30.45.

Corollary 30.49 (Removable singularities). Let Ω ⊂o C, z0 ∈ Ω and
f ∈ H(Ω \ {z0}). If lim supz→z0 |f(z)| < ∞, i.e. sup

0<|z−z0|<�
|f(z)| < ∞ for

some � > 0, then lim
z→z0

f(z) exists. Moreover if we extend f to Ω by setting

f(z0) = lim
z→z0

f(z), then f ∈ H(Ω).

Proof. Set

g(z) =

½
(z − z0)

2f(z) for z ∈ Ω \ {z0}
0 for z = z0

.

Then g0(z0) exists and is equal to zero. Therefore g0(z) exists for all z ∈ Ω
and hence g ∈ H(Ω).We may now expand g into a power series using g(z0) =

g0(z0) = 0 to learn g(z) =
∞P
n=2

an(z − z0)
n which implies
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f(z) =
g(z)

(z − z0)2
=
∞X
n=0

an(z − z0)
n−2 for 0 < |z − z0| < �

Therefore, limz→z0 f(z) = a2 exists. Defining f(z0) = a2 we have f(z) =
∞P
n=0

an(z− z0)
n−2 for z near z0. This shows that f is holomorphic in a neigh-

borhood of z0 and since f was already holomorphic away from z0, f ∈ H(Ω).

Exercise 30.50. ShowZ 1

−1

sinMx

x
dx =

Z M

−M

sinx

x
dx→ π as M →∞ (30.22)

using the following method.5

1. Show that

g(z) =

½
z−1 sin z for z 6= 0

1 if z = 0

defines a holomorphic function on C.
2. Let ΓM denote the straight line path from −M to −1 along the real axis
followed by the contour eiθ for θ going from π to 2π and then followed by
the straight line path from 1 to M. Explain whyZ M

−M

sinx

x
dx =

Z
ΓM

sin z

z
dz

µ
=
1

2i

Z
ΓM

eiz

z
dz − 1

2i

Z
ΓM

e−iz

z
dz.

¶
3. Let C+M denote the path Meiθ with θ going from 0 to π and C−M denote
the path Meiθ with θ going from π to 2π. By deforming paths and using
the Cauchy integral formula, showZ

ΓM+C
+
M

eiz

z
dz = 2πi and

Z
ΓM−C−M

e−iz

z
dz = 0.

4. Show (by writing out the integrals explicitly) that

lim
M→∞

Z
C+
M

eiz

z
dz = 0 = lim

M→∞

Z
C−M

e−iz

z
dz.

5. Conclude from steps 3. and 4. that Eq. (30.22) holds.

5 In previous notes we evaluated this limit by real variable techniques based on the
identity that 1

x
=
R∞
0

e−λxdλ for x > 0.
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30.5 Summary of Results

Theorem 30.51. Let Ω ⊂ C be an open subset and f : Ω → C be a given
function. If f 0(z) exists for all z ∈ Ω, then in fact f has complex derivatives
to all orders and hence f ∈ C∞(Ω). Set H(Ω) to be the set of holomorphic
functions on Ω.
Now assume that f ∈ C0(Ω). Then the following are equivalent:

1. f ∈ H(Ω)
2.
H
∂T

f(z)dz = 0 for all triangles T ⊂ Ω.
3.
H
∂R

f(z)dz = 0 for all “nice” regions R ⊂ Ω.
4.
H
σ
f(z)dz = 0 for all closed paths σ in Ω which are null-homotopic.

5. f ∈ C1(Ω) and ∂̄f ≡ 0 or equivalently if f(x + iy) = u(x, y) + iv(x, y),
then the pair of real valued functions u, v should satisfy"

∂
∂x − ∂

∂y
∂
∂y

∂
∂x

#·
u
v

¸
=

·
0
0

¸
.

6. For all closed discs D ⊂ Ω and z ∈ Do,

f(z) =

I
∂D

f(ξ)

ξ − z
dξ.

7. For all z0 ∈ Ω and R > 0 such that D(z0, R) ⊂ Ω the function f restricted
to D(z0, R) may be written as a power series:

f(z) =
∞X
n=0

an(z − z0)
n for z ∈ D(z0, R).

Furthermore

an = f (n)(z0)/n! =
1

2πi

I
|z−z0|=r

f(z)

(z − z0)n+1
dz,

where 0 < r < R.

Remark 30.52. The operator L =

"
∂
∂x − ∂

∂y
∂
∂y

∂
∂x

#
is an example of an elliptic

differential operator. This means that if ∂
∂x is replaced by ξ1 and

∂
∂y is replaced

by ξ2 then the “principal symbol” of L, L̂(ξ) ≡
·
ξ1 −ξ2
ξ2 ξ1

¸
, is an invertible

matrix for all ξ = (ξ1, ξ2) 6= 0. Solutions to equations of the form Lf = g where
L is an elliptic operator have the property that the solution f is “smoother”
than the forcing function g. Another example of an elliptic differential operator
is the Laplacian ∆ = ∂2

∂x2 +
∂2

∂y2 for which ∆̂(ξ) = ξ21+ξ22 is invertible provided

ξ 6= 0. The wave operator ¤ = ∂2

∂x2− ∂2

∂y2 for which ¤̂(ξ) = ξ21−ξ22 is not elliptic
and also does not have the smoothing properties of an elliptic operator.
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30.6 Exercises

1. Set ez =
P∞

n=0
zn

n! . Show that e
z = ex(cos(y) + i sin(y)), and that ∂ez =

d
dz e

z = ez and ∂̄ez = 0.
2. Find all possible solutions to the equation ez = w where z and w are
complex numbers. Let log(w) ≡ {z : ez = w}. Note that log : C →
(subsets of C). One often writes log : C→ C and calls log a multi-valued
function. A continuous function l defined on some open subset Ω of C is
called a branch of log if l(w) ∈ log(w) for all w ∈ Ω. Use a result from
class to show any branch of log is holomorphic on its domain of definition
and that l0(z) = 1/z for all z ∈ Ω.

3. Let Ω = {w = reiθ ∈ C : r > 0, and − π < θ < π} = C \ (−∞, 0],
and define Ln : Ω → C by Ln(reiθ) ≡ ln(r) + iθ for r > 0 and |θ| < π.
Show that Ln is a branch of log . This branch of the log function is often
called the principle value branch of log . The line (−∞, 0] where Ln is
not defined is called a branch cut. We will see that such a branch cut is
necessary. In fact for any continuous “simple” curve σ joining 0 and ∞
there will be a branch of the log - function defined on the complement of
σ.

4. Let n
√
w ≡ {z ∈ C : zn = w}. The “function” w → n

√
w is another

example of a multivalued function. Let h(w) be any branch of n
√
w, that is

h is a continuous function on an open subset Ω of C such that h(w) ∈ n
√
w.

Show that h is holomorphic away from w = 0 and that h0(w) = 1
nh(w)/w.

5. Let l be any branch of the log function. Define wz ≡ ezl(w) for all z ∈ C
and w ∈ D(l) where D(l) denotes the domain of l. Show that w1/n is a
branch of n

√
w and also show that d

dww
z = zwz−1.

6. Suppose that (X,µ) is a measure space and that f : Ω × X → C is a
function (Ω is an open subset of C) such that for all w ∈ X the function
z → f(z, w) is in H(Ω) and

R
X
|f(z, w)|dµ(w) <∞ for all z ∈ Ω (in fact

one z ∈ Ω is enough). Also assume there is a function g ∈ L1(dµ) such
that |∂f(z,w)∂z | ≤ g(w) for all (z, w) ∈ Ω×X. Show that the function h(z) ≡R
X
f(z, w)dµ(w) is holomorphic on X and that h0(z) =

R
X

∂f(z,w)
∂z dµ(w)

for all z ∈ X. Hint: use the Hahn Banach theorem and the mean valued
theorem to prove the following estimate:

|f(z + δ, w)− f(z, w)

δ
| ≤ g(w)

all δ ∈ C sufficiently close to but not equal to zero.
7. Assume that f is a C1 function on C. Show that ∂[f(z̄)] = (∂̄f)(z̄).
(By the way, a C1−function f on C is said to be anti-holomorphic if
∂f = 0. This problem shows that f is anti-holomorphic iff z → f(z̄) is
holomorphic.)

8. Let U ⊂ C be connected and open. Show that f ∈ H(U) is constant on
U iff f 0 ≡ 0 on U.
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9. Let f ∈ H(U) and R ⊂ U be a “nice” closed region (See Figure To be
supplied later.). Use Green’s theorem to show

R
∂R

f(z)dz = 0, whereZ
∂R

f(z)dz ≡
nX
i=1

Z
σi

f(z)dz,

and {σi}ni=1 denote the components of the boundary appropriately ori-
ented, see the Figure 1.

10. The purpose of this problem is to understand the Laurent Series of a
function holomorphic in an annulus. Let 0 ≤ R0 < r0 < r1 < R1 ≤ ∞,
z0 ∈ C, U ≡ {z ∈ C|R0 < |z − z0| < R1}, and A ≡ {z ∈ C|r0 < |z − z0| <
r1}.
a) Use the above problem (or otherwise) and the simple form of the

Cauchy integral formula proved in class to show if g ∈ H(U)∩C1(U),
then for all z ∈ A, g(z) = 1

2πi

R
∂A

g(w)
w−zdw. Hint: Apply the above

problem to the function f(w) = g(w)
w−z with a judiciously chosen region

R ⊂ U.
b) Mimic the proof (twice, one time for each component of ∂A) of the

Taylor series done in class to show if g ∈ H(U) ∩ C1(U), then

g(z) =
∞X

n=−∞
an(z − z0)

n, ∀z ∈ A,

where

an =
1

2πi

Z
σ

g(w)

(w − z)n+1
dw,

and σ(t) = ρeit (0 ≤ t ≤ 2π) and ρ is any point in (R0, R1).
c) Suppose that R0 = 0, g ∈ H(U) ∩ C1(U), and g is bounded near z0.

Show in this case that a−n ≡ 0 for all n > 0 and in particular conclude
that g may be extended uniquely to z0 in such a way that g is complex
differentiable at z0.

11. A Problem from Berenstein and Gay, “Complex Variables: An introduc-
tion,” Springer, 1991, p. 163.
Notation and Conventions: Let Ω denote an open subset of RN . Let
L = ∆ =

PN
i=1

∂2

∂x2i
be the Laplacian on C2(Ω,R).

12. (Weak Maximum Principle)
a) Suppose that u ∈ C2(Ω,R) such that Lu(x) > 0 ∀x ∈ Ω. Show that u

can have no local maximum in Ω. In particular if Ω is a bounded open
subset of RN and u ∈ C(Ω̄,R)∩C2(Ω,R) then u(x) < maxy∈∂Ω u(y)
for all x ∈ Ω.

b) (Weak maximum principle) Suppose that Ω is now a bounded open
subset of RN and that u ∈ C(Ω̄,R) ∩ C2(Ω,R) such that Lu ≥ 0 on
Ω. Show that u(y) ≤M :≡ maxx∈∂Ω u(x) for all y ∈ Ω. (Hint: apply
part a) to the function u�(x) = u(x) + �|x|2 where � > 0 and then let
�→ 0.)
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Remark 30.53 (Fact:). Assume now that Ω is connected. It is possible to
prove, using just calculus techniques, the “strong maximum principle”
which states that if u as in part b) of the problem above has an interior
maximum then umust be a constant. (One may prove this result when the
dimension n = 2 by using the mean value property of harmonic functions
discussed in Chapter 11 of Rudin.) The direct calculus proof of this fact
is elementary but tricky. If you are interested see Protter and Weinberger,
“Maximum Principles in Differential Equations”, p.61—.

13. (Maximum modulus principle) Prove the maximum modulus principle
using the strong maximum principle. That is assume that Ω is a con-
nected bounded subset of C, and that f ∈ H(Ω) ∩ C(Ω̄,C). Show that
|f(z)| ≤ maxξ∈∂Ω |f(ξ)| for all z ∈ Ω and if equality holds for some z ∈ Ω
then f is a constant.
Hint: Assume for contradiction that |f(z)| has a maximum greater than
zero at z0 ∈ Ω. Write f(z) = eg(z) for some analytic function g in a
neighborhood of z0. (We have shown such a function must exist.) Now
use the strong maximum principle on the function u = Re(g).

30.7 Problems from Rudin

p. 229: #17 ∗ .
Chapter 10: 2, 3, 4, 5
Chapter 10: 8-13, 17, 18-21, 26, 30 (replace the word “show” by “convince

yourself that” in problem 30.)

Remark 30.54. Remark. Problem 30. is related to the fact that the funda-
mental group of Ω is not commutative, whereas the first homology group of
Ω and is in fact the abelianization of the fundamental group.

Chapter 11: 1, 2, 5, 6,

Chapter 12: 2 (Hint: use the fractional linear transformation

Ψ(z) ≡ i
z − i

z + i

which maps Π+ → U. conformally.), 3, 4 (Hint: on 4a, apply Maxi-
mum modulus principle to 1/f.), 5, 11 (Hint: Choose α > 1, z0 ∈ Ω
such that |f(z0)| < √α and δ ∈ (0, 1) such that D̄ ≡ D(z0, δ) ⊂ Ω
and |f(z)| ≤ αM on D̄. For R > δ let ΩR ≡ (Ω ∩ D(z0, R)) \ D̄.
Show that gn(z) ≡ (f(z))n/(z − z0) satisfies gn ∈ H(ΩR) ∩ C0(Ω̄R) and
|gn| ≤ max{αnMn/δ,Bn/R} on ∂ΩR. Now apply the maximum modulus
principle to gn, then let R→∞, then n→∞, and finally let α ↓ 1.)
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Littlewood Payley Theory

Lemma 31.1 (Hadamard’s three line lemma). Let S be the vertical strip

S = {z : 0 < Re(z) < 1} = (0, 1)× iR

and φ(z) be a continuous bounded function on S̄ = [0, 1] × iR which is holo-
morphic on S. If Ms := supRe(z)=s |φ(z)|, then Ms ≤ M1−s

0 Ms
1 . (In words

this says that the maximum of φ(z) on the line Re(z) = s is controlled by the
maximum of φ(z) on the lines Re(z) = 0 and Re(z) = 1. Hence the reason for
the naming this the three line lemma.

Proof. Let N0 > M0 and N1 > M1
1 and � > 0 be given. For z = x+ iy ∈

S̄,
max(N0, N1) ≥

¯̄
N1−z
0 Nz

1

¯̄
= N1−x

0 Nx
1 ≥ min(N0,N1)

and Re(z2 − 1) = (x2 − 1− y2) ≤ 0 and Re(z2 − 1)→ −∞ as z →∞ in the
strip S. Therefore,

φ�(z) :=
φ(z)

N1−z
0 Nz

1

exp(�(z2 − 1)) for z ∈ S̄

is a bounded continuous function S̄, φ� ∈ H(S) and φ�(z) → 0 as z → ∞
in the strip S. By the maximum modulus principle applied to S̄B := [0, 1] ×
i[−B,B] for B sufficiently large, shows that

max
©|φ�(z)| : z ∈ S̄

ª
= max

©|φ�(z)| : z ∈ ∂S̄
ª
.

For z = iy we have

|φ�(z)| =
¯̄̄̄

φ(z)

N1−z
0 Nz

1

exp(�(z2 − 1))
¯̄̄̄
≤ |φ(iy)|

N0
≤ M0

N0
< 1

and for z = 1 + iy,

1 If M0 and M1 are both positive, we may take N0 =M0 and N1 =M1.
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|φ�(z)| ≤ |φ(1 + iy)|
N1

≤ M1

N1
< 1.

Combining the last three equations implies max
©|φ�(z)| : z ∈ S̄

ª
< 1. Letting

� ↓ 0 then shows that ¯̄̄̄
φ(z)

N1−z
0 Nz

1

¯̄̄̄
≤ 1 for all z ∈ S̄

or equivalently that

|φ(z)| ≤ ¯̄N1−z
0 Nz

1

¯̄
= N1−x

0 Nx
1 for all z = x+ iy ∈ S̄.

Since N0 > M0 and N1 > M1 were arbitrary, we conclude that

|φ(z)| ≤ ¯̄M1−z
0 Mz

1

¯̄
=M1−x

0 Mx
1 for all z = x+ iy ∈ S̄

from which it follows that Mx ≤M1−x
0 Mx

1 for all x ∈ (0, 1).
As a first application we have.

Proposition 31.2. Suppose that A and B are complex n × n matrices with
A > 0. (A ≥ 0 can be handled by a limiting argument.) Suppose that kABk ≤ 1
and kBAk ≤ 1, then

°°°√AB√A°°° ≤ 1 as well.
Proof. Let F (z) = AzBA1−z for z ∈ S, where Azf := λz = ez lnλf when

Af = λf. Then one checks that F is holomorphic and

F (x+ iy) = Ax+iyBA1−x−iy = AiyF (x)A−iy

so that
kF (x+ iy)k = kF (x)k .

Hence F is bounded on S and

kF (0 + iy)k = kF (0)k = kBAk ≤ 1, and
kF (1 + iy)k = kF (1)k = kABk ≤ 1.

So by the three lines lemma (and the Hahn Banach theorem) kF (z)k ≤ 1 for
all z ∈ S. Taking z = 1/2 then proves the proposition.

Theorem 31.3 (Riesz-Thorin Interpolation Theorem). Suppose that
(X,M, µ) and (Y,N , ν) are σ— finite measure spaces and that 1 ≤ pi, qi ≤ ∞
for i = 0, 1. For 0 < s < 1, let ps and qs be defined by

1

ps
=
1− s

p0
+

s

p1
and

1

qs
=
1− s

q0
+

s

q1
.

If T is a linear map from Lp0(µ) + Lp1(µ) to Lq0(ν) + Lq1(ν) such that
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kTkp0→q0
≤M0 <∞ and kTkp1→q1

≤M1 <∞
then

kTkps→qs
≤Ms =M

(1−s)
0 Ms

1 <∞.

Alternatively put we are trying to show

kTfkqs ≤Ms kfkps for all s ∈ (0, 1) and f ∈ Lps(µ). (31.1)

given

kTfkq0 ≤M0 kfkp0 for all f ∈ Lp0(µ) and

kTfkq1 ≤M1 kfkp1 for all f ∈ Lp1(µ).

Proof. Let us first give the main ideas of the proof. At the end we will
fill in some of the missing technicalities. (See Theorem 6.27 in Folland for the
details.)
Eq. (31.1) is equivalent to showing¯̄̄̄Z

Tfgdν

¯̄̄̄
≤Ms

for all f ∈ Lps(µ) such that kfkps = 1 and for all g ∈ Lq
∗
s such that kgkq∗s = 1,

where q∗s is the conjugate exponent to ps. Define pz and q∗z by

1

pz
=
1− z

p0
+

z

p1
and

1

q∗z
=
1− z

q∗0
+

z

q∗1

and let

fz = |f |ps/pz f

|f | and gz = |g|q
∗
s/q
∗
z
g

|g| .

Writing z = x+ iy we have |fz| = |f |ps/px and |gz| = |g|q
∗
s/q
∗
x so that

kfzkLpx = 1 and kgzkLq∗x = 1 (31.2)

for all z = x+ iy with 0 < x < 1. Let

F (z) := hTfz, gzi =
Z
Y

Tfz · gzdν

and assume that f and g are simple functions. It is then routine to show
F ∈ Cb(S̄) ∩H(S) where S is the strip S = (0, 1) + iR. Moreover using Eq.
(31.2),

|F (it)| = |hTfit, giti| ≤M0 kfitkp0 kgitkq∗0 =M0

and

|F (1 + it)| = |hTf1+it, g1+iti| ≤M1 kf1+itkp1 kg1+itkq∗1 =M1
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for all t ∈ R. By the three lines lemma, it now follows that
|hTfz, gzi| = |F (z)| ≤M1−Re z

0 MRe z
1

and in particular taking z = s using fs = f and gs = g gives

|hTf, gi| = F (s) ≤M1−s
0 Ms

1 .

Taking the supremum over all simple g ∈ Lq
∗
s such that kgkq∗s = 1 shows

kTfkLqs ≤M1−s
0 Ms

1 for all simple f ∈ Lps(µ) such that kfkps = 1 or equiv-
alently that

kTfkLqs ≤M1−s
0 Ms

1 kfkps for all simple f ∈ Lps(µ). (31.3)

Now suppose that f ∈ Lps and fn are simple functions in Lps such that
|fn| ≤ |f | and fn → f point wise as n → ∞. Set E = {|f | > 1} , g = f1E
h = f1cE , gn = fn1E and hn = fn1Ec . By renaming p0 and p1 if necessary
we may assume p0 < p1. Under this hypothesis we have g, gn ∈ Lp0 and
h, hn ∈ Lp1 and f = g + h and fn = gn + hn. By the dominated convergence
theorem

kfn − fkpt → 0, kgn − gkp0 → 0 and kh− hnkp1 → 0

as n → ∞. Therefore kTgn − Tgkq0 → 0 and kThn − Thkq1 → 0 as n → ∞.
Passing to a subsequence if necessary, we may also assume that Tgn−Tg → 0
and Thn − Th→ 0 a.e. as n→∞. It then follows that Tfn = Tgn + Thn →
Tg + Th = Tf a.e. as n → ∞. This result, Fatou’s lemma, the dominated
convergence theorem and Eq. (31.3) then gives

kTfkqs ≤ lim inf
n→∞ kTfnkqs ≤ lim inf

n→∞M1−s
0 Ms

1 kfnkps =M1−s
0 Ms

1 kfkps.

31.0.1 Applications

For the first application, we will give another proof of Theorem 11.19.
Proof. Proof of Theorem 11.19. The case q = 1 is simple, namely

kf ∗ gkr =
°°°°Z

Rn
f(·− y)g(y)dy

°°°°
r

≤
Z
Rn
kf(·− y)kr |g(y)| dy

= kfkr kgk1
and by interchanging the roles of f and g we also have

kf ∗ gkr = kfk1 kgkr .
Letting Cgf = f ∗ g, the above comments may be reformulated as saying
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kCgk1→p ≤ kgkp .

Another easy case is when r =∞, since

|f ∗ g(x)| =
¯̄̄̄Z
Rn

f(x− y)g(y)dy

¯̄̄̄
≤ kf(x− ·)kp kgkq = kfkp kgkq .

which may be formulated as saying that

kCgkq→∞ ≤ kgkp .

By the Riesz Thorin interpolation with p0 = 1, q0 = p, p1 = q and q1 =∞,

kCgkps→qs
≤ kCgk1−sp→∞ kCgks1→q ≤ kgk1−sp kgksp ≤ kgkp

for all s ∈ (0, 1) which is equivalent to

kf ∗ gkqs ≤ kfkps kgkp
Since

p−1s = (1− s) + sq−1 and q−1s = (1− s)p−1 + s∞−1 = (1− s)p−1,

and therefore if a = qs and b = ps then

b−1 + p−1 = (1− s) + sq−1 + p−1

= (1− s) + s(q−1 + p−1) + (1− s)p−1

= 1 + (1− s)p−1 = 1 + a−1.

Example 31.4. By the Riesz Thorin interpolation theorem we conclude that
F : Lp → Lq is bounded for all p ∈ [1, 2] where q = p∗ is the conjugate expo-
nent to p. Indeed, in the notation of the Riesz Thorin interpolation theorem
F : Lps → Lqs is bounded where

1

ps
=
1− s

1
+

s

2
and

1

qs
=
1− s

∞ +
s

2
=

s

2
,

i.e.
1

ps
+
1

qs
= 1− s+

s

2
+

s

2
= 1.

See Theorem 32.12.

For the next application we will need the following general duality argu-
ment.
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Lemma 31.5. Suppose that (X,M, µ) and (Y,N , ν) are σ— finite measure
spaces and T : L2(µ) → L2(ν) is a bounded operator. If there exists p, q ∈
[1,∞] and a constant C <∞ such that

kTgkq ≤ C kgkp for all g ∈ Lp(µ) ∩ L2(µ)

then
kT ∗fkp∗ ≤ C kfkq∗ for all f ∈ Lq

∗
(ν) ∩ L2(ν),

where T ∗ is the L2 — adjoint of T and p∗ and q∗ are the conjugate exponents
to p and q.

Proof. Suppose that f ∈ Lq
∗
(ν) ∩ L2(ν), then by the reverse Holder

inequality

kT ∗fkp∗ = sup
n
|(T ∗f, g)| : g ∈ Lp(µ) ∩ L2(µ) with kgkp = 1

o
= sup

n
|(f, Tg)| : g ∈ Lp(µ) ∩ L2(µ) with kgkp = 1

o
≤ kfkq∗ sup

n
kTgkq : g ∈ Lp(µ) ∩ L2(µ) with kgkp = 1

o
≤ C kfkq∗ .

Lemma 31.6. Suppose that K = {kmn ≥ 0}∞m,n=1 is a symmetric matrix such
that

M := sup
m

∞X
n=1

kmn = sup
n

∞X
m=1

kmn <∞ (31.4)

and define Ka by (Ka)m =
P

n kmnan when the sum converges. Given
p ∈ [1,∞] and p∗ be the conjugate exponent, then K : cp → cp∗ is bounded
kKkp→p∗ ≤M.

Proof. Let Am =
P∞

n=1 kmn =
P∞

n=1 knm. For a ∈ cpÃX
n

kmn |an|
!p

=

Ã
Am

X
n

kmn

Am
|an|

!p

≤ Ap
m

X
n

kmn

Am
|an|p ≤Mp−1X

n

kmn |an|p (31.5)

and hence

X
m

ÃX
n

kmn |an|
!p

≤Mp−1X
m

X
n

kmn |an|p =Mp−1X
n

X
m

kmn |an|p

≤Mp kakpcp
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which shows K : cp → cp with kKkp→p ≤ M. Moreover from Eq. (31.5) we
see that

sup
m

X
n

kmn |an| ≤M kakp
which shows that K : cp → c∞ is bounded with kKkp→∞ ≤ M for all p and
in particular for p = 1. By duality it follows that kKk∞→p ≤M as well. This
is easy to check directly as well.
Let p0 = 1 = q1 and p1 =∞ = q0 so that

p−1s = (1− s)1−1 + s∞−1 = (1− s) and q−1s = (1− s)∞−1 + s1−1 = s

so that qs = p∗s. Applying the Riesz-Thorin interpolation theorem shows

kKkps→p∗s
= kKkps→qs

≤M.

The following lemma only uses the case p = 2 which we proved without
interpolation.

Lemma 31.7. Suppose that {un} is a sequence in a Hilbert space H, such that:
1)
P

n |un|2 <∞ and 2) there exists constants kmn = knm ≥ 0 satisfying Eq.
(31.4) and

|(um, un)| ≤ kmn|un||um| for all m and n.

Then v =
P

n un exists and

|v|2 ≤M
X
n

|un|2. (31.6)

Proof. Let us begin by assuming that only a finite number of the {un}
are non-zero. The key point is to prove Eq. (31.6). In this case

|v|2 =
X
m,n

(un, um) ≤
X
m,n

kmn|un||um| = Ka · a

where an = |un|. Now by the above remarks
Ka · a ≤M |a|2 =M

X
a2n =M

X
n

|un|2,

which establishes Eq. (31.6) in this case.
For M < N, let vM,N =

PN
n=M un, then by what we have just proved

|vM,N |2 ≤M
NX

n=M

|un|2 → 0 as M,N →∞.

This shows that v =
P

n un exists. Moreover we have

|v1,N |2 ≤M
NX
n=1

|un|2 ≤M
∞X
n=1

|un|2 .

Letting N →∞ in this last equation shows that Eq. (31.6) holds in general.





Part VIII

The Fourier Transform





32

Fourier Transform

The underlying space in this section is Rn with Lebesgue measure. The Fourier
inversion formula is going to state that

f(x) =

µ
1

2π

¶n Z
Rn

dξeiξx
Z
Rn

dyf(y)e−iyξ. (32.1)

If we let ξ = 2πη, this may be written as

f(x) =

Z
Rn

dηei2πηx
Z
Rn

dyf(y)e−iy2πη

and we have removed the multiplicative factor of
¡
1
2π

¢n
in Eq. (32.1) at the

expense of placing factors of 2π in the arguments of the exponential. Another
way to avoid writing the 2π’s altogether is to redefine dx and dξ and this is
what we will do here.

Notation 32.1 Let m be Lebesgue measure on Rn and define:

dx =

µ
1√
2π

¶n
dm(x) and dξ ≡

µ
1√
2π

¶n
dm(ξ).

To be consistent with this new normalization of Lebesgue measure we will
redefine kfkp and hf, gi as

kfkp =
µZ

Rn
|f(x)|p dx

¶1/p
=

Ãµ
1

2π

¶n/2 Z
Rn
|f(x)|p dm(x)

!1/p
and

hf, gi :=
Z
Rn

f(x)g(x)dx when fg ∈ L1.

