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Preface

A few years ago, I found myself in the emergency room of the local hospital.
While painting my house, I had fallen through a window and cut both my
arms. As a nurse busily worked to stop the bleeding, she asked me what 1 did
for a living. I told her I taught psychology. My response apparently interested
her, and she eagerly asked me what area of psychology I taught. When I said
statistics, she was quite disappointed. I told her that I found statistics to be fun
and exciting; she thought I must be crazy. Probably many of the student
readers of this text (and perhaps a few of their instructors as well) feel the
same way about statistics as the nurse did. It is my hope that this text will
make students and instructors fear the topic less and even make a few of you
enjoy the topic as much as 1 do.

This textbook is written for students majoring in the social and behavioral
sciences. It provides a first course in data analysis. Students should learn the
basic methods that social and behavioral scientists use in analyzing data to test
hypotheses. The book is intended to be comprehensible to students who are
not planning to go on to postgraduate study, but I have also included material
to prepare students for graduate school. Even the active researcher may find
the book a useful resource, because I have covered many practical issues that
are not typically included in textbooks.

The book begins with a general introduction to the major terms in data
analysis. The next seven chapters present procedures that have been de-
veloped to describe data. Measures of central tendency, variability, and
association are presented. Chapters 9, 10, and 11 introduce the key concepts
that underlie the drawing of statistical conclusions. Presented are sampling,
the normal and binomial distributions, and sampling distributions. The final
seven chapters discuss statistical models, and the standard tests of statistical
significance are presented here as well.

Much of the computation of statistics is no longer an unpleasant and
laborious task. With the easy access to computers and calculators today, an
undergraduate can do the statistical computation in five minutes that used to
take a Ph.D statistician weeks to do. This book recognizes this fact and
emphasizes interpretation and understanding as opposed to computation.

vif
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Some students understandably feel intimidated by statistics and its formu-
las and nomenclature. One way to lessen their fear is to make the style of
presentation informal. I have avoided numbering sections and formulas and
have tried to nse words instead of symbols whenever possible. In fact, many
of the formulas are stated in terms of words instead of abstract symbols.

Another way to increase comprehensibility is to use many examples. I have
included examples from the areas of nonverbal communication, teacher ex-
pectancies, vandalism, age and short-termn memory, obedience to authority,
voting in Congress, and many others. Where possible, I present actual data
instead of made-up numbers. Examples are drawn from psychology, educa-
tion, genetics, public pelicy, business, sociology and anthropology, medi-
cine, and meteorology.

I have also attempted to make the book very practical and to discuss topics
that professional researchers face with real data. Many of the classical topics
in statistics {e.g., selecting balls from urns) are of interest to the statistician,
but their abstract discussion is of little value to the undergraduate who is
struggling with the topic for the first time.

A related goal of mine was 1o include important topics that are not covered
in enough detail in many statistics texts. I have incorporated much more
material on the efféct of unusyal data points, issues of data transformation,
porary texts.

Modern data analysis, whether the discipline is psychology or economics,
or whether the design is experimental or observational, uses primarily correla-
tional techniques. This book has four chapters on the subject of correlation
and regression and contains much more detail than most of the statistics texts
that are currently available. The purpose of the text is to feature data analysis
technigues that are being used now and will be increasingly used in the future,
and to avoid the discussion of techniques that are no longer used but were
important many years ago.

The task of writing a book is always a collective effort that extends beyond
the listed authors. This was certainly true of my endeavor. I would first like to
acknowledge the assistance of my reviewers: David Chizar, the University of
Colorado, Boulder; Jon A. Christopherson, formerly of the U.S. Coast Guard
Academy; Charles M. Judd, the University of Colorade, Boulder; Katherine
W. Kiein, North Carolina State University, Thomas E. Nygren, the Ohio
State University; Mike Raulin, State University of New York at Buffalo;
Howard M. Sandler, Peabody College of Vanderbilt University; Robert
Seibel, the Pennsylvania State University; Joseph B, Thompson, Washington
and Lee University; and Anthony A. Walsh, Salve Regina—the Newport
College. They patiently educated me about a number of important issues.

Special thanks are due to those at Little, Brown who guided this project.
Tom Pavela convinced me that I could write a book in this area that would be
new and exciting. Molly Faulkner took what was only an outline and de-
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veloped it into a plan for a book. And Mylan Jaixen took charge of the
difficult task of bringing the book into production. Barbara Breese of Little,
Brown and Melinda Wirkus tuned the manuscript into a book.

A number of my colleagues and students read various chapters and pro-
vided important feedback. In the early stages, Cindi Zagiebroylo and Lisa
Cassady provided me with helpful comments. Later, Thomas Malloy and
especially Claire Harrison carefully read each number and word.

I also wish to thank colleagues who provided me with data. In particular,
Bella DePaulo gave me a fascinating data set that is described in Chapter 2.
Also; Starkey Duncan and Don Fiske are thanked for the data described in
Chapters 5 and 7. Finally, the data in Chapter 6 relating age and short-term
memory were gathered by the late Dennis Ychisin,

A project of this length requires extensive clerical support from many
people. I want to acknowledge their crucial assistance. In the eatly stages,
Mary Ellen Kenny and Robyn Ireland typed numerous drafts of the chapters.
It was Robyn Ireland who put the manuscript onto a word processor. Over the
last year, Claire Harrison handled all the clerical details. Without her assist-
ance, the book would have been delayed considerably.

I am grateful to the literary executor of the late Sir Ronald Fisher, F.R.S;
to Dr. Frank Yates, FR.5.; and to Longman Group-London, Ltd., for
permission to reprint Table IV from Sratistical Tables for Biological, Agri-
cultural and Medical Research (6th ed., 1974).

Finally, my home institution, the University of Connecticut, provided me
with the resources and support to undertake this effort. T completed the project
at the Psychology Department of Arizona State University.
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Introduction

Numbers are very much a part of modern life. “The average high temperature
in New York City for January is 37 degrees Fahrenheit.” “The president’s
popularity is 45%, subject to an etror of 3%.” “After the institution of the 55
mph speed limit, highway fatalities decreased by 16.4%.” “Prices are reduced
in this sale by over 50%.” “There were 12.5 million people enrolled in college
during 1983.” Numbers are just as much a part of modern life as pollution,
rock and roll, miracles of medicine, and nuclear weapons. If the quality of life
is to be improved in this modem world, its citizens must understand how to
make sense out of numbers.

Numbers are not important in and of themselves, They are important
because they help us make decisions. Decisions can be made without num-
bers, but if the right numbers are used, in the right way, the quality of
decisions can be improved. In the purchase of a home computer, for example,
one could guess which computer model is the most reliable, but one would be
better informed if the statistics for repair rate were available. Knowing the
numbers can help the consumer make the decision, but other factors besides
repair rate are important. Ease of use, styling, and cost also contribute to
sensible decision making. Numbers help people make all kinds of decisions in
everyday life—what courses to take, what stereo to purchase, whether to have
a surgical operation. 7

Numbers are essential in helping us as a society make decisions. Changes
in the economy alert business and government to the need for changes in
investment and tax laws. Increases in the rate of cancer point to potential
causes and indicate new environmental legislation. Also, numbers obtained
from Scholastic Aptitude Tests can be used to indicate how good a job schools
are doing. As with individual decisions, societal decisions are not made by the
numbers but rather are guided by them. The political process sets the priorities
and the values. Numbers are a means to an end and not the end unto
themselves.

Numbers are not only used by buman beings, but they come from human
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beings. People attempt to monitor reality and attach numbers to objects. For
instance, today's temperature is 65 degrees, dinner cost $10.41, or the last
movie [ saw was a “10.” All these nermbers refer to an object (a day, a meal or
a movie), but the numbers are attached to the objects by people. Someone
decided to charge $10.41 for a meal, scientists have agreed that, in a fever
thermometer, so many millimeters of mercury comespond to a temperature of
98.6 degrees. Thus, although numbers seem to be cold and impersonal, they
are by necessity personal. Numbers attached to objects only seem to be
objective, but they are actually based on a set of social conventions. A
number referring to an object is given a meaning by persons. Humans use
machines and computers to assist them in assigning numbers to objects, but it
is 2 human being, not the machine, that assigns the pumbers.

Many of today’s numbers come from computers. Phone bills, class regis-
tration forms, library cards, and cash registers continually bombard us with
computer-generated numbers. It is becoming common practice to blame the
impersonal computer for all of society’s ills. People fume when a computer
makes a mistake, but the ervor is usually caused by the person who entered the
data into the computer and not by the machine itself. The numbers from a
computer only seem impersonal. They are actually products of human thought
and action, although it may be difficult to see the hand of the person who
programmed the computer.

If numbers are to be used intelligently, their meaning must first be com-
prehended. To most, numbers are not as enjoyable as a day at the beach, but if
we are to survive and thrive we must learn how to make sense out of them.
That is the purpose of this book: making sense out of numbers.

Essential Definitions

Social and behavioral scientists are busy measuring intelligence, recall, con-
formity, fear, and social status. Measurement is the assignment of numbers to
objects using an operational definition in order to measure a variable. The
following terms must be carefully distinguished: rumber, an object, a vari-
able, and a variable’s operational definition. A number, a score, or a datum is
a numeric value given to an object. If someone has a temperature of 102
degrees, the number is 102. More than one number is called data. The object
is the entity to which the number is attached. So for the previous example of a
person with a 102 degree temperature, the object is the person. The variabie is
the construct that the researcher is attempting to measure. For this example
the variable is temperature. Measurement always requires performing a series
of steps. These steps are called the variable’s operational definition. For
temperature, one operational definition is the level of mercury in a thermo-
meter that has been in the mouth of a person for two minutes.
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Another example might help clarify the distinctions between number,
object, variable, and operational definition. Jane receives a score of 98 on her
midterm examination. The rumber is 98, the object is Jane, the variable is
midterm examination grade, and the operational definition is the number
correct on the midterm examination divided by the total number possible and
then multiplied by 100. Still yet another example is that Paul’s car travels at
63 miles per hour. The number or datum is 63, the object is Paul’s car, the
variable is speed, and the operational definition is the number of miles
traveled during a time period divided by the length of the time period.

Sample and Population

Knowing that your score is 109 on an examination tells you little or nothing.

- If 109 is the lowest grade on the test, however, you know you are in trouble.
Thus it is evident that numbers make little sense in isolation. Only when they
are in groups do they have any meaning. This is the reason that nimbers come
in batches. In this book a set of numbers is called a sample. The term sample
is used because the numbers are assumed to be a subset of scores from a larger
group of scores. The term for the larger group of scores is population. Soif a
researcher studies the performance of rats running a maze, he or she may
examine closely the behavior of a sample of ten rats. But the behaviors of the
ten rats are assumed to be representative of behaviors of the larger population
of laboratory rats.

From the sample data, the researcher computes quantities that are used to
summarize the data. A quantity computed from sample datz is called a
statistic. In statistical work, the data are analyzed for two very different
purposes. A statistic can be used either to describe the sample or to serve as a
basis for drawing inferences about the population. Descriptive stafistics con-
cern ways of summarizing the scores of the sample. Inferential siatistics
concern using the sample data to draw conclusions about the population. So
descriptive statistics refer to the description of the sample, and inferential
statistics have to do with inferences about the population.

Consider a survey of 1000 voters that is to be used to predict a national
election. The 1000 voters form the sample, and all those voting in the national
election form the population. The characterization of the preferences of the
1000 voters in the sample involves descriptive statistics. Using these de-
scriptions to infer about the results of the national election involves inferential
statistics.

Descriptive statistics always precede inferential statistics. First the sample
data are carefully analyzed and then the researcher is in position to draw
inferences about the population. In Chapters 2 through 8 the methods used in
descriptive statistics are presented, Chapters 9 through 18 discuss the pro-
cedures used in inferential statistics.



Part 1/ Getting Started

Level of Measurement

Numbers can provide three different types of information. First, they can be
used simply to differentiate objects. The numbers on the players’ backs when
they play football or baseball are there so that the spectators can know who
scored the touchdown or hit the home run. Second, numbers can be used to
rank objects. Those objects with lower numbers have more (or sometimes,
less) of some quantity. In that case the numbers tell how objects rate relative
to each other. It is a common practice to rank order the participants after the
finish of a race: first, second, third, and so on. Third, numbers can be used to
quanrify the relative difference between persons. This is done when height
and weight are measured. When you lose weight you want to know the
number of pounds that you lost and not just that you weigh less. So, there are
three major uses for numbers:

1. to differentiate objects,
2. to tank objects, and
3. to quantify objects.

The nominal level of measurement serves only to differentiate objects or
persons. Variables for which persons are only differentiated are called nomi-
nal variables. Examples of nominal variables are ethnicity, gender, and
psychiatric diagnostic category. Consider the categorization of persons’
religious affiliations. It is possible to assign a one to those who are Pro-
testants, a two to those who are Jewish, and a three to the Catholics. These
nombers are used to differentiate the religions, but they do not rank or
quantify them. Sometimes each individual receives a unique number, such as
a social security number, and other times many individuals share a common
number (zip'code). Both zip codes and social security numbers are nominal
variables.

The ordinal level of measurement not only differentiates the objects but
also ranks them. For instance, students may be asked to rank-order a set of
movies from most to least enjoyable. Records are often ranked from the least
to the most popular. The “top 40” musical hits illustrate the ordinal level of
measurement. At the ordinal level of measurement, the numbers show which
objects have more of the variable than other objects, but the numbers do not
say how much more.

The interval level of measurement presumes not only that objects can be
differentiated and ranked but also that the differences can be quantified. Thus,
if John weighs 198 pounds, Jim 206, and Sam 214, the amount that Sam
weighs more than Jim, 8 pounds, is equal to the amount that Jim weighs more
than John. The interval level of measurement differentiates, ranks, and
guantifies. Table 1.1 summarizes the ways in which the three levels of
measurement differ.

For variables measured at the interval level of measurement, the numbers
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TABLE 1.1 Properties of Different Levels of Measurement

Level Differentiate Rank Quantify
Nominal Yes No No
Ordinal Yes Yes No
Interval Yes Yes Yes

are said to be in a particular unit of measurement. The unit of measurement
defines the meaning of a difference of one point in the variable. So if a
researcher measures weight, it is important to know whether the unit of
measurement is pound, gram, or kilogram,

For the runner in a race, the number on his or her back is at the nominal
level of measurement, the place the runner comes in is at the ordinal level,
and the time it takes to complete the race is at the interval level. Another
example might help in understanding the differences between the three levels
of measurement. You and your classmates have different numbers. Your
social security numbers differ, and those are nominal differences. You will
have class ranks on the midterm exam, and those are ordinal differences.
Finally, you are different ages, and those are interval differences.

Determining the level of measurement of many variables can be accom-
plished by common sense. It is fairly obvious that a variable such as age in
years is at the interval level of measurement and that gender (male versus
female} is a nominal variable. Generally, the best way to determine the level
of measurement is by the procedures used to measure the variable. For
instance, if subjects are asked to rank order the stimuli, then the stimuli are at
the ordinal level of measurement. Most problematic is establishing that a
variable is at the interval level! of measurement. One can safely assume that a
variable that is measured in physical units—such as time, size, and weight—
is at the interval level of measurement. However, for variables whose units
are quite subjective, for example, a rating of how much a person likes a movie
on a scale from 1 to 10, it is not clear whether the level of measurement is the
ordinal or the interval level. Some researchers prefer to be quite conservative,
and claim that the level of measurement is only at the ordinal ievel. Most
researchers, however, are willing to assume that the variable is at the interval
level.

The decision concerning the level of measurement has very important
consequences for the statistical analysis. The valid interpretation of many of
the commonly used statistical techniques requires that a variable be measared
at the interval level of measurement. There are also techniques that can be
used if the variables are measured at the nominal and the ordinal levels of
measurement, but these techniques tend not to be nearly as informative as
those that were developed for the interval level. If one wishes to be con-
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servative, one can always assume that the variables are at the nominal or
ordinal ievel of measurement.

In some very special cases the same variable can be at one level for one
purpose and at another level for a second purpose. Consider the variable of
first letter of a person’s last name. Ordinarily this would be considered a
nominal variable. That is, the first letter of the last name only differentiates us
from one another. However, Segal (1974) asked members of a police
academy to indicate who their best friends were. Trainees at this academy
were assigned dormitory rooms and to seats in classes on the basis of the
alphabetic order of their last names. And so, trainees whose last names were
closer alphabetically were in closer physical proximity. Segal found that
persons whose names were closer together in the alphabet were more likely to
be friends. In this case the first letter of one’s last name, which is ordinarily a
nominal variable, became an ordinal variable.

In the section of this book dealing with descriptive statistics, Chapters 2
through 7 consider primarily variables measured at the interval level of
measurement, Chapter 8 concermns the description of variables measured at the
nominal and ordinal levels of measurement. In the inferential section, Chap-
ters 10 through 18, the variable of prime importance is measured at the
interval level in all chapters but 17 and 18. Inferential issues for nominal
variables are considered in Chapter 17 and ordinal variables in Chapter 18,

It is common to consider a fourih level of measurement as well. At the
ratio level of measurement it is permissible to compute the ratio between two
measurements. For example, it might be said that John weighs twice as much
as Sally. A key feature of the ratio level of measurement is that the value of
zero is theoretically meaningful. However, the interpretation of no statistical
technique discussed in this text requires that the variables be measured at the
ratio level, and interval-level statistics are appropriate for ratio measurements.

Mathematical Necessities

The purpose of this text is to help the student to understand better the meaning
of numbers. To make sense out of numbers it is necessary to perform
mathematical operations on them. Fortunately, most of the mathematics
emploved is at the high school level.

Rounding

The data in stafistics are usually stated as integer values—for instance, the
number of bar presses, dollars earned annually, or the number correct on a
test. Sometimes a number may have many decimal places and some of the
trailing digits must be dropped to round the number. There are two decisions:
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1. How many decimal places should be reported?
2. What is to be reported for the last digit?

These decisions must be made whenever computations are performed in data
analysis. After dividing or taking a square root, the resulting number may
have many trailing digits.

A good rule of thumb is to report a result of calculations to two more digits
than the original data. So if the original data were integers or whole numbers,
the result would be reported to two decimal places—that is, to the nearest
hundredth. Because many statistics involve finding small differences between
large numbers, one should use as many digits as possible during intermediate
calculations. Minimally, during computations four more digits than the ori-
ginal data (twice as many as the number of digits to be reported) should be
used. Any numerical result that is compared to a number in a table should be
computed to at least as many digits as there are in the table.

After having decided on the number of digits to report, there is still the
decision about what to do with the last digit. This decision concerns rounding.
In rounding, one begins by examining the remaining quantity after the digit
that is to be rounded. So if the number to be rounded is 4.3256 and the result
is to be rounded to the nearest hundredth, then the remaining quantity is 56. If
that quantity is greater than 50, one rounds up and less than 50 one rounds
down. If the quantity number is exactly 30, then one rounds to the nearest
even number. The numbers below are rounded to the nearest hundredth, as
follows:

12.12123 is rounded to 12.12
12.12759 is rounded to 12.13
12.124 is rounded to 12.12

12.12507 is rounded to 12.13
12.12500 is rounded to 12.12
12.13500 is rounded to 12,14

When there is one number to be rounded that is exactly 5, it is not
uncommon for there to be many such numbers. To avoid substantial rounding
error, one should consider including another significant digit before rounding.
For instance, instead of rounding to two decimal places, one rounds to three
decimal places.

Proportions, Percentages, and Odds

If you take a multiple-choice test and get 24 correct out of 30 questions, there
are a number of ways to express how well you did on the test. You counld
compute the proportion of the items that you successfully completed. That
would be 24 divided by 30 or .80. Because decimal points can be confusing,
the proportion is often multiplied by 100 to obtain the percentage of correct
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items: 100% X .80 = 80%. Finally the odds of answering a question correctly
can be computed. To compute this, the number correct, 24, is divided by the
number incorrect: 24/6 = 4. In brief, the proportion of correct answers is .80,
the percentage is 80, and the odds of answering a question correctly are 4 to I,
or 4.

The formulas for proportion, percentage, and odds are as follows, where n
is the number correct and m the number incorrect:

n

roportion correct =
prop n+m

percentage correct = 100 X proportion

odds of being correct = %

The odds can be derived from the proportion and from the percentage as
follows:

proportion  percentage

odds = 1 ~ proportion 100 - percentage

Altemnatively, the proportion and the percentage can be derived from the odds;

that 1s,
ropattion = &
prop odds + 1
ercentage = ﬂ
P 8 odds + 1

Squares and Square Roots

In statistical work it is often necessary to square numbers and to compute
square roots. Recall that a number squared equals the number times itself. The
term X squared is denoted by X 2. Thus, 6 squared is symbolized as 62 and is 6
times 6, or 36. The square root of a number times the square root of the same
number equals the number. Thus, the square root of 9 (3) times the square
root of 9 (3) equals 9. The square root of a number X is symbolized by the
radical sign: VX. The square root of a negative number yields an imaginary
solution, so one ordinarily does nat attempt this-computation. Also, the
square root of X ? equals either +X or —X. In statistical work, only the positive
square root is normally considered.

Logarithms

A bit more complicated than sgnares and square roots are logarithms—or, as
they are more commonly and simply called, logs. A logarithm is said to have
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a base. The logarithms that you probably leamed about in high school are
called common logarithms and their base is 10. The logarithm of X for base 10
is defined as the number Y that satisfies the equation

X = 10¥
So if X = 100, then ¥ = 2 because
100 = 107

It is said that 2 is the log of 100 with a base of 10.

The antilog of a number is that quantity whose logarithm would produce
the number. For instance, 100 is the antilog of the number 2 with a base of 10.

In scientific work it is more common not to use 10 as the base but to se a
special number e. The number ¢, like the number 7(3.14 . . ), which is used
to compute the diameters and areas of circles, has unique mathematical
properties. Both 7 and e have an infinite number of trailing digits. The value
of e to three decimal places is 2.718. The number 2.718 can be used to
approximate e. The number e is very nuseful in accounting. Say I had X dollars
and I found a banker who would give me a 100% interest rate compounded
instantaneously. At the end of the period I would have X times ¢ dollars. The
number e is also very useful in demography in projecting population growth.

Logarithms to the base e are called natural logarithms and they are usually
symbolized as In(X}. If the common log of a number is known, one can
convert the common log into the natural log. The formula for doing so is

In(X) = 2.303 log,¢(X)

In words, the natural logarithm of a number approximately equals 2.303 times
the common logarithm of a number.

There are a number of facts about logarithms that hold regardless of base.
First, it should be noted that the logs of zero or a negative number are not

. defined, regardless of the base. Second, the log of the product of two numbers
equals the sum of the logs of the two numbers. This second fact explains how
a calculator or a computer might multiply two numbers. It could multiply by
adding the logs of two numbers and then taking the antilog.

Because logarithms are difficult to determine, they are usually tabled.
Logarithms are available on many hand-held calculators and almost all com-
puters. On calculators common logs are usually denoted as log(X) and natural
{base ¢) logs are usually denoted as In(X).

Summation Sign

Many times in statistical work it is necessary to add a set of scores. For
instance, suppose the sum of the following ten numbers is needed: 76, 83, 41,
96, 38, 71, 87, 39, 66, and 99. Their sum can be denoted as
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76 + 83 +41 + 96 + 38+ 71 + BT + 3% + 66 + 99

but that takes up too much space, and so simplification is needed. First, let X,
stand for 76, X, for 83, and so on. The sum of the ten numbers can be
represented by

X]+X2+X3+X4+X5+X6+X7+X3+X9+Xm

This is more compactly represented by
14
2 X,
i=1

which is read as the sum of the X ’s. The symbol Z is called a summation sign.
The terms below (i = 1) and above (r) the summation sign mean that the X s
are summed from X, to X,,. The terms i = 1 and the # that are below and above
the spmmation sign are generally omitted and implicitly understood when the
intent is to add all of the numbers in the set. The symbol £ is a Greek capital
Tetter sigma which sounds like an “s.” The first letter of sum is an “s,” and so
a Greek “s” is used to stand for sum. The symbol ZX is read as “sum all the
X’s.”
One basic theorem for summation signs is

Sk =nk

where n is the number of terms that are summed and k is a constant, such as
2.0. In words, summing a constant # times equals n times the constant.
A second theorem is

SX+Y)=3X+YY

In words, sam of the sums of two sets of pumbers equals the sum of the sums
of the sets added separately. It is easy to verify the truth of this theorem.
Consider the scores of four persons on the variables X and ¥:

Person X Y X+Y

1 9 12 21
2 13 11 24
3 6 9 15
4 19 8 18

Total 38 a0 TR

The sum of the X ’s or X equals 38, and the sum of the ¥’s or Z¥ equals 40. It
is then true that £X + XY equals 78. The sum of X + Y also equals 78.

It is important that X2 be clearly distinguished from (ZX ). The term =X 2
is the sum of the squared numbers: square first, then sum. The term (ZX)? is
sum of all the numbers, which is then squared: sum first, then square. So if
the set of numbers is 4, 7, and 9, £X? equals 16 + 49 + 81 or 146, and (ZX)?
equals. (4 + 7 + 9)? or (20)% or 400.
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Using a Calculator in Statistical Work

The analysis of data is aided by the use of a caleulator, and it has become an
indispensable tool in statistical work. Even with the increasing availability of
computers, a calculator remains a very important tool in data analysis. A
calculator eases the burden of tedious computation. Before purchasing a
calculator you should consider the following facts.

1. The calculator should be able to handle large numbers, up to 99,999,999 at
least. When balancing a checkbook, most people do not need eight digits,
but in data analysis numbers that large are often encountered. Even though
the data may have only a few digits, certain computations requiring
summing and squaring can easily result in large numbers.

2. A calculator should have a square root key. Looking up square roots in
tables creates too much rounding error, and computing them by hand is
time-consuming.

For this text, it is helpful to have a calculator that has a memory key. This key
can be used to store intermediate values to many significant digits. it is also
desirable for the calculator to have a key for logarithms. Preferably the
calculator has a natural logarithm key (in). If there is only 2 key for common
logs (log), then one can first compute the common log and then multiply by
2.303 to obtain the approximate natural log value.

It is possible to purchase, at greater cost, calculators that perform some of
the statistical methods described in this book. However, for the beginner these
calculators can create problems becanse it may be quite difficult to determine
whether an error has been made. After completing this course, you might
consider purchasing one of these more sophisticated calculators.

There are a number of helpful hints that can increase the accurracy in your
computation:

1. Because most rounding error is introduced by square root, division, and
logarithm operations, one should perform them as late as possible in a
calculation.

2. Save preliminary computations in the calculator’s memory or, if that is not
possible, on a piece of paper. So if you make a mistake near the end of the
calculation, you do not have to start all over.

3. All calculations should be repeated to check for errors.

4. On many calculators you must hit the equal sign to complete the calcula-
tions. Make certain that you have hit the equal sign when you have
completed the calculation. If you fail to do so, your final result may be
incorrect.

5. Before beginning the calculations, hit the clear key. If you fail to do so,
prior calculations may carry over o the next set of calculations.
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Numbers are part of moderm life. They help us in making decisions in our own
lives and in decisions made by society. Persons create the numbers, not
machines.

A number refers to an object or a person and is assigned to that object or
person by a set of rules, called the operational definition. The variable is the
construct that the researcher is attempting fo measure. A set of numbers is
called a sample, which in tuin is part of a larger set called the population.
Procedures that summarize the sample data are called descriptive statistics,
and procedures used to draw conclusions about the population are called
inferential statistics.

The number can be measured at one of three levels. At the nominal level
the numbers only differentiate the objects. Examples of nominal variables are
gender, ethnicity, and political party. At the ordinal level the numbers
differentiate and rank the objects. An example of an ordinal variable is the
order of finish in a race. At the inzerval level the numbers differentiate, rank,
and quantify the objects. Examples of interval variables are weight, height,
and age. For a statistic to be properly interpreted, it must be measured at the
appropriate level of measurement. The level of measurement for a given
variable is determined by theory and experience.

A percentage is 100 times a proportion. The odds are a proportion divided
by one minus the proportion. The logarithm of a number is defined as that
exponent for a base that equals the number. The base used in scientific work is
e, which equals approximately 2.718. The summation sign 2 is commonly
used to denote the sum of a set of numbers.

1. For each of the following, identify the number, object, and variable.

a. a score of 76 for John on the midterm

b. $6.98 for a Rolling Stones album

c. 28 EPA estimated mileage for the 1986 Ford Tempo
d. Mary, a brown-eyed person

e. Sue, the third person to arrive at the party

f. soft drnk A, which has 40 calories

g. Joe, whose telephone area code is 202

h. the Conolly building with 44 floors

2. State the level of measurement for the following variables.

a. heartheats in a one-minute period
b. biocod type
¢. birth order (e.g., firstborn, second-born}
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rating a movie from one to ten

age

ethnicity (e.g., black, white, Hispanic)
army raok (e.g., captain, lieutenant)
eye color (e.g., biue, brown)

Fw oo

. Compute the following and round to the nearest hundredth.

a. In(67) b. In(.55)
c. (V15)6.1)%n(15)  d. 71/1a(.01)

. One person’s mood is measured for 20 straight days. The 20 numbers can
be treated as a sample. For this example, what are the objects?

. Round the fol]owing numbers to the nearest hundredth.

a. .524  b. -325 c. .B35 d. .5251
e. —483 f. -.12563 g. -.130  h. .355

. Harrison (1980) studied reactions to offers of aid. The eight subjects in
the experimental condition were offered help on a boring task. They
subsequently rated on an eleven-point scale how uncomfortable they
expected to feel in future interactions with the person who had offered
help. The results are given below. A higher score indicates more dis-
comfort.

1 3 5 3 7 73
Find the following quantities.

a. X b, IX? c. (ZX)?
d ZX-1 e ZX-1 f SX-1¥

. Cutrona (1982) asked 162 college freshmen what events or situations
triggered loneliness. The percentage of responses in each category is
listed below.

Category Percent
A. Leaving family and friends 40
B. Breakup of relationship 15
C. Problems with friends 11
D. Family problems

‘E. Academic difficulties 11
F. Living in isolation 6
G. Fraternity or sorority rejection - 3
H. Medical problems 2
I. Birthday forgotten 1

a. Compute the proportion of responses in each category.
b. Compute the odds of a response occurring in each category. Round
the odds to two decimal places.
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8.

10.

11.

12.

A researcher has 20 male subjects study a list of 40 words for five

,minutes, They are then asked to recall the 40 words. The researcher

develops a memory score, which is the perceatage of words comectly
recalled. Identify

a. the objects

b. the data

c. the variable.

d. the operational definition
e. the units of measurement

Round the following numbers to the nearest tenth,

a. .6666 b. -333 ¢ .66 d. .55
e. —450 f. —451 g. —4501 h. .4999

Compute natural logarithms of the following numbers and round the
result to the nearest thousandth.

a. 15 b. 21 ¢ .33 d. .19
e. 2.718 f. 1.000 g. 10.00  h. .3333

Consider a set of houses on one side of the street with the following
addresses.

101, 121, 141, 181, 201, 221, 223
At what level of measurement are these numbers?
For the following sample of numbers,
1,6,7,4,3,6,4
comptute

a =X b. Tx? c. (£X)?
d3X-1 e 2X-1 f 2(X-17?
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‘The Distribution of
Scores

I think that we all enjoy going to a shopping mall and sitting and watching
people go by. It is amazing how many sizes and shapes we observe in a very
brief period of time. Some people are very tall and muscular with no necks.
Some are absurdly overweight and do not seem to walk but to waddle. Some
are so pencil thin that it is difficult to understand what keeps their pants on.
Some have fat Jegs and skinny arms. People certainly come in different shapes
and sizes.

Though not as fascinating as people, groups of numbers or samples also
come in different shapes and sizes. The technical and more general name for
the shape of a sample of numbers is distribution.

Numbers by themselves can overwhelm us. One purpose of data analysis is
to simplify the presentation of the numbers so that their meaning becomes
more apparent. Systematically rearranged numbers make much more sense
than raw data.

To facilitate the comprehension of how to understand the distribution of a
set of numbers, consider a report by Smith (1980). She reviewed 32 studies on
the gender bias of therapists.! These studies investigated whether clinical
psychologists, psychiatrists, and counselors were prejudiced toward one gen-
der or the other. In each study, one or more therapists advised male and
female clients. It was possible to measure whether the advice given to the
male clients was more positive than the advice given to female clients. For
instance, one study that Smith reviewed asked whether career counselors
encouraged males to enter higher-prestige occupations than females. Smith’s

'Smith included 34 studies in her repori. For both pedagogical and scientific reasons, two
studies that she felt were of low quality are drepped. For studies with more than one ontcome, the
outcomes are simply zveraged. Some of the studies in Smith’s review did not compare the
reaction of therapists to males and females but rather compared their reaction to a gender role
stereolypic person-versus a nonstereotypical person. In these studies bias toward the stereotypic
person was coded positively and bias toward the nonstereotypic person was coded negatively.

21
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index works as follows: A positive score indicaies a male bias, zero indicates
neufrality, and a negative score indicates a female bias. A small amount of
gender bias would be indicated by a score of .2, a moderate gender bias by a
score of .5, and a large bias by a score of £.8. As an example, a score of
.23 would indicate that therapists reacted more positively to males, but the
difference is small. The scores for her 32 studies are contained in Table 2.1.

The Frequency Table and Histogram

TABLE 2.1

It is difficult to make any sense immediately out of the 32 numbers as they are
presented in Table 2.1. With a little study, however, some patterns do appear
in the data. There seem to be just about as many studies with negative scores
as positive scores. Thus the therapists do not seem to be consistently biased
one way or the other. But this is much too coarse a judgment. A way of
rearranging the numbers is needed so that their meaning can be better un-
derstood.

The first thing that can be done with sample data is to rank order them from
smallest to largest. Recall that a larger negative number, such as —1.03, is
farther from zero than a smaller negative number, such as —.56. The rank
ordering of Smith’s scores is as follows:

-1.03 -23- .00 .14
-5 22 00 .23
~40 -10 .00 24
-36 -03 .01 29
=31 000 .01 35
-.31 D0 02 56
-.23 00 05 56
-23 00 11 .60

The picture is now slightly less confused. Overall there is one more study that
shows a bias favoring males than ones favoring females, but a fairly large
number of studies show little or no gender bias.

There is stiil too much detail that gets in the way of understanding the

Data for the Studies of Gender Bias

.29 -0 —.40 .00
.56 =31 .00 35
.00 .14 02 A1
-3 -.22 -.03 -.23
.56 R0 .00 -.56
-1.03 .00 -.23 .23
.00 -.10 .03 00

60 _3 24 _36
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numbers. One way of reducing the confusion is to remove some of the detail.
it is not that crucial to know that one study has a score of .24 and another a
score of .29. What is needed is to gather those studies having similar scores
into groups or classes. Therefore the measure of gender bias is divided into
intervals of a certain width, and the number of scores that fail within each
interval is tallied. Each interval has a lower limit, which is the Jowest possible
score that can fall in the interval, and an upper [imir, which is the highest
possible score that can fall in the interval.

The class interval then defines the range of possible scores that can be a
member of a given class. For instance, for the class interval .10 to .29, the
Jower limit is .10 and the upper limit is .29. So any score that falls between
.10 and .29 would fall in that class. The complete set of class intervals for the
gender bias data is as follows: '

Class Interval ~ Freguency Relative Frequency
-1.10 to -.51 1 3
-.90 to .71 0 0
-70t0 ~.51 1 3
-.50 to 31 4 12
=30t -11 4 12
~10to .09 13 41
A0 to 29 5 16
3010 49 l 3
S0w .69 3 9
Total 32 99

In the first column are the classes, each with its lower and upper limit. The
class width is defined as the difference between adjacent lower limits; in this
case the class width is .20. The second column gives the frequency or number
of cases in the class interval; for example, four studies have scores between
—.30 and —.11. The final column gives the relative frequency, which is 100
times the frequency divided by sample size. For instance, for the interval
--1.10 to —.91 the frequency is 1 and the sample size is 32 making the relative
frequency 100 times 1 divided by 32 which equals 3, when rounded to the
nearest whole number. Relative frequencies need not always be calculated,
but they are especially informative when two different samples with different
sample sizes are being compared.

The complete table of class intervals, frequencies, and relative frequencies
is called a frequency table. The frequency table for Smith’s scores shows that
the scores cluster around zero, with about as many studies showing 2 male
gender bias as a female gender bias. Scores between —.1 and +.1 can be
considered as showing virtually no gender bias. The relative frequency of
scores in the — 10 to .09 class is 41%, and therefore 41% of the studies show
little or no gender bias.

Sometimes it is useful to compute the cumulative frequency. As the name
implies, the cumulative frequency for a given class is the sum of all the
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frequencies below or equal to the upper limit of that class. So for the interval
of -.70 to —.51, the cumulative frequency is 1 + 0 + 1 = 2. It is also possible
to compute the cumulative relative frequency by dividing the cumulative
frequency by the sample size.

A graph of the frequency table is called a hisrogram. A graph has two lines
that intersect at a right angle. These lines are called axes. The horizontal axis
in a graph is called the X axis. The vertical axis is called the ¥ axis.” In a
histogram the class intervals are on the X axis. The frequency, raw or relative,
is on the vertical or Y axis. The resulting graph for the Smith data is presented
in Figure 2.1. The histogram shows the shape of the 32 scores. The dominant
feature of the graph is the peak in the middle of the numbers at about zero.

The basic steps to determine the shape of a sample of numbers are then

1. rank ordering the scores,
2. grouping the scores by class intervals, and
3. graphing the frequency table.

These steps are now discussed in more detail and generality.

Rank Ordering

FIGURE 2.1

This step is fairly simple. The numbers are ordered from smallest to largest.
Although this step is not absolutely necessary, it is generally advisable to do it
for the following reasons. First, the mere rank ordering already begins to
describe the shape of the scores. Second, it makes the steps of creating a
frequency table and a histogram easier because the frequency of scores that

Histogram for 32 siudies of gender bias of therapists.

-
<
T

Frequency

S PR O PR PO RSP PR I AP

-1.005 -.605 -.205 195 595

?The X axis is commonly calied the abscissa and the ¥ axis the ordinate,
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fall in a given interval can be quickly determined. Third, the computation of
various slatistical summaries that are discussed in the following chapters
require a rank ordering of the numbers.

Grouping

To group the data, class intervals must be created. The first question is that of
how many classes there should be or, correspondingly, how wide the class
intervals should be. One reasonable guideline is to have between 8 and 15
classes. To determine the width of the class interval, the smallest score in the
sample is subtracted from the largest score. This quantity is divided by 8 1o
determine the maximum class width and by 15 to obtain the minimum class
width, For the gender bias studies, the smallest score is —1.03 and the largest
is .60. The maximum class width is 1.63/8 or .20 and the minimum class
width is 1.63/15 or .11. So the class width should be somewhere around .20
and .11.

The second guideline in determining class width is the sample size. The
number of scores (the sample size) divided by the number of classes should be
at least three. Stated differently, the average number of scores per class
should be at least three. Given 32 scores, dividing by 15 classes, there are
about onty two observations per class. If there were 8 classes, there would be
four observations per class. Thus .20 as the class width with about 8 classes
seems like a good choice. It is perfectly permissible to have more than 15
classes when the sample size is large (more than 60), and with small sample
sizes (less than 20) there should be fewer than 8 classes.

Once the class interval has been chosen, the lower limit of the lowest class
interval or the Jowest lower limit must be determined. The lowest class limit is
the smallest score in the sample, rounded down to a convenient number. For
the gender bias study, the smallest score is —1.03, and rounding down yields
-1.10.

It 1s often necessary to try out a number of altermative class widths and
lowest lower limits and see which works out best. Also certain features of the
data must be considered when choosing these valnes. For instance, for the
gender hias data, I made sure that zero, which indicates no bias, was near the
middle of a class interval. To have zero near the middle of the interval was
accomplished by having —1.10 as the lowest lower limit and not some other
value such as ~1.05.

In determining the class width, attention should be paid to the unit of the
distribution. The unit of the distribution is the smallest possible difference
between a pair of scores. For the gender bias study, the unit of the distribution
is hundredths or .01. The lower limit must be in the same unit and the class
width should be an integer multiple of the unit. For example, consider the
Milgram study (1963), which is presented in detail in the next chapter. Some
of the data are
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300, 313, 450, 345, 330, 375

Al of these scores are in multiples of 15, so the unit of the distribution is 15.
The class widths shouid be in multiples of 15. Thus 30 and 45 are acceptable
class widths, whereas 10 and 40 are not.

Graphing

Outliers

Although the tally of the number of scores in an interval is helpful, a graph or
histogram of the tally is even more informative. Though trite, it is still true
that a picture 1s worth a thousand words.

In & histogram, the X axis or horizontal axis is the variable of interest
divided into classes. The usual convention is to demarcate the X axis in a
histogram by the class midpoints. The midpoint of a class interval is defined
as half the sum of the upper limit of the class interval and the lower limit. So
for the interval .10 to .29, the midpoint is (.29 + .10)/2, which equals .195.
To have midpoints that do not have the additiona] trailing digit (the 5 in .195),
it is advisable to have class intervals whose widths are odd. For the gender
bias data, a class width of .15 or .25 might be a good alternative to .20.

The ¥ axis or vertical axis in a histogram is the frequency for a class. Either
the frequency or the relative frequency can serve as the Y axis. Occasionaily
the cumulative frequency is used.

The procedures that have been described are especially helpful in identifying
outliers. An outlier is a score in the sample that is considerably larger or
smaller than most of the other scores. In Chapter 4 a quantitative definition of
“considerably” larger or smaller will be given,

As an example of outliers consider a second data set. DePaulo and
Rosenthal (1979) had a number of persons, called targets, describe someone
they liked. Forty persons, called perceivers, subsequently viewed videotapes
of the targets” descriptions. The perceiver judged on a nine-point scale how
much the target liked the person that the target was describing. These ratings
of liking made by each perceiver were then averaged across the targets that the
perceiver viewed. Although none of the targets lied in their descriptions, the
perceivers were led to believe that some of the targets may have been lying.
High average liking scores for a perceiver indicate that the perceiver correctly
judged the targets as liking the persons that they were describing. Low scores
indicate inaccuracy. The rank-ordered scores for the 40 perceivers are as
follows:
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1.37 5790 e6.l6 6.55 7.05
221 570 6.16 6.63 705
321 580 626 663 7.26
465 595 635 6.65 7.30
505 605 640 6.73 7.35
555 6.05 642 6775 7.35
565 610 645 689 7.89
570 615 652 7.00 794

The largest possible score is 9.00 and the smallest is 1.00. The numbers seem
to cluster around 6, and there seem to be some rather small numbers.

Because the numbers are already rank ordered, the class width must now
be determined. Because the largest score is 7.94 and the smallest is 1.37, the
‘maximum class width is (7.94 — 1.37)/8 or .82 and the minimumn class width
is (7.94 ~ 1.37)/15 or .44. Two possible choices are .50 or .75. A .75 class
width seems more reasonable than .50. First, .50 would result in 14 classes
and an average of only 2.8 persons per class. Recall that at least three persons
should be in each class. Second, because .75 is odd, the histogram would
have class midpoints with two digits, not three as would happen if .50 were
used. Because the lowest score is 1.37, rounding down to 1.00 yields the
lowest lower limit. The resulting frequency table is

Class Interval Frequency Relative Frequency

1.00 1o 1.74 1 2.5
1.75 to 2.49 1 2.5
2.50t0 3.24 i 2.5
3.25 10 3.99 0 0.0
4.00 to 4.74 1 2.5
4,75 to 5.49 1 2.5
5.50 to 6.24 13 32.5
6.25 to 6.99 13 32.5
7.00 to 7.74 7 17.5
7.75 to 8.49 2 5.0
Total 40 100.0

{In this case, for the relative frequency, it is sensible to round to the first
decimal point because many of the numbers have a 5 at that point.). A
histogram of the frequency table is presented in Figure 2.2,

An examination of both the frequency table and the histogram shows that
the scores cluster near 6.25. Quite clearly the values 1.37, 2.21, and 3.21 are
considerably smaller than the other 37 scores. They are all outliers.

After an outlier has been identified in the sample, it must be carefully
considered why it is that the score is so atypical. Outliers are due to one of two
reasons. First, they may be caused by a computational or data entry mistake.
For instance, the recording of 6.42 as 642 would result in an outlier. Second,
the outlier is not the result of a mistake, but rather it is generated by a different
process than the other numbers. For instance, an abnormal physiological
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FIGURE 2.2 Histogram for the DePaulo and Rosenthal data.
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reading often indicates the presence of a disease. In industrial work, the
presence of extremely large or smail readings has often led to the discovery of
'a new. manufacturing process. The outlier may be telling the researcher that
the object is very different in some way from the others.

The outliers in the DePaulo and Rosenthal data are not the result of a
computational mistake. Rather, they are atiributable to different cognitive
processes operating for the perceivers who obtained low scores. Before
viewing the videotape the perceivers were led to believe in some of the
descriptions the targets would be lying. That is, the target would be pretend-
ing to like someone they did not actually like. It is then plausible that the
perceivers who have very low liking scores bave these low scores because
these perceivers felt that the targets were lying about liking the people that
they were describing. Apparently most of the other perceivers took the targets
at face value, but these three perceivers with low scores were very suspicious.

Although a frequency table and histogram were not necessary for the
identification of the three outliers, they certainly facilitate that process. As
will be seen in later chapters, the identification of outliers is an essential step
in data analysis. :

Features of Distributions

People have certain characteristic shapes: fat, thin, muscutar, and so on.
When looking at distributions of numbers, there is a paraliel set of descriptive
categories.

Before detailing these categories, a description of the figures that will be
used to illustrate the characteristics of distributions must be presented. A
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histogram of actual data, as in Figures 2.1 and 2.2, is quite jagged. However,
if there were many scores and it was possible to have a very nammow class
width, then the histogram would look quite smooth. When speaking about
characteristics of distributions, it is helpful to consider these idealized dis-
tributions with large sample sizes and very narrow class widths. In
practice, actual histograms only approximate the distributions that will be
presented.

One of the first things examined in a histogram or frequency table are
peaks in the distribution. A peak in 2 distribution is a frequency or set of
adjacent frequencies that are larger than most of the other frequencies. So for
the gender bias data, there is a peak at the class interval from —.10 to .09
because it has the highest frequency of 13.

Whereas most distributions have a single peak, some have more than one
peak. Distributions that have two peaks are called bimodal distributions. For
instance, Hammersla (1983) measured the duration that college students
played a game. She was interested in whether paying someone to play a game
they already found fun would decrease their desire to play the game. Subjects
were observed for a period of five minutes, and Hammersla measured the
duration of game playing in seconds. Her histogram had two peaks, one near
0 seconds and the other near 300 seconds. Evidently subjects either played or
did not play the game during the entire time period. When two different types
of persons--such as those who like a game and those who no longer do—are
mixed together, a bimodal distribution can result.

Examples of distributions with different types of peaks are presented in
Figure 2.3. The top distribution has a single peak in the center. The middie
distribution is bimodal, and the bottom has a peak on the left side of the
distribution.

Besides the peaks, the low frequencies are also informative to the data
analyst. For most distributions the smallest freguencies occur for the very
large and very small values of the variable. For example, usually in a test few
students do very well or very poorly. Most students fall in the middle.
Because this pattern of dwindling frequencies at the extremes looks like a tail,
the frequencies for the very large and very small values of a variable are called
tails. The tails of distributicns can be either fat or skinny. In Figure 2.4 are
examples of distributions whose tails are either fat or skinny, or both. The top
distribution has skinny tails, the middle one fat tails, and the one on the
bottom has a fat left tail and a skinny right tail.

The size of the tails and the peak are related. For a chstnbutlon that is
peaked in the center, the higher the peak in the distribution the skinnier are the
tails, and the lower the peak the fatter are the tails. Distributions with a very
high peak in the center and skinny tails are said to be leptokurtic. Distribu-
tions with a low peak in the center and fat tails are said to be platykurtic. In
Figure 2.4 the upper distribution is said to be leptokurtic and the middle one is
said to be platykurtic.
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FIGURE 2.3 Examples of different types of peaks.

Some distributions have no peak at all. Distributions in which all scores are
equally likely are called flar or rectangular distributions. The following set of
scores have a flat distribution

3,3,4,4,5,53,.6,6,7, 7

because each score occurs twice. The histogram for this flat distribution is
contained i Figure 2.5. Perfectly flat distributions of naturally occurring
variables are rarely encountered in the social and behavioral sciences. The
distributions of most variables have a peak.

A distribution is said to be symmetric if its shape is such that if the data
were regraphed, reversing the order of the class intervals, the shape would not
change. Stated equivalently, a distribution is symmetric if its shape does not
change when its mirror image is examined. If a perfectly symmetric distribu-
tion is plotted on a piece of paper and the paper is folded vertically, the two
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FIGURE 2.4 Examples of different types of tails.
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FIGURE 2.5 Example of a flat distribution,
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sides of the histogram should completely coincide. Figure 2.6 shows ex-
amples of symmetric and asymmetric distributions. The top two distributions
are symmetric, whereas the bottom two are asymmetric.

Some asymmetric distributions are said to be skewed. A skewed distribu-
tion is one in which the frequencies for the class intervals trail off in one
direction but not the other. The direction of skew is determined by the skinny

FIGURE 2.6 Examples of symmetric and asymmetric distributions.
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tail. The skinny tail can be on the left- or right-hand side along the X axis. If
the trailing values are to the left of the peak, negative skew is present. Trailing
values to the right indicate positive skew. Because many distributions have
lower limits of zero, distributions with a positive skew are guite common.
Examples of variables with a positive skew are income, number of home runs,
traffic accidents per week, number of bar presses by a laboratory rat, and the
number of children per family. Scores on an easy test have a negative skew
and scores on difficult test have a positive skew. The bottom distribution in
Figure 2.6 has a negative skew and the one above it has a positive skew.
One type of distribution—commenly assumed in data analysis—is called
the normal distribution. The normal distribution is a symmetric distribution
with a single peak in the center. The resultant shape is often called bell-
shaped. The normal distribution is discussed in detail in Chapter 10.

Stem and Leaf Display

The frequency table and the histogram are traditional ways of arranging and
displaying a sample of numbers. A newer, simplér, and more elegant pro-
cedure has been developed by John W. Tukey, called a stem and leaf display.
In a stem and leaf display the classes are called sterns. With a stem and leaf
display there may be more stems than the 8 to 15 classes that are in a
frequency table. The stem is essentially the lower limit of a class. So for
instance, for the gender bias data, the stem could be the first two digits from
the left of the score: ~1.0, 0.9, =0.8 and so on. Then entered are the leaves,
which are the trailing digit or the next digit to the right after the stem. So for
the number 0.56 the stem is 0.5 and the leaf is 6. If there were any trailing
digits to the right of the 6, they would be dropped.

The stems are arranged in a vertical order and to their right a vertical line is
drawn. On the right of the line, the leaves are entered, one for each score in
the sample. Each leaf is entered next to its stem. The stems can be separated
by commas, but the common practice is not to do so. After the display has
been completed, it is customary o redraw the display by rank ordering the
leaves within each stem. The stem and leaf display for the gender bias data is
presented in Table 2.2, Both the unranked (entering the leaves as they are
presented in Table 2.1} and the ranked displays are presented. The stem and
leaf display very clearly shows the peak at zero.

There are two features of the display that must be noted. First, zero has
plus and minus stems of —.0 and +.0 stems. This looks odd but it is necessary
to have categories for numbers from —.09 to —.00 and from +.00 to +.09.
Second, in the ranked display on the right of Table 2.2, the leaves of the
negative numbers appear to be ranked backward. They are not, because —.36
is less than -.31. .

For the stem and leaf display of the DePaulo and Rosenthal data, the first
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Unranked and Ranked Stem and Leaf Displays for the Gender Bias Data

Unranked Ranked
-1.0 3 -1.0 3
~9 -9
-.3 -8
-7 =7
-6 -6
-5 6 -5 6
-4 0 -4 0
-3 116 -3 611
-2 2333 -2 3332
-1 ¢ -1 0
-0 3 -0 3
0 00110020500 .0 00000001125
.1 4] .1 14
.2 934 2 349
3 5 3 5
4 4
5 66 5 66
.6 0 6 0

digit from the left in the number might be used as the stem and the second
digit from the left as the leaf. It is common practice to just drop any other
digit. And so, the ranked stem and leaf display for the DePaulo and Rosenthal

data is

It should be noted that for each entry the third digit from the left was dropped.
Thus, some information was lost, but that always happens in descriptive
statistics. Why is the trailing digit dropped and why is the digit not rounded?
For a stem and leaf display rounding really does not make much difference
and so it is preferable to do the simpler thing by dropping the trailing digit.
Because for the stem and leaf display of the DePaulo and Rosenthal data,
almost half the numbers pile up on 6, it is better to split the stems in half.
Thus, for the stem 6.0, there are two stems of 6.0 and 6.5. The leaves are the
second digit of the original scores, Here is the display with the stems split in

hatf.

1 3

2 2

3 2

4 6

5 05677789

6 0011112344455666778
7 000233389



The Distribution of Scores

1.0
1.5
2.0
2.5
3.0
35
4.0
4.5
5.0°
55
6.0
6.5
7.0
7.5

6

0

5677789
00111123444
55666778
0002333

39

35

Having more stems provides a better view of the distribution and shows the

outliers more clearly.

After one stem and leaf display has been constructed, it is very simple to
construct another, The stems could be separated into Hiths: 6.0, 6.2, 6.4, 6.6,
and 6.8. To prevent the display from being too long, the three outliers are not
displayed. The display can be reworked with the stems split in fifths, as

follows:

4.6
4.8
5.0
5.2
54
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8

6

]

5

67711
89
001111
23
44455
66677
8

Q00
2333

89

The stem and leaf display has some important advantages over the more
traditional frequency table and histogram. First, it is easier and faster to
prepare than a frequency table or a histogram. Secound, except for the dropped
digits, the raw data can be recovered. Third, the display can be used to
compute various statistical summaries.
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Smoothing the Frequencies

In creating the class intervals, the class width and the lowest lower limit must
be chosen. For instance, for the gender bias data, the class width was set at
.20 and the lowest lower limit at —1.10. These choices can affect the shape
that 1s shown in the histogram. That is, a class width of .30 and a lowest lower
limit of 1.20 might considerably alter the shape of the histogram. This section
of the chapter describes a procedure called smoorhing, which takes a histo-
gram and yields a shape that would be essentially the same regardless of the
choice of class width or lowest lower limit.

Smoothing is a way of mathematically adjusting the frequencies to remove
the rough edges. The class frequencies can be denoted f, f, f5, and so on,
where f] is the frequency for the lowest scores, f for second Jowest class
interval, and so on. The smoothed frequency for a class interval is one-half the
frequency for that interval plus one-quarter the frequency of each adjacent
frequency. So for the gender bias data, f, is 4 and its adjacent frequencies are
1 for f5 and 4 for fs. The smoothed frequency for the fourth class interval is
(.5)(4) + (.25)! + 4), which equals 3.25. In terms of a formula, the
smoothed frequency for the class interval i is

Sfi + 25(ficr + fird)

A problem arises when the first and last class frequencies are smoothed.
They each have only one adjacent frequency. Two new classes must be
added, one just before the smallest class interval and one just after the largest
class interval. Before smoothing, these classes have zero frequencies. The
frequencies of these two new classes can be smoothed by taking one-quarter
of the adjacent frequency. The sum of the smoothed frequencies should
always equal sample size.

The smoothed frequencies for the Smith stody are as follows:

Relative

‘Observed Smoothed Smoothed

. Class Interval Frequency Frequency Freguency
130 to —1.11 0 25 = 5(0) + .25(0 + 1) 1
-1.10to —91 1 50 = .5(1) + .25(0 + 0) 2
—90to -71 0 50 = 50 + .25(1 4+ 1) 2
—70t0 -.51 1 1.5¢ = 5(1) + .25(0 + 4) 5
-~50to -.31 4 3.25 = 5(4) + .25(1 + 4) 10
=30t -.11 4 6.25 = 5(4) + .25(4 + 13) 20
-.10t0 .09 13 8.75 = .5(13) + .25(4 + 5) 27
A0t .29 5 6.00 = 5(3) + .25(13 4+ 1) 19
30to .49 1 250 = 5(1y + .25(5 4 3) 8
S0to .69 3 1.75 = 5(3) + .25(1 + 0) 5
J0to .99 0 5 = 50 + .25(3 + 0) 2
32.00 101

Total

{The total relative frequencies is 101 because of rounding error.) Note how
much smoother and simpler the frequencies are after smoothing. The distri-
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" FIGURE 2.7 Histogram of the smoothed frequencies for gender bias data.

wh
T

Frequency

-1.005 -.605 -~.205 195 595

bution is clearly peaked near zero and is fairly symmetric. This can be seen
best by graphing the smoothed frequencies in a histogram as in Figure 2.7
and comparing it with the unsmoothed histogram, which is reproduced in
Figure 2.8.

Although smoothing does remove the rough edges in a frequency table, it
also alters the actual frequencies. The effect of smoothing is that the peaks are
lowered and the tails of the distribution are fattened. Moreover, smoothing
can result in some anomalous results. For instance, if the DePaulo and
Rosenthal data set is smoothed, it would happen that .25 person scored in the
interval .25-.99. However, because 1.00 is the lowest possible score on the
DePaulo-Rosenthal measure, the result makes no sense. Smoothing provides

FIGURE 2.8 Histogram of the unsmoothed frequencies for gender bias data,
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a clearer picture, but at the cost of removing important details in the data and
producing an anomalous class.

A sample of numbers can be summarized by grouping the numbers into a set
of classes. Each class has a lower limit, which is the lowest possible score that
can fall into the class and an upper limit. The class width is the difference
between adjacent lower limits. The class midpoint is the average of the class’s
lower and upper limits. The number of scores that falls into a class is called
the class frequency. The relative frequency of a class is the class frequency
divided by the total number of scores. A table of class infervals, class
frequencies, and relative frequencies is called a frequency table. A graph of
the frequency table is called a histogram. In a histogram the X axis is the
variable that is divided into classes, and the ¥ axis is frequency.

Highly deviant scores are called outliers, and they should be noted. The
researcher should discover whether the outliers are due to a computational
error or to a different process.

‘When a distribution is examined, the number and location of peaks should
be noted. A distribution with two peaks is said to be bimodal. The tails of the
distribution are the frequencies on the far left and right of the distribution.
Distributions are characterized as having fat or skinny tails. A distribution
with skinny tails is said to be leptokurtic. A distribution with fat tails is said to
be platykurtic. A distribution with no peak at all is said to be flat or
rectangular. '

A distribution is said to be symmetric if, when the X axis is reversed, the
shape does not change. A distribution with a peak on one side and a skinny
tail on the other is said to be skewed. A positive skew has a skinny tail on the
right, and a negative skew has a skinny tail on the left. A normal distribution
is a unimodal and symmetric distribution that looks bell shaped.