Similarly we will define the convolution relative to these normalizations by
fFg :=

¡
1
2π

¢n/2
f ∗ g, i.e.



684 32 Fourier Transform

fFg(x) =

Z
Rn

f(x− y)g(y)dy =

Z
Rn

f(x− y)g(y)

µ
1

2π

¶n/2
dm(y).

The following notation will also be convenient; given a multi-index α ∈ Zn+,
let |α| = α1 + · · ·+ αn,

xα :=
nY
j=1

x
αj
j , ∂αx =

µ
∂

∂x

¶α
:=

nY
j=1

µ
∂

∂xj

¶αj
and

Dα
x =

µ
1

i

¶|α|µ
∂

∂x

¶α
=

µ
1

i

∂

∂x

¶α
.

Also let
hxi := (1 + |x|2)1/2

and for s ∈ R let
νs(x) = (1 + |x|)s.

32.1 Fourier Transform

Definition 32.2 (Fourier Transform). For f ∈ L1, let

f̂(ξ) = Ff(ξ) :=
Z
Rn

e−ix·ξf(x)dx (32.2)

g∨(x) = F−1g(x) =
Z
Rn

eix·ξg(ξ)dξ = Fg(−x) (32.3)

The next theorem summarizes some more basic properties of the Fourier
transform.

Theorem 32.3. Suppose that f, g ∈ L1. Then

1. f̂ ∈ C0(Rn) and
°°°f̂°°°

u
≤ kfk1 .

2. For y ∈ Rn, (τyf) ˆ(ξ) = e−iy·ξf̂(ξ) where, as usual, τyf(x) := f(x− y).

3. The Fourier transform takes convolution to products, i.e. (fFg)
ˆ
= f̂ ĝ.

4. For f, g ∈ L1, hf̂ , gi = hf, ĝi.
5. If T : Rn → Rn is an invertible linear transformation, then

(f ◦ T )∧ (ξ) = |detT |−1 f̂(¡T−1¢∗ ξ) and
(f ◦ T )∨ (ξ) = |detT |−1 f∨(¡T−1¢∗ ξ)

6. If (1 + |x|)kf(x) ∈ L1, then f̂ ∈ Ck and ∂αf̂ ∈ C0 for all |α| ≤ k.
Moreover,

∂αξ f̂(ξ) = F [(−ix)α f(x)] (ξ) (32.4)

for all |α| ≤ k.
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7. If f ∈ Ck and ∂αf ∈ L1 for all |α| ≤ k, then (1 + |ξ|)kf̂(ξ) ∈ C0 and

(∂αf)
ˆ
(ξ) = (iξ)αf̂(ξ) (32.5)

for all |α| ≤ k.
8. Suppose g ∈ L1(Rk) and h ∈ L1(Rn−k) and f = g ⊗ h, i.e.

f(x) = g(x1, . . . , xk)h(xk+1, . . . , xn),

then f̂ = ĝ ⊗ ĥ.

Proof. Item 1. is the Riemann Lebesgue Lemma 11.28. Items 2. — 5. are
proved by the following straight forward computations:

(τyf) ˆ(ξ) =

Z
Rn

e−ix·ξf(x− y)dx =

Z
Rn

e−i(x+y)·ξf(x)dx = e−iy·ξf̂(ξ),

hf̂ , gi =
Z
Rn

f̂(ξ)g(ξ)dξ =

Z
Rn
dξg(ξ)

Z
Rn
dxe−ix·ξf(x)

=

Z
Rn×Rn

dxdξe−ix·ξg(ξ)f(x) =
Z
Rn×Rn

dxĝ(x)f(x) = hf, ĝi,

(fFg)
ˆ
(ξ) =

Z
Rn

e−ix·ξfFg(x)dx =

Z
Rn

e−ix·ξ
µZ

Rn
f(x− y)g(y)dy

¶
dx

=

Z
Rn
dy

Z
Rn
dxe−ix·ξf(x− y)g(y)

=

Z
Rn
dy

Z
Rn
dxe−i(x+y)·ξf(x)g(y)

=

Z
Rn
dye−iy·ξg(y)

Z
Rn
dxe−ix·ξf(x) = f̂(ξ)ĝ(ξ)

and letting y = Tx so that dx = |detT |−1 dy

(f ◦ T )ˆ (ξ) =
Z
Rn

e−ix·ξf(Tx)dx =
Z
Rn

e−iT
−1y·ξf(y) |detT |−1 dy

= |detT |−1 f̂(¡T−1¢∗ ξ).
Item 6. is simply a matter of differentiating under the integral sign which is
easily justified because (1 + |x|)kf(x) ∈ L1.
Item 7. follows by using Lemma 11.27 repeatedly (i.e. integration by parts)

to find

(∂αf)ˆ (ξ) =

Z
Rn

∂αx f(x)e
−ix·ξdx = (−1)|α|

Z
Rn

f(x)∂αx e
−ix·ξdx

= (−1)|α|
Z
Rn

f(x)(−iξ)αe−ix·ξdx = (iξ)αf̂(ξ).
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Since ∂αf ∈ L1 for all |α| ≤ k, it follows that (iξ)αf̂(ξ) = (∂αf)ˆ (ξ) ∈ C0 for
all |α| ≤ k. Since

(1 + |ξ|)k ≤
Ã
1 +

nX
i=1

|ξi|
!k

=
X
|α|≤k

cα |ξα|

where 0 < cα <∞,¯̄̄
(1 + |ξ|)k f̂(ξ)

¯̄̄
≤
X
|α|≤k

cα

¯̄̄
ξαf̂(ξ)

¯̄̄
→ 0 as ξ →∞.

Item 8. is a simple application of Fubini’s theorem.

Example 32.4. If f(x) = e−|x|
2/2 then f̂(ξ) = e−|ξ|

2/2, in short

Fe−|x|2/2 = e−|ξ|
2/2 and F−1e−|ξ|2/2 = e−|x|

2/2. (32.6)

More generally, for t > 0 let

pt(x) := t−n/2e−
1
2t |x|2 (32.7)

then bpt(ξ) = e−
t
2 |ξ|2 and (bpt)∨(x) = pt(x). (32.8)

By Item 8. of Theorem 32.3, to prove Eq. (32.6) it suffices to con-
sider the 1 — dimensional case because e−|x|

2/2 =
Qn

i=1 e
−x2i/2. Let g(ξ) :=³

Fe−x2/2
´
(ξ) , then by Eq. (32.4) and Eq. (32.5),

g0(ξ) = F
h
(−ix) e−x2/2

i
(ξ) = iF

·
d

dx
e−x

2/2

¸
(ξ) = i(iξ)F

h
e−x

2/2
i
(ξ) = −ξg(ξ).
(32.9)

Lemma 9.36 implies

g(0) =

Z
R
e−x

2/2dx =
1√
2π

Z
R
e−x

2/2dm(x) = 1,

and so solving Eq. (32.9) with g(0) = 1 gives F
h
e−x

2/2
i
(ξ) = g(ξ) = e−ξ

2/2

as desired. The assertion that F−1e−|ξ|2/2 = e−|x|
2/2 follows similarly or by

using Eq. (32.3) to conclude,

F−1
h
e−|ξ|

2/2
i
(x) = F

h
e−|−ξ|

2/2
i
(x) = F

h
e−|ξ|

2/2
i
(x) = e−|x|

2/2.

The results in Eq. (32.8) now follow from Eq. (32.6) and item 5 of Theorem
32.3. For example, since pt(x) = t−n/2p1(x/

√
t),

(bpt)(ξ) = t−n/2
³√

t
´n

p̂1(
√
tξ) = e−

t
2 |ξ|2 .

This may also be written as (bpt)(ξ) = t−n/2p 1
t
(ξ). Using this and the fact that

pt is an even function,

(bpt)∨(x) = Fbpt(−x) = t−n/2Fp 1
t
(−x) = t−n/2tn/2pt(−x) = pt(x).
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32.2 Schwartz Test Functions

Definition 32.5. A function f ∈ C(Rn,C) is said to have rapid decay or
rapid decrease if

sup
x∈Rn

(1 + |x|)N |f(x)| <∞ for N = 1, 2, . . . .

Equivalently, for each N ∈ N there exists constants CN < ∞ such that
|f(x)| ≤ CN (1 + |x|)−N for all x ∈ Rn. A function f ∈ C(Rn,C) is said
to have (at most) polynomial growth if there exists N <∞ such

sup (1 + |x|)−N |f(x)| <∞,

i.e. there exists N ∈ N and C < ∞ such that |f(x)| ≤ C(1 + |x|)N for all
x ∈ Rn.
Definition 32.6 (Schwartz Test Functions). Let S denote the space of
functions f ∈ C∞(Rn) such that f and all of its partial derivatives have rapid
decay and let

kfkN,α = sup
x∈Rn

¯̄
(1 + |x|)N∂αf(x)¯̄

so that
S =

n
f ∈ C∞(Rn) : kfkN,α <∞ for all N and α

o
.

Also let P denote those functions g ∈ C∞(Rn) such that g and all of its
derivatives have at most polynomial growth, i.e. g ∈ C∞(Rn) is in P iff for
all multi-indices α, there exists Nα <∞ such

sup (1 + |x|)−Nα |∂αg(x)| <∞.

(Notice that any polynomial function on Rn is in P.)
Remark 32.7. Since C∞c (Rn) ⊂ S ⊂ L2 (Rn) , it follows that S is dense in
L2(Rn).

Exercise 32.8. Let
L =

X
|α|≤k

aα(x)∂
α (32.10)

with aα ∈ P. Show L(S) ⊂ S and in particular ∂αf and xαf are back in S
for all multi-indices α.

Notation 32.9 Suppose that p(x, ξ) = Σ|α|≤Naα(x)ξα where each function
aα(x) is a smooth function. We then set

p(x,Dx) := Σ|α|≤Naα(x)Dα
x

and if each aα(x) is also a polynomial in x we will let

p(−Dξ, ξ) := Σ|α|≤Naα(−Dξ)Mξα

where Mξα is the operation of multiplication by ξα.
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Proposition 32.10. Let p(x, ξ) be as above and assume each aα(x) is a poly-
nomial in x. Then for f ∈ S,

(p(x,Dx)f)
∧ (ξ) = p(−Dξ, ξ)f̂ (ξ) (32.11)

and
p(ξ,Dξ)f̂(ξ) = [p(Dx,−x)f(x)]∧(ξ). (32.12)

Proof. The identities (−Dξ)
α e−ix·ξ = xαe−ix·ξ and Dα

x e
ix·ξ = ξαeix·ξ

imply, for any polynomial function q on Rn,

q(−Dξ)e
−ix·ξ = q(x)e−ix·ξ and q(Dx)e

ix·ξ = q(ξ)eix·ξ. (32.13)

Therefore using Eq. (32.13) repeatedly,

(p(x,Dx)f)
∧
(ξ) =

Z
Rn

X
|α|≤N

aα(x)D
α
xf(x) · e−ix·ξdξ

=

Z
Rn

X
|α|≤N

Dα
xf(x) · aα(−Dξ)e

−ix·ξdξ

=

Z
Rn

f(x)
X
|α|≤N

(−Dx)
α £aα(−Dξ)e

−ix·ξ¤dξ
=

Z
Rn

f(x)
X
|α|≤N

aα(−Dξ)
£
ξαe−ix·ξ

¤
dξ = p(−Dξ, ξ)f̂ (ξ)

wherein the third inequality we have used Lemma 11.27 to do repeated in-
tegration by parts, the fact that mixed partial derivatives commute in the
fourth, and in the last we have repeatedly used Corollary 8.43 to differentiate
under the integral. The proof of Eq. (32.12) is similar:

p(ξ,Dξ)f̂(ξ) = p(ξ,Dξ)

Z
Rn

f(x)e−ix·ξdx =
Z
Rn

f(x)p(ξ,−x)e−ix·ξdx

=
X
|α|≤N

Z
Rn

f(x)(−x)αaα(ξ)e−ix·ξdx

=
X
|α|≤N

Z
Rn

f(x)(−x)αaα(−Dx)e
−ix·ξdx

=
X
|α|≤N

Z
Rn

e−ix·ξaα(Dx) [(−x)αf(x)]dx

= [p(Dx,−x)f(x)]∧(ξ).

Corollary 32.11. The Fourier transform preserves the space S, i.e. F(S) ⊂
S.
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Proof. Let p(x, ξ) = Σ|α|≤Naα(x)ξα with each aα(x) being a polynomial
function in x. If f ∈ S then p(Dx,−x)f ∈ S ⊂ L1 and so by Eq. (32.12),
p(ξ,Dξ)f̂(ξ) is bounded in ξ, i.e.

sup
ξ∈Rn

|p(ξ,Dξ)f̂(ξ)| ≤ C(p, f) <∞.

Taking p(x, ξ) = (1 + |ξ|2)Nξα with N ∈ Z+ in this estimate shows f̂(ξ) and
all of its derivatives have rapid decay, i.e. f̂ is in S.

32.3 Fourier Inversion Formula

Theorem 32.12 (Fourier Inversion Theorem). Suppose that f ∈ L1 and
f̂ ∈ L1, then

1. there exists f0 ∈ C0(Rn) such that f = f0 a.e.
2. f0 = F−1F f and f0 = FF−1f,
3. f and f̂ are in L1 ∩ L∞ and

4. kfk2 =
°°°f̂°°°

2
.

In particular, F : S → S is a linear isomorphism of vector spaces.

Proof. First notice that f̂ ∈ C0 (Rn) ⊂ L∞ and f̂ ∈ L1 by assumption,
so that f̂ ∈ L1 ∩L∞. Let pt(x) ≡ t−n/2e−

1
2t |x|2 be as in Example 32.4 so thatbpt(ξ) = e−

t
2 |ξ|2 and bp∨t = pt. Define f0 := f̂∨ ∈ C0 then

f0(x) = (f̂)
∨(x) =

Z
Rn

f̂(ξ)eiξ·xdξ = lim
t↓0

Z
Rn

f̂(ξ)eiξ·xbpt(ξ)dξ
= lim

t↓0

Z
Rn

Z
Rn

f(y)eiξ·(x−y)bpt(ξ)dξ dy
= lim

t↓0

Z
Rn

f(y)pt(y)dy = f(x) a.e.

wherein we have used Theorem 11.21 in the last equality along with the obser-
vations that pt(y) = p1(y/

√
t) and

R
Rn p1(y)dy = 1. In particular this shows

that f ∈ L1 ∩ L∞. A similar argument shows that F−1F f = f0 as well.
Let us now compute the L2 — norm of f̂ ,

kf̂k22 =
Z
Rn

f̂(ξ)f̂(ξ)dξ =

Z
Rn
dξf̂(ξ)

Z
Rn
dxf(x)eix·ξ

=

Z
Rn
dx f(x)

Z
Rn
dξf̂(ξ)eix·ξ

=

Z
Rn
dx f(x)f(x) = kfk22

because
R
Rn dξf̂(ξ)e

ix·ξ = F−1f̂(x) = f(x) a.e.
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Corollary 32.13. By the B.L.T. Theorem 2.68, the maps F|S and F−1|S
extend to bounded linear maps F̄ and F̄−1 from L2 → L2. These maps satisfy
the following properties:

1. F̄ and F̄−1 are unitary and are inverses to one another as the notation
suggests.

2. For f ∈ L2 we may compute F̄ and F̄−1 by

F̄f(ξ) = L2— lim
R→∞

Z
|x|≤R

f(x)e−ix·ξdx and (32.14)

F̄−1f(ξ) = L2— lim
R→∞

Z
|x|≤R

f(x)eix·ξdx. (32.15)

3. We may further extend F̄ to a map from L1+L2 → C0+L2 (still denote
by F̄) defined by F̄f = ĥ+F̄g where f = h+g ∈ L1+L2. For f ∈ L1+L2,
F̄f may be characterized as the unique function F ∈ L1loc(Rn) such that

hF, φi = hf, φ̂i for all φ ∈ C∞c (Rn). (32.16)

Moreover if Eq. (32.16) holds then F ∈ C0+L
2 ⊂ L1loc(Rn) and Eq.(32.16)

is valid for all φ ∈ S.
Proof. Item 1., If f ∈ L2 and φn ∈ S such that φn → f in L2, then

F̄f := limn→∞ φ̂n. Since φ̂n ∈ S ⊂ L1, we may concluded that
°°°φ̂n°°°

2
= kφnk2

for all n. Thus °°F̄f°°
2
= lim

n→∞

°°°φ̂n°°°
2
= lim

n→∞ kφnk2 = kfk2
which shows that F̄ is an isometry from L2 to L2 and similarly F̄−1 is an
isometry. Since F̄−1F̄ = F−1F = id on the dense set S, it follows by conti-
nuity that F̄−1F̄ = id on all of L2. Hence F̄F̄−1 = id, and thus F̄−1 is the
inverse of F̄ . This proves item 1.
Item 2. Let f ∈ L2 and R < ∞ and set fR(x) := f(x)1|x|≤R. Then

fR ∈ L1∩L2. Let φ ∈ C∞c (Rn) be a function such that
R
Rn φ(x)dx = 1 and set

φk(x) = knφ(kx). Then fRFφk → fR ∈ L1∩L2 with fRFφk ∈ C∞c (Rn) ⊂ S.
Hence

F̄fR = L2— lim
k→∞

F (fRFφk) = FfR a.e.

where in the second equality we used the fact that F is continuous on L1.
Hence

R
|x|≤R f(x)e−ix·ξdx represents F̄fR(ξ) in L2. Since fR → f in L2, Eq.

(32.14) follows by the continuity of F̄ on L2.
Item 3. If f = h+ g ∈ L1 + L2 and φ ∈ S, then

hĥ+ F̄g, φi = hh, φi+ hF̄g, φi = hh, φ̂i+ lim
R→∞

hF ¡g1|·|≤R¢ , φi
= hh, φ̂i+ lim

R→∞
hg1|·|≤R, φ̂i = hh+ g, φ̂i. (32.17)
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In particular if h + g = 0 a.e., then hĥ + F̄g, φi = 0 for all φ ∈ S and since
ĥ+ F̄g ∈ L1loc it follows from Corollary 11.29 that ĥ+ F̄g = 0 a.e. This shows
that F̄f is well defined independent of how f ∈ L1 + L2 is decomposed into
the sum of an L1 and an L2 function. Moreover Eq. (32.17) shows Eq. (32.16)
holds with F = ĥ + F̄g ∈ C0 + L2 and φ ∈ S. Now suppose G ∈ L1loc and
hG,φi = hf, φ̂i for all φ ∈ C∞c (Rn). Then by what we just proved, hG,φi =
hF, φi for all φ ∈ C∞c (Rn) and so an application of Corollary 11.29 shows
G = F ∈ C0 + L2.

Notation 32.14 Given the results of Corollary 32.13, there is little danger
in writing f̂ or Ff for F̄f when f ∈ L1 + L2.

Corollary 32.15. If f and g are L1 functions such that f̂ , ĝ ∈ L1, then

F(fg) = f̂Fĝ and F−1(fg) = f∨Fg∨.

Since S is closed under pointwise products and F : S → S is an isomorphism
it follows that S is closed under convolution as well.
Proof. By Theorem 32.12, f, g, f̂ , ĝ ∈ L1 ∩L∞ and hence f · g ∈ L1 ∩L∞

and f̂Fĝ ∈ L1 ∩ L∞. Since

F−1
³
f̂Fĝ

´
= F−1

³
f̂
´
· F−1 (ĝ) = f · g ∈ L1

we may conclude from Theorem 32.12 that

f̂Fĝ = FF−1
³
f̂Fĝ

´
= F(f · g).

Similarly one shows F−1(fg) = f∨Fg∨.

Corollary 32.16. Let p(x, ξ) and p(x,Dx) be as in Notation 32.9 with each
function aα(x) being a smooth function of x ∈ Rn. Then for f ∈ S,

p(x,Dx)f(x) =

Z
Rn

p(x, ξ)f̂ (ξ) eix·ξdξ. (32.18)

Proof. For f ∈ S, we have

p(x,Dx)f(x) = p(x,Dx)
³
F−1f̂

´
(x) = p(x,Dx)

Z
Rn

f̂ (ξ) eix·ξdξ

=

Z
Rn

f̂ (ξ) p(x,Dx)e
ix·ξdξ =

Z
Rn

f̂ (ξ) p(x, ξ)eix·ξdξ.

If p(x, ξ) is a more general function of (x, ξ) then that given in Notation
32.9, the right member of Eq. (32.18) may still make sense, in which case we
may use it as a definition of p(x,Dx). A linear operator defined this way is
called a pseudo differential operator and they turn out to be a useful class
of operators to study when working with partial differential equations.
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Corollary 32.17. Suppose p(ξ) =
P
|α|≤N aαξ

α is a polynomial in ξ ∈ Rn
and f ∈ L2. Then p(∂)f exists in L2 (see Definition 29.3) iff ξ → p(iξ)f̂(ξ) ∈
L2 in which case

(p(∂)f)ˆ (ξ) = p(iξ)f̂(ξ) for a.e. ξ.

In particular, if g ∈ L2 then f ∈ L2 solves the equation, p(∂)f = g iff
p(iξ)f̂(ξ) = ĝ(ξ) for a.e. ξ.

Proof. By definition p(∂)f = g in L2 iff

hg, φi = hf, p(−∂)φi for all φ ∈ C∞c (Rn). (32.19)

If follows from repeated use of Lemma 29.23 that the previous equation is
equivalent to

hg, φi = hf, p(−∂)φi for all φ ∈ S(Rn). (32.20)

This may also be easily proved directly as well as follows. Choose ψ ∈ C∞c (Rn)
such that ψ(x) = 1 for x ∈ B0(1) and for φ ∈ S(Rn) let φn(x) := ψ(x/n)φ(x).
By the chain rule and the product rule (Eq. A.5 of Appendix A),

∂αφn(x) =
X
β≤α

µ
α

β

¶
n−|β|

¡
∂βψ

¢
(x/n) · ∂α−βφ(x)

along with the dominated convergence theorem shows φn → φ and ∂αφn →
∂αφ in L2 as n→∞. Therefore if Eq. (32.19) holds, we find Eq. (32.20) holds
because

hg, φi = lim
n→∞hg, φni = lim

n→∞hf, p(−∂)φni = hf, p(−∂)φi.
To complete the proof simply observe that hg, φi = hĝ, φ∨i and

hf, p(−∂)φi = hf̂ , [p(−∂)φ]∨i = hf̂(ξ), p(iξ)φ∨(ξ)i
= hp(iξ)f̂(ξ), φ∨(ξ)i

for all φ ∈ S(Rn). From these two observations and the fact that F is bijective
on S, one sees that Eq. (32.20) holds iff ξ → p(iξ)f̂(ξ) ∈ L2 and ĝ(ξ) =

p(iξ)f̂(ξ) for a.e. ξ.

32.4 Summary of Basic Properties of F and F−1
The following table summarizes some of the basic properties of the Fourier
transform and its inverse.

f ←→ f̂ or f∨

Smoothness ←→ Decay at infinity
∂α ←→ Multiplication by (±iξ)α
S ←→ S

L2(Rn) ←→ L2(Rn)
Convolution←→ Products.
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32.5 Fourier Transforms of Measures and Bochner’s
Theorem

To motivate the next definition suppose that µ is a finite measure on Rn which
is absolutely continuous relative to Lebesgue measure, dµ(x) = ρ(x)dx. Then
it is reasonable to require

µ̂(ξ) := ρ̂(ξ) =

Z
Rn

e−iξ·xρ(x)dx =
Z
Rn

e−iξ·xdµ(x)

and

(µFg) (x) := ρFg(x) =

Z
Rn

g(x− y)ρ(x)dx =

Z
Rn

g(x− y)dµ(y)

when g : Rn → C is a function such that the latter integral is defined, for
example assume g is bounded. These considerations lead to the following
definitions.

Definition 32.18. The Fourier transform, µ̂, of a complex measure µ on BRn
is defined by

µ̂(ξ) =

Z
Rn

e−iξ·xdµ(x) (32.21)

and the convolution with a function g is defined by

(µFg) (x) =

Z
Rn

g(x− y)dµ(y)

when the integral is defined.

It follows from the dominated convergence theorem that µ̂ is continuous.
Also by a variant of Exercise 11.66, if µ and ν are two complex measure on
BRn such that µ̂ = ν̂, then µ = ν. The reader is asked to give another proof
of this fact in Exercise 32.28 below.

Example 32.19. Let σt be the surface measure on the sphere St of radius t
centered at zero in R3. Then

σ̂t(ξ) = 4πt
sin t |ξ|
|ξ| .

Indeed,

σ̂t(ξ) =

Z
tS2

e−ix·ξdσ(x) = t2
Z
S2

e−itx·ξdσ(x)

= t2
Z
S2

e−itx3|ξ|dσ(x) = t2
Z 2π

0

dθ

Z π

0

dφ sinφe−it cosφ|ξ|

= 2πt2
Z 1

−1
e−itu|ξ|du = 2πt2

1

−it |ξ|e
−itu|ξ||u=1u=−1 = 4πt

2 sin t |ξ|
t |ξ| .
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Definition 32.20. A function χ : Rn → C is said to be positive (semi)
definite iff the matrices A := {χ(ξk − ξj)}mk,j=1 are positive definite for all
m ∈ N and {ξj}mj=1 ⊂ Rn.

Lemma 32.21. If χ ∈ C(Rn,C) is a positive definite function, then

1. χ(0) ≥ 0.
2. χ(−ξ) = χ(ξ) for all ξ ∈ Rn.
3. |χ(ξ)| ≤ χ(0) for all ξ ∈ Rn.
4. For all f ∈ S(Rd), Z

Rn×Rn
χ(ξ − η)f(ξ)f(η)dξdη ≥ 0. (32.22)

Proof. Taking m = 1 and ξ1 = 0 we learn χ(0) |λ|2 ≥ 0 for all λ ∈ C
which proves item 1. Taking m = 2, ξ1 = ξ and ξ2 = η, the matrix

A :=

·
χ(0) χ(ξ − η)

χ(η − ξ) χ(0)

¸
is positive definite from which we conclude χ(ξ−η) = χ(η − ξ) (since A = A∗

by definition) and

0 ≤ det
·

χ(0) χ(ξ − η)
χ(η − ξ) χ(0)

¸
= |χ(0)|2 − |χ(ξ − η)|2 .

and hence |χ(ξ)| ≤ χ(0) for all ξ. This proves items 2. and 3. Item 4. follows
by approximating the integral in Eq. (32.22) by Riemann sums,Z

Rn×Rn
χ(ξ − η)f(ξ)f(η)dξdη = lim

mesh→0

X
χ(ξk − ξj)f(ξj)f(ξk) ≥ 0.

The details are left to the reader.

Lemma 32.22. If µ is a finite positive measure on BRn , then χ := µ̂ ∈
C(Rn,C) is a positive definite function.

Proof. As has already been observed after Definition 32.18, the dominated
convergence theorem implies µ̂ ∈ C(Rn,C). Since µ is a positive measure (and
hence real),

µ̂(−ξ) =
Z
Rn

eiξ·xdµ(x) =
Z
Rn

e−iξ·xdµ(x) = µ̂(−ξ).

From this it follows that for any m ∈ N and {ξj}mj=1 ⊂ Rn, the matrix
A := {µ̂(ξk − ξj)}mk,j=1 is self-adjoint. Moreover if λ ∈ Cm,
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mX
k,j=1

µ̂(ξk − ξj)λkλ̄j =

Z
Rn

mX
k,j=1

e−i(ξk−ξj)·xλkλ̄jdµ(x)

=

Z
Rn

mX
k,j=1

e−iξk·xλke−iξj ·xλjdµ(x)

=

Z
Rn

¯̄̄̄
¯
mX
k=1

e−iξk·xλk

¯̄̄̄
¯
2

dµ(x) ≥ 0

showing A is positive definite.

Theorem 32.23 (Bochner’s Theorem). Suppose χ ∈ C(Rn,C) is positive
definite function, then there exists a unique positive measure µ on BRn such
that χ = µ̂.

Proof. If χ(ξ) = µ̂(ξ), then for f ∈ S we would haveZ
Rn

fdµ =

Z
Rn
(f∨)ˆ dµ =

Z
Rn

f∨(ξ)µ̂(ξ)dξ.

This suggests that we define

I(f) :=

Z
Rn

χ(ξ)f∨(ξ)dξ for all f ∈ S.

We will now show I is positive in the sense if f ∈ S and f ≥ 0 then I(f) ≥ 0.
For general f ∈ S we have

I(|f |2) =
Z
Rn

χ(ξ)
³
|f |2

´∨
(ξ)dξ =

Z
Rn

χ(ξ)
¡
f∨Ff̄∨

¢
(ξ)dξ

=

Z
Rn

χ(ξ)f∨(ξ − η)f̄∨(η)dηdξ =
Z
Rn

χ(ξ)f∨(ξ − η)f∨(−η)dηdξ

=

Z
Rn

χ(ξ − η)f∨(ξ)f∨(η)dηdξ ≥ 0.