A set of data can also be summarized by a stem and leaf display; which is a
type of vertical histogram. The stems correspond to lower class limits and the
leaves to the scores.

The shape of this histogram can be smoothed so that its true shape can be
better revealed and so that chance fluctuation due to grouping is reduced.

1. Prepare the frequency table for the following data using 46 as the lowest
lower limit and 5 as the class width:

68, 73, 81, 76, 83, 96, 76, 83, 65, 81, 48, 56,
75, 79, 90, 73, 76, 77, 84, 63, 68, 65, 62, 1)
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. Draw histograms for the following shapes.
 a single-peaked asymmetric distribution
an asymmetric bimodal distribution
a flat distribution
a upimodal leptokurtic distribution
a symmeiric bimodai distribution

o A0 o

. Why must a single-peaked, symmetric distribution be peaked in the
middle?

. Can a flat distribution be bimodal?

. For the data in Table 2.1 prepare a {requency table using a class width of
.20 and a lowest lower limit of —1.20. Smooth the frequency table.

. The following sample of numbers consists of the rents of apartments
listed for rent in a university town,

298 288 300 300 385
310 230 385 325 375
350 300 265 340 310
285 260 425 275 300
320 275 300 310 283
260 375 205 250 275
385 310 380 265 285
310 300 310

a.- Discuss the choice of class width and lowest lower limit.

b. Construct a frequency table showing the frequency of rents in each
class interval. Use 25 as the class width and 226 as the lowest lower
limit.

¢. Describe the shape of the distribution.

. For the data in probiem 6, construct a histogram of the frequencies.

. Below is the life expectancy in years at birth of males and females in the
30 most populous countries,

Male Female
68.7 65.2 76.5 71.4
458 57.6 46.6 61.0
48.6 59.9 51.5 63.3
59.2 51.6 62.7 538
36.5 65.0 39.6 76.9
68.3 41.9 74.8 40.6
47.5 57.6 47.5 57.4
69.0 72.2 74.9 77.4
63.0 62.8 67.0 66.6
37.2 33.7 36.7 48.8
36.9 66.9 60.0 74.6
49.8 69.7 33.3 75.0
53.6 53.7 58.7 53.7
64.0 67.8 74.0 73.0

43.2 41.9 46.0 45.1
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10.
I1.

2.

13.

a. Construct a frequency table for the males and another for the females
using 35.0 as the lowest lower limit and 5.0 as the class width.
b. Compare the two frequency tables. Do women live longer than men?

. For the data in problem 8 construct a stem and leaf display for both males

and females.
Smooth the frequencies for the data in problem 8.

Prepare a frequency table for the DePaulo and Rosenthal data using 1.25
as the lowest lower limit and .75 as the class width.

Near the end of the fall semester, Harrison {1984) gave the UCLA
Loneliness Scale to freshman women living in dormitories. The possible
scores on the scale range from 20 to 80, higher scores indicating more
loneliness. Below are the results for the women who were assigned to
their dormitories. '

Class Interval Frequency
23 10 25
26 to 28
29 to 31 1
32 to 34
35t 37
38 to 40
4] to 43
44 to 46
47 to 49
50 to 52
5310 35

B W B2 LA = W NG = DD

a. Compute the relative frequencies.

b. Smooth the observed frequencies.

¢. Compute the relative smoothed frequencies.

d. Compute the cumulative frequencies (of the unsmoothed data).

Below are the loneliness scores for the women who chose their dormi-
tories.

Class Interval Frequency
20t0 22
23 to 25
26 to 28
29 to 31
32 to 34
35 to 37
38 to 40
41 to 43
44 to 46

[N T N NNy ¥ QNN

a. Compute the relative frequencies.
b. Compare this distribution with the distribution in problem 12. Where
does each distribution peak?
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c. Are there relatively more residents with low loneliness scores (31 and
below) in the assigned dorm group or in the group that chose their
dorms? What about those with scores of 44 or higher? What about
those with scores in the middle range, from 32 to 437

For the following samples, state the unit of the distribution.

a. 1.75, .25, 3.50, 4.50, 6.50, 7.00, 3.75
b. 40, 120, 80, 160, 60, 100, 200

c. 12, 18, 10, 26, 14, 18, 16, 14

d. 1.33, 3.67, .67, 4.00, 3.33, 1.67

Prepare a stem and leaf display for data in problem 1 of this chapter,
Prepare a stem and Jeaf display for the data in problem 6 of this chapter.

Construct a histogram of the frequencies for the data in problem 12 of this
chapter.
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Central Tendency

Numbers usually come in sets, also referred to as samples. A set of numbers
by itself makes little or no sense if the numbers are not organized in some
coherent manner. To understand the nombers and determine their meaning,
they must be arranged in certain ways. In the previous chapter, methods for
determining the shape, or distribution, of a set of numbers were presented.
From the shape, the peak in the distribution and whether the distribution is
symmetric can be determined.

This chapter discusses the typical or most representative value of a set of
numbers. Of interest is the value around which the observations cluster. This
value, the central tendency of a sample, estimates the typical value of an
observation from the sample. A measure of central tendency represents all the
numbers in the sample.

Central tendencies are a very common part of modern life. In sports, we
hear about the average number of points a basketball player scores per game.
In economics, we hear about the average cost of buying a home. In health, we
hear of the average age at which children get a particular disease. Central
tendencies are so common that they are not usually viewed as statistics.

There are two major reasons for knowing the central tendency: simplifica-
tion and prediction. Simplification is needed because the whole sample of
numbers often contains just too much information. Imagine that you are
keeping a record of your monthly expenses for gasoline. Instead of remember-
ing the dollar figures for cach month over the past four years {48 numbers), it
might be much more convenient to know only the average (one number). So
for reasons of economy, it is often much more useful to record the mean, or
the average of the numbers, instead of all the mumbers. For the United States
Census, it would be unthinkable not to compute a measure of central tenden-
cy. Imagine trying to report the incomes of 125 million households, There are
too many numbers to keep track of. These numbers need to be boiled down to
one measure of central tendency.

The second reason for computing the typical valuc is prediction. The
knowledge of the average winter temperature in New York City for the past
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ten years can assist in predicting how cold it will be there this year. This
knowledge will be useful in the determination of how much energy will be
needed to keep the house warm. Thus, by knowing the average temperature,
one can make a prediction and make choices that are consistent with that
prediction. An average over ten years is probably a better predictor of next
year’s temperature than that of any one year. Let us consider a second
example. Say a city is faced with a steady stream of immigrants from a
foreign country. If the city is to plan for its future, it will need to know the age
of these immigrants. Thus, by learning the average age of the immigrants, the
city can predict future demand for schooling,

There are many ways of determining the typical value of a sample. First,
consider one seemingly reasonable procedure. If it were possible to determine
what person or observation is typical, that observation and that value would
provide a measure of central tendency. This strategy is often employed by
journalists. To predict an election, the journalist travels to a typical town and
interviews the typical person in that town. There is one major advantage of
using the response of the typical person as the typical response: It seems so
sensible. The response of the typical person seems more valid than some
statistical amalgamation of numbers. However, a more careful examination
reveals two major drawbacks to the “typical person” strategy. First, in order
to measure the typical value, where the typical town is and who in it is a
typical person must be determined. Thus, there is a definitional problem.
How can a typical value be determined if first it must be determined who is
typical? The “typical person” definition of central tendency is circular, so it
cannot be used. Second, the definition is not a very efficient way of determin-
ing the central tendency. To see this, i is likely that the typical value would
be quite different if a different “typical” person was chosen.

The strategy of locating the typical person must be abandoned and a new
strategy must be developed to determine the central tendency. One way is to
determine what value is most frequent in the sample. A second way is to
determine what value is in the middle of the distribution. Finally, a third way
is to determine what value is the closest to all the others. These three
definitions of typical values—most frequent, in the middle, and clgsest—
correspond to the three standard ways of determining the typical value: the
mode, the median, and the mean.

Measures of Central Tendency

Figure 3.1 illustrates a hypothetical distribution that is somewhat positively
skewed. The mode is the value that occurs most often. As shown in Figure
3.1, the mode is the highest point or peak in the distribution.

The median is the value in the distribution above which 50% of the scores
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FIGURE 3.1 Tllustration of mode, median, and mean.
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lie and below which 50% of the scores lie. The median divides the distribution
in half in terms of frequency. ]

The mear is the arithmetic average of the set of numbers. It 15 the balance
point in the distribution. If the distribution were a stack of toothpicks lying on
a board, the mean would be the point of balance.

The mode requires only nominal data. It simply notes the most frequent
occurrence and so the objects need only be differentiated. The median re-
quires thatf the numbers be rank ordered and so only ordinal data are required.
Finally, the mean requires interval data because the scores must be summed to
calculate it. Note that the mode and median can be meaningfully calculated
for interval data, but the mean should be used only with interval data.
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Computation of Central Tendency

Now that three measures of central tendency have been defined, their com-
putational methods are presented. '

The mode is easy to determine. Count the number of times each observa-
tion occurs. The observation that occurs most frequently is the mode. There
may be a tie for the mode and in that case there would be two modes. If the
distribution has two peaks of unequal height, it may be useful to report both
peaks.

For some variables, measurements are fine-grained, with the consequence
that no two scores have exactly the same value. For instance, for a sample of
100 persons whose weight is measured in grams, it is very unlikely that two or
more persons would have exactly the same weight. In such cases, one may
create a frequency table, smooth the frequencies, and report the mode of the
smoothed distribution (smoothing was described in Chapter 2},

The median is determined by the following procedure.! Rank order the
scores; the median is the value of the score that falls in the middle. The
middle observation is determined as follows: The numbers are rank ordered
from the smallest to the largest, just as was done in the previous chapter in
order to make a frequency table. If n, the sample size, is odd then the middle
observation is the (r + 1)/2th largest observation. So if there are eleven
observations the median would be the sixth largest observation because there
are five larger and five smaller scores. If n is even, the median is defined as
the average of (r/2)th and (n/2 + 1)th observations. In words, if the sample
size Is even, the median is one-half the sum of the two middle scores. So if n
is ten the median would be the average of the fifth, or #/2th, score and the
sixth, or (n/2 + 1)}th, score. _

The mean is usually denoted in statistical work by the symbol X which is
read as “X-bar.” (Less frequently M is used to denote the mean.) The mean or
X s defined as the sum of the observations divided by the number of
observations. So, one simply adds up all the scores and divides by the total
number of scores. The mean is the arithmetic average of the sample. In terms
of a formula,

pP:

x =42
n

where 2X is the sum of the numbers in the sample and n is the sample size.

The mean is the most common measure of central tendency. It is as commonly

used in statistical work as it is in everyday life.

A more complicated formula is presented in some other texts. The formula presented here
presumes that the numbers have not been rounded. If the scores have been rounded, a different
formula must be used. The result using the more complicated formula differs only fractionally
from the one presented in the text.
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There are some procedures that can reduce the likelihood of computational
errors in adding the scores. It may help to separate the positive and negative
numbers and sum the two groups of numbers individvally. Also if the
numbers are very large, it may help to subtract a common mumber from all the
scores and add that number back into the mean.

To illustrate the computation of measures of central tendency, three ex-
amples are provided. Given the following sample,

1,1,1,1,2,2,2,3,3
the mode is 1 because it is observed 4 times. The median is the fifth [(9 + 1)/
2th] largest observation, which is 2. The mean, rounded to two decimal
places, is
1+1+14+14+2+24+2+4+3+3
9

As another example consider Smith’s study of bias of psychotherapists on
the basis of the client's sex, which was presented in Chapter 2. A negative
score indicates that therapists have a profemale bias, and a positive score

indicates that they have a promale bias. The rank-ordered data are presented
again here:

= 1.78

-1.03 -23 00 .14
-5 -22 00 .23
-40 -10 00 .24
~36 -03 .01 .29
-.31 000 .01 .35
-.31 00 .02 56
-.23 00 05 .56
-.23 000 .11 .60

The mode is .00, which indicates that therapists are most often neutral. The

‘median is also .00. The mean is equal to the sum of the numbers divided by

the number of studies. The sum of the 32 numbers equals —.84, and so the
mean or X equals —.84 divided by 32, which equals ~.02625. The mode, the
median, and the mean virtually agree for this example and they all indicate
that therapists show little or no bias on the average.

In 1960 Stanley Milgram conducted an experiment on obedience to author-
ity. Residents of New Haven, Connecticut, were asked to shock someone who
failed to learn material. Actually, the learner was a paid employee of Milgram
and was not actonally shocked. The “shocks™ started at a low level but
gradually escalated to a very high voltage. The person who was shocked
begged the subject to stop shocking him and complained of a heart condition.
The largest possible shock that could be administered, 450 volts, was labeled
“danger—severe shock.”

Psychiatrists had predicted that subjects would not shock the learner
beyond 300 volts. What Milgram actually found is contained in Table 3.1.
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Mavximum Shock Level Administered by 40 Subjects in the Milgram Obedience
Experiment

300 330 450 450
300 345 450 450
300 360 450 450
300 375 450 450
300 450 450 450
315 450 450 450
315 450 450 450
315 450 450 450
315 450 450 450
330 450 450 450

Quite clearly subjects were very obedient. Of 40 subjects, 26 administered the
maximum voltage.

The mode is 450, the maximum value possible. Because n = 40, the
median is the average of the 20th and 21st observations. Both the 20th and
21st observations are 450, and so the median is also 450. The sum of the 40
observations is 16,200, and so the mean is 16,200/40 = 405. Alternatively,
the computations for the mean could be simplified by subtracting 300 from
each number. The sum of the numbers would then be 4200, The mean would
be {4200/40) + 300, which also equals 405, as it should. As will be seen later
in this chapter, with distributions that are negatively skewed such as this one,
the mean tends to be less than the median and the mode,

Three measures of central tendency have been defined: the mode, the
median, and the mean. It should be noted that they do not always point to the
same typical value. More often than not they disagree, if only by a small
amount. The source of the disagreement is due to the shape of the distribution,
Distributions with certain shapes yield a mode, median, and mean that differ
from each other. When the distribution is exactly symmetric, the median and
the mean are equal to each other. The earlier discussed gender bias data set
has a fairly symmetric distribution, and the mean and the median are nearly
equal to each other. Symmetry in the distribution is a sufficient but not
necessary condition for the mean to equal the median. That is, in-a symmetric
distribution the mean must equal the median, but in a distribution that is not
symmetric, the mean and median may also be equal. For instance, the
following sample. is not symmetric '

I,1,2,6,7, 8, 17

but the mean and median are both equal to 6.

For symmetric distributions, the mode equals the median and the mean
when the distribution is unimodal. A unimodal, symmetric distribution must
be peaked in the center of the distribution. For bimodal, symmetric distribu-
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tions, the peaks are not in the center and the mode does not equal the mean or
the median. ‘

For skewed distributions (see Chapter 2 for a definition of skew) the
following generaily holds (<C symbolizes less than)

Positive skew: mode < median < mean
Negative skew: mean < median < mode

which is shown graphically in Figure 3.2. So, for a positive skew, the mean is
usually the largest measure of central tendency, whereas for a negative skew
the mean is usually the smallest.

Because the value of central tendency depends on what measure of the
central tendency is used, which one should be preferred? There is no universal
answer to this question. The answer depends on what the purpose is in
determining the central tendency. If the purpose is ease of computation, the
mode is probably the best measure. However, for large data sets (sample size
greater than 100), the mean is probably easier to determine than either the
mode or the median. If the purpose is prediction, and given a symmetric
distribution with obsetvations bunched in the center, the mean tends to be a
better predictor of future values than the median or the mode. For ease of
interpretation the median is useful. For muitimodal distributions reporting the
mode is best. So, the determination of which measure of central tendency is
best depends on the shape of the distribution, ease of computation, and
simplicity of interpretation.

Direction of skew and relationship between the mode, median, and mean.

Mode
_~Median
.~ Mean

Mode
Median
Mean._ -
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One guideline to determining which measure of central tendency to use is
the level of measurement. For variables at the nominal leve] of measurement,
the mode is the appropriate measure. For variables at the ordinal level of
measurement, the median is the appropriate measure. Finally for variables at
the interval level of measurement, the mean is the most appropriate measure
of central tendency. But even if the level of measurement is at the interval
level of measurement, the shape of the distribution may require using the
median or the mode as the measure of central tendency.

of the Mean

The mean, or the arithmetic average, is the standard measure of central
tendency. Given a sample of numbers, most researchers almost automatically
compute the mean, Because it is an important and common statistic, special
attention must be paid to its interpretation.

The mean is not necessarily equal to any observation in the sample. This
point is abundantly clear for the variable of family size. Imagine that in a
given area, the average size of a family is 4.2 persons. Of course, no family
has 4.2 members, but 4.2 is a useful number nonetheless. Say, a housing
devetopment of 50 units is planned. Using the mean as a guide for forecast-
ing, the expectation is for 50 times 4.2 or 210 to live in the development. The
number 210 can be very useful in planning the need for social services in the
community.

The mean can be quite misteading if there is an outlier in the sample. Say,
the variable is income and the annual income of six college students is
measured and the following numbers are obtained:

$2,700
§3,600
$2,800
$6,300
$1,800
$1,040,000

The millionaire student’s income influences the mean so extremely as to result
in a mean of $176,200, not at all typical of the income of the other five
college students. Means can be grossly distorted by the presence of outliers.
The median is much less affected. The median of the six incomes is $3,200.

When the sample contains a mixture of scores from two very different
types of persons, the distribution is bimodal. In such cases the mean is not
very informative.

The mean is the only measuvre of central tendency such that it can be
subtracted from each observation and the sum of these differences is always
zero. As a formula, Z(X — X} equals zero. One consequence of this fact is that
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the sum of observations above the mean is as far above the mean a$ the sum of
the observations below the mean. It is this property that makes the mean the
number that is closest to the other numbers in the sample.

A related property of the mean is that if a constant is subtracted from each
score, and this difference is squared and summed across all the scores in the
sample, this quantity is at its smallest value when the constant chosen is the
mean. The mean is said to be a least-squares estimate of central tendency.

Grouped Data

Sometimes a researcher has a frequency table but does not have access to
original scores. The computation of the mode, median, and mean must be
modified.

The mode of data in a frequency table is the midpoint of the class with the
largest frequency. (As defined in Chapter 2, the midpoint is one-half the sum
of the upper and lower limits for a class.} The median can be obtained by
adding the relative frequencies starting with the lowest class. The median is
the midpoint of the class interval whose cumnlative relative frequency con-
tains 50%.

When observations are’ grouped together into classes the mean can be
computed as follows:

1. Muliiply each score by ifs frequency.
2. Sum the score frequency products.
3. Divide this sum by the sample size.

For instance, in the Milgram stady of obedience the shock level is first
multiplied by the frequency.

Score  Frequency

306 x 5 = 1,500
313 X 4 = 1,260
330 X 2 = 660
345 X 1 = 345
360 x 1 = 360
375 X 1 = 375
450 x 26 = 11,700

The sum of these products equals 16,200. The mean or X then equals 16,200
divided by 40, which is 405.

‘When numbers are grouped by class intervals and there is no access to the
original data, one can use the above technique to approximate the mean. The
midpoint of the class interval is used as the number to be multiplied by the
frequency. For instance, in Chapter 2 the following class intervals were set up
for Smith’s review of 32 gender bias studies of therapists and counselors.

Below are the class intervals and frequencies used in Chapter 2.
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Class Interval Frequency

~1.10 to —.91 1
-90 to —.71 0
—.70 to -.51 1
-.50 10 -.31 4
-3010 .11 4
- 1010 0% 13

A0 to .29 5
300 .49 1
5010 .69 3

The midpoint of the class intervals times the frequencies are

Midpoint Frequency

-1.005 X 1 = -1.005
—-.805 X 0 = 0.000
-.605 X 1 = —.605
-405 X 4 = -1.620
=205 X 4 = -.820
-005 X 13 = -.065

195 X 5 = 975
395 X 1 = 395
595 X 3 = 1.785

The sum of these numbers is — 960. The mean is then estimated by —.960
divided by 32, which equals —.03. This value closely approximates the actual
mean of —.02625.

The mode for the gender bias data is —.005 because the interval —.10 to .09 -
has the largest frequency. The median is also —.005. Both of these values are
close to the mode and median of the original data, each of which is .00.

Occasionally, there is a choice of what factor to use as the frequency when
computing a measure of central tendency. What to use as the frequency is
determined by what variable the researcher seeks to measure. Imagine a car
manufacturer which produces five different kinds of cars. These cars have the
following mean miles-per-gallon ratings.

18, 24, 27, 30, 45

What is the average miles per gallon for the car company’s fleet? it all
depends on what exactly the question is. If the mileage of the five cars is
desired, the average the five numbers would suffice. However, if the mileage
of cars sold is desired, the number of cars sold must be used as the frequency.
Alternatively, if the interest is in the number of gallons of gas, the frequency
10 be used is the number of miles driven.

A set of scores can be summarized by a measure of central tendency. The
central tendency estimates a sample’s typical value. Measures of central
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tendency are used fo simplify a mass of data and to facilitate prediction. There
are three common measures of central tendency: the mode, the median, and
the mean. The mode is the most frequent number in the sample, the median is
the middie of the distribution, and the mean is the arithmetic average.

The mode is directly determined by the most frequent score in the sample.
The median is determined by first rank ordering the scores from smallest to
largest. Given r scores, for odd-sized samples, the median is the (# + 1)/2th
largest score. For even-sized samples, the median is the average of the »/2th
and the {#/2 + 1)th largest scores. The mean, which is symbolized by X, is the
sum of all the scores divided by the sample size.

For symmetric distributions the mean and the median are equal. For
positively skewed distributions the mean tends to be greater than the median,
whereas for negatively skewed distributions the mean tends to be less than the
median. The mean is very sensitive to outliers, but the mode and median are
less affected.

‘For data grouped into classes the mode, median, and mean of the original
data can be closely approximated. The mode is the midpoint of the class
interval that has the largest frequency. The median is the midpoint of the class
interval that contains the cumulative relative frequency of 50. The mean is
found by multiplying each class midpoint by its class frequency, summing the
products, and then dividing by the sample size.

The measures of central tendency provide one way of summarizing a
distribution. The next chapter presents various ways of determining how
meaningful the central tendency is as a summary of the distribution. This can
be done by computing a measure of variability.

1. Compute the mode, median, and mean for the following samples.,

. 6,.8,3,5,6,2,7
6,2,2,5,4
2,5,8,10,1, 8,2
7,5,8, 3,9

13 3 2
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2. In which of the four samples in problem 1 is the mean less informative
than the other measures of central tendency? Why?

3. a. Compute the mean, mode, and median of the following sample of
numbers.

2,3,3,3,3,4,4,5,6,6

b. Compute the mean, mode, and median for the same sample of
numbers, but including the number IQO.
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2,3,3,3,3,4,4,5,6,6, 100

Compare the results with the answers for part (a). Which measure of
central tendency changed the most?

c. Again take the sample of numbers in part (a), include the number 10,
and compute the mean, median, and mode.

2,3,3,3,3,4,4,5,6,6, 10

Compare the results with the answers for part (a) and part (b). Which
measure of central tendency was most affected by the size of the
additional number?

4. A class, consisting of an even number of students, takes an exarn, and 14
students score above the median. How many students are in the class?

5. Below is a table of the area of the New England states in square miles.

State Area

Connecticut 3,609
Maine 33,215
Massachusetfs 8,257
New Hampshire 9,304
Rhede Isiand 1,214
Vermont 9,609

a. Compute the mean and the median.
b. Which measure gives a better description of the area of a typical New
England state? '
6. Given below are test scores for a group of 20 subjects. .
0, 3, 11, 24, 36, 47, 42, 53, 56, 59,
52, 58, 50, 64, 63, 61, 65, 78, 89, 91
a. Compute the mean and median. Which estimate, mean or median,
best describes the central tendency of the data? Why?
b. Unfortnately, the values 0, 3, and 11 were incorrectly recorded.

These three values should be 70, 73, and 81, respectively. Does this
additional information change your answer to part (a)?

7. A survey of the ages of residents of nursing homes yielded the following
measures of central tendency.

mean = 70  median = 78 mode = 83
In which direction is the distribution likely to be skewed?

8. Suppose that students in an introductory psychology class were tested on
their knowledge of foreign policy. Suppose further that the following
measures on central tendency were obtained.

mean = 80 median = 71 mode = 65

In which direction is the distribution likely to be skewed?
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9.

10.

11.

12,

13.

Draw histograms for samples with the following characteristics.

a. The mean is greater than the mode.
b. The mean is less than the median.
¢. The median is less than the mode.
d. There are two modes.

Schwartz and Leonard (1984) studied the learning of words that refer to
objects and words that refer to actions. Their subjects were chiidren
under 1.5 years old. The children repeatedly heard 16 nonsense syllables
applied to unfamiliar objects or actions. The following shows how many
object and action words were acquired by each child.

Child. Object Words Action Words

sl

9]
GO =~ =~ =] 00 =] L) ] =]~ 00N
RO WRNR WL R WD

a. Compute the mean number of object words the children acquired.
b. Compute the mean number of action words.

From the data in problem 10, for each child subtract the action word
mean from each child’s action word score.

a.. How many children acquired more than the mean number of action
words?

b. How many acquired less than the mean number?

¢. Compute Z(X — X).

d. If you did the same computations for the object words, what would
you find for Z(X — X}? Why?

a. From the data in problem 10, find the median number of action words
acquired. Subtract the median from each child’s action word score,
square the result, and sum across children.

b. For problem 11, you computed the deviation of each score from the
mean. Square these deviations, and sum across children.

c. Which is smaller, the sum of the squared deviations from the mean, or
the sum of the squared deviations from the median? '

Ballard and Crooks (1984) tried to increase the social involvement of
preschool children who had low levels of interaction with others. They
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abserved the children after showing them a videotape in which a child
moedeled the activity of joining others in play. The subjects were scored
on the degree of social involvement in their play and number of social
interactions. Below arc the mean scores per session each subject obtained
after seeing the videotape.

Subject Interactions Play Score
S 8.17 ©3.29
52 8.50 2.69
53 8.38 3.25
54 7.92 T2.73
S5 14.43 2.45
S6 14.36 3.33

a. Compute the mean number of interactions observed after the
videotape, across all subjects.

b. Compute the mean play score obtained after the videotape, across all
subjects.

A university bookstore stocks a range of calculators, from simple models
for general use to scientific and business calculators. During one semes-
ter they sold the following number of calculators at the prices given.

Model Price (in dollars) Number Sold
g

A 12
B 15 7
C 22 5
D 45 12
E 0 2
F 126G 1

a. Compute the measures of central tendehcy for the price of the calcula-
tors sold.
b. Which measure best describes how much was paid for a calculator?

The following frequency table of rent costs was compiled from a list of
apartments for rent in a university town.

Rent (in dollars) Frequency

226-250

251-275 7
276-300 12
301-325 g
326-350 2
351-375 2
376400 4
401425 1

Compute the mode, median, and mean for the data.
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Variability

The average temperatures of San Francisco and Kansas City, Missouri, differ
by only one degree Fahrenheit. The average temperature in San Francisco is
56 degrees and the average in Kansas City is 55 degrees. Does this mean that
the two cities have the same weather? Not at all. In July, Kansas City tends to

be 20 degrees warmer than San Francisco; in January, however, San Francis-

co tends to be 20 degrees warmer than Kansas City. Just because the averages
are the same does not mean that the weather is the same. The weather in
Kansas City is more variable than in San Francisco. The variability in the
numbers is just as important as the average of the numbers.

A sample of numbers has a characteristic shape. Recall that the shape
concerns the frequency of certain numbers relative to other numbers. Besides
the shape, the central tendency of the numbers—or the typical value in the
sample—can be determined. The mode, median, and mean can be used as
measures of central tendency. A distribution of scores can also be character-
ized by the variability of the scores. Are the numbers bunched tightly together
or do they vary over a wide range? For instance, the scores

3,4,5,55,5,56,6,7

- are bunched together near five, whereas the scores

1,2,3,4,4,5,6,8,11, 13

vary over a wider range. Variability refers to how much the scores differ from
one another.

In everyday life, the term consistency is used to refer to vartability. The
weather in Honolulu is consistently around 75 degrees. The Boston Celtics
basketball team is a consistent winner. Our favorite sports team is in-
consistent. One person’s weight may be very stable, whereas another's
changes quite a bit from week to week. The concept of consistency implies
that the person or unit has low variability, whereas inconsistency refers to
high variability. :

Variability is also the fundamental starting point in scientific explanation.
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Because some peopie have higher GPAs, weigh more, live longer, and are
more violent than others, there must be some reason why these people differ.
Scientists observe variation and wonder what brings it about. To the extent
that people vary, there must be forces that make them differ. Therefore, if it

_can be understood why people differ, it can be understood what causes human
behavior. One goal of research is to explain what makes people vary, and one
common way of stating a result from research is to give the percentage of the
variability that is explained. For instance, Jencks and his colleagues (1972)
claim that they are able to account for, or explain, about 30% of the vari-
ability in income eamned by an individual in the United States.

The meaning of “explaining 30% of the variability” requires explanation. It
does not mean that 3 out of 10 reasons that make persons vary are known. Nor
does. it mean that reasons are known why 30% of the people make money.
Rather, it means that given what is known, existing variability could be
reduced by 30%. If it were possible to equalize persons om education,
motivation, intetligence, and other specified factors, the variability of the
income distribution would be reduced by 30%.

There are three basic reasons for measuring the variability of a sample.
They are as follows:

1. to determine how meaningful the measure of central tendency is, _
2. to use it as a basis for determining whether a score is an outlier, and
3. to compare variability.

Consider each reason in turn.

The first reason for measuring variability is to judge how meaningful the
measure of central tendency is. To the extent that the numbers vary widely,
any measure of central tendency is somewhat less informative. Knowing that
the average income of some group of persons is $13,432 is not very in-
formative when some persons are earning nothing and others millions. A
doctor would want to know a person’s average blood pressure only if that
person’s blood pressure was not subject to huge swings. To the extent that the
numbers are bunched together, the measure of central tendency is more
descriptive of the numbers. Thus the variability tells how well the mean or
any other measure of central tendency represents all the numbers.

Consider four persons who have dinner at a restaurant. The bill including
tip comes to $60. One person suggests splitting the bill up evenly with
everyone putting in $15. He or she has computed a measure of central
tendency—the mean or arithmetic average. If one person’s dinner cost $21
and the other three averaged $13, the mean would not be very representative
of the cost of each person’s meal. If two persons’ meals were $16 and the
other two $14, however, then the mean would be a reasonable approximation
of the cost of each person’s meal.

A measure of variability is also useful in assessing how deviant, or
unusual, a given number is. To identify a genius or anyone who is exceptional
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some type of yardstick for assessment is needed. If it rained 15 inches more
than the average this year, it is not known whether that is exceptional or
typical. If it is known that the rainfall varies guite a bit from year to year, then
being 15 inches above the average is not at all exceptional. But if the amount
of rainfall hardly ever changes from year to year, then having 15 more inches

is quite unusual.

A measure of variability is also useful for comparison purposes. Some
faces are easier to read than others. That is, some persons clearly express their
emotions; others are poker-faced and are not expressive. People vary in
expressiveness—that is, their ability to send nonverbal messages. It also
seems true that some people are betier at reading or receiving other people’s
emotional reactions than others. Some people are sensitive and others are not.
Research has shown that there is much more vartability in expressiveness than
in sensitivity. There is more varability among the senders of nonverbal
messages than there is among the receivers (Kenny & La Voie, 1984).

Throughout this chapter, the computations will be illustrated with the same
samplé of numbers. During the fall of 1964, psychologists Robert Rosenthal
and Lenore Jacobson entered a South San Francisco grade school and told
teachers that a number of students would “bloom” during that year. The
teachers were told that the students were expected to experience an unusual
forward spurt in academic and intellectual performance during the year.
Actually the students were no more likely to excel than their class-
mates. Rosenthal and Jacobson were interested in studying whether merely
suggesting to teachers that certain students would improve would create
an actual change. As part of this research, Rosenthal and Jacobson
measured the children’s intelligence, or IQ. Table 4.1 lists the scores
of 22 first-grade children. An IQ score is set so that a score of 100 is
norrnal.

Intelligence Tests Scores for 22 First-Grade Children

94. 95
102 98
117 92

N 86

90 92
106 120
112 97
101 116
122 130
111 117
100 108

" Data were taken from Rosenthal and Jacobson (1968).
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Measures of Variability

The three common measures of variability are the range, the interquartile
range, and the standard deviation. The range looks at only the variability
between the largest and smallest numbers. The interquartile range looks at the
variability in the middle of the sample. The standard deviation examines the
variability between ali possible pairs of numbers.

The Range

The range is the difference between the largest and smallest numbers in the
sample. Thus, for the sample

3,5,6,9, 11
the range is 11 minus 3, which is 8. For the sample

101, 190, 236, 436

the range is 436 minus 101, or 335. The range is the largest minus the
smallest number of the sample. For the numbers in Table 4.1 the range is 130
— 86 = 44. The range concentrates on the extremes and ignores all the other
numbers in the distribution. Because the range examines only the two most
extreme numibers in the sample, it is influenced by outliers.

Although the range is a natural and simple measuare of variability, it has an
important limitation. The size of the range depends, in part, on how many
scores there are in the sample. In general, the greater the sample size the
greater the range. Consider the example of a flat distribution of numbers from
1 to 10. (Recall from Chapter 2 that a flat distribution is one in which each
number is just as likely as any other number.) For the smallest possible
sample size for which the range can be computed, 2, the range is, on the
average, about 3.3. That is, if every combination of two numbers from 1 to 10
is taken, the range averages 3.3. As the sample size increases, the range
increases. For the sample size of 100 the range is nearly 9.0, more than twice
the expected range for a sample size of 2.

The reason for this situation is that extreme scores (i.e., very large or very
small scores) are much more likely to appear when the sample size is large.
Because extreme numbers are associated with large sample size, larger range
tends to be as well. This is not to say that the range is a useless measure of
variability; however, it would be misleading to compare the ranges of two
samples with very different sizes. ‘

One advantage that the range has is that it is a relatively easy measure to
compute and it is simple to understand. For instance, when you receive a
grade in a course, you may want to know the range of scores. The range is a
natural measure of variability, but the following two measures of variability
are more commonly used.
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The Interquartile Range

The interquartile range is another measure of variability, and it is almost as
easy to compute as the range. The range measures the variability from the
largest to the smallest number. The interquartile range measures the variabil-
ity in the middle half of the distribution and is, therefore, less influenced by
outliers. Basically, to compute the interquartile range, the sample is sub-
divided into two groups: those above the median and those below the median.
The “median” is theén computed for each of these groups. The median for the
group above the overall median will be called the upper median; for the group
below the overall median, it will be called the lower median. The interquartile
-range is the difference between the median of the group above the overall
median and the median of the group below the overall median. The in-
terquartile range is then the difference between the upper and the lower
medians. So, for the following distribution

1,2,3,3,3,4,6,9, 11, 20

the overall median is 3.5. The values below the median are

1,2,3,3,3

and their median is 3. The values above the overall median are

4,6,9, 11, 20

and their median is 9. The interquartile range is 9 minus 3 which equals 6.
These computations are illustrated in Table 4.2.

TABLE 4.2 TNustration of the Interquartile Range for Two Samples

Sample 1 Sample 2
i ;
Upper 9 Scores of those 7 Upper
median - 6 above the median 6 median
4 6
Overall Overall
median 35 6 median
2 5
Lower 3 Scores of those 4 Lower
median 5 below the median 4 median
1
1

Sample 1 interquartile
range: 9 -3 = 6

Sample 2 interquartiie
range: 6.5 -4 = 2.5
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The rule for determining which scores are above and which are below the
median is quite simple. If there is an even number of scores in the sample, the
first half or n/2 scores are below the median, and the second half or #/2 scores
are above. So, if there are 20 scores, n/2 is 20/2 or 10. The median is then
computed of the 10 smaller scores and the median of the 10 larger scores, If
there is an odd number of scores in the sample, the score at the median is
excluded. Thus, for the sample

1,4,4,5,6,6,6,7,9

exclude the 6, the overall median, and use 1, 4, 4, and 5 as the scores below
the median and 6, 6, 7, and 9 as the scores above the median. Again, these
computations are illustrated in Table 4.2, Once it has been determined which
scores are above and which are below, the medians are computed for these
groups of scores by the simple procedure described in Chapter 3. Given n
scores, when n is an odd number, the median is the (n + 1)/2th score. If n is
even, then the median is the average of the #/2th and (/2 + 1)th scores.
For the IQ data in Table 4.1 there are 22 scores. The median is then the
average of the eleventh and twelfth largest scores of the sample. It is

101 + 102
2

The scores below the median are

86, 90, 91, 92, 92, 94, 95, 97, 98, 100, 101

= 101.5

and so the lower median is 94. The scores above the median are
102, 106, 108, 111, 112, 116, 117, 117, 120, 122, 130
and so the upper median is 116. The interquartile range is then
116 — 94 = 22

Therefore the middle half of the numbers varies over 22 1Q points.

This measure is called the interquartile range because it is based on the
separation of the sample into four quartiles. The sample is separated into four
groups with an equal number of scores per group: four quartiles. The first
quartile contains the 25% of the scores that are thie smallest. The second
quartile contains the next 25%. The third and fourth quartiles are similarly
defined. The boundary between the first and second quartile is the lower
median. The boundary between the second and third quartile is the overall
median of the sampie. Finally, the boundary between the third and fourth
quartile is the upper median.

The Standard Deviation

Both the range and the interquartile range are sensible ways to measure
variability in the sample. But they are limited because each of them only looks
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at part of the data. The range uses only the two most extreme numbers, and
the interquartile range throws away all the extreme numbers. It would seem
sensible to have a measure of variability that looks at all the numbers. The
standard deviation is just such a measure.

To measure how different the numbers are from each other, one natural
measure would be to subtract them from each other. So for the numbers 9, 10,
11 the difference between all possible pairs is computed as follows:

W0- 9=1
9-11=-=2
10 -} = -1

Because it is not important whether the difference is positive or negative, the
differences are squared.

(10-92 =1
(9 - 11 =4
(0-11% =1

The mean of these three squared differences is (1 + 4 + 1%/3 = 6/3 = 2. This
seems to be a very sensible measure of variability. It is the average of all
possible squared differences, which will be called the average squared differ-

_ence. Although the average squared difference is sensible, it presents a

computational nightmare. If there are 50 numbers in the sample there are 1225
differences! It would take hours to compute even with a caleulator. Fortunate-
ly, there is a computational shortcut. It is called the standard deviation. .

The most common measure of the variability is the standard deviation, or
as it is-usually symbolized, s. Instead of first presenting the formula for the
standard deviation, a rationale for it and its close relative, the variance, or 5,
1s discussed. As was detailed in the previous chapter, the mean (the sum of the
numbers divided by the sample size) is a measure of central tendency. One
reasonable measure of variability would be to simply compute how far each
score is from the mean., A deviation of each score from the mean is then
computed. If the numbers are tightly bunched together, these deviations from
the mean would be small and so the measure of variability would be small.
Alternatively, if the numbers were spread over a wide range, the deviations
from the mean would be large and so would the variability. Thus, a basic
building block of a measure of variability can be the deviation of scores from
the mean. For the sample

1,6, 10, 12, 16
with a mean of 9, the deviations from the mean are
1-9=-8
6-9=-
0-~9= 1
12-9= 3
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These deviations from the mean are each squared and then summed. Thus, the
numbers -8, -3, 1, 3, and 7 are squared, to obtain 64, 9, 1, 9, 49, the sum of
which equals 132, Then to adjust for sample size, the sum is divided by
sample size less one. (The reasons for using sample size less one will be
explained later.) So for the example above, the measure of variability is 132
divided by 4 (sample size less one) and it equals 33. This measure of
variability is called the variance. The variance, symbolized by 52, is the sum
of squared deviations about the mean divided by sample size less one. The
standard deviation, symbolized by s, is the positive square root of the
variance,

The measure 5%, or variance, is closely related to the average squared
difference. The average squared difference is determined by taking the differ-
ence between pairs of scores, squaring each of them, and then summing these
squared differences and dividing that sum by the number of pairs. The
variance is one-half the average squared difference. The variance and, there-
fore, the standard deviation are very closely related 1o the average squared
difference. The variance is, however, much simpler to compute than the
average squared difference, and hence it is generally preferred.

Consider, for instance, the sample 5, 11, 15, 17. The mean is 12 and so
the deviations from the mean are -7, —1, 3, 5. To compute the variance, the

- deviations are squared, summed, and that sum is divided by the sample size
less one. The sum of squared deviations is then 49 + 1 + 9 + 25 = 84 and
the variance is 84/3 = 28. To compute the average squared difference, the
difference between all possible pairs is computed:

11- 5= 6
1I5- 5=10
17- 5=12
I5-11= 4
17-11= 6
17-15= 2

The sum of the squares of these quantities is 36 + 100 + 144 + 16 + 36 + 4
= 336. And 336 divided by 6 (the number of pairs) equals 56. Note that
one-half of 56 is 28, the variance. So, one-half the average squared difference
equals the variance, as it should.

Normally, it is advisable to use the standard deviation, not the variance, as
a measure of varigbility. By computing the square root of the variance to
obtain the standard deviation, the unit of measurement becomes interpretable.
For the example in Table 4.1, the variable is intelligence or as it is usually
called, IQ. When variance is computed, the deviations are squared. So for
intelligence, the unit of measurement for the variance is I} points squared. It
is not too clear how to interpret intelligence squared. To return the unit of
measurement to that of the original metric, the square root of the variance is
computed.

The standard deviation is a measure of the “average” distance from the
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mean. It is not a straightforward arithmetic average because of the squaring,
the summing, and the taking of the square root. The effect of the squaring is to
make the standard deviation more heavily reflect scores that are farther from
the mean. Consider the two following samples. Sample A contains the
numbers

1,3,7,9
and sample B contains the numbers
1,3,5, 11

Both samples have a mean of 5.0 and the sum of the absolute deviations from
the mean are 12.0 for both samples. However, the standard deviation for
sample A is 3.65 and the standard deviation for sample B is 4.32. Why are
they different? Sample B has the relatively extreme score of 11, which is 6
units from the mean while for sample A the most deviant score is only 4 units
from the mean. When the deviation of 6 is squared, it dominates the variance.

The variance and, therefore, the standard deviation are quite affected by
the presence of outliers. Consider the following sample.

4,5,5,6,7,7, 8

The standard deviation of this sample is 1.41. Consider now the same sample
with the addition of a single outlier.

4,5,5,6,7,7,8, 44

The standard deviation has now exploded to 13.50. A single outlier can
dramatically affect the size of the standard deviation.

Why Squared Deviations? For the variance and the standard deviation,
mean deviations are squared. An alternative is to just sum the deviations. For
the sample whose numbets are 1, 6, 10, 12, and 16, the deviations are -8, -3,
1, 3, and 7. Their sum is zero. This is no accident. The sum of deviations
about the mean is always zero. This is due to the definition of the mean.
Recall that the mean is the balance point of a distribution; a balance point
requires that the sum of deviations must be zero.

Because the sum of the deviations cannot be used as a measure of variabil-
ity, an alternative to squaring them might be to compute the absolute value of
deviations. An absolute value of a number is that number with the sign always
positive. Therefore the deviations for the example above are -8, -3, 1, 3, 7,
and the sum of their absolute values is 22. There is, however, no simple
relationship between the absolute values of mean deviations and the absolute
value of the deviation between all pairs of numbers. So, the average absolute
deviation from the mean is not related to the average absolute deviation
between all possible pairs.
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Why Sample Size Less One?  There would not be much harm in dividing by
sarnple‘size instead of sample size less one.' However, it is just a little better
to divide by sample size less one. Why? Consider what the variance would be
when the sample size 1s one. It is, of course, impossible to measure variability
when there is only a single score in the sample. However, dividing by sample
size (instead of sample size less one), the variance would always be zero when
sample size is one. However, if the denominator of the variance is sample size
less one, the variance is vndefined when sample size is one. (Division by zero
is not mathematically permissible.) So one reason for “less one” is to make
the variance of the sample size of one to be undefined.

A related reason for dividing by Sample size less one is because the mean is
computed from the numbers that are used to compute the variance. If the
mean were known without having to compute it from the data, it would be
correct to divide by 72 and not 12— 1. In Chapter 9 the question of dividing by n
— 1 instead of n is discussed.

Computation of the Standard Deviation. The definitional formula for the
standard deviation is to

1. take each score and subtract the mean,

2. square each of the deviations from the mean,

3. sum the squared deviations,

4. divide the sum of squared deviations by sample size less one, and
5. take the square root.

In terms of a formula, the standard deviation is

Bx - Xy
n—1

The numerator is the sum of squared deviations from the mean (X) and the
denominator is sample size less one.
The computations of Z(X — X)* can be simplified by using the formula

X - (2XY

n

The first term of the formula, £X2, is simply the sum of the squares of each
number in the sample. The second term, (ZX)%n, is the result of summing all
the scores, squaring the result, and then dividing by », the sample size. You
might want to review the difference between =X” and (2X)?, described in
Chapter 1. The resulting complete computational formula for the standard
deviation is

'Some texts recommend dividing by # instead of n - 1. However, most statistical formulas
presume that the denominator is » — 1.
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Table 4.3 presents the computations required for the computational formu-
la for the standard deviation using the IQ example in Table 4.1. The first
column consists of the raw data. The second column gives the squares of each
score. The totals or sums of the numbers of the two columns are then written
beneath each column. The total for the first column in Table 4.3 is symbolized
by 2X and the second column by £X*. Taking the quantities in Table 4.3 and
entering them into the computational formuta yields

Xt - (XXPin _ \/242967 - Q22 _ L, e
n-1 21 ‘

.TABLE 4.3 Computations Necessary for the Standard Deviation

XZ
X (score
(score) squared)
94 8836
102 10404
117 13689
91 8281
90 8100
106 11236
112 12544
101 10201
122 14884
111 12321
100 10000
95 : 9025
98 9604
92 8464
86 7396
92 8464
120 14400
97 9400
116 13456
130 16900
117 13689
_108 11664

Total 2297 242967
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Detection of Outliers

Ag discussed in Chapter 2, an outlier is a very large or small score in the
sample. Now that quantitative measures of variability and central tendency
have been presented, a quantitative rule for determining an outlier can be
given.

Two different definitions of an outlier are presented. The first involves the
interquartile range and the median. An outlier is any number that is more than
two times the interquartile range away from the median. So one computes

median + 2 X interquartile range

Scores larger than the median plus twice the interquartile range and smaller
than the median minus twice the interquartile range are deemed outliers. For
the IQ example, the median is 101.5 and the interquartile range is 22. So fora
score to be an outlier it must exceed 101.5 + 44, or 145.5, or be less than'
101.5 — 44, or 57.5. Certainly 1Qs of greater than 145.5 and less than 57.5
should be carefolly examined. Using this definition of outliers, none of the
scores in Table 4.1 can be considered outliers.

An outlier can be alternatively defined by using the standard deviation and
the mean. The following quantity is computed:

mean * 2} X standard deviation

The reason that it is two and one half times the standard deviation and only
two times the interquartile range is that the standard deviation tends to be
smaller than the interquartile range. For the IQ example the mean is 104.41
and the standard deviation is 12.23. So for a score to be an outlier it must
exceed 104.41 + 30,57, or 134.98, or be less than 104.41 — 30.57, or 73.84.
Using this definition of outliers, none of the scores in Table 4.1 can be
considered outliers.

If one has a choice concerning the two measures of outliers, the in-
terquartile range and the median measure is preferred to the standard deviation
and the mean measure. The reason is that the mean and standard deviation are
themselves influenced by the presence of an outlier. Say the sample in Table
2.1 had the three largest 1Qs changed to 175. This change would raise the
mean and double the standard deviation, and the value of 175 would not be
recognized as an outlier. However, the interquartile range and the median are
less affected by the presence of outliers, and the 175 IQs would be deemed as
outliers.

Computational Errors and Checks

All measures of variability must be nonnegative. Because the least amount of
variability is none, the lowest value of a measure of variability is zero. When
variability is Zero all"the values of the sample are the same.
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Because the range and the interquartile range basically involve only a
single subtraction, it is unlikely that they would be mistakenly computed as
negative. However, the variance involves much computation, and so errors
can occur. Whenever the numerator of the variance is negative, one knows
with certainty that there has been an error of computation. The usual reason
for such an error is that one has incorrectly summed the squares of the scores.
Also, it is possible that the sum of all the scores has been incorrectly
computed.

A good way to locate a computational error is to study the range, the
interquartile range, and the standard deviation. First, determine whether the
estimated value of variability is possible. As was just stated, zero is the lowest
possible value for variability. If the numbers themselves have a lower and an
upper bound, then the measure of variability can be no larger than the upper
bound minus the lower bound. (This is true of the standard deviation but not
the variance.) So if a group of persons rate a movie on a scale from one to ten,
then the measures of variability (except the varfance) computed from these
nimbers must be nine or less. The standard deviation must be Iess than or
equal to the range. If it is not, then an error has been made in computing the
variability or there has been an error in the recording of the numbers.

One obvious, but commonly made error is to report the variance as the
standard deviation. Recall that the standard deviation is the square reot of the
variance. For the standard deviation, always make certain that the square root
of the variance has been calculated.

Recall from the previous chapter that the mode, the median, and the mean
can be equal to the same value. However, one should not expect that the
range, the intérquartile range, and the standard deviation to be equal or nearly

. equal. Although all three measure the variability in the sample, they do so in

different ways. For instance, the range must always be at least as large as the
interquartile range. To see this, note that the largest value of a sample must be
at least as large as the median of the upper half of the distribution. Similarly,
the lowest value must be at least as small as the median of the lower half of the
distribution, and so the range is at least as large as the interguartile range.
Generally the standard deviation is smaller than the interquartile range, as it is
for the IQ example used in this chapter. For unimodal symmetric distributions
a good rule of thumb is that three-quarters of the interquartile range is about
equal to the size of the standard deviation. For the 1Q example the in-
terquartile range is 22 and so three-quarters of 22 is 16.5, which is still larger
than but nearer to the standard deviation of 12.23. ‘

The numbers in a sample vary. Some are larger than others and some are
smaller. Measures of variability quantify how diverse the numbers are.
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The simplest measure of variability is the range. The range is the largest
number in the sample minus the smallest one. The range is not a very good
measure of variability because it uses only two extreme scores and because it
depends on the sample size. As the sample size increases, the range tends to
increase.

The interquartile range is the difference between the median of the upper
half of the numbers and the median of the lower half. The interquartile range
measures how different the scores in the middle half of the distribution are.

The standard deviation is the most commonly used measure of variability.
The standard deviation is the square root of the variance. The variance is
one-half the average squared difference between all possible pairs of num-
bers. The variance is defined by the following steps.

1. Compute the deviation of each score from the mean.
2. Square each of these deviations.

3. Sum the squared deviations.

4. Divide the sum by sample size less one.

Computations can be simplified by these steps.

1. Square each score.

2. Sum the squares.

3. Subtract the square of the sum of all the scores divided by the sample size.
4. Divide by sample size less one.

Again, the square root of the variance is the standard deviation. The com-

_putational formula for the standard deviation is

The variability of the numbers is a fundamental part of a distribution. The
range, the interquartile range, and the standard deviation provide three ways
of quantifying the variability of the numbers.

1. Compute the range, interquartile range, and standard deviation for the
following samples.
a. 1,3,4,6,6,9, 10, 11
b. 2,4,6,8,9, 11, 13, 14, 15
c. 3,4, 4,6,7,9,10, 13, 15, 16

2. a. If the standard deviation of a sample is 6.5, what is the variance?
b. What is the average squared difference?
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3

4.

. a. Find the standard deviation, range, and interquartile range of the

following sample.
6, 8, 10, 11, 12, 14, 16, 22, 150

b. Compute the standard deviation, range, and interquartile range of the
same sample, without the number 150.

6, 8, 10, 11, 12, 14, 16, 22
. ¢. Which measure of variability changed the least?

Two automobile manufacturers, Marvel Motors and Amazing Autos,
have each produced six different models. Below is the number of years
each model of car typically runs before requiring major repairs.

Marvel Motors: 3 5 10 7 2 9
Amazing Auto: 6 7 7 6 5 5
The mean for both manufacturers is six years.

a. Compute the rﬁnge, interquartile range, and standard deviation for
each manufacturer.
b. Which manufacturer produces cars of more consistent quality?

. The following table presents the number of milligrams of phosphorus,

calcium, and vitamin C contained in one cup of various fruit juices.

Juice Phosphorus Calcium Vitamin C
Apple 23.0 15.0 2.5
Apricot 30.0 23.0 1.5
Cranberry 7.5 13,0 40.¢
Grapefruit 35.0 20.0 71.5
Orange 45.0 25.0 100.0
Pineapple 23.0 38.0 23.0

Compute the variance and standard deviation of each nutrient.
On which nutrient do these juices vary the most?

o e

Given a standard deviation of 9.6, could the range equal 20?
Given a range of 42, could the interquartile range equal 53.8?
Given a range of 12.25, could the standard deviation equal —3.57
Given a range of 11.3, could the standard deviation equal 127

IS

. Hughes and McNamara (1961) studied the effectiveness of programmed

instruction versus traditional lecture-discussion for training computer
service personnel. The experimental group, which received the pro-
grammed instruction, consisted of 70 individuals. There were 42 in the
control group, which received traditional instruction. The table below
gives the scores received by each group at the end of the course.
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Control Experimental

Score {(n = 42) (n = 70}
6569 1

70-74 i

75-79 5

8084 7 3
85-89 5 5
90-94 14 I5
95-99 5 47

Use the class midpoint for the score for each group.

a. Compute the mean, variance, and standard deviation for each group.

« b. Which group’s scores are more variable?

. Suppose two classes, each consisting of eight students, take an exam.

Suppose further that the scores for class A are more variable than the
scores for class B.

a. Create a sample of scores for class A and a sample for class B, each
with a mean of 70. .

b. Compute the standard deviation for each class.

¢. In which class is the mean more representative of the students’
performance?

. For the following sample determine which observations are outliers. Use

the median plus or minus twice the interquartile range as the definition of
an outlier.

15, 19, 25, 22, &, 19, 18, 15, 37

. Below are the gender bias data discussed in the previous two chapters.

29 01 -40 .00
S6 =31 .00 .35
.00 14 .02 A1
-.31 =22  -03 -23
.56 .01 00 -56
-1.03 000 23 23
00 —10 05 .00
60 -23 24 -.36

Compute and interpret the range, interquartile range, and the standard
deviation for the data.

Compute the standard deviation for the following sample.
6,8,12,9,13,12, 10,9

For the data in problem 11, add five to each score and compute the
standard deviation. How does the standard deviation change?
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13.

14.

15.

The following data represent annual rainfall of two cities (A and B) over
the past eight years.

A: 24, 18,19, 21, 28, 17, 32, 24
B: 6,19,14,7,21,9,17, 4
In which city is rainfall more variable?

You want to determine how variable the high temperature is in two exotic
isles. You note that in San Luca the temperatures have been 87 and 93 for
two days. But for Dolores you have more information. The temperatures
are B4, 86, 87, 88, 93, 94, and 94 for seven days. Use the range and
standard deviation to determine variability of weather of the two islands.
Decide which island has more variable weather.

Using the median and the interquantile range, state which scores, if any,
are outliers:

14, 16, 13, 12, 16, 17, 14, 13, 17, 14, 21, 12, 14, 13, 6



Transformation

The numbers in a sample are assigned to objccts by a set of rules. For
instance, in the United States the fuel efficiency of antomobiles is commonly
measured in miles per gallon. When the United States switches to the metric
system, kilometers per liter will be used instead. Because one mile equals
1.61 kilometers and one gallon equals 3.79 liters, one mile per gallon equals
1.61/3.79 or .43 kilometer per liter. So if a car gets 22 miles per gallon, it gets
22 X .43 or 9.5 kilometerss per liter. What has been done is take a number and
transform it. Transformation is the process by which numbers in a sample are
altered by some mathematical operation. So if a sample of numbers were
measured in terms of miles per gallon, and there was a need to remeasure fuel
efficiency in terms of kilometers per liter, the values of the numbers could be
systematically changed by multiplying them by .43. Numbers are not immuta-
ble. The rules that are used to assign numbers to objects can be changed, and
possible transformation of the numbers should be considered.

Transformations of data are more common than might be realized. Most of
us received a gross Scholastic Aptitude Test (SAT) score, say 580 in verbal
and 560 in math. But attached to each is a percentile rank, say 76% and 68%.
A percentile rank is a transformation of the raw SAT score. Also, when a
person compares his or her test score to a friend’s test score, the person might
subtract his or her own score from the friend’s score. The person then knows
how much better or worse is the friend’s score. Another commonly used
transformation is to rank order the sample of numbers. Typically the times
from a running race are rank ordered from fastest to slowest.

A transformation takes the original numbers and performs a mathematical
operation on them. A transformation can be represented by

some mathematical operation on the original sample of numbers
= transformed sample of numbers

The mathematical operation can be as simple as addition or as complex as
some trigonometric function, but the principle remains the same.
Transformations have three major purposes: to increase inferpretability,

73
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comparability, and symmetry. Numbers can be confusing, and so if a
transformation makes the meaning of the numbers any clearer, they should be
transformed. For instance, if it is known that a consultant made $15,000 in 20
weeks, it is more informative to know the consultant’s rate of pay per hour. It
is $15,000 divided by the number of hours worked. The number of hours is 20
X 5 X 8, or 800, and so the hourly rate is 15,000/800, which is $18.75. By
transforming the number from dollars per 20 weeks to dollars per hour, it is
clearer how much the person made. Transformations are also used to make
samples of numbers more comparable than they would be otherwise. One
reason for converting to the metric system is to make numbers in the United
States comparable with those in the rest of the world.

Finally, transformations are used to make distributions more symmetric
than they would be otherwise. Symmetry in a distribution is desired because it
is assumed by many inferential statistical techmniques. Moreover, experience
shows that asymmetric distributions sometimes are not at the interval level of
measurement. Transformations that promote symmetry tend to increase the
likelihood that the level of measurement is interval in nature.

Data transformations are a basic part of data analysis. There are four major
types of transformations: no-sfretch, one-stretch, two-stretch, and flat trans-
formations. This classification systemn focuses on the effect of each type of
transformation on the shape of the distribution. Each is considered in turn.

One example will be used to illustrate the various transformations. It is
taken from Duncan and Fiske’s (1977) study of two-person interactions. Two
strangers interacted for a period of seven minutes, the last five of which were
videotaped. In Table 5.1 are the number of smiles during the five minutes of
the interaction. The numbers in the table were based on measurements from
22 women, graduate students at the University of Chicago, who interacted
with 22 men. The mean number of smiles for the women is 9.55 and the
standard deviation is 4.77.

Number of Smiles of 22 Females During Five Minutes of Interaction with a Male

g 13
4 10
18 4
11 7
5 i1
7 9
5 9
21 7
14 14
1 9
9 14

Data were gathered by Duncan and Fiske (1977).
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No-Sireich Transformations

A no-stretch transformation is the simplest and most common type. Most of
the time that this transformation is used, the researcher is not even aware of it.
When gquatts are converted to gallons or feet are converted to miles, a
no-stretch transformation (sometimes called a linear transformation) is per-
formed. A no-stretch transformation does not alter the basic shape of the
distribution.” Aithough the distribution is stretched, it is uniformly stretched.

This transformation is called a no-stretch transformation for the following
reason: The effect of this type of transformation is not to alter the basic shape
of the distribution. So, if the distribution is symmetric it remains symmetric,
If there is a positive skew it remains. If the distribution is flat it remains flat.
Many of the statistics that are discussed in later chapters do not change after a
no-stretch transformation. For instance, the correlation coefficient and £ test
do not change.

One type of no-stretch transformation is one in which all the numbers in the
sample are multiplied or divided by the same number. If the score is denoted
as X and the number that the score is multiplied by is denoted as &, the
transformed score is £X. For example, if X is a score whose unit of measure-
ment is gallons and the researcher wishes to convert to quarts, then & is set to
four because four quarts equal one gallon. Alternatively each score can be
divided by a constant: X divided by k. For instance, if X is a score whose unit
of measurement is feet and the researcher wishes to convert to miies, then k is
145280 or .0001894 because one mile equals 5280 feet. As another example,
the data in Table 5.1 could be divided by five. Because the numbers in the
table refer to the number of smiles in five minutes, dividing by five would
yield smiles per minute.

Another type of no-stretch transformation is the adding of the same number

- to all the scores. If the numbers are denoted as X and the number added to all
the scores is denoted as m, the transformed score is X + m. For instance, if X
is a student’s score on a statistics test and m is a five-point bonus that the
teacher gives each student, then the transformed score is the previous score
plus five bonus points. Alternatively, a constant may be subtracted from each
score: X — m. For instance, if X is annual income earned by workers at a
factory and m is 10,000, then the transformed score is a worker’s eamnings
over $10,000. As another example, the value of 9.55 could be subtracted
from the numbers in Table 5.1. Because 9.55 is the mean, a score minus the
mean measures a given person’s number of smiles relative to the mean. So a
negative score would indicate that a person smiles less than average and a
positive score indicates more smiling.

These two types of no-stretch transformations can be combined. That is,
each score can be multiplied {or divided) by a number and then have another
number added (or subtracted) to the score. If the score is denoted as X, the
multiplier as k, and the score to be added as m, the transformed score is m +
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kX. The temperature conversion from Celsius to Fahrenheit is of this form.
The conversion for 20 degrees Celsius into Fahrenheit is (1.8)(20) + 32,
which equals 68 degrees Fahrenheit. Thus, £ = 1.8 and m = 32 for the
conversion from Celsius to Fahrenheit.

Measures of central tendency and variability are altered in a no-stretch
transformation. The three measures of central tendency are changed in the
following way. If M is used to denote the measure of central tendency, then
the new measure of location is kM + m, where k is the term that is multiplied
and m is added. So if the mean is 10.4 and k and m are 2.0 and 1.0,
respectively, then the transformed mean is (2.0)(10.4) + 1.0 = 21.8.

The variability is not affected by adding or subtracting a constant to the
scores. For example, if ten is added to all the scores, the variability does not
change, If scores are multiplicd by &, however, the range, interquartile range,
and the standard deviation of the transformed scores equal the measore of
variability of the untransformed scores multiplied by k. The variance of the
transformed scores equals the variance of the original scores multiplied by k2.

There are four basic reasons for employing a no-stretch transformation:
change in unit of measurement, change in scale limits, reversal of scale, and
standardization.

Change in the Unit of Measurement

This purpose has already been discussed. Converting from inches to feet or
from pounds to grams are examples of transformation to change the unit of
measurement. This transformation is so common that is not even viewed as a
transformation.

Change of Scale Limits

Imagine a set of scores with a possible range of from 100 to 500. It may be
desirable to change the upper limit of 500 to 10 and the lower limit from 100
to 1. Thus, the transforied measure would range from 1 to 10. A little
notation can help:

UL upper limit of the original sample

LL lower limit of the original sample
TUL transformed upper limit of the transformed sample
TLL transformed lower limit of the transformed sample

So, UL after transformation the becomes TUL and LL becomes TLL. To

change the limits, one computes for each score X
TUL-TLL
—-LL)y——+ T
(X-LL) UL - LL LL

for the above example
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UL = 500

LL = 100
TUL = 10
TLL = |

The appropriate transformation is then

160 -1
(X - 100) ———— +
(X - 100) 508 - 100 !

or

X - 100)— +
( l{”400 :

For example, if X is 300, then transformed X equals 5.5.

Reversal

Sometimes scales are oriented in the “wrong direction.” Generally larger
numbers indicaté more of some quantity. If this is not the case, the scale needs
to be reversed. For instance, a variable may be the rating of a political leader
on a ten-point scale—that is, a scale from one to ten. On some questions a
response of ten is a favorable response toward the political leader and on
others a one is a favorable response. It may be desirable to reverse the
questions in which one is a favorable response. That is, make a response of
one a ten and a ten a one. This transformation of the response X is accom-
plished in this example by 11 — X. In general, the transformation for reversal
is LL + UL — X, where LL is the lower limif, UL is the upper limit and X is
the score to be transformed. So, the score to be transformed is subtracted from
the sum of the lower and upper limits.

Standard Scores

The most often used no-stretch transformation in statistical work 1s one that is
said to standardize the scores. To standardize a set of numbers, the mean i3
subtracted from each score, and this difference is divided by the standard
deviation. The transformed score for person i is denoted by Z; and is given by

X -X
5

Z,':

where X is the mean of the X variable and s is the standard deviation. This
score is called a Z score or a standard score. The effect of this transformation
is to make the mean of the transformed scores equal zero and to make the
standard deviation equal one, Researchers employ this transformation because
a standard score (or Z score) tells them how far each person is from the mean
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in standard deviation units. For instance, a Z score of -2 indicates that the
person scores two standard deviations below the mean. When the Z score
transformation is used, the scores are said to be standardized.

For the smile numbers in Table 5.1, the mean is 9.55 and the standard
deviation is 4.77. The formula for the Z score of variable X for person i is

_ X;-9.55
‘ 4.77

Soif X = 14, then Z = (14 — 9.55Y/4.77 = .933, which is about one standard
deviation above the mean. A positive Z score indicates that the score is above
the mean, and a negative Z score indicates a score below the mean,

One-Streich Transformations

A no-stretch transformation does not alter the basic character or the shape of
the distribution. So if the shape of the distribution needs to be changed, a
no-stretch transformation does not do the job. For instance, if there is a large
positive skew (the scores trail off in the positive direction), it may be desirable
to transform the numbers to remove that skew. One way to remove it would
be to stretch the lower numbers. A method is needed to stretch one end of the
distribution, and so the transformation is called ore-siretch. The presence of
positive skew is quite common when scores have a lower bound of zero and
no upper bound. Examples of such variables are income, reaction time, age,
and number of cars on a freeway. The three major one-stretch transformations
are square root, logarithm, and reciprocal.

Square Root

The square root fransformation, or VX, is relatively simple. A square root
transformation is simply the square root of every number in the sample. One
should employ this transformation only if all the numbers are positive. It is
generally appropriate when X is a count. Examples of counts are the number
of bar presses by laboratory rats or the number of cars passing through an
intersection. This transformation has become easier to perform now because
most hand-held calculators have a square root key.

Logarithm

The logarthm, or log, is the most commonly used one-stretch transformation,
but it is the most complicated numericaily. (See Chapter 1 for a review of
logarithms.} For instance, income is regularly subjected to a logarithmic
transformation. The logarithm of X is the number that satisfies the equation X
= 10Y. The term Y is said io be a common logarithm, base 10, of X. It is
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‘much more common in scientific work to use natural logarithms, which have
e {approximately equal to 2.718) as the base. So Y is determined from

X=¢

To convert from base 10 to base e, multiply the base 10 logarithm by 2.303. It
should be noted that log(1) = 0 regardless of the base. Also the logarithm of
zero and negative pumbers is undefined regardless of the base. Thus, this
transformation is only feasible when the numbers are positive. If zero is a
possible value, it is necessary to compute X + .5 or X + 1.0 and then compute
the logarithm. That is, .5 or 1.0 is added to all the numbers and then the
logarithms are computed.

Reciprocal

The least commonly employed one-stretch transformation is the reciprocal
transformation. The reciprocal of X is defined as 1/X. In words, one is divided
by the score. It is particularly useful when X is time. Say the number of
minutes it takes to run a mile is measured. The reciprocal would measure how
many miles or fractions thereof were run in a minute, or the rate at which one
runs. Thus, the reciprocal of time equals rate, and the reciprocal of rate equals
time. Unilike the square root and logarithm transformations, the reciprocal
transformation reverses the order of scores, and thus the largest score be-
comes the smallest. '

Of the one-stretch transformations, the square root siretches the least and
the reciprocal stretches the most. To measure how much stretch there is in a
one-stretch transformation, the amount of stretch in the lower numbers is
compared with the amount of stretch in the higher numbers. To do this, the
Iower numbers are 1 and 5 and the higher numbers are 11 and 15. The stretch
index is

transformation(3) — transformation(1)
transformation(15) ~ transformation(11)

so for instance, for reciprocal, the value is

/5 -1/1,
/15 - 1/11

Using this stretch index, the following values are obtained.

No transformation 1.00

Square root 2.22
Logarithm 5.19
Reciprocal 33.00

Although the square root exhibits some stretch, it stretches the least. The
reciprocal transformation dramatically stretches the numbers.
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One-stretch transformations are used primarily to remove positive skew.’
To simplify the presentation, positive skew is indicated by the median being
smaller than the mean. In practice, to determine the presence of positive skew
a more detailed analysis is required. In particulaz, the histogram would have
to be created and examined. One clue that a positively skewed distribution
will be aided by a one-stretch transformation is the coefficient of variation,
which equals s/X, the ratio of the standard deviation to the mean, If the
coefficient of variation is greater than .25, a one-stretch transformation is
probably needed to remove skew.

To see how one-stretch transformations affect the shape of a distribution
consider the following sample.

1,4,4,9,9,9, 16, 16, 25.

This sample is positively skewed because the median is 9 and the mean is
10.33. However, after a square root transformation, the distribution becomes
perfectly symmetric, with the mean and the median equal; that is,

1,2,2,3,3,3,4,4,5.

However, the logarithm transformation of the original numbers results in the
following numbers:

0, 1.39, 1.39, 2.20, 2.20, 2.20, 2.77, 2.77, 3.22

and the skew has been overcorrected, as is indicated by the fact that the
median (2.20} is now greater than the mean (2.02). There is no longer a-
positive skew but a slightly negative one. Thus researchers must be careful to
avoid overcorrecting the skew.

In Table 5.2 are the numbers from Table 5.1 and their one-stretch trans-

formed scores. There is a slight positive skew in the original scores, making

the mean larger than the median. Applying the square root transformation
makes the mean and median nearly equal. However, the log transformation
overcorrects for skew and the reciprocal even more so, (Recall that the
reciprocal transformation reverses the scores and so the relative size of the
mean and median is reversed.) The square root transformation seems the most
appropriate here.

The mode and median have an advantage over the mean when a one-stretch
transformation is used. Assume that the numbers are each logged. The mean
of the logs does not ordinarily equal the log of the mean of the untransformed

'One-stretch transformations have two other purposes. These transformations tend to remove
heterogeneity of variance and nonlinearity. Heterogeneity of variance means that the vanance
changes for different samples. It is not uncommon for the standard deviation of a sample to be
related to the mean of the sample. Typically, samples with larger means will have larger standard
deviations. This is an example of heterogeneity of vadance. One-stretch transformations general-
Iy bring about equal standard deviations. This topic is discussed in Chapter 13. Finally, in
Chapter 7 the effect of one-stretch transformations on making relationships linear is considered.



Transformation 81

TABLE 5.2 -One-Stretch Transformation

Raw Square
Score Root Logarithm Reciprocal

8 2.828 2.079 1250
4 2.060 1.386 .2500
18 4.243 2.890 0536
11 3.317 2.398 0509
5 2.236 1.609 .2000
7 2.646 1.946 .1429
5 2.236 1.609 .2000
21 4.583 3.045 .0476
14 3.742 2.63% 0114
1 1.000 0.000 1.0000
9 . 3.000 2.197 111
13 3.606 2.565 0769
10 3.162 2.303 L1060
4 2.000 1.386 .2500
7 2.646 1.946 1429
11 3.317 2.398 .0909
9 3.000 2.197 111
9 3.000 2,197 1111
7 2.646 1.946 .1429
14 3.742 2.639 0714
9 3.000 2.197 111
14 3.742 2.639 0714
Mean 9.55 2.986 2.100 .1625
Median 9.00 3.000 2.197 1111

scores. However, the log of the mode equals the mode of the logs. The same
holds for the median when sample size is odd and is closely approximated
when sample size is even. So if the data are transformed by a one-stretch
transformation, the mean must be recomputed, but the mode and median can
be computed from the mode or median of the original data.

Before discussing two-stretch transformations, there is one other one-
stretch transformation. Occasionally it happens that scores have a negative
skew. For instance, the scores

0’ 6, 6? 8: 8: 10

show a slight negative skew (the median, 7, being greater than the mean,
6.33), which is removed by squaring the numbers, as follows:

0, 36, 36, 64, 64, 100

Thus, squaring the numbers can remove a negative skew. What squaring the
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data does is to stretch the larger numbers so that the sample has less of a
negative skew.

Two-Stretch Transformations

A one-stretch transformation is generally useful when the numbers have a
lower bound (usually zero) but no upper bound. With a lower bound, numbers
tend to pile up near it, creating a positive skew. What a one-stretch
transformation does is to remove this lower bound.

A two-stretch transformation is useful for samples that have both a lower
and an upper bound. There is one major type of data that has both an upper
and lower bound: a proportion. A proportion has a lower bound of zero and an
upper bound of one. (The student might review the discussion of proportions,
percentages, and odds in Chapter 1.) One can score no higher than one and no
Iower than zero. The purpose of a two-stretch transformation is to stretch both
the numbers near one and those near zero. It thus stretches twice.

Many times a researcher has proportions and doecs not realize it. For
instance, if the variable for a test is the number correct out of 40, the numbers
16, 25, 38 do not look like proportions. But when the number of correct items
on the test is divided by 40, the result is a proportion: 16/40 = .40,

The numbers near onc and zero need stretching becanse a small change is
more difficult when a propertion is near zero or one. For instance, reducing
the risk of surgical procedure from .02 to .0l is more impressive than
reducing it from .55 to .54. Although in both cases the risk has been reduced
by 1%, the odds of dying have been cut in half in the .02 to .01 case and have
hardly changed at all in the .35 to .54 case. Small differences between
proportions neat zero and one can be viewed as larger than small differences
near .5,

Arcsin

Probit

The three types of two-stretch transformations are arcsin, pl'OblI, andlﬁglt T

All three of these tramsformations are rather mathematically complicated;
tables are given in Appendix A.

The arcsin is the most commonly used transformation for proportions in
psychology. The sine is a trigonometric function and the arcsin is its inverse.
Fortunately, one need know nothing about trigonometry to apply this
transformation. The effect of this transformation is to stretch the distribution’s
tails.

The probit transformation is relatively uncommon in psychology but is very
common ip other sciences. For instance, political scientists routinely trans-
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form the proportion of persons voting for a candidate to a probit. To un-
derstand this transformation fully requires knowledge of the normal distribu-
tion, which is explained in detail in Chapter 10. In that chapter it is explained
how the values for the probit transformation are determined. For the moment,
probit can be viewed as one of three possible transformations for percentage
data.

Logit

The logit transformation is less commonly employed than either arcsin or
probit. It is based on a very commonsense approach to probability. For
instance, at the racetrack a horse is said to have odds of winning of two o
one. These odds mean that for every three races, the horse would win twice.
So a two to one odds mean a two out of three probability or a 67% chance of
winning the race. For the logit, one first converts a proportion into an odds.
The formula for an odds given a proportion p is

P
1.0-p

The odds range from zero to positive infinity. The logir is the natural
logarithm of the odds. In equation form the logit is

In

P
1.0-p
where In is the natural logarithm (base e) and p is a proportion. Recall that e
approximately equals 2.718. By convention a proportion of 1.00 is set to
.9975 and .00 is set to .0025. (This same change is done for probit but is not
necessary for arcsin.) It might be noted that a logit of zero corresponds to a
proportion of .50.

The effect of the two-stretch transformation is to stretch numbers more as
they move away from .50. That is, the smallest and the largest scores are
stretched the most. The most strétching transformation is logit and the least is
arcsin. If most of the values are between .25 and .75, the effect of these
transformations is so small as to make them unnecessary.

Flat Transformations

A flat transformation turns the sample’s distribution into a flat distribution
regardless of the shape of the original distribution. There are two types of
major flat transformations: rank order and percentile rank.

Rank Order

This transformation has already been implicitly employed when medians and
interquartile ranges are computed. For this transformation the numbers are
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rank ordered from the smallest to the largest. (Occasionally, numbers are
ranked from largest to smallest, as in the case of class rank.) For instance, the
numbers

7.8,3,9 1,11
are rank ordered
1,3,7,8,9,11

Then the smallest value is assigned a one, the next smallest a two, and 50 on.
Thus, for the above sample,

-
—
[y

——
B <— W
W oe— =
.he_?o
W — \O
Lol

The distribution is now flat. In the case of ties, the rule is to assign the average
rank. So for the sample

1.2,2,2,2,7,8

there are four observations equal to 2. They have ranks 2 through 5 and so the
average rank equals (2 + 3 + 4 + 5)/4 which equals 3.5. The ranks would
then be

1, 3.5, 3.5, 3.5,35,6, 7

When there are ties, the rank-order transformation does not produce a per-
fectly flat distribution.

Percentile Rank

Scholastic Aptitude Test (SAT) scores as well as many personality tests are
presented in terms of percentile rank. In this section a method is presented to
convert a score from a sample into its percentile rank. A percentile rank is
measured by the following formula:

ol

n

where # is the sample size and R is the rank order of the score. Soif n = 20
and an observation has a rank order of 9, the percentile rank is
(9~ .5)
100 —— =425
20

There are two major purposes for employing flat transformations. First,
rank orders and percentile ranks are often easier to interpret than raw scores.
Second, some of the statistics to be discussed later in this book are based on
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the assumption that the level of measurement is &t the interval level. The
effect of the flat transformation is to remove distance information between
observations and make the data ordinal. Once the data are at the ordinal level
of measurement, statistical procedures are available that make fewer assump-
tions about the data. These procedures are discussed in Chapter 18.

Two-Variable Transformations

All the transformations that have been considered involve a single sample of
numbers. It is very common fo have two samples of numbers from the same
people. For instance, there could be scores on two quizzes for each person in a
class. There are two major ways of combining information from two samples:
the sum and the difference,

The simplest procedure is to sum the scores. This is sensible when the
numbers measure the same trait. For instance, one can add the scores on the
two quizzes. The resultant score should be more reliable than either score by
itself,

A second alternative is to create a difference score. This is common for
measuring change. If the earlier quiz score is subtracted from the more recent
one, the resulting difference would be a measure of improvement. As a
second example, studies on the effect of psychotherapy on adjustment typical-
ly have a baseline measure before psychotherapy. The outcome is the im-
provement from the baseline.

When working with two-variable transformations, the mean and variance
have an advantage over other measures. The overall mean equals the mean of
its components. For example, population change can be defined as the
number of births minus the number of deaths plus the number of immigrants
minus the number of emigrants. In equation form,

population change = births ~ deaths + immigrants — emigrants

- The mean is the only measure of central tendency for which the mean number
of births minus the mean number of deaths plus the mean number of immi-
grants minus the mean number of emigrants exactly equals the mean popuia-
tion change. The mean then equals the mean of its components.

The variance has a similar advantage over other measures of variability.
The variance of the sum of two variables equals the sum of each variable’s
variance.? This fact is not true of either the interquartile range or the simple
range.

2This fact holds only if the two variables are uncorrelated. When variables are correlated, the
fact must be modified.
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Numbers are not immutable. Researchers implicitly decide how to measure
the objects of interest. There should be explicit consideration concerning how
to use these numbers. In some cases it may be desirable, or even necessary, to
transform the numbers.

Table 5.3 outlines the transformations that have been discussed in this
chapter. The simplest type of transformation is a no-stretch transformation.
This type of transformation involves adding or multiplying a nomber by each
score in the sample. A no-stretch transformation preserves the basic shape of
the distribution. It is used to change the units of measurement—for example,
to switch from inches to centimeters. It is also used to express the score in
terms of standard deviation units or Z scores. A Z or standard score is the
individual score minus the mean, divided by the standard deviation.

The second type of transformation is called a one-stretch transformarion.
Its primary purpose is to remove positive skew from a distribution and so
make the distribution symmetric. These transformations are the square root,
logarithm, and reciprocal. The square root stretches the least and the recip-
rocal stretches the most.

The third type of transformation is a mwo-strefch transformation. This

Summary of Transformations

No-Stretch Two-Stretch

Types
Adding a number to all scores
Multiplying scores by a number
Purposes
Change unit of measurement
Change limits
Reverse scale direction

Types (see Appendix A)
Arcsin
Probit
Logit
Purpose
Remove floor and ceiling
Requirements

Standardization Scores between 0 and 1
Requirements
None
One-Stretch Flat Transformation
Types Types
Square root Rank order
Logarithm Percentile rank
Reciprocal Purposes
Purpose Facilitate interpretation
Remove skew Make data ordinal
Requirements Requirements

Positive numbers

Few ties
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transformation is appropriate for samples with a lower and an upper bound
and is particularly appropriate for percentage data. These transformations are
arcsin, probit, and logir, with arcsin making the smallest change and logit the
largest.

The fourth type of transformation is a flar transformation, which turns the
numbers into a flat distribution, The two transformations of this type are rank
order and percentile rank. These transformations generally increase in-
terpretability and allow for a relaxation of some assumptions for statistical
tests.

At first reading, the topic of transformations may seem to be bewildering
because some of the mathematical operations seem complex. However, be-
cause the one-stretch transformations can be performed with a calculator and
two-stretch transformations are tabled in Appendix A, all the messy mathema-
tical complications are circamvented. The other transformations involve only
the simple operations of addition, multiplication, and rank ordering.

The second aspect of transformation that leads to confusion is the decision
of which transformation to use. Say a researcher wishes to employ a one-
stretch transformation. How does he or she know whether to use square root,
logarithm, or reciprocal? Which one is best? The researcher generally does
not know this in advance. It may be necessary to try each out and determine
which one makes the distribution more symmetric. Eventually, it should be
clear which transformation, if any, is best.

1. Compute to three decimal points each of the following.

In 10 .
square root of 39
arcsin of .75
1/48

probit of .66
logit of .54

In 63

square root of 75
arcsin of .44
logit of .17
probit of .23
logit of .50

ERC PR O RO T

2. Using the median and the mean for the following sample of numbers,
which one-stretch transformation makes the distribution most symmetric?
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1 4 5 3
9 3 1 4
3 13 2 7
4 g 18 6
8 7 9 3

. Compute Z scores for the numbers in problem 2. The mean equals 6.0

and the standard deviation is 4.40.

. For a sample with limits of zero and 100, state how to change the limits to

one and ten.

. For the following transformations give the new mean and standard

deviation for Z.

a. Z=10%¥ + 3, where X = 5and 5, = 3.

b. Z=Y/5+ 15, where ¥ = O and 5, = 1.

c. (X~ 10)15 = Z, where X = 10 and 5, = 15.
d Z2=6X + 4, where X = 5 and 5, = 2.

. For the following sample, compute percentile ranks for the scores 8, 12,
and 17. .
7 13 14 14
5 12 6 9
15 18 17 3
6 6 21 15
& 11 9 2

. Suppose that a sample of numbers has a mean of 25 and a standard

deviation of 3.20. Compute the means, standard deviations, and vari-
ances that would result from the following transformations.

a. Add five to all scores.

b. Multiply scores by three.

c. Subtract 20 and then multiply scores by five.
d. Add 100 and then multiply scores by two.

. Chapter 1, problem 6, gives ratings of discomfort by subjects who were

~ offered aid. The data are repeated below. The scale runs from one to ten,

10.

with higher scores indicating greater discomfort. Transform the eight
numbers by reversing the scale so that the scale still runs from one to ten,
and a higher score indicates more comfort.

10,1,3,5,3,7,7,3

a. For the data in the previous problem, transform the eight scores into Z
scores.
b. Transform the eight scores into percentile ranks.

Suppose that the possible points on a final exam range from five to 75.
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Change the lower limit to zero and the upper limit to 100 and transform
the following scores.

a. 55 b.72 ¢ 68 d. 40

Vinsel, Brown, Altman, and Foss (1980) conducted a study in which one
of the dependent measures was the type of wall decorations used by
dormitory freshmen. The following table shows the average area covered
by each type of decoration by male and female subjects.

Area
Category Males Females
A, Personal relationships 85 20.1
B. Absiract 66.1 80.7
C. Music/theater 24.4 20.3
D. Spors 77.4 21.1
E. Values 9.4 16.8
F. Reference items 18.7 5.8
G. Idiosyncratic 464 17.8
H. Entertainment/equipment 154 10.0

a. For the males, rank the categories from least area used to most area
used.

b. Do the same for the females.

c¢. For which category does the ranking for the females and males differ
the most?

Chapter 4, problem 7 gave the scores from an experiment on pro-
grammed instroction. Some of the data are repeated below.

Class Midpoint Freguency

o 09
[ S
Ll
B = A e

Apply a sguare root transform to the scores.

Perform a natural log transform on the scores.

Perform a reciprocal transform on the scores.

Compute the mean and mode of the original data. (Make sure to
weight by frequency.) In which direction are the data skewed? Do the
same for the three sets of transformed scores. How do the transforma-
tions affect the skew?

Ao o
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Measuring Association:
The Regression
Coefficient

A sample has a distribution, a central tendency, and a variability, Each of
these characteristics helps the researcher make sense out of the nombers.
Although each reveals some important aspect of the data, none of them
measures the relationship or association between two sets of numbers.
Examples of questions of association are: If you receive an A on the

~midterm test, will you tend to get a high mark on the final examination? If you

buy a car that is supposed to get 32 miles per gallon, what kind of mileage will
your car actually get? If your roommate likes you, will you like your
roommate? These are all questions of association or relationship.

To speak of relationship or association there are two separate samples of
numbers that are linked together. For instance, consider the two samples of
midterm grades and final grades. The two samples are linked together by
persons to whom the grades refer. This linkage is illustrated in Table 6.1. For
instance, John R. obtained a 36 on the midterm and a 48 on the final. The unit
that links together the two samples need not necessarily be a person. For
instance, to relate husband’s height to wife’s height, the unit that links
together the scores is married couple and not person. One potential source of
confusion in interpreting a measure of association is determining the object
that links the pair of scores together. For instance, consider the statement that
more discipline leads to more academic achievement. The relationship be-
tween these two variables can be measured for students: Do students who
receive more discipline achieve more? For classrooms: In classrooms where
there is more discipline, do the students achieve more? And for schools: In
schools where there is more discipline, do the students achieve more? So the
object can be the student, the classroom, or the school.
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TABLE 6.1

Linking Together of Two Samples

Midterm Object Final

36 «————— John R, «— 48
89 e——— Mary P, «——— 78
93— PaulT. «—— >R8]
T8 — Jane A, «—— 95
90— James S, «— 82
Ble— Jean M. «— > 89

If two variables are associated, then as the numbers in one sample vary,
their partner numbers in the second sample vary in some related fashion. So
association implies that the numbers vary fogether or, as stated in data
analysis, the numbers covary.

The simplest way in which the numbers can covary is in a linear fashion. A
relationship is said to be linear if a difference in one variable of a fixed
amount results in a constant difference in the second variable. The term lingar
is used because when you plot a linear association on a graph, the resuit is a
straight line.

Linearity requires that a one-unit increase in variable X produces the same

-~ . . oo .
change in variable Y regardless of where that one-unit increase in X comes.

Say, for instance, it is known that for every year of schooling a person earns
on average $3000 more per year. If the relationship is linear, then an extra
year of schooling provides the same amount of money ($3000) regardless of
whether the extra year of schooling is one more year of college or one more
year .of high school.

The effect of a variable on another may be more complex than a linear one.
Changes in a drug’s dosage may be less potent at smaller concentrations than
at larger ones. In this case the strength of a relationship between the variables
increases as one variable increases. Any pattern of association between two
variables that is not linear is referred to as nonlinear association. The impor-
tant issue of nonlinear relationships is addressed in the next chapter.

There are two directions of linear association. The first type is positive
association. Most often the expectation is that higher numbers in one sample
are associated with higher numbers in the other sample, A student who does
well on the midterm tends to do well on the final. The expectation is that the
high numbers on the midterm are paired with the high nombers on the final
and low numbers on the midterm go with low numbers on the final. Such a
pattern of relationship is called a positive association. A positive association
implies that as the numbers increase for one variable, they tend to increase for
the other variable,

Sometimes as the numbers go up in one sample they go down in the other.
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lustrations of positive (on the left) and negative (on the right} linear rela-
tionships.

For instance, the more an adult weighs presumably the slower the person can
run. This is an example of negative association: more weight, less speed.
High numbers in one sample are associated with iow numbers in the other.
Negative association between two variables means that as the numbers in-
crease in one sample, they decrease in the other.

The difference between a positive and a negative relationship is shown
graphically in Figure 6.1. The positive relationship on the left of Figure 6.1
shows an ascending relationship, whereas on the right, the negative refation-
ship is descending.

In Table 6.2 is a data set that will be used throughout this chapter. The data
are memory scores from 16 men of various ages in the Boston area. It is then
“person” that links the age and memory scores together. All men were given a
test of short-term memory, which will be referred to as STM. Higher scores
on STM indicate better short-term memory. The lowest possible score is zero
and the maximum possible score is 24. All 16 men were being treated for
alcoholism. The question considered in this chapter is the extent to which age
and STM covary.

Ages and Short-Term Memory Scores (STM) of 16 Alcoholic Men

Person Age STM Person Age ST™M
1 48 14~ 9 56 2
2 46 7 10 54 12
3 44 12 . 11 65 12
4 52 10 12 35 18
5 22 24 13 63 3
6 43 11 14 39 18
7 51 9 15 30 14
8 54 19 16 47 8

Data were gathered by Dennis Ilchisin,
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To describe the relationship between two variables the scores can be
plotted on a graph. One variable is represented on the X axis and the other on
the Y axis. Then each person’s score is placed on the graph. A diagram in
which the axes are the variables and the points are the data is called a
scatterplot. Figure 6.2 is a plot of the score from person 1 in Table 6.2, The X
axis is age and the Y axis is memory score. The person’s age (48) and memory
score {14) are located on the X and ¥ axes, respectively. Lines are drawn that
are perpendicular to each axis from each score. The point at which the two
lines intersect is a point in the scatterplot. When canstructing a scatterplot, the
perpendicular lines are not actually drawn. The dashed lines were drawn in
Figure 6.2 only to show how fo determine a point in a scatterplot.

Figure 6.3 illustrates the complete scatterplot for the age and memeory data.
The scatterplot itself tends to reveal whether there is any relationship between
the two variables. Here, a negative relationship is suggested. Older persons
tend to have lower memory scores,

The Regression Coefficient

FIGURE 6.2

Although a scatterplot describes relationship, most relationships are too weak
to be clearly discerned from an examination of the scatterplot. Some method
of capturing the strength of a linear relationship in a scatterplot is needed. One
strategy for measuring asscciation is to draw a straight line through the set of
points in the scatierplot.

The slope of a line is the standard measure of linear association. For the
slope, the variable on the X axis is called the predictor and the other is the

How to determine a point in a scatterplot.

0
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Scatterplot for the age-memory study.
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criterion. The slope measuvres the effect of a change of one unit in the
predictor on the criterion. Consider the following examples.

An industrial psychologist is interested in predicting who is more pro-
ductive at a given factory. She devises a test that she thinks can predict
productivity. The test would be the predictor and productivity would be the
criterion.

A sociologist believes that the number of dollars that a community spends
on schools per pupil will depend on the percentage of persons over 65 in the
community. He believes that the relationship is negative: the larger the
percentage of elderly, the less the amount spent on education. The predictor is
the percentage over age 63, and the criterion is money speat per pupil.

A clinical psychologist believes that depression is related to diet. She
believes that sugar in the diet leads to depression. The predictor is sugar
consuinption, and the criterion is depression.

The major measure of slope between a predictor and a criterion is a
measure called the regression coefficient. Two different rationales for the
regression coefficient are developed in this chapter. One is based on the
notian that the regression coefficient is an average slope. The other is based
on the notion of the regression coefficient as the best fitting line.

The Average Slope

Anyone who has decided to devote four years to obtaining a college degree
must have wondered about the relationship between years of education and
dollars earned. Does education predict income? So years of education is the
predictor and income is the criterion. Imagine twin brothers Bob and Ray.
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Ray graduated from college at State U. (16 years of education), and at age 30
he earns $35,000 a year. Bob, after finishing high school, elected not to go to
college (twelve years of education), and at age 30 he earns $25,000 a year.
Ray has four more years of education than Bob and he eamns $10,000 more.
Each year of education has brought Ray another $2,500 in income. The
number 2,500 is a slope. Implicitly the following expression has been used.

Ray’s income — Bob’s income
Ray’s edocation — Bob’s education

The numerator is the difference between the brothers’ incomes, which is
$10,000. The denominator is the difference between the number of years of
education. The slope states the amount of change in the criterion variable as a
function of a one unit change in the predictor variable.

Suppose that there is a third brother, Mike, who went to college for only
one year and so has 13 years of education. Mike's annual income is $26,000.
There are now three different slopes: using Bob and Ray, Bob and Mike, and
Ray and Mike. These three slopes are:

Bob and Ray:  $2,500
Ray and Mike: $3,000
Bob and Mike: $1,000

These slopes measure how much money is earned for every year of education.
In Figure 6.4 are the scores of Bob, Ray, and Mike in a scatterplot. The

FIGURE 6.4 Scatterplot for the education and income example.
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horizontal or X axis is the predictor variable: number of years of education.
On the vertical or Y axis is the criterion: dollars earned per year. There are

‘three points in the graph for the three persons. These three points can be

connected to form three different measures of slope.

A little notation can help. Education is denoted as X and income as ¥. With
threg data points the scores are denoted X, X5, and X3, and Yy, ¥4, and Y;.
The three measures of slope between the three pairs of lines are

Y,- 1,
Xy~ X,
YW-rs
X, - X,
¥o-Y;
X, - X5

These three measures of slope will not be equal unless the three points fall on
a single straight line. In the example in Figure 6.4, the three pairs of points
create three different measures of slope. To armrive at a single measure of
slope, the three measures need to be averaged. The three measures could
simply be averaged: (2500 + 3000 + 1000)/3 = 2167 for the example.
Alternatively, the numerators and denominators of the three estimates of slope
could be separately sumined; that is,

Fi -+ —-Yy) + ;- 1,)
(X1 —X) + (X1 - X3) + (X; - X3)

However, this seemingly sensible solution results in the loss of the X5, Y- data
pair and yields, as an estimate of slope,

¥ -1
Xy — X5

and so this average results in throwing away the measures of slope that
involve X, and ¥,. To remedy this problem, the estimates of slope must be
weighted in some fashion. The estimate of slope using two persons whose
education differs markedly should be more reliable than using two persons
whose education is quite similar. Therefore, one strategy is to weight by the
difference betweén the scores on the predictor variable. Thus the more
different two persons are on the predictor variable, the more their estimate of
slope should be weighted.

Weighting by differences in the predictor variable makes intuitive sense.
When persons do not differ at all on the predictor, the slope becomes
impossible to measure. Weighting by differences in the predictor, the estirnate
of the slope becomes

¥ - )X: - X5) + (Y1 = Fa)(X, — X5) + (Y2 - Va)(X; - X35)
(X; - X" + (X) - X3 + (X ~ X3)?
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or, for the example,

(L0000)(4) + (9000)(3) + (1000)(1)

16 + 9+ 1 = 2615

This is the measure of slope that is commonly used in social research and it is
called the regression coefficient. The regression coefficient can be viewed as
the average slope across all possible pairs of observations and weighted by
difference on the predictor variable. Researchers never actually compute the
slope for all possible pairs, but the regression coefficient does equal an
average slope and can be interpreted as such.

The Besi-Fitting Line

There is a second and more commonly known rationale for the regression
coefficient, It is the least-squares line, which is now described.

To measure the relationship between education and income, a line is fitted
in the scatterplot between education and income. Because there are many such
possible lines, some way is needed to determine what line is the “best” line,
The best-fitting line is one that minimizes the errors.

Before proceeding any further, an error in prediction must be defined. In .
Figure 6.5 is the scatterplot of the three brothers’ education and income. In
the scatterplot there is a prediction line drawn. Also drawn are vertical lines
from the line to the points in the scatterplot. The vertical length of the line can
be viewed as an ertor in prediction. An error is defined as the vertical distance
from the iine to the score.

FIGURE 6.5 Errors in a regression equation.
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These errors in prediction can be squared. The regression coefficient is
defined as the slope of the line that minimizes the sum of squared errors. It is
for this reason that the regression line is called a least-squares estimate; that
is, the line that is chosen has the least sum of squared errors. For instance, for
the education and income example, a line with a slope of 2615 has the lowest
sum of squared errors. A line with any other slope has a greater sum of
squared errors.

There are then two rationales for the regression coefficient. One is that it is
a weighted average of all possible slope measures. The other is that the
regression coefficient is the slope of the best-fitting line.

The Regression Equation

The regression line can be represented graphically as in Figure 6.5 or it can be
represented by an equation. The equation is

Y=a+bX +¢

The term a is the intercept, & is the slope or regression coefficient, and e is the

error. The intercept is the predicted score for ¥ given that X is zero. The

intercept is the point at which the regression line intersects the ¥ axis.
The predicted value Y given X, or ¥, equals

¥ =a+bx

The term ¥ is the predicted Y given a particular value of X. The error in
prediction is then defined by ¥ ~ ¥. The error in prediction is the vertical
distance of the regression line from the point in the scatterplot.

The regression coefficient has two important properties. First, the line
always passes through the point X, Y. If the line did not pass through this
point, it would no longer be the least-squares line. Second, the mean of the
errors always equals zero; that is Z(¥ - ¥yn = 0.

The value of a regression coefficient depends on the unit of measurement.
Adding or subtracting a constant to either the predictor or the criterion does
not affect the regression coefficient; however, if the scores are multiplied or
divided by a constant, the regression coefficient does change. If the predictor
is multiplied by a constant, the regression coefficient is divided by the
constant. If the criterion is multiplied by a constant, the regression coefficient
is 2lso mukltiplied by the constant.

Computation

The standard formula for the regression coefficient b, where X is the predictor
and Y is the cnterion, is
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p = SEX=XN¥-T)
(X - XY

The denominator of the slope formula is the numerator of the formula for the
variance of the predictor, The numerator of the formula for slope is called the
sum of cross-products. The denominator of the formula is called the sum of
squares of the predictor variable. In general, the regression coefficient equals
the sum of cross-products between the predictor and the criterion divided by
the sum of squares of the predictor.

There is a computationally more efficient formula for the regression
coefficient:

_ 2XY - GX)EY)in
X - GX)n

This is the formula that is generally used to compute the regression coeffi-
cient.

The formula for the intercept, which is symbolized by a, can be obtained
by solving for the predicted value of ¥ when X is at the mean. Because X, Y'is
a point on the regression line, the predicted value of ¥ for XisY. The resulting
prediction equation is ¥ = a + BX. Solving for a, the solution is

a=Y-bX

The intercept equals the mean of the criterion minus the product of the mean
of the predictor and the regression coefficient.

The variance of the errors is symbolized by sy.x* and is sometimes refer-
red to as the mean square error or MSE. The formula for the variance of the
errors is

b

. AY-FP
Sy.yn = T
n—2

This formula does not look like a variance but it is. The numerator is the sum
of squared errors. There is no need to subtract the mean of the errors because
that mean is always zero. It is correct to divide by r — 2 instead of n — 1
because both the regression coefficient and the intercept have been estimated.
Actually the errors need not be individually computed to determine their
variance. The following formula is often much simpler to compute:

Syx” = nol (sy* — PPsx®)
n—2

To illustrate the use of the formulas consider the data previously presented
in Table 6.2. To compute the regression coefficient, the intercept, and the
variance of the errors, the following quantities are computed: =X, ZY, ZXY,
X%, and 2Y2. Because age is the predictor, it is denoted as X. And because
STM is the criterion, it is denoted as Y. In Table 6.3, these computations for
the age-memory study are illustrated. Laying out the numbers, as in Table
6.3, can simplify the computations. The slope for the example is
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TABLE 6.3 Computational Table for Age and STM Study

Person  Age STM  Age? STM? Age x STM  STM  STM - STM

1 48 14 2304 196 672 11.81 2.19
2 46 7 2116 49 322 12.44 -5.44
3 4 12 193 144 528 13.08 -1.08
4 52 10 274 100 520 10.54 ~.54
5 22 24 484 576 528 20.05 3.95
6 43 11 1849 121 473 13.40 -2.40
7 51 9 2601 81 459 10.86 -1.86
8 54 19 2916 361 1026 9.91 9.09
9 56 2 3136 4 112 9.28 -7.28
10 54 12 2916 144 648 9.91 2.09
11 65 12 4225 144 780 6.42 5.58
12 3% 18 1225 324 630 15.93 2.07
13 63 5 3969 25 315 7.06 -2.06
14 39 18 1521 324 702 14.66 3.34
15 30 14 900 196 420 17.52 -3.52
16 47 _8 2209 _ 64 376 12.13 ~4.13
Total 749 195 37011 2853 8511 195.00 0.00

8511 — (749)(195)/16
b= = -316
37011 ~ 749%16 ¢
As the scatterplot shows, the slope is negative. As these men age a year, their
short-term memory declines by about three-tenths of a unit, or for a decade
the men lose about three points of memory score. Because the mean of the
predictor is 749/16 or 46,8125 and the mean of the criterion is 195/16 or

12.1875, the intercept is
a = 12,1875 — (-.3169)(46.8125) = 27.0224

This is the predicted score for a person whose age is zero—that is, newborns.
The resulting regression equation is

STM = 27.0224 — .3169(Age) + e

The variance of the errors requires the computation of the variances for age
and STM. For age the variance is

37011 — 749%16
15

And for STM the varjance is

2853 — 195%/16
15

= 129.8958

= 31.7625

The error variance is then
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FIGURE 6.6 Scatterplot and regression line for age-memory study.

Age in years

15
Syx® = TZ[B]'TGZS - (~.3169)%(129.8958)] = 20.0546

Note that the error variation is considerably smaller than the variance of the
criterion variable, which is 31.8292.

The predicted scores are also presented in Table 6.3. For instance, for
person 1 whose age is 48, the predicted score is

27.0224 + (-.3169)(48) = 11.81

The error in prediction for person 1 equals the actual memory score of 14
minus the predicted score of 11.81, which is 2.19. The fact that the sum of the
errors is zero is a mathematical necessity.

Finally, Figure 6.6 shows the scatterplot with the regression line plotted.
To plot a line two points are needed. The two points that are used to plot the
regression line are X = 0, ¥ = 27.0224 (the intercept) and X = 46.8125,Y =
12.1875 (the means). The line very clearly shows the declining memory
scores with increasing age.

Interpretation of a Regression
Coefficient

To compute a regression line, one variable must be treated as the predictor
and the other as the criterion. The choice of which variable to designate as the
predictor and which to use as a criterion should not be arbitrary. That is, one
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should have either a practicat or conceptual basis for making the designation.
If one is not certain which variable to treat as the predictor, it may be more
appropriate to use another measure of association such as the correlation
coefficient, which is described in the next chapter.

If X is used to predict ¥, the line obtained is different from the one obtained
when Y is used to predict X. Hence therc are two regression lines. To
distinguish the two lines, the regression coefficient is often subscripted first
by the criterion and then by the predictor. So byy implies that X is the
predictor and Y is the criterion, and by, implies that ¥ is the predictor and X is
the criterion. If Y is vused to predict X, the formula for byy is as follows:

b = 2XY = GX)AY)n
x SY - QY)Un

The relationship between byy and byy is straightforward. To convert byy into
byy, the following formula is used.

2
5.
byy = byx (_xz]
Sy’

Conversely,
2
byy = bxy [SL;}
Sx

There are two major purposes for the regression coefficient: prediction and
explanation. In prediction, the following question is asked: If one knew
someone’s standing on a variable, how well would one be able to predict the
person’s standing on another variable? The purpose in prediction is not fo
change or alter reality, but merely to make good guesses about the future. The
predictive use of a regression equation is valid within only the range of the
predictor variable. Using a regression equation to predict scores of persons
who do not score within the range of the predictor variable can be quite
misleading. For the age-memory example the youngest person is 22 the oldest
is 65. So any prediction for subjects younger than 22 or older than 65 involves
an extending or extrapolating of the regression line beyond the sample used to
estimate it. For the age-memory example, the intercept can be viewed as an
extrapolation because no subjects are zero years of age. The intercept is
27.0224 and it predicts newborns would remember more than 27 items.
Because 24 is the maximum possible score, it is logically impossible for
anyone to score so high. This illustrates the dangers of extrapolation.

The second major use of a regression equation is for explanation. Here the
researcher wants to claim that the regression equation indicates a causal
effect. A.causal interpretation states what would happen when reality is
changed, whereas a predictive relation describes reality as it is. For instance,
attitudes and behavior are generally strongly related. As an example, in-
dividual attitudes toward the use of seat belts predicts fairly well who will use
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seat belts. Given this association, one can also attempt to change persons’
attitudes to increase the use of seat belts. But just because attitude and
behavior are correlated does not mean that attitude causes behavior. Using
regression coefficients causally is even more dangerous than using them for
prediction. More will be said about the causal interpretation of measures of
relationship in the next chapter.

Regression Toward the Mean

Summary

The variance in the predicted scores is never larger than the variance in the
criterion. This is one of the first statistical facts ever discovered. Galton in
1890 was surprised to leamn that tall fathers tended to have sons shorter than
themselves. If father's height is used to predict child’s height, the predicted
child’s height is closer to the mean height than is the father's. This also
worked when Galton used the sor’s height to predict the father’s. That is, if
child’s height is used to predict father’s height, the predicted height for the
father is closer to the mean height than the son’s. Galton labeled this phenom-
enon as regression toward the mean.

‘When the slope is zero, the predicted scores take on one value: the mean of
the criterion. In this case the predicted scores have no variance, When there
are no errors in prediction, the predicted score equals the criterion score and
hence the two have equal variance.

Two variables are said to covary if differences in one variable are related in a
systematic fashion to differences in a second variable. The most common
form of a relationship is a linear one. In a linear relationship, the strength of
the relationship does not.depend on the values of the variables. Linear
relationships can be positive or negative, In a positive relationship as one
variable increases, the other variable also increases. In a negative relationship
as one variable increases, the other decreases.

The slope is a measure of linear association. It measures the effect of a
change in one variable as a function of a one-unit change in another variable.
When measuring the slope, one variable is denoted as the predictor and the
other as the criterion. The slope is given by

1XY - GX)Q¥)n

SX2 — (3X Pin
where X is the predictor and ¥ the criterion. The infercept measures the
predicted value for the criterion when the predictor is zero. In other words, it

is the point at which the regression line intersects the ¥ axis and is given as
follows:

b:
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a=7Y-bX
The variance in errors is given by the following:

n—1
Sy.xz = )

(SY2 - bzsxz)

The regression line can be used for either prediction or explanation. In
prediction one variable is used to predict the other. In explanation, one
vartable is assumed to produce changes in the other.

Problems

1, There is a country saying that one can determine the temperature
(Fahrenheit) by counting the number of cricket chirps in 14 seconds and
adding 40. Consider cricket chirps in 14 seconds as the predictor variable
and temperature as the criterion. What, according to the saying, is the
slope and intercept of this regression equation?

2. An industrial psychologist uses number of cigarettes smoked per day (S)
to predict the number days absent during the year (4). Her regression
equation 1s:

A=223+ 0818 + ¢

a. How many days absent does the equation predict for someone who
does not smoke? Someone who smokes 20 cigarettes a day? Someone
who smokes 40 cigarettes a day?

b. If the company were able to lower the number of cigarettes that each
of its employees smoked by 15, and the company employs 94 people,
how many fewer lost days per year would it be predicted to have?

3. For the following pairs of variables, which should be treated as the
predictor and which as the criterion?

a. marital satisfaction and similarity
b. effort and performance

c. sleep and efficiency

d: health and mood

4, For the following pairs of variables what is the likely direction of the
relationship, positive or negative?

religious belief and church attendance
vocabulary and intelligence

rainfall and outdoor activity

crimina} behavior and alcoholism

pogR
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hours studied and midterm grade

odometer mileage and repair costs

grade point average and number of parties attended
price of beer and enjoyable taste

Fo oo

5. The following scores are the height and weight of five persons.

Height Weight
(irnches) (pounds)
60 140
64 i70
72 210
63 180
70 150

Treat height as the predictor variable and weight as the criterion.

a. What is the slope, intercept, and variance of the errors? Interpret each
statistic.

b. Compute the errors for the five scores and verify that their mean is
Zero. .

c. Draw a scatterplot and plot the regression line.

6. For the following pairs of variables what would be the object across
which the measure of association would be computed?

a. literacy rate and gross national product
b. population and crime rate

c. sense of control and happiness

d. leadership and productivity

7. Describe each of the following relationships as either predictive or
causal.

predictor: cigarette smoking; criterion: lung cancer
predictor: beer consumption; criterion: wine consumption
predictor: child’s height; criterion: child’s reading skill
predictor: physical attractiveness; criterion: popularity
predictor: presence of smoke; criterion: fire

U

8. Harrison (1984) conducted a questionnaire study of crowding, privacy,
and loneliness among female dormitory residents. Satisfaction with
privacy in the dormitory (X)) was measured on a scale from one to seven,
with higher scores indicating greater satisfaction. Subjects were also
asked how often they avoided people other than friends in the dormitory
(Y). Apgain, responses were given on a seven-point scale, with higher
scores indicating more frequent avoidance behavior. The data of 20 of the
subjects, randomly chosen, are given below, along with some calcula-
tions.
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10.

11.

12.

Subject Satisfaction {X) Avoidance (Y) X2 ¥? XY
1 4 2 16 4 8
2 6 | 36 1 6
3 6 i 36 1 6
4 5 2 25 4 10
3 2 6 4 36 12
6 6 2 36 4 2
7 6 1 36 1 6
8 5 2 25 4 10
9 6 5 36 25 30

10 4 1 16 1 4
11 6 1 36 1 6
12 4 4 16 16 16
13 4 1 16 1 4
14 5 4 25 16 20
15 7 2 49 4 14
16 3 2 9 4 6
17 4 3 16 9 12
18 2 7 4 49 i4
18 6 i 36 1 6
20 6 1 36 1 _6
Total 97 49 309 183 208

a. Construct a scatterplot. Does the plot tend to show a positive or
negative relationship?

b. Compute the slope of the regression equation, with satisfaction as the
predictor and avoidance as the criterion. Interpret the slope. Compute
the intercept. What does it mean?

¢. Compute the variance of X and of ¥. Compute the variance of the
r701S.

From the results of problem 8, state the regression equation. Compute the
predicted avoidance scores for each of the observed satisfaction scores.
Compute the variance of the predicted scores. How does it compare with
the variance of the observed avoidance scores? What is this change in
variance called?

For the regression equation
Y=103+ 6X + ¢
find predicted scores for the following values of X: 10, 12, 15, and 31.
If 542 = 15, 55> = 10, n = 25, and byy = .5 find the following:
2

a. bxy b. .S'y.xz C. Sy.v

Below is the temperature in Hartford, Connecticut, and the expected
number of cars that will have starting difficulties.
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Temperature Number of
(Fahrenheit) Disabled Cars
40 1159
32 1288
25 1519
20 2276
15 2941
10 3296
5 4481
0 5665
-5 7210
-10 8858

Treat temperature as the predictor and number of disabled cars as the
criterion and estimate the slope and intercept. Interpret cach. Compute
the errors for each observation. Using the equation, how many cars will
have starting difficulties when the temperature is —8 degrees? When it is
70 degrees? 4 '
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In the preceding chapter the regression coefficient was presented as a measure
of association between two variables. The regression coefficient as a measure
of association is asymmetric and is expressed in the units of measurement of
the variables. It is asymmetric in the sense that its value depends on which
variable is considered as the criterion and which is the predictor. It is
expressed in the units of the variables in that it measures the amount of change
in the criterion as a function of a one-unit change in the predictor.

Sometimes it is not possible to specify which variable is the predictor and
which variable is the criterion. For instance, in measuring the degree of
relationship between reading comprehension and vocabulary skill in school-
children, one variable is not clearly the predictor and the other the criterion,
Also, because the regression coefficient is expressed in the units of measure-
ment of the variables, the strength of association is not very clear. It would be
desirable to obtain & measure of association that was symmetric and expressed
the degree of association between the variables. The correlation coefficient
meets both requirements.

The correlation coefficient is symbolized by the letter r. Because it is a
symmetric measure of association, it follows that r,, = ry.. The correlation
coefficient is by far the most common measure of association used in the
social and behavioral sciences. Only economists use the regression coefficient
more frequently than the correlation coefficient. This is no doubt due to the
fact that the unit of measurement in economics (the dollar) is readily interpret-
able.

As an example for this chapter, the variable of laughter in conversations
will be considered. Duncan and Fiske (1977) coded the nonverbal behavior of
22 pairs of men and women for five minutes. The couples were instructed to
get acquainted with each other. During these conversations, there was occa-



Relationship: The Correlation Coefficient 109

sional laughter. Table 7.1 lists the number of laughs of each person for the 22
couples over the five-minute period.

Rationale for the Correlation .

Coefficient

TABLE 7.1

The correlation coefficient is a special regression coefficient. Consider the
case in which there are two variables, X and Y. First, the scores for the X and
Y variables are separately standardized. Thus, Z scores are created for each
variable; that is, the mean for the variable is subtracted from each score and
then this difference is divided by the variable’s standard deviation. To com-
pute the regression coefficient, one Z-scored variable js the predictor and the
other is the criterion. The correlation coefficient, symbolized by the letter r, is
the regression coefficient between two variables whose scores have been
standardized.

The correlation coefficient is a symmetric measure of association and so
ryy equals ryy. Unlike the regression coefficient, a corretation coefficient has

Number of Laughs in 22 Conversations

Number Number
of Langhs of Laughs
Couple (Women) (Men)
1 0 0
2 4 1
3 7 9
4 4 4
5 2 0
6 1 0
7 3 1
8 9 5
9 5 1
10 1 ¢
1 4 3
12 8 2
13 4 2
14 0 2
15 6 0
16 12 3
17 8 1
18 3 2
19 5 2
20 7 0
21 5 3
22 8 3

Data were taken from Duncan and Fiske {(1977).
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an upper limit of +1 and a lower limit of —1. A +1 correlation indicates a
perfect positive correlation and a -1 correlation indicates a perfect negative
correlation. In a perfect correlation, all the points fall on the regression line.
The line is ascending if the correlation is +1 and descending if it is —1. Like
the regression coefficient, a zero value indicates no linear association be-
tween the variables. Any nonlinear association may not be reflected by the
correlation coefficient.

Computation

As mentioned above, unlike the regression coefficient, the correlation coeffi-
cient is a symmetric measure of association: ryy = ryy. The relation of ryy to
byy and byy is straight forward. {(Recall from the previous chapter that for byy
the variable Y is the predictor and X the criterion and for byy the variable X is
the predictor and ¥ the criterion.) The formulas for turning b into r are

5
Fxy = byy (—Y]

Sx

\

Ixy bYX (S_X

Sy

In words, the correlation coefficient equals the regression coefficient times
the standard deviation of the predictor divided by the standard deviation of the
criterion. It is also true that

rxy’ = bxybyx

To convert from r to b the formulas are

$x
byy = ryy |—
\ Sy

Sy\
Sy J
In words, a regression coefficient equals the correlation times the standard
deviation of the criterion divided by the standard deviation of the predictor.

More typically, the correlation is computed directly without computing the
regression coefficient. There is also no need to standardize or compuie Z

scores for each person. The correlation coefficient can be computed by the
following formula,

byx = rxy

_ JX-Xr-1)
VX -X)? 3 -¥)?

xy
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The top term of the above formula is, as referred to in the previous chapter,
the sum of cross-products. The denominator is the square root of the product
of the sums of squares of both X and Y. A simpler and more practical
computational formula is

_ 2XY — @X)QY)n
VIZX? - CX)nlEY? - (T¥ Vin]

The computational formula for correlation has the following ingredients: the
sum of the scores for all the subjects on both variables, ZX and ZY; the
squared sum of the scores, (£X)? and (2Y)? the sum of each squared score
for each variable; £X? and Z¥?; and the sum of the product of scores, SXY.
One common computational error in computing a correlation coefficient is to
forget to take the square root of the denominator.

Conventionally correlations are computed to two digits. This is a sensible
strategy in that the third digit is not ordinarily interpretable. So if a correlation
is to be computed and interpreted, rounding to the second digit should suffice.
However, correlation coefficients are often used to compute other statistics,
some of which are presented in Chapter 15. If a correlation is to be used to
compute other statistics, it should be computed to three or possibly four
digits. In this chapter, correlations will be given to three digits.

Table 7.2 displays the computations for the laughing in male-female
conversations. The female laughs are denoted as X and male laughs as Y. The
sum of cross-products of X and Y is as follows:

369 — (116)(46)/22 = i26.4545
The sum of squares for X is
954 — (116)%/22 = 342.3636
and the sum of squares for Y is
198 — (46)*/22 = 101.8181

The comrelation then equals

xy

126.4545
= 677
V/(342.3636)(101.8181)

Not surprisingly, there is a very large correlation in the amount of laughter
between two persons in a conversation. Laughter is indeed contagious.