For t > 0 let pt(x) := t−n/2e−|x|
2/2t ∈ S and define

IFpt(x) := I(pt(x− ·)) = I(
¯̄̄p

pt(x− ·)
¯̄̄2
)

which is non-negative by above computation and because
p
pt(x− ·) ∈ S.

Using

[pt(x− ·)]∨ (ξ) =
Z
Rn

pt(x− y)eiy·ξdy =
Z
Rn

pt(y)e
i(y+x)·ξdy

= eix·ξp∨t (ξ) = eix·ξe−t|ξ|
2/2,
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hIFpt, ψi =
Z
Rn

I(pt(x− ·))ψ(x)dx

=

Z
Rn

Z
Rn

χ(ξ) [pt(x− ·)]∨ (ξ)ψ(x)dξdx

=

Z
Rn

χ(ξ)ψ∨(ξ)e−t|ξ|
2/2dξ

which coupled with the dominated convergence theorem shows

hIFpt, ψi→
Z
Rn

χ(ξ)ψ∨(ξ)dξ = I(ψ) as t ↓ 0.

Hence if ψ ≥ 0, then I(ψ) = limt↓0hIFpt, ψi ≥ 0.
Let K ⊂ R be a compact set and ψ ∈ Cc(R, [0,∞)) be a function such

that ψ = 1 on K. If f ∈ C∞c (R,R) is a smooth function with supp(f) ⊂ K,
then 0 ≤ kfk∞ ψ − f ∈ S and hence

0 ≤ hI, kfk∞ ψ − fi = kfk∞ hI, ψi− hI, fi

and therefore hI, fi ≤ kfk∞ hI, ψi. Replacing f by −f implies, −hI, fi ≤
kfk∞ hI, ψi and hence we have proved

|hI, fi| ≤ C(supp(f)) kfk∞ (32.23)

for all f ∈ DRn := C∞c (Rn,R) where C(K) is a finite constant for each
compact subset of Rn. Because of the estimate in Eq. (32.23), it follows that
I|DRn has a unique extension I to Cc(Rn,R) still satisfying the estimates in
Eq. (32.23) and moreover this extension is still positive. So by the Riesz —
Markov theorem, there exists a unique Radon — measure µ on Rn such that
such that hI, fi = µ(f) for all f ∈ Cc(Rn,R).
To finish the proof we must show µ̂(η) = χ(η) for all η ∈ Rn given

µ(f) =

Z
Rn

χ(ξ)f∨(ξ)dξ for all f ∈ C∞c (Rn,R).

Let f ∈ C∞c (Rn,R+) be a radial function such f(0) = 1 and f(x) is decreasing
as |x| increases. Let f�(x) := f(�x), then by Theorem 32.3,

F−1 £e−iηxf�(x)¤ (ξ) = �−nf∨(
ξ − η

�
)

and therefore Z
Rn

e−iηxf�(x)dµ(x) =
Z
Rn

χ(ξ)�−nf∨(
ξ − η

�
)dξ. (32.24)

Because
R
Rn f

∨(ξ)dξ = Ff∨(0) = f(0) = 1, we may apply the approximate δ
— function Theorem 11.21 to Eq. (32.24) to find
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Rn

e−iηxf�(x)dµ(x)→ χ(η) as � ↓ 0. (32.25)

On the the other hand, when η = 0, the monotone convergence theorem
implies µ(f�) ↑ µ(1) = µ(Rn) and therefore µ(Rn) = µ(1) = χ(0) < ∞. Now
knowing the µ is a finite measure we may use the dominated convergence
theorem to concluded

µ(e−iηxf�(x))→ µ(e−iηx) = µ̂(η) as � ↓ 0

for all η. Combining this equation with Eq. (32.25) shows µ̂(η) = χ(η) for all
η ∈ Rn.

32.6 Supplement: Heisenberg Uncertainty Principle

Suppose that H is a Hilbert space and A,B are two densely defined sym-
metric operators on H. More explicitly, A is a densely defined symmetric
linear operator on H means there is a dense subspace DA ⊂ H and a lin-
ear map A : DA → H such that (Aφ,ψ) = (φ,Aψ) for all φ, ψ ∈ DA.
Let DAB := {φ ∈ H : φ ∈ DB and Bφ ∈ DA} and for φ ∈ DAB let
(AB)φ = A(Bφ) with a similar definition of DBA and BA. Moreover, let
DC := DAB ∩DBA and for φ ∈ DC , let

Cφ =
1

i
[A,B]φ =

1

i
(AB −BA)φ.

Notice that for φ, ψ ∈ DC we have

(Cφ,ψ) =
1

i
{(ABφ,ψ)− (BAφ,ψ)} = 1

i
{(Bφ,Aψ)− (Aφ,Bψ)}

=
1

i
{(φ,BAψ)− (φ,ABψ)} = (φ,Cψ),

so that C is symmetric as well.

Theorem 32.24 (Heisenberg Uncertainty Principle). Continue the
above notation and assumptions,

1

2
|(ψ,Cψ)| ≤

q
kAψk2 − (ψ,Aψ) ·

q
kBψk2 − (ψ,Bψ) (32.26)

for all ψ ∈ DC . Moreover if kψk = 1 and equality holds in Eq. (32.26), then

(A− (ψ,Aψ))ψ = iλ(B − (ψ,Bψ))ψ or
(B − (ψ,Bψ)) = iλψ(A− (ψ,Aψ))ψ (32.27)

for some λ ∈ R.
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Proof. By homogeneity (32.26) we may assume that kψk = 1. Let a :=
(ψ,Aψ), b = (ψ,Bψ), Ã = A− aI, and B̃ = B − bI. Then we have still have

[Ã, B̃] = [A− aI,B − bI] = iC.

Now

i(ψ,Cψ) = (ψ, iCψ) = (ψ, [Ã, B̃]ψ) = (ψ, ÃB̃ψ)− (ψ, B̃Ãψ)
= (Ãψ, B̃ψ)− (B̃ψ, Ãψ) = 2i Im(Ãψ, B̃ψ)

from which we learn

|(ψ,Cψ)| = 2
¯̄̄
Im(Ãψ, B̃ψ)

¯̄̄
≤ 2

¯̄̄
(Ãψ, B̃ψ)

¯̄̄
≤ 2

°°°Ãψ°°°°°°B̃ψ°°°
with equality iff Re(Ãψ, B̃ψ) = 0 and Ãψ and B̃ψ are linearly dependent, i.e.
iff Eq. (32.27) holds.
The result follows from this equality and the identities°°°Ãψ°°°2 = kAψ − aψk2 = kAψk2 + a2 kψk2 − 2aRe(Aψ,ψ)

= kAψk2 + a2 − 2a2 = kAψk2 − (Aψ,ψ)

and °°°B̃ψ°°° = kBψk2 − (Bψ,ψ).
Example 32.25. As an example, take H = L2(R), A = 1

i ∂x and B = Mx

with DA := {f ∈ H : f 0 ∈ H} (f 0 is the weak derivative) and DB :=n
f ∈ H :

R
R |xf(x)|2 dx <∞

o
. In this case,

DC = {f ∈ H : f 0, xf and xf 0 are in H}

and C = −I on DC . Therefore for a unit vector ψ ∈ DC ,

1

2
≤
°°°°1i ψ0 − aψ

°°°°
2

· kxψ − bψk2

where a = i
R
R ψψ̄

0dm 1 and b =
R
R x |ψ(x)|2 dm(x). Thus we have

1 The constant a may also be described as

a = i

Z
R
ψψ̄0dm =

√
2πi

Z
R
ψ̂(ξ)

¡
ψ̄0
¢ˆ
(ξ)dξ

=

Z
R
ξ
¯̄̄
ψ̂(ξ)

¯̄̄2
dm(ξ).
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1

4
=
1

4

Z
R
|ψ|2 dm ≤

Z
R
(k − a)

2
¯̄̄
ψ̂(k)

¯̄̄2
dk ·

Z
R
(x− b)

2 |ψ(x)|2 dx. (32.28)

Equality occurs if there exists λ ∈ R such that

iλ (x− b)ψ(x) = (
1

i
∂x − a)ψ(x) a.e.

Working formally, this gives rise to the ordinary differential equation (in weak
form),

ψx = [−λ(x− b) + ia]ψ (32.29)

which has solutions (see Exercise 32.29 below)

ψ = C exp

µZ
R
[−λ(x− b) + ia] dx

¶
= C exp

µ
−λ
2
(x− b)2 + iax

¶
. (32.30)

Let λ = 1
2t and choose C so that kψk2 = 1 to find

ψt,a,b(x) =

µ
1

2t

¶1/4
exp

µ
− 1
4t
(x− b)2 + iax

¶
are the functions which saturate the Heisenberg uncertainty principle in Eq.
(32.28).

32.6.1 Exercises

Exercise 32.26. Let f ∈ L2(Rn) and α be a multi-index. If ∂αf exists in

L2(Rn) then F(∂αf) = (iξ)α f̂(ξ) in L2(Rn) and conversely if
³
ξ → ξαf̂(ξ)

´
∈

L2(Rn) then ∂αf exists.

Exercise 32.27. Suppose p(ξ) is a polynomial in ξ ∈ Rd and u ∈ L2 such
that p (∂)u ∈ L2. Show

F (p (∂)u) (ξ) = p(iξ)û (ξ) ∈ L2.

Conversely if u ∈ L2 such that p(iξ)û (ξ) ∈ L2, show p (∂)u ∈ L2.

Exercise 32.28. Suppose µ is a complex measure on Rn and µ̂(ξ) is its
Fourier transform as defined in Definition 32.18. Show µ satisfies,

hµ̂, φi :=
Z
Rn

µ̂(ξ)φ(ξ)dξ = µ(φ̂) :=

Z
Rn

φ̂dµ for all φ ∈ S

and use this to show if µ is a complex measure such that µ̂ ≡ 0, then µ ≡ 0.
Exercise 32.29. Show that ψ described in Eq. (32.30) is the general solution
to Eq. (32.29). Hint: Suppose that φ is any solution to Eq. (32.29) and ψ is
given as in Eq. (32.30) with C = 1. Consider the weak — differential equation
solved by φ/ψ.
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32.6.2 More Proofs of the Fourier Inversion Theorem

Exercise 32.30. Suppose that f ∈ L1(R) and assume that f continuously
differentiable in a neighborhood of 0, show

lim
M→∞

Z ∞
−∞

sinMx

x
f(x)dx = πf(0) (32.31)

using the following steps.

1. Use Example 9.26 to deduce,

lim
M→∞

Z 1

−1

sinMx

x
dx = lim

M→∞

Z M

−M

sinx

x
dx = π.

2. Explain why

0 = lim
M→∞

Z
|x|≥1

sinMx · f(x)
x

dx and

0 = lim
M→∞

Z
|x|≤1

sinMx · f(x)− f(0)

x
dx.

3. Add the previous two equations and use part (1) to prove Eq. (32.31).

Exercise 32.31 (Fourier Inversion Formula). Suppose that f ∈ L1(R)
such that f̂ ∈ L1(R).

1. Further assume that f is continuously differentiable in a neighborhood of
0. Show that

Λ :=

Z
R
f̂(ξ)dξ = f(0).

Hint: by the dominated convergence theorem, Λ := limM→∞
R
|ξ|≤M f̂(ξ)dξ.

Now use the definition of f̂(ξ), Fubini’s theorem and Exercise 32.30.
2. Apply part 1. of this exercise with f replace by τyf for some y ∈ R to
prove

f(y) =

Z
R
f̂(ξ)eiy·ξdξ (32.32)

provided f is now continuously differentiable near y.

The goal of the next exercises is to give yet another proof of the Fourier
inversion formula.

Notation 32.32 For L > 0, let Ck
L(R) denote the space of Ck — 2πL periodic

functions:

Ck
L(R) :=

©
f ∈ Ck(R) : f(x+ 2πL) = f(x) for all x ∈ Rª .
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Also let h·, ·iL denote the inner product on the Hilbert space HL :=
L2([−πL, πL]) given by

(f, g)L :=
1

2πL

Z
[−πL,πL]

f(x)ḡ(x)dx.

Exercise 32.33. Recall that
©
χLk (x) := eikx/L : k ∈ Zª is an orthonormal ba-

sis for HL and in particular for f ∈ HL,

f =
X
k∈Z
hf, χLk iLχLk (32.33)

where the convergence takes place in L2([−πL, πL]). Suppose now that f ∈
C2L(R)2 . Show (by two integration by parts)¯̄

(fL, χ
L
k )L

¯̄ ≤ L2

k2
kf 00ku

where kgku denote the uniform norm of a function g. Use this to conclude
that the sum in Eq. (32.33) is uniformly convergent and from this conclude
that Eq. (32.33) holds pointwise.

Exercise 32.34 (Fourier Inversion Formula on S). Let f ∈ S(R), L > 0
and

fL(x) :=
X
k∈Z

f(x+ 2πkL). (32.34)

Show:

1. The sum defining fL is convergent and moreover that fL ∈ C∞L (R).
2. Show (fL, χLk )L =

1√
2πL

f̂(k/L).

3. Conclude from Exercise 32.33 that

fL(x) =
1√
2πL

X
k∈Z

f̂(k/L)eikx/L for all x ∈ R. (32.35)

4. Show, by passing to the limit, L → ∞, in Eq. (32.35) that Eq. (32.32)
holds for all x ∈ R. Hint: Recall that f̂ ∈ S.

Exercise 32.35. Folland 8.13 on p. 254.

Exercise 32.36. Folland 8.14 on p. 254. (Wirtinger’s inequality.)

Exercise 32.37. Folland 8.15 on p. 255. (The sampling Theorem. Modify to
agree with notation in notes, see Solution ?? below.)

2 We view C2
L(R) as a subspace of HL by identifying f ∈ C2

L(R) with f |[−πL,πL] ∈
HL.
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Exercise 32.38. Folland 8.16 on p. 255.

Exercise 32.39. Folland 8.17 on p. 255.

Exercise 32.40. .Folland 8.19 on p. 256. (The Fourier transform of a function
whose support has finite measure.)

Exercise 32.41. Folland 8.22 on p. 256. (Bessel functions.)

Exercise 32.42. Folland 8.23 on p. 256. (Hermite Polynomial problems and
Harmonic oscillators.)

Exercise 32.43. Folland 8.31 on p. 263. (Poisson Summation formula prob-
lem.)



33

Constant Coefficient partial differential
equations

Suppose that p(ξ) =
P
|α|≤k aαξ

α with aα ∈ C and

L = p(Dx) := Σ|α|≤NaαDα
x = Σ|α|≤Naα

µ
1

i
∂x

¶α
. (33.1)

Then for f ∈ S cLf(ξ) = p(ξ)f̂(ξ),

that is to say the Fourier transform takes a constant coefficient partial differ-
ential operator to multiplication by a polynomial. This fact can often be used
to solve constant coefficient partial differential equation. For example suppose
g : Rn → C is a given function and we want to find a solution to the equation
Lf = g. Taking the Fourier transform of both sides of the equation Lf = g
would imply p(ξ)f̂(ξ) = ĝ(ξ) and therefore f̂(ξ) = ĝ(ξ)/p(ξ) provided p(ξ)
is never zero. (We will discuss what happens when p(ξ) has zeros a bit more
later on.) So we should expect

f(x) = F−1
µ
1

p(ξ)
ĝ(ξ)

¶
(x) = F−1

µ
1

p(ξ)

¶
Fg(x).

Definition 33.1. Let L = p(Dx) as in Eq. (33.1). Then we let σ(L) :=Ran(p) ⊂
C and call σ(L) the spectrum of L. Given a measurable function G : σ(L)→
C, we define (a possibly unbounded operator) G(L) : L2(Rn,m)→ L2(Rn,m)
by

G(L)f := F−1MG◦pF
where MG◦p denotes the operation on L2(Rn,m) of multiplication by G ◦ p,
i.e.

MG◦pf = (G ◦ p) f
with domain given by those f ∈ L2 such that (G ◦ p) f ∈ L2.

At a formal level we expect

G(L)f = F−1 (G ◦ p)Fg.
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33.1 Elliptic examples

As a specific example consider the equation¡−∆+m2
¢
f = g (33.2)

where f, g : Rn → C and ∆ =
Pn

i=1 ∂
2/∂x2i is the usual Laplacian on Rn. By

Corollary 32.17 (i.e. taking the Fourier transform of this equation), solving
Eq. (33.2) with f, g ∈ L2 is equivalent to solving¡|ξ|2 +m2

¢
f̂(ξ) = ĝ(ξ). (33.3)

The unique solution to this latter equation is

f̂(ξ) =
¡|ξ|2 +m2

¢−1
ĝ(ξ)

and therefore,

f(x) = F−1
³¡|ξ|2 +m2

¢−1
ĝ(ξ)

´
(x) =:

¡−∆+m2
¢−1

g(x).

We expect

F−1
³¡|ξ|2 +m2

¢−1
ĝ(ξ)

´
(x) = GmFg(x) =

Z
Rn

Gm(x− y)g(y)dy,

where

Gm(x) := F−1
¡|ξ|2 +m2

¢−1
(x) =

Z
Rn

1

m2 + |ξ|2 e
iξ·xdξ.

At the moment F−1 ¡|ξ|2 +m2
¢−1

only makes sense when n = 1, 2, or 3

because only then is
¡|ξ|2 +m2

¢−1 ∈ L2(Rn).
For now we will restrict our attention to the one dimensional case, n = 1,

in which case

Gm(x) =
1√
2π

Z
R

1

(ξ +mi) (ξ −mi)
eiξxdξ. (33.4)

The function Gm may be computed using standard complex variable contour
integration methods to find, for x ≥ 0,

Gm(x) =
1√
2π
2πi

ei
2mx

2im
=

1

2m

√
2πe−mx

and since Gm is an even function,

Gm(x) = F−1
¡|ξ|2 +m2

¢−1
(x) =

√
2π

2m
e−m|x|. (33.5)
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This result is easily verified to be correct, since

F
"√

2π

2m
e−m|x|

#
(ξ) =

√
2π

2m

Z
R
e−m|x|e−ix·ξdx

=
1

2m

µZ ∞
0

e−mxe−ix·ξdx+
Z 0

−∞
emxe−ix·ξdx

¶
=

1

2m

µ
1

m+ iξ
+

1

m− iξ

¶
=

1

m2 + ξ2
.

Hence in conclusion we find that
¡−∆+m2

¢
f = g has solution given by

f(x) = GmFg(x) =

√
2π

2m

Z
R
e−m|x−y|g(y)dy =

1

2m

Z
R
e−m|x−y|g(y)dy.

Question. Why do we get a unique answer here given that f(x) =
A sinh(x) +B cosh(x) solves ¡−∆+m2

¢
f = 0?

The answer is that such an f is not in L2 unless f = 0! More generally it is
worth noting that A sinh(x) +B cosh(x) is not in P unless A = B = 0.
What about when m = 0 in which case m2 + ξ2 becomes ξ2 which has a

zero at 0. Noting that constants are solutions to ∆f = 0, we might look at

lim
m↓0

(Gm(x)− 1) = lim
m↓0

√
2π

2m
(e−m|x| − 1) = −

√
2π

2
|x| .

as a solution, i.e. we might conjecture that

f(x) := −1
2

Z
R
|x− y| g(y)dy

solves the equation −f 00 = g. To verify this we have

f(x) := −1
2

Z x

−∞
(x− y) g(y)dy − 1

2

Z ∞
x

(y − x) g(y)dy

so that

f 0(x) = −1
2

Z x

−∞
g(y)dy +

1

2

Z ∞
x

g(y)dy and

f 00(x) = −1
2
g(x)− 1

2
g(x).
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33.2 Poisson Semi-Group

Let us now consider the problems of finding a function (x0, x) ∈ [0,∞)×Rn →
u(x0, x) ∈ C such thatµ

∂2

∂x20
+∆

¶
u = 0 with u(0, ·) = f ∈ L2(Rn). (33.6)

Let û(x0, ξ) :=
R
Rn u(x0, x)e

−ix·ξdx denote the Fourier transform of u in the
x ∈ Rn variable. Then Eq. (33.6) becomesµ

∂2

∂x20
− |ξ|2

¶
û(x0, ξ) = 0 with û(0, ξ) = f̂(ξ) (33.7)

and the general solution to this differential equation ignoring the initial con-
dition is of the form

û(x0, ξ) = A(ξ)e−x0|ξ| +B(ξ)ex0|ξ| (33.8)

for some function A(ξ) and B(ξ). Let us now impose the extra condition that
u(x0, ·) ∈ L2(Rn) or equivalently that û(x0, ·) ∈ L2(Rn) for all x0 ≥ 0. The
solution in Eq. (33.8) will not have this property unless B(ξ) decays very
rapidly at ∞. The simplest way to achieve this is to assume B = 0 in which
case we now get a unique solution to Eq. (33.7), namely

û(x0, ξ) = f̂(ξ)e−x0|ξ|.

Applying the inverse Fourier transform gives

u(x0, x) = F−1
h
f̂(ξ)e−x0|ξ|

i
(x) =:

³
e−x0

√−∆f
´
(x)

and moreover ³
e−x0

√−∆f
´
(x) = Px0 ∗ f(x)

where Px0(x) = (2π)
−n/2 ¡F−1e−x0|ξ|¢ (x). From Exercise 33.12,

Px0(x) = (2π)
−n/2 ³F−1e−x0|ξ|´ (x) = cn

x0
(x20 + |x|2)(n+1)/2

where

cn = (2π)
−n/2 Γ ((n+ 1)/2)√

π2n/2
=

Γ ((n+ 1)/2)

2nπ(n+1)/2
.

Hence we have proved the following proposition.

Proposition 33.2. For f ∈ L2(Rn),

e−x0
√−∆f = Px0 ∗ f for all x0 ≥ 0

and the function u(x0, x) := e−x0
√−∆f(x) is C∞ for (x0, x) ∈ (0,∞) × Rn

and solves Eq. (33.6).
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33.3 Heat Equation on Rn

The heat equation for a function u : R+ × Rn → C is the partial differential
equation µ

∂t − 1
2
∆

¶
u = 0 with u(0, x) = f(x), (33.9)

where f is a given function on Rn. By Fourier transforming Eq. (33.9) in the
x — variables only, one finds that (33.9) implies thatµ

∂t +
1

2
|ξ|2
¶
û(t, ξ) = 0 with û(0, ξ) = f̂(ξ). (33.10)

and hence that û(t, ξ) = e−t|ξ|
2/2f̂(ξ). Inverting the Fourier transform then

shows that

u(t, x) = F−1
³
e−t|ξ|

2/2f̂(ξ)
´
(x) =

³
F−1

³
e−t|ξ|

2/2
´
Ff

´
(x) =: et∆/2f(x).

From Example 32.4,

F−1
³
e−t|ξ|

2/2
´
(x) = pt(x) = t−n/2e−

1
2t |x|2

and therefore,

u(t, x) =

Z
Rn

pt(x− y)f(y)dy.

This suggests the following theorem.

Theorem 33.3. Let

ρ(t, x, y) := (2πt)
−n/2

e−|x−y|
2/2t (33.11)

be the heat kernel on Rn. Thenµ
∂t − 1

2
∆x

¶
ρ(t, x, y) = 0 and lim

t↓0
ρ(t, x, y) = δx(y), (33.12)

where δx is the δ — function at x in Rn. More precisely, if f is a contin-
uous bounded (can be relaxed considerably) function on Rn, then u(t, x) =R
Rn ρ(t, x, y)f(y)dy is a solution to Eq. (33.9) where u(0, x) := limt↓0 u(t, x).

Proof. Direct computations show that
¡
∂t − 1

2∆x

¢
ρ(t, x, y) = 0 and an

application of Theorem 11.21 shows limt↓0 ρ(t, x, y) = δx(y) or equivalently
that limt↓0

R
Rn ρ(t, x, y)f(y)dy = f(x) uniformly on compact subsets of Rn.

This shows that limt↓0 u(t, x) = f(x) uniformly on compact subsets of Rn.
This notation suggests that we should be able to compute the solution to

g to (∆−m2)g = f using
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g(x) =
¡
m2 −∆

¢−1
f(x) =

Z ∞
0

³
e−(m

2−∆)tf
´
(x)dt =

Z ∞
0

³
e−m

2tp2tFf
´
(x)dt,

a fact which is easily verified using the Fourier transform. This gives us a
method to compute Gm(x) from the previous section, namely

Gm(x) =

Z ∞
0

e−m
2tp2t(x)dt =

Z ∞
0

(2t)−n/2e−m
2t− 1

4t |x|2dt.

We make the change of variables, λ = |x|2 /4t (t = |x|2 /4λ, dt = − |x|24λ2 dλ) to
find

Gm(x) =

Z ∞
0

(2t)−n/2e−m
2t− 1

4t |x|2dt =
Z ∞
0

Ã
|x|2
2λ

!−n/2
e−m

2|x|2/4λ−λ |x|2
(2λ)

2 dλ

=
2(n/2−2)

|x|n−2
Z ∞
0

λn/2−2e−λe−m
2|x|2/4λdλ. (33.13)

In case n = 3, Eq. (33.13) becomes

Gm(x) =

√
π√
2 |x|

Z ∞
0

1√
πλ

e−λe−m
2|x|2/4λdλ =

√
π√
2 |x|e

−m|x|

where the last equality follows from Exercise 33.12. Hence when n = 3 we
have found¡

m2 −∆
¢−1

f(x) = GmFf(x) = (2π)−3/2
Z
R3

√
π√

2 |x− y|e
−m|x−y|f(y)dy

=

Z
R3

1

4π |x− y|e
−m|x−y|f(y)dy. (33.14)

The function 1
4π|x|e

−m|x| is called the Yukawa potential.
Let us work out Gm(x) for n odd. By differentiating Eq. (33.26) of Exercise

33.12 we findZ ∞
0

dλλk−1/2e−
1
4λx

2

e−λm
2

=

Z ∞
0

dλ
1√
λ
e−

1
4λx

2

µ
− d

da

¶k
e−λa|a=m2

=

µ
− d

da

¶k √
π√
a
e−
√
ax = pm,k(x)e

−mx

where pm,k(x) is a polynomial in x with deg pm = k with

pm,k(0) =
√
π

µ
− d

da

¶k
a−1/2|a=m2 =

√
π(
1

2

3

2
. . .
2k − 1
2

)m2k+1

= m2k+1
√
π2−k(2k − 1)!!.
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Letting k−1/2 = n/2−2 and m = 1 we find k = n−1
2 −2 ∈ N for n = 3, 5, . . . .

and we find Z ∞
0

λn/2−2e−
1
4λx

2

e−λdλ = p1,k(x)e
−x for all x > 0.

Therefore,

Gm(x) =
2(n/2−2)

|x|n−2
Z ∞
0

λn/2−2e−λe−m
2|x|2/4λdλ =

2(n/2−2)

|x|n−2 p1,n/2−2(m |x|)e−m|x|.

Now for even m, I think we get Bessel functions in the answer. (BRUCE:
look this up.) Let us at least work out the asymptotics of Gm(x) for x→∞.
To this end let

ψ(y) :=

Z ∞
0

λn/2−2e−(λ+λ
−1y2)dλ = yn−2

Z ∞
0

λn/2−2e−(λy
2+λ−1)dλ

The function fy(λ) := (y
2λ+ λ−1) satisfies,

f 0y(λ) =
¡
y2 − λ−2

¢
and f 00y (λ) = 2λ

−3 and f 000y (λ) = −6λ−4

so by Taylor’s theorem with remainder we learn

fy(λ) ∼= 2y + y3(λ− y−1)2 for all λ > 0,

see Figure 33.3 below.

2.521.510.50
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Plot of f4 and its second order Taylor approximation.

So by the usual asymptotics arguments,
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ψ(y) ∼= yn−2
Z
(−�+y−1,y−1+�)

λn/2−2e−(λy
2+λ−1)dλ

∼= yn−2
Z
(−�+y−1,y−1+�)

λn/2−2 exp
¡−2y − y3(λ− y−1)2

¢
dλ

∼= yn−2e−2y
Z
R
λn/2−2 exp

¡−y3(λ− y−1)2
¢
dλ (let λ→ λy−1)

= e−2yyn−2y−n/2+1
Z
R
λn/2−2 exp

¡−y(λ− 1)2¢ dλ
= e−2yyn−2y−n/2+1

Z
R
(λ+ 1)n/2−2 exp

¡−yλ2¢ dλ.
The point is we are still going to get exponential decay at ∞.
When m = 0, Eq. (33.13) becomes

G0(x) =
2(n/2−2)

|x|n−2
Z ∞
0

λn/2−1e−λ
dλ

λ
=
2(n/2−2)

|x|n−2 Γ (n/2− 1)

where Γ (x) in the gamma function defined in Eq. (9.30). Hence for “reason-
able” functions f (and n 6= 2)

(−∆)−1f(x) = G0Ff(x) = 2(n/2−2)Γ (n/2− 1)(2π)−n/2
Z
Rn

1

|x− y|n−2 f(y)dy

=
1

4πn/2
Γ (n/2− 1)

Z
Rn

1

|x− y|n−2 f(y)dy.

The function
G̃0(x, y) :=

1

4πn/2
Γ (n/2− 1) 1

|x− y|n−2
is a “Green’s function” for −∆. Recall from Exercise 9.60 that, for n = 2k,
Γ (n2 − 1) = Γ (k − 1) = (k − 2)!, and for n = 2k + 1,

Γ (
n

2
− 1) = Γ (k − 1/2) = Γ (k − 1 + 1/2) = √π 1 · 3 · 5 · · · · · (2k − 3)

2k−1

=
√
π
(2k − 3)!!
2k−1

where (−1)!! ≡ 1.

Hence

G̃0(x, y) =
1

4

1

|x− y|n−2
½ 1

πk
(k − 2)! if n = 2k

1
πk

(2k−3)!!
2k−1 if n = 2k + 1

and in particular when n = 3,

G̃0(x, y) =
1

4π

1

|x− y|
which is consistent with Eq. (33.14) with m = 0.
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33.4 Wave Equation on Rn

Let us now consider the wave equation on Rn,

0 =
¡
∂2t −∆

¢
u(t, x) with

u(0, x) = f(x) and ut(0, x) = g(x). (33.15)

Taking the Fourier transform in the x variables gives the following equation

0 = ût t(t, ξ) + |ξ|2 û(t, ξ) with
û(0, ξ) = f̂(ξ) and ût(0, ξ) = ĝ(ξ). (33.16)

The solution to these equations is

û(t, ξ) = f̂(ξ) cos (t |ξ|) + ĝ(ξ)
sin t|ξ|
|ξ|

and hence we should have

u(t, x) = F−1
µ
f̂(ξ) cos (t |ξ|) + ĝ(ξ)

sin t|ξ|
|ξ|

¶
(x)

= F−1 cos (t |ξ|)Ff(x) + F−1 sin t|ξ||ξ| Fg (x)

=
d

dt
F−1

·
sin t|ξ|
|ξ|

¸
Ff(x) + F−1

·
sin t|ξ|
|ξ|

¸
Fg (x) . (33.17)

The question now is how interpret this equation. In particular what
are the inverse Fourier transforms of F−1 cos (t |ξ|) and F−1 sin t|ξ||ξ| . Since
d
dtF−1 sin t|ξ||ξ| Ff(x) = F−1 cos (t |ξ|)Ff(x), it really suffices to understand

F−1
h
sin t|ξ|
|ξ|

i
. The problem we immediately run into here is that sin t|ξ|

|ξ| ∈
L2(Rn) iff n = 1 so that is the case we should start with.
Again by complex contour integration methods one can show¡F−1ξ−1 sin tξ¢ (x) = π√

2π

¡
1x+t>0 − 1(x−t)>0

¢
=

π√
2π
(1x>−t − 1x>t) = π√

2π
1[−t,t](x)

where in writing the last line we have assume that t ≥ 0. Again this easily
seen to be correct because

F
·

π√
2π
1[−t,t](x)

¸
(ξ) =

1

2

Z
R
1[−t,t](x)e−iξ·xdx =

1

−2iξ e
−iξ·x|t−t

=
1

2iξ

£
eiξt − e−iξt

¤
= ξ−1 sin tξ.
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Therefore, ¡F−1ξ−1 sin tξ¢Ff(x) =
1

2

Z t

−t
f(x− y)dy

and the solution to the one dimensional wave equation is

u(t, x) =
d

dt

1

2

Z t

−t
f(x− y)dy +

1

2

Z t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

Z t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

Z x+t

x−t
g(y)dy.

We can arrive at this same solution by more elementary means as follows.
We first note in the one dimensional case that wave operator factors, namely

0 =
¡
∂2t − ∂2x

¢
u(t, x) = (∂t − ∂x) (∂t + ∂x)u(t, x).

Let U(t, x) := (∂t + ∂x)u(t, x), then the wave equation states (∂t − ∂x)U = 0
and hence by the chain rule d

dtU(t, x− t) = 0. So

U(t, x− t) = U(0, x) = g(x) + f 0(x)

and replacing x by x+ t in this equation shows

(∂t + ∂x)u(t, x) = U(t, x) = g(x+ t) + f 0(x+ t).

Working similarly, we learn that

d

dt
u(t, x+ t) = g(x+ 2t) + f 0(x+ 2t)

which upon integration implies

u(t, x+ t) = u(0, x) +

Z t

0

{g(x+ 2τ) + f 0(x+ 2τ)} dτ

= f(x) +

Z t

0

g(x+ 2τ)dτ +
1

2
f(x+ 2τ)|t0

=
1

2
(f(x) + f(x+ 2t)) +

Z t

0

g(x+ 2τ)dτ.

Replacing x→ x− t in this equation gives

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

Z t

0

g(x− t+ 2τ)dτ

and then letting y = x− t+ 2τ in the last integral shows again that
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u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

1

2

Z x+t

x−t
g(y)dy.

When n > 3 it is necessary to treat F−1
h
sin t|ξ|
|ξ|

i
as a “distribution” or

“generalized function,” see Section 34 below. So for now let us take n = 3, in
which case from Example 32.19 it follows that

F−1
·
sin t |ξ|
|ξ|

¸
=

t

4πt2
σt = tσ̄t (33.18)

where σ̄t is 1
4πt2σt, the surface measure on St normalized to have total mea-

sure one. Hence from Eq. (33.17) the solution to the three dimensional wave
equation should be given by

u(t, x) =
d

dt
(tσ̄tFf(x)) + tσ̄tFg (x) . (33.19)

Using this definition in Eq. (33.19) gives

u(t, x) =
d

dt

½
t

Z
St

f(x− y)dσ̄t(y)

¾
+ t

Z
St

g(x− y)dσ̄t(y)

=
d

dt

½
t

Z
S1

f(x− tω)dσ̄1(ω)

¾
+ t

Z
S1

g(x− tω)dσ̄1(ω)

=
d

dt

½
t

Z
S1

f(x+ tω)dσ̄1(ω)

¾
+ t

Z
S1

g(x+ tω)dσ̄1(ω). (33.20)

Proposition 33.4. Suppose f ∈ C3(R3) and g ∈ C2(R3), then u(t, x) de-
fined by Eq. (33.20) is in C2

¡
R×R3¢ and is a classical solution of the wave

equation in Eq. (33.15).

Proof. The fact that u ∈ C2
¡
R×R3¢ follows by the usual differen-

tiation under the integral arguments. Suppose we can prove the proposi-
tion in the special case that f ≡ 0. Then for f ∈ C3(R3), the function
v(t, x) = +t

R
S1

g(x+ tω)dσ̄1(ω) solves the wave equation 0 =
¡
∂2t −∆

¢
v(t, x)

with v(0, x) = 0 and vt(0, x) = g(x). Differentiating the wave equation
in t shows u = vt also solves the wave equation with u(0, x) = g(x) and
ut(0, x) = vtt(0, x) = −∆xv(0, x) = 0.
These remarks reduced the problems to showing u in Eq. (33.20) with

f ≡ 0 solves the wave equation. So let

u(t, x) := t

Z
S1

g(x+ tω)dσ̄1(ω). (33.21)

We now give two proofs the u solves the wave equation.
Proof 1. Since solving the wave equation is a local statement and u(t, x)

only depends on the values of g in B(x, t) we it suffices to consider the case
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where g ∈ C2c
¡
R3
¢
. Taking the Fourier transform of Eq. (33.21) in the x

variable shows

û(t, ξ) = t

Z
S1

dσ̄1(ω)

Z
R3

g(x+ tω)e−iξ·xdx

= t

Z
S1

dσ̄1(ω)

Z
R3

g(x)e−iξ·xeitω·ξdx = ĝ(ξ)t

Z
S1

eitω·ξdσ̄1(ω)

= ĝ(ξ)t
sin |tk|
|tk| = ĝ(ξ)

sin (t |ξ|)
|ξ|

wherein we have made use of Example 32.19. This completes the proof since
û(t, ξ) solves Eq. (33.16) as desired.
Proof 2. Differentiating

S(t, x) :=

Z
S1

g(x+ tω)dσ̄1(ω)

in t gives

St(t, x) =
1

4π

Z
S1

∇g(x+ tω) · ωdσ(ω)

=
1

4π

Z
B(0,1)

∇ω ·∇g(x+ tω)dm(ω)

=
t

4π

Z
B(0,1)

∆g(x+ tω)dm(ω)

=
1

4πt2

Z
B(0,t)

∆g(x+ y)dm(y)

=
1

4πt2

Z t

0

dr r2
Z
|y|=r

∆g(x+ y)dσ(y)

where we have used the divergence theorem, made the change of variables
y = tω and used the disintegration formula in Eq. (9.27),Z
Rd

f(x)dm(x) =

Z
[0,∞)×Sn−1

f(r ω) dσ(ω)rn−1dr =
Z ∞
0

dr

Z
|y|=r

f(y)dσ(y).

Since u(t, x) = tS(t, x) if follows that
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Fig. 33.1. The geometry of the solution to the wave equation in three dimensions.
The observer sees a flash at t = 0 and x = 0 only at time t = |x| . The wave progates
sharply with speed 1.

utt(t, x) =
∂

∂t
[S(t, x) + tSt(t, x)]

= St(t, x) +
∂

∂t

"
1

4πt

Z t

0

dr r2
Z
|y|=r

∆g(x+ y)dσ(y)

#

= St(t, x)− 1

4πt2

Z t

0

dr

Z
|y|=r

∆g(x+ y)dσ(y)

+
1

4πt

Z
|y|=t

∆g(x+ y)dσ(y)

= St(t, x)− St(t, x) +
t

4πt2

Z
|y|=1

∆g(x+ tω)dσ(ω)

= t∆u(t, x)

as required.
The solution in Eq. (33.20) exhibits a basic property of wave equations,

namely finite propagation speed. To exhibit the finite propagation speed, sup-
pose that f = 0 (for simplicity) and g has compact support near the origin,
for example think of g = δ0(x). Then x+ tw = 0 for some w iff |x| = t. Hence
the “wave front” propagates at unit speed and the wave front is sharp. See
Figure 33.1 below.
The solution of the two dimensional wave equation may be found using

“Hadamard’s method of decent” which we now describe. Suppose now that
f and g are functions on R2 which we may view as functions on R3 which
happen not to depend on the third coordinate. We now go ahead and solve
the three dimensional wave equation using Eq. (33.20) and f and g as initial
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Fig. 33.2. The geometry of the solution to the wave equation in two dimensions. A
flash at 0 ∈ R2 looks like a line of flashes to the fictitious 3 — d observer and hence
she sees the effect of the flash for t ≥ |x| . The wave still propagates with speed 1.
However there is no longer sharp propagation of the wave front, similar to water
waves.

conditions. It is easily seen that the solution u(t, x, y, z) is again independent
of z and hence is a solution to the two dimensional wave equation. See figure
33.2 below.
Notice that we still have finite speed of propagation but no longer sharp

propagation. The explicit formula for u is given in the next proposition.

Proposition 33.5. Suppose f ∈ C3(R2) and g ∈ C2(R2), then

u(t, x) :=
∂

∂t

"
t

2π

ZZ
D1

f(x+ tw)p
1− |w|2 dm(w)

#

+
t

2π

ZZ
D1

g(x+ tw)p
1− |w|2 dm(w)

is in C2
¡
R×R2¢ and solves the wave equation in Eq. (33.15).

Proof. As usual it suffices to consider the case where f ≡ 0. By symmetry
u may be written as
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u(t, x) = 2t

Z
S+t

g(x− y)dσ̄t(y) = 2t

Z
S+t

g(x+ y)dσ̄t(y)

where S+t is the portion of St with z ≥ 0. The surface S+t may be parametrized
by R(u, v) = (u, v,

√
t2 − u2 − v2) with (u, v) ∈ Dt :=

©
(u, v) : u2 + v2 ≤ t2

ª
.

In these coordinates we have

4πt2dσ̄t =
¯̄̄³
−∂u

p
t2 − u2 − v2,−∂v

p
t2 − u2 − v2, 1

´¯̄̄
dudv

=

¯̄̄̄µ
u√

t2 − u2 − v2
,

v√
t2 − u2 − v2

, 1

¶¯̄̄̄
dudv

=

r
u2 + v2

t2 − u2 − v2
+ 1dudv =

|t|√
t2 − u2 − v2

dudv

and therefore,

u(t, x) =
2t

4πt2

Z
Dt

g(x+ (u, v,
p
t2 − u2 − v2))

|t|√
t2 − u2 − v2

dudv

=
1

2π
sgn(t)

Z
Dt

g(x+ (u, v))√
t2 − u2 − v2

dudv.

This may be written as

u(t, x) =
1

2π
sgn(t)

ZZ
Dt

g(x+ w)p
t2 − |w|2 dm(w)

=
1

2π
sgn(t)

t2

|t|
ZZ

D1

g(x+ tw)p
1− |w|2 dm(w)

=
1

2π
t

ZZ
D1

g(x+ tw)p
1− |w|2 dm(w)

33.5 Elliptic Regularity

The following theorem is a special case of the main theorem (Theorem 33.10)
of this section.

Theorem 33.6. Suppose that M ⊂o Rn, v ∈ C∞(M) and u ∈ L1loc(M) sat-
isfies ∆u = v weakly, then u has a (necessarily unique) version ũ ∈ C∞(M).

Proof.We may always assume n ≥ 3, by embedding the n = 1 and n = 2
cases in the n = 3 cases. For notational simplicity, assume 0 ∈M and we will
show u is smooth near 0. To this end let θ ∈ C∞c (M) such that θ = 1 in a
neighborhood of 0 and α ∈ C∞c (M) such that supp(α) ⊂ {θ = 1} and α = 1
in a neighborhood of 0 as well. Then formally, we have with β := 1− α,
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G ∗ (θv) = G ∗ (θ∆u) = G ∗ (θ∆(αu+ βu))

= G ∗ (∆(αu) + θ∆(βu)) = αu+G ∗ (θ∆(βu))
so that

u(x) = G ∗ (θv) (x)−G ∗ (θ∆(βu))(x)
for x ∈ supp(α). The last term is formally given by

G ∗ (θ∆(βu))(x) =
Z
Rn

G(x− y)θ(y)∆(β(y)u(y))dy

=

Z
Rn

β(y)∆y [G(x− y)θ(y)] · u(y)dy

which makes sense for x near 0. Therefore we find

u(x) = G ∗ (θv) (x)−
Z
Rn

β(y)∆y [G(x− y)θ(y)] · u(y)dy.

Clearly all of the above manipulations were correct if we know u were C2 to
begin with. So for the general case, let un = u ∗ δn with {δn}∞n=1 — the usual
sort of δ — sequence approximation. Then ∆un = v ∗ δn =: vn away from ∂M
and

un(x) = G ∗ (θvn) (x)−
Z
Rn

β(y)∆y [G(x− y)θ(y)] · un(y)dy. (33.22)

Since un → u in L1loc(O) where O is a sufficiently small neighborhood of 0, we
may pass to the limit in Eq. (33.22) to find u(x) = ũ(x) for a.e. x ∈ O where

ũ(x) := G ∗ (θv) (x)−
Z
Rn

β(y)∆y [G(x− y)θ(y)] · u(y)dy.

This concluded the proof since ũ is smooth for x near 0.

Definition 33.7.We say L = p(Dx) as defined in Eq. (33.1) is elliptic
if pk(ξ) :=

P
|α|=k aαξ

α is zero iff ξ = 0. We will also say the polynomial
p(ξ) :=

P
|α|≤k aαξ

α is elliptic if this condition holds.

Remark 33.8. If p(ξ) :=
P
|α|≤k aαξ

α is an elliptic polynomial, then there
exists A < ∞ such that inf |ξ|≥A |p(ξ)| > 0. Since pk(ξ) is everywhere non-
zero for ξ ∈ Sn−1 and Sn−1 ⊂ Rn is compact, � := inf|ξ|=1 |pk(ξ)| > 0. By
homogeneity this implies

|pk(ξ)| ≥ � |ξ|k for all ξ ∈ An.
Since

|p(ξ)| =
¯̄̄̄
¯̄pk(ξ) + X

|α|<k
aαξ

α

¯̄̄̄
¯̄ ≥ |pk(ξ)|−

¯̄̄̄
¯̄ X
|α|<k

aαξ
α

¯̄̄̄
¯̄

≥ � |ξ|k − C
³
1 + |ξ|k−1

´
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for some constant C < ∞ from which it is easily seen that for A sufficiently
large,

|p(ξ)| ≥ �

2
|ξ|k for all |ξ| ≥ A.

For the rest of this section, let L = p(Dx) be an elliptic operator and
M ⊂0 Rn. As mentioned at the beginning of this section, the formal solution
to Lu = v for v ∈ L2 (Rn) is given by

u = L−1v = G ∗ v
where

G(x) :=

Z
Rn

1

p(ξ)
eix·ξdξ.

Of course this integral may not be convergent because of the possible zeros of
p and the fact 1

p(ξ) may not decay fast enough at infinity. We we will introduce
a smooth cut off function χ(ξ) which is 1 on C0(A) := {x ∈ Rn : |x| ≤ A} and
supp(χ) ⊂ C0(2A) where A is as in Remark 33.8. Then for M > 0 let

GM (x) =

Z
Rn

(1− χ(ξ))χ(ξ/M)

p(ξ)
eix·ξdξ, (33.23)

δ(x) := χ∨(x) =
Z
Rn

χ(ξ)eix·ξdξ, and δM (x) =Mnδ(Mx). (33.24)

Notice
R
Rn δ(x)dx = Fδ(0) = χ(0) = 1, δ ∈ S since χ ∈ S and

LGM (x) =

Z
Rn
(1− χ(ξ))χ(ξ/M)eix·ξdξ =

Z
Rn
[χ(ξ/M)− χ(ξ)] eix·ξdξ

= δM (x)− δ(x)

provided M > 2.

Proposition 33.9. Let p be an elliptic polynomial of degree m. The function
GM defined in Eq. (33.23) satisfies the following properties,

1. GM ∈ S for all M > 0.
2. LGM (x) =Mnδ(Mx)− δ(x).
3. There exists G ∈ C∞c (Rn \ {0}) such that for all multi-indecies α,
limM→∞ ∂αGM (x) = ∂αG(x) uniformly on compact subsets in Rn \ {0} .
Proof.We have already proved the first two items. For item 3., we notice

that

(−x)β DαGM (x) =

Z
Rn

(1− χ(ξ))χ(ξ/M)ξα

p(ξ)
(−D)βξ eix·ξdξ

=

Z
Rn

Dβ
ξ

·
(1− χ(ξ)) ξα

p(ξ)
χ(ξ/M)

¸
eix·ξdξ

=

Z
Rn

Dβ
ξ

(1− χ(ξ)) ξα

p(ξ)
· χ(ξ/M)eix·ξdξ +RM (x)
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where

RM (x) =
X
γ<β

µ
β

γ

¶
M |γ|−|β|

Z
Rn

Dγ
ξ

(1− χ(ξ)) ξα

p(ξ)
· ¡Dβ−γχ

¢
(ξ/M)eix·ξdξ.

Using ¯̄̄̄
Dγ
ξ

·
ξα

p(ξ)
(1− χ(ξ))

¸¯̄̄̄
≤ C |ξ||α|−m−|γ|

and the fact that

supp(
¡
Dβ−γχ

¢
(ξ/M)) ⊂ {ξ ∈ Rn : A ≤ |ξ| /M ≤ 2A}

= {ξ ∈ Rn : AM ≤ |ξ| ≤ 2AM}
we easily estimate

|RM (x)| ≤ C
X
γ<β

µ
β

γ

¶
M |γ|−|β|

Z
{ξ∈Rn:AM≤|ξ|≤2AM}

|ξ||α|−m−|γ| dξ

≤ C
X
γ<β

µ
β

γ

¶
M |γ|−|β|M |α|−m−|γ|+n = CM |α|−|β|−m+n.

Therefore, RM → 0 uniformly in x as M →∞ provided |β| > |α|−m+ n. It
follows easily now that GM → G in C∞c (Rn \ {0}) and furthermore that

(−x)β DαG(x) =

Z
Rn

Dβ
ξ

(1− χ(ξ)) ξα

p(ξ)
· eix·ξdξ

provided β is sufficiently large. In particular we have shown,

DαG(x) =
1

|x|2k
Z
Rn
(−∆ξ)

k (1− χ(ξ)) ξα

p(ξ)
· eix·ξdξ

provided m− |α|+ 2k > n, i.e. k > (n−m+ |α|) /2.
We are now ready to use this result to prove elliptic regularity for the

constant coefficient case.

Theorem 33.10. Suppose L = p(Dξ) is an elliptic differential operator on
Rn, M ⊂o Rn, v ∈ C∞(M) and u ∈ L1loc(M) satisfies Lu = v weakly, then u
has a (necessarily unique) version ũ ∈ C∞(M).

Proof. For notational simplicity, assume 0 ∈ M and we will show u is
smooth near 0. To this end let θ ∈ C∞c (M) such that θ = 1 in a neighbor-
hood of 0 and α ∈ C∞c (M) such that supp(α) ⊂ {θ = 1} , and α = 1 in a
neighborhood of 0 as well. Then formally, we have with β := 1− α,

GM ∗ (θv) = GM ∗ (θLu) = GM ∗ (θL(αu+ βu))

= GM ∗ (L(αu) + θL(βu))

= δM ∗ (αu)− δ ∗ (αu) +GM ∗ (θL(βu))
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so that

δM ∗ (αu) (x) = GM ∗ (θv) (x)−GM ∗ (θL(βu))(x) + δ ∗ (αu) . (33.25)

Since

F [GM ∗ (θv)] (ξ) = ĜM (ξ) (θv)
ˆ
(ξ) =

(1− χ(ξ))χ(ξ/M)

p(ξ)
(θv)

ˆ
(ξ)

→ (1− χ(ξ))

p(ξ)
(θv)ˆ (ξ) as M →∞

with the convergence taking place in L2 (actually in S), it follows that

GM ∗ (θv)→ “G ∗ (θv) ”(x) :=
Z
Rn

(1− χ(ξ))

p(ξ)
(θv)

ˆ
(ξ)eix·ξdξ

= F−1
·
(1− χ(ξ))

p(ξ)
(θv)ˆ (ξ)

¸
(x) ∈ S.

So passing the the limit, M → ∞, in Eq. (33.25) we learn for almost every
x ∈ Rn,

u(x) = G ∗ (θv) (x)− lim
M→∞

GM ∗ (θL(βu))(x) + δ ∗ (αu) (x)

for a.e. x ∈ supp(α). Using the support properties of θ and β we see for x
near 0 that (θL(βu))(y) = 0 unless y ∈ supp(θ) and y /∈ {α = 1} , i.e. unless
y is in an annulus centered at 0. So taking x sufficiently close to 0, we find
x − y stays away from 0 as y varies through the above mentioned annulus,
and therefore

GM ∗ (θL(βu))(x) =
Z
Rn

GM (x− y)(θL(βu))(y)dy

=

Z
Rn

L∗y {θ(y)GM (x− y)} · (βu) (y)dy

→
Z
Rn

L∗y {θ(y)G(x− y)} · (βu) (y)dy as M →∞.

Therefore we have shown,

u(x) = G ∗ (θv) (x)−
Z
Rn

L∗y {θ(y)G(x− y)} · (βu) (y)dy + δ ∗ (αu) (x)

for almost every x in a neighborhood of 0. (Again it suffices to prove this
equation and in particular Eq. (33.25) assuming u ∈ C2(M) because of the
same convolution argument we have use above.) Since the right side of this
equation is the linear combination of smooth functions we have shown u has
a smooth version in a neighborhood of 0.
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Remarks 33.11 We could avoid introducing GM (x) if deg(p) > n, in which
case (1−χ(ξ))

p(ξ) ∈ L1 and so

G(x) :=

Z
Rn

(1− χ(ξ))

p(ξ)
eix·ξdξ

is already well defined function with G ∈ C∞(Rn \{0})∩BC(Rn). If deg(p) <
n, we may consider the operator Lk = [p(Dx)]

k = pk(Dx) where k is chosen
so that k · deg(p) > n. Since Lu = v implies Lku = Lk−1v weakly, we see to
prove the hypoellipticity of L it suffices to prove the hypoellipticity of Lk.

33.6 Exercises

Exercise 33.12. Using

1

|ξ|2 +m2
=

Z ∞
0

e−λ(|ξ|
2+m2)dλ,

the identity in Eq. (33.5) and Example 32.4, show for m > 0 and x ≥ 0 that

e−mx =
m√
π

Z ∞
0

dλ
1√
λ
e−

1
4λx

2

e−λm
2

(let λ→ λ/m2) (33.26)

=

Z ∞
0

dλ
1√
πλ

e−λe−
m2

4λ x2 . (33.27)

Use this formula and Example 32.4 to show, in dimension n, that

F
h
e−m|x|

i
(ξ) = 2n/2

Γ ((n+ 1)/2)√
π

m

(m2 + |ξ|2)(n+1)/2

where Γ (x) in the gamma function defined in Eq. (9.30). (I am not absolutely
positive I have got all the constants exactly right, but they should be close.)
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34.1 Distributions on U ⊂o Rn

Let U be an open subset of Rn and

C∞c (U) = ∪K@@UC∞(K) (34.1)

denote the set of smooth functions on U with compact support in U.

Definition 34.1. A sequence {φk}∞k=1 ⊂ D(U) converges to φ ∈ D(U), iff
there is a compact set K @@ U such that supp(φk) ⊂ K for all k and φk → φ
in C∞(K).

Definition 34.2 (Distributions on U ⊂o Rn). A generalized function T
on U ⊂o Rn is a continuous linear functional on D(U), i.e. T : D(U) → C
is linear and limn→∞hT, φki = 0 for all {φk} ⊂ D(U) such that φk → 0 in
D(U). We denote the space of generalized functions by D0(U).
Proposition 34.3. Let T : D(U)→ C be a linear functional. Then T ∈ D0(U)
iff for all K @@ U, there exist n ∈ N and C <∞ such that

|T (φ)| ≤ Cpn(φ) for all φ ∈ C∞(K). (34.2)

Proof. Suppose that {φk} ⊂ D(U) such that φk → 0 in D(U). Let K be
a compact set such that supp(φk) ⊂ K for all k. Since limk→∞ pn(φk) = 0, it
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follows that if Eq. (34.2) holds that limn→∞hT, φki = 0. Conversely, suppose
that there is a compact set K @@ U such that for no choice of n ∈ N and
C < ∞, Eq. (34.2) holds. Then we may choose non-zero φn ∈ C∞(K) such
that

|T (φn)| ≥ npn(φn) for all n.

Let ψn = 1
npn(φn)

φn ∈ C∞(K), then pn(ψn) = 1/n → 0 as n → ∞ which
shows that ψn → 0 in D(U). On the other hence |T (ψn)| ≥ 1 so that
limn→∞hT, ψni 6= 0.
Alternate Proof:The definition of T being continuous is equivalent to

T |C∞(K) being sequentially continuous for all K @@ U. Since C∞(K) is a
metric space, sequential continuity and continuity are the same thing. Hence
T is continuous iff T |C∞(K) is continuous for all K @@ U. Now T |C∞(K) is
continuous iff a bound like Eq. (34.2) holds.

Definition 34.4. Let Y be a topological space and Ty ∈ D0(U) for all y ∈ Y.
We say that Ty → T ∈ D0(U) as y → y0 iff

lim
y→y0

hTy, φi = hT, φi for all φ ∈ D(U).

34.2 Examples of distributions and related computations

Example 34.5. Let µ be a positive Radon measure on U and f ∈ L1loc(U).
Define T ∈ D0(U) by hTf , φi =

R
U
φfdµ for all φ ∈ D(U). Notice that if

φ ∈ C∞(K) then

|hTf , φi| ≤
Z
U

|φf | dµ =
Z
K

|φf | dµ ≤ CK kφk∞

where CK :=
R
K
|f | dµ <∞. Hence Tf ∈ D0(U). Furthermore, the map

f ∈ L1loc(U)→ Tf ∈ D0(U)
is injective. Indeed, Tf = 0 is equivalent toZ

U

φfdµ = 0 for all φ ∈ D(U). (34.3)

for all φ ∈ C∞(K). By the dominated convergence theorem and the usual
convolution argument, this is equivalent toZ

U

φfdµ = 0 for all φ ∈ Cc(U). (34.4)

Now fix a compact set K @@ U and φn ∈ Cc(U) such that φn → sgn(f)1K
in L1(µ). By replacing φn by χ(φn) if necessary, where
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χ(z) =

½
z if |z| ≤ 1
z
|z| if |z| ≥ 1,

we may assume that |φn| ≤ 1. By passing to a further subsequence, we may
assume that φn → sgn(f)1K a.e.. Thus we have

0 = lim
n→∞

Z
U

φnfdµ =

Z
U

sgn(f)1Kfdµ =

Z
K

|f | dµ.