Fxy =

Interpretation of r

One way to understand what a correlation of a given size means is to examine
various correlations between variables. In Table 7.3 are a set of correlations
taken from research. It contains correlations that are small (.1}, moderate (.3),
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TABLE 7.2 Computations for Laughing Example

X Y x: Y* Xy
0 0 0 0 0
4 1 16 1 4
17 9 289 81 153
4 4 16 16 i6
2 0 4 0 0
1 ] 1 0 0
3 1 9 1 3
9 5 81 25 45
5 1 25 1 5
1 0 1 0 0
4 5 16 25 20
8 2 64 4 16
4 2 16 4 8
0 2 0 4 0
6 0 -36 0 0
12 3 144 9 36
8 1 64 1 8
3 2 9 4 6
3 2 25 4 10
7 0 49 0 0
5 3 25 g 15
& 3 64 _98 24
Total 116 46 954 198 369

and large (.5). Small correlations are the most common correlations in the

" social and behavioral sciences. The reason for so many small correlations is
that most variables are caused by numerous factors, and so any one factor’s
correlation with a variable that it causes must be small. The relation between
stress and physical disease, such as heart trouble, and the relation between
intelligence and a grade in a course are in the .10 range. A moderate
correlation is large enough for laypersons to recognize. An example of
moderate correlation is general sense of self-worth and grade point average.
Large correlations represent very strong correlations, such as the correlation
between intelligence and overall GPA. '

It is important to note that a large comelation is not a correlation of .90,
Correlations of this size are often between two different measures of the same
variable. For instance, the correlation of two measures of intelligence taken a
year apart is about .90 once persons are age six or more. Also such large
correlations often indicate not a meaningful relationship between variables,
but an artificial one. For instance, the .677 correlation between male laughter
and female laughter will be seen to be artificially high.

The differences between small, moderate, and large correlations can also
be seen in their scatterplots. As explained in Chapter 6, a scatterplot is a graph
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TABLE 7.3 Hlustration of Correlations of Various Sizes

Small: .10

Viewing television violence — Aggressive behavior
Stress — Physical illness
Intelligence — Grade in a particular course

Moderate: .30

Psychotherapy — Adjustment
Self-esteemn — Grades in school
Value similarity — Interpersonal attraction

Large: .30

Inteligence — Grade point average

Wife’s satisfaction — Husband’s satisfaction
Father’s occupation — Son’s occupation
Belief in God — Church attendance

in which the two variables form the X and Y axes. The pairs of scores for each
person are plotted in a scatterplot. The scatterplots for .1, .3, and .5 correla-
tions are presented in Figure 7.1. For a .1 correlation, the correlation is not
even visible to the naked eye. For .3 to the trained eye there is the hint of
association. For the .5 correlation the linear relationship is clearly visible.

A correlation coefficient is a regression coefficient between standardized
scores. It can be directly interpreted then as a regression coefficient between
standard scores. If ryy equals .5, then someone who is one standard deviation
above the mean on X would tend to be .5 standard deviation units above the
mean on Y. So a correlation between X and Y measures how many standard
. deviation units above or below the mean a person’s score is on ¥ when the
person is one standard deviation above the mean on X. Because it is a
symmetric measure, it can also be interpreted as the predicted value for X for
someone who is one standard deviation above the mean on Y.

The most common way to interpret a correlation coefficient is by squaring
the correlation and interpreting the result as the proportion of variance that the
two variables share in common. The proportion can be multiplied by 100 to
obtain the percent of shared variance. So, for instance, if high school grades
and college grades correlate .6, then .62 or .36 of their variance is shared in
common. Besides shared variance, the squared correlation can also be in-
terpreted as the proportion of variance explained. So a .6 correlation between
high school grades and college grades implies that high school grades can
explain .36 of the total variance in coliege grades. The squared correlation for
shared or explained variance is often used to trivialize small correlations. For
instance, a .1 correlation represents only .01 shared variance. It should be
noted that the squared correlation represents shared or explained variance and
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FIGURE 7.1 Scatterplots of .1, .3, and .5 correlation coefficients.

not standard deviation. Because variance is in squared units, the meaning of -
explained variance may be difficult to appreciate. For instance, if intelligence
explains 25% of the variance in high school grades, it means that intelligence
explains 25% of squared grade points.

A correlation can be viewed in terms of a probability. Consider two
persons, one, called A, who is one standard deviation above the mean on X
and the other, called B, who is one standard deviation below the mean.on X.
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Person A has a two-standard-deviation advantage on X over person B. If the
correlation between X and Y is known, then the probability that person A
scores higher than B on ¥ can be determined. For instance, assume that
variable X is education and variable ¥ is income. Let one standard deviation
above the mean on education be a master’s degree and one standard deviation
below the mean be a high school education. The issue is the probability of
someone who has a master’s degree earning more money than someone who
has only graduated from high school. This probability will be referred to as
the rwo-standard-deviation advantage and abbreviated as the 2sd advantage.

To determine the probability, it is assumed that both variables are normally
distributed. The normal distribution is discussed in Chapter 10. Rosenthal and
Rubin (1979) make radically different distributional assumptions, yet for r
between O and .5 they obtain virtually the same result. (They assume that X
and Y are dichotomies as opposed to normally distributed variables measured
at the interval level of measurement.)

In Table 7.4 are the 2sd advantage probabilities for correlations of various
sizes.! So for instance, if r is .45, then the probability that someone who is
one standard deviation above the mean on X will score on Y above the person
who is one standard deviation below the mean on X is .762. If the correlation
is negative, the probabilities in the table can be read as the probability of
someone one standard deviation above the mean on X scoring below someone
one standard deviation below the mean on X.

The table is read as follows. First, find the correlation to be interpreted in
the r column. Second, the value in the probability column states the probabil-
ity that a person who is one standard deviation above the mean will outscore

TABLE 7.4 Correlation in Terms of the Two-Standard-Deviation Advantage

r Probability r Probability

.00 .500 .50 193
.05 .528 .55 824
.10 .557 .60 .856
a5 .585 .65 887
.20 .614 .76 917
25 .642 15 .945
.30 672 .80 .970
35 701 .85 .989
.40 731 .90 .998
.45 762 .95 1.000

“ The probability of a person who is one standard deviation above the mean on X scoring higher
on Y than someone who is one standard deviation below the mean on X.

"The 2sd advantage can be shown to equal the probabitity that Z is less than \/§pr1 —-p*
where p is the population comelation and Z is a standard normat variable.
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someone else on ¥ who is one standard deviation below the mean on X. H the
correlation is zero, the 2sd (two-standard-deviation) advantage is .5. That is,
a person with a 2sd advantage on X over another person has only a 50/50
chance of outscoring the other person. Even a seemingly low correlation like
.2 carries with it an impressive probability of .614. Thus, for a correlation of
.2, over 60% of the time person A (who is one standard deviation above the
mean on X ) will outscore person B (who is one standard deviation below the
mean of X) on Y.
The 2sd advantages for small, medium, and large correlations are;

Small (r = .1): .557
Medium (r = .3). 672
Large (r = .5). .793

Factors Affecting the Size of r

Special care must be taken in interpreting correlation and regression coeffi-
cients. At times, a coefficient can be artificially too small or too large.
Various factors are discussed below that must be considered when interpreting
measures of association, especially correlation coefficients.

Nonlinearity

The fundamental definition of a regression coefficient is that of a slope of the
straight line fitted to a set of points. A correlation coefficient is the slope of
the line when the two samples have been converted into Z scores. Both
measures of association assume that the line to be fitted is siraight and not
curved. The association between variables may be systematic, but it need not
be linear. There are two major types of nonlinear associations. They are
nonlinear association in which the function changes direction and nonlinear
association in which the function does not change direction.

In Figure 7.2 are examples of changes of direction. In the top diagram of
the figure, the relationship starts as positive and then turns negative. In the
bottom diagram, the relationship starts negative and then turns positive. Both
of these patterns are called curvilinear association. More precisely, a relation-
ship that begins as positive and turns negative (the upper half of the figure) is
called a convex curvilinear or an inverted U relationship. And a relationship
that begins as negative and turns positive (the bottom half of the figure) is
called a concave curvilinear or U-shaped relationship. For either type of
curvilinear association both the correlation and regression coefficient can be
quite misleading measures of association. These measures may well be zero
even when there is a strong curvilinear association. As an ¢xample of a
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FIGURE 7.2 Examples of curvilinear relationships.

concave curvilinear association, amount of leisure time is curvilinearly related
to age, with older and younger persons having more leisure time than middle-
aged persons.

If the researcher expects that two variables are curvilinearly associated, the
scatterplot should be carefully examined. If the point at which the relationship
changes direction can be determined, a linear measure of association can be
computed before and after that point. If the relationship is truly curvilinear,
then one relationship should be positive and the other negative. For instance,
if a researcher expects that the amount of leisure time begins to increase at age
45, then the correlation between age and leisure time should be negative for
those under the age of 45 and positive for those who are 45 and older.

For the second type of nonlinear association, the relationship does not
change in direction. This pattern is illustrated in Figure 7.3. For these
relationships the direction of the relationship does not change but the strength
does. For the three examples in Figure 7.3 the relationship is pasitive; that is,
as X increases, Y increases. For the top diagram in the figure as X increases,
the relationship between X and Y increases. This is an accelerating function.
For the middle diagram in the figure, as X increases, the relationship between
X and Y decreases. This is a decelerating function. For the bottom diagram in
the figure, as X increases, the relationship first increases and then it decreases.
This type of relationship is called S-shaped. Correlation and regression
coefficients are less affected by this form of nonlinearity than the form in
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FIGURE 7.3 Examples of nonlinear relationships that do not change direction.
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which the relationship changes direction. Nonetheless, it is important to
attempt to straighten out the relationship.

Nonlinear relationships that do not change direction can be turned into
linear relationships by transformation. For instance, for the pattern in the top
of Figure 7.3, the relationship can be made more linear by applying a
one-stretch transformation (square root, logarithm, or reciprocal) to the ¥
variable. For the pattern in the middle of Figure 7.3, the relationship can be
made more linear by applying a one-stretch transformation {square root,
logarithm, or reciprocal) to the X variable. For the pattern in the bottom of the
figure, the relationship can be made more linear by applying a two-stretch
transformation (arcsin, logit, or probit) to the ¥ variable. If the researcher
cannot specify the exact type of transformation, then Spearman’s rank-order
correlation (discussed in the next chapter) may be a more appropriate measure
of association for any nonlinear relationship that does not change direction.
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Unreliability

Measurement in the social and the behavioral sciences is imperfect. Although
every cffort is made to measure persons as accurately as possible, un-
intentional errors of measurement are inevitable. Measurement involves not
only what the researcher hopes to be measuring but noise or error as well. The
first component is called the rrue score and the second is called error of
measurement. The percent of variance of a measure that is due to the true
score is called reliability. Constructs that social and behavioral scientists
measure hardly ever have perfect reliability. Even a variable such as age has
error due to distortion (people lying) and rounding. It is not at all unusual for a
personality test to have a reliability of .80. A reliability of .80 means that 20%
of the variance in the test is attributable to error.

Less than perfect reliability in a measure affects the size of the correlation
and regression coefficients. The effect is one of attenvation. That is, the
estimated size of the coefficient is nearer to zero than it ought to be. A
regression coefficient is lowered only when the predictor variable is unreli-
able. Correlations are attenuated when either variable has less than perfect
reliability.

Aggregation

Sometimes researchers average the scores of a group of persons and use these
averages as the basic data. For instance, students in the classroom are
averaged and the basic analysis is on the classroom averages. When scores are
averaged across persons, the data are called aggregare data. Generally,
correlations computed from aggregate data are larger than what they would be
if the individual scores were used. This increase is in part due to increased
reliability, because aggregate data are generally more reliable than individual
data. Though less likely, aggregation can reduce the size of a correlation.

Because a correlation computed from scores aggregated across persons can
be quite different from a correlation of individual scores, one should never
interpret the aggregated correlation as if it were the correlation from in-
dividuals. To do so would be what is called the ecological fallacy. An
example of the ecological fallacy would be to correlate precinct voting data to
make inferences about individual voting patterns. Correlations computed
using aggregates (precincts) may not resemble correlations based on in-
dividuals (voters).

Part-Whole Correlation

A correlation involves two variables. Sometimes one of the variables is
derived from the other variable. When one variable is derived from a second
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variable, there can be a built-in correlation between the two. The variables
must share variance because one is part of the other. In Table 7.5 the variable
X is used to derive a second vartable, and the direction of bias is indicated. If
the direction of bias is indicated in the table as positive, it does not mean that
the correlation 1s necessarily positive, bul that the correlation is larger than it
should be.

In the first case in Table 7.5, the variable X is used to derive the measure X
+ Y. Because X is present in both measures, there is a built-in positive
correlation. In the second case X is subtracted from Y. In this case the
correlation is negative. One should avoid computing correlations between
variables that have common components.

Restriction in Range

Outliers

Correlations computed from scores that have low variability generally tend to
be small. This phenomenon is called restriction of range. It can be illustrated
graphically as in Figure 7.4. The data in the figure show that the X variable
has been split at the mean and the correlation has been recomputed for those
scoring above and below the mean. Overall the correlation-is .533, but for
those who score below the mean (as is indicated by the dashed line in Figure
7.4) the correlation is .341 and for those who score above the mean, the
correlation is also .341. When a variable has a narrow range of scores,
correlations tend to be small.

Interestingly, restriction in range does not influence the regression coeffi--
cient nearly as much as it does the correlation coefficient. So if the range of a
variable may be restricted, the regression coefficient is the preferred measure
of association.

Extreme values or outliers in the sample can distort the size of a correlation.
For instance, for the following set of data

TABLE 7.5 Part-Whole Correlation

Variable 1 Variable 2 Bias in r

X X+7Y Positive
X Y-X Negative
X+Z X+7Y Positive
X+2Z Y-X Negative
YiX Wix Positive’
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FIGURE 7.4 Effect of restriction of range.
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the correlation is negative even though four of the five persons have the
same score on X and Y. The extreme value of 10 for person 5 on variable X
distorts the size of the correlation. Outliers can also cause a correlation that
is troly zero to appear to be very large. A careful analysis of each variable
should be done to identify outliers. In Chapter 4 an outlier is defined as a
value that is away from the median by more than twice the interquartile range.

It is an outlier that brings about the very large correlation of .677 for the
Yaughing data in Table 7.1. Note in Table 7.1 that couple 3 has the largest
number of laughs for both males and females. In fact, each can be considered
an outlier given the definition given in Chapter 4. What happens to the
correlation coefficient when the data from this one couple is discarded? The
resulting correlation is

216 — (9N(37)21
= .410
V(665 — 99%21)(117 — 37%721)

Fxy =
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Dropping this one observation changes what was an unreasonably large
correlation into a moderate-to-large correlation. Besides dropping the one
observation, an alternative would be to transform the observations. An ex-
amination of the histograms for the observations reveals that both variables
are positively skewed. If the observations are square rooted, the scores for
couple 3 are no longer outliers. The resulting correlation of the square rooted
data is .551.

Correlation and Causality

Conrelations by their very nature seem to give rise to causal statements. I a
newspaper publishes a report that persons who eat carrots live longer, it is a
certainty that more carrots will be sold the following day. Finding out that
carrot eating and longevity are associated inclines persons to jump to the
conclusion that carrot consumption causes longer life. But correlation does
not imply a particular causal relation. Just knowing that carrot eating and long
life are associated does not mean that carrot eating causes longer life. There
are other equally plausible explanations of the relationship. For instance, it
may be that persons with more income tend both to live longer and also to eat
carrots. And so the relationship between carrot eating and longevity may be
due to the third variable of income.

Most of the time correlation does imply causality, but the exact form of the
causality is uncertain. Consider another example. There is a small-to-
moderate positive correlation between preference for violent television pro-
grams and the tendency to be physically and verbally aggressive among
preadolescent males. Thus, boys who get into fights prefer to watch Kojak
and the Three Stooges. The reason for this correlation is not clear. 1t could be
that the violence on television makes the children more aggressive. Or it could
be that being aggressive makes boys seek out more violent television shows.
Or it may be that neither causes the other but both are caused by some other
variable. For instance, parental socialization may affect both television view-
ing and aggressive behavior. It might be that authoritarian parental rearing
leads to aggressive boys who watch violent television shows. Thus, knowing
that there is a correlation between two variables does not tell us what brought
about the correlation. As is often stated, “correlation does not imply causal-
ity.” It is better to restate the maxim as “correlation does not imply one
particular form of causality.” '

Sometimes the source of correlation is not a causal process but is just an
accident. For instance, there is some indication that the economic climate is
negatively correlated with the length of women's skirts. Good economic times

‘have been associated with shorter skirts and bad times with longer skirts.

Surely skirt length does not cause the financial climate. Nor is it likely that the
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financial climate causes the length of skirts. Most likely this correlation is an
accident, a stafistical freak. One way to determine whether the correlation is
just an accident is to check its continuation into the future. If it disappears,
then it is likely an accident.

One shouild not take all that has been said to mean that correlations tell us
nothing about causation. It is true that from correlations it is not possible to
determine the particular causal connections. But if there is reason to believe
that one variable causes the other, then the two variables should be correlated.
Thus, a correlation can be used to verify a causal linkage, but it is indeed
perilous to infer a particular causal linkage from a correlation. Thus, causa-
tion implies a correlation but correlation does not specify the exact form of
causality.

The correlation between two variables is defined as the regression coefficient
computed from two variables’ Z scores. The correlation coefficient, sym-
bolized by r, is a directionless measure of association that varies between —1
and +1.

The formula for a correlation coefficient is

. Sx-X-P
VIE-X)P X -7y

The computational formula for a correlation coefficient is

Ixy

_ 2XY — BX)QYYn
VIZX? - GX)mlZy? — ($Y)%n]

A small correlation is .1, medivm is .3, and large is .5. A correlaton can be
interpreted as a regression coefficient. A squared correlation indicates the
proportion of variance explained or variance shared. A correlation can also be
interpreted as a probability of someone with a two-standard-deviation advan-
tage over another person on one variable outscoring that person on a second
variable.

Correlations are affected by nonlinearity, unreliability, aggregation,
restriction in range, the part-whole problem, and outliers.

Just because two variables are correlated does not mean that one causes the
other. It may be that the two variables are both caused by a third variable. A
correlation indicates some type of causal connection but does not identify the
particular type.

Fxy
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Problems

1. For the data
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compute ryy.

2. Smith finds that the correlation between motivation and performance
equals .3%9]. How would you help her interpret her result?
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compute ryy.
4. Compute the following.

a. byygiventhat ryy = 4, 53y = 2, 5y = 4
b. byy given that ryy = —.3, 5 = 10, 5y = 3
C. ryy given that byy = .1, sx = sy

5. Baxter (1972) used an adaptation of traditional methods to teach clerical
skills to mildly retarded adults. At the end of training, the skill of these
adults in each task was rated by the same standards. The scale ranged
from zero to ten, with zero the lowest possible rating and ten the highest.
Some of Baxter’s results are given below.

Subject Typing Stencils
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—_

Compute the correlation between typing and stencil preparation. Interpret
the result.
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6. Compute r if n = 10, ZX = 20, Z¥ = 40, TX? = 60, 3¥? = 180, and
XY = 90,

7. For the age and memory data presented in Table 6.3 of the preceding
chapter, compute and interpret the comelation coefficient.

8. Below are the life expectancies at birth for males (X) and females (Y) in
six of the less developed countries of the world. Also given are XY, 2X,
3¥, £X2, and 2¥2. Compute the correlation between the life expectancies
of males and that of females.

Life Expectancy (years)

Country Males (X) Females (Y)
India 31 50
Indonesia 45 48
Brazil 58 63
Bangladesh 50 47
Pakistan 49 47
Nigeria 40 43
Total 293 298

IXY = 14,737; X = 14,491; Z¥? = 15,040

9. Below are the life expectancies at birth for males (X) and fernales (¥) in
six of the more developed countries of the world. Also given are ZXY,
2X, TY, ZX2, and Z¥2. Compute the correlation of the life expectancies
of males and females.

Life Expecrancy (years)

Country Males (X ) Females (Y)
France 70 78
U.S.A. 70 78
Japan 73 79
W. Germany 70 76
Italy 70 76
United Kingdom 70 76
Total 423 463

TXY = 32,647; IX* = 29,829; T¥? = 35,737

10. Below are the life expectancies for males and females in the twelve
countries given in problems 8 and 9. '
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11.

12.

Life Ejrpec tancy (years)

Country Males (X) Females (Y)
India 51 50
Indonesia 45 48
Brazil 58 63
Bargladesh 50 47
Pakistan 49 47
Nigeria 40 43
France 70 73
US.A. 70 78
Japan 73 79
W. Germany 70 76
haly 70 76
United Kingdom 70 76
Total 716 761

TXY = 47,384; 2X? = 44,320 T¥? = 50,777

a. Compute the comrelation of life expectancies for males and females.
b. Compare this correlation to the correlation obtained in problems 8 and
9. What caused the correlation to change?

Draw a scatterplot for the data in problem 12 in Chapter 6. Describe the
nonlinearity in the relationship and suggest a transformation to remove it.

For the following studies, state what might affect the size of the correla-
tion, and explain how the correlationr would be affected.

a. using the average score of children in 500 schools, the correlation
between vocabulary and reading comprehension .

b. the correlation between a child’s height at birth and growth in the first
year of life

¢. the correlation of stress in the workplace with physical ailments
among air traffic controllers

d. the correlation between number of calories ingested during the day
and happiness

e. the correlation between intelligence, as measured by ope item of an
1Q test, and a student’s grade-point average



Measures of
Association:

Ordinal and
Nominal Variables

Researchers in the social and the behavioral sciences generally study variables
measured at the interval level of measurement. It is also possible for a variable
to be measured at either the nominal or ordinal level of measurement. (The
“topic of level of measurement was presented in Chapter 1.} For instance, the
variable of political party is at the nominal level of measurement. In this case
each person does not have a score or number but rather each -person is a
member of a category. A variable, such as political party, that is categorical
and not numeric is called a nominal variable. For a nominal variable each
person is a member of one discrete category as opposed to each person
receiving a numeric score, A nominal variable with only two categories is
called a dichotomy.

Ordinal variables are also encountered in the social and behavioral scien-
ces. Variables measured at the ordinal level of measurement permit a rank
ordering of the objects. One can make a case that many variables in the social
and behavioral sciences are measured at the ordinal level.

Although not as common as interval variables, nominal and ordinal var-
iables are hardly unusual, Many of the standard demographic variables are
nominal. For instance, gender, ethnicity, religion, and geographic region of
residence are all nominal variables. Many medical and physical variables are
also nominal: eye color, blood type, left- versus righthandedness, and di-
agnostic category. Many of the responses that are studied in research are
nominal in nature. Whether a person agrees or disagrees on a survey, whom
the voter prefers in an election, what product a customer purchases, whethera
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surgical procedure results in life or death, whether a subject recalis a nonsense
syllable, and whether a nerve cell fires when stimulated are all examples of
nominal variables. Nominal variables are guite common in research.

Ordinal variables can be established if the measurements are a rank
ordering. Some variables, such as birth order and military rank, are clearly at
the ordinal level of measurement. The boundary between the ordinal and the
interval level of measurement is quite cloudy. The determination is often a
matter of preference.

The previous six chapters focused on the various descriptive statistics
for variables measured at the interval level of measurement. In this chap-
ter various descriptive statistics for nominal and ordinal variables are
presented. Most of the discussion concerns measures of association for these
variables.

Shape, Location, Variation,
and Transformation

This section concerns the issues of shape, location, and variation for both

nominal and ordinal variables. First considered are nominal variables.

Nominal Variables

The distribution of a nominal variable is simply a set of frequencies. For
instance, of 132 people polled, 28 people intend to vote Democratic, 36
Republican, and 68 intend not to vote at all. The numbers 28, 36, and 68 are
frequencies. Or a particular surgical procedure resulted in 42 deaths and 778
lives saved. Or 91 nerve cells fired and only 3 did not. The distribution of a
nominal variable is the number of observations in each category.

The categories of a nominal variable are not numeric. So when the
numbers are graphed in a histogram, the bottom axis or X axis is not numeric.
The resulting distribution is called a bar graph. In a bar graph, unlike a
histogram, the bars are separated by a space. Because the categories are not
numeric, the ordering of the categories on the X axis is arbitrary. One still
should compute the relative frequencies for each category. For instance, if 58
respondents say yes and 21 say no, one would compute 58/(58 + 21) = .73 .
for yes and 21/(58 + 21) = .27 for no.

What then can be said about the shape of the distribution? With a nominal
variable, one can describe how flat the distribution is. A flat distribution is
one in which each of the categories is equally likely. A dichotomy in which
the categories are quite uneven (say 75% to 25%) is said to be skewed.

Because the categories of a nominal scale are not ordered, a median makes
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no sense; and because they are not quantitatively ordered, a mean likewise
does not represent a meaningful measure of central tendency. However, the
mode can be determined. The modal category has the largest frequency.
Hence for the nominal scale of political party, the party most frequently
chosen would be the mode.

The formulas for vartability presented in Chapter 4 are not appropriate for
categorical variables. However, there is relatively more variation if the
distribution is flat. Nearly equal numbers of persons in the categories results
in greater variation. If the number of persons in one category is relatively
large, then there is relatively little variation.

All of the data transformations discussed in Chapter 5 involve a quantita~
tive operation on the data. Because with nominal variables there are only
categories and not numbers, all of those transformations are inappropriate.
Nonetheless, nominal variables are in a sense transformed when categories
are collapsed. For instance, in surveys it is common practice to treat “don’t
know” and “no opinion™ as the same response. There are two helpful rules for
determining which categories to collapse. First, one should consider as good
candidates for collapsing those categories whose occurrences are infrequent,
say less than 5%. The second rule is fo combine categories that are con-
ceptually similar. For instance, if the categories are white, black, and Hispan-
ic, it may be sensible to collapse black and Hispanic to form a minority group
category.

Recall that the definition of a pominal variable is one in which each
observation is placed in one and only one category. The categories of a
nominal variable are said to be mutually exclusive {no person may be in two
categories) and exhaustive (each person must be in at least one category).
Occasionally, a given nominal variable may violate these rules, but the
violations can be easily remedied. For instance, there may be some persons
who are neither Democrat, Republican, nor Independent, and, less likely,
there could be a person who claims to be a member of two parties. Those
persons who do not fall into any category can be put into a residual category
of “other.” Alternatively, if there are few persons who fit in no category (less -
than 5%}, they can be dropped from the sample. For those who are members
of two categories, a new category of “both” could be created or again if they
are few in number they could be dropped from the sample.

Qccasionally, it is useful to treat a nominal variable as if it were a numeric
variable. In this case, a researcher arbitrarily assigns numbers to the various
categories of the nominal varjable. For instance, for the variable of gender,
men may be given a score of zero and women a score of one, This is said to be
an arbitrary assignment because the researcher could have just as easily given
men a score of one and women a score of zero, or men a score of 50 and
women a score of —38. The arbitrary assigning of numbers to levels of a
nominal variable is called creating a dummy variable. Another example of
dummy variables is as follows:
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assign a 1 for Catholics,
assign a 2 for Protestants,
assign a 3 for Jews, and
assign a 4 for others.

Dummy variables are used in computing the phi coefficient, which is a
measure of relationship between two dichotomies that is presented later in this
chapter.

For z dichotomy, the usual convention is to assign a one to one category
and a zero to the other. The mean of such a dummy variable is the proportion
of persons assigned a one. The standard deviation! is the square root of n/(n—
1) times the product of the proportion assigned a one and one minuvs that
proportion. So if p is the proportion of people assigned a one, then the mean
of the dummy variable is p and the standard deviation is the square root of

np(l — p¥{n - 1).

Ordinal Variables

If a variable is troly measured at the ordinal level of measurement, then its
shape contains nothing theoretically interesting. The numbers reveal only the
relative position of the persons in the sample and nothing about the distance
between two scores. Shape then is virtually meaningless for a variable that is
at the ordinal level of measurement. However, if an ordinal variable has
relatively few levels and there are many observations, there are many tied
observations. Two observations are tied if the researcher is unable to de-
termine which observation has more of the quantity that is measured. When
an ordinal variable has many tied observations and few levels, a bar graph can
be drawn. The ordinal variable would be on the X axis and the number of tied
observations would be on the Y axis.

The concepts of central tendency and variability have no meaning for
ordinal variables. However, the median, though not quantitatively interpret-
able, can be of interest. For instance, if it is known that, in terms of the
continental United States, South Carolina is the state with the median popula-
tion, then it is known what state. it is that ranks in the middie.

If a variable is measured at the ordinal level, it is 2 common practice to
transform the scores by rank ordering them (see Chapters 5 and 18). For
reasons discussed in Chapter 18, the mean and the standard deviation of these
ranks are of statistical interest. Given a sample of # scores, their mean rank
must be

nt+1

X of ranks = ——
O Tanks 2

"This formula is usually presented as p(1 ~ p). However, because this text uses z — 1 in the
denominator for variance, the formula in the text is appropriate.



Measures of Association: Ordinal and Nominal Variables 131

Given no ties, the standard deviation® of ranks is:

standard deviation of ranks =

So if # = 10, then the mean is 5.5 and the standard deviation is 3.03. If there
are ties, the usual formulas for standard deviation must be employed.

Relationship

The remainder of this chapter concemns the measures of association between
variables that are either at the nominal or the ordinal level of measurement.
Considered first is the relationship between two dichotomous variables. A
dichotomous variable is a nominal variable with only two categories. Next is
discussed the general problem of measuring the association between two
nominal variables. Finally, the issue of how to measure the association
between two variables measured at the ordinal level of measurement is
discussed.

Tweo Dichotomies

Of key interest is whether there is any relationship between two nominal
variables. Is political party related to voting behavior? Is a surgical procedure
related to survival? Are people more likely to give blood depending on the
type of appeal? All of these questions are. concerned with the relationship
between two nominal variables.

In Table 8.1 is a table of numbers. The data are taken from a study by
Korytnyk and Perkins (1983). They placed 29 male, heavy drinkers in a
situation in which the subjects could write graffiti on a wall. Of the subjects,
15 were given tonic water and 14 were given the equivalent of two drinks of
alcohol. The two variables being associated are beverage consumed (toriic
versus ajcohol) and whether the subject wrote graffiti or not. Beverage makes
up the rows of the table and graffiti behavior, no and yes, makes up the
columns, The numbers in the 1able are called counts. There are four counts.
For instance, there are 14 who received tonic and did not write on the walls,
and 7 alcohol drinkers who wrote on the wall.

The entries in a table, called frequencies, are the number of persons in that
cell. Because each variable is made up of two categories, the table is called a
2 by 2, or 2 X 2, table.

Again the rows of the table are beverage (tonic or alcohol} and the columns

2The numerator of this formula is often presented as #> — 1. However, because this text
always uses n — 1 as the denominator for variance, »*> + n is appropriate.
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TABLE 8.1 A 2 X 2 Table

Graffiti
No Yes
Tonic 14 1 - 15
Beverage
Alcohol 7 7 14
21 8 29

are graffiti (no or yes). It is a cornmon practice to add the counts across both
rows and columns. There are 15 tonic and 14 alcohol drinkers, and 21 who
did not write or the wall and 8 who did. These sums are commonly called the
margins. The column margins are 21 and 8. The sum of the row margins (15
+ 14) should equal the sum of the column margins (21 + §), and this provides
a useful computational check. The total sum is written in the bottom right-
hand corner. .

Of special interest is whether there is any association between beverage
consumed and graffiti behavior. Stated differently, the question is whether
those who drink alcohol are more or less likely to vandalize than those who do
not. This question concerns whether the two nominal variables are associated.
To measure association the researcher can chose among the percentage differ-
ence, the phi coefficient, or the logit difference.

Percentage Difference. The simplest and perhaps most natural measure of
association is to compute the percentage of tonic drinkers who write on the
wall and the percentage of alcohol drinkers who write on the wall. Using the
data in Table 8.1, only 6.7% (1/15) of tonic drinkers write on the wall, and
50.0% (7/14) of the alcohol drinkers write on the wall. This difference
between 50.0% and 6.7% is 43.3%. This is the percentage difference measure
of association for nominal data. The percentage could be computed for each
column. That is, of those who do not write on the wall, 66.7% (14/21) are
tonic drinkers, and of those who do write on the wall, 12.5% (1/8) are tonic
drinkers. This difference is 54.2%. As this example shows, the percentage
difference measure is not necessarily a symmetric measure of association. The
percentage difference measure may change if the percentages are calculated
ACross TOws Or across colummns.

The percentage difference measure can be viewed as a regression coeffi-
cient. One variable is denoted as the predictor variable and is dummy-coded
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TABLE 8.2

zero and one. The other variable is the criterion and is dummy-coded zero and
100, If a regression coefficient were computed for these two dummy var-
iables, its value would be identical to the percentage difference measure.

Phi Coefficient. The second measure is phi, which is symbolized by ¢.
This measure of association is not as commonly used as percentage differ-
ence, Phi is a correlation coefficient. So if there is no relationship, phi is near
zero, and if there is a near-perfect relationship phi is near 1.00 or —1.00. To
understand how phi is computed, consider Tabie 8.2. The two nominal
variables have been designated X and Y. The four frequencies are designated
a, b, c, and d. The phi coefficient is found as follows:

&= ad — bc
Via + b)c + dia + )b + d)

For example, in Table 8.1 phi equals .484. As was stated earlier, the phi
coefficient is a correlation coefficient. In Table 8.2 there are dummy variables
for both variables. The first row is given a 1 and the second a Q. The first
column s given a 1 and the second column a 0. Using these dummy variables,
one can compute the correlation between the two variables. This correlation
equals phi. Ordinarily, it is much simpler to use the formula presented earlier.
As will be seen in Chapter 17, phi is a useful number for computing other
statistics. Unlike the percent difference measure but like the correlation
coefficient, the measure phi is symmetric.

In Chapter 7, it was stated that r equals the square root of the product of the
two regression coefficients. This fact can be used to relate phi to the two
percentage difference measures: Phi times 100 equals the square raot of the
product of the two percentage difference measures. So, for the example, 100
times phi (48.4) equals, within rounding error, the square root of the product
of the two percentage difference measures (43.3 X 54.2).

Symbels for a 2 x 2 Table

Variable Y
1 0
1 a b a+b
Variable X
Y c d c+d

a+c¢ b+ d n
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Logit Difference. The percentage difference is based on the regression
coefficient and phi is based on the correlation coefficient. A third measure of
association in a 2 X 2 table is the logit difference. In Chapter 3, the logit
transformation of proportions is presented. A logit of a proportion p is

ln(lfp}

i

where In is the logarithm to base e. In Appendix A in the back of the book is a
table for the conversion of a proportion into a logit. As stated in Chapter 5, the
logit of zero corresponds to a proportion of .5, a positive logit to a propartion
greater than .5, and a negative logit to a proportion less than .5. Using the
symbols in Table 8.2, the logit for the upper row is In{a/b) and for the lower
row is In{c/d). The logit difference is then
I i}
a c

In|—| - In|~

R
Although it is not intuitively obvious, the logit difference is a symmetric
measure. That is, it is true that

a 4 a b)
uf2) < ufe] = nfe] - 2
o] - ) =) -l
This is true because each equals

In

alb
cid

The term in the parentheses is a ratio of two odds and is, therefore, called the
odds ratio. For the example, it is the odds of tonic drinkers writing on the
walls divided by the odds of alcohol drinkers doing so. Thus, the logit
difference can be interpreted as the natural logarithm of the odds ratio. This
odds ratio formula for the logit difference is simpler than the logit difference
formula, because the odds ratio formula involves taking a logarithm only
once. The logit difference for the example equals 2.64. The odds ratio is 14
and its natural logarithm is 2.64, which is equivalent to the logit difference
measure.

If any of the frequencies equals zero, the logit difference measure is not
defined. To remedy this problem, .5 is added to each of the frequencies before
the logit difference is computed.

Interpretation and Comparison. Table 8.3 gives formulas for the percent-
age difference, phi coefficient, and logit difference using the symbols pre-
sented in Table 8.2. Although the measures are quite different, when one of
them equals zero, the other two also equal zero. They are all zero only when
ad = bc (see Table 8.2).
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TABLE 8.3 Formulas for Measuring Association in a 2 X 2 Table®

Percentage Difference
a ¢

100 -
a+b c+d

Phi
ad — be
Ve + b(c + da + O + d)

Logit Difference
a c
Inl=| — ol
o] o3

#See Table 8.2 for the definition of a, &, ¢, and 4.

Because the logit difference involves odds and logarithms, it is not as
easily interpreted as a percentage difference. One way to interpret the measure
is to take the antilog and interpret the odds ratio. Table 8.4 lists the logit
differences in terms of percentage differences. The table answers the follow-
\ing question; For a given logit difference, what would the percentage differ-
ence measure be if both the row margins as well as the column margins were
equal? There are two facts worth remembering from the table. First, a logit
difference of .10 corresponds to 2.5 percentage difference, and a 10.0 per-
centage difference corresponds to a logit difference of .40. Note that the logit
difference of 2.64 for the example corresponds about a 55 percentage differ-
ence. The actual percentage difference is 43.3%, but the margins are quite
skewed because only 27.6% wrote graftiti on the walls.

The student might wonder why bother with all of the difficulties in
computing the logit difference. Both the percentage difference and phi are
simpler to compute and interpret than the logit difference; however, the logit
difference measurc has one very important advantage over the percentage
difference and phi. These latter two measures have an upper limit, of 100 and
1, and a lower Jimit, —100 and —~1. In certain cases, these limits are further
constrained. The logit difference hias no such limits regardiess of the margins.

The advantage of not having limits is illustrated in Table 8.5. The table
contains hypothetical data relating lung cancer and smoking. The three mea-
sures of association have been computed. Now imagine that a second group is
sampled, and in this group 94.85%-are smokers and 5.25% of the group have
died from lung cancer. That is, the percentage of smokers and deaths from
Iung cancer in the second group are different from those in Table §.5. Given
these percentages for the second group, it is impossible for the percentage
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TABLE 8.4 Laogit Difference in Terms of Percentage Difference Measure in which the

Margins Are 50/50

Logit Percentage
Difference Difference
.00 0.0
05 1.2
10 2.5
15 3.7
.20 5.0
25 6.2
30 7.5
35 8.7
40 10.0
45 11.2
50 12.4
.60 14.9
76 17.3
.80 19.7
.90 22.1
1.00 24.5
1.25 303
1.50 35.8
175 41.2
2.00 46.2
2.50 55.4
3.00 63.5
5.00 84.8

difference or phi to be as large as it is for the group in Table 8.5. Only for the
logit difference can the measure of association possibly remain stable. 1t is for
this reason that many researchers prefer the logit difference measure. The
logit difference measure tends to replicate better across time and settings. The
logit difference measure tends not to be as affected by changes in the margins
as the percentage difference and phi are.

‘What is the most appropriate way to measure association in a 2 X 2 table?
The answer depends on the purposes of the researcher. If a measure is desired
that is simple to compute and easy to interpret, then the percentage difference
measure 1s probably best. If the variables. cannot be distinguished as a
predictor and criterion, then phi is probably best. If the measure is to be
computed for different samples with different margins, then the logit differ-
ence is probably best.

Nominal Variables with More than Two Levels

The measures of association between two nominal variables, at Jeast one of
which has more than two levels, are analogous to the measures of association
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TABLE 8.5

. Iltustration of the Generalizability of the Logit Difference

Cause of Death

Lung Cancer Other
.Smokcr 681 78:_5 ] © 8512
Nonsmoker 123 8391 8514
804 16222 17026

Percentage Difference: 6.56
Phi: .155
Logit Difference: 1.780

bthcen two dichotomous variables. However, a complete presentation of
these techniques is beyond the scope of this book. The reader is referred to
more advanced texts that present these measures (Fienberg, 1977; Reynolds,
1977).

One can compute percentages across either rows or columas, So to com-
pute the percentage for each row, an entry is divided by its row total. The sum
of the percentages across each row should add to 100. As an example,
consider the data in Table 8.6. The data are taken from a vote in the United
States Congress in 1836. The issue concerned a matter related to slavery, a
vote for the law being prostavery vote. There were three possible vote
alternatives: yes, abstain, and no. The 225 congressmen are classified accord-
ing to the section of the country that they represented. So 61 congressmen

from the North voted yes. Beneath each number, in parentheses, is the

percentage computed across rows. For instance, the percentage. of congress-
men voting no from the North is 60 divided by 133 (the row margin) times
100 or 45%. The table clearly shows that support for the proslavery posmon
was located in the South and border states,

' Ordinal Variables: Spearman’s Rho

Sometimes the researcher might question whether a given variable is meas-
ured at the interval level of measurement. The researcher may believe that the
variables are measured at only the ordinal level of measurement. That is, the
numbers indicate only the relative positions of persons and not any quantita-
tive difference. The association of variables measured at the ordinal level of
measurement ¢an be measured by Spearman’s tho. Although other measures,
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Frequencies for 2 3 X 3 Table of Vote by Region and Row Percentages in
Parentheses

Region Vote
Represented Yes Abstain Neo Totals
| .
North 61 12 60 133
(46) () 45)
Border 17 6 1 24
{71) (25) 4 |
South 39 22 7 68
(57 (32) (10)
Totals 117 40 68 225

Data were taken from Benson and Oslick (1969).

such as Kendall’s tau and Goodman and Kruskal’s gamma, are also em-
ployed, rho is by far the most common measure of ordinal association.

Variables measured at the ordinal level of measurement can be transformed
by a rank-order transformation. This transformation is described in Chapter 5.
Each score is given a rank from one to n. If two or more scores are tied, they
are each given the average rank. Then these rank-order scores can be corre-
lated using the formula for the comrelation coefficient presented in the pre-
vious chapter. A correlation coefficient of rank orders is called Spearman’s
rho or the rank-order correlation and is denoted as rg. Fortunately all the
computational work of correlating the two sets of ranks can be avoided. There
is a computationa] shortcut. It involves first computing the difference between
each pair of ranks, D;. It happens that

6307

n(n? - 1)

where n is sample size and D; is the difference in ranks for the ith pair of
scores. This formula presumes no ties in the ranks. If there are ties, one must
use the formula for the correlation coefficient given in Chapter 7.

The six in the formula for Spearman’s rank-order coefficient strikes some
as odd. Its presence is due to the formula presented earlier in the chapter for
the standard deviation of ranks. The denominator of that formula has a twelve
in it which brings about the six in Spearman’s rho or r;.

Spearman’s tho = 1 -
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Another use of Spearman’s rho is to control for nonlinearity. The standard
measures of association discussed in the previous two chapters presume that
the relationship is linear. If the relationship between variables is nonlinear but
does not change direction (see Chapter 7), then Spearman'’s rank-order coeffi-
cient is a useful measure because linearity is not assumed.

In 1884, Francis Galton measured the strength of more than 9000 persons
who visited varions museums in London, Johnson, McClean, Yuen, Nagoshi,
Ahern, and Cole (1985) report the average degree of hand strength that Gaiton
obtained for men from 11 through 25 years of age:

Age Hand Strength Age Hand Strength

1 33.11 19 80.07
12 37.53 20 80.19
13 40.12 21 81.12
14 48.68 22 80.46
15 57.99 23 79.86
16 67.41 24 81.36
17 73.94 25 82.27
18 78,25

The scores are rank ordered by age in ascending order and the differences (D)
and the squared differences (D?) are computed:

Age Hand Strength D D?

1 3 Q 0

2 2 0 0

3 3 0 G

4 4 ¢ 0

5 5 0 0

6 6 0 G

7 7 0o 0

8 8 0 0

9 10 -1 i

10 il ~} 1

11 13 -2 4

12 12 0 Q

13 9 4 16

14 14 0 0

15 15 0 0

The sum of squared differences in ranks is 22 and so Spearman’s rho is
oo =1 - 92 o,
(15)(224)

It is pot surprising that for men from }1 to 25, there is a very strong
relationship between age and hand strength. Note that the objects for the
correlation are groups of persons at a given age. As discussed in Chapter 7,
correlations based on aggregates or groups of persons tend to be larger than
correlations based on individuals. The relationship between age and hand
sirength is much weaker for individuals.
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Nominal and ordinal variables are commonly used in the social and the
behavioral sciences. Because the standard statistics that were developed in the

previous chapters are for variables that are measured at the interval level of
measurement, new procedures are developed. Because the variables are not at

the interval level of measurement, the usua] measure of central tendency, the

mean is not appropriate. However, the mode can be used as a measure of
central tendency for nominal variabies and the median for ordinal variables.

For neither the nominal nor ordinal levels of measurement does the shape of
distribution make much sense, except for plotting the frequencies of a nomi-

nal variable in a bar graph. '

For nominal variables it is sometimes necessary to collapse or eliminate
categories. When numbers are assigned to levels of a nominal variable, the
resulting variable is called a dummy variable.

There are three major measures of association between two nominal
variables. They are the percentage difference, the phi coefficient, and the logit
difference. The percentage difference is the simplest measure of association.
One variable is denoted as a predictor and the other as the criterion. The
percentages are computed for those responding in one category of the criterion
for each of the categories of the predictor variable. The percentage difference
is the difference between these two percentages. The phi coefficient is a
correlation coefficient between dummy variables. For the logit difference, the
odds of responding are computed for each category. These odds are logged
and then differenced. The logit difference, while more difficult to interpret, is
more likely to generalize across different samples. Only the percentage
difference measure can be easily generalized for nominal variables with more
than two levels.

One standard measure of association between two ordinal variables is
Spearman’ s rank-order correlation, also called Spearman’s rho. Spearman’s
rank-order correlation rg is a correlation coefficient between ranks. This
measure is based on the difference between the ranks of the two variables.
The rank-order correlation can be used to measure the association between
variables measured at the interval level of measurement when nonlinearity is
suspected.

1. For the following sets of categories, by collapsing categories, create a
new nominal variable with only two categories.

Protestant, agnostic, atheist, Catholic, Jewish
rainy, clear, cloudy, snowy

radio, television, stereo, tape deck

anger, disgust, happiness, fear

PO o
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2. a. Imagine that 26 persons agree and 49 disagree with a particular
statement. If responses are dummy coded (1 = agree, 0 = disagree),
what is the mean and standard deviation of the dummy variable?

b. If 32 agree and 42 disagree, what would be the mean and standard
deviation?

3. If 76 Democrats favor capital punishment and 73 disapprove, and 108
Republicans approve and 111 disapprove, set up the 2 X 2 table with
margins. Compute phi, the percentage difference (treating political party
as the predictor variable), and the logit difference.

4. For the 'following table compute the percentage difference (treating gen-
der as the predictor variable), phi coefficient, and logit difference. The
column variable is whether the person is a smoker or not. Interpret each

measure.
Smoking
Yes No
Women 7 28
Men 19 48

5. Por the following table compute the percentage difference (treating age as
the predictor variable), phi coefficient, and logit difference. Interpret
cach measure.

Yes No
Over 30 28 83
Under 30 16 9

6. Taylor and Ferguson {1980) asked 200 students where they went when
they wanted to be alone (solitude) and when they wanted to talk with a
close friend (intimacy). Their answers were then coded as one of three
kinds of territory: primary, where the individual can control access to the
area; secondary, where the control of access is shared with others; and
public, where the individual has no control over access. The table below
gives the number of responses in each category.
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Intimacy
Solitude Primary Secondary Public
Primary 24 2 35
Secondary 3 0 4
Public 59 8 65

a. Compute the percentage of students who chose each kind of territory
for intimacy. (Compute the percentages for each column.)

b. What proportion chose each kind of territory for solitude? (Compute
the percentages for each row.)

7. In a study of privacy regulation, Vinsel, Brown, Altman, and Foss
{1980) had freshman dormitory residents check a list of techniques they
might have used to avoid contact with others. A year later, 19 of the
students had left the university (dropouts), while 54 were still enrolled
(stay-ins). They found that five of the dropouts and nine of the stay-ins
used foud music to avoid contact,

a. Create a 2 X 2 table for the use of music (yes or no) and enrollment
status (dropout or stay-in).

b. For the table compute the percentage difference (treating enrollment
status as the predictor variable), phi coefficient, and logit difference.
Interpret each measure.

8. The following table shows the number of hurricanes that occurred in the
years 1886-1981.

Month Hurricanes
Fanuary 0
February 0
March 0
April 1
May 3
June 21
July 32
August 135
September 176
October 85
November 18
December 2

Treat the twelve months as categories and construct a bar graph of the
data.

9. Harrison (1984} asked dormitory residents who had chosen or been
assigned to their dorms whether they wanted to change roommates at the
end of the semester. The following table gives the results. Compute the
percentage difference (treating choice vs. assignment as the predictor
variable), the phi coefficient, and the logit difference. Interpret each
measure.
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Change Roommate

Dorm No Yes
Chose 22 3
Assigned 4 12

10. Compute Spearman’s rank-order correlation for the following set of
scores. of seven persons on variables X and Y.

Person X

14
19

11. Below are the selected life expectancies for seven countries for males and
females. Compute Spearman’s rank-order correlation rg for the countries:

AN B W N =
—_
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Life Expectancy (years)

Country Males Females
India 51 50
Indonesia 45 48
Brazil 58 63
Bangladesh 50 47
Nigeria 40 43
U.S.A. 70 78
Japan 73 9

Interpret the value of the rank-order correlation,

12. For the numbers in problem 11 compute the ordinary comelation r
between the life expectancy for males and females in seven countries.
Why are » and rs different?
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Statistical Principles

In the previous eight chapters many topics have been covered. Formulas for
means, variances, regression, and correlation coefficients have been pre-
sented. Methods have been presented to describe in rather rich detail a sample
of numbers. Descriptive statistics are used to produce guantitative summaries
of numbers.

Yet there is more to data analysis than just describing the data al hand.
Besides describing the dafa, statistics are used to test ideas, theores, and
hypotheses about the population. The testing of hypotheses, or more generally
the testing of models, is called inferential statistics.

In this chapter and the next two, the groundwork is prepared for inferential
statistics. There are many important statistical concepts that are essential to
the understanding how models are tested. The chapter begins with a discus-
sion of the way in which numbers are chosen to form a sample. Then, the idea
that a statistic has a distribution is presented. The next topic concerns criteria
that are used to determine which statistic is best. The final topic is the
binomial distribution.

All of the topics and concepts in this chapter relate to statistical theory.
Many of the quantities referred to in this chapter are computed from hypothet-
ical distributions. Though somewhat abstract, the ideas in this chapter are
‘essential for the intelligent comprehension of the remainder of the book.

Sample and Population

When we step on the scale to check our weight, we care about the number that
appears. Our own numbers or scores are important to us. However, we arc
generally not interested in the numbers or scores of particular other persons.
Similarly, we do not care if John’s IQ is 123 or whether Paul shocked the
person in the Milgram experiment at 450 volts. For a sample of numbers, the
specific numbers by themselves are ordinarily of little interest. They become
interesting if they are viewed as representative of the numbers that some

147
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larger group of persons would provide. The magic of statistics is that the
numbers of a few can be used to gauge the numbers of many. If a researcher
takes an election survey and finds that a candidate is losing by 5%, the
candidate does not really care that he or she lost in the survey. It is the views
of all the voters that is important, but a survey of a few persons may reflect
the views of many voters.

This process of going from the few to the many is valid only if a set of
traditional assumptions are true: One assumption is that there is a set of

" objects called the population and a number is attached to each object. It is also

assumed that the set of objects is infinite in size. From the population a sma]l
set of observations called the sample is gathered. Thus the sample 1s actually a
subset of all the possible observations. The population is infinite in size,
whereas the sample is finite.

Although classical statistical theory is based on the assumption that the
population is infinite in size, in practice most populations in the social and
behavioral sciences are finite in size. For instance, in an election survey the
population is the set of potential voters, which is finite in size. It has been
found that the theory based on infinite populations can be safely applied to
large but finite populations.

The optimal size for a sample depends on several factors. Sometimes a
small sample of ten objects is plenty, whereas in other cases hundreds of
objects are needed. The choice of sample size depends on the statistic being
computed, the resources available, and the degree of confidence required in
the conclusions.

Sample data are used to infer properties of the population. For instance, the
mean of a sample is computed and used to infer the mean of the population. A
quantity computed from the sample is called a statistic. So the mean, vari-
ance, and correlation coefficient when computed from sample data are called
statistics. A quantity computed uéing all the members of a population is called
a parameter. The population mean and variance are parameters. Roman
letters X, s, and r are used to designate statistics, while Greek letters o (mu),
o (sigma), and p (rho) are used to designate parameters.

The value of a parameter is almost never known and, as a result, it remains
a hypothetical value that is estimated by a statistic. It would be nearly
impossible, for example, to interview all the voters before an election. So
from the population a'subset or a sample of voters is selected. A major part of
statistical theory concerns how sample data can be used to describe accurately
the population from which they are drawn. Ideally the sample should corre-
spond as closely to the population as possible so that the statistics computed
from sample data will be as close to the population parameters as possible.
However, it is impossible for a finite sample to mirror an infinite population
exactly. So whenever one samples from the population, there will be sam-
pling errors. Sampling and sampling error go hand in hand.

The term sampling error is unfortunate because an error seems to imply a
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mistake that could have been prevented. Sampling error cannot be prevented.
It is necessarily built into sampling. When a few observations are used to
represent the many, errors necessarily follow.

Imagine working for a company that produces a certain type of machine
that is ordered by more than 10600 factories throughout the world. You want to
‘project how many of your machines will be ordered during the upcoming
year. It would be wasteful of time and money to contact managers at the 1000
factories and ask each how many of the product they plan to order for the next
year, You cannot afford to interview every member of the population of 1000
factories. Practical considerations force you to choose only a sample of
factories. Any statistic computed from the sample would not be the same as
the population parameter. Thus your estimate of demand will not be what it
would be if yon surveyed all the 1000 factories. In essence, your survey may
be in error. At issue are the procedures that can reduce the amount of
sampling error and procedures for determining the likely amount of sampling
error. It must be realized that sampling error is inherent in these procedures.
So the goal must be to minimize and measure it.

Random and Independent Sampling

In order to reduce the amount of sampling error and to estimate its probable
extent, onc must sample from the population in certain prespecified ways.
Sampling must be random and independent. Random and independent sam-
pling does not prevent sampling errors. It merely reduces their size and
permits the determination of the likely amount of sampling error.

There are two strategies for controlling the amount of sampling error. First,
the objects are selected randomly. Random sampling requires that every
object from the population is equally likely to be chosen to become a member
of the sample. Second, the objects are chosen independently. Independent
sampling requires that if a given object is chosen, it in no way increases or
decreases the probability that any other object is subsequently chosen. So for
a voter survey, persons are randomly chosen. One should not sample hapha-
zardly by interviewing persons who happen to pass by on a busy street and are
willing to be interviewed. A “grab sample” of friends and acquaintances is not
a random sample.

Random and independent sampling is the cornerstone of classical sampling
theory. There are two major ways to obtain a random sample. The first way is
to use a method that makes the decision of which objects or persons to include
in the sample random. For instance, one can {lip a coin or roll a die to make a
decision randomly. The second procedure to achieve random sampling from a
population of human subjects is to use a random number table. Such a table is
presented in Appendix B.

To use a random number table, first a list of the population members is
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made. Next, these persons are assigned sequential numbers from 1 to N,
where N is the population size. Assume that the number N has k digits. A
number is picked from a random number table, not necessarily the first
number in the table. From this random number the first k digits are examined,
and it is determined whether anyone in the population has the number. If
someone does, that person is included in the sample. The first k digits of the
next random number are used to select the next person into the sample. This
process is repeated until the desired sample size is achieved.
Independence requires that the probability of a person being sampled not
change if anyone else is sampled. For instance, if the population is a city,
using all the persons living on one block violates the independent sampling
requirement even if the block is chosen at random: If one person is sampled, -
the person’s next-door neighbor must be sampled. However, if one die is

.repeatedly rolled, a sample of rolls is independent. Rolling a six on one frial

does not change the probability of rolling a six on the next trial. The
inferential statistical methods discussed in the subsequent chapters are based
on the assumption that the data were gathered by means of independent and
random sampling methods. The major way that the independent sampling
assumption is violated is by measuring a person more than once.

When sampling from a population, one can sample with or without
replacement. When sampling without replacement, once an object is chosen
to be a member of the sample, it cannot be chosen again. When sampling with
replacement, an object can be chosen again. With infinite populations, there
is no practical difference between sampling with and without replacement.
For small populations, observations can be independent only if one samples
with replacement. If two cards are sampled without replacement from a deck
of cards, the sampling is not independent. Picking an ace as the first card
decreases the probability of picking an ace as the second card if that first ace is
not returned to the deck.

There are two major reasons why aobjects should be randomly and in-
dependently sampled. The first is to reduce the amount of sampling error. In
the absence of any other information, random and independent sampling
provides statistics that are as close to the parameter as possible. The second
reason is that random and independent sampling permits the quantification of
the amount of sampling error. Thus, it is known how close, in theory, the
statistic is to the population parameter.

In reality samples used in social and the behavioral sciences are not
randomly ot independently formed. For instance, in most psychology ex-
periments students sign up to serve as subjects. Such samples are not random.
Moreover, subjects when they are sampled randomiy are hardly ever sampled
with replacement. (Only in survey research, such as election surveys, are
persons randomly and independently sampled.) Although persons are not
randomly sampled, it can be argued that the response from a person is a
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random sample of that subject’s behavior. So the responses can be assumed to
be a random sample of a population of responses.

Sampling Distribution

A statistic is a number that is computed from a sample. If the same statistic
were computed from a different sample taken from the same population,
almost certainly a different result would be obtained and neither would
exactly equal the population parameter. This variation from sample to sample
is called sampling error. For instance, if the average height in a class of 20
students were.measured from a random sample of 5 persons, the mean of this
sample of 5 will almost certainly not equal the mean of another sample of 5.
In any given sample, the people chosen will be a bit taller or shorter than the
class average. Sampling error goes hand in hand with statistical estimation. A
sampling error is not an intentional mistake; rather, it is an inevitable out-
come. In other words, error in the estimation of population parameters is the
inevitable price that must be paid for the ease and economy afforded by
sampling.

The sampling distribution of a statistic can be conceptualized as follows: If
the mean were computed from two different samples with the same n drawn
from the same population, two different values would be obtained. If an
infinite number of samples of size # were drawn and for each the mean were
computed, a frequency distribution of the sample means of size n could be
created. The distribution of this infinite set of means is referred to as the
random sampling distribution of the mean, or more simply as the sampling
distribution of the mean. In general, any statistic has a sampling distribution.
A sampling distribution of a statistic is a theoretical distribution based on an
imaginary repeated sampling and computation of a statistic.