This shows that |f(x)| = 0 for µ -a.e. x ∈ K. Since K is arbitrary and U is
the countable union of such compact sets K, it follows that f(x) = 0 for µ
-a.e. x ∈ U.

The injectivity may also be proved slightly more directly as follows. As
before, it suffices to prove Eq. (34.4) implies that f(x) = 0 for µ — a.e. x. We
may further assume that f is real by considering real and imaginary parts
separately. Let K @@ U and � > 0 be given. Set A = {f > 0} ∩ K, then
µ(A) <∞ and hence since all σ finite measure on U are Radon, there exists
F ⊂ A ⊂ V with F compact and V ⊂o U such that µ(V \ F ) < δ. By
Uryshon’s lemma, there exists φ ∈ Cc(V ) such that 0 ≤ φ ≤ 1 and φ = 1 on
F. Then by Eq. (34.4)

0 =

Z
U

φfdµ =

Z
F

φfdµ+

Z
V \F

φfdµ =

Z
F

φfdµ+

Z
V \F

φfdµ

so that Z
F

fdµ =

¯̄̄̄
¯
Z
V \F

φfdµ

¯̄̄̄
¯ ≤

Z
V \F

|f | dµ < �

provided that δ is chosen sufficiently small by the � — δ definition of absolute
continuity. Similarly, it follows that

0 ≤
Z
A

fdµ ≤
Z
F

fdµ+ � ≤ 2�.

Since � > 0 is arbitrary, it follows that
R
A
fdµ = 0. Since K was arbitrary, we

learn that Z
{f>0}

fdµ = 0

which shows that f ≤ 0 µ — a.e. Similarly, one shows that f ≥ 0 µ — a.e. and
hence f = 0 µ — a.e.

Example 34.6. Let us now assume that µ = m and write hTf , φi =
R
U
φfdm.

For the moment let us also assume that U = R. Then we have

1. limM→∞ TsinMx = 0
2. limM→∞ TM−1 sinMx = πδ0 where δ0 is the point measure at 0.
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3. If f ∈ L1(Rn, dm) with
R
Rn fdm = 1 and f�(x) = �−nf(x/�), then

lim�↓0 Tf� = δ0. As a special case,
consider lim�↓0 �

π(x2+�2) = δ0.

Definition 34.7 (Multiplication by smooth functions). Suppose that
g ∈ C∞(U) and T ∈ D0(U) then we define gT ∈ D0(U) by

hgT, φi = hT, gφi for all φ ∈ D(U).

It is easily checked that gT is continuous.

Definition 34.8 (Differentiation). For T ∈ D0(U) and i ∈ {1, 2, . . . , n} let
∂iT ∈ D0(U) be the distribution defined by

h∂iT, φi = −hT, ∂iφi for all φ ∈ D(U).

Again it is easy to check that ∂iT is a distribution.

More generally if L =
P
|α|≤m aα∂

α with aα ∈ C∞(U) for all α, then LT
is the distribution defined by

hLT, φi = hT,
X
|α|≤m

(−1)|α|∂α (aαφ)i for all φ ∈ D(U).

Hence we can talk about distributional solutions to differential equations of
the form LT = S.

Example 34.9. Suppose that f ∈ L1loc and g ∈ C∞(U), then gTf = Tgf . If
further f ∈ C1(U), then ∂iTf = T∂if . If f ∈ Cm(U), then LTf = TLf .

Example 34.10. Suppose that a ∈ U, then

h∂iδa, φi = −∂iφ(a)

and more generally we have

hLδa, φi =
X
|α|≤m

(−1)|α|∂α (aαφ) (a).

Example 34.11. Consider the distribution T := T|x| for x ∈ R, i.e. take U = R.
Then

d

dx
T = Tsgn(x) and

d2

d2x
T = 2δ0.

More generally, suppose that f is piecewise C1, the

d

dx
Tf = Tf 0 +

X
(f(x+)− f(x−)) δx.
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Example 34.12. Consider T = Tln|x| on D(R). Then

hT 0, φi = −
Z
R
ln |x|φ0(x)dx = − lim

�↓0

Z
|x|>�

ln |x|φ0(x)dx

= − lim
�↓0

Z
|x|>�

ln |x|φ0(x)dx

= lim
�↓0

Z
|x|>�

1

x
φ(x)dx− lim

�↓0
[ln �(φ(�)− φ(−�))]

= lim
�↓0

Z
|x|>�

1

x
φ(x)dx.

We will write T 0 = PV 1
x in the future. Here is another formula for T

0,

hT 0, φi = lim
�↓0

Z
1≥|x|>�

1

x
φ(x)dx+

Z
|x|>1

1

x
φ(x)dx

= lim
�↓0

Z
1≥|x|>�

1

x
[φ(x)− φ(0)]dx+

Z
|x|>1

1

x
φ(x)dx

=

Z
1≥|x|

1

x
[φ(x)− φ(0)]dx+

Z
|x|>1

1

x
φ(x)dx.

Please notice in the last example that 1x /∈ L1loc (R) so that T1/x is not well
defined. This is an example of the so called division problem of distributions.
Here is another possible interpretation of 1x as a distribution.

Example 34.13. Here we try to define 1/x as limy↓0 1
x±iy , that is we want to

define a distribution T± by

hT±, φi := lim
y↓0

Z
1

x± iy
φ(x)dx.

Let us compute T+ explicitly,

lim
y↓0

Z
R

1

x+ iy
φ(x)dx

= lim
y↓0

Z
|x|≤1

1

x+ iy
φ(x)dx+ lim

y↓0

Z
|x|>1

1

x+ iy
φ(x)dx

= lim
y↓0

Z
|x|≤1

1

x+ iy
[φ(x)− φ(0)] dx+ φ(0) lim

y↓0

Z
|x|≤1

1

x+ iy
dx

+

Z
|x|>1

1

x
φ(x)dx

= PV

Z
R

1

x
φ(x)dx+ φ(0) lim

y↓0

Z
|x|≤1

1

x+ iy
dx.

Now by deforming the contour we have
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|x|≤1

1

x+ iy
dx =

Z
�<|x|≤1

1

x+ iy
dx+

Z
C�

1

z + iy
dz

where C� : z = �eiθ with θ : π → 0. Therefore,

lim
y↓0

Z
|x|≤1

1

x+ iy
dx = lim

y↓0

Z
�<|x|≤1

1

x+ iy
dx+ lim

y↓0

Z
C�

1

z + iy
dz

=

Z
�<|x|≤1

1

x
dx+

Z
C�

1

z
dz = 0− π.

Hence we have shown that T+ = PV 1
x − iπδ0. Similarly, one shows that

T− = PV 1
x + iπδ0. Notice that it follows from these computations that T− −

T+ = i2πδ0. Notice that

1

x− iy
− 1

x+ iy
=

2iy

x2 + y2

and hence we conclude that limy↓0 y
x2+y2 = πδ0 — a result that we saw in

Example 34.6, item 3.

Example 34.14. Suppose that µ is a complex measure on R and F (x) =
µ((−∞, x]), then T 0F = µ. Moreover, if f ∈ L1loc(R) and T 0f = µ, then
f = F + C a.e. for some constant C.

Proof. Let φ ∈ D := D(R), then

hT 0F , φi = −hTF , φ0i = −
Z
R
F (x)φ0(x)dx = −

Z
R
dx

Z
R
dµ(y)φ0(x)1y≤x

= −
Z
R
dµ(y)

Z
R
dxφ0(x)1y≤x =

Z
R
dµ(y)φ(y) = hµ, φi

by Fubini’s theorem and the fundamental theorem of calculus. If T 0f = µ, then
T 0f−F = 0 and the result follows from Corollary 34.16 below.

Lemma 34.15. Suppose that T ∈ D0(Rn) is a distribution such that ∂iT = 0
for some i, then there exists a distribution S ∈ D0(Rn−1) such that hT, φi =
hS, φ̄ii for all φ ∈ D(Rn) where

φ̄i =

Z
R
τteiφdt ∈ D(Rn−1).

Proof. To simplify notation, assume that i = n and write x ∈ Rn as
x = (y, z) with y ∈ Rn−1 and z ∈ R. Let θ ∈ C∞c (R) such that

R
R θ(z)dz = 1

and for ψ ∈ D(Rn−1), let ψ ⊗ θ(x) = ψ(y)θ(z). The mapping

ψ ∈ D(Rn−1) ∈ ψ ⊗ θ ∈ D(Rn)
is easily seen to be sequentially continuous and therefore hS, ψi := hT,ψ ⊗ θi
defined a distribution in D0(Rn). Now suppose that φ ∈ D(Rn). If φ = ∂nf for
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some f ∈ D(Rn) we would have to have R φ(y, z)dz = 0. This is not generally
true, however the function φ− φ̄⊗ θ does have this property. Define

f(y, z) :=

Z z

−∞

£
φ(y, z0)− φ̄(y)θ(z0)

¤
dz0,

then f ∈ D(Rn) and ∂nf = φ− φ̄⊗ θ. Therefore,

0 = −h∂nT, fi = hT, ∂nfi = hT, φi− hT, φ̄⊗ θi = hT, φi− hS, φ̄i.

Corollary 34.16. Suppose that T ∈ D0(Rn) is a distribution such that there
exists m ≥ 0 such that

∂αT = 0 for all |α| = m,

then T = Tp where p(x) is a polynomial on Rn of degree less than or equal to
m− 1, where by convention if deg(p) = −1 then p ≡ 0.
Proof. The proof will be by induction on n andm. The corollary is trivially

true when m = 0 and n is arbitrary. Let n = 1 and assume the corollary holds
for m = k − 1 with k ≥ 1. Let T ∈ D0(R) such that 0 = ∂kT = ∂k−1∂T. By
the induction hypothesis, there exists a polynomial, q, of degree k − 2 such
that T 0 = Tq. Let p(x) =

R x
0
q(z)dz, then p is a polynomial of degree at most

k − 1 such that p0 = q and hence T 0p = Tq = T 0. So (T − Tp)
0 = 0 and hence

by Lemma 34.15, T − Tp = TC where C = hT − Tp, θi and θ is as in the proof
of Lemma 34.15. This proves the he result for n = 1.
For the general induction, suppose there exists (m,n) ∈ N2 with m ≥ 0

and n ≥ 1 such that assertion in the corollary holds for pairs (m0, n0) such
that either n0 < n of n0 = n and m0 ≤ m. Suppose that T ∈ D0(Rn) is a
distribution such that

∂αT = 0 for all |α| = m+ 1.

In particular this implies that ∂α∂nT = 0 for all |α| = m − 1 and hence by
induction ∂nT = Tqn where qn is a polynomial of degree at most m − 1 on
Rn. Let pn(x) =

R z
0
qn(y, z

0)dz0 a polynomial of degree at most m on Rn. The
polynomial pn satisfies, 1) ∂αpn = 0 if |α| = m and αn = 0 and 2) ∂npn = qn.
Hence ∂n(T − Tpn) = 0 and so by Lemma 34.15,

hT − Tpn , φi = hS, φ̄ni
for some distribution S ∈ D0(Rn−1). If α is a multi-index such that αn = 0
and |α| = m, then

0 = h∂αT − ∂αTpn , φi = hT − Tpn , ∂
αφi = hS, (∂αφ)ni

= hS, ∂αφ̄ni = (−1)|α|h∂αS, φ̄ni.
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and in particular by taking φ = ψ ⊗ θ, we learn that h∂αS, ψi = 0 for all ψ ∈
D(Rn−1). Thus by the induction hypothesis, S = Tr for some polynomial (r)
of degree at most m on Rn−1. Letting p(y, z) = pn(y, z)+ r(y) — a polynomial
of degree at most m on Rn, it is easily checked that T = Tp.

Example 34.17. Consider the wave equation

(∂t − ∂x) (∂t + ∂x)u(t, x) =
¡
∂2t − ∂2x

¢
u(t, x) = 0.

From this equation one learns that u(t, x) = f(x + t) + g(x − t) solves the
wave equation for f, g ∈ C2. Suppose that f is a bounded Borel measurable
function on R and consider the function f(x+ t) as a distribution on R. We
compute

h(∂t − ∂x) f(x+ t), φ(x, t)i =
Z
R2

f(x+ t) (∂x − ∂t)φ(x, t)dxdt

=

Z
R2

f(x) [(∂x − ∂t)φ] (x− t, t)dxdt

= −
Z
R2

f(x)
d

dt
[φ(x− t, t)] dxdt

= −
Z
R
f(x) [φ(x− t, t)] |t=∞t=−∞dx = 0.

This shows that (∂t − ∂x) f(x + t) = 0 in the distributional sense. Similarly,
(∂t + ∂x) g(x− t) = 0 in the distributional sense. Hence u(t, x) = f(x+ t) +
g(x− t) solves the wave equation in the distributional sense whenever f and
g are bounded Borel measurable functions on R.

Example 34.18. Consider f(x) = ln |x| for x ∈ R2 and let T = Tf . Then,
pointwise we have

∇ ln |x| = x

|x|2 and ∆ ln |x| = 2

|x|2 − 2x ·
x

|x|4 = 0.

Hence ∆f(x) = 0 for all x ∈ R2 except at x = 0 where it is not defined. Does
this imply that ∆T = 0? No, in fact ∆T = 2πδ as we shall now prove. By
definition of ∆T and the dominated convergence theorem,

h∆T, φi = hT,∆φi =
Z
R2
ln |x|∆φ(x)dx = lim

�↓0

Z
|x|>�

ln |x|∆φ(x)dx.

Using the divergence theorem,
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|x|>�

ln |x|∆φ(x)dx

= −
Z
|x|>�

∇ ln |x| ·∇φ(x)dx+
Z
∂{|x|>�}

ln |x|∇φ(x) · n(x)dS(x)

=

Z
|x|>�

∆ ln |x|φ(x)dx−
Z
∂{|x|>�}

∇ ln |x| · n(x)φ(x)dS(x)

+

Z
∂{|x|>�}

ln |x| (∇φ(x) · n(x)) dS(x)

=

Z
∂{|x|>�}

ln |x| (∇φ(x) · n(x)) dS(x)

−
Z
∂{|x|>�}

∇ ln |x| · n(x)φ(x)dS(x),

where n(x) is the outward pointing normal, i.e. n(x) = −x̂ := x/ |x| . Now¯̄̄̄
¯
Z
∂{|x|>�}

ln |x| (∇φ(x) · n(x)) dS(x)
¯̄̄̄
¯ ≤ C

¡
ln �−1

¢
2π�→ 0 as � ↓ 0

where C is a bound on (∇φ(x) · n(x)) . WhileZ
∂{|x|>�}

∇ ln |x| · n(x)φ(x)dS(x) =
Z
∂{|x|>�}

x̂

|x| · (−x̂)φ(x)dS(x)

= −1
�

Z
∂{|x|>�}

φ(x)dS(x)

→ −2πφ(0) as � ↓ 0.

Combining these results shows

h∆T, φi = 2πφ(0).

Exercise 34.19. Carry out a similar computation to that in Example 34.18
to show

∆T1/|x| = −4πδ
where now x ∈ R3.
Example 34.20. Let z = x+ iy, and ∂̄ = 1

2(∂x + i∂y). Let T = T1/z, then

∂̄T = πδ0 or imprecisely ∂̄
1

z
= πδ(z).

Proof. Pointwise we have ∂̄ 1z = 0 so we shall work as above. We then have
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h∂̄T, φi = −hT, ∂̄φi = −
Z
R2

1

z
∂̄φ(z)dm(z)

= − lim
�↓0

Z
|z|>�

1

z
∂̄φ(z)dm(z)

= lim
�↓0

Z
|z|>�

∂̄
1

z
φ(z)dm(z)

− lim
�↓0

Z
∂{|z|>�}

1

z
φ(z)

1

2
(n1(z) + in2(z)) dσ(z)

= 0− lim
�↓0

Z
∂{|z|>�}

1

z
φ(z)

1

2

µ−z
|z|
¶
dσ(z)

=
1

2
lim
�↓0

Z
∂{|z|>�}

1

|z|φ(z)dσ(z)

= π lim
�↓0

1

2π�

Z
∂{|z|>�}

φ(z)dσ(z) = πφ(0).

34.3 Other classes of test functions

(For what follows, see Exercises 7.78 and 7.79 of Chapter 7.

Notation 34.21 Suppose that X is a vector space and {pn}∞n=0 is a family
of semi-norms on X such that pn ≤ pn+1 for all n and with the property that
pn(x) = 0 for all n implies that x = 0. (We allow for pn = p0 for all n in
which case X is a normed vector space.) Let τ be the smallest topology on X
such that pn(x− ·) : X → [0,∞) is continuous for all n ∈ N and x ∈ X. For
n ∈ N, x ∈ X and � > 0 let Bn(x, �) := {y ∈ X : pn(x− y) < �} .
Proposition 34.22. The balls B := {Bn(x, �) : n ∈ N, x ∈ X and � > 0} for
a basis for the topology τ. This topology is the same as the topology induced
by the metric d on X defined by

d(x, y) =
∞X
n=0

2−n
pn(x− y)

1 + pn(x− y)
.

Moreover, a sequence {xk} ⊂ X is convergent to x ∈ X iff limk→∞ d(x, xk) =
0 iff limn→∞ pn(x, xk) = 0 for all n ∈ N and {xk} ⊂ X is Cauchy in X iff
limk,l→∞ d(xl, xk) = 0 iff limk,l→∞ pn(xl, xk) = 0 for all n ∈ N.
Proof. Suppose that z ∈ Bn(x, �) ∩Bm(y, δ) and assume with out loss of

generality that m ≥ n. Then if pm(w − z) < α, we have

pm(w − y) ≤ pm(w − z) + pm(z − y) < α+ pm(z − y) < δ
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provided that α ∈ (0, δ − pm(z − y)) and similarly

pn(w − x) ≤ pm(w − x) ≤ pm(w − z) + pm(z − x) < α+ pm(z − x) < �

provided that α ∈ (0, �− pm(z − x)). So choosing

δ =
1

2
min (δ − pm(z − y), �− pm(z − x)) ,

we have shown that Bm(z, α) ⊂ Bn(x, �)∩Bm(y, δ). This shows that B forms
a basis for a topology. In detail, V ⊂o X iff for all x ∈ V there exists n ∈ N
and � > 0 such that Bn(x, �) := {y ∈ X : pn(x− y) < �} ⊂ V.
Let τ(B) be the topology generated by B. Since|pn(x− y)− pn(x− z)| ≤

pn(y−z), we see that pn(x−·) is continuous on relative to τ(B) for each x ∈ X
and n ∈ N. This shows that τ ⊂ τ(B). On the other hand, since pn(x − ·) is
τ — continuous, it follows that Bn(x, �) = {y ∈ X : pn(x− y) < �} ∈ τ for all
x ∈ X, � > 0 and n ∈ N. This shows that B ⊂ τ and therefore that τ(B) ⊂ τ.
Thus τ = τ(B).
Given x ∈ X and � > 0, let Bd(x, �) = {y ∈ X : d(x, y) < �} be a d — ball.

Choose N large so that
P∞

n=N+1 2
−n < �/2. Then y ∈ BN (x, �/4) we have

d(x, y) = pN (x− y)
NX
n=0

2−n + �/2 < 2
�

4
+ �/2 < �

which shows that BN (x, �/4) ⊂ Bd(x, �). Conversely, if d(x, y) < �, then

2−n
pn(x− y)

1 + pn(x− y)
< �

which implies that

pn(x− y) <
2−n�

1− 2−n� =: δ

when 2−n� < 1 which shows that Bn(x, δ) contains Bd(x, �) with � and δ as
above. This shows that τ and the topology generated by d are the same.
The moreover statements are now easily proved and are left to the reader.

Exercise 34.23. Keeping the same notation as Proposition 34.22 and further
assume that {p0n}n∈N is another family of semi-norms as in Notation 34.21.
Then the topology τ 0 determined by {p0n}n∈N is weaker then the topology τ
determined by {pn}n∈N (i.e. τ 0 ⊂ τ) iff for every n ∈ N there is an m ∈ N and
C <∞ such that p0n ≤ Cpm.

Solution 34.24. Suppose that τ 0 ⊂ τ. Since 0 ∈ {p0n < 1} ∈ τ 0 ⊂ τ, there
exists an m ∈ N and δ > 0 such that {pm < δ} ⊂ {p0n < 1} . So for x ∈ X,

δx

2pm(x)
∈ {pm < δ} ⊂ {p0n < 1}
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which implies δp0n(x) < 2pm(x) and hence p
0
n ≤ Cpm with C = 2/δ. (Actually

1/δ would do here.)
For the converse assertion, let U ∈ τ 0 and x0 ∈ U. Then there exists an

n ∈ N and δ > 0 such that {p0n(x0 − ·) < δ} ⊂ U. If m ∈ N and C < ∞ so
that p0n ≤ Cpm, then

x0 ∈ {pm(x0 − ·) < δ/C} ⊂ {p0n(x0 − ·) < δ} ⊂ U

which shows that U ∈ τ.

Lemma 34.25. Suppose that X and Y are vector spaces equipped with se-
quences of norms {pn} and {qn} as in Notation 34.21. Then a linear map
T : X → Y is continuous if for all n ∈ N there exists Cn < ∞ and mn ∈ N
such that qn(Tx) ≤ Cnpmn(x) for all x ∈ X. In particular, f ∈ X∗ iff
|f(x)| ≤ Cpm(x) for some C < ∞ and m ∈ N. (We may also characterize
continuity by sequential convergence since both X and Y are metric spaces.)

Proof. Suppose that T is continuous, then {x : qn(Tx) < 1} is an open
neighborhood of 0 in X. Therefore, there exists m ∈ N and � > 0 such that
Bm(0, �) ⊂ {x : qn(Tx) < 1} . So for x ∈ X and α < 1, α�x/pm(x) ∈ Bm(0, �)
and thus

qn(
α�

pm(x)
Tx) < 1 =⇒ qn(Tx) <

1

α�
pm(x)

for all x. Letting α ↑ 1 shows that qn(Tx) ≤ 1
�pm(x) for all x ∈ X.

Conversely, if T satisfies

qn(Tx) ≤ Cnpmn(x) for all x ∈ X,

then

qn(Tx− Tx0) = qn(T (x− x0)) ≤ Cnpmn(x− x0) for all x, y ∈ X.

This shows Tx0 → Tx as x0 → x, i.e. that T is continuous.

Definition 34.26. A Fréchet space is a vector space X equipped with a family
{pn} of semi-norms such that X is complete in the associated metric d.

Example 34.27. Let K @@ Rn and C∞(K) := {f ∈ C∞c (Rn) : supp(f) ⊂ K} .
For m ∈ N, let

pm(f) :=
X
|α|≤m

k∂αfk∞ .

Then (C∞(K), {pm}∞m=1) is a Fréchet space. Moreover the derivative opera-
tors {∂k} and multiplication by smooth functions are continuous linear maps
from C∞(K) to C∞(K). If µ is a finite measure on K, then T (f) :=

R
K
∂αfdµ

is an element of C∞(K)∗ for any multi index α.
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Example 34.28. Let U ⊂o Rn and for m ∈ N, and a compact set K @@ U let

pKm(f) :=
X
|α|≤m

k∂αfk∞,K :=
X
|α|≤m

max
x∈K

|∂αf(x)| .

Choose a sequence Km @@ U such that Km ⊂ Ko
m+1 ⊂ Km+1 @@ U for

all m and set qm(f) = pKm
m (f). Then (C∞(K), {pm}∞m=1) is a Fréchet space

and the topology in independent of the choice of sequence of compact sets K
exhausting U. Moreover the derivative operators {∂k} and multiplication by
smooth functions are continuous linear maps from C∞(U) to C∞(U). If µ is
a finite measure with compact support in U, then T (f) :=

R
K
∂αfdµ is an

element of C∞(U)∗ for any multi index α.

Proposition 34.29. A linear functional T on C∞(U) is continuous, i.e. T ∈
C∞(U)∗ iff there exists a compact set K @@ U, m ∈ N and C <∞ such that

|hT, φi| ≤ CpKm(φ) for all φ ∈ C∞(U).

Notation 34.30 Let νs(x) := (1+ |x|)s (or change to νs(x) = (1+ |x|2)s/2 =
hxis?) for x ∈ Rn and s ∈ R.
Example 34.31. Let S denote the space of functions f ∈ C∞(Rn) such that f
and all of its partial derivatives decay faster that (1+ |x|)−m for all m > 0 as
in Definition 32.6. Define

pm(f) =
X
|α|≤m

k(1 + | · |)m∂αf(·)k∞ =
X
|α|≤m

k(µm∂αf(·)k∞ ,

then (S, {pm}) is a Fréchet space. Again the derivative operators {∂k} and
multiplication by function f ∈ P are examples of continuous linear operators
on S. For an example of an element T ∈ S∗, let µ be a measure on Rn such
that Z

(1 + |x|)−Nd|µ|(x) <∞

for some N ∈ N. Then T (f) :=
R
K
∂αfdµ defines and element of S∗.

Proposition 34.32. The Fourier transform F : S → S is a continuous linear
transformation.

Proof. For the purposes of this proof, it will be convenient to use the
semi-norms

p0m(f) =
X
|α|≤m

°°(1 + | · |2)m∂αf(·)°°∞ .

This is permissible, since by Exercise 34.23 they give rise to the same topology
on S.
Let f ∈ S and m ∈ N, then
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(1 + |ξ|2)m∂αf̂(ξ) = (1 + |ξ|2)mF ((−ix)αf) (ξ)
= F [(1−∆)m ((−ix)αf)] (ξ)

and therefore if we let g = (1−∆)m ((−ix)αf) ∈ S,¯̄̄
(1 + |ξ|2)m∂αf̂(ξ)

¯̄̄
≤ kgk1 =

Z
Rn
|g(x)| dx

=

Z
Rn
|g(x)| (1 + |x|2)n 1

(1 + |x|2)n dξ

≤ C
°°°|g(·)| (1 + |·|2)n°°°

∞

where C =
R
Rn

1
(1+|x|2)n dξ < ∞. Using the product rule repeatedly, it is not

hard to show°°°|g(·)| (1 + |·|2)n°°°
∞
=
°°°(1 + |·|2)n(1−∆)m ((−ix)αf)

°°°
∞

≤ k
X

|β|≤2m

°°°(1 + |·|2)n+|α|/2∂βf°°°
∞

≤ kp02m+n(f)

for some constant k <∞. Combining the last two displayed equations implies
that p0m(f̂) ≤ Ckp02m+n(f) for all f ∈ S, and thus F is continuous.

Proposition 34.33. The subspace C∞c (Rn) is dense in S(Rn).
Proof. Let θ ∈ C∞c (Rn) such that θ = 1 in a neighborhood of 0 and set

θm(x) = θ(x/m) for all m ∈ N. We will now show for all f ∈ S that θmf
converges to f in S. The main point is by the product rule,

∂α (θmf − f) (x) =
X
β≤α

µ
α

β

¶
∂α−βθm(x)∂βf(x)− f

=
X

β≤α:β 6=α

µ
α

β

¶
1

m|α−β| ∂
α−βθ(x/m)∂βf(x).

Sincemax
©°°∂βθ°°∞ : β ≤ α

ª
is bounded it then follows from the last equation

that kµt∂α (θmf − f)k∞ = O(1/m) for all t > 0 and α. That is to say θmf →
f in S.
Lemma 34.34 (Peetre’s Inequality). For all x, y ∈ Rn and s ∈ R,

(1 + |x+ y|)s ≤ min
n
(1 + |y|)|s|(1 + |x|)s, (1 + |y|)s(1 + |x|)|s|

o
(34.5)

that is to say νs(x + y) ≤ ν|s|(x)νs(y) and νs(x + y) ≤ νs(x)ν|s|(y) for all
s ∈ R, where νs(x) = (1 + |x|)s as in Notation 34.30. We also have the same
results for hxi, namely

hx+ yis ≤ 2|s|/2min
n
hxi|s|hyis, hxishyi|s|

o
. (34.6)
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Proof. By elementary estimates,

(1 + |x+ y|) ≤ 1 + |x|+ |y| ≤ (1 + |x|)(1 + |y|)
and so for Eq. (34.5) holds if s ≥ 0. Now suppose that s < 0, then

(1 + |x+ y|)s ≥ (1 + |x|)s(1 + |y|)s
and letting x→ x− y and y → −y in this inequality implies

(1 + |x|)s ≥ (1 + |x+ y|)s(1 + |y|)s.
This inequality is equivalent to

(1 + |x+ y|)s ≤ (1 + |x|)s(1 + |y|)−s = (1 + |x|)s(1 + |y|)|s|.
By symmetry we also have

(1 + |x+ y|)s ≤ (1 + |x|)|s|(1 + |y|)s.
For the proof of Eq. (34.6

hx+ yi2 = 1 + |x+ y|2 ≤ 1 + (|x|+ |y|)2 = 1 + |x|2 + |y|2 + 2 |x| |y|
≤ 1 + 2 |x|2 + 2 |y|2 ≤ 2(1 + |x|2)(1 + |y|2) = 2hxi2hyi2.