A sampling distribution has two important properties: its mean and its
standard deviation. The mean of the sampling distribution equals what the
statistic tends to be on the average. The standard deviation describes how
variable the statistic is when repeatedly calculated from different samples of
the same size. So, the mean of the sampling distribution states what the
statistic is-estimating and the standard deviation states how close it comes to
that value on the average. The standard deviation of the random sampling
distribution of a statistic is called the standard error of the statistic. The
standard error quantifies the amount of sampling error in the statistic. It
measures the degree to which the statistic would be likely to change if another
sample were drawn and the statistic were recomputed. In other words, the
standard error of a statistic measures how vanable a statistic is when it is
recomputed uwsing a different sample of the same size.

For most statistics, the standard error decreases as the sample size in-
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creases. In fact, if a statistic did not have this attribute, it would be deemed a
poor statistic. The relation between sample size and the standard error can be
illustrated for the sample mean. If the population variance is 100, the standard
error of the sample mean takes on the following values for the given sample
sizes:

n Standard Error of X
10 3.16

25 2.00
100 1.00
150 .82

(The exact formula for the standard error of the mean is presented in Chapter
11.) The standard error of 3.16 for the sample size of 10 implies that the
typical difference of the sample mean from the population mean is 3.16
units. When the n is 150, the sample mean differs from the population
mean by about .82 unit. Normally the effect of increasing the sample size
suffers from the “law of diminishing returns.” Doubling the sample size
does not cut the standard error in half, To cut the standard error of the mean
in half, the sample size must be quadrupled. This can be seen in the above
table: The standard error for a sample of 25 is twice that for a sample of
100 subjects,

As the sample size increases, the statistic does not vary as much from
sample to sample. However, even with large sample sizes, the sample statistic
still does not exactly equal the population parameter. Sampling and sampling
error go hand in hand. The standard error quantifies the amount of sampling
error. The standard error states how close the statistic is to the parameter, on
the average, not in any particular instance. So if an election survey shows that
a candidate is leading an election by 8% and the standard error is only 5%, it
does not guarantee that the candidate is ahead. The 5% standard error is the
average or typical amount of error to be expected given the sample size. The
actual error in a particular survey may be zero or even 20%. The error in any
particular study is never known. Only known is the average or standard error
across many studies of the same sample size.

Properties of Statistics

In computing measures of central tendencies various issues arose. For in-
stance, as was explained in Chapter 3, there are three measures of central
tendency: the mean, the median, and the mode. Is there any reason fo prefer
one measure over the other? Also the variance is divided by n -~ 1 and not n.
Why is this? These questions can be answered once two important properties
of statistics are defined.
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Bias

The mean of the sampling distribution can be used to define an important
property of a statistic—namely, bias. A statistic that is supposed to estimate a
population parameter is said to be an unbiased estimate of that parameter if
the mean of the random sampling distribution of the statistic equals the
parameter. Unbiased statistics exactly estimate on the average what they
purport to be estimating, If a statistic is unbiased, the statistic itself does not
necessarily equal the parameter; it only does so on the average. A positively
biased estimate statistic is one that tends, on average, to overestimate the
parameter value. _

The sample mean X is an unbiased estimate of the population mean, w. If
the distribution is symmetric, the median is also an unbiased estimate of the
population mean. If the distribution is symmetric, the mean is also an
unbiased estimate of the population median.

The sample variance 52 is an unbiased estimate of the population variance,
o?. The formula for s has n — 1 in the denominator and not n. The reason for
this is to make s an unbiased estimator of ¢”. If the denominator of s> were n
instead of n — 1, s° would be a biased estimator.

A fact not very well known is that the sample comelation coefficient # is a
slightly biased estimate of the population correlation when the population
correlation p is nonzero. For sample sizes of five or more the sample
correlation coefficient siightly underestimates positive values of p and over-
estimates negative values of p. For moderate and large samples, the bias is
trivially small and can be safely ignored. Although the correlation coefficient
is biased, the regression coefficient is not.

Efficiency

A second important property of a statistic is efficiency. One statistic is said to
be relatively more efficient than another statistic if its standard error is smaller
than that of the other statistic. Thus, if one statistic’s standard error is smaller
than another’s, the former is said to be more efficient than the latter.

To choose between two statistics, say the mean and the median, their
efficiency must be considered. Which of the two statistics is more efficient
depends on the shape of the distribution, Thus it is necessary to consider what
the underlying distribution is before determining which statistic is most
efficient.

As will be discussed in the next chapter, in data analysis it is generally
assumed that the population distribution is normal. For this reason, the
discussion of efficiency will presume that the population distribution is
normal, _

When the population distribution is normal, X and s* are unbiased es-



154

Part 3 / Inferential Statistics

timators of u and o, respectively. Moreover, they are the most efficient
unbiased estimators of the parameters, again when the distribution is normal.

Although the sample mean and variance are optimal when the distributions
are normal, they can be very inefficient when outliers are present. In particu-
lar, the sample standard deviation is a very inefficient estimate of the popula-
tion standard deviation when there are outliers in the sample. A statistic
whose efficiency is not affected much by nonnormality or outliers is said to be
robust. The median is more robust than the mean, and the interquartile range
is more robust than the standard deviation.

Binomial Distribution

One important population distribution is the binomial distribution, which can
be used to describe a scries of random events. Before getting into the
mathematics of this distribution, consider the following example.

Imagine someone flipping a coin four times and counting the number of
heads. That number can vary from zero, no heads at all, to all four flips being
heads. One might wonder what the probability is of obtaining exactly three
heads in four flips. To determine this and other probabilities, the binomial

“distribution is used.

First, the probability of flipping a head on a single flip must be determined.
That probability is .5 and is denoted as p. The probability of not flipping
heads must be 1 - p, which is denoted as g. So the probability of a success
(flipping heads) is denoted as p, and the probability of a failure (flipping tails)
is denoted as g.

Second, it must be assumed that the trials (flips) are independent. That is,
having flipped a heads in trial one does not increase or decrease the probabil-
ity of flipping a heads in trial two. It seems reasonable to beligve that coin
flips are in fact independent. However, other events are not. If a frial is
picking a card from a deck, then the chances of picking an ace are 1/13 or
.077. If the card from trial one is not replaced, then the chances of picking an
ace on frial two are affected by what happened on trial one. If an ace were
picked on trial one, then the chances of picking an ace in trial two are 1/17 or
.059. But if some other card besides an ace were picked in trial one, then the
chances of picking an ace in trial two are 4/51 or .G78.

If there are a set of independent trials with a known probability, the
probability of a given outcome can be determined. Assuming that there are n
trials, the probability of x successes, given a binomial distribution, is:

n!

H—X
xi(n — x)! P
The term n/ is read as n factorial. It equals

ap — )n -2} . .. 32N
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So 5! equals (5){(4)}3)2)1) = 120. By convention 0! = 1,
Using the binomial formula, the probability of obtaining three heads in
four flips can now be computed. The terms for the binomial formula are

p(the probability of a success) = .5
g(the probability of a failure) = 1 - .5
n(the number of trials) = 4

x(the number of suceesses) = 3

Il
tn

Putting the terms in the formula yields:

A g @eOO
KL U (3)2)(1)(1)

So the probability of flipping three heads in four trials is .25,

As a second example, consider the probability of a subject getting eight of
ten answers correct on a recognition test with five alternatives if the subject is
Jjust guessing. The probability of a correct guess on each trial is 1/5 or .20. So
the terms for the formula are ' '

(.125)(.5) = .25

p{the probability of a success) = .20

g(the probability of a failure}) = 1 — .20 = .80
n(the number of trials) = 10

x(the number of successes) = §

Putting these terms into the binomial formula yields:

10
ol .20%.80% = 0000737
If a variable has a binomial distribution, its population mean equals #p and
its population variance equals apg. So for the prior exampie withn = 10, p =
.20, and ¢ = .80, the mean is 2.0 and the variance is 1.6. These are
population parameters. The mean and variance of sample of subjects would
not exactly equal these hypothetical values because of sampling error.

Descriptive statistics are used to summarize the scores in a sample. Examples
of descriptive statistics are the mean and the standard deviation. Inferential
statistics are used to test models.

A population is an infinite set of objects and the sample is a subset of
objects chosen from the population. A statistic is a number, like the mean or
variance, computed from sample data. A parameter is a number computed
from all the possible values of the population. The variation of a statistic from
sample to sample is called sampling error.

A random sample is a set of numbers chosen so that each object is equally
likely to be chosen to be a member of the sample. Sampling is said to be
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independent if choosing one object in no way changes the probability that
some other object will be chosen. Random sampling can be accomplished by
rolling a die or using a random number table. Random and independent
sampling minimizes the amount of sampling error. Sampling can either be
with or without replacement. When sampling without replacement, once the

-object is sampled, it cannot be sampled again. When sampling with replace-
"ment, an object can be sampled again.

The same statistic could be computed from many different samples drawn
from the same population. A statistic has a random sampling distribution or,
more simply, a sampling distribution. The standard deviation of the sampling
distribution is called the standard error of the statistic.

A statistic is unbiased if the mean of its random sampling distribution is
equal to the parameter that it is supposed to be estimating. Both X and s? are
vnbiased statistics. One statistic is more efficient than another if the variance
of its random sampling distribution is less than the other statistic’s variance. A
statistic is said to be robust if an outlier in the sampie does not dramatically
change the value of the statistic. The median is a more robust estimate of the
population mean than the sample mean. The interquartile range is a more
robust estimator of vartability than the sample variance.

The binomial distribution is used to describe the probability of an event
happening x times in 7 trials. The probability of a success must be known, and
trials must be independent.

1. Which of the following schemes are random samples of pages from the
phone book?

a. page 10 throngh 53

b. every fifth page

c. opening the book 50 times and picking a page
d. using a random number table to pick 60 pages

2. Imagine two statistics p and g that are both estimators of the same
parameter. Presume that p and ¢ are estimated from a sample of size 50.
Also presume that p is unbiased and its standard error for an n of 50 is
.88. The estimate g is biased tending to be .01 unit too high and its
standard error is .44. Which of the two statistics would you prefer to use
and why?

3. Define in words each of the following for the variable of reaction time.

a. a sample mean of 555 milliseconds (ms)
b. a population mean of 531 ms
¢. a sample standard deviation of 112 ms
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d. a population standard deviation of 123 ms
e. a standard error of the mean (based on ten observations) of 12.3 ms

Indicate whether each of the following statements is true or false.

a. The mean of a random sample equals the mean of the population.
b. The mean of a random sample will tend 1o equal the mean of the
population.

. Imagine two statistics k and g that both estimate parameter theta. Assume

that the sampling distribution of & for r = 100 has a mean of theta and a
variance of 20, and the sampling distribution of g for n = 100 has a mean
of theta and a variance of 25.

a. Are k and g unbiased estimates of theta?
b. Which is more efficient, & or g7
c. What are the standard errors of & and g7

Given that the population correlation p equals zero, the quantity
V{1 — r?) has a sampling distribution with a mean of zero and a
variance of approximately 1/(n ~ 2).

a. Is /(1 — r?) an unbiased estimate of p/V{(1 — p)?
b. What is the standard error of r/V (1 — r%)?

. For a flat distribution why is the sample median an unbiased estimate of

the population mean?

If the population is normally distributed, it can be shown that the squared
interquartile range multiplied by .55 is essentially an unbiased estimate of
the population variance. What estimate of ¢* would you prefer: s* or the
adjusted interquartile range statistic? Why?

An unbiased estimate of the population mean is any randomly sampled
observation in the sample. Why is the sample mean preferable to the
single-score estimate of the mean?

Explain why each of the following is not an independent sample of
college stndents.

a. all students in one randomly chosen dormitory
b. students waiting in line for a movie

For the population of 9, 8, 12, and 6, the following are all 16 samples
with replacement of sample size 2.

(9, 9, €9, 8) 9, 12, 5, 6)
(8, 9, (8, 8) (8, 12), (8, 6)
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12.

13.

4,

I5.

16.

17.

18.

(12, 9), (12, 8) (12, 12), (12, 6)
(6, 9), (6, 8), (6, 12), (6, 6)

Compute from each z{ and make a frequency table of the random sam-
pling distribution of X_ Compute the mean and standard deviation of the
sampling distribution.

Imagine that a random sample of 30 out of 12,938 students from a
university is needed. State how a random sample could be drawn using a
random number table.

Imagine a sample of three numbers from a population, An estimate,
called U, of the population mean is

5X, + 25X, + .25K;

It turns out that U is an unbiased estimate of the population mean with a
standard error of .612¢ where o is the population standard deviation. The
sample mean has a standard emror of .577¢. What statistic is more
efficient: X or U? Why? ’

Which of the following can be considered a random and independent
sample of students from a classroom?

. All students whose names begin with A and K

. All students who sit in the first row.

All students who volunteer to be in a study.

. The first ten students who come to class cne day.

ae ow

What is the probability of rolling a single die six times and obtaining a
five three times?

If one rolls two dice, the probability of rolling an eight is 5/36. What then
is the probability of rolling an eight on four out of five rolls?

Jim feels down on his luck. He has bet a number ten times straight on
roulette and lost. The chances of hitting the number are 1 out of 38. What
is the probability of losing ten times in a row?

If the probability of getting divorced is .42, what is the probability that in
a sample of seven, five couples will get divarced?



Properties

The Normal
Distribution

In Chapter 2 the concept of distribution was introduced. A distribution of
scores refers to the relative frequency of the various scores. In this chapter the
distribution that is commonly assumed in data analysis—the normal dis-
tribution—is discussed. Not only is the normal distribution used in data
analysis, it also underlies various data transformations.

of a Normal Distribution

The normal distribution is a symmetric, unimodal distribution that looks like
a bell. It is a hypothetical distribution dreamed vp by mathematicians that
approximates the distribution of many naturally occurring variables. The
vpper and lower limits of the distribution are plus and minus infinity.
Although all values are theoretically possible, very large or very small values
are’ practically impessibie. Because the normal distribution is a continuous
distribution, any values, not just integers, are possible. Figure 10.1 shows
two examples.

The normal distribution is not one distribution but actvally a family of
distributions. They differ only in their mean and variance. For instance, in
Figure 10.1 both normal distributions have the same mean but one (the more
peaked one) has less variance than the other. Although these distributions
differ in their variance, their basic shape is exactly the same. If the mean and
the variance of a normal distribution are known, then the exact shape of the
distribution is known.

Although the two distributions in Figure 10.1 look quite different, they are
both normal distributions. What is meant that they both have the same shape?
Two distributions are said to have the same shape if there is a no-stretch
transformation of one distribution that makes it possible to superimpose that
distribution on the other,
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FIGURE 10.1

FIGURE 10.2
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Examples of normal distributions.

For the normal distribution the interval from the mean to one standard
deviation above the mean contains about 34% of the scores, as is shown in
Figure 10.2. In the interval from one standard deviation above the mean to
two above the mean are about 13.5% of the scores. From two to three
standard deviations are about 2% of the scores, and about .1% of the scores
are greater than three standard deviations above the mean.

Stated alternatively, the interval from one standard deviation below the
mean to one standard deviation above the mean contains about 68% of the
scores. In the interval from two standard deviations below the mean to two
standard deviations above the mean are about 95% of the scores. In the
interval from three standard deviations below the mean to three above are
about 99.7% of the objects. These facts hold for any normal distribution,
regardless of the value of the mean and the variance.

Again, the normal distribution is a theoretical distribution dreamed up by
mathematicians. Real numbers at best only roughly conform to its shape. For
instance, the distribution of intelligence test scores is often assumed to be

Probabilities for the normal distribution.

34% 34%

1% 2% 13.5% 13.5% 2% 1%

-3 =2 -1 o i 2 3

Standard deviations from the mean
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normal. However, close inspection of the distribution reveals that there are
more persons with very low intelligence than there would be if the distribution
of mtelligence were perfectly normal. Also, if the distribution were truly
normal, an intelligence test score of —20 would be possible. The normal
* distribution is not “normal” in the sense that it is typical; actually it is quite
atypical. Real, rather than theoretical, data are almost never exactly normally
distributed. They may be close to normal but they are almost never exactly
normal. v

Even so, it is still reasonable to assume that the data are exactly normally
distributed. There are four reasons for doing so. First, the normal distribution
has some mathematically useful properties. For instance, X and s° are un-
related, which is not true of any other distribution. Another important fact is
that if the variable X is normally distributed, then the distribution of X is also
normal. If X has any other distribution, the mean of observations drawn from
X has a different type of distribution. Data analysis is sufficiently complicated
mathematically even if the normal distribution is assumed. If nonnormality is
permitted, much of the algebra becomes quite difficult and, in certain cases,
practically impossible.

Second, many variables that social and behavioral scientists study tend to
be roughly, if not exactly, normally distributed. There is an important statis-
tical theorem called the central limit theorem that explains this fact. The
central limit theorem states that if a score is made up of a sum or average of n
numbers, then as n gets larger the score tends to have a normal distribution
even if the components are not normally distributed. Because many measure-
ments in the social and behavioral sciences are often the sum of a large
number of responses, it is all but inevitable that they have a distribution that
approaches normality.

Third, even if the numbers are not normally distributed, in many cases they
can be transformed to become “more normal” by the transformations dis-
cussed in Chapter 5. For instance, skewed distributions can be made more
normal by applying one-stretch transformations. Thus, nonnormal data can be
made “more normal” through data transformation.

Fourth, even if the data are not normally distributed, the errors resulting
from nonnormality are often not that costly. For instance, using the statistical
technique called analysis of variance (discussed in Chapters 14 and 15) with
nonnormal data resolts in surprisingly few errors in most cases. The reason for
this is the previously mentioned central limit theorem. So, the costs of falsely
assuming neormality are -often only minimal.

A normal distribution has two parameters: its mean symbolized by g and
its variance symbolized by a?. Regardless of the shape of the distribution, the
sample mean (X) and the sample variance (s%) are unbiased estimators of the
population mean p and the population variance o?, respectively. If the
distribution is normal, X is a more efficient estimate of g than either the
median or the mode even though the median and the mode are unbiased
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estimates of the population mean. The median and the mode have wider
standard errors than the sample mean. In fact, it can be shown that X is the
most efficient estimator of the population mean given a normal distribution.

Also, given normality, s> is a more efficient estimator of o than any other
unbiased estimator of s*. Thus, X and s” are preferred estimators of 4 and ¢
when the observations have a normal distribution. Because normal distribu-
tions are very commonly presumed in statistical work, both X and & are the
estimators of choice.

Standard Normal Distribution

In Chapter 5, the Z score transformation was presented. Its formula is
_X-X
s

zZ

Because fhe statistics X and s are used to compute Z scores, this is a
sample-based transformation. Imagine that X is normally distributed with a
known population mean of y and population variance of o, The Z score in
the population is computed by the formula

X~

o

Thus observations are adjusted by the parameters p and o and not by the
sample-based statistics X and s. The above Z score has a normal distribution

‘like X, but unlike X, the mean of the Z scores is always zero and the variance

is always one. A normal distribution with a mean of zero and variance of one
is called the standard normal distribution or Z distribution. Any normally
distributed variable can become a standard normal variable by subtracting the
population mean from each score and dividing this difference by the popula-
tion standard deviation.

The standard normal distribution is a normal distribution in which the
scores are expressed in standard deviation uvnits. So if a variable has a Z
distribution, a score of 1.5 indicates that the object is one-and-a-half standard
deviations above the mean. A score of —! indicates that the object is one
standard deviation below the mean.

It is important to understand the difference between the Z transformation
and the Z distribution. The Z transformation can be applied to any set of
numbers regardiess of their distribution. The Z transformation does not alter
the basic shape of a distribution, only its mean and standard deviation. So a Z
score transformation does not make a nonnormal distribution normal, as is
sometimes mistakenly thought. However, when the Z transformation is ap-
plied in the population to a normally distributed variable, the resuit is the
standard normal distribution. Though related, the Z transformation and the Z
distribution are not the same. )
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it bears repeating that any normaily distributed variable can be transformed
into a variable with a standard normal distribution. Simply subtract the
population mean and divide the difference by the population standard devia-
tion. The resulting variable has a normal distribution with a mean of zero and
a variance of one.

Determining Probabilities

The standard normal distribution is used fo determine the probability of
various types of events. To determine such probabilities Appendix C is used.
In this appendix are listed the probabilities that a score is in the interval from
zero to the value labeled Z in the table. For example, the probability of
obtaining a Z score between 0.00 and 1.00 is .3413, given the mathematical
properties of the standard normal distribution. It is then the case that the
probability of being in the interval between the mean and one standard
deviation above the mean is .3413 for any normally distributed variable.
Thus, the table of probabilities for the standard normal distribution can be
used to answer questions about any normal distribution for which the mean
and variance are known.

To use Appendix C to determine the probability that a score will fall in the
interval between zero and .50, first locate .50 in the left-hand column of the
table. Then the number to the right, .1915 gives the probability.

The probability that Z exactly equals any particular value is zero. Bécause
a normal distribution is a continuous distribution, any value is possible—not
Jjust integers. For continuous distributions that can take on any value, only the
probability of an interval is nonzero. The probability of being exactly at zero
or at any particular value is zero.

Becanse the normal distribution is symmetric, it happens that the probabil-
ity of something being in the interval between 0 and & is the same as it being in
the interval between —k and 0. So because the probability of being between 0
and .80 is .2881 (see Appendix C), then the probability of being between —. 80
and 0 is also .2881.

Another useful fact concerns the probability of an event happening that is
greater than some value, say k. This question can be reformulated as the
difference between two probabilities. What is the probability of a score being
greater than zero minus the probability of a score being between zero and £?
The probability of a score being greafer than zero is .5 because the normal
distribution is symmetric and so one-half the scores must be above its mean of
zero. As an example, what is the probability that a Z score is greater than .807
Because from Appendix C the probability of Z being between ¢ and .80 is
.2881, the probability of Z being greater than .80 is .5 minus .2881 or .2119.
These facts are illustrated graphically in Figure 10.3.

To compute the probability of sampling within some interval of a variable
that is normally distributed, the numbers are first transformed into Z scores.
The question is reformulated so that it can be answered using the probabilities
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FIGURE 10.3 Facts about the Z distribution.

4
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given in Appendix C. Consider some examples using men’s height as the
variable, which is assumed to have a mean of 70 inches, a standard deviation
of 3 inches, and a normal distribution (Stoudt, 1981).

a. What is the probability that a man is between 70 and 72 inches tall?
First, the numbers 70 and 72 are converted into Z scores. These Z
scores are

70-70 _
3

0

and
72 =70 _

.67
3

The question now becomes what is the probability of obtaining a Z
score between 0 and .67. The answer from Appendix C is .2486, as
shown here graphically.
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— 2486

NN

.67

=)
(=)

b. What is the probability that a man is between 64 and 70 inches tall?

Both 64 and 70 are converted inte Z scores:

64 — 70
3

= -2.0

and
70 - 70
3

=00

The question becomes: What is the probability of a Z score being
between ~2.0 and 07 Because Z is symmetric, the question can be
rephrased: What is the probability of sampling someone between 0 and
2.0? The answer from Appendix C is .4772, as shown graphically.

ATT2~

-2.0 0

. How likely is it that a man is between 65 and 72 inches tall? The
numbers 65 and 72 are converted into Z scores:

65 — 70

= —1.67

and

72-70

3 .67

To answer this question, it is divided into two separate parts. The
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probability of being between 0 and 1.67 is .4525 and between 0 and .67
is .2486. Both of the probabilities can be ascertained from Appendix C.
So the probability of being between the interval —1.67 and .67 is .4525
+ .2486, which equals .7009, as shown graphically.

——.2486

~1.67 0 .67
d. How likely is it that a man is between 72 and 75 inches tall? First, 72
and 75 are converted into Z scores:
72-70 _
3

.67

and’
75 - 70

3

= 1.67

The question now is what is the probability of a Z being between .67
and 1.67. From Appendix C, the probability of Z being between 0 and
.67 is .2486 and the probability of Z being between 0 and 1.67 is .4525.
Thus, the probability of Z being between .67 and 1.67 is .4525 — .2486
= .2039, as shown graphically.

2486

—.2039

0 67 167

e. How likely is it for a man to be shorter than 67 inches? First, 67 is
converted into a Z score:
67 - 70

= 1.
3 0
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This is equivalent to asking the probability of a Z score greater than
1.0. The probability that Z is greater than zero is . 5. From Appendix C,
the probability that Z is the interval between zero and 1.0 is .3413.
Thus, the probability that Z is greater than 1.01s .5— .3413 = .1587, as
shown graphically.

~1.0 0

f. What is the probability that a man will be 77 inches or taller? The score
77 is converted to a Z score:
77 - 170
3

=233

The question is: What is the probability that 2 Z score will be greater
than 2.337 Because .50 is the probability of Z being greater than zero,
and because .4901 is the probability of being between O and 2.33, the
probability of Z being greater than 2.33 is .50 — 4901 = .0099, as
shown graphically.

0 233

Determining Percentile Ranks

The standard normal distribution can also be used to determine a score’s
percentile rank. The percentile rank states the percentage of objects that the
given object scores higher than. For instance, Scholastic Aptitude Test (SAT)
scores are often expressed in terms of percentile ranks; for example, John has



168

Part 3 / Inferential Statistics

an 87 percentile rank on verbal SAT. He scored higher than 87 percent of the
people taking the test.

If one knows a person’s score on a test, the test’s mean and standard
deviation, and one can assume that the variable is normally distributed, the
person’s percentile rank can be determined. The rule is simple: convert the
score to Z and determine the probability value in Appendix C. If Z is positive
then add .5 to probability and then multiply by 100 to get the percentile rank.
If the Z is negative, the probability is subtracted from .5 and muitiplied by
100.

The process can also be reversed. If the percentile rank is known, the Z
score can be determined. One could use Appendix C, but it is simpler to use
Appendix A. One first finds the percentile rank in the column denoted
Proportion and then reads the Z score from the column labeled Probit.

The percentile ranks are used, in part, to determine the recommended daily
allowances (RDA) of vitamin intake. Nutritionists survey the population of
healthy individuals and calcvlate the mean and variance of intake for a
particular vitamin. Using the mean and variance and assuming normality, the
researchers calculate the value of a score with a 97.5 percentile rank. This
score is used as the recommended daily allowance (RDA) for many vitamins.

Data Transformations

In Chapter 5 various data transformations are considered. Two of the trans-
formations, the probit and percentile rank, described in that chapter can be
clarified at this time.

Proportions

The probit transformation is used for proportions and percentages. It is a
two-stretch transformation used to remove the lower limit of zero and the
upper limit of-1.00 in proportions and 100 in percentages. This transformation
is based on the standard normal curve. The probit of a proportion refers to the
X axis of the normal curve for that proportion. So the probit transforms a
proportion into a Z score. ‘

The probit transformation is illustrated in Figure 10.4. In the top diagram
the shaded area contains .50 of the distribution, and the reading on the X axis
is 0.00. So the probit of .50 is zero. In the middle diagram the shaded area
contains .975 of the distribution and the value on the X axis is 1.96. So the
probit of .975 is 1.96. In the bottorn diagram the shaded area contains .25 of
the distribution and the value on the X axis is —.67. So the probit of .25 is
—.67. (Sometimes a value of five is added to the probit to climinate negative
values.)
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FIGURE 10.4 Probit examples.
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The normal distribution is also used to transform scores that have been rank
ordered, but the underlying process that generated the scores is assumed to be
normal. The transformation is called the normalized ranks transformation. It
involves two steps. First, the ranks are transformed into percentile ranks by
the formula presented in Chapter 5. The formula is

Ranks
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R-.5
n

100

where R is the rank order of the score and n the sample size. Second, these
percentile ranks are converted into Z scores using the probit transformation in
Appendix A. The resulting values are the scores’ normalized ranks.

The normalized ranks transformation can also be used to normalize the
scores of any variable that is not normally distributed. First the scores are rank
ordered from the smallest to largest. Then each score’s percentile rank is
computed. Finally, using the probit transformation in Appendix A, the per-
centile ranks are converted into Z values. A frequency distribution of the
transformed scores is more nearly normally distributed than the un-
transformed scores.

The use of the normalizing transformation should be applied cautiously. If
the obtained distribution appears implausible and there is good reason to
believe that the variable is normally distributed, then a normalizing
transformation may be helpful. It should not be routinely applied to nonnor-
mal data, however.,

As an example, consider the following sample.

15, 19, 21, 21, 34, 50, 52
These scores rank ordered are
1,2,35,35,5,6,7
Converting the scores to percentile ranks yields
7,21, 43,43, 64,79, 93
Using the probit values in Appendix A, the normalized ranks are

-1.476, -.806, —.176, 176, 358, .806, 1.476

The normal distribution is a symmetric, unimodal, bell-shaped distribution.
Because of its relative mathematical simplicity, it is commonly used in
statistical work. Also because of the central limit theorem, many statistics
have approximately a normal distribution. The central limit theorem states
that the sum of numbers tends to be normally distributed as more numbers are
summed. _

The srandard normal distributior is a normal distribution with a mean of
zero and a variance of one. The standard normal is often referred to as the Z
distribution. This distribution can be used to answer questions about the
likelihood of certain types of events as well as to compute percentile ranks.
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The normal distribution is used for various data transformations. Pro-
portions can be transformed by the probit transformation and ranks by the
normalized ranks transformation.

Problems
i. Find the following probabilities from the Z distribution.

between 0.0 and .77
between ~.11 and 0.0
between .33 and 1.35
greater than .72
between 0.0 and 2.04
between —1.22 and 0.0
between —1.48 and —.99
less than — 38

between —46 and 1.13

2. Let 1Q be a normally distributed variable with a mean of 100 and a
standard deviation of 15. Find the probability that someone’s IQ is

between 100.0 and 115.0
between 110.0 and 120.0
less than 95

between 90.0 and 100.0
between 90.0 and 95.0
less than 123

3. If X is a normally distributed variable with a mean of 12 and a variance of
16 what is the probability of the following sets of events?

. X between 10.06 and 12.0
. X less than 11.0

. X greater than 12.5

. X between 11.0 and 14.0

TTEGR S a0 g
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4. Find the probit transformations of the following probabilities.
a. .66 b, .10 c, .55 d. 34
5. Convert the following rank-ordered scores into normalized ranks.
1.2,3,4,56,7,8, and 9
6. Answer the following questions, assuming that the distribution is normal.

a. How likely is it for someone to score at least 1.5 standard deviations
above the mean or more?
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7.

10.

1L

b. How likely is it for someone to score lower than 1.75 standard
deviations below the mean?

c. What is the probability of someone scoring between .5 standard
deviations below the mean to .5 standard deviations above the mean?

Below are the rank-order scores of ten cities in the United States as rated
by Rand McNally (Boyer & Savageau, 1985) on three dimensions.

City Transportation Economics
Atlanta 2 5
Boston 6 4
Chicago 5 10
Cincinnati 8 8
Dallas 7 1
Denver 4 2
New York 1 7
Phoenix 10 3
Pittsburgh 9 9
San Francisco 3 6

Convert the ranks to normalized ranks and average the normalized ranks
for each city. Compare these averages to the means of the original ranks
for each city,

Given that X is normally distributed with a mean of tt and a variance of
o2, it is true that X has a mean of p and a variance of o2/n. Given this
fact, if X has a mean of 50 and a variance of 81, what is the probability
that X will be between 51 and 49 if n is 367

Given that scores on the Scholastic Aptitude verbal test have a mean of
500 and a standard deviation of 100 and a normal distribution, what

- percentage of the population is outscored if the following scores are

obtained?

a. 600 b. 700 c. 500
d. 750 e. 450 f. 350

If the probability that of being five units or more above the population
mean is .25 and the distribution is normal, what is the standard deviation
of the variable?

Given that weight for females 18 -24 is normally distributed with a mean
of 132 and a standard deviation of 27 (Stoudt, 1981), compute percentile
ranks for the following weights: '

a. 132 b.150 ¢ 95
d. 139 e 180 { 100
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12. For the following percentile ranks, determine the corresponding Z values:

a. 60 b. 31 c. 20
d. 48 e. 79 f. 93

13, Explain the following statement: The Z transformation does not make a
distribution normal, but the normalized ranks transformation does.

14. Convert the following scores into normalized ranks.

418, 423, 425, 425, 430, 435, 435, 440, 441



Special Sampling
Distributions

If a random sample of 25 persons was drawn from the population of college
students and each person’s athietic ability and intelligence were measured, a
correlation between the two variables could be computed. Whatever the value
of the correlation, a different value would have been obtained if a different
sample of 25 persons had been drawn. Hence the correlation coefficient with a
sample size of 25 varies from sample to sample. It therefore has a distribution
of its own, called a sampling distribution.

When a statistic, such as a correlation coefficient, is computed, it is
necessary to know its sampling distribution to be able to interpret it. If all
statistics had radically different sampling distributions, data analysis would be
an impossible task. Fortunately most statistics used in data analysis have one
of four distributions. These four sampling distributions serve as important
reference points in data analysis. Moreover, the sampling distributions of
other statistics are closely approximated by these four distributions. That is,
the statistics are not exactly distributed as one of the four, but one of the four
can be used as a reasonable approximation. This chapter considers these four
special sampling distributions.

The material presented here is quite abstract. It may be more useful to
some students merely to skim the chapter now. Then, when the distributions
are presented later, this chapter can be used as a reference.

The Standard Normal Distribution

The first sampling distribution is one that was presented in Chapter 10: the
‘standard normal distribution. The Z or standard normal distribution is defined
as follows: If X is a normally distributed variable with mean y and variance
a?, then

174
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X-—p

42

is also normally distributed, with 2 mean of zero and variance of one. The
standard normal distribution is a normal distribution with 2 mean of zero and a
variance of one.

Many statistics, especially those involving means, have a standard normal

distribution when the distribution of scores from which the means were
computed is normal.
_IiXis normally distributed with mean g and variance -2, the sample mean
X is also normally distributed with mean u and variance of o*/n, where n is
sample size. The quantity o/Vn is called the standard esror of the mean. This
is a very important fact:

standard error  standard deviation divided by the
of the mean = square root of the sample size

This fact is only guaranteed if the observations are sampled randomly and
independently. However, the formula for the standard error of the mean is
true of any distribution, not just the normal.

In words, the variability of the mean equals the variability of the observa-
tions used to form the mean divided by the square root of the sample size.
How far the sample mean is away from the population mean depends on the
inherent variability in the population and the sample size. The larger the
sample size, the closer on the average is the sample mean to the population
mean. Consider separately the two special cases of n equal to one and n equal
to infinity. If » is one, the mean is a single observation and its variability is o?
divided by one, which remains o>, If n is very large or infinite, ¢*/n equals
zero. This implies that the sample mean is identical to the parameter u when
the sample size is quite large.

The relationship between sample size and the standard error of the mean
can be examined graphically. Consider the variable IQ, which is assumed to
be normally distributed, with a mean of 100 and a standard deviation of 5.
The standard error of the mean is 15/Vn. In Figure 11.1 are two sampling
distributions of X for sample sizes of 10 and 40. Note how much more
variable the sample mean is when » is 10 and than when r is 40.

If the population mean is subtracted from the sample mean and if this
difference is divided by its standard error, the following quantity is obtained.

X-p
a/Vn

If X is normally distributed, the above expression has a standard normal or Z
distribution. Even if X does not have a nonnal distribution, X has approx-
imately a normal distribution given the central limit theorem, discussed in the
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FIGURE 11.1 Sampling distribution of intelligence mean (u = 100, o’ = 225) for sample sizes
of 10 and 40.

85 a0 95 100 108 110 115

Mean intelligence

previous chapter. And, the larger r is, the closer to normal is the distribution
of X,

Other quantities have standard normal distributions. Imagine that two
samples are drawn from the same normally distributed variable with variance
o? _and two sample means are computed. The two sample means are denoted
as X; and X5, and their sample sizes are n; and ny, respectively. The quantity
.?_(1 - X’z is normally distributed with a2 mean of zero and a variance of

given that the observations are normally distributed and independently and
randomly sampled. It then follows that '

X -X
A / 1 1
o\/l— + —
(3] Ny
"bas & Z distribution.

Table 11.1 summarizes these facts about normally distributed variables.
The quantities in the table have a normal- distribution given that X has a
normal distribution.
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TABLE 11.1 Sampling Distributions That Are Normal

Variable Mean Standard Deviation

X fis o

>
1
=
o

a
X o o
Vn
X-p 0 o
Va
X-p 0 1
-
Vi
21—-22 0 o _1_.+.1_
(3] Na
X - % 0 1
1 1
o\ — + —
m ]

t Distribution

The second sampling distribution that is commonly used in statistical analysis
is the r distribution. Consider a normally distabuted variable X. If a score is
sampled from this population, and if the population mean is subtracted from
this score, and then if this difference is divided by the population standard
deviation, the resulting quantity is

X-p

o

As was previously discussed, this guantity has a standard normal or Z
distribution. But what would happen if the population standard deviation or o
is replaced with s, the sample estimate of the standard deviation? The quantity
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X-—u
3

does not have a Z distribution but rather has a ¢ distribution.

The ¢ distribution looks very much like the Z distribution. Like Z it has a
mean of zero, is symmetric, and has bounds of plus and minus infinity.
However, the ¢ distribution is not as peaked as Z at zero, and so its tails are
somewhat fatter than Z. These fatter tails make the variance of ¢ greater than
one. A 7 distribution looks like a bloated Z distribution.

Actually how closely the ¢ distribution approaches the Z distribution
depends on how closely s approaches o. Recall that 1 differs from Z in that s is
substituted for o. Because s is a statistic and so it has sampling error, the
quantity s does not equal o. How close s is to o depends on what are called the
degrees of freedom used to estimate s. The degrees of freedom for s are
usually n — 1. As the degrees of freedom get larger, the ¢ distribution
approaches Z. For very large degrees of freedom, ¢ and Z are virtnally
indistinguishable. Although there is only one Z distribution, there are many ¢
distributions. These different r distributions are denoted by #(df), where df
stands for degrees of freedom.

Many quantities have a ¢ distribution. In fact, all of the statistics in Table
11.1 that have a standard normal or Z distribution have a ¢ distribution when
the sample standard deviation is subsiituted for the population standard
deviation.

So the quantities

X-u

S
Vn

and

have a ¢ distribution. In each case the ¢ distribution involves a statistic that has
a normal distribution minus its population mean divided by its estimated
standard error. The facts concerning the ¢ distribution are summarized in
Table 11.2. '

The ¢ distribution is useful for testing hypotheses about means, and these
facts will be used in Chapters 12 and 13. Also, it will be seen in Chapter 16
that the ¢ distribution is used to test hypotheses concerning correlation and
regression coefficients.
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TABLE 11.2 Various Statistics That Have ¢, y?, and F Distributions”

t Distribution

X—j.L X—ﬂ- Xl—iz

g = I 1
— 4 —
\/r_l s ny (5]

x? Distribution

n - )2

0.2

ZZ
F Distribution

s xdh
52t x2idfs

*The variable X has a normal distribution with 2 mean of x and a variance of @2, The samples
from which X and s* are computed are randomly and independently drawn,

Chi Square Distribution

Like t, the chi square distribution is closely related to Z. Consider the variable
X, which has a normal distribution. To measure relative position a Z score can
be computed. To measure how deviant or unusual a Z score is, it could be
squared: Z2. Soif w = 20, ¢® = 100, and X; = 22, then Z; = (22 - 20)/10 =
.2 and Z2 = .04. The variable Z2 has a chi square distribution. The chi square
distribution is symbolized by x2.

All chi square distributions have a positive skew and a lower limit of zero.
The lower limit must be zero since Z* must be positive.

It is possible to take repeated random and independent samples from X.
Many Z scores and ZZ could be computed. The sum of k independent Z2 values
has a chi square distribution with % degrees of freedom. Thus, x? is not one
distribution, but rather a family of distributions that differ by their degrees of
freedom which equal the number of Z’s that are squared. The term k is called
the degrees of freedom of the x? distribution. The different chi square
distributions are symbolized by (k).

A x? distribution with  degrees of freedom has a mean of k and a variance
of 2k. So a y? with 10 degrees of freedom has a mean of 10 and a variance of
20. The shape of the distribution of y? is positively skewed with a lower
bound of zero. As the degrees of freedom get larger, the skew becomes less
pronounced and y? with k degrees of freedom approaches a normal distribu-
tion with a mean of & and a variance of 2k. So (x* — k)/V2k has approximate-
ly a Z distribution, if k is appreciable, say greater than 20.
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It can also be shown that

n~1)s*

02

has a y? distribution with n — 1 degrees of freedom. In words, the sample
variance times » — 1 divided by the population variance has a chi square

distribution. Facts about x? are presented in Table 11.2.

The main use of the y? distribution is testing models concerning frequency
data. The chi square distribution is used for this purpose in Chapter 17. Chi
square is also used to test hypotheses of differences between medians which is
described in Chapter 18, and differences between correlations which is de-
scribed in Chapter 16. Often when x2 is used, it is used to approximate a
sampling distribution.

F Distribution

Again let X be a normally distributed variable. Two random, independent
samples of X’s of sizes n; and n, are chosen from the population. The
variances, 5,2 and 5,2, are computed from each sample. If the ratio of 5;%/s,% is
computed, the quantity would have an F distribution. Like x?, F is positively
skewed with a lower bound of zero. (Because variances are always nonnega-
tive, their ratio must be nonnegative.) Its peak comes near the valae of one.

Like x?, F is actually a family of distributions. To determine which F
distribution is being referred to, one needs to know the degrees of freedom of
the numerator, 5,2, and the degrees of freedom of the denominator, s,2. The
number of degrees of freedom equals the denominator of the formula for the
variance for each sample. So for an F, the degrees of freedom on the
numerator and the degrees of freedom on the denominator must be de-
termined. A given F distribution is denoted as F(df,, dfy} where df,, are the
degrees of freedom on the numerator and df; the degrees of freedom on the
denominator.

The F distribution is closely related to 2. It can be shown that F is a ratio
of two independent y? variables, each divided by its degrees of freedom.

The main use of the F distribution is to test hypotheses about means. A
procedure for doing se, called analysis of variance, is described in Chapters
14 and 15.

Relation Between Sampling
Distributions

The four major sampling distributions, though distinct, are closely related.
One aspect that ties the four together is the normal distribution. The Z
distribution is itself normal. The y? distribution is based on the sum of
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squared scores that are normally distributed. The ¢ distribution also presumes
that the numerator is normally distributed. Finally, the F distribution can be
viewed as the ratio of two independent variznces whose scores are normally
distributed. Hence, the norrmal distribution is the starting point for all four of
these distributions. ,

But the four distributions are more closely linked. In some cases their
distributions are identical. There are four major equivalences between pairs of
the major sampling distributions. First a y? with one degree of freedom is
identical to a Z* value. So the probabilities in Appendix C can be used to
determine the probability of various y? events. For instance, what is the
probability of obtaining a x? value with one degree of freedom larger than
1.0? The answer to this question lies in finding the probability of obtaining a
value of Z greater than 1.0 or less than —1.0. The answer, using Appendix C,
is I - (2)(.3413) = .3174,

The second fact linking the distributions is that a ¢ with an infinite number
of degrees of freedom equals Z. This holds because if ¢ has an infinite number
of degrees of freedom its denominator becomes o, and so ¢ becomes Z.

The third fact is that a ¢ with ¢ degrees of freedom when squared equals an
F with one degree of freedom on the numerator and g on the denominator.
This fact is not so obvious. If a t2

X -
s*in
is examined, both the numerator and the denominator estimate o%/n, and so
both are estimates of the same population variance.

The final fact is that an ¥ with ¢ and infinite degrees of freedom is identical
to a x? distribution with g degrees of freedom which is divided by g. This is
due the fact that F equals the ratio of two x*’s divided by their degrees of
freedom, and so

XCfidfy
X z(dfd)/ dfz

A x?/df with an infinite degrees of freedom equals one. Substituting this fact
into the denominator of the above equation, the result is

x*df,)
dfy

These facts are summarized in Table 11.3.

Fldf, dfa) =

F(df,, ») =

Equivalences Between the Four Major Sampling Distributions

x') =272
Z = f{x)
Hg? = F(1, q)
F(g, ®) = x*q)q
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Every statistic has a sampling distribution. There are four major sampling
distributions. Many statistics” sampling distributions exactly or nearly exactly
correspond to one of the four distributions. They are Z, ¢, x?, and F.

The Z or standard normal distribution is a normal distribution with a mean
of zero and a variance of one. If the observations have a normal distribution,
the sampling distribution of the sample mean also has a normal distribution.
The standard deviation of the sampling distribution of the mean is the standard
deviation of the observations divided by the square root of the sample size.

The t distribution is identical to Z, but the denominator is the sample
standard deviation and not the population standard deviation. The ¢ distribu-
tion looks like Z but it is less peaked and has fatter tails. Like Z, f has a mean
of zero and is symmetrically distributed.

The x? distribution with & degrees of freedom is a positively skewed
distribution with a mean of % and a variance of 2k. A y? statistic can be
viewed as the sum of k independent Z? values. The value k is called the
degrees of freedom.

The F distribution is the ratio of two independently computed variances
drawn from the same normally distributed population. Like x?2, F is positively
skewed with a lower limit of zero. The peak in the F distribution is near one.

These sampling distributions of Z, 2, x2, and F are routinely used in testing
statistical models. It is this topic of testing models that is presented in the next
chapter.

1. Let X be a normally distributed variable with a mean of 40 and a standard
deviation of 9. What is the distribution of the following statistics?

a. X b. §
e (X - wis  d. (X-pPe?

2. If X is a variable with a mean of 20 and a variance of 49, determine the
standard error of the mean for sample sizes of

a. 100 b. 10 c. 1000 d. 50

3. If Y has a mean of 80 and a variance of 64, what would » have to be for
the standard error of the mean to be 1.007

4. Describe the distribution of the sample mean with 2 sample size of 49 if
the numbers are drawn from a normal distribution with a mean of 10.0
and a variance of 64.
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. If X is normally distributed with a mean of 20 and a variance of 100,
determine the probability that X is greater than 22 if

an=25 b =5 cn=100 d n=200
. Using the Z distribution determine the following probabilities.
a. xHD > 144 b x> 4.00 ¢ ) > 1.00

7. Compute the standard error of the mean for the following cases.

a. o2 =100, p =50, n=125
b.o*=9%, u=0,n=16

c. 72 =25, n=-5n=64
d. o2 =81, u=4,n=100

. Using the facts in Table 11.3, show that 3(09)2 = xX1).

. Describe how y? and F are similar and different in their shape. Consider
the following.

a. skew b. central tendency
¢. upper and lower limit d. variability



Testing a Model

How many times have you wished for one more hour to study for a midterm
exam to increase your chances of getting an A? All you needed was that one
extra hour of study. But does one more hour of study really make that much of
a difference?

To address this question, a teacher could instruct students to come to a
two-hour midterm examination with their notes and study materials. Then half
the students would be given an opportunity to study and the other half would
engage in some irrelevant activity such as watching soap operas. After an
hour they would all take the midterm. The teacher would then sece whether
those who had the extra hour of study did better on the midterm than those
who did not have the extra time. The teacher would know if one hour of study
makes a difference, or more accurately, how much of a difference.

‘What was just described is a research study. Research can be used to help
answer important questions such as the following.

Does divorce affect children’s social development?

Does psychotherapy improve one’s mental health?

Does television violence make children more aggressive?

Does bilingual education retard or accelerate the performance of children
in schools?

B =

Research is more than “men in tweed suits, cutting up frogs, paid for by huge
government grants” (Woody Allen, in the movie Sleeper). Research helps us
in understanding the world around us. Research in the behavioral and social
sciences often involves testing statistical models.

What Is a Model?

A statistical model is a formal representation of a set of relationships between
variables. Statistical models contain an outcome variable that is the focus of
study. In studies of weight change, the ontcome is weight change; in studies

1584
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of psychotherapy, it is adjustment; in studies of education, one often-studied
outcome is reading skill. In research, the outcome of interest is called the
dependent variable. A dependent variable is what is supposed to change in
response to changing events. In statistical models, it is written on the left-
hand side of the equal sign.

The variable that brings about changes in the dependent vartable is called
the independent variable. Examples of independent variables are type of
psychotherapy, drug dosage, and age. The dependent variable is assumed to
be some function of the independent variable. How the independent variable
“affects the dependent variable is represented on the right-hand side of the
equation.

"Sometimes the designation between independent and dependent variable
depends on the variables under stndy and the rescarcher’s theoretical orienta-
tion. For instance, researchers study the relationship between self-esteem and
academic performance. Some designate self-esteem as the independent vari-
able and academic performance as the dependent variable. Others reverse the
designations.

Other variables that cause the dependent variable to vary besides the
independent variable are represented by the residual variable. The residuat
variable represents the degree to which the researcher is ignorant about what
causes the dependent variable. The residual variable is sometimes referred to
as error Or noise.

In simple equation form the model is

effect of the .
dependent _ | residual
. = independent + =
variable . variable
variable

By far the vast majority of models in the social and behavioral sciences take
on this general form. The only major difference is that most models have
more than one independent variable on the right-hand side, but the basic
specification of the model remains the same,

In this model the independent variable and the residual variable are added
together to cause the dependent variable. This is not the -only way that the
independent and the residual variable could combine, For instance, they could
muitiply. However, an additive formulation is by far the simplest and most
common formulation. Most.of the standard statistical models assume that the
effect of the independent variable and the residual variable add together.

Instead of expressing the model as an equation, the model could be just as
easily specified by a diagram; arrows could be drawn from cause to effect, as
follows:

independent dependent residual
variable variable variable

A representation of a model that uses arrows is called a path diagram.
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To better understand a statistical model, consider the following example. A
researcher, investigating the effect of owning a personal computer on grade-
point average, made arrangements to give a personal computer to each of 30
students. Another 30 students served as a comparison group and they did not
receive computers. One year later, the researcher measured the grade-point
averages of the two groups. The independent variable is owning or not
owning a personal compuier, and the dependent variable is grade-point
average. The residual variable represents any other causes of grade-point
average besides owning a personal computer. The residual variable is the way
of accounting for the fact that all students with compﬁters (or without comput-
ers) do not have the same grade-point average.

Statistical models are a bit more complicated than the independent variable
and the residual variable causing the dependent variable. In most models a
constant is added to every petson’s score. In equation form,

dependent effect of the residual
pe = constant + independent + .
variable variable variable

In many models the constant term corresponds to the population mean of the

dependent variable.

The residual term is a necessary part of a statistical model. It is also called
the disturbance, error, or noise. The mean of the residual variable is set to
zero. This is not a mathematical necessity but is merely a convention. Also, it
is very often assumed that the residual variable has a normal distribution with
a given variance. It should be noted that it is the residual and not the
dependent variable that is assumed to have a normal distribution. Also, it is
commonly assnmed that the variance of the residual does not vary as a
function of the independent variable. Many of the assumptions of the model
refer to the residual variable. In sum, the residual is a normally distributed
variable with a zere mean.

. Model Comparison

In this chapter the logic of model testing is presented. It is first illustrated for
one type of model and then the general procedure is discussed. A very simple
model is one in which the dependent variable equals a constant plus the
residual variable. '

dependent residual

: = constant + R
variable variable

It is this model that will be considered in this chapter. There is no independent
variable effect in the model. This model will be called the complete model
because later an even simpler version of the model is considered. The model
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has two parameters: the constant and the standard deviation of the residual
variable. The constant in this model is the population mean of the dependent
variable, and the standard deviation of the residual variable is the standard
deviation of the dependent variable.

In models, a parameter can be fixed or free. I the parameter is free, it must
be estimated from the data. If it is fixed, then the researcher sets the parameter
to some a priori value. In this chapter, the constant is set to some a priori
value, as in the following examples.

1. Eighty-seven persons are asked to leam pairs of words like “cat-package.”
They are then presented the word “cat™ and are asked to recall whether the
other word was “package” or “glass.” Because there were two alternatives
for each word pair, the probability of being correct is .5. There are ten
such trials, and if subjects were only guessing, they would be expected to
be correct on five of the ten trials. The dependent variable is the number
correct out of ten and the a priori constant is 5.0.

2. Twenty persons aged 50 were asked at what age they would ideally prefer
to retire. The researcher sought to compare the preferred age of retirement
of persons to the standard retirement age of 65. The dependent variable is
preferred retirement age and the a priori constant is 65.0.

3. Robinson and Hastie {1985) had 40 undergraduates read a mystery story
“The Poisoned Philanthropist,” in which there are five suspects. The
subject had to estimate the probability that any given suspect was guilty.
For each subject the five probabilities are summed. The dependent vari-
able is total probability and the a priori constant is 1.00. (The mean
probability of the subjects was over 2.00.)

4. In an extrasensory perception study, twelve proclaimed psychics were
asked to guess whether a head or a tail results when a coin is flipped. The
coin was flipped 30 times. By chance, each psychic would be correct 15
times. The dependent variable is the number of correct judgments and the
a priori constant is 15.0.

When the constant is fixed and not free, the researcher is specifying a
simple and restricted version of the model:

d .
epc.ndent = constant + reS{dual
variable variable

This model is restricted in that the constant is not free to take on any value but
instead is fixed or set to some a prior value. A model in which a parameter of
the complete model is fixed is called the restricted model. In the restricted
model under consideration, the constant parameter is fixed or restricied to
some a priori value. The hypothesis of interest is whether the parameter
equals the value to which it is restricted. This hypothesis is referred to as the
null hypothesis. The null hypothesis is the constraint on the complete model
that is present in the restricted model. (It is common to symbolize the null
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hypothesis as Hg.) For instance, for the model that the psychics are guessing,
the null hypothesis is that the constant equals 15.0. Although in testing the
restricted model the interest is primarily the null hypothesis, it is not uniquely
tested. Rather, the plausibility of a model, of which the nuil hypothesis is a
part, is evaluated. The alternative hypothesis is the hypothesis that is true if
the null hypothesis is false. (It is common to symbolize the alternative
hypothesis as H,4.) It states that the constant is free to take on any value. So,
for the psychic example, the alternative hypothesis is that the constant does
not equal 15.0.

Model testing is always model comparison. The restricted mode] is com-
pared to the complete model. The restricted model is a simpler model which is
identical to the complete model except that one of the parameters in the
restricted model is fixed to some value. If the restricted model is not con-
tradicted by the data, then the restricted model is retained for reasons of
simplicity, and the more complicated complete model is not considered.
However, if the restricted model is contradicted by the data, the restricted
model is rejected, and the more complicated complete model must be
adopted.

To illustrate the difference between the complete and restricted models,
consider the three presented in Table 12.1. Model I is the simplest of the
three. In it, the dependent variable is not caused by any independent varizble.
In Model II the dependent variable is caused by variable A, and in Mode! Il it
is caused by both variables A and B. Considering I1I as the complete model, I
would be a restricted model for III. The restriction present in Model I1 is that

Iustration of Complete and Restricted Models

Model 1
dependent .
variable = constant + residual
Model II
fF:
dependent constant + inze;;gﬂt + residual
variable variable A
Model I1
dependent effect of effect of
vgriable = constant + independent 4+ independent 4+ residual

variable A variable B
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independent variable B does not cause the dependent variable. Constdering H
as the complete model and 1 as the restricted model, the restriction present in
Model I is that variable A has no effect. So, Model I can be considered either
as a complete or restricted model: If II is compared to I, it is a restricted
model; if compared to I, it is a complete model.

Consider the hypothetical data in Table 12.2 from the experiment with
twe]ve psychics. A coin was flipped 30 times and each time each “psychic”
guessed whether it came up heads or tails. Because there are two sides to a
coin, pure guessing would lead to accuracy on 15 trials (or 1/2 times 30). So,
if there were a large number of supposed psychics who were only guessing,
they would on the average be correct on 15 out of 30 trials. But there is not a
large number-—only twelve. The guestion is whether the numbers in Table
12.2 are compatible with the view that the psychics are fakers who are just
guessing. The mean of the twelve numbers is 16.0 and the standard deviation
is 2.04.

Although the psychics did not do a stunning job at the task, their results
seem to be better than chance. Only one had an exactly chance performance of
15. Of the remaining eleven, there were eight who did better than chance and
only three who did worse than chance. The mean of the twelve is 16.0, a full
one “guess” better than chance. The conclusion might be drawn that the
psychics did better than chance.

However, if they were merely guessing, then about half the time they
would appear to do better than chance and about half the time they would
appear to do worse than chance. Even if it is believed that the twelve were just
guessing, it is totally unrealistic to expect each psychic to be correct exactly
15 out of 30 trials or even for the sample mean of the twelve psychics to be
exactly 15. Just because the sample mean is greater than the chance value of
15.0 does not necessarily refute the view that the supposed psychics were just
guessing. Sampling error is to be expected, and so it would be expected that
they would score better than chance about half the time. At issue is whether
the value of 16.0 obtained by the psychics is within the limits of reasonable
sampling error.

In the restricted model, the constant is set at 15.0. The restricted model
presumes that the psychics are guessing. In the complete model the constant
may be any value, and so it is compatible with the view that the psychics are
not guessing.

I the restricted model were true (that psychics are guessing), then the

Guesses of Twelve Psychics (Hypothetical Data)

15 17 19 13
16 16 I8 16
19 14 i3 i6
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sample mean of the number of correct guesses should be near 15.0. It happens
that this particular sample mean is 16.0, one unit greater than the a priori
value of 15.0. At issue is whether 16.0 is near enough to 15.0 to be explained
by sampling error. The standard deviation of the guesses can be used to gange
how near 15.0 the sample mean should be. Assuming that the psychics were
guessing, the smaller the standard deviation, the nearer the sample mean
should be to 15.0. Also as the sample size gets larger, the sample mean should
be nearer to 15.0. So, as the standard deviation gets smaller and the sample
size larger, the sample mean should approach its a priori value.

Both the standard deviation and the sample size are in the formuia for the
standard error of the sample mean minus an a priori constant. As is presented
in the previous chapter, the standard error of the mean minus a constant equals
the standard deviation of the observations divided by the square root of the
sample size. The difference between the sample mean and the a priori mean
can be divided by its standard error to obtain

X-M

siVn
where X is the sample mean, M the a priort mean, » the sample size, and s the
standard deviation of the observations. This valpe normalizes the difference
between the sample mean and the presumed population mean to take into
account sample size and variability.

For the psychic example, X is 16.0, M is 15.0, nis 12, and s is 2.04. The
sample mean minus its a priori value divided by its standard error is as
follows:

16.0 - 15.0
2.04VvV12

Thus, the sample mean is 1.698 standard errors above the mean. The question
now is just how unlikely is this type of outcome. If X was ten standard errors
above or below the a priori constant, it would be known almost for certain that
the psychics were not guessing because it is virtually impossible to obtain a
value ten standard errors above the mean. Alternatively, if it were only one
standard error or less above the mean, it is still plausible to believe that they
are guessing. But the value of 1.698 standard error above the mean for the
psychic example is ambiguocus. The “psychics” did better than chance, but it
is not clear whether their success might have been due to sampling error.