From this it follows that hxi−2 ≤ 2hx+ yi−2hyi2 and hence
hx+ yi−2 ≤ 2hxi−2hyi2.

So if s ≥ 0, then
hx+ yis ≤ 2s/2hxishyis

and
hx+ yi−s ≤ 2s/2hxi−shyis.

Proposition 34.35. Suppose that f, g ∈ S then f ∗ g ∈ S.
Proof. First proof. Since F(f ∗ g) = f̂ ĝ ∈ S it follows that f ∗ g =

F−1(f̂ ĝ) ∈ S as well.
For the second proof we will make use of Peetre’s inequality. We have for

any k, l ∈ N that

νt(x) |∂α(f ∗ g)(x)| = νt(x) |∂αf ∗ g(x)| ≤ νt(x)

Z
|∂αf(x− y)| |g(y)| dy

≤ Cνt(x)

Z
ν−k(x− y)ν−l(y)dy ≤ Cνt(x)

Z
ν−k(x)νk(y)ν−l(y)dy

= Cνt−k(x)
Z

νk−l(y)dy.

Choosing k = t and l > t+ n we learn that

νt(x) |∂α(f ∗ g)(x)| ≤ C

Z
νk−l(y)dy <∞

showing kνt∂α(f ∗ g)k∞ <∞ for all t ≥ 0 and α ∈ Nn.
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34.4 Compactly supported distributions

Definition 34.36. For a distribution T ∈ D0(U) and V ⊂o U, we say T |V = 0
if hT, φi = 0 for all φ ∈ D(V ).
Proposition 34.37. Suppose that V := {Vα}α∈A is a collection of open subset
of U such that T |Vα = 0 for all α, then T |W = 0 where W = ∪α∈AVα.
Proof. Let {ψα}α∈A be a smooth partition of unity subordinate to V, i.e.

supp(ψα) ⊂ Vα for all α ∈ A, for each point x ∈W there exists a neighborhood
Nx ⊂o W such that #{α ∈ A : supp(ψα)∩Nx 6= ∅} <∞ and 1W =

P
α∈A ψα.

Then for φ ∈ D(W ), we have φ =
P

α∈A φψα and there are only a finite
number of nonzero terms in the sum since supp(φ) is compact. Since φψα ∈
D(Vα) for all α,

hT, φi = hT,
X
α∈A

φψαi =
X
α∈A

hT, φψαi = 0.

Definition 34.38. The support, supp(T ), of a distribution T ∈ D0(U) is the
relatively closed subset of U determined by

U \ supp(T ) = ∪ {V ⊂o U : T |V = 0} .

By Proposition 34.29, supp(T ) may described as the smallest (relatively)
closed set F such that T |U\F = 0.
Proposition 34.39. If f ∈ L1loc(U), then supp(Tf ) = ess sup(f), where

ess sup(f) := {x ∈ U : m({y ∈ V : f(y) 6= 0}}) > 0 for all neighborhoods V of x}

as in Definition 11.14.

Proof. The key point is that Tf |V = 0 iff f = 0 a.e. on V and therefore

U \ supp(Tf ) = ∪ {V ⊂o U : f1V = 0 a.e.} .

On the other hand,

U \ ess sup(f) = {x ∈ U : m({y ∈ V : f(y) 6= 0}}) = 0 for some neighborhood V of x}
= ∪{x ∈ U : f1V = 0 a.e. for some neighborhood V of x}
= ∪ {V ⊂o U : f1V = 0 a.e.}

Definition 34.40. Let E 0(U) := {T ∈ D0(U) : supp(T ) ⊂ U is compact} —
the compactly supported distributions in D0(U).
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Lemma 34.41. Suppose that T ∈ D0(U) and f ∈ C∞(U) is a function such
that K := supp(T ) ∩ supp(f) is a compact subset of U. Then we may define
hT, fi := hT, θfi, where θ ∈ D(U) is any function such that θ = 1 on a
neighborhood of K. Moreover, if K @@ U is a given compact set and F @@ U
is a compact set such that K ⊂ F o, then there exists m ∈ N and C <∞ such
that

|hT, fi| ≤ C
X
|β|≤m

°°∂βf°°∞,F
(34.7)

for all f ∈ C∞(U) such that supp(T ) ∩ supp(f) ⊂ K. In particular if T ∈
E 0(U) then T extends uniquely to a linear functional on C∞(U) and there is
a compact subset F @@ U such that the estimate in Eq. (34.7) holds for all
f ∈ C∞(U).

Proof. Suppose that θ̃ is another such cutoff function and let V be an open
neighborhood of K such that θ = θ̃ = 1 on V. Setting g :=

³
θ − θ̃

´
f ∈ D(U)

we see that

supp(g) ⊂ supp(f) \ V ⊂ supp(f) \K = supp(f) \ supp(T ) ⊂ U \ supp(T ),

see Figure 34.1 below. Therefore,

0 = hT, gi = hT,
³
θ − θ̃

´
fi = hT, θfi− hT, θ̃fi

which shows that hT, fi is well defined.

Fig. 34.1. Intersecting the supports.

Moreover, if F @@ U is a compact set such that K ⊂ F o and θ ∈ C∞c (F 0)
is a function which is 1 on a neighborhood of K, we have
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|hT, fi| = |hT, θfi| = C
X
|α|≤m

k∂α (θf)k∞ ≤ C
X
|β|≤m

°°∂βf°°∞,F

and this estimate holds for all f ∈ C∞(U) such that supp(T )∩ supp(f) ⊂ K.

Theorem 34.42. The restriction of T ∈ C∞(U)∗ to C∞c (U) defines an ele-
ment in E 0(U). Moreover the map

T ∈ C∞(U)∗ i→ T |D(U) ∈ E 0(U)
is a linear isomorphism of vector spaces. The inverse map is defined as follows.
Given S ∈ E 0(U) and θ ∈ C∞c (U) such that θ = 1 on K = supp(S) then
i−1(S) = θS, where θS ∈ C∞(U)∗ defined by

hθS, φi = hS, θφi for all φ ∈ C∞(U).

Proof. Suppose that T ∈ C∞(U)∗ then there exists a compact set K @@
U, m ∈ N and C <∞ such that

|hT, φi| ≤ CpKm(φ) for all φ ∈ C∞(U)

where pKm is defined in Example 34.28. It is clear using the sequential notion of
continuity that T |D(U) is continuous on D(U), i.e. T |D(U) ∈ D0(U). Moreover,
if θ ∈ C∞c (U) such that θ = 1 on a neighborhood of K then

|hT, θφi− hT, φi| = |hT, (θ − 1)φi| ≤ CpKm((θ − 1)φ) = 0,
which shows θT = T. Hence supp(T ) = supp(θT ) ⊂ supp(θ) @@ U showing
that T |D(U) ∈ E 0(U). Therefore the map i is well defined and is clearly linear.
I also claim that i is injective because if T ∈ C∞(U)∗ and i(T ) = T |D(U) ≡ 0,
then hT, φi = hθT, φi = hT |D(U), θφi = 0 for all φ ∈ C∞(U).
To show i is surjective suppose that S ∈ E 0(U). By Lemma 34.41 we know

that S extends uniquely to an element S̃ of C∞(U)∗ such that S̃|D(U) = S,

i.e. i(S̃) = S. and K = supp(S).

Lemma 34.43. The space E 0(U) is a sequentially dense subset of D0(U).
Proof. Choose Kn @@ U such that Kn ⊂ Ko

n+1 ⊂ Kn+1 ↑ U as n →∞.
Let θn ∈ C∞c (K

0
n+1) such that θn = 1 onK. Then for T ∈ D0(U), θnT ∈ E 0(U)

and θnT → T as n→∞.

34.5 Tempered Distributions and the Fourier Transform

The space of tempered distributions S 0 (Rn) is the continuous dual to S =
S(Rn). A linear functional T on S is continuous iff there exists k ∈ N and
C <∞ such that
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|hT, φi| ≤ Cpk(φ) := C
X
|α|≤k

kνk∂αφk∞ (34.8)

for all φ ∈ S. Since D = D (Rn) is a dense subspace of S any element T ∈ S 0
is determined by its restriction to D. Moreover, if T ∈ S 0 it is easy to see that
T |D ∈ D0. Conversely and element T ∈ D0 satisfying an estimate of the form
in Eq. (34.8) for all φ ∈ D extend uniquely to an element of S 0. In this way
we may view S 0 as a subspace of D0.
Example 34.44. Any compactly supported distribution is tempered, i.e.
E 0(U) ⊂ S 0(Rn) for any U ⊂o Rn.
One of the virtues of S 0 is that we may extend the Fourier transform to

S 0. Recall that for L1 functions f and g we have the identity,

hf̂ , gi = hf, ĝi.

This suggests the following definition.

Definition 34.45. The Fourier and inverse Fourier transform of a tempered
distribution T ∈ S 0 are the distributions T̂ = FT ∈ S 0 and T∨ = F−1T ∈
S 0defined by

hT̂ , φi = hT, φ̂i and hT∨, φi = hT, φ∨i for all φ ∈ S.

Since F : S → S is a continuous isomorphism with inverse F−1, one easily
checks that T̂ and T∨ are well defined elements of S and that F−1 is the
inverse of F on S 0.
Example 34.46. Suppose that µ is a complex measure on Rn. Then we may
view µ as an element of S 0 via hµ, φi = R φdµ for all φ ∈ S 0. Then by Fubini-
Tonelli,

hµ̂, φi = hµ, φ̂i =
Z

φ̂(x)dµ(x) =

Z ·Z
φ(ξ)e−ix·ξdξ

¸
dµ(x)

=

Z ·Z
φ(ξ)e−ix·ξdµ(x)

¸
dξ

which shows that µ̂ is the distribution associated to the continuous func-
tion ξ → R

e−ix·ξdµ(x).
R
e−ix·ξdµ(x)We will somewhat abuse notation and

identify the distribution µ̂ with the function ξ → R
e−ix·ξdµ(x). When

dµ(x) = f(x)dx with f ∈ L1, we have µ̂ = f̂ , so the definitions are all
consistent.

Corollary 34.47. Suppose that µ is a complex measure such that µ̂ = 0, then
µ = 0. So complex measures on Rn are uniquely determined by their Fourier
transform.
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Proof. If µ̂ = 0, then µ = 0 as a distribution, i.e.
R
φdµ = 0 for all φ ∈ S

and in particular for all φ ∈ D. By Example 34.5 this implies that µ is the
zero measure.
More generally we have the following analogous theorem for compactly

supported distributions.

Theorem 34.48. Let S ∈ E 0(Rn), then Ŝ is an analytic function and Ŝ(z) =
hS(x), e−ix·zi. Also if supp(S) @@ B(0,M), then Ŝ(z) satisfies a bound of the
form ¯̄̄

Ŝ(z)
¯̄̄
≤ C(1 + |z|)meM|Im z|

for some m ∈ N and C <∞. If S ∈ D(Rn), i.e. if S is assumed to be smooth,
then for all m ∈ N there exists Cm <∞ such that¯̄̄

Ŝ(z)
¯̄̄
≤ Cm(1 + |z|)−meM|Im z|.

Proof. The function h(z) = hS(ξ), e−iz·ξi for z ∈ Cn is analytic since the
map z ∈ Cn → e−iz·ξ ∈ C∞(ξ ∈ Rn) is analytic and S is complex linear.
Moreover, we have the bound

|h(z)| = ¯̄hS(ξ), e−iz·ξi¯̄ ≤ C
X
|α|≤m

°°∂αξ e−iz·ξ°°∞,B(0,M)

= C
X
|α|≤m

°°zαe−iz·ξ°°∞,B(0,M)

≤ C
X
|α|≤m

|z||α| °°e−iz·ξ°°∞,B(0,M)
≤ C(1 + |z|)meM|Im z|.

If we now assume that S ∈ D(Rn), then¯̄̄
zαŜ(z)

¯̄̄
=

¯̄̄̄Z
Rn

S(ξ)zαe−iz·ξdξ
¯̄̄̄
=

¯̄̄̄Z
Rn

S(ξ)(i∂ξ)
αe−iz·ξdξ

¯̄̄̄
=

¯̄̄̄Z
Rn
(−i∂ξ)αS(ξ)e−iz·ξdξ

¯̄̄̄
≤ eM|Im z|

Z
Rn
|∂ξαS(ξ)| dξ

showing

|zα|
¯̄̄
Ŝ(z)

¯̄̄
≤ eM |Im z| k∂αSk1

and therefore

(1 + |z|)m
¯̄̄
Ŝ(z)

¯̄̄
≤ CeM|Im z| X

|α|≤m
k∂αSk1 ≤ CeM|Im z|.

So to finish the proof it suffices to show h = Ŝ in the sense of distributions1.
For this let φ ∈ D, K @@ Rn be a compact set for � > 0 let
1 This is most easily done using Fubini’s Theorem 35.2 for distributions proved
below. This proof goes as follows. Let θ, η ∈ D(Rn) such that θ = 1 on a neigh-
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φ̂�(ξ) = (2π)
−n/2�n

X
x∈�Zn

φ(x)e−ix·ξ.

This is a finite sum and

sup
ξ∈K

¯̄̄
∂α
³
φ̂�(ξ)− φ̂(ξ)

´¯̄̄
= sup

ξ∈K

¯̄̄̄
¯̄ X
y∈�Zn

Z
y+�(0,1]n

¡
(−iy)α φ(y)e−iy·ξ − (−ix)α φ(x)e−ix·ξ¢ dx

¯̄̄̄
¯̄

≤
X
y∈�Zn

Z
y+�(0,1]n

sup
ξ∈K

¯̄
yαφ(y)e−iy·ξ − xαφ(x)e−ix·ξ

¯̄
dx

By uniform continuity of xαφ(x)e−ix·ξ for (ξ, x) ∈ K × Rn (φ has compact
support),

δ(�) = sup
ξ∈K

sup
y∈�Zn

sup
x∈y+�(0,1]n

¯̄
yαφ(y)e−iy·ξ − xαφ(x)e−ix·ξ

¯̄→ 0 as � ↓ 0

which shows
sup
ξ∈K

¯̄̄
∂α
³
φ̂�(ξ)− φ̂(ξ)

´¯̄̄
≤ Cδ(�)

where C is the volume of a cube in Rn which contains the support of φ. This
shows that φ̂� → φ̂ in C∞(Rn). Therefore,

hŜ, φi = hS, φ̂i = lim
�↓0
hS, φ̂�i = lim

�↓0
(2π)−n/2�n

X
x∈�Zn

φ(x)hS(ξ), e−ix·ξi

= lim
�↓0
(2π)−n/2�n

X
x∈�Zn

φ(x)h(x) =

Z
Rn

φ(x)h(x)dx = hh, φi.

Remark 34.49. Notice that

∂αŜ(z) = hS(x), ∂αz e−ix·zi = hS(x), (−ix)αe−ix·zi = h(−ix)αS(x), e−ix·zi
borhood of supp(S) and η = 1 on a neighborhood of supp(φ) then

hh, φi = hφ(x), hS(ξ), e−ix·ξii = hη(x)φ(x), hS(ξ), θ(ξ)e−ix·ξii
= hφ(x), hS(ξ), η(x)θ(ξ)e−ix·ξii.

We may now apply Theorem 35.2 to conclude,

hh, φi = hS(ξ), hφ(x), η(x)θ(ξ)e−ix·ξii = hS(ξ), θ(ξ)hφ(x), e−ix·ξii = hS(ξ), hφ(x), e−ix·ξii
= hS(ξ), φ̂(ξ)i.
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and (−ix)αS(x) ∈ E 0(Rn). Therefore, we find a bound of the form¯̄̄
∂αŜ(z)

¯̄̄
≤ C(1 + |z|)m0

eM |Im z|

where C and m0 depend on α. In particular, this shows that Ŝ ∈ P, i.e. S 0 is
preserved under multiplication by Ŝ.

The converse of this theorem holds as well. For the moment we only have
the tools to prove the smooth converse. The general case will follow by using
the notion of convolution to regularize a distribution to reduce the question
to the smooth case.

Theorem 34.50. Let S ∈ S(Rn) and assume that Ŝ is an analytic function
and there exists an M <∞ such that for all m ∈ N there exists Cm <∞ such
that ¯̄̄

Ŝ(z)
¯̄̄
≤ Cm(1 + |z|)−meM|Im z|.

Then supp(S) ⊂ B(0,M).

Proof. By the Fourier inversion formula,

S(x) =

Z
Rn

Ŝ(ξ)eiξ·xdξ

and by deforming the contour, we may express this integral as

S(x) =

Z
Rn+iη

Ŝ(ξ)eiξ·xdξ =
Z
Rn

Ŝ(ξ + iη)ei(ξ+iη)·xdξ

for any η ∈ Rn. From this last equation it follows that

|S(x)| ≤ e−η·x
Z
Rn

¯̄̄
Ŝ(ξ + iη)

¯̄̄
dξ ≤ Cme

−η·xeM|η|
Z
Rn
(1 + |ξ + iη|)−mdξ

≤ Cme
−η·xeM|η|

Z
Rn
(1 + |ξ|)−mdξ ≤ C̃me

−η·xeM|η|

where C̃m <∞ if m > n. Letting η = λx with λ > 0 we learn

|S(x)| ≤ C̃m exp
¡−λ|x|2 +M |x|¢ = C̃me

λ|x|(M−|x|). (34.9)

Hence if |x| > M, we may let λ→∞ in Eq. (34.9) to show S(x) = 0. That is
to say supp(S) ⊂ B(0,M).
Let us now pause to work out some specific examples of Fourier transform

of measures.

Example 34.51 (Delta Functions). Let a ∈ Rn and δa be the point mass mea-
sure at a, then

δ̂a(ξ) = e−ia·ξ.
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In particular it follows that

F−1e−ia·ξ = δa.

To see the content of this formula, let φ ∈ S. ThenZ
e−ia·ξφ∨(ξ)dξ = he−ia·ξ,F−1φi = hF−1e−ia·ξ, φi = hδa, φi = φ(a)

which is precisely the Fourier inversion formula.

Example 34.52. Suppose that p(x) is a polynomial. Then

hp̂, φi = hp, φ̂i =
Z

p(ξ)φ̂(ξ)dξ.

Now

p(ξ)φ̂(ξ) =

Z
φ(x)p(ξ)e−iξ·xdx =

Z
φ(x)p(i∂x)e

−iξ·xdx

=

Z
p(−i∂x)φ(x)e−iξ·xdx = F (p(−i∂)φ) (ξ)

which combined with the previous equation implies

hp̂, φi =
Z
F (p(−i∂)φ) (ξ)dξ = ¡F−1F (p(−i∂)φ)¢ (0) = p(−i∂)φ(0)

= hδ0, p(−i∂)φi = hp(i∂)δ0, φi.
Thus we have shown that p̂ = p(i∂)δ0.

Lemma 34.53. Let p(ξ) be a polynomial in ξ ∈ Rn, L = p(−i∂) (a constant
coefficient partial differential operator) and T ∈ S 0, then

Fp(−i∂)T = pT̂ .

In particular if T = δ0, we have

Fp(−i∂)δ0 = p · δ̂0 = p.

Proof. By definition,

hFLT, φi = hLT, φ̂i = hp(−i∂)T, φ̂i = hT, p(i∂)φ̂i
and

p(i∂ξ)φ̂(ξ) = p(i∂ξ)

Z
φ(x)e−ix·ξdx =

Z
p(x)φ(x)e−ix·ξdx = (pφ) ˆ.

Thus
hFLT, φi = hT, p(i∂)φ̂i = hT, (pφ) ˆi = hT̂ , pφi = hpT̂ , φi

which proves the lemma.
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Example 34.54. Let n = 1, −∞ < a < b <∞, and dµ(x) = 1[a,b](x)dx. Then

µ̂(ξ) =

Z b

a

e−ix·ξdx =
1√
2π

e−ix·ξ

−iξ |
b
a =

1√
2π

e−ib·ξ − e−ia·ξ

−iξ
=

1√
2π

e−ia·ξ − e−ib·ξ

iξ
.

So by the inversion formula we may conclude that

F−1
µ

1√
2π

e−ia·ξ − e−ib·ξ

iξ

¶
(x) = 1[a,b](x) (34.10)

in the sense of distributions. This also true at the Level of L2 — functions.
When a = −b and b > 0 these formula reduce to

F1[−b,b] = 1√
2π

eib·ξ − e−ib·ξ

iξ
=

2√
2π

sin bξ

ξ

and

F−1 2√
2π

sin bξ

ξ
= 1[−b,b].

Let us pause to work out Eq. (34.10) by first principles. For M ∈ (0,∞)
let νN be the complex measure on Rn defined by

dνM (ξ) =
1√
2π
1|ξ|≤M

e−ia·ξ − e−ib·ξ

iξ
dξ,

then
1√
2π

e−ia·ξ − e−ib·ξ

iξ
= lim

M→∞
νM in the S 0 topology.

Hence

F−1
µ

1√
2π

e−ia·ξ − e−ib·ξ

iξ

¶
(x) = lim

M→∞
F−1νM

and

F−1νM (ξ) =
Z M

−M

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ.

Since is ξ → 1√
2π

e−ia·ξ−e−ib·ξ
iξ eiξx is a holomorphic function on C we may

deform the contour to any contour in C starting at −M and ending atM. Let
ΓM denote the straight line path from −M to −1 along the real axis followed
by the contour eiθ for θ going from π to 2π and then followed by the straight
line path from 1 to M. Then
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|ξ|≤M

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ =

Z
ΓM

1√
2π

e−ia·ξ − e−ib·ξ

iξ
eiξxdξ

=

Z
ΓM

1√
2π

ei(x−a)·ξ − ei(x−b)·ξ

iξ
dξ

=
1

2πi

Z
ΓM

ei(x−a)·ξ − ei(x−b)·ξ

iξ
dm(ξ).

By the usual contour methods we find

lim
M→∞

1

2πi

Z
ΓM

eiyξ

ξ
dm(ξ) =

½
1 if y > 0
0 if y < 0

and therefore we have

F−1
µ

1√
2π

e−ia·ξ − e−ib·ξ

iξ

¶
(x) = lim

M→∞
F−1νM (x) = 1x>a− 1x>b = 1[a,b](x).

Example 34.55. Let σt be the surface measure on the sphere St of radius t
centered at zero in R3. Then

σ̂t(ξ) = 4πt
sin t |ξ|
|ξ| .

Indeed,

σ̂t(ξ) =

Z
tS2

e−ix·ξdσ(x) = t2
Z
S2

e−itx·ξdσ(x)

= t2
Z
S2

e−itx3|ξ|dσ(x) = t2
Z 2π

0

dθ

Z π

0

dφ sinφe−it cosφ|ξ|

= 2πt2
Z 1

−1
e−itu|ξ|du = 2πt2

1

−it |ξ|e
−itu|ξ||u=1u=−1 = 4πt

2 sin t |ξ|
t |ξ| .

By the inversion formula, it follows that

F−1 sin t |ξ||ξ| =
t

4πt2
σt = tσ̄t

where σ̄t is 1
4πt2σt, the surface measure on St normalized to have total measure

one.

Let us again pause to try to compute this inverse Fourier transform di-
rectly. To this end, let fM (ξ) :=

sin t|ξ|
t|ξ| 1|ξ|≤M . By the dominated convergence

theorem, it follows that fM → sin t|ξ|
t|ξ| in S 0, i.e. pointwise on S. Therefore,

hF−1 sin t |ξ|
t |ξ| , φi = h sin t |ξ|

t |ξ| ,F−1φi = lim
M→∞

hfM ,F−1φi = lim
M→∞

hF−1fM , φi
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and

(2π)3/2F−1fM (x) = (2π)3/2
Z
R3

sin t |ξ|
t |ξ| 1|ξ|≤Meiξ·xdξ

=

Z M

r=0

Z 2π

θ=0

Z π

φ=0

sin tr

tr
eir|x| cosφr2 sinφdrdφdθ

=

Z M

r=0

Z 2π

θ=0

Z 1

u=−1

sin tr

tr
eir|x|ur2drdudθ

= 2π

Z M

r=0

sin tr

t

eir|x| − e−ir|x|

ir |x| rdr

=
4π

t |x|
Z M

r=0

sin tr sin r|x|dr

=
4π

t |x|
Z M

r=0

1

2
(cos(r(t+ |x|)− cos(r(t− |x|)) dr

=
4π

t |x|
1

2(t+ |x|) (sin(r(t+ |x|)− sin(r(t− |x|)) |
M
r=0

=
4π

t |x|
1

2

µ
sin(M(t+ |x|)

t+ |x| − sin(M(t− |x|)
t− |x|

¶
Now make use of the fact that sinMx

x → πδ(x) in one dimension to finish the
proof.

34.6 Wave Equation

Given a distribution T and a test function φ, we wish to define T ∗ φ ∈ C∞

by the formula

T ∗ φ(x) = “
Z

T (y)φ(x− y)dy” = hT, φ(x− ·)i.

As motivation for wanting to understand convolutions of distributions let us
reconsider the wave equation in Rn,

0 =
¡
∂2t −∆

¢
u(t, x) with

u(0, x) = f(x) and ut(0, x) = g(x).

Taking the Fourier transform in the x variables gives the following equation

0 = ût t(t, ξ) + |ξ|2 û(t, ξ)with
û(0, ξ) = f̂(ξ) and ût(0, ξ) = ĝ(ξ).

The solution to these equations is
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û(t, ξ) = f̂(ξ) cos (t |ξ|) + ĝ(ξ)
sin t|ξ|
|ξ|

and hence we should have

u(t, x) = F−1
µ
f̂(ξ) cos (t |ξ|) + ĝ(ξ)

sin t|ξ|
|ξ|

¶
(x)

= F−1 cos (t |ξ|) ∗ f(x) + F−1 sin t|ξ||ξ| ∗ g (x)

=
d

dt
F−1 sin t|ξ||ξ| ∗ f(x) + F−1 sin t|ξ||ξ| ∗ g (x) .

The question now is how interpret this equation. In particular what are the in-
verse Fourier transforms of F−1 cos (t |ξ|) and F−1 sin t|ξ||ξ| . Since d

dtF−1 sin t|ξ||ξ| ∗
f(x) = F−1 cos (t |ξ|) ∗ f(x), it really suffices to understand F−1 sin t|ξ||ξ| . This
was worked out in Example 34.54 when n = 1 where we found¡F−1ξ−1 sin tξ¢ (x) = π√

2π

¡
1x+t>0 − 1(x−t)>0

¢
=

π√
2π
(1x>−t − 1x>t) = π√

2π
1[−t,t](x)

where in writing the last line we have assume that t ≥ 0. Therefore,
¡F−1ξ−1 sin tξ¢ ∗ f(x) = 1

2

Z t

−t
f(x− y)dy

Therefore the solution to the one dimensional wave equation is

u(t, x) =
d

dt

1

2

Z t

−t
f(x− y)dy +

1

2

Z t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

Z t

−t
g(x− y)dy

=
1

2
(f(x− t) + f(x+ t)) +

1

2

Z x+t

x−t
g(y)dy.

We can arrive at this same solution by more elementary means as follows.
We first note in the one dimensional case that wave operator factors, namely

0 =
¡
∂2t − ∂2x

¢
u(t, x) = (∂t − ∂x) (∂t + ∂x)u(t, x).

Let U(t, x) := (∂t + ∂x)u(t, x), then the wave equation states (∂t − ∂x)U = 0
and hence by the chain rule d

dtU(t, x− t) = 0. So

U(t, x− t) = U(0, x) = g(x) + f 0(x)

and replacing x by x+ t in this equation shows
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(∂t + ∂x)u(t, x) = U(t, x) = g(x+ t) + f 0(x+ t).

Working similarly, we learn that

d

dt
u(t, x+ t) = g(x+ 2t) + f 0(x+ 2t)

which upon integration implies

u(t, x+ t) = u(0, x) +

Z t

0

{g(x+ 2τ) + f 0(x+ 2τ)} dτ.

= f(x) +

Z t

0

g(x+ 2τ)dτ +
1

2
f(x+ 2τ)|t0

=
1

2
(f(x) + f(x+ 2t)) +

Z t

0

g(x+ 2τ)dτ.

Replacing x→ x− t in this equation then implies

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

Z t

0

g(x− t+ 2τ)dτ.

Finally, letting y = x− t+ 2τ in the last integral gives

u(t, x) =
1

2
(f(x− t) + f(x+ t)) +

1

2

Z x+t

x−t
g(y)dy

as derived using the Fourier transform.
For the three dimensional case we have

u(t, x) =
d

dt
F−1 sin t|ξ||ξ| ∗ f(x) + F−1 sin t|ξ||ξ| ∗ g (x)

=
d

dt
(tσ̄t ∗ f(x)) + tσ̄t ∗ g (x) .

The question is what is µ ∗ g(x) where µ is a measure. To understand the
definition, suppose first that dµ(x) = ρ(x)dx, then we should have

µ ∗ g(x) = ρ ∗ g(x) =
Z
Rn

g(x− y)ρ(x)dx =

Z
Rn

g(x− y)dµ(y).

Thus we expect our solution to the wave equation should be given by

u(t, x) =
d

dt

½
t

Z
St

f(x− y)dσ̄t(y)

¾
+ t

Z
St

g(x− y)dσ̄t(y)

=
d

dt

½
t

Z
S1

f(x− tω)dω

¾
+ t

Z
S1

g(x− tω)dω

=
d

dt

½
t

Z
S1

f(x+ tω)dω

¾
+ t

Z
S1

g(x+ tω)dω (34.11)
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where dω := dσ̄1(ω). Notice the sharp propagation of speed. To understand
this suppose that f = 0 for simplicity and g has compact support near the
origin, for example think of g = δ0(x), the x+ tw = 0 for some w iff |x| = t.
Hence the wave front propagates at unit speed in a sharp way. See figure
below.

Fig. 34.2. The geometry of the solution to the wave equation in three dimensions.

We may also use this solution to solve the two dimensional wave equation
using Hadamard’s method of decent. Indeed, suppose now that f and g are
function on R2 which we may view as functions on R3 which do not depend
on the third coordinate say. We now go ahead and solve the three dimensional
wave equation using Eq. (34.11) and f and g as initial conditions. It is easily
seen that the solution u(t, x, y, z) is again independent of z and hence is a
solution to the two dimensional wave equation. See figure below.
Notice that we still have finite speed of propagation but no longer sharp

propagation. In fact we can work out the solution analytically as follows.
Again for simplicity assume that f ≡ 0. Then

u(t, x, y) =
t

4π

Z 2π

0

dθ

Z π

0

dφ sinφg((x, y) + t(sinφ cos θ, sinφ sin θ))

=
t

2π

Z 2π

0

dθ

Z π/2

0

dφ sinφg((x, y) + t(sinφ cos θ, sinφ sin θ))

and letting u = sinφ, so that du = cosφdφ =
√
1− u2dφ we find

u(t, x, y) =
t

2π

Z 2π

0

dθ

Z 1

0

du√
1− u2

ug((x, y) + ut(cos θ, sin θ))

and then letting r = ut we learn,
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Fig. 34.3. The geometry of the solution to the wave equation in two dimensions.

u(t, x, y) =
1

2π

Z 2π

0

dθ

Z t

0

drp
1− r2/t2

r

t
g((x, y) + r(cos θ, sin θ))

=
1

2π

Z 2π

0

dθ

Z t

0

dr√
t2 − r2

rg((x, y) + r(cos θ, sin θ))

=
1

2π

ZZ
Dt

g((x, y) + w))p
t2 − |w|2 dm(w).

Here is a better alternative derivation of this result. We begin by using
symmetry to find

u(t, x) = 2t

Z
S+t

g(x− y)dσ̄t(y) = 2t

Z
S+t

g(x+ y)dσ̄t(y)

where S+t is the portion of St with z ≥ 0. This sphere is parametrized by
R(u, v) = (u, v,

√
t2 − u2 − v2) with (u, v) ∈ Dt :=

©
(u, v) : u2 + v2 ≤ t2

ª
. In

these coordinates we have

4πt2dσ̄t =
¯̄̄³
−∂u

p
t2 − u2 − v2,−∂v

p
t2 − u2 − v2, 1

´¯̄̄
dudv

=

¯̄̄̄µ
u√

t2 − u2 − v2
,

v√
t2 − u2 − v2

, 1

¶¯̄̄̄
dudv

=

r
u2 + v2

t2 − u2 − v2
+ 1dudv =

|t|√
t2 − u2 − v2

dudv

and therefore,
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u(t, x) =
2t

4πt2

Z
S+t

g(x+ (u, v,
p
t2 − u2 − v2))

|t|√
t2 − u2 − v2

dudv

=
1

2π
sgn(t)

Z
S+t

g(x+ (u, v))√
t2 − u2 − v2

dudv.

This may be written as

u(t, x) =
1

2π
sgn(t)

ZZ
Dt

g((x, y) + w))p
t2 − |w|2 dm(w)

as before. (I should check on the sgn(t) term.)

34.7 Appendix: Topology on C∞c (U)

Let U be an open subset of Rn and

C∞c (U) = ∪K@@UC∞(K) (34.12)

denote the set of smooth functions on U with compact support in U. Our
goal is to topologize C∞c (U) in a way which is compatible with he topologies
defined in Example 34.27 above. This leads us to the inductive limit topology
which we now pause to introduce.

Definition 34.56 (Indcutive Limit Topology). Let X be a set, Xα ⊂ X
for α ∈ A (A is an index set) and assume that τα ⊂ P(Xα) is a topology on
Xα for each α. Let iα : Xα → X denote the inclusion maps. The inductive
limit topology on X is the largest topology τ on X such that iα is continuous
for all α ∈ A. That is to say, τ = ∩α∈Aiα∗(τα), i.e. a set U ⊂ X is open
(U ∈ τ) iff i−1α (A) = A ∩Xα ∈ τα for all α ∈ A.

Notice that C ⊂ X is closed iff C ∩Xα is closed in Xα for all α. Indeed,
C ⊂ X is closed iff Cc = X \C ⊂ X is open, iff Cc ∩Xα = Xα \C is open in
Xα iff Xα ∩ C = Xα \ (Xα \ C) is closed in Xα for all α ∈ A.

Definition 34.57. Let D(U) denote C∞c (U) equipped with the inductive limit
topology arising from writing C∞c (U) as in Eq. (34.12) and using the Fréchet
topologies on C∞(K) as defined in Example 34.27.

For each K @@ U, C∞(K) is a closed subset of D(U). Indeed if F is
another compact subset of U, then C∞(K)∩C∞(F ) = C∞(K ∩F ), which is
a closed subset of C∞(F ). The set U ⊂ D(U) defined by

U =
ψ ∈ D(U) :

X
|α|≤m

k∂α(ψ − φ)k∞ < �

 (34.13)
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for some φ ∈ D(U) and � > 0 is an open subset of D(U). Indeed, if K @@ U,
then

U ∩C∞(K) =
ψ ∈ C∞(K) :

X
|α|≤m

k∂α(ψ − φ)k∞ < �


is easily seen to be open in C∞(K).

Proposition 34.58. Let (X, τ) be as described in Definition 34.56 and f :
X → Y be a function where Y is another topological space. Then f is contin-
uous iff f ◦ iα : Xα → Y is continuous for all α ∈ A.

Proof. Since the composition of continuous maps is continuous, it follows
that f ◦ iα : Xα → Y is continuous for all α ∈ A if f : X → Y is continuous.
Conversely, if f ◦ iα is continuous for all α ∈ A, then for all V ⊂o Y we have

τα 3 (f ◦ iα)−1 (V ) = i−1α (f−1(V )) = f−1(V ) ∩Xα for all α ∈ A

showing that f−1(V ) ∈ τ.

Lemma 34.59. Let us continue the notation introduced in Definition 34.56.
Suppose further that there exists αk ∈ A such that X 0

k := Xαk ↑ X as k →∞
and for each α ∈ A there exists an k ∈ N such that Xα ⊂ X 0

k and the
inclusion map is continuous. Then τ = {A ⊂ X : A ∩X 0

k ⊂o X 0
k for all k}

and a function f : X → Y is continuous iff f |X0
k
: X 0

k → Y is continuous
for all k. In short the inductive limit topology on X arising from the two
collections of subsets {Xα}α∈A and {X 0

k}k∈N are the same.
Proof. Suppose that A ⊂ X, if A ∈ τ then A ∩ X 0

k = A ∩ Xαk ⊂o X 0
k

by definition. Now suppose that A ∩ X 0
k ⊂o X 0

k for all k. For α ∈ A choose
k such that Xα ⊂ X 0

k, then A ∩ Xα = (A ∩X 0
k) ∩ Xα ⊂o Xα since A ∩ X 0

k

is open in X 0
k and by assumption that Xα is continuously embedded in X 0

k,
V ∩Xα ⊂o Xα for all V ⊂o X 0

k. The characterization of continuous functions
is prove similarly.
Let Kk @@ U for k ∈ N such that Ko

k ⊂ Kk ⊂ Ko
k+1 ⊂ Kk+1 for all

k and Kk ↑ U as k → ∞. Then it follows for any K @@ U, there exists
an k such that K ⊂ Ko

k ⊂ Kk. One now checks that the map C∞(K) em-
beds continuously into C∞(Kk) and moreover, C∞(K) is a closed subset of
C∞(Kk+1). Therefore we may describe D(U) as C∞c (U) with the inductively
limit topology coming from ∪k∈NC∞(Kk).

Lemma 34.60. Suppose that {φk}∞k=1 ⊂ D(U), then φk → φ ∈ D(U) iff
φk − φ→ 0 ∈ D(U).
Proof. Let φ ∈ D(U) and U ⊂ D(U) be a set. We will begin by showing

that U is open in D(U) iff U − φ is open in D(U). To this end let Kk be
the compact sets described above and choose k0 sufficiently large so that
φ ∈ C∞(Kk) for all k ≥ k0. Now U − φ ⊂ D(U) is open iff (U − φ)∩C∞(Kk)
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is open in C∞(Kk) for all k ≥ k0. Because φ ∈ C∞(Kk), we have (U − φ) ∩
C∞(Kk) = U ∩C∞(Kk)−φ which is open in C∞(Kk) iff U ∩C∞(Kk) is open
C∞(Kk). Since this is true for all k ≥ k0 we conclude that U − φ is an open
subset of D(U) iff U is open in D(U).
Now φk → φ in D(U) iff for all φ ∈ U ⊂o D(U), φk ∈ U for almost all k

which happens iff φk − φ ∈ U − φ for almost all k. Since U − φ ranges over
all open neighborhoods of 0 when U ranges over the open neighborhoods of
φ, the result follows.

Lemma 34.61. A sequence {φk}∞k=1 ⊂ D(U) converges to φ ∈ D(U), iff there
is a compact set K @@ U such that supp(φk) ⊂ K for all k and φk → φ in
C∞(K).

Proof. If φk → φ in C∞(K), then for any open set V ⊂ D(U) with φ ∈ V
we have V ∩ C∞(K) is open in C∞(K) and hence φk ∈ V ∩ C∞(K) ⊂ V for
almost all k. This shows that φk → φ ∈ D(U).
For the converse, suppose that there exists {φk}∞k=1 ⊂ D(U) which con-

verges to φ ∈ D(U) yet there is no compact set K such that supp(φk) ⊂ K
for all k. Using Lemma34.60, we may replace φk by φk − φ if necessary so
that we may assume φk → 0 in D(U). By passing to a subsequences of {φk}
and {Kk} if necessary, we may also assume there xk ∈ Kk+1 \Kk such that
φk(xk) 6= 0 for all k. Let p denote the semi-norm on C∞c (U) defined by

p(φ) =
∞X
k=0

sup

½ |φ(x)|
|φk(xk)| : x ∈ Kk+1 \Ko

k

¾
.

One then checks that

p(φ) ≤
Ã

NX
k=0

1

|φk(xk)|

!
kφk∞

for φ ∈ C∞(KN+1). This shows that p|C∞(KN+1) is continuous for all N and
hence p is continuous on D(U). Since p is continuous on D(U) and φk → 0
in D(U), it follows that limk→∞ p(φk) = p(limk→∞ φk) = p(0) = 0. While on
the other hand, p(φk) ≥ 1 by construction and hence we have arrived at a
contradiction. Thus for any convergent sequence {φk}∞k=1 ⊂ D(U) there is a
compact set K @@ U such that supp(φk) ⊂ K for all k.
We will now show that {φk}∞k=1 is convergent to φ in C∞(K). To this

end let U ⊂ D(U) be the open set described in Eq. (34.13), then φk ∈ U for
almost all k and in particular, φk ∈ U ∩ C∞(K) for almost all k. (Letting
� > 0 tend to zero shows that supp(φ) ⊂ K, i.e. φ ∈ C∞(K).) Since sets of
the form U ∩ C∞(K) with U as in Eq. (34.13) form a neighborhood base for
the C∞(K) at φ, we concluded that φk → φ in C∞(K).

Definition 34.62 (Distributions on U ⊂o Rn). A generalized function on
U ⊂o Rn is a continuous linear functional on D(U). We denote the space of
generalized functions by D0(U).
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Proposition 34.63. Let f : D(U) → C be a linear functional. Then the
following are equivalent.

1. f is continuous, i.e. f ∈ D0(U).
2. For all K @@ U, there exist n ∈ N and C <∞ such that

|f(φ)| ≤ Cpn(φ) for all φ ∈ C∞(K). (34.14)

3. For all sequences {φk} ⊂ D(U) such that φk → 0 in D(U), limk→∞ f(φk) =
0.

Proof. 1) ⇐⇒ 2). If f is continuous, then by definition of the inductive
limit topology f |C∞(K) is continuous. Hence an estimate of the type in Eq.
(34.14) must hold. Conversely if estimates of the type in Eq. (34.14) hold for
all compact sets K, then f |C∞(K) is continuous for all K @@ U and again by
the definition of the inductive limit topologies, f is continuous on D0(U).
1)⇐⇒ 3) By Lemma 34.61, the assertion in item 3. is equivalent to saying

that f |C∞(K) is sequentially continuous for all K @@ U. Since the topology on
C∞(K) is first countable (being a metric topology), sequential continuity and
continuity are the same think. Hence item 3. is equivalent to the assertion that
f |C∞(K) is continuous for all K @@ U which is equivalent to the assertion
that f is continuous on D0(U).
Proposition 34.64. The maps (λ, φ) ∈ C×D(U)→ λφ ∈ D(U) and (φ, ψ) ∈
D(U)×D(U)→ φ+ ψ ∈ D(U) are continuous. (Actually, I will have to look
up how to decide to this.) What is obvious is that all of these operations are
sequentially continuous, which is enough for our purposes.
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Convolutions involving distributions

35.1 Tensor Product of Distributions

Let X ⊂o Rn and Y ⊂o Rm and S ∈ D0(X) and T ∈ D0(Y ).We wish to define
S ⊗ T ∈ D0(X × Y ). Informally, we should have

hS ⊗ T, φi =
Z
X×Y

S(x)T (y)φ(x, y)dxdy

=

Z
X

dxS(x)

Z
Y

dyT (y)φ(x, y) =

Z
Y

dyT (y)

Z
X

dxS(x)φ(x, y).

Of course we should interpret this last equation as follows,

hS ⊗ T, φi = hS(x), hT (y), φ(x, y)ii = hT (y), hS(x), φ(x, y)ii. (35.1)

This formula takes on particularly simple form when φ = u⊗v with u ∈ D(X)
and v ∈ D(Y ) in which case

hS ⊗ T, u⊗ vi = hS, uihT, vi. (35.2)

We begin with the following smooth version of the Weierstrass approximation
theorem which will be used to show Eq. (35.2) uniquely determines S ⊗ T.

Theorem 35.1 (Density Theorem). Suppose that X ⊂o Rn and Y ⊂o Rm,
then D(X)⊗D(Y ) is dense in D(X × Y ).

Proof. First let us consider the special case where X = (0, 1)n and Y =
(0, 1)m so that X × Y = (0, 1)m+n. To simplify notation, let m + n = k
and Ω = (0, 1)k and πi : Ω → (0, 1) be projection onto the ith factor of Ω.
Suppose that φ ∈ C∞c (Ω) and K = supp(φ). We will view φ ∈ C∞c (Rk) by
setting φ = 0 outside of Ω. Since K is compact πi(K) ⊂ [ai, bi] for some 0 <
ai < bi < 1. Let a = min {ai : i = 1, . . . , k} and b = max {bi : i = 1, . . . , k} .
Then supp(φ) = K ⊂ [a, b]k ⊂ Ω.
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As in the proof of the Weierstrass approximation theorem, let qn(t) =
cn(1 − t2)n1|t|≤1 where cn is chosen so that

R
R qn(t)dt = 1. Also set Qn =

qn ⊗ · · ·⊗ qn, i.e. Qn(x) =
Qk

i=1 qn(xi) for x ∈ Rk. Let

fn(x) := Qn ∗ φ(x) = ckn

Z
Rk

φ(y)
kY
i=1

(1− (xi − yi)
2)n1|xi−yi|≤1dyi. (35.3)

By standard arguments, we know that ∂αfn → ∂αφ uniformly on Rk as n→
∞. Moreover for x ∈ Ω, it follows from Eq. (35.3) that

fn(x) := ckn

Z
Ω

φ(y)
kY
i=1

(1− (xi − yi)
2)ndyi = pn(x)

where pn(x) is a polynomial in x. Notice that pn ∈ C∞((0, 1))⊗· · ·⊗C∞((0, 1))
so that we are almost there.1 We need only cutoff these functions so that they
have compact support. To this end, let θ ∈ C∞c ((0, 1)) be a function such that
θ = 1 on a neighborhood of [a, b] and define

φn = (θ ⊗ · · ·⊗ θ) fn

= (θ ⊗ · · ·⊗ θ) pn ∈ C∞c ((0, 1))⊗ · · ·⊗ C∞c ((0, 1)).

I claim now that φn → φ in D(Ω). Certainly by construction supp(φn) ⊂
[a, b]k @@ Ω for all n. Also

∂α(φ− φn) = ∂α(φ− (θ ⊗ · · ·⊗ θ) fn)

= (θ ⊗ · · ·⊗ θ) (∂αφ− ∂αfn) +Rn (35.4)

where Rn is a sum of terms of the form ∂β (θ ⊗ · · ·⊗ θ) · ∂γfn with β 6= 0.
Since ∂β (θ ⊗ · · ·⊗ θ) = 0 on [a, b]k and ∂γfn converges uniformly to zero on
Rk \ [a, b]k, it follows that Rn → 0 uniformly as n→∞. Combining this with
Eq. (35.4) and the fact that ∂αfn → ∂αφ uniformly on Rk as n→∞, we see
that φn → φ in D(Ω). This finishes the proof in the case X = (0, 1)n and
Y = (0, 1)m.
For the general case, let K = supp(φ) @@ X × Y and K1 = π1(K) @@ X

and K2 = π2(K) @@ Y where π1 and π2 are projections from X × Y to

1 One could also construct fn ∈ C∞(R)⊗k such that ∂αfn → ∂αf uniformlly as
n→∞ using Fourier series. To this end, let φ̃ be the 1 — periodic extension of φ
to Rk. Then φ̃ ∈ C∞p eriod ic(Rk) and hence it may be written as

φ̃(x) =
X
m∈Zk

cme
i2πm·x

where the
©
cm : m ∈ Zkª are the Fourier coefficients of φ̃ which decay faster that

(1+ |m|)−l for any l > 0. Thus fn(x) :=Pm∈Zk:|m|≤n cme
i2πm·x ∈ C∞(R)⊗k and

∂αfn → ∂αφ unifromly on Ω as n→∞.
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X and Y respectively. Then K @ K1 × K2 @@ X × Y. Let {Vi}ai=1 and
{Uj}bj=1 be finite covers of K1 and K2 respectively by open sets Vi = (ai, bi)
and Uj = (cj , dj) with ai, bi ∈ X and cj , dj ∈ Y. Also let αi ∈ C∞c (Vi)
for i = 1, . . . , a and βj ∈ C∞c (Uj) for j = 1, . . . , b be functions such thatPa

i=1 αi = 1 on a neighborhood of K1 and
Pb

j=1 βj = 1 on a neighborhood of

K2. Then φ =
Pa

i=1

Pb
j=1 (αi ⊗ βj)φ and by what we have just proved (after

scaling and translating) each term in this sum, (αi ⊗ βj)φ, may be written as
a limit of elements in D(X)⊗D(Y ) in the D(X × Y ) topology.

Theorem 35.2 (Distribution-Fubini-Theorem). Let S ∈ D0(X), T ∈
D0(Y ), h(x) := hT (y), φ(x, y)i and g(y) := hS(x), φ(x, y)i. Then h =
hφ ∈ D(X), g = gφ ∈ D(Y ), ∂αh(x) = hT (y), ∂αxφ(x, y)i and ∂βg(y) =
hS(x), ∂βy φ(x, y)i for all multi-indices α and β. Moreover

hS(x), hT (y), φ(x, y)ii = hS, hi = hT, gi = hT (y), hS(x), φ(x, y)ii. (35.5)

We denote this common value by hS⊗T, φi and call S⊗T the tensor product
of S and T. This distribution is uniquely determined by its values on D(X)⊗
D(Y ) and for u ∈ D(X) and v ∈ D(Y ) we have

hS ⊗ T, u⊗ vi = hS, uihT, vi.
Proof. Let K = supp(φ) @@ X × Y and K1 = π1(K) and K2 = π2(K).

Then K1 @@ X and K2 @@ Y and K ⊂ K1 × K2 ⊂ X × Y. If x ∈ X
and y /∈ K2, then φ(x, y) = 0 and more generally ∂αxφ(x, y) = 0 so that
{y : ∂αxφ(x, y) 6= 0} ⊂ K2. Thus for all x ∈ X, supp(∂αφ(x, ·)) ⊂ K2 ⊂ Y. By
the fundamental theorem of calculus,

∂βy φ(x+ v, y)− ∂βy φ(x, y) =

Z 1

0

∂xv∂
β
y φ(x+ τv, y)dτ (35.6)

and therefore°°∂βy φ(x+ v, ·)− ∂βy φ(x, ·)
°°
∞ ≤ |v|

Z 1

0

°°∇x∂
β
y φ(x+ τv, ·)°°∞ dτ

≤ |v|°°∇x∂
β
y φ
°°
∞ → 0 as ν → 0.

This shows that x ∈ X → φ(x, ·) ∈ D(Y ) is continuous. Thus h is continuous
being the composition of continuous functions. Letting v = tei in Eq. (35.6)
we find

∂βy φ(x+ tei, y)− ∂βy φ(x, y)

t
− ∂

∂xi
∂βy φ(x, y)

=

Z 1

0

·
∂

∂xi
∂βy φ(x+ τtei, y)− ∂

∂xi
∂βy φ(x, y)

¸
dτ

and hence
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t

− ∂

∂xi
∂βy φ(x, ·)

°°°°°
∞

≤
Z 1

0

°°°° ∂

∂xi
∂βy φ(x+ τtei, ·)− ∂

∂xi
∂βy φ(x, ·)

°°°°
∞
dτ

which tends to zero as t→ 0. Thus we have checked that

∂

∂xi
φ(x, ·) = D0(Y )— lim

t→0
φ(x+ tei, ·)− φ(x, ·)

t

and therefore,

h(x+ tei)− h(x)

t
= hT, φ(x+ tei, ·)− φ(x, ·)

t
i→ hT, ∂

∂xi
φ(x, ·)i

as t → 0 showing ∂ih(x) exists and is given by hT, ∂
∂xi

φ(x, ·)i. By what we
have proved above, it follows that ∂ih(x) = hT, ∂

∂xi
φ(x, ·)i is continuous in

x. By induction on |α| , it follows that ∂αh(x) exists and is continuous and
∂αh(x) = hT (y), ∂αxφ(x, y)i for all α. Now if x /∈ K1, then φ(x, ·) ≡ 0 show-
ing that {x ∈ X : h(x) 6= 0} ⊂ K1 and hence supp(h) ⊂ K1 @@ X. Thus h
has compact support. This proves all of the assertions made about h. The
assertions pertaining to the function g are prove analogously.
Let hΓ, φi = hS(x), hT (y), φ(x, y)ii = hS, hφi for φ ∈ D(X × Y ). Then Γ

is clearly linear and we have

|hΓ, φi| = |hS, hφi|
≤ C

X
|α|≤m

k∂αxhφk∞,K1
= C

X
|α|≤m

khT (y), ∂αxφ(·, y)ik∞,K1

which combined with the estimate

|hT (y), ∂αxφ(x, y)i| ≤ C
X
|β|≤p

°°∂βy ∂αxφ(x, y)i°°∞,K2

shows
|hΓ, φi| ≤ C

X
|α|≤m

X
|β|≤p

°°∂βy ∂αxφ(x, y)i°°∞,K1×K2
.

So Γ is continuous, i.e. Γ ∈ D0(X × Y ), i.e.

φ ∈ D(X × Y )→ hS(x), hT (y), φ(x, y)ii
defines a distribution. Similarly,

φ ∈ D(X × Y )→ hT (y), hS(x), φ(x, y)ii
also defines a distribution and since both of these distributions agree on the
dense subspace D(X)⊗D(Y ), it follows they are equal.



35.1 Tensor Product of Distributions 763

Theorem 35.3. If (T, φ) is a distribution test function pair satisfying one of
the following three conditions

1. T ∈ E 0(Rn) and φ ∈ C∞(Rn)
2. T ∈ D0(Rn) and φ ∈ D(Rn) or
3. T ∈ S 0(Rn) and φ ∈ S(Rn),
let

T ∗ φ(x) = “
Z

T (y)φ(x− y)dy” = hT, φ(x− ·)i. (35.7)

Then T ∗ φ ∈ C∞(Rn), ∂α(T ∗ φ) = (∂αT ∗ φ) = (T ∗ ∂αφ) for all α and
supp(T ∗φ) ⊂ supp(T ) + supp(φ). Moreover if (3) holds then T ∗φ ∈ P — the
space of smooth functions with slow decrease.

Proof. I will supply the proof for case (3) since the other cases are similar
and easier. Let h(x) := T ∗ φ(x). Since T ∈ S 0(Rn), there exists m ∈ N and
C < ∞ such that |hT, φi| ≤ Cpm(φ) for all φ ∈ S, where pm is defined in
Example 34.31. Therefore,

|h(x)− h(y)| = |hT, φ(x− ·)− φ(y − ·)i| ≤ Cpm(φ(x− ·)− φ(y − ·))
= C

X
|α|≤m

kµm(∂αφ(x− ·)− ∂αφ(y − ·))k∞ .

Let ψ := ∂αφ, then

ψ(x− z)− ψ(y − z) =

Z 1

0

∇ψ(y + τ(x− y)− z) · (x− y)dτ (35.8)

and hence

|ψ(x− z)− ψ(y − z)| ≤ |x− y| ·
Z 1

0

|∇ψ(y + τ(x− y)− z)| dτ

≤ C |x− y|
Z 1

0

µ−M (y + τ(x− y)− z)dτ

for any M <∞. By Peetre’s inequality,

µ−M (y + τ(x− y)− z) ≤ µ−M (z)µM (y + τ(x− y))

so that

|∂αφ(x− z)− ∂αφ(y − z)| ≤ C |x− y|µ−M (z)
Z 1

0

µM (y + τ(x− y))dτ

≤ C(x, y) |x− y|µ−M (z) (35.9)

where C(x, y) is a continuous function of (x, y). Putting all of this together
we see that
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|h(x)− h(y)| ≤ C̃(x, y) |x− y|→ 0 as x→ y,

showing h is continuous. Let us now compute a partial derivative of h. Suppose
that v ∈ Rn is a fixed vector, then by Eq. (35.8),

φ(x+ tv − z)− φ(x− z)

t
− ∂vφ(x− z)

=

Z 1

0

∇φ(x+ τtv − z) · vdτ − ∂vφ(x− z)

=

Z 1

0

[∂vφ(x+ τtv − z)− ∂vφ(x− z)] dτ.

This then implies¯̄̄̄
∂αz

½
φ(x+ tv − z)− φ(x− z)

t
− ∂vφ(x− z)

¾¯̄̄̄
=

¯̄̄̄Z 1

0

∂αz [∂vφ(x+ τtv − z)− ∂vφ(x− z)] dτ

¯̄̄̄
≤
Z 1

0

|∂αz [∂vφ(x+ τtv − z)− ∂vφ(x− z)]| dτ.

But by the same argument as above, it follows that

|∂αz [∂vφ(x+ τtv − z)− ∂vφ(x− z)]| ≤ C(x+ τtv, x) |τtv|µ−M (z)
and thus ¯̄̄̄

∂αz

½
φ(x+ tv − z)− φ(x− z)

t
− ∂vφ(x− z)

¾¯̄̄̄
≤ tµ−M (z)

Z 1

0

C(x+ τtv, x)τdτ |v|µ−M (z).