= 1.698

The Test Statistic and Its Sampling
Distribution

The quantity (J_( - M)/(s/\/E) is called the test statistic. Of prime concemn is
how unusual is a test statistic of 1.698. To determine exactly how unlikely a
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value like 1.698 is, the distribution of the quantity (3(" - M)/(sf\/;z-) must be
known, The quantity (X — M)/ (s/V n) is computed from sample data and so it
is a statistic. As described in Chapter 9, the distribution of a statistic is called
a sampling distribution. Given the restricted model, if the residual variable is
normally and independently distributed, then (X — M).’(s/\/;) has a r distribu-
tion with n — 1 degrees of freedom. Figure 12.1 shows the theoretical f

- distribution for eleven degrees of freedom.

As can be seen in Figure 12.1, the ¢ distribution is a symmetric unimodal
distribution whose mean is zero. Its variance depends on its degrees of
freedom and is always greater than one for finite degrees of freedom. As the
degrees of freedom increase, the variance of  approaches one. Consequently,
the tails of the ¢ distribution are a bit fatter than the standard normal or Z
distribution. The number of degrees of freedom for ¢in this case isn~ 1. A s
value may be denoted by #(df) where df stands for degrees of freedom. So for
the psychic example, the df are twelve minus one, or eleven.

Because £ is a continuous distribution, the probability that £{11) exactly
equals any particular value, such as 1.698, is zero. What is needed is not the
probability that ¢ is 1.698 but rather the probability of obtaining a value of
1.698 or greater. At issue is the probability of obtaining a valuc at least as
large as the test statistic.

There are two ways the restricted model could be wrong. The population
mean could be larger than the a priori value or it could be smaller. For the
psychic example, they could do better than chance (better than 15), which
they did, or they could have performed worse than chance (worse than 15). So
if the null hypothesis is wrong, there are two directions or sides that it could
be wrong.

If the null hypothesis is false, either the psychics could do better than
chance or worse than chance. Only one of the two may be plausible. For the
particular example, it does not seem very reasonable that the psychics could

The ¢ distribution with 11 degrees of freedom.
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be operating at a level worse than chance. However, if such a result did occur,
it should be considered as unusual. So even though there is little reason to
expect the psychics to do worse than chance, it remains a possibility, and both
alternative hypotheses need to be considered: that (X - M)(s/Vn) is very
positive or very negative. For the psychic example the probability of obtain-
ing a value greater than 1.698 or less than —1.698 must be determined.

If the restricted model were clearly false, the value of (X - MY(s/V'n)
would tend to be either very positive or very negative. From Figure 12.1 it can
be seen that if the restricted model were false, the value of r would fall m
either tail of the t distribution. It is for this reason the test is called rwo-tailed.
Although it is not recommended, a researcher might wish to consider only one
direction or tail. For instance, only the probability that (X — M)/(s/ \/r_z) is
greater than 1.698. Such a test is called a one-tailed tes:. A one-tailed test is
not recommended because if the value of the test statistic is quite unusuval but
in the wrong direction, most researchers would still consider it significant.
Also, almost all computer programs output two-tailed p values.

B As has been stated, wnder the restricted model, the test statistic
X - M)/(s/\/;) has a ¢ distribution with n — 1 or eleven degrees of freedom.
Using the ¢ distribution it can be determined how likely a value greater than
1.698 or less than —1.698 actually is. Such a value would occur by chance
about 12% of the time or about one out of eight times. It must now be decided
whether 12% of the time is sufficiently unusual to reject the restricted model.

Significance Level and p Value

Researchers who test statistical models have established a fairly standard,
though arbitrary, criterion for judging how unusual a result must be to reject
the restricted model. They have, by informal convention, required that the
result and even more extreme results must occur no more than 5% of the time
before the restricted model is rejected. The question now becomes: Given the
restricted model, how often will the absolute value of (X — M)(s/ ‘\/E) be 1.698
or more? If it would occur 50% of the time, the result would not be considered
unusual. But if it only occurs once in 20 times, the result would be unusual.

This 5% criterion is said to be the significance level. 1t is the standard of
proof that is required for the restricted model to be deemed implausible. Other
standards are also used. A common alternative standard is the .01 (or 1%)
significance level. A result is judged to be improbable if it would occur by
chance only once in 100 times. More stringent levels of once in 1000 are
sometimes used, and less stringent rules of once in ten and even once in five
are infrequently used. The choice of the significance level depends on the type
of error that the researcher is more willing to accept. (See later section on
errors in model comparison.)

The significance level is symbolized by the Greek letter alpha («). Con-
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ventionally, alpha is fixed to .05 or once in 20. The usual significance level
used in research is .05. There is nothing magical about .05, just as there is
nothing magical about setting the legal definition of being drunk at 0.1%
blood alcohol. Some cutoff must be set and for various reasons the .05 is the
value taken for alpha. The .05 significance level often means that the test
statistic must be more than twice as large as its standard error to be signifi-
cant.

A p value is the probability of obtaining a value equal to or more extreme
than the test statistic. The p value for the psychic experiment is .12. If the p
value is less than or equal to the significance level, then the null hypothesis is
rejected and the test statistic is said to be statistically significant. If the p value
is greater than the significance level, the null hypothesis is retained and the
test statistic is said to be statistically insignificant. For the psychic example,
because .12 is greater than .05, the null hypothesis is retained.

The significance Ievel is usually set at .05. How is the p value determined?
Computer packages routinely calculate the p value of the test statistic. With-
out a computer, one can use Appendix D to determine the approximate p
value of a test statistic distributed as ¢,

To use Appendix D, one first determines the degrees of freedom of the ¢
statistic. For this model the degrees of freedom equal the sample size less one.
or n — 1. One locates in the first column in Appendix D the degrees of
freedom, n — 1. If the exact value for degrees of freedom is not in the first
cohimn, one uses the closest value that is smaller than the actual degrees of
freedom. One *rounds down” to the nearest value. For instance, 105 is not in
the table and so 100 would be used. One then reads across the row and finds
the value that is the closest to the test statistic without being larger than the
test statistic. One then reads up the column to determine the approximate p
value. The exact p value is always less than or equal to the approximate p
value. Thus, this method results in a conservative estimate of the p value. The
numbers in the table are called critical values because they are the values that
the test statistic must exceed to be statistically significant.

The 1.698 value for the psychic example does not exceed the .05 level of
significance. The null hypothesis is retained and the 1.698 value is judged to
be not significant. So on the basis of this data set, there is no reason to believe
that the “psychics” have any special powers beyond mere guessing.

If one wishes to consider only one tail of the ¢ distribution {(a one-tailed
test), the sign of the test statistic must match the prediction of the researcher
before it is tested. If it does match, then the p value should be divided in half.
(Note, the p value and not the significance level is divided by two.) For
instance, if it is considered only that the psychics would do better than chance
and not worse, then the test statistic must be positive. Because it is, the p
value would be .06, If X had been less than 15.0 (even a lot less), the
restricted model would be retained. As was stated earlier, one-tailed tests are
not recommended.
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For the quantity x- M).f-(s/\/;) to be distributed as ¢ with r — I degrees of
freedom, it must be assumed that the residual variable has a normal distribu-
tion and that observations are randomly and independently sampled.

Even if the normality assumption is violated moderately, there is only a
slight effect on the p values. Thus, unless the numbers are highly skewed or
bimodal, one need not worry about the normality assumption. The reason for
this is the central limit theorem described in Chapter 10. As sample size
increases, the distribution of X approaches a normal distribution regardless of
the shape of the distribution of the scores used to compute X.

The random and independent sampling assumptions are more important for
testing hypotheses concerning the constant. Random sampling ensures that
persons are representative of the population. The independence assumption
requires that persons do not interact with one another, be observed only once,
and that the person be the sampling unit. ‘

The Summary of the Logic of Model
Comparison

The logic of model testing involves the following steps. First, a model is
specified from theory that contains the parameter of interest. This is the
complete model. A restricted version of the same model is constructed with
some reasonable constraint on the parameter of interest. The constraint is
called the null hypothesis, and the model with the constraint is called the
restricted model. :

The model describes the behavior in the population. Sample data are
gathered from the population. The researcher computes a statistic from the
sample data. The statistic, called the fest statistic, has a distribution such as Z,
t, x°, or F if the restricted model is true. Given the distribution, the probabil-
ity of obtaining a value as or more extreme than the test statistic can be
determined. This probability is called the p value. The p value can be exactly
computed by using a computer program or it can be approximated by using
tables. If the p value is less than the significance level, which is usually set
at .05, the null hypothesis is rejected and the test statistic is said to be
statistically significant, If the p value is greater than the significance level, the
restricted model and null hypothesis are retained and the test statistic is said to
be not significant. This information as applied to the test for psychic powers is
summarized in Table 12.3.

Model testing can be viewed as a series of “let’s assume” and, “given all
this” statements. First, let’s assume that the null hypothesis is true. Second,
let’s assume a restricted mode] which contains the null hypothesis is true.
Third, from the data a number called the test statistic is computed. Fourth,
given all this, the test statistic has a sampling distribution. Fifth, given all
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TABLE 12.3  Steps in Model Testing Illysirated for the Test of Psychic Powers in Table 12,2

Complete Model
number + residual
comect . OmStanl * . ariable

Restricted Model

number residual

comrect 150 + variable
Null Hypothesis Alternative Hypothesis
constant = 15.0 constant # 15.0

Test Statistic
- 1) = X-M
siVn
16.0 - 15.0
2042

(11 = 1.698

p Value
exact .12
approximate .20

this, if the test statistic’s p value is less than or equal to the significance level
(usually set at .05), the null hypothesis is rejected. The complete model is
never directly tested, rather it is the restricted model that is tested. If the
restricted model is judged to be implausible, it is rejected and the complete
model is adopted.

A second example is used to apply these ideas. A researcher in a school
district wants to determine whether the children in the district score above
national norms on a test. The norm on the test is 200. The scores of nine
children randomly and independently sampled are 240, 230, 220, 190, 220,
200, 250, 230, and 190. The complete model is

test score = constant + residual
and the restricted model is
test score = 200 + residual

The mean of the nine scores is 218.8% and the standard deviation is 21.47.
The test statistic is

(8 = 218.89 — 200
21.47V9
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which equals 2.639. Using Appendix D, the test statistic 2.639 yields a p
value of .05. (The exact p value is .030.) Because the p value is less than or
equal to the significance level of .05, the test statistic of 2,639 is statistically
significant at the .05 level. The null hypothesis that the constant equals 200 is
rejected. Because 218.89 is above 200, it is thus concluded that the children
in the district score above the national norm of 200.

For this example, the truth of the assumption of random sampling is
essential in the test of the restricted model. If the students were not randomly
sampled but only the district’s brightest students were studied, the conclusion
that students in the district score above the norm would be unjustified. Also, if
the students shared answers on the test, then the sample data would not be
independent, and thus the conclusion would be unjustified.

Errors in Model Comparison

There are two major types of errors that can be made in the comparison of
statistical models. To understand these errors, four hypothetical yet possible
results of testing a restricted model must be considered. The restricted model
can be actually true or it can be false. For instance, the psychics could be just
guessing or they could be true psychics. Of course, one never knows with
perfect certainty whether any model is valid or not and so some idealized
knowledge is being considered. The results of the statistical analysis can lead
to rejection of the restricted model or its retention. For instance, the psychics
could be operating significantly above chance or they could be operating at
chance levels. Table 12.4 lists these four outcomes.

TABLE 12.4 Four Possible Results of Model Testing

Statistical Analysis

Retain Reject
Restricted Restricted
Reality Model Model
M
Restricted Retain a True Type 1
Model True Model Emror
(alpha)
Restricted Type 1 Reject a False
Mode] False Error Model
{beta)
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For two of the outcomes in Table 12.4, the correct conclusion is drawn. In
the top left-hand cell, the restricted model is correctly retained. For instance,
the psychics are fakers and it is also concluded that their mean is not
significantly above chance. In the bottom right-hand cell, a false restricted
model is comrectly rejected. For instance, the psychics are true psychics and it
is also concluded that their performance is above chance. In both cases the
sample data and the statistical test mirror reality. In the best of all worlds, one
would hope to make the correct decision every time. However, statistical tests
of models do not allow for inferences about the nature of reality with total
certainty. Statistical logic never brings with it certainty; rather, statistical
logic results in only a probability.

There are two types of errors. The first is the error of falsely rejecting a
restricted model that is actually true. This is called a Type I error. For
instance, if the psychics were fakers, it might be falsely concluded that their
performance is above chance. The second error is to retain the restricted
model that is actually false. This is a Type I error. For instance, if the
psychics were true psychics, it might be mistakenly concluded that they are
not performing significantly above chance levels.

The probability of making a Type I error is called alpha and is identical to
the significance level. Alpha is usually set at .05 or one out of 20. The
probability of making a Type Il error is symbolized by beta, 3. Its value is not
set by the researcher like alpha, but rather it is largely determined by the
number of persons in the study. Beta is then smaller if more persons are
studied. The probability of correctly concluding that the restricted model is
false is called power. Power then equals one minus the probability of making
a Type Il error. In Chapters 13 and 16, methods for determining power are
presented.

There are two other important errors in model testing that need to be
considered. One is to draw the incorrect conclusion when the restricted model
is rejected. If the p value of the test statistic is less than or equal to the
significance level, then the null hypothesis is rejected. But what is rejected is
the restricted model and not necessarily the null hypothesis. It can be that
some other aspect of the restricted model is false. For instance, it might be
that the assumption that the residual vartable has a normal distribution is false,
Just because the restricted model is false does not imply that the null hypo-
thesis is false. This error will be referred to as an assumption violation.

Second, when the restricted model is rejected, the null hypothesis is
rejected. Just because the null hypothesis is rejected, it does not mean that the
result necessarily supports the researcher’s theoretical position. For instance,
it may be that the psychics do not perform at chance levels, not because they
do better than chance but because they do worse than chance. If it is
concluded that the psychics did better than chance, an error would be made.
This is an error about the direction in which the null hypothesis is false. This
error will be referred to as choosing the wrong direction, and can be avoided
by careful examination of the data.
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Remainder of tbe Book

TABLE 12.5

So far only the simplest model in which the dependent variable equals the
constant plus the residual variable has been considered. The restricted version
of this model constrains the constant to equal some fixed value determined a
priori. The remainder of the book considers more complex models. These
more complex models are outlined in Table 12.5.

In Chapter 13 a model is presented in which the dependent variable is
caused by an independent variable, and the independent variable is a nominal
variable with only two levels. In Chapter 14 the independent variable is still a
nominal variable, but it may have more than two levels. In Chapter 15 there
are two nominal independent variables that both cause the dependent variable.
In Chapter 16 both the independent variable and the dependent variable are
measured at the interval level. In Chapter 17, both the independent and
dependent variables are not at the interval level of measurement, but rather are
at the nominal level of measurement. Finally, in Chapter 18, the dependent
variable is at the ordinal level of measurement.

When the independent variable is at the nominal level of measurement, it is
possible to have the same persons in all conditions or have different persons.

Taxonomy of Models

Dependent Variable at the Interval Level of Measurement

No independent variable
Test of the constant, Chapter 12

Nominally measured independent variable
One independent variable
Dichotomous: two-sample ¢ test, Chapter 13
Multilevel: one-way analysis of variance, Chapter 14
Two independent variables: two-way analysis of variance, Chapter 15

Intervally measured independent variable
Regression, Chapter 16
Dependent Variable at the Nominal Level of Measurement
No independent variable: chi-squared goodness-of-fit test, Chapter 17
Nominally measured independent variable: chi-squared test of independence,
Chapter 17
Dependent Variable at the Ordinal Level of Measurenient

Nominally measured independent variable
Dichotomous: Mann-Whitney U/ test, Chapter 18
Multilevel: Kruskal-Wallis analysis of variance, Chapter 18

Ordinaily measured independent variable: rank-order coefficient, Chapter 18




Summary

TABLE 12.6
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When different persons are in each group, the design is said to have in-
dependent groups. When the same persons are in each group, the design is
said to have nonindependent groups, nonindependent groups with two groups
are commonly referred to as paired groups; and multiple-group designs in
which groups are nonindependent are called repeated measures designs.

A nonindependent group design can come about even when different
persons are at each level of the independent variabie. Whenever there is some
factor that links together observations across the different conditions, the
design can be considered a nonindependent groups design. So, if persons are
from the same family, litter, or class, the design can be considered a nonin-
dependent groups design.

The statistical procedures presented in Table 12.5 presume that the groups
are independent. In Table 12.6 are the statistical procedures for nonindepend-
ent groups. For each procedure, the independent variable is a nominal vari-
able, Different statistical tests are used for nominal, ordinal, and interval-
dependent variables.

A model is a formal set of relationships between variables. The dependent
variable in the model is the outcome and the independent variable is pre-
sumned to bring about the change in the dependent variable, Most models have
a constant that is added to every score and 2 residual variable that is added to
the consiant. The residual variable represents all other causes of the dependent
variable besides the independent variable.

The model under consideration is called the complete model. In model
testing a restricted version of the model is proposed that is identical to the

Statistical Procedures for Nonindependent Groups

Intervally Measured Dependent Variable
Dichotomous independent variable: paired t-test, Chapter 13
Multilevel independent variable: repeated-measures analysis of variance,
Chapter 15
Nominally Measured Dependent Variable

McNemar test, Chapter 17

Ordinally Measured Dependent Variable

Dichotomous independent variable: sign test, Chapter 18
Multilevel independent variable: Friedman two-way analysis of variance,
Chapter 18
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complete model, except that there is one constraint on one parameter of the
complete model. This constraint is referred to as the null hypothesis.

In this chapter the complete model assumes that the dependent variable is
equal to a constant plus the residual variable. In the restricted model the
constant is fixed or set to some a priori value. If the restricted model were
true, then the sample mean should differ from the a priori value within the
limits of sampling error. Given the restricted model and the assumptions of
random sampling, independence, and normality, the following quantity is
distributed as r with n — 1 degrees of freedom.

X-M
siVn

where X is the sample mean, M the a priori constant, s the sample standard
deviation, and n the sample size. The quantity (X — M)/(s/\/7) is called the
test statistic.

The probability of obtaining a value as or more extreme than the test
statistic is called the p value. If the p value is less than or equal to the
significance level, then it is concluded that the null hypothesis is false and the
test statistic is said to be statistically significant, If the p value is greater than
the significance level, the null hypothesis is retained and the test statistic is
said to be not statistically significant. The standard significance level is .05.

There are two major errors in model testing. A Type I error is rejecting the
restricted model when, in fact, it is true. A Type Il error is a failure to reject
the restricted model when it is not ttue. The probability of making 2 Type I
error is denoted as alpha and is set by the significance level. The probability
of making a Type II error is denoted as befa and is determined by the sample
size and other factors. Two othc;r errors are (a) rejecting the restricted model
not because the null hypothesis is false but becanse the assumptions are false,
and (b) interpreting that the null hypothesis is false in the wrong direction.

1. For the following degrees of freedomn, find the critical value for the
following significance levels for the ¢ distribution.

df Alpha
a, 12 .01
b. 23 .05
c. 76 .001
d. 209 02
e. 17 10
f. 48 03
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. For the following ¢ values and degrees of freedom determine the p value.

a. #(24) = —1.583  b. £78) = 1.990  c. #24) = 3.145
d. #19) = -3.117  e. #28) = 2.963  f. {77) = 1.942

A prison official wishes to determine whether the inmates in a prison
score above a national norm on a personality test. The scores of nine
randomly chosen inmates are

15, 18, 23, 41, 19, 25, 31, 43, 51
The norm js 25. Are prisoners above the norm?

In a memory experiment, guessing would lead to a score of 10. The
scores of six subjects are

9, 15, 12, 17, 13, 10
Is it reasonable to assume that subjects are guessing at this task?

What value would (}-E' -~ M)."(s/'\/ﬁ) have to equal or exceed (ignoring
sign) to be significant at the .05 significance level for the following
degrees of freedom?

a. 15 b. 59 ¢ 25 d. 190

Explain the difference between a Type I and a Type Il error.

Test the null hypothesis that the population means equals 50.
63, 51, 43, 55, 60, 36, 40, 57, 54

Eight married couples were asked what proportion of the housework each
did. The proportions were summed for both members. Test a restricted
model that the constant is 100.

109, 121, 98, 95, 105, 112, 123, 134

For the following two models, which is the restricted and which is the
complete model?

effect of the .
dependent X residual
. = constant + independent + .
variable , variable

variable
dependent residual
P = constant + .
variable variable

What is the restriction in the restricted model?

Imagine a psychologist who is interested in subliminal perception. Stimu-

li, either an A or B, are flashed on a tachistoscope. The subject responds
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11.

12,

by saying whether an A or B was flashed. Each subject is presented with
I5 trials. The number correct for ten subjects are

10, 15, 12, 6, 11, 9, 8, 12, 14, 8

a. Determine the constant if subjects were puessing.
b. Test the restricted mode} that subjects are only guessing in this task.

Fifteen different groups of subjects were asked to estimate the population
of Phoenix, Arizona, in units of 100 thousands, The estimates are as
follows:

9 g 12 10 8
6 9 6 9 6
i1 11 7 7 5

The correct answer is 8 (hundred thousand). Do groups on this task tend
to significantly over- or underestimate the population of Phoenix?

A company advertises that its cars get 30 miles per gallon gas mileage.
An inquiring car dealer measures the miles per gallon of 20 cars. She
obtains the following:

30, 25, 28, 30, 27, 34, 41, 25, 28, 30,
28, 35, 31, 34, 32, 31, 26, 31, 24, 32

What should she conclude about the manufacturer’s claim?




Model

The Two-Group
Design

The prototypical research study is the two-group design. Persons are in one of
two groups. For example, one group receives an experimental treatment and
another group serves as a control group. Examples of treatments are a new
drug to cure cancer, an instroctional program for disadvantaged children, a
procedure to change attitudes, a pain relief strategy for childbirth, and an
exercise program. The control group is a group of persons who are assumed
to be identical to those in the treatment group except that individuals in the
control group do not receive the treatment,

In this chapter a model for the analysis of the two-group design is pre-
sented. Also discussed are the design considerations concerning the assign-
ment of persons to treatment groups and the formation of the two groups.
Measures of the differences between the two groups are presented and statis-
tical power considerations are discussed.

The model for the two-group design is fairly simple, The model is

effect of the .
dependent : residual
. = constant + independent + _ .
variable variable

variable

The restricted model is identical to the above model except that the in-
dependent variable has no effect on the dependent variable. Hence

dependent residual
. = constant + .
variable variable

The restricted model in this chapter is identical to the complete model
discussed in the previous chapter.

203
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Consider the terms in the complete model. The dependent variable is what
changés or varies. It is the outcome that the treatment variable is designed to
alter. The constant is the average score of persons in both groups. (The test of
the constant was extensively discussed in Chapter 12.) The independent
variable is a nominal varizble with two levels—that is, a dichotomy. For
instance, one level is the treatment group and the other is the control group.
The independent variable is the variable that causes the dependent variable to
change or vary. The residual variable represents variation in the dependent.
variable that is not explained by the independent variable. The residual
variable is forced to have a mean of zero.

As an example, consider an experiment in which a researcher randomly
assigns ten infants to one of two groups. All infants spend 20 minutes with a
stranger. Then the infants are put into a situation with a number of fear-
arousing stimuli. For five of the ten infants the stranger is present (present
condition), and for the other five the stranger is absent (absent condition). The
researcher measures the number of fear responses of the ten infants.

Present Absent
6 12
4 6
3 8
7 10
4 7

The means are 4.8 for present and 8.6 for absent.

The central question with the two-group design is whether the independent
variable affects the dependent variable. If the independent variable did not
affect the dependent variable, as in the restricted model, then the population
means for the two groups are equal. Because of sampling error, the two
sample means are not exactly equal even if the restricted model is true. For the
example it is not known whether the difference between the means of 4.8 and
8.6 can be explained by sampling error.

The two groups will be designated 1 and 2. The sample means will be
designated X, and X, with sample sizes of r; and n,, respectively. At issue is
the amount of sampling error in the quantity X; — X, given that the population
means are equal.

In Chapter 9 the idea that statistics vary was presented. The standard
deviation of a statistic is called the standard error. As shown in Chapter 11,
the standard error of the difference between two means randomly and in-
dependently sampled from the same population is

111 1
o\f[— + —
n %)

where ¢ is the population standard deviation of the observations and #, and #,
are the sample sizes of the two sample means.
To estimate the standard error of the difference between two means an
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estimate of o is needed. In terms of the model, & is the population standard
deviation of the residual variable in the restricted model. The variance of the
residual variable can be estimated by computing the vanance of scores within
each of the groups. Thus the variance is computed for each of the two groups.
These variances are denoted as 5,2 and s5,°. Both of these are unbiased
estimates of o2, the variance of the residual variable. Some way is needed to
average or pool these variances to produce the most efficient estimate of the
variance. When averaging variances the most efficient way to do so is to
weight each variance by its depominator, n — 1. That is, weighting by n — 1
results in an estimate with the smallest standard error. The most efficient
estimate of o2 is called sz, given as-follows:

2 _ - s + (ny — Dsy?
F o+ -2

For the example, the variance for the present group is 2.7 and the variance
for the absent group is 5.8. The pooled variance or s, is
@ET + (4)5.8) _
54+5-2

4.25

Now that there is an estimate of 2, the standard error of the difference
between two means sampled from the same population can be estimated. That

‘estimate is
(m=Dsi® tm- s [1 1
m ot -2 ny Ay

This formula states how variable the difference between means would be if
the two sets of observations were drawn from the same population. Such an
assumption is made in the restricted model. So to evaluate whether the
independent variable causes the dependent variable (the complete model}, a
model in which the independent variable has no effect is tested. Given this
restricted model, the population means of the two groups are equal. To test
the restricted model and the null hypothesis of equal population means, the
difference between sample means is compared to its standard error. For the
example the standard error of the difference between two means is

4.25 = 1.304

1
_+ —
5 5

The difference between the means is 4.8 — 8.6 = -3.8, and its standard error
is 1.304. Their ratio is -3.8/1.304 = -2.914,
If it were known how the gquantity

X - X

1 + i
Ry — —
£ ny Az
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was distributed, it could be more precisely estimated how unusual the differ-
ence between the means is relative to its standard error. For the example, the
question is how unusual is —2.914, the mean difference divided by its standard
error. It happens that
X -X
1 1

Ky
? n L3

has a ¢ distribution with n, + n, — 2 degrees of freedom, given a series of
assumptions that are disenssed in the following section.

As discussed in the previous two chapters, the ¢ distribution closely
resembles the Z or standard normal distribution except that it is less peaked
and has fatter tails. The tails are fatter because the denominator of ¢ is the
statistic s, whereas the denominator of Z is the parameter o. How fat the tails
of + are depends on how precise the estimate of the variance is, and that
precision depends on the degrees of freedom. There is then a family of r
distributions, which vary by their degrees of freedom.

For the two-group study, the degrees of freedom are ny + #n, — 2. Because
ny 4 n equals the number of persons in the study, the degrees of freedom are
the total number of persons in the study less two. It is less two because the
means for the two groups are estimated.

In the two-group study, to test the restricted model that the independent
variable has no effect on the dependent variable, the test statistic is computed

X - X,

.1
% " L)

The test statistic is then compared to the critical values, ignoring sign, in
Appendix D for the appropriate degrees of freedom. As is explained in the
previous chapter, if the exact degrees of freedom are not in the table, one
rounds down to the nearest value and then determines whether the test
statistic, ignoring sign, is larger than any critical value for the degrees of
freedom. I it is, the null hypothesis of equal population means is rejected,
and - the test statistic is said to be statistically significant. The p value is
determined by noting the largest value in the table that the test statistic
exceeds. The p level is given by the column heading. If the test statistic,
ignoring sign, is smaller than all values in the table, then the difference
between means is not statistically significant and the null hypothesis of equal
population means is refained.

For the example, the df are eight, and a —2.914 value is statistically
significant at the .02 level of significance. If a computer is used to compute
the test statistic, the exact p value is .0195. The null hypothesis of equal
means is rejected.
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What has just been described is a two-tailed test. The null hypothesis is
rejected if 1 is cither very positive or very negative. Instead, the researcher
may wish to perform a one-tailed test, which requires that he or she specify a
priori which mean should be larger. For the example, theory might say that
fear responses should be lower when a familiar adult is present. If the sample
means confirm the prediction, one proceeds as in a two-tatled test, but the p
value is cut in half. As was explained in Chapter 12, one-tailed tests are not
recommended because the researcher would probably still believe the result
was statistically significant even if the result were not in the predicted
direction. For instance, it could have happened that fear responses increased
when the stranger was present.

Assumptions

There are three major assumptions for the two-group ¢ test, all of which refer
to the residual variable:

1. normal distribution,
2. homogeneous variance, and
3. independence of observations.

The score on the residual variable for a given person is estimated by taking
each perscn’s score and subtracting the group mean.

Normality
The residual term must have a normal distribution for
X - X
1 I
o\ + ™

to have a ¢ distribution under the restricted model. To test this assumption a
histogram is constructed for the set of observations minus the group mean and
determine whether their shape is normal. (The normality assumption refers to
residual variable and not to the dependent variable itself.} If the distribution is
skewed, then the one-stretch transformations discussed in Chapter 5 should be
considered; or if it is bounded on both sides, a two-stretch transformations
may be needed. When any transformation of the dependent variable is con-
templated, it must be determined whether transformation will render the
dependent variable uninterpretable.

In practice, the normality assumption is not usually examined. With small
sample sizes, it is difficult to detect that the distribution is nonnormal. With
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large samples, the effect of nonnormality does not disturb the ¢ test very
much. The reason for this is the central limit theorem: As the sample size
increases, the distribution of X becomes more normal even though the dis-
tribution of the scores may not be normal, Given the central limit theorem, it
is also true that the distribution of X; - X, approaches normality as #, and n,
increase.

Equal Variances

The two-sample 7 test requires a pooling or an averaging of the two-sample
variances, 5;° and s5,°. The equal variance assumption requires that the
population variances of both groups are equal to the same value. Although the
means may differ, the variances are assumed not to. A procedure is needed for
determining whether the sample variances are significantly different from one
another, That is, a way is needed to determine whether the sample variances
differ by more than the amount expected given sampling error. It turns out
that the ratio of the two sample variances is distributed as F given the null
hypothesis that their population variances are equal. The F test is presented in
the next chapter.

If the variances differ significantly, there are a number of strategies
available. First, one might consider transformations to promote equal vari-
ances. For instance, if the data are skewed, the one-stretch transformations
described in Chapter 5 may make the variances in the groups more nearly
equal. Second, if n; is nearly equal to n,, the problem can be safely ignored,
because the 7 test is only slightly affected by unequal variances. However, if
the variances and sample sizes are unequal, caution must be exercised in
interpreting p values. It must be determined which group has the larger
variance. The ¢ test results in too many Type I errors if the group with the
larger variance also has the smaller n. The ¢ test results in too few Type 1
errors if the group with the larger variance has the larger n.

Independence

The scores of persons on the residual variable are assumed to be uncorrelated.
Independence requires that if one residual score is positive, the residual score
of any other observation is no more likely to be positive or negative. There are
a number of factors that aid in determining whether the observations are likely
to be independent from each other. They concern {(a} whether repeated
observations are taken from the same person, (b} what the sampling unit is,
and (¢) whether there is social contact between the persons that generate the
observations. Below is a consideration of each of these conditions.

First, whatever it is that generates the data is referred to as a unit. The unit
may be a person, animal, or group of persons. For the two-group ¢ test each
observation must be from a different unit. So each unit, be it a person or nerve
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cell, is measured only once. There must not be repeated measures from the
same unit. For instance, assume that a persan is measured before undergoing
therapy and after and so each person is measured twice. These two observa-
tions are not likely to be independent. Also, if a behavior modification study
1s conducted using the same person, then the same person provides all the data
and the scores are not likely to be independent. There are analysis procedures
for these kinds of data structures, but they are different from the two-group ¢
test. .

Second, independence can be enhanced through the design of the study.
The sampling unit of the study should be the unit that provides the observa-
tion. That is, each unit should enter the study singly. For instance, if married
‘couples were in the study and both members provide data, then the in-
dependence assumption is likely to be violated because a husband is likely to
be more similar to his wife than to somecne clse’s wife. The observations
must not come in pairs as in couples, friends, littermates, or twins. If they do,
other statistical methods must be used.

Third, to achieve independent observations persens in the study must not
influence others’ responses. Once subjects enter the study, they should, if
possible, be kept isolated so that they do not influence each other. They
should not communicate with each other or know any other subject’s response
on the dependent variable. If they do communicate or observe each other,
their observations are likely to be cormrelated because they may imitate or
influence each other.

The effect of nonindependent observations is to bias the estimate of
residual variance and, therefore, the standard error of the difference between
means. Usually, though not always, the direction of bias in the two-group
design is to make the estimate of the standard error too small, which makes
researchers falsely confident that the means are significantly different. Unlike
the normality and equal varfance assumptions, even moderate violation of the
independence assumption has very serious consequences. The failure to meet
the independence assumption invalidates the p values.

One solution to the problem is to design the research so that observations
are independent. If this is not possible, it may be possible to find a different
way of analyzing the data to meet the assumption. There is one case in which
observations are nonindependent, but data can be reanalyzed to meet the
independence assumption. It is the case of paired observations, which is now
discussed.

Paired t Test

Some two-group studies contain observations in which pairs of observations
are linked. Each observation in one group is paired or linked to one other
observation in the other group. Consider some examples:
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1. Twenty-five persons enter a stop-smoking program. The number of
cigarettes smoked before entering the program and six months after com-
pletion of the program are measured. There are two groups of observa-
tions: those before the treatment and at a six-month follow-up. The
observations are paired, that is, each person provides two scores, one in
the pretreatment group and another in the posttreatment group.

2. A researcher is interested in the different ways in which fathers and
mothers treat their infant children. A total of 40 infants are observed,-each
with its father and mother. Again, the observations are paired. Each infant
provides two data points, one in the mother group and one in the father
group.

3. Pairs of rats from the same litter are used in an experiment on learning.
One rat from the litter has an operation that is supposed to facilitate
learning. The other rat does not have the operation. A total of 20 pairs are
studied. Each litter provides two observations, one of which is in the
operation group and the other in the nonoperation group.

These three examples iHustrate the key element of the paired design. Each
observation is linked to one and only one other observation in the other group.
Thus, each of n observations in one treatment group is linked to one of n
observations in a second group. The degree to which the observations are
linked can be measured by a correlation coefficient.

When observations are linked in this way, the independence assumption is
violated because the Hinked observations are Iikely to be correlated. This lack
of independence makes the two-group analysis that has been described in this
chapter no longer valid because normally the r test will yield more Type 1
errors than it should. It happens that the one-group ¢ test described in the
previous chapter can be applied to the paired two-group design.

The key idea is to compute a difference score, always subtracting the
scores in the same way. For example, the pretreatment score is always
subtracted from the posttreatment score. The test that the mean of the differ-
ence score equals zero is equivalent o the hypothesis that the two groups have
the same mean. The use of the one-sample ¢ test with difference scores is
called a paired ¢ test.

In a paired ¢ test, each of the n pairs of scores is differenced. The mean of
the differences, Xp, and the standard deviation of the differences, sp, are
computed. Then, the quantity

Xp
spf \/;

has a ¢ distribution with n — 1 degrees of freedom, given the restricted model.
Recall that n is the number of pairs and not the number of scores. If the ¢ is
statistically significant, the resiricted model that the independent variable has
no cffect on the dependent variable is rejected.
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Computational Formulas

Earlier 5, was defined as the pooled or average variance across the two
groups. Its formula is
(m — 1s* + (nz - 1s3®
Hy + Ry — 2

Given the definition of 5,% the above formula can be rewritten as

3X2 - GX\)iny + 3X% ~ CXo)¥in,

n1+n2—-2

This is the formula generally used to compute 5,2, So for the example, the
formula for s,? is

126 — 24)%5 + 393 — (43)%5

s+5_2 = 4.25
The formula for 1/r; + 1/np can be more simply computed by
A+ m
nny

These computational formulas can be entered into the formula for ¢ result-
ing in the following formula.

X, - X,
m o+ ) XX2 - (3X i + X2 — (3X5)n,
n iy n + Hy— 2

© Ordinarily ¢ is computed to three decimal places.
The computational formula for the paired ¢ test is

Xp

1 IEDZ - (ED)ZI'H
a(n —~ 1)

where D is the difference between linked scores and » the number of linked
SCOTCS.

Effect Size and Power

Even if the restricted model is rejected, it is not known how large the
treatment effect is. Statistical significance cannot be equated with scientific
significance because statistical significance depends on theoretically un-
important factors such as sample size. For instance, consider two studies that
attempt to reduce cigarette smoking. It is possible for the 1 statistic for one
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study to be 8.433, yet the treatment reduces cigarette smoking by two
cigarettes. Whereas in a second study the ¢ statistic could be only 2.108, yet
the program reduces the level of the smoking by 20 cigarettes. This could
happen if the first study has 16,000 subjects, the second only 10 subjects, and
the pooled standard deviation is 15.

Effect Size

The most commonly used measure of how much the treatment affects the
dependent variable is a measure called effect size or Cohen’s d. The quantity d
is defined as

H1 — fa

o

The numerator is the difference between the population means. The de-
nominator is the standard deviation of the residual variable. The size of 4 can
range from negative to positive infinity, but values larger than two are quite
rare. Most values of 4 vary from zero to one.

Cohen’s d is like a Z score in that its denominator is a standard deviation. It
measures how different the means of the two groups are relative to the
standard deviation within groups. Cohen (1977) describes three different
effect sizes. They are

small d = .2
medium & = .5
large d = .8

A small effect is so small that to detect it one needs a statistical analysis.
An example of an effect size of this magnitude is the difference in height
between 15- and 16-year-old girls (Cohen, 1977). A medium effect is one that
is large enough to see without doing statistical analysis. It is reflected by the
difference in height between 14- and 18-year-old girls. A large effect is so
large that statistics are hardly even necessary. It is reflected by the size of the
difference in height between 13- and 18-year-old girls.

To better understand the meaning of the d measure of effect size, imagine
that you are considering which of two movies to see one night. Assume that
you have access to a survey that was done that measured the extent to which
college students enjoyed each of the two movies. If there was sufficient
information in the survey you could measure the d for the two movies. The
value of d would indicate the degree to which one movie was enjoyed by more
college stndents than the other. If d was small, say .2, that would indicate that
if you saw both movies, the probability that you would prefer the one others
found to be enjoyable would be .56. If d was .5, the probability that you
would prefer the more popular movie would be .64 and if d was .8, the
probability would be .71. {The probabilities of .56 for small, .64 for mod-
erate, and .71 for large are determined from the standard normal distribution.)
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In research areas where empirical data are lacking, one must make an
intelligent guess of the value of d in order to estimate power. If previous
studies have been conducted, 4 can be estimated by

X, -X,

Sp

or the mathematically equivalent formunja of

i 1
Al=—+—
13 iz

When the sample sizes are equal (ny = n; = n), d equals

1]2
t\—
n

So for the example, the effect size equals ~2.914V 2/5, or —1.84. If the paired
t test is used, the estimate of d is

where ¢ is the paired z, r the number of pairs, and r the correlation between the
paired scores.

One reason for determining the value of 4 is that 4 must be known to ascertain
the power of the two-sample ¢ test. In the previous chapter, power is defined
as the probability of rejecting the restricted model when it is false. It also
equals one minus the probability of making a Type II error. The power of the
two-group or two-sample ¢ test depends on three factors: the difference
between means, the residual variance, and the sample sizes. The difference
between means can be increased by choosing more extreme treatments.
Instead of comparing one week of psychotherapy versus none, one year could
be compared to none. Although power can be enhanced in this way,
generalizibility may snffer because extreme groups may be atypical of every-
day treatments.

The residual variance can be reduced by choosing to study persons who are
relatively similar. Animal researchers minimize variability by choosing
organisms from the same strain. Variability can also be reduced by carefully
measuring the dependent variable. A third way to reduce the residual variance
is to use a paired design. The residual variance of the paired design is reduced
to the degree that there is a correlation between paired observations. A paired
design tends to have more power than an unpaired design.
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Increasing sample size enbances power in two ways. First, it increases
degrees of freedom of the ¢ test, so the difference between means need not be
as large to be significant. Second, it reduces the standard error of the mean
because 1/ry + 1/n; is part of the formula. If the total sample size s fixed, the
way to minimize the standard error of the mean difference is by having n,
equal to ny.

For a given value of Cohen’s d, a given n, and a given alpha, power can be
determined. In Table 13.1 is the power for the two-sample ¢ test for small,
medinm, and large effect sizes. They are given for the .05 level of signifi-
cance. The # in the table is the sample size in each of the two groups. So, the
total sample size of the study is 2n. The entry in the table is the power
multiplied by 100. So if a researcher contemplates doing a study with 20
persons in each group and the effect size is moderate, from Table 13.1 the
chances of rejecting the. null hypothesis is .33. This means that for every three
times that the experiment is done, the null hypothesis is rejected once.

For a given d, alpha, and level of power desired, the n that is needed for
that power can be determined. These sample sizes are given in Table 13.2.
For instance, if d is .5 with an alpha of .05 and power of .80, a researcher
would need 64 subjects in each of the two conditions.

Adjustments need to be made to d if a paired ¢ test is planned and Tables
13.1 or 13.2 are employed. In this case ihe new &' value is equal to
d/V(1 - r), where r is the degree of correlation between the paired observa-
tions. Also, if the sample sizes are unequal, the » in the tables must be
adjusted. The new #n, denoted n', equals 2nynof(ny + n2).

Design Considerations

TABLE i3.1

Before the results of a two-group expefiment can be interpreted, various
design issues must be considered. Two important questions are, first, the rule

Power Tables for the Two-Sample ¢ Test,” with Alpha = 05 and n =, = m,

Effect Size (Cohen’s d}

n 2 .5 .8
10 7 18 39
20 9 33 69
40 14 60 94
80 24 28 90
100 29 94 99
200 51 99 99

“Taken ifrom Cohen (1977).
NOTE: Entry in the table is the probability of rejecting the null hypothesis times 100 for a given
effect size and sample size.
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TABLE 13.2 Sample Size Required for a Two-Sample ¢ Test® to Achieve a Given Level of
Power for a Given Effect Size and Alpha of .05

Effect Size {Cohen’s d)

Power 2 5 .8
25 84 14 6
.50 193 32 13
60 246 40 16
70 310 50 20
.80 393 64 26
90 526 85 34
95 651 105 42

.99 920 148 58

“Taken from Cohen (}977).
NOTE: Eniry in the table is the sample size for each of the two groups.

by which persons are assigned to groups and, second, the manner in which the
two groups are formed.

There are two basic ways in which persons are assigned to groups. They
can be assigned randomly or on the basis of some variable.

Random assignment requires that each person has the same probability of
being assigned to a given group. Random assignment can be accomplished by
coin flip, dice roll, or a random number table. With random assignroent, each
person has an equal probability of being assigned to a given group. In the
absence of treatment effects, the difference between the means is totally
explained by sampling error. However, if the means differ by a statistically
significant amount, that difference can be atiributed to the independent vari-
able. The advantage of a random assignment rule is that it is known that the
treatment means differ either due to sampling error or due the independent
variable.

A ponrandom rule is one in which persons are assigned to groups on the
basis of some variable. For instance, persons are assigned to a surgical
procedure on the basis of some clinical test. To analyze the design correctly
with a nonrandom assignment rule, that variable must be controlled in anal-
ysis. One way in which this can be accomplished is through multiple regres-
sion, which is described in advanced statistical texts. Most of the time when
assignment is nonrandom, however, it is not known exactly which variable
made the groups different and so it is not known which variable to control in
the analysis. If the variable that determines assignment to levels of the
independent variable cannot be controlled, then when the means differ it is not
known whether the treatment made them different or whether the variable that
assigned persons to groups made the groups different. A random assignment
rule is preferable to a nonrandom rule in order to establish the causal connec-
tion between the independent variable and the dependent variable.
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It is important to distinguish random assigrment from random selection.
Random selection refers to the entry into the study, whereas random assign-
ment refers to the entry into levels of the. independent variable. Random
selection of persons means that the sample is representative of the population
from which it is sampled. Random assignment yields strong causal inference.

The second major design consideration is the formation of the two groups.
There is more than one way to study the effects of the independent variable.,
For instance, consider a study of the effects of jogging: Two groups of
persons would be formed, a jogging group and the other a control (that is, no
jogging) group. There are many ways to form the two groups:

1. Marathon runners are compared to persons who engage in no physical
exercise.

2. Persons who jog ten miles a week are compared to those who swim four
times a week.

3. Rats who run mazes for two hours a day are compared to rats who are
confined to a cage all day.

The advantage of plan 1 is that the maximum effect of jogging could be
estimated, but the disadvantage is that it does not estimate the potential
benefit of jogging to most persons. Plan 2 would test the effect of jogging
over an alternative exercise plan, but it probably would have very low power,
Plan 3 would allow for randomization and exactly measure the effect of
exercise, but it would have dubious generality to humans. No one plan is best
for all purposes, and each has sericus drawbacks. So, when a two-group
experiment is undertaken, its interpretation depends on how subjects are
assigned to levels of the independent variable and how the two groups are
formed.

Illustrations

In this section four different examples are considered. These examples illus-
trate the computation required for the two-group design.

Example 1

One group consists of ten persons in a smoking cessation program, and the
other group contains ten persons who were put on a waiting list. The two
groups were formed randomly. The dependent variable is the npumber of
cigarettes smoked per day two weeks after the program is completed. The
scores of the treatment group are

0, 15, 12, 9, 10, 0, 0, 25, 5, 3

and the control group
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18, 23, 15, 10, 8, 16, 13, 10, 20, 16

The mean for the treatment group is 7.9, and for the control group the mean is
14.9. The pooled variance is
1209 — 79%10 + 2423 — 149%10
10+ 102

= 43.767

The standard error of the difference between means is

1 1
. — + —| = 2.
\/43 767 o1 0] 2.959

The test of no effect of the treatment is

7.9 -14.9
T2959 —2.366

{18) =
which with 18 degrees of freedom is statistically significant at the .05 level of
significance. Thus, the program lowered the level of cigarette smoking to an
extent that cannot be explained by sampling error. Because groups were
formed randomly, the difference can be attributed to the program and not to
any other variable. The value of Cohen’s d, using the formula rV2/n, is
-2.366V2/10 = -1.06.

Example 2

Five persons undergo a drug treatment to reduce blood pressure and five
others receive an inert drug. There are two groups: a drug and a placebo
group. Their changes in blood pressure are

Drug: -15, -17, -14, -6, 4

Placebo: 0, -6, 8, 9, -7
The means are ~9.6 and .8 for the drug and placebo grovps, respectively. The
sums of squared scores are 762 and 230 in the drug and treatment groups,
respectively. The pooled variance is

762 — (—48)%5 + 230 — 4%5
5+5-2

= 66.000

The ¢ test value is

(8) = 96— 8 = 2.0
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The ¢ value of —2.024 is not significant at the .05 level. It is, however,
significant at the .10 level and some researchers refer to this level of signifi-
cance as marginal significance. There is, then, not very compelling evidence
from this study that the drug reduces blood pressure. The effect size equals
-2.024V2/5, which is —1.28, Even though the effect size is —1.28, the sample
size makes the power so Iow that the result is not statistically significant.

Example 3

Of 28 people involved in a study on attitude change, 13 received a message
from a high-status source and 15 from a low-status source. The resulting
attitude changes for the two groups are

' High-status source: 5, 6, 9, 3, 0, 4, 10, 6, 9, 5, 6, 5, 7
Low-status source; -1, 0, 3, -4, -6, -2, -1,0, 3, 6, -3, -2, -1, -2,

A positive change indicates change in the direction consistent with the
message, whereas a negative change indicates the reverse. The means for the
high- and low-status groups are 5.77 and —.60. The sums of the squared
scores for the two groups are 519 and 131. The pooled variance is

519 — 75413 + 131 — (<9)%15

13 + 15 -2 = 8150
The ¢ test value is
5.77 - (~.60
t26) = ¢ ) = 5.888
1 i
A50|—= + —
8.150 TRET:

This result is statistically significant at the .001 level. There was more attitude
change that was consistent with the message in the high-status than in the
low-status group. The value of Cohen’s d is

1 I 1
5. — 4+ —=2.123
888 13 15

Each of ten six-year-old children interact with a different four-year-old child.
Measured is the degree of social responsiveness by each person in the
conversation. The hypothesis is that six-year-olds are more socially respon-
sive than four-year-olds. The data are paired because two persons of different
ages interact. The scores are

Example 4
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Pdir Six-Year-Old Four-Year-Qld

o OO -] Oh B W
Lh 00 QN W0 3 Qv ~1 Ao th v
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10
The correlation between scores is .45. The differences between each four-
year-old and each six-year-old are 1, 1,1, 1,3, 2,1, 3, 2, and 1, and the
mean is 1.2. The variance of the different scores is

_ 2
32 - 1249/10 — 1.956
9
The ¢ test value is
1.2
H9)) = —— = 2.713
V'1.956/10

This value of ¢ is statistically significant at the .05 level. Thus six-year-olds
are more socially responsive than four-year-olds. The value of d is

\ f21 — 45) _
2713\[=—— = .90

(The correlation between the two scores is equal to .45.)

Summary

The complete model for the two-group design involves a dichotomous in-
dependent variable that causes the dependent variable. In the restricted model
the independent variable has no effect on the dependent variable. This model
is evaluated by computing the difference between the means divided by the
standard error of the difference between means. This standard error equals the
pooled standard deviation of the two groups times the square root of 1/#, +
1/n;. When the restricted model is true, the difference between means divided
by its standard error has a z distribution, with n; '+ #, — 2 degrees of freedom.
The test of the restricted model presumes that the residual variable has a
normal distribution, that the variances in the two groups are equal, and that
the observations are independent.

‘When observations are paired, differences are computed and the mean of
the differences evaluates the equality of the group means. The size of the
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treatment effect is measured by Cohen’s d, which is called a measure of effect
size. With the sample size, alpha, and the effect size, the power of the ¢ test
can be determined. The inferpretation of a significant ! test depends upon
design considerations. If the units are randomly assigned to levels of the
independent variable, then significant differences on the dependent variable
can be attributed to the independent variable,

In the next chapter the independent variable may take on more than two
levels.

1. Determine the minimum value of ¢ needed to achieve the given signifi-
cance levels with the corresponding degrees of freedom.

Alpha df
a. .05 26
b. .01 6
c. .10 44
d. .02 62
e. .001 132
f .05 77

2. The following scores are taken from a study that compared two different
methods of increasing vocabulary. The scores of ten persons, five under
each method, are:

A 16, 19, 20, 18, 24
B: 12, 15, 16, 15, 14
Is there any evidence that one method is superior to the other?

3. Compute a paired ¢ test to evaluate the effectiveness of a weight loss

program.
Person Before After
1 163 150
2 149 143
3 236 240
4 189 180
5 176 160
6

216 205
4, For the following ¢ values compute d.

a. #(20) = 1.380, n, = 11, n, = 11
b. #98) = 2.110, n; = 50, n, = 50

it
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. #10) = 1.530, 1, = 8, ny = 4
d. #54) = —.470, ny =30, np = 26

. Determine the power of the following tests.

m=n=220andd=.5

ny=n =10and d = .2

#y = ny;.= 8 and 4 = .8

A =n, = l0andd = .8

e, paired design: d = 22, r = .8, and n = 20
f n =11, nz-—IOO and d = .8

. A program is developed to improve the intelligence scores (IQ) of
preschool children. Two groups of children are randomly formed. Test
whether the program affects 1Q:

Treated group: 109, 123, 141, 119, 133, 117, 118, 120
Contro! group: 106, 103, 114, 120, 116, 107, 93

. Twenty persons are randomly assigned to one of two treatments. In the
treatment group, ten persons are taught a series of strategies to improve
their memory. The control group leamed none of the strategies. The
scores on a memory test are

Memory group: 88, 76, 83, 75, 64, 80, 76, 73, 84, 78
Control group: 84, 73, 84, 78, 68, 78, 71, 70, 80, 79

cao oy

Are the two groups significantly different?

. Describe the advantages and disadvantages of using the control groups in
a study to evaluate the effect of group therapy to reduce cigaretie
smoking.

a. individual therapy
b. hypnosis condition
¢. a film that encourages quitting

. A psychologist studies the degree of happiness of pcople at various stages
in life. His measure of general happiness varies from 0 to 60. In one
study he compared the happiness of married and single men aged 25. Is
there a significant difference between the two groups?

Married Single
58 57
45 44
50 59
54 44
49 39
39 60
50 44
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10.

I1.

12,

13.

14.

Nine persons were asked to rate the taste of cola A and cola B on a scale
from one to ten. Is one drink significantly preferred to the other?

Person Cola A Cola B
1 7 7
2 8 9
3 8 7
4 9 5
5 10 9
b 9 7
7 8 6
8 8 10
9 7 8

For the following studies estimate Cohen’s d.

a +=2910,n =10, n, = 12
b.r=-410,my =5, n,=5

c. a paired design in which t = 5.910, there are 8 pairs, and r = .8
d. = —.970, R = Ry = 80

A researcher wishes to test whether eight-grade girls outscore eighth-
grade boys in vocabulary. She tested 30 boys and 42 girls and found
means of 64.53 for boys and 66.42 for girls. The standard deviations are
12.34 for boys and 12.59 for girls. Compute Cohen’s d for this study and
interpret it. Evalvnate whether the sex difference is statistically signifi-
cant.

The data for Example 1 in the chapter are repeated here: The scores of the
treatment group are
0,15,12,9,10,0,0, 25, 5,3
and for the control group are
18, 23, 15, 10, 8, 16, 13, 10, 20, 16
Compute the standard deviations for group and evaluate in words the
assumption of equal variances and its effect on the p value.

Diehl, Kluender, and Parker (1985) tested for the recognition of auditory
stimuli on two tasks. Each of 13 subjects received a score on each task,
the maximum being 40. Does performance on the tasks significantly
vary?

Task Task
Subject A B Subject A B
DS 20 19 1b 30 24
MM 21 18 RL. 23 18
JH 28 24 TW 25 19
IS 17 6 TA 30 16
MC 15 13 VS 34 29
CM 200 13 Cl 21 20

LG 28 22
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15. For the following effect sizes and designated power, state the necessary
sample size needed in each group.

Effect Size Power
a. 5 .50
b. 8 .80
c. .5 95
d. 2 .25
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One-Way Analysis
of Variance

For the model in Chapter 12 the dependent variable is caused by only the
residual variable; that is,

dependent residual
. = constant + .
variable variable

In Chapter 13 added to the model is an indf:peﬁdent variable, as follows:

effect of the .
dependent . residual
. = constant + independent + .
variable variable

variable

In Chapter 13 the independent variable is limited to a dichotomy, sc only two
groups can be compared. In this chapter the independent variable remains a
nominal variable, but it may have more than two levels.!

The statistical technique used to analyze the model in which nominal
independent variables affect 2 dependent variable measured at the interval
level is called analysis of variance, commonly referred to as ANOVA. If there
is a single nominal independent variable, the technique is called one-way
analysis of variance. Analysis of variance is the most commonly used data
analysis technique in psychology and is also commonly used in education,
biology, and engineering. It represents not only a statistical test but also a way
of thinking about research. In fact, one social psychologist, Harold Kelley,
has suggested that persons in everyday life use something like analysis of
variance to understand social reality.

The term “analysis of variance” is potentially confusing because the
analysis of variance tests hypotheses about means. It must be remembered
that an analysis of variability provides information about the means.

'The independent variable in ANOVA can be at the ordinal or interval level of measurement.
The key requirement is that the variable have discrete groups. Because a nominal variable is
always discrete, it is convenient to say that the independent variable is nominal.
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In Table 14.1 is a data set that will be used in this chapter. A psychologist
is interested in the effects of various strategies to enhance memory. Subjects
were asked to memorize a list of 15 words and were tested one week later.
The psychologist seeks to compare four different types of instruction: image-

.1y, story, person, and none. In the imagery condition, subjects were toid to

picture each word. In the story condition, they were told to make up a story
using the words. In the person condition, they were asked to associate each
word with a person that they know. The none condition was a control
condition. The means of the four groups, each with a sample size of ten, are
as follows:
Imagery Story Person None
12.3 10.6 9.4 7.3
Can the differences between the means be explained by chance? By chance is
meant that the four groups are random samples drawn from the same popula-
tion. Even if the groups were drawn from the same population, the means
would still differ because of sampling error, At issue is whether the dif-
ferences between means can be explained by chance. For example, 12.3

‘words recalled is greater than 10.6, but this 1.7 difference might have

happened by chance. Just how likely would a 1.7 difference arise by chance?
This is the type of question that the analysis of variance answers.

The ANOVA Model

TABIE 14.1

The independent variable, called a facror in ANOVA, is denoted as In-
structions or more simply as factor 1. Ordinarily the factor is given an
appropriate descriptive name, such as Drug or Reinforcement Schedule. The

Number of Words Recalled out of a Maximum of 15 Under Four Conditions

Instruction Level ()

Imagery Story Person None

12 16 12 6
14 9 8 4
15 10 7 12
10 11 5 8
12 10 13 9
14 13 13 1]
15 10 12 4
12 i1 10 6
10 i3 7 7
9 9 9 6
ZX 123 106 o4 73
X 12.3 {0.6 9.4 7.3
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factor can be abbreviated using a single uppercase letter such as D for Drug or
R for Reinforcement Schedule. Categories of the independent varable are
referred to as levels or groups. For instance, the factor in Table 14.1 has four
levels or groups.

The variance of the means can be computed. This variance is

12.32 + 10.6% + 942 + 7.32 = (12.3 + 10.6 + 9.4 + 7.3)%4
3

which equals 4.42. The variance of the means provides a quantitative index of
how different the four means are. Recall that the variance of the means can be
interpreted as one-half the average squared difference among all pairs of
means.

The variance within each of the groups can also be computed. The
respective variances for the four groups are 4.68, 2.04, 6.93, and 7.34. The
average of these variances is 5.25. This is the average or pooled variance
within groups and is designated by s,% because it is analogous to the pooled
variance in Chapter 13.