Putting this all together shows°°°°µM∂αz

½
φ(x+ tv − z)− φ(x− z)

t
− ∂vφ(x− z)

¾°°°°
∞
= O(t)

→ 0 as t→ 0.

That is to say φ(x+tv−·)−φ(x−·)
t → ∂vφ(x− ·) in S as t→ 0. Hence since T is

continuous on S, we learn

∂v (T ∗ φ) (x) = ∂vhT, φ(x− ·)i = lim
t→0
hT, φ(x+ tv − ·)− φ(x− ·)

t
i

= hT, ∂vφ(x− ·)i = T ∗ ∂vφ(x).
By the first part of the proof, we know that ∂v(T ∗φ) is continuous and hence
by induction it now follows that T ∗ φ is C∞ and ∂αT ∗ φ = T ∗ ∂αφ. Since



35.1 Tensor Product of Distributions 765

T ∗ ∂αφ(x) = hT (z), (∂αφ) (x− z)i = (−1)αhT (z), ∂αz φ(x− z)i
= h∂αz T (z), φ(x− z)i = ∂αT ∗ φ(x)

the proof is complete except for showing T ∗ φ ∈ P.
For the last statement, it suffices to prove |T ∗ φ(x)| ≤ CµM (x) for some

C <∞ and M <∞. This goes as follows

|h(x)| = |hT, φ(x− ·)i| ≤ Cpm(φ(x− ·)) = C
X
|α|≤m

kµm(∂αφ(x− ·)k∞

and using Peetre’s inequality, |∂αφ(x− z)| ≤ Cµ−m(x− z) ≤ Cµ−m(z)µm(x)
so that

kµm(∂αφ(x− ·)k∞ ≤ Cµm(x).

Thus it follows that |T ∗ φ(x)| ≤ Cµm(x) for some C <∞.
If x ∈ Rn \ (supp(T ) + supp(φ)) and y ∈ supp(φ) then x − y /∈ supp(T )

for otherwise x = x− y + y ∈ supp(T ) + supp(φ). Thus
supp(φ(x− ·)) = x− supp(φ) ⊂ Rn \ supp(T )

and hence h(x) = hT, φ(x− ·)i = 0 for all x ∈ Rn \ (supp(T ) + supp(φ)) . This
implies that {h 6= 0} ⊂ supp(T ) + supp(φ) and hence

supp(h) = {h 6= 0} ⊂ supp(T ) + supp(φ).

As we have seen in the previous theorem, T ∗ φ is a smooth function and
hence may be used to define a distribution in D0(Rn) by

hT ∗ φ, ψi =
Z

T ∗ φ(x)ψ(x)dx =
Z
hT, φ(x− ·)iψ(x)dx.

Using the linearity of T we might expect thatZ
hT, φ(x− ·)iψ(x)dx = hT,

Z
φ(x− ·)ψ(x)dxi

or equivalently that
hT ∗ φ, ψi = hT, φ̃ ∗ ψi (35.10)

where φ̃(x) := φ(−x).
Theorem 35.4. Suppose that if (T, φ) is a distribution test function pair sat-
isfying one the three condition in Theorem 35.3, then T ∗ φ as a distribution
may be characterized by

hT ∗ φ, ψi = hT, φ̃ ∗ ψi (35.11)

for all ψ ∈ D(Rn). Moreover, if T ∈ S 0 and φ ∈ S then Eq. (35.11) holds for
all ψ ∈ S.
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Proof. Let us first assume that T ∈ D0 and φ,ψ ∈ D and θ ∈ D be a
function such that θ = 1 on a neighborhood of the support of ψ. Then

hT ∗ φ,ψi =
Z
Rn
hT, φ(x− ·)iψ(x)dx = hψ(x), hT (y), φ(x− y)ii

= hθ(x)ψ(x), hT (y), φ(x− y)ii
= hψ(x), θ(x)hT (y), φ(x− y)ii
= hψ(x), hT (y), θ(x)φ(x− y)ii.

Now the function, θ(x)φ(x − y) ∈ D(Rn × Rn), so we may apply Fubini’s
theorem for distributions to conclude that

hT ∗ φ, ψi = hψ(x), hT (y), θ(x)φ(x− y)ii
= hT (y), hψ(x), θ(x)φ(x− y)ii
= hT (y), hθ(x)ψ(x), φ(x− y)ii
= hT (y), hψ(x), φ(x− y)ii
= hT (y), ψ ∗ φ̃(y)i = hT, ψ ∗ φ̃i

as claimed.
If T ∈ E 0, let α ∈ D(Rn) be a function such that α = 1 on a neighborhood

of supp(T ), then working as above,

hT ∗ φ, ψi = hψ(x), hT (y), θ(x)φ(x− y)ii
= hψ(x), hT (y), α(y)θ(x)φ(x− y)ii

and since α(y)θ(x)φ(x− y) ∈ D(Rn×Rn) we may apply Fubini’s theorem for
distributions to conclude again that

hT ∗ φ, ψi = hT (y), hψ(x), α(y)θ(x)φ(x− y)ii
= hα(y)T (y), hθ(x)ψ(x), φ(x− y)ii
= hT (y), hψ(x), φ(x− y)ii = hT, ψ ∗ φ̃i.

Now suppose that T ∈ S 0 and φ, ψ ∈ S. Let φn, ψn ∈ D be a sequences such
that φn → φ and ψn → ψ in S, then using arguments similar to those in the
proof of Theorem 35.3, one shows

hT ∗ φ,ψi = lim
n→∞hT ∗ φn, ψni = lim

n→∞hT, ψn ∗ φ̃ni = hT,ψ ∗ φ̃i.

Theorem 35.5. Let U ⊂o Rn, then D(U) is sequentially dense in E 0(U).
When U = Rn we have E 0(Rn) is a dense subspace of S 0(Rn) ⊂ D0(Rn).
Hence we have the following inclusions,

D(U) ⊂ E 0(U) ⊂ D0(U),
D(Rn) ⊂ E 0(Rn) ⊂ S 0(Rn) ⊂ D0(Rn) and
D(Rn) ⊂ S(Rn) ⊂ S 0(Rn) ⊂ D0(Rn)

with all inclusions being dense in the next space up.
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Proof. The key point is to show D(U) is dense in E 0(U). Choose θ ∈
C∞c (Rn) such that supp(θ) ⊂ B(0, 1), θ = θ and

R
θ(x)dx = 1. Let θm(x) =

m−nθ(mx) so that supp(θm) ⊂ B(0, 1/m). An element in T ∈ E 0(U) may be
viewed as an element in E 0(Rn) in a natural way. Namely if χ ∈ C∞c (U) such
that χ = 1 on a neighborhood of supp(T ), and φ ∈ C∞(Rn), let hT, φi =
hT, χφi. Define Tm = T ∗ θm. It is easily seen that supp(Tn) ⊂ supp(T ) +
B(0, 1/m) ⊂ U for all m sufficiently large. Hence Tm ∈ D(U) for large enough
m. Moreover, if ψ ∈ D(U), then

hTm, ψi = hT ∗ θm, ψi = hT, θm ∗ ψi = hT, θm ∗ ψi→ hT, ψi

since θm ∗ ψ → ψ in D(U) by standard arguments. If U = Rn, T ∈ E 0(Rn) ⊂
S 0(Rn) and ψ ∈ S, the same argument goes through to show hTm, ψi→ hT,ψi
provided we show θm ∗ ψ → ψ in S(Rn) as m→∞. This latter is proved by
showing for all α and t > 0, I

kµt (∂αθm ∗ ψ − ∂αψ)k∞ → 0 as m→∞,

which is a consequence of the estimates:

|∂αθm ∗ ψ(x)− ∂αψ(x)| = |θm ∗ ∂αψ(x)− ∂αψ(x)|

=

¯̄̄̄Z
θm(y) [∂

αψ(x− y)− ∂αψ(x)] dy

¯̄̄̄
≤ sup

|y|≤1/m
|∂αψ(x− y)− ∂αψ(x)|

≤ 1

m
sup

|y|≤1/m
|∇∂αψ(x− y)|

≤ 1

m
C sup
|y|≤1/m

µ−t(x− y)

≤ 1

m
Cµ−t(x− y) sup

|y|≤1/m
µt(y)

≤ 1

m
C
¡
1 +m−1

¢t
µ−t(x).

Definition 35.6 (Convolution of Distributions). Suppose that T ∈ D0
and S ∈ E 0, then define T ∗ S ∈ D0 by

hT ∗ S, φi = hT ⊗ S, φ+i

where φ+(x, y) = φ(x+y) for all x, y ∈ Rn.More generally we may define T ∗S
for any two distributions having the property that supp(T ⊗ S) ∩ supp(φ+) =
[supp(T )× supp(S)] ∩ supp(φ+) is compact for all φ ∈ D.
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Proposition 35.7. Suppose that T ∈ D0 and S ∈ E 0 then T ∗S is well defined
and

hT ∗ S, φi = hT (x), hS(y), φ(x+ y)ii = hS(y), hT (x), φ(x+ y)ii. (35.12)

Moreover, if T ∈ S 0 then T ∗S ∈ S 0 and F(T ∗S) = ŜT̂ . Recall from Remark
34.49 that Ŝ ∈ P so that ŜT̂ ∈ S 0.
Proof. Let θ ∈ D be a function such that θ = 1 on a neighborhood of

supp(S), then by Fubini’s theorem for distributions,

hT ⊗ S, φ+i = hT ⊗ S(x, y), θ(y)φ(x+ y)i = hT (x)S(y), θ(y)φ(x+ y)i
= hT (x), hS(y), θ(y)φ(x+ y)ii = hT (x), hS(y), φ(x+ y)ii

and

hT ⊗ S, φ+i = hT (x)S(y), θ(y)φ(x+ y)i = hS(y), hT (x), θ(y)φ(x+ y)ii
= hS(y), θ(y)hT (x), φ(x+ y)ii = hS(y), hT (x), φ(x+ y)ii

proving Eq. (35.12).
Suppose that T ∈ S 0, then

|hT ∗ S, φi| = |hT (x), hS(y), φ(x+ y)ii| ≤ C
X
|α|≤m

kµm∂αx hS(y), φ(·+ y)ik∞

= C
X
|α|≤m

kµmhS(y), ∂αφ(·+ y)ik∞

and

|hS(y), ∂αφ(x+ y)i| ≤ C
X
|β|≤p

sup
y∈K

¯̄
∂β∂αφ(x+ y)

¯̄
≤ Cpm+p(φ) sup

y∈K
µ−m−p(x+ y)

≤ Cpm+p(φ)µ−m−p(x) sup
y∈K

µm+p(y)

= C̃µ−m−p(x)pm+p(φ).

Combining the last two displayed equations shows

|hT ∗ S, φi| ≤ Cpm+p(φ)

which shows that T ∗ S ∈ S 0. We still should check that
hT ∗ S, φi = hT (x), hS(y), φ(x+ y)ii = hS(y), hT (x), φ(x+ y)ii

still holds for all φ ∈ S. This is a matter of showing that all of the expressions
are continuous in S when restricted to D. Explicitly, let φm ∈ D be a sequence
of functions such that φm → φ in S, then



35.2 Elliptic Regularity 769

hT ∗ S, φi = lim
n→∞hT ∗ S, φni = lim

n→∞hT (x), hS(y), φn(x+ y)ii (35.13)

and

hT ∗ S, φi = lim
n→∞hT ∗ S, φni = lim

n→∞hS(y), hT (x), φn(x+ y)ii. (35.14)

So it suffices to show the map φ ∈ S → hS(y), φ(·+ y)i ∈ S is continuous and
φ ∈ S → hT (x), φ(x+ ·)i ∈ C∞(Rn) are continuous maps. These may verified
by methods similar to what we have been doing, so I will leave the details to
the reader. Given these continuity assertions, we may pass to the limits in Eq.
(35.13d (35.14) to learn

hT ∗ S, φi = hT (x), hS(y), φ(x+ y)ii = hS(y), hT (x), φ(x+ y)ii
still holds for all φ ∈ S.
The last and most important point is to show F(T ∗ S) = ŜT̂ . Using

φ̂(x+ y) =

Z
Rn

φ(ξ)e−iξ·(x+y)dξ =
Z
Rn

φ(ξ)e−iξ·ye−iξ·xdξ

= F ¡φ(ξ)e−iξ·y¢ (x)
and the definition of F on S 0 we learn

hF(T ∗ S), φi = hT ∗ S, φ̂i = hS(y), hT (x), φ̂(x+ y)ii
= hS(y), hT (x),F ¡φ(ξ)e−iξ·y¢ (x)ii
= hS(y), hT̂ (ξ), φ(ξ)e−iξ·yii. (35.15)

Let θ ∈ D be a function such that θ = 1 on a neighborhood of supp(S) and
assume φ ∈ D for the moment. Then from Eq. (35.15) and Fubini’s theorem
for distributions we find

hF(T ∗ S), φi = hS(y), θ(y)hT̂ (ξ), φ(ξ)e−iξ·yii
= hS(y), hT̂ (ξ), φ(ξ)θ(y)e−iξ·yii
= hT̂ (ξ), hS(y), φ(ξ)θ(y)e−iξ·yii
= hT̂ (ξ), φ(ξ)hS(y), e−iξ·yii
= hT̂ (ξ), φ(ξ)Ŝ(ξ)i = hŜ(ξ)T̂ (ξ), φ(ξ)i. (35.16)

Since F(T ∗ S) ∈ S 0 and ŜT̂ ∈ S 0, we conclude that Eq. (35.16) holds for all
φ ∈ S and hence F(T ∗ S) = ŜT̂ as was to be proved.

35.2 Elliptic Regularity

Theorem 35.8 (Hypoellipticity). Suppose that p(x) =
P
|α|≤m aαξ

α is a
polynomial on Rn and L is the constant coefficient differential operator
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L = p(
1

i
∂) =

X
|α|≤m

aα(
1

i
∂)α =

X
|α|≤m

aα(−i∂)α.

Also assume there exists a distribution T ∈ D0(Rn) such that R := δ − LT ∈
C∞(Rn) and T |Rn\{0} ∈ C∞(Rn \ {0}). Then if v ∈ C∞(U) and u ∈ D0(U)
solves Lu = v then u ∈ C∞(U). In particular, all solutions u to the equation
Lu = 0 are smooth.

Proof.We must show for each x0 ∈ U that u is smooth on a neighborhood
of x0. So let x0 ∈ U and θ ∈ D(U) such that 0 ≤ θ ≤ 1 and θ = 1 on
neighborhood V of x0. Also pick α ∈ D(V ) such that 0 ≤ α ≤ 1 and α = 1
on a neighborhood of x0. Then

θu = δ ∗ (θu) = (LT +R) ∗ (θu) = (LT ) ∗ (θu) +R ∗ (θu)
= T ∗ L (θu) +R ∗ (θu)
= T ∗ {αL (θu) + (1− α)L (θu)}+R ∗ (θu)
= T ∗ {αLu+ (1− α)L (θu)}+R ∗ (θu)
= T ∗ (αv) +R ∗ (θu) + T ∗ [(1− α)L (θu)] .

Since αv ∈ D(U) and T ∈ D0(Rn) it follows that R ∗ (θu) ∈ C∞(Rn). Also
since R ∈ C∞(Rn) and θu ∈ E 0(U), R ∗ (θu) ∈ C∞(Rn). So to show θu, and
hence u, is smooth near x0 it suffices to show T ∗ g is smooth near x0 where
g := (1− α)L (θu) . Working formally for the moment,

T ∗ g(x) =
Z
Rn

T (x− y)g(y)dy =

Z
Rn\{α=1}

T (x− y)g(y)dy

which should be smooth for x near x0 since in this case x − y 6= 0 when
g(y) 6= 0. To make this precise, let δ > 0 be chosen so that α = 1 on a
neighborhood of B(x0, δ) so that supp(g) ⊂ B(x0, δ)

c
. For φ ∈ D(B(x0, δ/2),

hT ∗ g, φi = hT (x), hg(y), φ(x+ y)ii = hT, hi

where h(x) := hg(y), φ(x+ y)i. If |x| ≤ δ/2

supp(φ(x+ ·)) = supp(φ)− x ⊂ B(x0, δ/2)− x ⊂ B(x0, δ)

so that h(x) = 0 and hence supp(h) ⊂ B(x0, δ/2)
c
. Hence if we let γ ∈

D(B(0, δ/2)) be a function such that γ = 1 near 0, we have γh ≡ 0, and thus

hT ∗ g, φi = hT, hi = hT, h− γhi = h(1− γ)T, hi = h[(1− γ)T ] ∗ g, φi.

Since this last equation is true for all φ ∈ D(B(x0, δ/2)), T ∗g = [(1− γ)T ]∗g
on B(x0, δ/2) and this finishes the proof since [(1− γ)T ]∗g ∈ C∞(Rn) because
(1− γ)T ∈ C∞(Rn).
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Definition 35.9. Suppose that p(x) =
P
|α|≤m aαξ

α is a polynomial on Rn
and L is the constant coefficient differential operator

L = p(
1

i
∂) =

X
|α|≤m

aα(
1

i
∂)α =

X
|α|≤m

aα(−i∂)α.

Let σp(L)(ξ) :=
P
|α|=m aαξ

α and call σp(L) the principle symbol of L. The
operator L is said to be elliptic provided that σp(L)(ξ) 6= 0 if ξ 6= 0.
Theorem 35.10 (Existence of Parametrix). Suppose that L = p(1i ∂) is
an elliptic constant coefficient differential operator, then there exists a dis-
tribution T ∈ D0(Rn) such that R := δ − LT ∈ C∞(Rn) and T |Rn\{0} ∈
C∞(Rn \ {0}).
Proof. The idea is to try to find T such that LT = δ. Taking the Fourier

transform of this equation implies that p(ξ)T̂ (ξ) = 1 and hence we should try
to define T̂ (ξ) = 1/p(ξ). The main problem with this definition is that p(ξ)
may have zeros. However, these zeros can not occur for large ξ by the ellipticity
assumption. Indeed, let q(ξ) := σp(L)(ξ) =

P
|α|=m aαξ

α, r(ξ) = p(ξ)−q(ξ) =P
|α|<m aαξ

α and let c = min {|q(ξ)| : |ξ| = 1} ≤ max {|q(ξ)| : |ξ| = 1} =: C.
Then because |q(·)| is a nowhere vanishing continuous function on the compact
set S := {ξ ∈ Rn : |ξ| = 1|} , 0 < c ≤ C < ∞. For ξ ∈ Rn, let ξ̂ = ξ/|ξ| and
notice

|p(ξ)| = |q(ξ)|− |r(ξ)| ≥ c |ξ|m − |r(ξ)| = |ξ|m (c− |r(ξ)||ξ|m ) > 0

for all |ξ| ≥ M with M sufficiently large since limξ→∞
|r(ξ)|
|ξ|m = 0. Choose

θ ∈ D(Rn) such that θ = 1 on a neighborhood of B(0,M) and let

h(ξ) =
1− θ(ξ)

p(ξ)
=

β(ξ)

p(ξ)
∈ C∞(Rn)

where β = 1−θ. Since h(ξ) is bounded (in fact limξ→∞ h(ξ) = 0), h ∈ S 0(Rn)
so there exists T := F−1h ∈ S 0(Rn) is well defined. Moreover,

F (δ − LT ) = 1− p(ξ)h(ξ) = 1− β(ξ) = θ(ξ) ∈ D(Rn)
which shows that

R := δ − LT ∈ S(Rn) ⊂ C∞(Rn).

So to finish the proof it suffices to show

T |Rn\{0} ∈ C∞(Rn \ {0}).
To prove this recall that
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F (xαT ) = (i∂)αT̂ = (i∂)αh.
By the chain rule and the fact that any derivative of β is has compact support
in B(0,M)

c
and any derivative of 1p is non-zero on this set,

∂αh = β∂α
1

p
+ rα

where rα ∈ D(Rn). Moreover,

∂i
1

p
= −∂ip

p2
and ∂j∂i

1

p
= −∂j ∂ip

p2
= −∂j∂ip

p2
+ 2

∂ip

p3

from which it follows that¯̄̄̄
β(ξ)∂i

1

p
(ξ)

¯̄̄̄
≤ C |ξ|−(m+1) and

¯̄̄̄
β(ξ)∂j∂i

1

p

¯̄̄̄
≤ C |ξ|−(m+2) .

More generally, one shows by inductively that¯̄̄̄
β(ξ)∂α

1

p

¯̄̄̄
≤ C |ξ|−(m+|α|) . (35.17)

In particular, if k ∈ N is given and α is chosen so that |α|+m > n+ k, then
|ξ|k ∂αh(ξ) ∈ L1(ξ) and therefore

xαT = F−1 [(i∂)αh] ∈ Ck(Rn).

Hence we learn for any k ∈ N, we may choose p sufficiently large so that
|x|2pT ∈ Ck(Rn).

This shows that T |Rn\{0} ∈ C∞(Rn \ {0}).
Here is the induction argument that proves Eq. (35.17). Let qα :=

p|α|+1∂αp−1 with q0 = 1, then

∂i∂
αp−1 = ∂i

³
p−|α|−1qα

´
= (− |α|− 1) p−|α|−2qα∂ip+ p−|α|−1∂iqα

so that
qα+ei = p|α|+2∂i∂αp−1 = (− |α|− 1) qα∂ip+ p∂iqα.

It follows by induction that qα is a polynomial in ξ and letting dα := deg(qα),
we have dα+ei ≤ dα +m − 1 with d0 = 1. Again by indunction this implies
dα ≤ |α| (m− 1). Therefore

∂αp−1 =
qα

p|α|+1
∼ |ξ|dα−m(|α|+1) = |ξ||α|(m−1)−m(|α|+1) = |ξ|−(m+|α|)

as claimed in Eq. (35.17).
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35.3 Appendix: Old Proof of Theorem 35.4

This indeed turns out to be the case but is a bit painful to prove. The next
theorem is the key ingredient to proving Eq. (35.10).

Theorem 35.11. Let ψ ∈ D (ψ ∈ S) dλ(y) = ψ(y)dy, and φ ∈ C∞(Rn)
(φ ∈ S). For � > 0 we may write Rn =

`
m∈Zn(m�+ �Q) where Q = (0, 1]n.

For y ∈ (m� + �Q), let y� ∈ m� + �Q̄ be the point closest to the origin in
m�+ �Q̄. (This will be one of the corners of the translated cube.) In this way
we define a function y ∈ Rn → y� ∈ �Zn which is constant on each cube
�(m+Q). Let

F�(x) :=

Z
φ(x− y�)dλ(y) =

X
m∈Zn

φ(x− (m�)�)λ(�(m+Q)), (35.18)

then the above sum converges in C∞(Rn) (S) and F� → φ ∗ψ in C∞(Rn) (S)
as � ↓ 0. (In particular if φ,ψ ∈ S then φ ∗ ψ ∈ S.)
Proof. First suppose that ψ ∈ D the measure λ has compact support

and hence the sum in Eq. (35.18) is finite and so is certainly convergent in
C∞(Rn). To shows F� → φ∗ψ in C∞(Rn), let K be a compact set andm ∈ N.
Then for |α| ≤ m,

|∂αF�(x)− ∂αφ ∗ ψ(x)| =
¯̄̄̄Z
[∂αφ(x− y�)− ∂αφ(x− y)] dλ(y)

¯̄̄̄
≤
Z
|∂αφ(x− y�)− ∂αφ(x− y)| |ψ(y)| dy (35.19)

and therefore,

k∂αF� − ∂αφ ∗ ψk∞,K ≤
Z
k∂αφ(·− y�)− ∂αφ(·− y)k∞,K |ψ(y)| dy

≤ sup
y∈supp(ψ)

k∂αφ(·− y�)− ∂αφ(·− y)k∞,K

Z
|ψ(y)| dy.

Since ψ(y) has compact support, we may us the uniform continuity of ∂αφ on
compact sets to conclude

sup
y∈supp(ψ)

k∂αφ(·− y�)− ∂αφ(·− y)k∞,K → 0 as � ↓ 0.

This finishes the proof for ψ ∈ D and φ ∈ C∞(Rn).
Now suppose that both ψ and φ are in S in which case the sum in Eq.

(35.18) is now an infinite sum in general so we need to check that it converges
to an element in S. For this we estimate each term in the sum. Given s, t > 0
and a multi-index α, using Peetre’s inequality and simple estimates,
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|∂αφ(x− (m�)�)λ(�(m+Q))| ≤ Cν−t(x− (m�)�)

Z
�(m+Q)

|ψ(y)| dy

≤ Cν−t(x)νt((m�)�)K

Z
�(m+Q)

ν−s(y)dy

for some finite constantsK and C.Making the change of variables y = m�+�z,
we find Z

�(m+Q)

ν−s(y)dy = �n
Z
Q

ν−s(m�+ �z)dz

≤ �nν−s(m�)

Z
Q

νs(�z)dy

= �nν−s(m�)

Z
Q

1

(1 + �|z|)s dy

≤ �nν−s(m�).

Combining these two estimates shows

kνt∂αφ(·− (m�)�)λ(�(m+Q))k∞ ≤ Cνt((m�)�)�
nν−s(m�)

≤ Cνt(m�)ν−s(m�)�n

= Cνt−s((m�)�n

and therefore for some (different constant C)X
m∈Zn

pk (φ(·− (m�)�)λ(�(m+Q))) ≤
X
m∈Zn

Cνk−s(m�)�n

=
X
m∈Zn

C
1

(1 + � |m|)k−s
�n

which can be made finite by taking s > k+n as can be seen by an comparison
with the integral

R
1

(1+�|x|)k−s dx. Therefore the sum is convergent in S as
claimed.
To finish the proof, we must show that F� → φ ∗ψ in S. From Eq. (35.19)

we still have

|∂αF�(x)− ∂αφ ∗ ψ(x)| ≤
Z
|∂αφ(x− y�)− ∂αφ(x− y)| |ψ(y)| dy.

The estimate in Eq. (35.9) gives

|∂αφ(x− y�)− ∂αφ(x− y)| ≤ C

Z 1

0

νM (y� + τ(y − y�))dτ |y − y�| ν−M (x)

≤ C�ν−M (x)
Z 1

0

νM (y� + τ(y − y�))dτ

≤ C�ν−M (x)
Z 1

0

νM (y)dτ = C�ν−M (x)νM (y)
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where in the last inequality we have used the fact that |y� + τ(y − y�)| ≤ |y| .
Therefore,

kνM (∂αF�(x)− ∂αφ ∗ ψ)k∞ ≤ C�

Z
Rn

νM (y) |ψ(y)| dy → 0 as �→∞

because
R
Rn νM (y) |ψ(y)| dy <∞ for all M <∞ since ψ ∈ S.

We are now in a position to prove Eq. (35.10). Let us state this in the form
of a theorem.

Theorem 35.12. Suppose that if (T, φ) is a distribution test function pair
satisfying one the three condition in Theorem 35.3, then T ∗φ as a distribution
may be characterized by

hT ∗ φ, ψi = hT, φ̃ ∗ ψi (35.20)

for all ψ ∈ D(Rn) and all ψ ∈ S when T ∈ S 0 and φ ∈ S.
Proof. Let

F̃� =

Z
φ̃(x− y�)dλ(y) =

X
m∈Zn

φ̃(x− (m�)�)λ(�(m+Q))

then making use of Theorem 35.12 in all cases we find

hT, φ̃ ∗ ψi = lim
�↓0
hT, F̃�i

= lim
�↓0
hT (x),

X
m∈Zn

φ̃(x− (m�)�)λ(�(m+Q))i

= lim
�↓0

X
m∈Zn

hT (x), φ((m�)� − x)λ(�(m+Q))i

= lim
�↓0

X
m∈Zn

hT ∗ φ((m�)�iλ(�(m+Q)). (35.21)

To compute this last limit, let h(x) = T ∗ φ(x) and let us do the hard case
where T ∈ S 0. In this case we know that h ∈ P, and in particular there exists
k <∞ and C <∞ such that kνkhk∞ <∞. So we have¯̄̄̄

¯
Z
Rn

h(x)dλ(x)−
X
m∈Zn

hT ∗ φ((m�)�iλ(�(m+Q))

¯̄̄̄
¯

=

¯̄̄̄Z
Rn
[h(x)− h(x�)] dλ(x)

¯̄̄̄
≤
Z
Rn
|h(x)− h(x�)| |ψ(x)| dx.

Now
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|h(x)− h(x�)| ≤ C (νk(x) + νk(x�)) ≤ 2Cνk(x)
and since νk |ψ| ∈ L1 we may use the dominated convergence theorem to
conclude

lim
�↓0

¯̄̄̄
¯
Z
Rn

h(x)dλ(x)−
X
m∈Zn

hT ∗ φ((m�)�iλ(�(m+Q))

¯̄̄̄
¯ = 0

which combined with Eq. (35.21) proves the theorem.