‘There are now two measures of variability; the variance of the means,
which equals 4.42, and the variance pooled within groups, which equals 5.25.
As discussed in Chapter 11, the variance of the mean is a function of sample
size. The variance of the mean is ¢%/n, where o2 is the vardance of the
observations that are used to make up the mean and » is the sample size. Thus,
as sample size increases, the means should be more tightly bunched. So
becaunse the variance of the means is an inverse function of sample size, the
variance of the means should be corrected by multiplying by the sample size;
that is, nsy¥?, where s is the variance of the group means and « is the group

.size. This quantity provides a measure of the variability of group means

corrected for sample size.
The compiete model for one-way ANOVA 1is

effect of the .
dependent . residual
. = constant + independent + _ .
variable variable

variable
In the restricted model the independent variable has no effect; thus

dependent _ residual
- = constant +

variable variable
If the restricted model were true, then both nsz* and 5,2 estimate the variance
of the residual variable. Thus, if the independent variable has no effect, the
value of nsy? and s,,2 should be close together because they both estimate the
variance of the residual variable. In the memory example, ns3? equals 44.2,
which is substantially larger than s,%, which equals 5.25. The two statistics do

not appear to be estimating the same variance.

If the restricted model, which has no effect of the independent variable, is
false, then only s,° estimates the variance of the residual variable. The



FIGURE 14.1

One-Way Analysis of Variance 227

variance of sample means adjusted for sampie size estimates the variance of
the residual variable plus the variance of the population means times the
sample size. So, if the independent variable has an effect, the variance of the
means tends to be greater than the pooled variance, and this is the case in the
example. So, by computing two variances—one the variance within groups
and the other the variance of group means—hypotheses about means can be
tested. This is the fundamental logic of analysis of variance.

If an independent variable called factor A affects the dependent variable,
then the means for the various levels of factor A should differ from the grand
mean in the population. The null hypothesis of one-way analysis of variance
is that the population means of the k groups are all equal to each other.

The restricted mode] in one-way analysis of variance is that the in-
dependent variable has no effect on the dependent variable. Under the re-
stricted model, the variance of the group means times the number of persons
in each group and the pooled variance within groups both estimate the residunal
variance. Given assumptions that underlie the restricted model (to be dis-
cussed later in this chapter), the ratio of these two estimates is distributed as
F. If the restricted model is false, the value of F should be large.

The F distribution has a lower bound of zero, an upper bound of positive
infinity, and a mode near cne. An example of F is presented in Figure 14.1.
There is not one F distribution but a family of distributions. The F distribution
has two parameters. They are the degrees of freedom on the numerator and
degrees of freedom on the denominator. They are symbolized by df, and df;,
respectively. An F fest statistic is written as F(df,,, df;;). How to calcuiate the
degrees of freedom for one-way analysis of variance will be explained later.

To find the p value of a test statistic distributed as F, the appropriate
degrees of freedom for the numerator are located in the top row of Appendix E
of the appropriate page, and the degrees of freedom in the denominator are

Example of the F distribution.




228

Part 3 / Inferential Statistics

located in the first column. For a value to be significant, it must equal or
exceed the tabled value, which is always some value greater than one. The
significance level is obtained by choosing the largest value equaled or ex-
ceeded. In Appendix E are four significance levels: .10, .05, .01, and .00L.
{The F distribution was also presented in Chapter 11.)

Estimation and Testing

The term Xj; symbolizes the score for person { in group j. The first subscript
refers to person and the second to group or level of the independent variable.,
There are #; persons in group j, and there is a total of k groups. If for each
group the group sizes are the same, the group size is denoted as n. The total
number of scores is symbolized by N. So for the example in Table 14.1, n is
10, k is 4, and N is 40.

The sum of all the scores is symbolized by TTX;. The double simmation
signs indicate that scores are first summed in a group and then these group
sums are added together. The sum of all the scores in a given group, say j, is
symbolized by ZX,;. So the double summation indicates the sum of all the
scores and the single sum indicates the sum of scores in a group.

The mean for group j, symbofized by X ;, is

i’. = —

oF
ny

The sum of the groups sizes or Zn; is denoted as N. If group sizes are equal, N
equals nk or group size times the number of groups. The mean of the means or

the grand mean X _equals
% = 22X
N

The dot notation indicates that the mean is computed across that subscript.
Alternatively, the grand mean can be computed as a weighted mean of the
group means. The grand mean is computed by

¥ = E"f)?.j
TN

I the sample sizes are equal, the set of k means can be averaged to compute
the grand mean, as follows:

X,

k

X =

It is useful to compute the grand mean both ways as a check on the com-
putations.
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To measure the constant in the complete model, the grand mean is used. To
measure the effect of the independent variable, use the following:

X;-X.

that is, the mean for level j minus the grand mean, To compute the residual
score for person { in group j, use:

Xy- X,

that is, the score for that person minus the group mean. The estimated residual
score is used 1o test assumptions of ANOVA that are presented later in this
chapter.

The Analysis of Variance Table

Analysis of variance has a whole set of special terms, which are summarized
in a table, such as Table 14.2. There are three rows in a one-way ANOVA
table. The label for the top row is groups or in this case factor A. This line of
the analysis of variance table represents variance attributable to groups. The
term is sometimes referred to as the between-groups term. The second line
represents the variation of subjects within groups. It is usually abbreviated as
S/A, where the slash indicates within. This term is sometimes referred to as
the within-groups term or error term. Subjects are said to be nested within
levels of factor A. That is, each person is a member of one and only one
group. The last line represents the total variation, Total is commonly abbrevi-
ated as TOT,

*. There are four columns to an analysis of variance table. The first column is
for sum of squares. It can be abbreviated as SS. The sum of squares for groups
or 85, equals '

TABLE 14.2 . Analysis of Variance Table

Source of Sum of Degrees of Mean _
Variation Squares Freedom Square F
ss,  MS -
Factor A S, k=1 —2 A _ |
: dfa  MSsu
_SubjBCtS SSsia :
within S8 N~k T i ‘
StA

groups (S/A)

" Total (TOT) SStor N-1
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884 = IniX,; - X )

For this sum of squares, the term that is squared is the estimate of the
treatment effect. ,

The sum of squares for snhjects within levels of factor A, or SSg.4, is as
follows:

8Sga = I0{Xy — X )

Each score has its group mean subtracted from it, the difference is squared,
and then all the squared differences are summed across the entire set of
scores. As stated earlier, the quantity X;; — X ; is the estimate of the residual
score for person i in group j. '

The sum of squares total or 8Stot is as follows,

SSror = Y3y - X )

again where X = Z2XyN. It can be shown that
SStor = S84 + SS5g4

and sb the S$85,4 can be obtained by subtraction as follows:
SSsa = SStor — 85,

Ordinarily the SSg,, is computed indirectly by subtracting the SS, from the

SStor-
The second column contains the degrees of freedom or df. The total

degrees of freedom are
dfror =N -1
or the total sample size less one.  The degrees of freedom for factor A are:
dfs = k-1
or the number of groups less one. The degrees of freedom for /A are
dfsia = N -k

or the total sample size minus the number of groups.
It is helpful to remember that degrees of freedom partition in the same way
as sums of squares. So just as SS5,4, = SSyor ~ 88,4, it is also true that

dfsia = dfror — dfs

Any partitioning of the sums of squares can also be done to the degrees of
freedom.

The mean square equals the sum of squares for the line divided by the
degrees of freedom for the line. So to compute MS,, the SS, is divided by
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df; and to compute M3g,4, the S8, 1s divided by dfs.s. Usually the MStor
is not computed, but it would equal the variability of the observations
ignoring the independent variable.

The MS, is the variability of the groups means corrected for sample size.
The MSg,, 1s the pooled variance within levels of factor A. Both mean squares
estimate the residual variance given that the restricted model is true. The final
column in the analysis of variance table is the F test statistic, which equals

MS,

Flk-1, N-) = o
STA

The degrees of freedom for this F test on the numerator or df, are k— 1 and the
degrees of freedom on the denominator df; are N ~ k. The F test evaluates the
restricted model. It essentially compares the variability in the group means to
the variability of scores within groups. If the restricted model is false, then F
tends to be large. If the F is statistically significant, the restricted model is
rejected, and the complete model in which the independent variable, factor A,
affects the dependent variable is preferred.

In Table 14.3 is the analysis of variance table for the data in Table 14.1.
The F ratio of 8.42 is statistically significant at the .001 level. It indicates that
“Instruction” affects the dependent variable. Thus, subjects recalled different
amounts of material in the four conditions,

Most of the effort in analysis of variance involves the computation of sums
of squares. For every analysis at least one sum of squares is computed from
others. For instance, in one-way ANOVA the sum of squares within groups or
S84 equals the sum of squares total, S8¢gp, minus the sum of squares for the
independent variable, 8§S4. It is helpful to draw a circle diagram that illus-
trates the partitioning of the sum of squares, as in Figure 14.2, The complete
circle represents the sum of squares total. The circle inside the circle
represents the sum of squares for factor A, and the remainder represents the
sum of squares for persons within levels of factor A. For more complex

.designs, these diagrams can be especially helpful.

Analysis of Variance Table for the Data in Table 14.1

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F
Instruction (I) 132.6 3 44,20 8.42
Subjects within I 189.0 36 5.25

(3T

Total 321.6 39
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Circle diagram for one-way analysis of variance.

Total
N-1

Subjects
within A

N-&k

Computational Formulas for the Sum of

Squares

The computation of various ANOVA terms is discussed, first for the case
when groups are equal in size and second for the case when group sizes are
unequal.

For the computation of the surn of squares, it is necessary to define various
totals. They are the grand total ‘

T.=Y3X;

and the group total for group j

T.j = EX‘"

" For the example in Table 14.1, the group totals are 123, 106, 94, and 73. The

grand total, which is the sum of the group totals, equals 396.

To compute the F test to evaluate the relative plausibility of the complete
and the restricted modets, both S5, and SSg,4 must be computed. First the
correction term for the mean, C, is computed as follows:

_ QXX
N

C

or using tofals, C = T _2/N. In words, the correction term for the mean is the
square of the sum of all the observations, divided by the total number of
observations in the study. It is called a correction term for the mean because it
tends to be large if the mean is large. The sum of all the observations for the
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memory example is 396, and so the correction term for the mean is 396%/40 =
3920.4.
The sum of squares for factor A, or 88,, is

N1 2
SSAZE—J—C
n

where again C equals T 4N.
The 8S¢,4 1s computed indirectly, as follows:

5854 = 8Stor — 88,4

The sum of squares total equals

SSTOT = EEX!JZ -C

That is, it equals the sum of the square of every observation, minus C.
If group sizes are unequal, the 8S, equals
T2
SSA = E S C
ny
So the group total is squared and divided by the group’s n. These are then
summed across the & groups, and the mean’s correction term C is subtracted.

Test of the Constant

. As shown in Chapter 12, a researcher may have an a prion hypothesis
concerning the constant in the model. For instance, if a recognition memory
test is used, the constant should equal some a priori value if subjects were
guessing. It is possible to test a restricted model that the mean equals some
value, within a one-way ANOVA.

The a priori constant is denoted as M. The sums of squares for the constant
are N(X.. — M)Y?. (Note that if M is zero, this quantity equals C, the correction
term for the mean.) The sum of squares for the constant divided by the MSg;,
is an F test with 1 and N — k degrees of freedom. If the F is statistically
significant, the null hypothesis that the population mean equals M is rejected.

As an example, suppose it is desired to test the null hypothesis that the
constant in Table 14.1 is 10.0. The grand mean equals 9.9. The sum of
squares for the constant is 40(10.0 — 9.9)?, which equals .40. From Table
14.3 the MSg,4 is 5.25 and so the F is .40/5.25 or .08. Because the F is not
significant, the constant is not significantly different from 10.0.

Assumptions and Interpretation

The assumptions of analysis of variance are bagically the same as those of the
t test discussed in the previous chapter. These assumptions all refer to the
residual variable and they are {(a) normal distribution, (b) equal variability,
and {c) independence of abservations.
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Because these assumptions are extensively discussed in the previous chap-
ter, they will not be reviewed here except to repeat that the independence
assumption is the one assumption that most be carefully scrutinized. The
reader should consult Chapter 13 for a discussion of these assumptions.

If the group means differ significantly, the meaning of those differences
depends om design considerations. If persons are randomly assigned to
groups, then the significant effect can be attributed to the independent vari-
able. Without random assignment it is nof clear what causes what. For
instance, consider a study on the effects of jogging. Three groups are formed:
nonjoggers, joggers, and dedicated joggers. The dependent variable is
weight. Suppose it is found that persons who jog more often weigh Jess. We
cannot conclude that jogging causes a loss in weight; the troth might be that
overweight persons simply do not wish to jog. That is, it is the dependent
variable that causes the independent variable and not vice versa. Without
random assignment of persons to groups, it cannot be uneguivocally con-
cluded that the independent variable causes the dependent variable.

Power and Measure of Effect Size

Recall that the power of a test is the probability of rejecting the restricted
mode] given that the restricted model is false. To evaluate the power the
following factors must be considered: First, how different are the population
means from cone another? The more different they are, the greater the power.
So the more truly different the groups are, the more likely the restricted model
will be rejected. Second, how many persons are in each group? The more
persons in each group, the greater the power. Third, how great is the
variability within treatment groups? The more similar persons within the same
group are, the greater the power. All three of these factors were considered in
more detail in the previous chapter.

The most common measure of effect size for one-way analysis of variance
is called omega squared or, as it is commonly symbolized, w?. Its com-
putational formula is

2 84— (k= 1)MSg,
SStor + MSga

Omega squared can be interpreted as the proportion of variance in the
dependent variable that is explained by the independent variable. So, like a
correlation coefficient, the upper limit of omega squared is 1.00. If the
estimated value of omega squared is less than zero, then omega squared is set
to zero. From the values in Table 14.3,

2 _ 132.6 - 3(5.25) _

.36
321.6 + 525
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It should be noted that omega squared is in squared units. If the standards for
large, medium, and small that were set for the d in the previous chapter are
used for @?, a large w? is .40, a medium vaive is .20, and a small value is
.04,

The complete model postulates some effect of the independent variable on the
dependent variable. 1t does not, however, explicitly predict exactly how the
means differ, but only that at least two groups have different population
means. The researcher may have a clear idea about exactly how the means
differ. Consider some specific examples.

1. A researcher is interested in examining the effect of the day of the week on
absenteeism: She believes that absenteeism is higher on Monday than any
other day of the week. She conducts a one-way analysis of variance using
day of the week as the independent variable.

2. A researcher believes that more study time will improve performance on
an examination. She creates four groups who study zero, one, two, and
three hours. She then measures performance on an examination. She
analyzes her data by a one-way analysis of variance.

3. A researcher creates four groups to investigate the effects of smoking and
stress on blood pressure. The four groups are

I: No smoking, no stress
~II: Smoking, no stress
III: No smoking, stress
IV: Smoking, stress

He analyzes his data by a one-way analysis of variance, although he
wished to compare those who smoked with those who did not.

In ali of these examples the researchers had a specific hypothesis about the
patterning of the means. However, they did not explicitly test for this pattern.
This failure to make such a test can lead to mistaken conclusions. If the F is
significant, it does not imply that the researcher’s hypothesis is true. Con-
versely, if the F is not significant, it does not imply that the researcher’s
hypothesis is false. The overall F test does not directly test the researcher’s
specific hypothesis. It only evaluates the very general null hypothesis that all
the population means are equal to each other.

When there are three or more groups and an explicit hypothesis about how
the means differ, a contrast can be used to test that hypothesis. A contrastis a
set of weights assigned to each level of the independent variable to evaluate an
explicit hypothesis. These weights that tap the hypothesis of interest must sum
to zero.
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A contrast is a set of numbers, each of which is paired with one level of the
independent variable. To determine the particular contrast weights, the null
hypothesis must be explicitly stated, For instance, for the researcher who is
interested in Monday absentesism, the null hypothesis is that Monday does
not differ from the other four days of the week. Algebraically, this null
hypothesis can be expressed as

~ Bru t pwe F oy t B
4.0

H MO

(The p terms are the population means.) The terms can be rearranged and all
put on the right-hand side:

0= pmo - -25p7u - 25pwe — 2ou — 2Spm
The contrast weights are the numbers that multiply the means; that is,

Monday Tuesday Wednesday Thursday Friday
[.O -.25 -.25 -.25 -.25

.Note that the five contrast weights sum to zero, as they must,

Sometimes the researcher hag quantitative values attached to the levels of
the independent variable. To derive the contrast weights, the quantitative

‘values are averaged. The contrast weight for a given level equals the quantita-

tive value minus this average. So, for the second example, persons study
zero, one, two, and three hours. The average of the four numbers is 1.5. The
contrast weights are

Number of Hours Studied

4 1 2 3
-1.5 -5 5 1.5

Again, the sum of the contrast weights is zero.

For the final example, the researcher seeks to compare smokers (groups 11
and IV) with nonsmokers (groups I and 111). The null kypothesis is u; + pm
= wpy + pyy. Putting all the terms on the right-hand side yields

0= pn + prv — 81— dm
The contrast weights are then

Group

I II I v
-1 +1 -1 +1

To test a confrast, its sum of squares must be computed. The contrast value
for the jth mean is denoted as p;. Given an equal number of observations in
each group (that is, #; is constant), the sum of squares for a contrast equals
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(EPjT-j)z
J

"EPJZ

The degrees of freedom for a contrast are equal to one. So, the sum of squares
and the mean square are the same. To test the contrast, the mean square for
the contrast is divided by the MSg,4. Given the null hypothesis, the ratio is
distributed as F with 1 and ¥ — & degrees of freedom. Formulas for the sum of
squares for a contrast with unequal group sizes are given in more advanced
texts (Myers, 1979; Winer, 1971).

A contrast is a dummy variable. To each level of a nominal variable (the
independent variable) numerical values (contrast weights) are attached. This
dummy variable can be viewed as the predictor variable in a regression
equation in which the dependent variable serves as the criterion. If such a
dummy variable is created and the regression coefficient is computed and
tested using the method described in Chapter 16, the p value is the same as the
one-way ANOVA test of the contrast.

Post Hoc Tests

The use of contrasts to test an explicit hypothesis is called an a priori test. If
the researcher has no explicit hypothesis about the patterning of the means, he
or she can perform what is called a post hoc test to determine how it is that the
means differ. There are many, many different ways of performing post hoc
tests and there is no clear consensus about which is the best technique. The
Tukey least significant difference (Isd) test is presented because it is relatively
easy to compute. The reader is referred to more advanced texts for de-
scriptions of other post hoc test procedures (Myers, 1979; Winer, 1971).

The Tukey lsd test is called a protected test. It can only be done if the F test
is significant. Assuming that it is, all possible pairs of means are compared.
Bach pair of means is tested using the formula

X - X,
1 i

_,+_.__,
" ]

Tukey Isd =

MSsa

where X, and X, are the sample means and »n, and 1, are the respective sample
sizes, The formula for the Tukey lsd test is a 7 test of the difference between
means (see the previous chapter) with MSg,, substituted for spz. To determine
whether the difference is statistically significant, the ¢ distribution with N — k
degrees of freedom is used, where & is the number of groups.

As an example consider the data in Table 4.1. Because the F is significant,
the Tukey Isd test can be used. Because there are four groups, there are six
possible comparisons. The results are
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Imagery with Story: 1(36) = 1.659
Imagery with Person: 136y = 2.830
Imagery with None: 136y = 4.880

Story with Person: t(36) = 1.7}1
Story with None: #36) = 3.220
Person with None: #36) = 2.049

Using Appendix D, for a ¢t with 36 degrees of freedom to be statistically
significant at the .05 level of significance, it must be at least 2.030. So, four
of the six comparisons are judged as significant.

‘When group sizes are equal, the smallest difference between means that
would be significant—that is, the least (1) significant (s) difference (d}—
equals

V2MSy/
105, df —251_-&
n

where (.05, df) is the critical value for .05 significance with degrees of
freedom of df. For the example, the lsd is
2(5.2
V10

Hence a difference between a pair of means must be at least 2.080 to be
significantly different at the .05 level of significance.

2,030

IHlustrations

Example 1

An experimenter seeks to compare the degree of comfort of two automobiles.
Twenty different persons are asked to sit in one of the two automobiles.
Comfort is measured on a ten-point scale, with higher numbers indicating
greater comfort. The cars are designated as car 1 and car 2. The numbers are

Carl: 8,9,7,8,7,6,9,6,7,5
Car2: 10,9,8,10,9,8,7,9,9, 8

The means for the two cars are 7.2 and 8.7, and the grand mean is 7.95. Car 2
is rated as more comfortable, but it must be determined whether the difference
is statistically significant.

The grand total or T _equals 159, the group totals are 72 and 87, N is 20, n
is 10, and k is 2. The correction term for the mean is 159%/20 or 1264.05. The
sum of squares for cars is

722 + 72

10 — 1264.05 = 11.25
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The sum of each squared score is 1299. The sum of squares total is
1299 — 1264.05 = 34.95

By subtraction, the sum of squares for subjects within cars is
34.95 - 11.25 = 23.70

The analysis of variance table is presented in Table 14.4.

The F value of 8.54 is statistically significant at the .01 level. Car 2 is
significantly preferred over car L. The value of omega squared for this
example is .27, which is between moderate and large.

If a ¢ test had been done comparing the two groups, it would have been
found that the 7 value is 2.92, which is the square root of §.54. When there are
only two groups in a one-way analysis of variance, the square root of F
exactly equals the value that would be obtained in a two-group ¢ test. So, an
ANOVA with two levels is equivalent to the two-group 7 test described in the
previous chapter. [In Chapter 11 it was pointed out that #(df)? = F(1,df ).]

Example 2

A sociologist studies the degree of satisfaction of workers. She wishes to
compare the satisfaction with job of secretaries, janitors, and managers. She
uses a 20-point scale to measure job satisfaction where higher numbers
indicate greater satisfaction. Her results are

Secretaries: 12, 16, 15, 19, 14
Janitors: 17, 19, 14, 18
Managers: 20, 19, 18

This is an unequal 7 design because there are five secretaries, four janitors,
and three managers. The grand mean is 16.75. The mean for secretaries is
15.2, for janitors 17.0, and for managers 19.0.

TABLE 14.4 Analysis of Variance Table for Car Study

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F
Car (C) 11.25 i 11.250 3.54
Subjects 23.70 18 1.317

within C

(8/C)

Total 34.95 19
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The correction term for the mean is 201%/12 = 3366.75. The sum of
squares for job is
76° 682 577
—_t — 4+ — = 75 =274
5 4 3 3366.75 7.45

The sum of all the squared scores is 3437 and so the sum of squares total is
3437 - 3366.75 = 70.25

The sum of squares for persons within jobs is 70.25 — 27.45 = 42.80. The
analysis of variance table is presented in Table 14.5. The F is not statistically
significant at the .05 level even though omega squared has a moderately large
valve of .24. So there is no evidence that the workers differ in their satisfac-
tion. The sample sizes are so small that the level of power is quite low even
for a moderate effect size. A Tukey Isd post hoc test should not be done
because the F is not significant.

Example 3

Three different types of psychotherapy are to be evaluated. A fourth group
which is a control group is also set up. There are five persons in each group.
The scores on an adjustment scale (the larger number, the greater the adjust-
ment) are

Therapy Group I: 6,7, 5,7, 4
Therapy Group I1: 4, 5,6, 7. 4
Therapy Group IIl: 3,5, 4,3,6
Control Group: 2, 4, 3, 2, 3,

The means for the three therapy groups are 5.8, 5.2, and 4.2, respectively,
The mean for the control group is 2.8, and so the persons receiving psy-
chotherapy are relatively more adjusted. The grand mean is 4.5,

TABLE 14.5 Analysis of Variance Table for Job Satisfaction Study

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F
Job (J) 27.45 2 13.725 2.89
Subjects 42.80 9 4,756

within J

(8/h

Total 70.25 11
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. The correction term for the mean is 90%20 = 405. The sum of squares for
groups is

(29* + 26° + 21* + 149

- 405 = 258
5 5
The sum of squared observations is 454, and so the sum of squares total is
454 - 405 = 49

By subtraction (49.0 — 25.8) the sum of squares for subjects within groups is
23.2. The degrees of freedom for groups are 4 — 1 = 3, and the degrees of
freedom for subjects within groups are 20— 4 = 16. The analysis of variance
table is presented in Table 14.6. The F for groups is statistically significant at
the .01 level of significance, and omega squared is .43.

Although the F is highly significant, it is not known whether the difference
is due to the therapy groups being higher than the control group. A contrast
must be created to test this hypothesis. The contrast compares the average of
the three therapy groups with that of the contro} group. This results in contrast
weights of .33 for the three therapy groups and —1 for the control group. The
sum of squares for the contrast is

[(.33)29) + (.33)(26) + (.33)(21) + (~1.0)(14)
5(.33% + 33 + 332+ 19

= 19.27

The F test of the contrast is

19.27
F(l,16) = ﬁs— = 13.29

which is statistically significant at the .001 level.

One-way analysis of variance is a statistical proceduré used to test the effect
of a2 nominal variable on an interval variable. The independent variable is a

Analysis of Variance Table for the Therapy Study

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F
Group (G) 25.8 3 8.60 5.93
Subjects 23.2 i6 1.45

within G

(S3/G)

Total 49.0 19
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multilevel nominal variable. In the restricted model the independent variable

_has no effect on the dependent variable. Variation of scotes is partitioned into

two sources: between groups and within groups. For each source of variation
its sum of squares and degrees of freedom are computed.

The degrees of freedom for the independent variable are k — 1, where k is
the number of groups. The degrees of freedom for subjects within groups are
N — k, where N is the total number of subjects in the study. The degrees of
freedom for the total are N — . The sum of squares for subjects within groups
equals the sum of squarcs total minus the sum of squares groups. A mean
square equals a sum of squares divided by its degrees of freedom.

The sum of squares, degrees of freedom, and mean squares are summar-
ized in an analysis of variance table. The fit of the restricied model is
evaluated by an F test. The numerator of the test is the mean square for the
independent variable and the denominator is the mean square subjects within
levels of the independent variable.

The power of the F test in one-way ANOVA depends on the difference
between the populations means, the group size, and the degree of similarity
within'groups. Omega squared is used to measure the proportion of variance
in the dependent variable that is explained by the independent variable.
Conrrasts are used to test a priori hypotheses about the exact patterning of the
means. The Tukey {sd test can be used to test differences between all possible
pairs of means. This test is a post hoc test, which means that the researcher
need not have any hypotheses about how the means differ.

In the next chapter the topic is two-way analysis of variance, involving two
independent variables. Two-way ANOVA can be viewed as an extension of
one-way ANOVA.

1. For the following significance levels and degrees of freedom determine
the appropriate ¥ value needed:

Alpka  df,  dfy

a. .05 i 16
b. .05 4 56
c. .05 2 44
d. .00l 1 63
e. .01 4 123
f. .10 6 23
g. -.001 8 48
h. .01 2 72.

2. If there are five levels of factor A with sample sizes of 10, 9, 8, 6, and 10
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in the five groups, complete the following analysis of variance table
and give the significance level for F.

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F
Factor A 140.0

Subjects

within A

(S/A)

Total 5200

3. A psychologist is interested in the relationship between handedness and
athletic ability. He measures the athletic ability of three groups of
persons: left-handed, right-handed, and ambidextrous persons. His re-
sults are:

Left-handed: 11, 13, 14, 13, 15
Right-handed: 10, &, 7, 10, 14
Ambidextrous: 12, 8, 6, 11, 15

Do a one-way analysis of variance to detérmine whether the groups differ
significantly. Compute and interpret omega squared.

4. a. For the data in problem 3, do a Tukey lsd test of the difference
between means.
b. For the data in problem 3, test whether the constant is significantly
different from 10.

5. A researcher seeks to measure the degree of allergic reaction to a drug. Is
there a significant difference between the groups?

Group 1; 21, 19, 18, 13, 15, 20, 22, 25, 17, 17
Group II: 12, 10, 26, 14, 18, 8, 12

Use both analysis of variance and a ¢ test to determine whether the groups
significantly differ from one another.

6. Consider a one-way analysis of variance with five levels and twelve
subjects in each level. Given that the means for the five groups are

20,32, 41,52, 5.1

create a contrast that compares the first two means with the secand two.
Compute the mean square for that contrast.

7. For the following analysis of variance table, compute and interpret the
value of omega squared.
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Source of Sum of Degrees of Mean
Variation Squares Freedom Square F
Factor T 55.33 3 18.44 7.41
Subjects 139.44 56 2.49

within T

(8/T)

Total 194.77 59

. An investigator wishes to determine the effectiveness of three different

treatments in relieving headache pain. The drugs to be studied are
aspirin, acetaminophen, and a placebo. Ten different persons take one
drug and rate their pain on a ten-point scale after three hours. The scores
are as follows:

Aspirin: 7,6,9,5,3,5,3,2,4,2
Acetaminophen: 5, 8, 6,4,7,4,6,2,3,7
Placebo: 9,7,8,7,5,4,6,8,3,7

Use analysis of variance to evaluate whether the groups differ. Compute
and interpret omega squared,

. For problem 8 create a contrast that compares the two medicated groups

to the placebo group. Create a contrast that compares the aspirin group to
the acetaminophen group. Test each contrast.

For the following ANOVA table compute and interpret omega squared.

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F
Factor A 200 4 50 3
Subjects 100 10 10

within A

(S/A)

Total 300 14

For problem 10 answer the following questions.

How many subjects are there in the study?

How many levels of the independent variable are there?
What are the degrees of freedom for the F test?

May a Tukey lsd post hoc test be done on the means?

e oe

A researcher seeks to compare the marital satisfaction of women who
have married for varying number of years. She finds the following
(higher numbers, greater satisfaction).
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One vear: 56, 48, 57, 41
Two years: 63, 51, 65, 54
Ten years: 70, 61, 55, 58

a. Use one-way ANOVA to test the effect of length of marriage on
satisfaction.

b. Test whether the average satisfaction score is significantly different
from 55.

For problem 12 create a contrast to test the hypothesis that satisfaction
increases (or decreases) for every year of marriage. Test the contrast by
an F test.

A researcher secks to determine if the maturity of a five-year-old’s
speech depends on the age of his or her partner, He pairs 15 individual
five-year-old subjects with one of four types of partners: infant, five-
year-old, twelve-year-old, or adult. The scores on a maturity scale are

Infant: 3,7, 5

Five-year-old: 8, 11, 14
Twelve-year-old: 11, 15, 18
Adult: 14, 12, 17,19, 15, 13

Use one-way ANOVA to test whether the child adjusts his or her speech
for different types of partners. Compute and interpret omega squared for
the study.

A researcher secks to determine the effect of a drug on the number of
hours of sleep. Four different dosages are compared: none, 10 ml, 20 ml,
and 30 ml. The results are

None: 4,6,5,8, 3,2
0ml: 6,8,96,8, 4
20mk 7,9,6,5, 4
30m:: 9,8,7,6

Use one-way ANOVA to test the effect of the drug on the number of
hours slept.

Conduct a Tukey lsd test for the data in problem 15.
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Two-Way Analysis of
Variance

The preceding chapter discussed ways of evaluating a model in which a
nominal variable affects an interval dependent variable. The method, called
one-way analysis of variance, consists of computing the variability of the
group means weighted by sample size and comparing it to the variability
within leveis of the independent variable. In this chapter the topic is the study
of the simultaneous effects of two independent variables, both measured at the
nominal level. It will be shown that two-way analysis of variance is a
relatively straightforward extension of one-way analysis of variance. Two-
way analysis of variance is sometimes referred to as two-way ANOVA,

Factorial Design

Consider the study by Ball and Bogatz (1970) on the effect of the first year of
“Sesame Street” on preschool children. In their study, they divided children
into four different viewing groups: (a) nonviewers, (b) occasional viewers, (c)
moderate viewers, and (d) heavy viewers. They also classified children as
either disadvantaged or advantaged on the basis of neighborhood. There are
two independent variables: four levels of viewing and two levels of socioeco-
pomic background. One dependent variable that they studied was the number
of letters of the alphabet learned during the six months after “Sesame Street”
went on the air. This variable will be called letters learned.

In Table 15.1 the various combinations of the Ball and Bogatz evaluation
of the television program “Sesame Street” are laid out. The rows in the table
are the two levels of socioeconomic status: advantaged and disadvantaged.
The columns are the four levels of viewing: none, seldom, moderate, and
heavy. Because there are four levels of the viewing variable and two levels of
the socipeconornic variable, there are eight possible combinations, also
shown in Table 15.1. These combinations are called cells. For instance, the
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TABLE i5.1 Factorial Design

Viewing
Socioeconomic Never Seldom Moderate Heavy
Status
Advantaged 10 10 10 10 40
Disadvantaged 10 10 0 10 40
\
20 20 20 20 80

cell in the upper left-hand corner contains those children who come from
advantaged backgrounds and do not watch “Sesame Street.” The cell in the
bottom right-hand comner contzins those children whose parents are dis-
advantaged and are heavy viewers of “Sesame Street.” The creating of all
possible combinations is called factorial design.

In this chapter, the two nominal independent variables are called factor A
and factor B. Factor A has a levels, and factor B has b levels. There are a total
of a times b cells in the study. It is usual practice to have an equal number of
persons in each of the cells. So, for the “Sesame Street” example in which
there are eight cells, if there were 10 children in each cell, there would be a
total of 80 chiildren in the study, as is shown in Table 15.1. A table of the n's
for the cells is helpful in the computation of two-way analysis of variance.

There are two important reasons for having an equal number of subjects.
First, other things being equal, the estimates of the effects of the independent
variable are more efficient when the cell sizes are equal. So, to measure more
accurately the effect of “Sesame Street,” sampling error can be minimized by
having equal cell sizes. Second, the computation of the sums of squares
becomes much more complicated when the cell sizes are unequal. In fact,
there are a number of altemative procedures for estimating the sums of
squares. Thus, for reasons of both efficiency and computational ease, equal
cell sizes are preferred. All of the discussion in this chapter presumes that cell
sizes are equal.

Definitions
The score Xy, refers to score of person i at level j on factor A and at level & on
factor B. There are a levels of factor A and b levels of factor B. There are n
persons in each cell and a total of ab cells in the design. The total number of
scores 15 abn or N.
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To distinguish variovs summation terms, the following convention will be
used in this chapter. The subscript under the summation sign indicates what is
surnimed across. So

indicates the sum of all the observations in the jk cell,

“indicates the sum of scores for level k of factor B, and

173

indicates the sum of all the scores.

Means can be computed for each cell of the design. They are each based on
n observations. The cell mean for level j of factor A and level k of factor B is
equal to

Z lek
— A

n

>l

gk

The means for factor A arc averaged across levels of factor B. Because
there are b levels of factor B, there are a total of bn observations that are
averaged to compute the 2 means for factor A, In terms of a formula, the
mean for level j of factor A is

22 X
X, =ik

S br

The means for factor B are averaged across levels of factor A. Because
there are a levels of factor A, there are a total of an observations that are
averaged to compute the » means for factor B. In terms of a formula, the mean
for level k of factor B is

2 2 X

O —
an
The grand mean is denoted as X andit equals the sum of observations
divided by the total number of observations; that is,
222 X
}_( = P j ok
abn
The means for the levels of factor A, the means for levels of factor B, and
the grand mean can be expressed in terms of the cell means. The grand mean
can be shown to equal
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1. the sum of the cell means divided by ab,
2. the sum of the means for factor A divided by a, or
3. the sum of the means for factor B divided by b.

All of these formulas should yield the same value for the grand mean, and so
they can be used as a computational check.

The mean for the level j for factor A can be computed by averaging ali cell
means at level j. There are & such means. The mean for the level & for factor B
can be computed by averaging all the cell means at level k. There are ¢ such
means. _

It is helpful at times to present the cell means, the means for factors A and
B, and the grand mean all in one table. Such a table is illustrated in Table 15.2
for the “Sesamhe Street” example. The numbers in the table are only hypothet-
ical data.

In the last column are the mean for the advantaged group, 8.9 new letters
learned, and the mean for the disadvantaged group, 6.7 letters learned. In the
bottom row is the set of means for the four viewing groups. They increase
from 6.4 to 9.3. In the bottom right-hand corner is the grand mean of 7.8. The
entries in the cells are the cell means.

The set of cell means can also be graphed. The factor with the most levels
is ordinarily placed on the X axis. In this case that factor would be viewing.
The cell means are then plotted on the graph, and one makes certain to place
the mean in the appropriate place above the X axis. The points are connected
for each level of the second factor (the one not on the X axis). So, as in Figure
15.1, the points for the advantaged groups are connected. To distinguish the
two lines one can be solid and the other dashed, as in the figure.

Hypothetical Table of Means for Two-Way ANOVA

Viewing
Socioeconomic Never Seldom Moderate Heavy
Status
| ‘ ‘
Advantaged 8.0 8.4 9.2 10.0 " 8.9
Disadvantaged 4.8 6.2 7.2 8.6 6.7

6.4 7.3 8.2 9.3 7.8
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Graph of hypothetical means from the “Sesame Strect” evaluation.

10— Advantaged

- Disadvantaged
g ! /a isadvantage

Letters leamned
-
[

Never Seldom Moderate Heavy

The Concepts of Main Effect and

Interaction

One purpose of conducting a two-way analysis of variance is to measure and
test the effect of each of the two independent variables. So, with two-way
ANOVA, two effects can be tested for the price of one. In two-way analysis
of variance, however, there is more than one way to measure the effect of an
independent variable, For instance, for the “Sesame Street” example, there is
first the program’s effect on advantaged children and second its effect on
disadvantaged children. The main effect of a given independent variable is the
effect of that variable averaged across all other levels of the other independent
variable. One advantage of having equal numbers of subjects in each cell is
that to compute the main effect of one independent variable, one adds the
means across cells of the other independent variable and divides by the
number of cells to compute the means of a main effect.

To interpret the main effect one examines the means for that factor.
Returning to the table of means for the “Sesame Street” example, first the
means are examined for the advantaged and disadvantaged subjects. They
show that advantaged children learned more letters than disadvantaged chil-
dren. To determine the main effect for viewing, the four means in the bottom
row of Table 15.2 are examined. They show that the more often the children
viewed “Sesame Street” the more letters they leamed. )

Alternatively, one can examine the main effects graphically. Retuming to
the “Sesame Street™ example, it can be seen in Figure 15.1 that the line for
advantaged children is always above the line for disadvantaged children.
Thus, advantaged children outperform disadvantaged children at ail four
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levels of viewing. Also the lines for both groups increase as the eye moves
along the X axis. So, children who view more “Sesame Street” learn more
letters.

There are two major purposes in doing a two-way analysis of variance
instead of doing separate studies, one for each independent variable. First, it
is much more economical to have one study with about the same number of
subjects and perform a two-way analysis of variance. One gets two studies for
the effort of one. Second, with a two-way analysis of variance one gets
information concerning the presence of interaction between the two variables.
Two variables are said to interact if the effect of one variable on the
dependent variable varies as a funcition of the level of the other variable.
Consider the effect of “Sesame Street” on the learning of letters as shown in
Table 15.2 and Figure 15.1. If the effect of the program is stronger for Jower
socioeconomic children than for higher socioeconomic children, it can be said
that viewing “Sesame Street” and sociceconomic status interacted in causing
the learning of letters. This is indicated in both the table and the figure. The
effect of “Sesame Street” is greater for disadvantaged than for advantaged
children.

The interaction between factor A and factor B is ordinarily referred to as
the A by B interaction and it is usually symbolized by 4 X B.

Predictions of interaction are very common in the sacial and behavioral
sciences. For instance, one question of particular interest is the interaction
between diagnostic category and form of therapy. If alcoholics were more
helped by group therapy than traditional individual psychotherapy and aeurot-
ics were more helped by individual psychotherapy, it would be said that
diagnostic category (alcoholic versus neurotic) interacts with mode of therapy
{group versus individual).

Another example of interaction might be found when examining the effect
of inhaling one milliliter of a toxic drug in the workplace and having a fuli
versus an empty stomach. It might be found that inhaling a toxic drug with a
full stomach has relatively little harmful effect, whereas the drug is quite toxic
when inhaling it on an empty stomach. In this case, the dmg (none versus
inhaling one ml) interacts with having eaten (empty versus full stomach) to
cause a toxic reaction. '

In discussing an interaction, it is said that the effect of factor A on variable
X varies depending on the level of factor B. Alternatively, it must also be true
that the effect of factor B on variable X varies as a function of the level of
factor A. Thus there is a choice in saying which varjable’s effect changes as a
function of which other variable. If the interest is primarily in factor A, then
the preference is to state that A’s effect changes as a function of B. For
instance, for the “Sesame Street” example, instead of saying that the effect of
the program was greater for disadvantaged children, it could have been stated
that the advantaged children outperformed the disadvantaged children least
when both groups were heavy viewers of the program. Also, if A has more
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levels than B it is probably simpler to say that A’s effect changes as function
of B,

Interactions can also be represented graphically. The dependent variable is
on the Y axis and the independent variable with 2 larger number of levels is on
the X axis. The means of the dependent variable are graphed on the X axis
separately for each level of the other independent vanable. If the distance
between the lines on the graph varies, then an interaction is present. In Figure
15.2 are examples of graphs with interaction and with no interaction. (The
diagrams in Figure 15.2 are idealized in that there is no sampling error;
actually, graphs ordinarily do not show such clear patterns.)

In both graphs in the figure, six means from a 2 by 3 design are plotted.

“There are three Jevels of factor A and two levels of factor B, The X axis is

used to distinguish levels of A and two separate lines are drawn for the two
levels of B. In the graph labeled I, the gap between the pair of B means
increases as one moves along the X axis. It is smallest for Al and largest for
A3. There is then an interaction between the two independent variables. The
difference between the B means varies as a function of A, However, in the
graph on the right labeled I, the gap remains the same.. There is then no
interaction between the independent variables. The effect of B is the same for
the three levels of A.

To understand better the concept of interaction, examine the graph on the
left of Figure 15.3 which is labeled as I. (Again, these are idealized patterns
without sampling error.) The graph very clearly shows that A and B interact.
At Al there is no difference between B1 and B2. But as the eyes move to the
right on the X axis, the effect of B becomes larger. Although the graph on the
left-hand side of Figure 15.3 shows clear interaction, it also shows clear main
effects of A and B. For A, the A3 means are on average larger than the A2 and
Al means, and the A2 means are on average larger than the Al means. For B,
the average of the Bl means is larger than the average of the B2 means. So,
the pattern of means in the left part of Figure 15.3 shows two main effects and
an interaction.

" IHustration of interaction.
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FIGURE 15.3 Second illustration of interaction.

TABLE 15.3

|

Al A2 A3

. In Figure 15.3 the graph on the right shows pure interaction and no main
effects, The distinctive feature about the graph is the crossover of the two B
lines which must be present when there is interaction and no main effects.

Consider a final example based on actual data. West and Shults (1976)
examined how much persons liked male and female names. They determined
the commonness of the name by its frequency of occurrence in a college
yearbook. They asked 148 persons to state how much they liked common
male names such as David and John versus uncommon male names such as
Jerome or Julius. They were also asked how much they liked common female
names such as Mary and Carol versus uncommon names such as Melinda or
Rosemary. There are two factors in this study. They are sex of the name, male
or female, and commonness of the name, common or uncommon. The ratings
were on a five-point scale, where a five is a favorable rating and a one is an
unfavorable rating. The means are presented in Table 15.3.

The results show a main effect of the commonness of the name. Common

Favorableness of Rating

Commonness Sex of Name

of Name Male Female Average
Common 3.540 3,240 3.390
Uncommeon 2.420 2.980 2,700

Average 2.980 3.110 3.045
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names are liked more than uncommon names (3.390 versus 2.700). Although
male names are liked less than females {2.980 versus 3.110), this difference is
too small to be statistically reliable. There is then no main effect for sex of
name. But the two factors do interact. Overall, common names are liked
better than vncommon names by .69 unit. This effect is strong for male
names, a difference of 1.12 units, but the effect is relatively weak for females,
a difference of .26 unit. The two factors clearly interact. The effect of
commonness depends on gender.

Estimation and Definitional Formulas

The complete model for two-way analysis of variance contains many terms.
The dependent variable consists of the following terms:

the constant,

the main effect for factor A,

the main effect for factor B,

the interaction between A and B, and
the residual variable.

bl ol sl

The estimates of these four terms are as follows:

. The constant: the grand mean or )—(_“ _ _

. The main effect for factor A at level j: X; - X
. The main effect for factor B at level &: X , - X
. The interaction between A and B for cell jk:

PR S R

X — )_f; -X .t X,
5. The residual score for person i in cell jk: Xy — X Jk

The sum of squares for any effect involves the squares of all effects times the
sample size that the effect is based on.
It is also necessary to define varicus totals, as follows:

T.jk = EXU’C

T.j. = ?2 Xijk

T = ZZX{#:
i

The F distribution is used to evaluate the plausibility of the restricted
models. There are three restricted models in two-way analysis of variance. In
each, one of the effects (A, B, or A X B) is omitted.
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The Computation of Two-Way Analysis
of Variance

A two-way analysis of variance amounts to little more than parts of three
separate one-way analyses of variance. So, a sound understanding of one-way
analysis of variance is essential for the understanding of two-way analysis of
variance.

First, a one-way analysis of variance is computed for factor A ignoring
factor B. Second, a one-way analysis of variance is computed for factor B
ignoring factor A. Third, a big one-way analysis of variance is computed that
treats the cells as levels of a single factor. This last ANOVA can be viewed as
an analysis of the AB factor. The computation of two-way analysis of
variance consists of the piecing together parts of these three different one-way
analyses.

The sums of squares for the main effects of each of the factors ignoring the
other are taken from the one-way analyses of variance. The sums of squares
interaction is measured by taking the sum of squares from the big one-way
analysis and subtracting the sum of squares for both of the main effects.

To compute the sum of squares for A, B, and A X B the correction term for
the mean or C is needed. It equals

T 4

C
abn

In words, it is simply the square of the sum of all scores, divided by the
number of all the observations in the study.

To compute the sum of squares for factor A, or SS,, each A fotal is
squared, these squares are summed across the e groups, this sum is divided by
the number of observations that the totals are based on, and C is subtracted. In
terms of a formula,

T J_.Z

8§, =4 -
4 bn ¢

k-1

The sum of squares for A using this formula results in the same sum of
squares as would be obtained if B were ignored and a one-way analysis of
variance sum of squares for A were computed.
To compute the sum of squares for factor B, or 88z, each B total is
- squared, these squares are summed across the & groups, this sum is divided by
the number of observations that it is based on, and C is subtracted. In terims of
a formula,

T2
§S5 = X -C
an
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To compute the sum of squares for interaction, or 88,5, the sum of
squares AB, or 5SSz, is computed. This sum of squares is based on a one-way
analysis of variance in which the cell means are treated as group means. Its

formula is
22 Ti
88, = Lkn— -C

The cell totals are divided by n because each cell mean is based on n
observations. The formula for the sum of squares for interaction is

SSAxg = SSA_B - SSA - SSB

The sum of squares for subjects within the AB cells is computed indirectly.
To compute it, first the sum of squares total, or SStor, is computed. Its
formula is

SStor = 3 X X Xul - C
The sum of squares for subjects within cells equals

SSgar = SStor — SSsp

~or, alternatively,

SSsiup = SStor ~ S84 - S8p — SSsxa

There is a general formula for the sum of squares for a main effect. The
formula for the main effect of D is

sum of each of the n each correction
squares = sum| Dtotals | + Dtotal - term for the
for effect D squared is based on  grand mean

First, each D total is squared and summed across the set of D totals. This sum
of totals squared is divided by the sample size of the totals. Finally, C, the
correction term for the grand mean, is subtracted.

As was done with one-way analysis of variance, it is useful to diagram the
partitioning of the sum of squares. In Figure 15.4 the large circle represents
the total sum of sguares. The area on inside the two overlapping circles
represents the sum of squares AB. The area outside the two overlapping
circles represents the SSg,45. It can then be graphically seen that the SSg,45
equals the SStor minus the S8,45.

The area in the overlapping circles can be partitioned. The portion of the
two smaller circles that does not overlap is the sum of squares for A (on the
left) and the sum of squares for B (on the right). Note then that the SS, is not
the entire circle on the left but only the nonoverlapping part.

The part of the two circles that overlaps is the sum of squares interaction.
The diagram illustrates how the sum of squares AB equals the sum of squares
for the two main effects plus the sum of squares for interaction. Thus the
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FIGURE 15.4 Circle diagram for two-way ANOVA.
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diagram illustrates the partitioning of the sum of squares, as well as their
degrees of freedom.

After computing the sum of squares, the next step is to determine the
degrees of freedom, as follows:

de =a-1
dfg =b-1
The degrees of freedom for main effect are as they were for one-way
ANOVA: They cach equal the number of groups less one.
The rule for determining the degrees of freedom for interaction is simple.

The degrees of freedom for interaction equal the product of the degrees of
freedom of its components; that is,

dfaxg = (@ - 1)}b - 1)

The degrees of freedom for subjects within cells equal
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Afsiap = N - ab

where N is the total number of persons in the study. As with the sum of
squares, the degrees of freedom partition in the same way:

dfsius = dfrot — dfas
dfaxz = dfap — dfa — dfy
The dfss equal ab — 1, the number of cells less one.

Each mean square is its sum of squares divided by its degrees of freedom.
The individual mean squares are

MS, = %‘*
MSp = %
MSaxg = %ff
MSsap = %Sfﬁ
For A, B, and A X B, the denominator of the F ratio is MSg.z:
F(‘.I—l’ N—ab) = %
F(b-1, N-ab) = %
F((a—1)(b-1), N—ab) = _ﬂ_i;ﬁ

These F tests evaluate whether a restricted model, one that does not include
the term in the nemerator, is plausible. Note that the df,, differs for these three
F tests if there are a different number of levels of A than B. So, in determining
the statistical significance of the F tests, different values from Appendix E
must be used. A good rule of thumb is that F must be about 4.0 or more to be
significant at the .05 level of significance.

As with one-way analysis of variance, the basic results are summarized in
an analysis of variance table (see Table 15.4). The column headings for
two-way analysis of variance are the same as those for one way analysis of
variance. They are source of variation, sum of squares, degrees of freedom,
mean square, and F. The sources of variation are factor A, factor B, the A by
B interaction, subjects within the AB cells, and total.
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Analysis of Variance Tahle

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F

Factor A 5S4 dfy MS, MS,
MSg4p

Factor B SSs dfs MSg MSg
MSgias

AXB SS4xz dfaxs MSaxg MS,xa
MSs;ap

SUbjCCiS SSSIA.B df:g_;,;g MSSIAB

within

cells (S/AB)

Total (TOT) SSror dfvor

The analysis of variance table neatly summarizes the computation and the
results of the model testing.

Assumptions and Power

The assumptions of two-way analysis of variance are identical to those of
one-way analysis of variance and the two-sample ¢ test. They are {a} normally
distributed residual variable, (b) equal variances in all the cells, and (c)
independence of observations. The reader is referred to Chapter 13 for an
extensive discussion of these assumptions.

~ The considerations for the power in the test of the main effects are the same
as in one-way analysis of variance, presented in Chapter 14. The power of the
test of interaction is ordinarily not as large as that of the main effect. A typical
interaction is one in which the effect of one factor becomes weaker across
Ievels of the other factor. Crossover interactions, as in graph I of Figure
15.3, are not common. Thus an interaction measures not some overall effect
but the variation of an effect. Therefore main effects are tested with more
power than interactions.

Example

Imagine a researcher who wishes to measure the effect of a cigarette smoking
on shortness of breath. She creates three groups of smokers: heavy, light, and




260

Part 3 / Inferential Statistics

none. She then divides these three groups by age: 30s, 40s, and 50s. Her raw

data are
Smoking
Level 30s
Heavy 4,56
Light 3,3, 6
None 2, 2,5

She has three persons in each cell of the design.

Some preliminary tables can simplify both the calculations and intetpreta-

tion. The table of n’s for the study is as follows:

Age
30s 405 50s
Heavy 3 3 3
Smoking .
Level Light 3 3 3
None 3 3 3
Total 9 9 9
A table of total scores is as follows:
Age
0s 40s 50s
Heavy 15 21 27
Smoking .
Level Light 12 12 12
None 9 12 15
Total 36 45 54

Total

27

Total

63

36

36

135

These tables of n’s and totals are useful in computing various sums of squares.
Each rtotal squared will be divided by its corresponding n. The means are as

follows:”
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Ape
30s 40s 50s Average
Heavy 5.0 7.0 2.0 7.0
fg‘vff“g Light 4.0 4.0 4.0 4.0
None 3.0 4.0 5.0 4.0
Average 4.0 5.0 6.0 5.0

The correction term for the mean is 135%/27 = 675. The sum of squares for
smoking groups is

632 + 367 + 367

9 - 675 =354
The sum of squares for age is
’ 362 + 457 + 54
- 675 =18

9
The sum of squares for cells is
152+ 212 + 277 + 122 + 122 + 122 + 92 + 122 + 152
3

- 675 =74

The sum of squares for interaction is
74 — 54 — 18 = 12

The surn of each squared observation is 813. The sum of squares for the total
is then 813 — 675 or 138. The sum of squares for persons within cells is 138 —
74 = 54, The analysis of variance table is as follows:

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F
Smoke (S) 54.0 2 27.0 9.0
Age (A) 18.0 2 9.0 3.0
S XA 12.0 4 3.0 1.0
Persons 54.0 18 3.0

within SA

(P/SA)

Total 138.0 26
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Only the main effect of smoking is statistically significant, and its signifi-
cance level is the .001 level. The means show that heavy smokers have more
difficulty breathing.

Generalization to Higher-Order Analysis
of Variance

The generalization to three- and four-way analysis of variance is straightfor-
ward. Again, the independent variables are denoted as A, B, and C. There are
a levels within factor A, b levels within factor B, and ¢ levels within factor C.
There are abe cells, each with n persons. The total number of subjects in the
study, abcn, is N. ‘

The sums of squares for the main effects are computed exactly as they are
compuied in one- and two-way analysis of variance. For each level of a main
effect, the total is squared and summed across levels, and this sum of squared
totals is divided by the number of observations that each total is based on, and
the correction term for the grand mean is subtracted.

To determine the interaction between two factors, three “one-way™ anal-
yses are done for the AB, AC, and BC means. These sums of squares are
denoted as SS.g, SS4c, and SSpc, respectively. The sums of squares for
interaction equal '

SSAxB = SSA_B - SSA - SSB
SSAXC = SSAC - SSA - SSC
SSBXC = SSBC - SS& - SSC

To determine the 884z ¢, first the sum of squares for ABC is computed.

This is a one-way sum of squares in which the abce cells are treated-as groups.
The sum of squares for the A X B X C interaction is as follows:

SSaxaxc = SSapc — SSaxp — SSaxc — 8Spxc — S84 — 885 — S5¢
The sum of squares of subjects within cells equals

SSsapc = SStor — SSa8c

where SSto7 equals the sum of each squared observation minus the correction
term for the mean.

The degrees of freedom for the two-way interaction are computed in the
usual way. They equal the product of the degrees of freedom of the com-
ponents. They are then

dfaxs = (a - Db~ 1}
dfaxc = (@— Dle - 1)
dfsxc = (b= 1){c - 1)

The degrees of freedom for the A X B X C interaction are
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dfaxsxc = (@—- 1) - Dic- 1

Like any interaction, its degrees of freedom are the product of the degrees of
freedom of its components. The formula for dfsaac is

d_f:g,r@c = N —-Vabc

where N is the total number of observations in the study.

As always, a mean square equals its sum of squares divided by its degrees
of freedom. The F test consists of each mean square divided by the mean
square subjects within ABC cells.

As was done with two-way analysis of variance, it is useful to diagram the
partitioning of the sum of squares. In Figure 15.5 the large circle represents
the total sum of squares. The three overlapping circles inside of it represent
the sum of squares ABC. The area outside of these three circles, but still
within the large circle, represents the 885,45 It can then be graphically seen
that the SSSIABC 3quals the SSTOT minus the SSA.BC

FIGURE 15.5 Circle diagram for three-way ANOVA,

AXB
(- 1)b-1)

AXBXC
@—1)b - 1)e -1}

BXC
(- De- 1
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The parts of the threc circles that do not overlap are the sums of square for
A (on the left), for B (on the right), and for C (on the bottom). As with
two-way ANOVA, the main effect for an effect is not the entire circle but only
the nonoverlapping portion. The portion of the three smaller circles that
completely overlaps is the sum of squares interaction of A by B by C. The part
of the A and B circles that overlaps excluding C represents the A x B
interaction. In a similar fashion the B X C and A X C interactions can be
defined. So, the diagram illustrates the partitioning of the sum of squares.

Generalization to a four-way design follows along the same lines. Perhaps
the most difficult aspect of four-way designs is that interactions can be very
difficult to interpret.

‘Repeated Measures Design

The estimation procedures for ANOVA have presumed that the groups are
independent. In Chapter 13, a design is presented in which observations were
matched, paired, or linked in some way. The most common way in which
observations are linked is that they come from the same person. For example,
consider a small study on the effects of psychotherapy on psychological
adjustment. Six subjects were measured before and after psychotherapy on an
adjustment scale. Higher scores indicate greater adjustment. The numbers are:

Subject Before After

i 23 32
2 27 25
3 31 40
4 32 31
5 26 38
6 25 29

This is a paired design because one score in each group is linked to the same
persan.

It is also a two-way design. There are two independent variables. They are
psychotherapy, before versus after, and person, I through 6. It is possible to
compute a mean square sibject, a mean square psychotherapy, and a mean
square interaction. The two-way analysis of variance table is presented in
Table 15.5. The main effect for subject refers to the extent to which subjects
differ from one another across both time points. The subject by treatment
interaction refers to whether the treatment is more effective for some subjects
than others. There is no subjects within cells term that can be used as a
denominator for the F test. Instead the person by treatment interaction is nsed
as the denominator for the F test to test for the presence of treatment effects.
The value of this F exactly equals the value of £ that would be obtained from
the paired ¢ test described in Chapter 13. The equivalence of repeated meas-
ures F and paired 2 occurs when the independent variable in the design has
two Jevels,
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Repeated Measures Example

Source SS df MS F
Treatment (T) 80.08 1 80.08 - 4.80
Person (5) 135.42 5 27.08

SxT 83.42 5 16.68

Total 298.92 11

Wherever there is a series of observations for each person, a two-way
analysis of variance can be computed. Such a design is commonly referred to
as a repeated measures design. This notion of person as variable is a fun-
damental insight in understanding complicated analyses of variance. Subjects
are a very special kind of independent variable, but they are a variable.

Repeated measures designs are very commonly employed in psychological
research. In particular, most research in cognitive psychology uses repeated
measures designs. Persens in these experiments receive stimuli that are
arrayed to represent various levels of a given independent variable. It is not at
alf uncommon in these studies for a single person to provide data for as many
as 25 experimental conditions.

There two major reasons for the popularity of repeated measures designs.
First, with a repeated measures design the researcher needs fewer subjects to
obtain the same number of observations than is the case with an independent
groups design. Second, even if the number of observations is the same for
both designs, a repeated measures design is still usually much more powerful
than an independent groups design. The reason for this is that subject variat-
ion is removed from the residval variance.

Repeated measures designs do have their drawbacks. A complete discus-
sion of these drawbacks can be found in advanced textbooks (Myers, 1979;
Winer, 1971). These drawbacks are linked to the fact that measurements are
almost always sequentially ordered.

In two-way analysis of variance, two nominal variables affect a variable
measured at the interval level. The creation of all possible combinations of
two nominal variables is called factorial design. A particular combination in a
factorial design is called a cell.

The main effect of a factor is the average effect of that factor across levels
of the other variable. An interaction between two factors implies that the
effect of one factor changes as a function of the other. An interaction can be
assessed by an examination of a graph or table.

Sums of squares for the main effects are computed as in one-way analysis



266

Problems

Part 3 / Inferential Statistics

of variance. The interaction sum of squares equals the sum of squares for cells
minus the sums of squares for main effects. The sum of squares for subjects
within cells is the pooled sum of squares for each cell pooled across cells.
This sum of squares is computed by subtracting the sum of squares cells from
the sum of squares total. The degrees of freedom for interaction equal the
product of the degrees of freedom for the main effects. The mean square for
an effect equals its sum of squares divided by its degrees of freedom.

Hypotheses in two-way ANOVA are evaluated by an F test. The de-
nominator of the F ratio is the mean square ‘of subjects within cells. A
significant F ratio indicates that the term in the numerator must be included in
the complete model. :

Repeated measures design involves having each subject be in each level of
the independent variable. In a repeated measures design the effect of a factor
is tested by using the mean square interaction of subject by factor as the
denominator of the F ratio.

1. Fill in the remainder of the source table from an equal r study with ten
subjects in each cell.

Source of Sum of Degrees of Mean
Variation Squares Freedom Sguare F
A 6.3 3

B 4.3 2

AXB 6.0

Persons

within AB

(S/AB)

Total 89.0

State whether the effects are statistically significant.

2. A pig buyer wants to compare the fat content of bacon and ham in 20
different pigs, 10 from California and 10 from Nebraska. Do a two-way
- analysis of variance and interpret your results. .

Birthplace

Nebraska California
Ham 30, 30, 25, 27, 26 26, 17, 37, 38, 34
Bacon 40, 28, 26, 29, 35 34, 29, 36, 37, 42

3. For the table below do a two-way analysis of variance and interpret your
results.
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w

1 7,965 3,2,1,7 | 7,8,9,3 | 1,3,8,7 1-2,4,3,1

2|43, 1,6 | 4,1,3,5 | 3,1,6,5 1,3,4,2 ] 7,6,5,9

4. A researcher is interested in studying the overjustification cffect. Simply
put, this effect states that people do not enjoy activities that they used to
do solely for fun after they are paid for engaging in the behavior. A
researcher wishes to investigate whether the effect is stronger for younger
than for older children. To study the phenomenon the researcher has ten
younger children (age four) play with a toy as well as ten older children
(age seven). For each of these groups, five of the children were given
candy as an incentive to play with the toy and five were not. The
experimenter then measured the duration of time spent with the toy at a
later period. The resuits are:

Older, rewarded: 44, 110, 12, 44, 59
Older, unrewarded: 79, 120, 112, 68, 39
Younger, rewarded: 64, 10, 34, 119, 78
Younger, vnrewarded: 73, 10, 102, 49, 99

Conduct a two-way analysis of variance to see whether the groups differ.

5. Consider the following table of means.

Al 6.1 5.3 8.0
A2 9.2 8.5 12.1
Bl B2 B3

Interpret the main effects and interaction.

6. Five subjects are asked to learn material over a period of four days. Their
data are
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Subject I 2 3 4

oA WD
p—
<
)
N
b
2
[
Lh

Conduct a two-way ANOVA treating subject and day as factors, Test the
effect of day.

. Complete the following three-way ANOVA table, where there are two

subjects in each cell.

SV 5§ df MS F
A 124 2

B 25 3

C 48 1

AXB 12

AXxXC 19

B xC 14

AXBXC 12

S/IABC

Total 318

. Construct a table of means for an experiment in which both independent

variables have two levels. Designate the factors as A and B. Make the
following three tables.

a. a table with a main effect for B only
b. a table with a main effect for A only
c. a table with an interaction of A with B only

. An experimenter wants to see whether the deleterious effects of alcohol

are increased when one drinks on an empty stomach. He has 20 subjects
learn nonsense symbols in one of four conditions: I: no alcohol, empty
stomach; II: no alcohol, full stomach; II: alcohol, empty stomach; 1V:
alcohol, full stomach. He then measured the number correct out of 13
syllables, with the following results.

I: 14,12, 15, 14, 13 .
IE: 13, 15, 14, 12, 14
m: 8,7,5,9,12
vV: 10, 12, 14, 9, 11
Analyze the data by two-way ANOVA and interpret the results.
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10. A researcher wants to see whether intelligence (IQ) is affected by birth
order, He finds eight families with three children and measures the IQ of
each member. The data are as follows

Birth Order
Family First Second Third
1 130 125 120
2 105 90 75
3 140 145 125
4 80 70 80
5 135 120 115
6 90 80 60
7 110 105 90
8 125 100 110

Test whether birth order affects 1Q.
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Testing Measures
of Association

In Chapters 6 and 7 the two most common measures of association were
presented: regression and correlation coefficients. The regression coefficient,
or b, measures the change in the criterion variable as a function of a one-unit
change in the predictor variable. The correlation coefficient, or r, is a
regression coefficient with both variables standardized (expressed as Z
scores); that is, both variables have means of zero and variances of one. It is a
symmetric measure of association that varies from —1 to +1. For both
measures of association, a value of zero indicates no linear association. In this
chapter, methods are presented to test hypotheses about correlation and
regression coefficients.

The use of the correlation coefficient or r does not require a specification
about the direction of the causal effect. That is, if a researcher correlates the
degree to which a parent uses physical punishment and how aggressive the
children are, there is no need to make any assumptions about which of the
following causal patterns is true.

1. Physical punishment causes aggre:ssion.
2. Aggressive children make parents use physical aggression.
3. Physical punishment and aggression are two signs of a troubled family.

Correlations make no presumption about what is the independent variable and
what is the dependent variable. There is then not a single complete model
when one tests correlation coefficients because there are three distinct ways in
which the correlation could come about. The complete medel then presumes
some unspecified causal network that brings about association between the
variables. The restricted model is that there is no association between the
variables.

A regression coefficient, when used in explanation and not in prediction or
description, does make a clear statement about a causal ordering. The pre-
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dictor variable is the independent variable and the criterion is the dependent
variable. The complete model is

dependent

\ = constant + coefficient
variable

independent residual
variable variable

The coefficient in the model is called the regression coefficient. Both vari-
ables are measured at the interval level of measurement. The complete model
for regression is the same as one-way analysis of variance except that the
independent variable is measured at the interval level. The restricted model is
the same as the complete model, but the independent variable has no effect on
the dependent variable.

In this chapter, first tests of correlation coefficients are presented because
procedures to do so are relatively simpier than tests of regression coefficients.
Then the somewhat more complicated tests of regression coefficients are
described. In the last section of the chapter, rules for determining which type
of test is most appropriate are presented. '

Tests of Correlation Coefficients
In this section, the following tests of correlation coefficients are presented:

1. How to test a single correlation coefficient.

2. How to test whether two correlation coefficients computed from different
samples are equal. Correlations computed using different groups of per-
sons are called independent correlations.

3. Testing more than two independent correlation coefficients.

4. How to test whether two correlations computed from the same sample are
equal to each other.

A Single Correlation Coefficient

Consider two variables: the number of times a person nods his or her head in a
-conversation and the degree to which the person likes his or her partner in the
conversation. The two variables are nods and liking. The two variables are
correlated across 30 pairs of persons and the correlation is .45. The correla-
tion indicates that the more one nods during a conversation the more one likes
one’s partner. However, one might wonder whether the .45 value in the
sample might have just occurred by chance. That is, if there were a thousand
pairs of persons, would the correlation be zero? Is the .45 value due to
sampling error or does it reflect a true positive correlation? A way is needed to
evaluate whether a sample correlation coefficient is significantly different
from zero.

It turns out that the distribution of » does not closely correspond to any of
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the major sampling distributions. However, for a population correlation of
zero, r divided by the square root of 1 — r? is approximately normally
distributed with a mean of zero and a variance of n — 2.

The test of the null hypothesis that a correlation coefficient equals zero is

rvan-2
V1 -r2

tn-2) =
In words, the correlation coefficient is divided by the square root of one minus
the correlation squared, and then this quantity is multiplied by the square
root of the sample size minus two. Under the null hypothesis that the popu-

lation correlation equals zero, this quantity has a ¢ distribution with n — 2 de-

grees of freedom, where r is the number of pairs of scores. So, one computes
rvViin - 2)(1 - ?) and determines whether it equals or exceeds the critical
vatues for ¢ in Appendix D. The degrees of freedom are n — 2 and one rounds
down to the closest value in the first column in Appendix D.

So for the nods and liking example if r = .45 and n = 30, then

A5V
128y = AV = 2.666
V1 - .452 :

which is statistically significant at the .02 level. It would be concluded that
the .45 correlation cannot be explained by sampling error and is significantly
greater than zero.

If the correlation is significantly different from zero, the correlation can be
either negative or positive. If the researcher wishes to allow the null hypoth-
esis to be false in only one direction (e.g., he or she expects the correlation to
be positive}, then the p value should be cut in half and the test is called a
one-tailed test. Most researchers agree that a one-tailed test should not
ordinarily be done because if the cormrelation is very large but in the un-
predicted direction, it would still be deemed statistically significant.

Assumptions. A correlation coefficient as a measure of association pre-
sumes that the relationship is lineac. That is, a change in one unit in the X
variable results in the same amount of change in ¥ regardless of the value of
X. As explained in Chapter 7, other types of relationships are not adequately
captured by a linear measure of association, and some are even totally missed.
The reader is referred to Chapter 7 for a more extensive discussion of the
linearity question.

The second assumption is that each pair of (X, Y) scores is independent of
all other pairs. Such an assumption presumes that person is the sampling unit.
That is, each person provides one and only one pair of scores.

Both variables must be normally distributed. More technically, the two
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variables have a joint normal distribution. Research has indicated that p
values are not considerably altered by the violation of the normality assump-
tion. However, the linearity and the independence assumptions cannot be
violated with impunity.

Interpretation.  The discussion in Chapter 7 concerning the pitfalls in in-
terpreting correlations is relevant. A significant correlation means that the
variables are associated. [t in no way indicates the direction of causation. Of
course, if the researcher believes that the variables are causally related, a
correlation is comforting; however, the correlation does not by itself indicate
the direction of causation.

Power. The power of a test is the probability of rejecting the null hypothesis
when the nuil hypothesis is false. Tests of correlation have moderate levels of
power. For a given value of the population r, a given n, and a given alpha,
power can be determined. Table 16.1 gives the power for the correlation
coefficient for a small, medium, and large cffect sizes. As discussed in
Chapter 7, a small correlation is a value of .1, a medium correlation is a value
of .3, and a large correlation is .5. The values given in Table 16.1 are for the
.05 level of significance. The # in the table is the total sample size or the
number of (X, ¥) pairs. The entry in the table is the power multiplied by 100.
So if a researcher contemplates doing a study with 40 persons and the
correlation is expected to be moderate in size, the probability of rejecting the
null hypothesis is .48. This means that for every two times that the stody is
done, the null hypothesis will be rejected about once.

For a given r, alpha, and level of power desired, the » that is needed for
that power can be determined. These sample sizes are given in Table 16.2. As
an example, consider the n needed to achieve 70% power for a moderate

Power Table® for Correlation Coefficients, @ = .05

Population Correlation

n 1 .3 5
10 6 13 33
20 7 25 64
40 9 48 92
80 14 78 99
100 17 &6 %9
200 29 99 99

*Taken from Cohen (1977).
NOTE: Each entry in the table is the probability of rejecting the null hypothesis times 100 for a
given population correlation and sample size.
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TABLE 16.2 Sample Size Required® for Correlation Coefficients, & =" .05

Population Correlation

Power .1 3 5
.25 166 20 8
.50 384 42 15
.60 489 53 18
.70 616 66 23
.80 783 84 28
90 1046 112 37
.95 1308 139 46
.99 1828 194 63
*Taken from Coher (1977},

NOTE: Each entry represents the sample size needed to achieve a given level of power for a given
population correlation,

effect size of 3. The n would have to be 66 to have a 70% chance of being
significant.

Examp!e. Manning and Wright (1983) investigated the degree to which
learning pain control strategies would reduce the use of painkilling medication
during labor and childbirth. For 52 women who were giving birth, Manning
and Wright correlated how much time the women devoted to learning a pain
control strategy with their use of painkilling drugs during labor. The correla-
‘tion was found to be —.22, and hence the women who learned the pain control
strategy used fewer drugs. The test of that correlation is

—-.22V/50
50) = —————
10 Vi - (-.22)2

which is not significantly different from zero at the .05 level. 1t is concluded
that the population correlation may be zero and that the —.22 correlation is
within the limits of sampling error given a sample size of 52.

= -1.595

Test of the Difference Between Two .
Independent Correlations

Assume that the correlation between nods and liking is computed separately
for male and female pairs. For 15 male pairs the correlation is .13, and for 15
female pairs the correlation is .68. At issue is whether the correlation is
significantly larger for females than it is for males. When the correlations are i
computed from two different samples (e.g., males and females) the two i
correlations are said to be independent. :
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To evaluate whether two correlations are significantly different from one
another, one might be tempted to test this hypothesis by first testing whether
the correlation is statistically significant for males and then testing whether
the correlation is statistically significant for females. The ¢ for males is .473,
which is not significant, and 3.344 for females, which is significant at the .01
level of significance. The fact that the correlation is significantly greater than
zero for females and is not for males does not necessarily mean that the
correlation is significantly larger for females than for males. Statistical logic
does not follow ordinary logic. If the number x is equal to zero and the
number y is greater than zero, then y must be greater than x. This is simple
logic. However, it is not necessarily true that if correlation x is not significant-
ly greater than zero and y is significantly larger than zero, y is a significantly
larger correlation than x. One must explicitly test whether the two correlations
differ and not rely on the significance tests of the correlations calculated
individually. The example illustrates this. Although the .68 correlation is
statistically significant and the .13 value is not, it will be seen that the
difference between the correlations is not statistically significant.

To test whether these correlations are significantly different from one
another, the correlations are transformed. Each correlation must be altered by
what is called Fisher's r to z transformation. This r to z transformation is
defined as

1

—In

2

1 +r
1-r

Actually the transformation is not usually computed by hand or even by
calculator, but rather the value is simply looked up in a table. Table 1 in
Appendix F presents the Fisher z transformation values for correlation coeffi-
cients. To find the Fisher r to z value in Appendix F, locate r in the left
column and then determine its z in the right column. H r is negative, follow
the same procedure but give the z value a negative sign. Table 2 in Appendix
F contains a table for going from z to r. First, round z to two decimal piaces,
and then locate the appropriate value of z in the left column and top row of the
table and find the appropriate value of r.

The r to z transformation has little or no effect on small correlations, but
for large correlations the Fisher z value is larger than r. Unlike r, the Fisher z
has no vpper and lower limit. It is important not to confuse this transformation
with the Z or standardizing transformation. Fisher’s r to z is for correlations
and the Z-score transformation is for a sample of data. Also it should not be
confused with the standard normal or Z distribution. Fisher's r to z
transformation is applied only to correlations.

The effect of this transformation is to make the sampling distribution of the
transformed coefficient nearly normally distributed. When the population
correlation is not equal to zero, the distribution of » is somewhat skewed.
Fisher’s z transformation also makes the variance of correlation coefficient
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approximately the same regardless of the valne of the population correlation.
For a given population correlation, the distribution of the Fisher’s z values
for a sample of size » has virtually a normal distribution with a variance of
1/(n — 3). Thus, the standard error of a Fisher z transformed correlation is
V-3,

If there are two correlations with sample sizes n; and n,, respectively, they
are each transformed into Fisher’s z values. These Fisher z transformed values
are denoted as zy and z;. Under the null hypothesis that the population
correlations are equal, the following has approximately a standard mormal
distribution.

o — 2z

1 1
.+
ﬂ1—3 H2—3

Therefore, if the above quantity is greater than or equal to 1.96 or iess than or
equal to --1.96, the two correlations are significantly different at the .05 level
of significance. To determine the p value, the value of Z is located in
Appendix C. The p value equals twice the quantity of .5 minus the probabil-
ity. So if Z is 1.96 the p value is two times .5000 — .4750 which equals .05.

For the .68 and .13 correlations for females and males, the Z is only 1.71,
which is not significant at the .05 level. Hence sampling error is a plausible
explanation for the difference between the two correlations.

Assumptions. The vse of Fisher’s z to test the difference between correla-

tions requires that the two correlations be independent. One condition re-

quired for independence is that the correlations are computed using two
different sets of persons. If the same persons are used to compuie both
correlations, the correlations are called correlated correlations. This topic is
discussed later in this chapter.

Interpretation and Power. ¥ the Z is statistically significant, then it is
concluded that the population correlations differ in the two groups. If the two
are not significantly different, the null hypothesis that the correlations are
equal is retained. However, the power of the test that compares the correla-
tions between two samples is quite low. For instance, if n; = n, = 50 and
population correlations are .10 and .40, which seems like a large difference,
there is only a 35% chance of rejecting the null hypothesis. There must be
fairly large sample sizes before having a reasonable chance of rejecting the
nuil hypothesis that the two correlations are unequal.

This low power in showing that correlations differ in the two groups has
made it very difficult to show that standardized tests, such as the Scholastic
Aptitude Test or SAT, have differential validity across the races. Some have
argued that standardized tests are less valid for minorities, particularly blacks.
The validity of a standardized test is often measured by a correlation coeffi-
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cient—for example, the correlation between SAT and college grades. Thus,
critics of standardized tests have argued that the correlation is lower for blacks
than for whites. However, because of low power, the null hypothesis of no
difference is very difficult to show to be false, and so very rarely is the null
hypothesis rejected.

Example. Wheeler, Reis, and Nezlek (1983) correlated feelings of loneli-
ness with the extent to which persons felt they had opportunities to disclose or
discuss things about themselves with others. The correlations were computed
separately for 43 men and 53 women. The correlation for the men was —.57
and for women it was —.21. So, persons who were lonely said they had few
opportunities to discuss things about themselves, Using Table 1 of Appendix
F, the z value for the —.57 correlation is —.6475, and for the —.21 correlation
the z value is —.2132. The test that the coefficients differ is

-.6475 — (-.2132
Z= ( ) - ~2.05

1 1
+
\/43-3 53-3

which, from Appendix C, has a p value of .0404—that is, two times (.5000 —
.4798). Becanse the p value is less than .03, the difference is judged statisti-
cally significant at the .05 level. So, loneliness and the absence of self
disclosure correlate significantly more highly among men than women.

More than Two Independent Correlations

Suppose the comelation between socioeconomic status and school achieve-
ment is computed for students for four schools. The null hypothesis to be
tested is that the correlations do not vary across schools. The correlations are
first transformed to Fisher z values. The mean of the z values, z, is computed
weighted by # — 3. So for the example of four schools,

s = zy(m — 3) + zalnz — 3) + z3(n3 — 3) + z4ny — 3)
n1—3+n2-3+n3—3+n4—3

This is the average of the four correlations weighted by sample size. In
general to average correlations, the r’s are converted to Fisher z values and
are multiplied by the sample size less three, these values are summed, and this
total is divided by the number of subjects in all groups less three times the
number of correlations, This z can be converted back into a correlation by
using Table 2 of Appendix F to obtain the average of the correlations.

To test whether the average correlation is significantly different from zero,
the average z is divided by

1
\/n1—3+n2—3+n3—3+n4—3
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which is approximately distributed as Z, the standard normal distribution,
given the null hypothesis of a zero correlation.

A researcher might also wish to test whether correlations, as a group,
significantly differ from one another. Here the null hypothesis is not whether
the average correlation is zero, but that the population correlations are the
same in each group. To do so, the following is computed:

(= 3z — 2P + (= 3)z2 — 2 + (n3 — 3)(z3 — )% + (mg — 3)zg — 2)°

where z is the Fisher’s z average of the correlations. In general, to evaluate
whether correlations computed in k groups are significantly different from one
another, one first averages the Fisher z values, weighting by sample size less
three. One then computes the deviation of each Fisher z from this average,
squares, multiplies by sample size less three and sums. The resulting quantity
is approximately distributed as chi square with k — 1 degrees of freedom, k
being the number of correlations. As described in Chapter 11, chi square
(symbolized by x2) is a positively skewed distribution with a lower limit of
zero and an upper limit of positive infinity. If the chi square value exceeds the
values tabled in Appendix G, it is deemed significant at the appropriate level.
One rejects the null hypothesis that the correlation is the same for all groups.

Example. Consider five hypothetical correlations between ability in
mathematics and in reading in five different countries. The correlations and
their Fisher z values from Table 1 of Appendix F are as follows:

Country r n .z

France .65 55 7753
England .53 76 .5501
Mexico .56 44 6328
Italy 44 68 4722
Canada .74 39 9505

The average z is

52(.7753) + 73(.5901) + 41(.6328) + 65(.4722) + 36(.9505)
524+ 73 4+ 41 + 65 + 36

which equals .6526. Rounding this z value to two decimal places and using
Table 2 of Appendix F, it corresponds to an » of .5717. The test that this
correlation is zero is tested by

Z= 6526 = 10.66

1
\/52+73+41+65+36

which is statistically significant at the .001 level. So, across the five coun-
tries, the correlation between reading and mathematics ability is significantly
different from zero at the .001 level of significance.
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The test that the population correlations are all equal to each other is

52(.7753 — .6526)* + 73(.5901 — .6526)> + 41(.6328 — .6526)*
+ 65(.4722 - .6526)* + 36(.9505 —.6526)* = 6.39

A x* with four degrees of freedom of 6.39 is not significant at the .05 level of
significance. So, the correlation between mathematics and reading skill does
not significantly differ from country to country.

Correlated Correlations

The methods in the previous sections have assumed that when two or more
correlations are being compared, different sets of subjects are being com-
pared. Often there is one set of persons or one sample, and two correlations
are computed from their data, and these two correlations are compared.

Ordinarily when two or more correlations are compared, the same two
variables are correlated. But sometimes correlations involving different vari-
ables are compared. For instance, one might wish to compare the correlation
of mother’s education with child’s verbal skill to the correlation of father’s
education with the child’s verbal skill. So, the variables involved in the
comparison of correlations need not be the same.

The Fisher z transformation cannot be wsed for comparing these two
comrelations because the same persons are used. Consider the correlations
between X, with X5 and X, with X3. If the correlation between X, and X; is
1.00, the correlation between X, and X5 must be the same as the correlation
between X, and X;. This is a mathematical necessity. If the correlation
between X, and X, is —1.00, the correlation between X, and X; must be the
same as the correlation between X and X5 but with the opposite sign. Again
this is a mathematical necessity. Thus, the size of the correlation between X,
and X, influences how similar r;3 and ro3 are. The statistical test must take
into account the degree to which X, correlates with X,. This can be done by
using a procedure known as the Williams modification of the Hotelling test.

For this test variable X; is correlated with two other variables, X, and X5.
There are then three correlations:

ri». correlation between X and X,
ria:  correlation between X, and X,
ra3:  correlation between X; and X,

The test of whether the population correlation between X; and X equals the
population correlation between X» and X5 is

(rz—rxa)Vm- D01+ ?’15)

(n~1)  (rg+ ri)?
\/ZK -3 4

t{n-3) =

(1-r
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where
_ 2 2 2
K=1-rp"~nrs —rs" + 2rprars

The gquantity is distributed as ¢ with # — 3 degrees of freedom given the nuil
hypothesis that the population correlation between X, and Xj; is equal to the
population correlation between X; and X;. If the ¢ is statistically significant, it
is concluded that the difference between the two correlations cannot be
explained by sampling error.

The test just described has one variable (X3) that is in both correla-
tions. Consider a test of the difference between two correlation coefficients
in one sample where none of the variables are the same. There are now four
different variables: X, X,, X4, and X,. They give rise to six different cor-
relations:

ry2:  correlation between X, and X,
rsa: correlation between X5 and X,
ris. correlation between X, and X5
r14: correlation between X, and X,
rz3:  correlation between X, and X5

r24. correlation between X, and X4

At issue is the test that the population correlations between X and X, and
between X3 and X, are equal to each other.

First, the correlations that are being compared are transformed into Fish-
er’s z values: z;; and zz,. The test is

7 = Vi(n — 3212 — z34)
V2 -0 ~ )?

where

Q= (rz—rardrau—rar) + Fu-ranina—rar) + (i —rudtae—rar)
+ (r14 — raar)(raa — raq?)

and
_hat 7
2
This test, called the Pearson-Filon test, is approximately distributed as Z, the
standard normal distribution (not Fisher’s z} under the null hypothesis that the

population correlation between X, and X, is equal to the population correla-
tion between X5 and X,,. This standard normal approximation is quite good if n
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is at least 20. This test was developed by Pearson and Filon (1898) and
modified by Steiger (1980).

Power.  Ordinarily tests of correlations are somewhat more powerful when
computed from a single sample than from muitiple samples. Nonetheless, the
power of the test of the difference between independent correlations is so low
that being more powerful still means the test of cormrelated correlations has
relatively low power. It should be noted that in some special cases, the power
in the one-sample case can actually be lower than in the two-sample case.

Example. The illustration is taken from Jacobson’s (1977) research on the
fear of peers among infants. He studied 23 infants and measured their
cognitive development and their attachment to a parent when they are pre-
sented with a novel stimulus, Research in developmental psychology has
shown that for very young children, intelligence and fear are positively
associated. The child needs to have the intelligence to realize that a stimulus
may be harmful. But as children mature, it is the inteliigent children who are
less afraid and feel less need to seek a parent for comfort. The older children
tealize that the novel stimulus is not harmful.

Two different correlations are to be compared. One correlation is between
cognitive ability and fear for young infants and the second is between the
same two variables for older infants. Jacobson’s study confirms the theory.
The correlation between cognitive ability and fear is .416 for infants of ten
months, which indicates that the smarter children are more afraid. The
correlation is —.413 between cognitive ability at ten months and fear at twelve
months, which indicates that the smarter children are now iess afraid. The
correlation between fear over the two-month period is —.343. Fear at ten
months is denoted as X, fear at twelve months as X5, and cognitive ability as
X;. So the correlations are

iz = —.343
3 = 416
Faa = —.413

These are correlated correlations that share one variable in common and that is
the cognitive development measure. Using the Williams modification of the
Hotelling test, the formula is

(=413 - 416)V22[1 + (-.343)]

22 (~413 4+ .416)% 5
— 1 - (-,
\/;KZO 1 (1 - (-.343)]

1(20) =

where

K = 1 = (=343)% - 4167 — (—.413)* + 2(-.343)(.416)(-.413)



282

Part 3 / Inferential Statistics

The valve of X is .657 and the ¢(20) is —2.622, which from Appendix D is
statistically significant at the .02 level. Thus the correlations are significantly
different at the .02 level of significance.

Jacobson also measured cognitive ability at twelve months. So, the correla-
tion between cognitive ability and fear for infants at ten and twelve months
can be compared. The correlation between ability and fear is .416 at ten
months. At twelve months the correlation becomes —.408. These are two
correlated correlations that share no variables in common. The variables are
denoted as follows:

X;: ten-month cognitive ability
X5: ten-month fear

X3 twelve-month cognitive ability
X4 twelve-month fear

The six correlations between the four variables are:

riz2 = 416
rys = —.408
rs = .556
rg = —413
Iy = =015
g = —-.343

The correlations that arc to be compared are .416 and —.408. Their Fisher’s z
values are .443 and -.433, (To increase accuracy, Appendix F is not used and
the z’°s are directly computed.) The average of ry2 and rqy is

416 + (-.408)

004 =
' 2

The value of Q is

[.556 ~ (—.075)(.004)][-.343 ~ (~.075)(.004)]

+ [-.413 — (.556)(.004)][-.075 — (.556)(.004)]

+ [.556 ~ (—.413)(.004)][-.343 — (—.413)(.004)]

4 [=.413 — (~.343)(.004)][-.075 — (~.343)(.004)] = —.319

Now the Pearson-Filon test gives
7 = V20[.443 — (-.433)] _
V2 — (-.319)(1.000)

which from Appendix C has a p value of .0102. Therefore the correlations
between fear and cognitive ability are significantly diffcrent at ten and twelve
months.

2.57
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Test of Regression Coefficients

In this section tests of regression coefficients are presented and the following
cases discussed:

1. a single coefficient equal to zero,
2. two independent coefficients equal to each other, and
3. two correlated coefficients equal to each other.

As will be seen, tests of regression coefficients are more computationally
complex than tests of correlation coefficients.

Single Regression Coefficient

The regression equation in which the variable X is the predictor and the
variable Y is the criterion is

Y=a+beX+e

As an example, consider the number of packs of cigarettes smoked per day as
the predictor variable and life expectancy in years as the criterion variable.
Research has shown that the coefficient is about —4.0. That is, for every pack
~of cigareties smoked per day, one lives on the average four fewer years.
The test that a regression coefficient byy is not significantly different from
Zero is
V' SSy

t(n-2) = b ”XS
¥YX

where sy.x is the standard deviation of the errors (see Chapter 6) and equals

' SSy — byx?SSy
=\ T

The 8Sy and SSy are the sum of squares for variables X and Y, respectively. In
analysis of variance terms, they are the sum of squares total. They equal

SSx = J(X — Xy

and
58y = S(¥ - ¥P
Their computational formulas are
X 2
8Sx = ¥X* - QX7
(3
¥ 2
SSy = ) ¥Y? — (_E___)_

n
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An alternative and simpler way to test byy is to convert byx to ryy by the
formula ,

Sx

Sy

The correlation coefficient can be tested for significance. The resulting 7 value
is the same as would be obtained by a direct test of byy. This fact can be used
for determining the power of the test. One converts b to r and uses Table 16.1
to determine the power and Table 16.2 to determine the 7 necessary to achieve
a given level of power.

If X and Y are reversed by having Y predict X, the test of a regression
coefficient in which ¥ predicts X or byy is

rxy = byx

rn2) = LV
Sx-y
where
SSx — bxy°SSy
Sy = \[—

n—2

The value of 1 will be the same regardless whether the test is of byy, byx, or

Txy-
As an example, assume that byy is 1.5 and S8y 1s 33.5 and SSy is 140.2
and n is 131. The value of sy.;*° is

140.2 — 1.5%(33.5) _

.503
129 >
The test of the slope is
1(129) = L3V335 _ 12.241
vV .503

which is statistically significant at the .001 level of significance.

Two Independent Regression Coefficients

In this case there is a pair of regression coefficients computed from two
different groups of persons. For instance, there are regression coefficients for
both males and females of the effect of cigarette smoking on life expectancy.
The coeificient for males is —4.32 and for females the value is -3.93. That is,
cigareite smoking reduces life expectancy more for males than for females.

The hypothesis of a difference between two regression coefficients is
simnilar to the hypothesis of an interaction in two-way analysis of variance.
Both evaluate whether the effect of one variable changes as a function of
another, In two-way analysis of variance the two independent variables are
measured at the nominal level of measurement. In the regression case one
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independent variable is at the interval level of measurement and its linear
effect on the dependent variable is presumed to change as a function of a
dichotomous independent variable. ‘

In the restricted model there is a single slope, and in the complete model
there is a slope for each group. The regression coefficient in each sample is
computed. These coefficients are denoted as b, and & for the two samples. At
issue is whether the difference between the two coefficients can be explained '
by sampling error.

The test statistic is

by — by

(1 ]
syx\=— + —
"XV Ssy,  SSy,

where SSy and SSy, are the sum of squares for X for the first and second
groups, respectively, and
\/5er + SSy, — 5,288, — b,7SSx,
Sy.x — :
ny + Hy — 4

t(ny+n—-4) =

or, alternatively,

(m — Dsyx? + (1 — Vsy.x,
Syx =
nq + Hay — 4

The formula for sy.x is the pooled error standard deviation. That is, it is a
pooling or averaging of the two error variances, each weighted by its degrees
of freeodm. This test seems to involve quite a bit of tedious computation.
Actually it involves little more than computing and testing two regression
cocificients.

As with the difference between two correlation coefficients, the power of
the test of the difference between two regression coefficients is quite low.
Even if the slopes are quite different, the sample sizes must be quite large
before one has a reasonable chance of detecting that the slopes are indeed
different.

If the null hypothesis that the regression coefficients are equal is not
rejected, the two regression coefficients can be averaged by the fotlowing
formula:

b = b SSy, + bySSy,
77 SSy + S8y,
The term b, is called the pooled regression coefficient. The pooled coefficient

can be viewed as a weighted average where the weights are the sum of squares

of the predictor.
The pooled regression coefficient can be tested for significance using the
formula
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b,\/(SSx, + SSx)

Sy-x

tm+ny4) =

where sy.y is the pooled error standard deviation.

The above formula can be generalized to the case in which there is more
than one regression coefficient. The generalization, which is found in ad-
vanced texts (Winer, 1971), is similar in its computation to a one-way
analysis of variance.

As an example consider a researcher who investigates the effect of attitudes
about wearing seat belts on behavior for those who heard a series of com-
munications about the importance of wearing seat belts and a group who did
not. The criterion is denoted as B for behavior and the predictor as A for
attitude. The results are as follows:

Communication

Heard Did Not

by .58 . .23
S8z 68.1 56.3
S8, 25.0 19.1
R 60 60

The pooled error standard deviation is

68.1 + 56.3 — .58%(25.0) — .23%19.1) _ 996
60 + 60 - 4 T

The test that the slopes differ is

1(116) = 58 - 23 = 1.156

A I 1
996\ — + —
i 250  19.1

This value is not statistically significant at the .05 level. Therefore, the slopes
do not significantly differ. '
The pooled slope is

58(25.0) + .23(19.1) _

42
25.0 + 19.1 s

The test that the pooled coefficient equals zero is

428V (25.0 + 19.1)

(116} = 006

= 2.854

This value is statistically significant at the .001 level. So, attitnde toward seat
belts significantly predicts behavior across both communication groups.
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Twao Correlated Regression Coefficients

This case is identical to the previous case except that the regression coeffi-
cients are computed from the same sample. For instance, does the number of
siblings better predict fourth-grade vocabulary skill than fifth-grade vocab-
ulary skili? If the same persons were measured at fourth and fifth grades, the
regression coefficients are computed from the one sample and are correlated.

To test whether these coefficients are the same, the changes in vocabulary
skill are computed by subtracting fourth-grade vocabulary scores from fifth-
grade scores. This change score would be the criterion, and pumber of
siblings would be the predictor variable in a regression equation. The test of
the coefficient from this regression equation would evaluate the difference
between regression coefficients. So if X; is used to predict X, and X3, to
evaluate the difference between b5, and b3 the regression coefficient b _py; is
computed. As with the paired ¢ test described in Chapter 13, difference scores
can be used to test hypotheses with paired data.

Choice of Test

Throughout the entire chapter an obvious question arises. Should the test of
association be made using a correlation coefficient or regression coefficient?
In the case of a single measure of association, the choice of the significance
test does not matter. That is, the ¢ value is the same regardless of whether r or
b is computed. However, when two or more measures of association are
compared, the result from a test of the regression coefficients differs from the
result from a test of the correlations. Which measure is to be preferred?

There are three important factors that can guide the decision. First, if there
is a clear causal ordering of the two variables, then the regression coefficient
is preferred. Because a regression coefficient assumes a causal ordering (the
predictor causes the criterion) and a correlation coefficient does not, a regres-
sion coefficient is the coefficient of choice when the variables can be causally
ordered. '

Second, if the variances of the variables are not the same in both groups,
the regression coefficient is preferred. As explained in Chapter 7, correlations
are affected by variability. Variables with less variability tend to exhibit lower
correlations. To evaluate whether two variances are equal the following
statistical tests can be employed. For two independent groups, the ratio of
sample variances is computed:

2

5'22

8y

where 5, is greater than s,°. If the variances are equal in the population,
5,25, has an F distribution with , — 1 degrees of freedom on the numerator



288

Summary

Problems

Part 3 / Inferential Statistics

and ny — | degrees of freedom on the denominator. For this test, the p value is
doubled because the F ratio is formed by always putting the larger variance on
the numerator. If there is a single sample and the purpose is to test whether the
variance of X is different from the variance of X,, begin by computing X; —
X, and X, + X5. Then correlate the difference, X; — X, with the sum, X, +
X,, and test whether it is significantly different from zero. The test of this
correlation evaluates whether the two variances are equal.

Third, if the unit of measurement changes from group to group, the
correlation coefficient is preferred. Thus, for example, if the groups are
French and English children and the variables are vocabulary and intelligence,
a correlation should be used because different tests would be used in the
different countries. However, if males and females within a country were
compared, the regression coefficient would be preferred.

Tests of a regression coefficient or a correlation coefficient are accomplished
by a ¢ test with degrees of freedom of sample size less two. Tests of two or
more independent correlations is aided by the Fisher's r to z transformation.
The Fisher’s r to z transformation (not to be confused with the Z or standard
normal distribution) makes the distribution of the transformed cosrelation
approximately normal. The Fisher’s z transformation can be used to pool
correlations computed across different samples as well as test whether the
correlations are equal.

Sometimes one seeks to compare two correlations that are computed from
the same sample. These correlations are called correlated correlations. When
correlations are themselves correlated, the tests are computationally com-
plicated but straightforward. When the correlated correlations involve three
variables, the Williams modification of the Hotelling test is used. When the
correlated correlations involve four different variables the Pearson-Filon test
is used.

A test of a single regression coefficient is identical to the ¢ test of a single
correlation coefficient. Also, two regression coefficients from different sam-
ples can be tested for equality. If they are equal, they can be pooled and the
pooled coefficient can be tested to determine whether it is different from zero.

The decision of whether to test either the correlation or the regression
coefficient is aided by considerations of causal ordering, equal variances, and
unit of measurement.

1. According to Pulling et al. (1980) the correlation between age and
susceptibility to glare is .742 for 148 subjects. Test whether the popula-
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tion correlation between the two variables is different from zero. Interpret
the result.

. Convert the following correlations to Fisher z values:

a. =13 b, 07 c. 9 d. .73
e. .41 f. =32 g =21 h. .53

Convert the following Fisher z values to correlation coefficients:

a. -8 b.-43 c. 91 d. .06
e. .19 f 39 g -25 h -1.03

. Given byy = .31, n = 44, Sy = 31.93, and SSy = 22.41, test whether

the population regression coefficient is significantly different from zero.

Evaluate whetﬁer the population correlations are equal if r; = .23, r, =
A8, ny = 212, and n, = 136.

. Given rxy = .39 and n = 84, test whether the population correlation is

significantly greater than zero.

. Variables 1, 2, and 3 are measured on the same set of persons. Test

whether the population correlation between variables 1 and 2 is equal to
the population correlation between variables 1 and 3 if r;; = .28 and ry5
= 45, The correlation between X, and X, 1s .63 and n = 175.

Given

Yia = .43 Fg = .10
r3qg = .14 Fag = 16
iy = .55 Fogq = 49

and n = 145, test whether the difference between r |3 and r»5 is statistical-
Iy significantly different from zero. Test 2lso whether r 5 is significantly
different from rig4.

Given the following,

Males Females
by .23 44
S8y 44.5 38.2
88y 63.2 58.9
n 68 40

test whether the slopes are different from one another. Pool the two
slopes and test whether the pooled slope is different from zero.

The following correlations are taken from Rasinski, Tyler, and Fridkin
(1985)
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11,

12.

13.

14,

15.

16.

Sample Correlation n
1 .69 137
2 46 108
3 .56 132
4 .66 115

Average them using the Fisher r to z transformation. Test whether the
pooled correlation is significantly different from zero. Also test whether
the correlations significantly differ from each other.

Evaluate whether a correlation of .43 is statistically significant with a
sample size of 68.

What is the power of the foliowing tests?

r n
a. .1 10
b. .5 40
c. .3 100
d. .1 200

For the following cases, how many subjects would be needed to achieve
the desired Ievel of power?

r Power
a. .1 .50
b. .5 .25
c. .3 .90
d. .5 50

According to Holahan and Moos (1985), the correlation between seeing
oneself as easy-going and feeling that one’s family is supportive is .21 for
267 men. Test whether the correlation is statistically significant.

A sample consisting of 76 females was tested by Schifter and Ajzen
(1985). These women’s weight loss correlated .41 with the perceived
control in losing weight and .25 with intention to lose weight. The
correlation between intention and control is .36. Test whether perceived
control correlates significantly higher with weight loss than perceived
control correlates with inteniion.

According to Neff (1985), the relationships between education (E) and
the reporting of depressive symptoms (D) are:

Whites Blacks

bpe =023  —.0510
S 47 .59
Sg 2.19 2.20

n 658 171
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a. Test each of the regression coefficients for statistical significance.

b. Test whether the coefficients are significantly different from each
other. ‘ .

c. Pool the coefficients and test whether the pooled coefficient is differ-
ent from zero.

17. Given that 7 = 148 and

iz = .67 Fia = .40 .r23 = .26
Y3y = 21 Yla = .53 Faq .19

Test whether the correlation between variables one and two is significant-
ly different from the correlation between variables three and four.

18. For the following correlations from three different groups of persons

r "
.61 96
.23 39

.15 76

a. Average the correlations using Fisher z.

b. Test whether the average correlation is significantly differeat from
ZET0.

c. Test whether the correlations differ from each other.
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Models for Nominal
Dependent Variables

The preceding five chapters discussed models in which the dependent variable
is assumed to be measured at the interval level of measurement. In this
chapter models are considered in which the dependent variable is measured at
the nominal level of measurement. And in the final chapter the dependent
variable is assomed to be measured at the ordinal level of measurement.
Techniques that do not assume an interval dependent variable are sometimes
referred to as nonparametric or distribution-free methods. The term dis-
tribution-free is preferred because so-called nonparametric tests do test hy-
potheses about parameters. Methods that presume normality and homogeneity
of variance such as the two-sample ¢ test, analysis of variance, and regression
will be called distribution-tied methods.

There are three major reasons for employing the methods described in this
chapter and the next. The first reason is that sometimes the data are clearly not
at the interval level of measurement. The dependent measure may be a set of
ranks or a set of categories. In these cases it would be clearly inappropriate to
use the methods described in the previous five chapters. So if the level of
measurement of the dependent variable is clearly not at the interval level
of measurement, the methods presented in this and the next chapter are appro-
priate.

The second use of distribution-free procedures is that one may be reason-
ably confident that the dependent variable is at the interval level of measure-
ment, but one is worried about the assumptions made to perform a f or F test.
In particular, one may be especially concerned that the assumption of a
normal distribution for the residual variable is false. The dependent variable
may be highly skewed or bimodal, and so it is quite likely that the residual
variable does not have a normal distribution. One then desires to do a
statistical test, but one is unwilling to make assumptions concerning the
distribution of the residual variable. Becanse distribution-free methods make
no assumptions concerning the distribution of any of the variables, they can
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be used with bimodal or bighly skewed distributions. This is why these
methods are called distribution-free.

If the residual variable does have a normal distribution and all the other
assumptions are met, there is a cost in not doing an analysis that preswmes the
interval level of measurement. The techniques described in this and the next
chapter have less power than the procedures described in the previous chap-
ters when the assumptions made by distribution-tied tests are true. Thus
analysis of variance and the two-sample ¢ test are more powerful statistical
procedures than the distribution-free procedures described in this and the next
chapter. However, if the classical assumptions of normality and homogeneity
of residvals do not hold, the p values obtained from analysis of variance are.
not correct and are usually too liberal, resulting in too many Type I errors. It
can even happen that for some distributions, a distribution-free method is
more powerful than a distribution-tied method.

A distribution-free test is ordinarily less powerful than its distribution-tied
cousin because the distribution-free test ignores the interval information in the
data. Consider the following patiern of numbers of two samples A and B.

A 1,2,3,6
B: 7,8,9 12

There is no overlap in the numbers and the means (3.0 for sample A and 9.0
for sample B) differ by six units. Consider the pattern of the following
numbers from two samples.

A 1,2,3,6
B: 107, 108, 109, 112

Again there is no overlap, but now the means (3.0 for sample A and 109.0 for
sample B) differ by 106 units. A distribution-free test would see no difference
between the two patterns, whereas a distribution-tied method would see the
second pattern as more convincing evidence that the two groups differ.

However, distribution-free tests do have their advantages. Distribution-tied
tests believe even the most anomalous aspect of the data. Consider again the
first pattern of the numbers of two samples A and B:

A 1,2,3,6
B: 7,8,9, 12

There is no overlap in the numbers and the means differ by six vnits. Consider
the following numbers from two samples.

A 1,2,3,6
B: 7,8,9,120

The numbers are exactly the same except that the last number in the B sample
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is ten times larger in the second pattern. The distribution-free test would see
no difference between the two patterns, whereas a distribution-tied method
would see the second pattern as much more convincing evidence that the two
groups differ even though the value of 120 would appear to be an outlier.

The third reason for choosing a distribution-free test is that it tests a
different null hypothesis from the null hypothesis tested by the distribution-
tied analog. For instance, consider the following two samples.

A 1,2,3,3,4,4,4,5,5,5,6,6,7,8
B: 1,1,1,2,2,2,2,7,7,7,7,8, 8,8

Both groups have means of 4.5, but clearly the groups differ. Sample B has
more exireme scores than sample A. A distribution-free test can reveal such a
difference, but a 7 test cannot, '

Although there are clear-cut cases in which a distribution-free statistic is
clearly superior to its distribution-tied cousin, the choice between the two may
be more a matter of taste and custom than of right or wrong. For instance,
researchers in medicine are much more likely to employ a distribution-free
method than researchers in economics, even though data in medicine are no
less likely to be normally distributed than in economics. Perhaps the prefer-
ence is explainable by need to be somewhat more conservative when lives are
at stake than when dollars are. I suspect, however, that the real reason has
more to do with custom than anything else.

In cases in which the researcher is in doubt about the type of analysis, both
types of tests might be employed. Most of the time the two sets of results
agree. In such a case the distribution-tied tests are reported with mention that
the distribution-free resnlts are in essential agreement. In cases in which the
analyses are in conflict, vsually the distribution-free results are reported
because they tend to be more conservative.

This chapter considers distribution-free tests in which the dependent vari-
able is at the nominal level of measurement. Two basic types of models are
considered. In the first, hypotheses concerning the distribution of a nominal
dependent variable are tested. In the second, both the independent and
dependent variable are at the nominal leve} of measurement. For this second
model, either the scores can be independent across levels of the independent
variable or they can be nonindependent. Different analysis strategies for
models are needed when the groups are independent and when they are
nonindependent.

First, this chapter shows how to test whether a nominal variable affects a
second nominal variable in which the groups are independent. This test is
commonly called a x? test of independence. Tts distribution-tied analogs are
the two-group ¢ test, one-way ANOVA, and regression. The second test
considered in this chapter is the McNemar test, which evalvates the effect of a
dichotomous nominal variable on a dichotomous dependent variable in which
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the groups are nonindependent. Its distribution-tied analog is the paired ¢ test
which was presented in Chapter 13. The final test that is discussed evaluates
the adequacy of an a priori prediction of a nominal variable’s distribution. The
test is commonly referred to as a y? goodness of fit test. Its distribution-tied
analog is a ¢ test of a constant which is presented in Chapter 12.

As was explained in Chapter 8, for a nominal variable the data can be
converted into frequencies. A frequency of a category equals the total number
of objects for the category of the nominal variable. For the statistical tests
presented in this chapter, the y? distribution is the sampling distribution that
is employed. In all cases the distribution of the test statistic is approximately
x?. The test statistic for these y tests always compares the observed or actual
frequencies to those frequencies expected under a restricted model.

Test of Independence of Two Nominal

Variables

TABLE 17.1

In this case there are two nominal variables and the issue is whether the two
variables are associated. One variable may be distingwished as independent

- and the other dependent or they may not be, Such a distinction does not affect
‘the p value but it does affect the interpretation of the result.

As an example, consider a study by Brown (1981). He had a pair of
persons stand in a mall talking to one another. Persons approaching the pair
could either walk through the pair or walk around. Brown varied the racial
composition of the pair. They were either both black, both white, or mixed
race. So the independent variable is racial composition of the pair, and the
dependent variable is the behavior of the subject: walking through versus
around. A total of 508 subjects were observed, and the results are shown in
Table 17.1.

The first row of the table consists of those who walked through. For
instance, a totat of 125 persons walked through the black pair. The second
row consists of those who walked around. The final row is called the set of
column margins and consists of the number of persons in the sample for type

Observed Frequencies for the Brown (1981) Study

‘Racial Composition

Behavior Black White Mixed Total
Through 125 67 65 257
Aromd € 76 108 251
Total 194 508

143 171
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of pair. The final column contains the row margins. They give -the total

number of persons who walked through and around. The number in the
bottom right-hand corner, 508, is the total number of persons in the study.

As discussed in Chapter 8, a table of frequencies is, by itself, not very
interpretable. To increase interpretability the percentage of those who walked
through for each racial composition is computed. Percentages are computed
for each column because racial composition is the independent variable and
behavior is the dependent variable. The result is shown in Table 17.2. The
subjects are most likely to walk through the pair when the pair is black and
least likely when the pair is mixed. Interestingly, the mixed-pair percentage
does not fall halfway between the black and white pairs.

It might be asked whether these results could be explained by sampling
error. Is it possible that, by chance, the subjects in the black condition just
happened to be persons who would walk through any pair? Can the hypothesis
that the racial composition does not affect behavior and that the observed
differences are due to sampling error be rvled. out?

If there is no association between the two nominal variables, then it is said
that the two variables are independent. Thus, the complete model assumes
that the two nominal variables are associated and the restricted model is that
the two variables are independent.

To evaluate the restricted model, it is necessary to estimate the number of
subjects who would walk through the black pair if the variables of racial
composition and behavior were independent. The actual or observed number
is compared with the frequency expected if the two variables were in-
dependent.

The expected frequency for a given cell equals the row margin times the
column margin divided by the total number of persons. {Note that frequen-
cies, not proportions, are used.) So, the expected number of persons who
walk through the black pair is the row margin (257) times the column margin
(194) divided by the total number of persons (508) or

(257)(154)

= 98.15
508

"TABLE 17.2 Percentages by Column for the Brown (1981) Study

Racial Compaosition
Behavior Black White Mixed

Through 64 47 38
Around 36 53 62
Total 100 100 100
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It is not at all unusual for the expected frequency to be a noninteger value.
Normally the expected frequencies are computed to two decimal places.

The expected frequency is computed for every cell of the table. For the
example, for the six cells of the table the expected frequencies are as shown in
Table 17.3.

Note that the row and column margins of the table of expected frequencies
are exactly the same as the observed frequencies. This mathematical necessity
(within the limits of rounding error) can be used as a computational check to
see whether the expected frequencies aré computed correctly.

Now the observed frequency minus the expected frequency is computed for
each cell. With these differences for each cell of the table the following is
computed:

(observed minus expected)?
expected

and this quantity is added across all the cells of the table. This sum has
approximately chi square distribution under the restricted model of in-
dependence. The degrees of freedom given r rows and ¢ columns in the table
are as follows:

degrees of freedom = (¥ — 1)(c - 1)

For the racial composition example, there are two rows and three columns.
Thus, (r— 1)(c — 1) equals 1 times 2, or 2. The chi square test of independence
is

(observed minus expected)?

2 . . =
X 1=D(e-1)] sum expected

The observed frequency is denoted as ¢ and the expected frequency is
denoted as e. The mathematical formula for the chi square test of in-
dependence is

(0 - &’

X -1e-Dl=3 —

TABLE 17.3 Expected Frequencies for the Brown (1981) Stedy

Racial Composition
Behavior Black White Mixed Total

Through 98.15 72.34 86.51 257.00
Around 95.85 70.66 84.49 251.00
Total 194.00 143.60 171.00 508.00
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The x*(2) for the example is 26.49. Using Appendix G, the p value for the
value of y2 is less than .001, and so the null hypothesis that behavior and
racial composition are unrelated is rejected. The differential probability of
walking through racial pairs cannot be explained by chance.

For 2 X 2 tables (that is, a table with two rows and two colummns), various
measures of association were presented in Chapter 8. One such measure is the
phi coefficient. As explained in Chapter 8, phi {¢) is a correlation coefficient.
If phi is known, y2 can be computed directly

x*(1) = N¢?
where N is the total number of persons in the study. So y? equals the sample
size times phi squared. This only applies to tests using 2 X 2 tables.

If the chi square is not significant, one concludes that the two variables are
independent; that is, the variables are unrelated. If chi square is statistically
significant, then one concludes that the variables are associated. To determine
the direction of the association, one can compute percentages across Tows or
columns. '

The fact that the degrees of freedom of the y? test are (r — 1){c — 1) is not as
mysterious as might seem. Recal] that the degrees of freedom for interaction
in analysis of variance take on a similar form. They equal the product of the
number of levels of the first independent variable Jess one times the number of
levels of the second variable less one. The total number of cells in the table
are rc, the number of rows times the number of columns. To test for
independence, the row and column margins are used. The sum of the expected
frequencies must equal these row and column margins. There are r row
margins and ¢ column margins. Because both the row column margins must
sum to N, there is one constraint on the row and column margins. So the
number of unconstrained frequencies is the total number of cells less the
number of rows and columns plus one. In terms of symbols,

rc—-r—c+1
which equals
(r—Dic-1)

This equals the degrees of freedom for the y” test of independence.

Assumptions

One major assumption of the x? test is that observations are independent. To
ensure that the assumption is met, the total N must represent that many unique
responses. The same person must not enter the table more than once. The
number of persons must equal the number of observations.

The x? test of hypotheses of association between variables is only an
approximate test. That is, the sem of the observed minus the expected squared
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divided by the expected has only approximately 2 y? distribution under the
restricted model of independence. The p values obtained are only approx-
imate. How good the approximation is depends, in general, on the overall
sample size. The larger the sample size, the better is the approximation. A
good rule of thumb is that the total N divided by the number of cells must be at
least five before the approximation becomes quite good. In terms of symbols:
N must be greater than or equal to Src; that is, N = 3rc,

McNemar Test

The x? test of independence presumes that the observations are independent.
It is not at all uncommon far observations to be linked, In Chapter 13, the
paired ¢ test for scores that are linked or paired across two conditions is
described. Described here is a similar procedure for linked scores in which
both the independent and dependent variables are dichotomies.

Consider an clection survey in which 100 persons are interviewed and 55
favor candidate A and 45 candidate B. These same 100 persons are in-
‘terviewed again and asked who if is that they prefer. Now 49 prefer A and 51
prefer B. The issue is whether the percentage of those favoring the candidates
has changed significantly over time. The independent variable is time, and the
dependent variable is candidate preference. It would not be valid to employ a
x* test of independence because the same persons were interviewed in both of
the surveys. '

To perform the McNemar test, one examines only those who have changed
over time. So, the number who switched from candidate A to B is compared
with the number who switched from B to A, If the independent variable had
no effect on the dependent variable, within the limits of sampling etror, these
two numbers should be the same. The McNemar test evaluates the null
hypothesis that the two types of changers are equal. If this null hypothesis is
false, the null hypothesis that the independent variable has no effect on the
dependent variable also is false.

There are two key frequencies that must be determined to compute the
McNemar test. The persons who switch from one category to the other
category for the dependent variable must be counted. The two frequencies are
designated as @ and d. So, for the example, a is the number who switched
from candidate A to B and 4 is the number who switched from B to A. The

formula for the McNemar test is
(la-d|-1.0?
2 1) e 22—~ 1 =777

x() a-+d

(The expression |a — d| is the absolute value of @ — d. If a - d is negative, the
sign becomes positive.} The degrees of freedom for the McNemar test are
one. The —1.0 term in the numerator is calied the correction for continuiry.
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Such a correction improves the accuracy of the y? approximation. (A similar
correction was proposed for the y? test of independence for 2 X 2 tables.
Recent work has shown that the correction there is not necessary.)

Assumpltions

Even though the two groups are nonindependent, all other scores must be
independent. Also, the x? distribution is used to approximate the sampling
distribution of the McNemar test. If a + 4 is small, the approximation is not
‘very good. One rule of thumb is that @ + & must be at least ten before the test
is performed. Even if the approximation were good for a + d less than ten, the
test would be of little use because its power would be so low.

Example

Consider the following experiment. Mita, Dermer, and Knight (1978) took
one picture of 33 persons, but for each person two different pictures were
developed. One was a usual or regular picture. For the other, the negative was
turned upside down before printing, causing the print to represent a mirror
image of the person photographed. Each person and a person’s friend were
asked which of the two pictures they preferred. The normal print would show
the way that others see the person, and the reversed print would show how the
person would see him or herself as in 2 mimor. According to the social
psychologist Robert Zajonc, individuals generally prefer the familiar, -and so
friends should prefer the regular photo and the persons themselves should
prefer the reversed photo.

The independent variable from this experiment is friend versus self, and
the dependent variable is picture chosen, regular or reversed. Although there
-are 66 persons in the study, only 33 of them are independent because there are
actually 33 pairs of friends. To perform the McNemar test, it must be
determined how many times the friend preferred the regular picture and the
self preferred the reversed picture. According to Mita and his colleagues this
number should be high relative to the number of times that the friend preferred
the reversed picture and the self preferred the regular picture.

The results from the experiment by Mita, Dermer, and Knight are that 15
pairs operated as predicted and 7 pairs were in the opposite direction. The
McNemar test result is

([15-7|-1.0)
15+ 7
The x2 (1) value is 2.23. Using Appendix G, this value does not equal or
exceed the value of 3.84 necessary for it to be statistically significant at the

.05 level of significance. So although the results are in the predicted direction,
they are not statistically significant. There is no statistically significant



Models for Nominal Dependent Variables 301

evidence that persons prefer the reversed picture of self and friends prefer the
normal picture. :

xZ Goodness of Fit Test

Sometimes a researcher has a hypothesis about the distribution of a nominal
variable and wishes to ecvaluate it. Consider the following examples:

1. In a study of extrasensory perception, a researcher asks 40 supposed
psychics whether a coin that is flipped is heads or tails. Of the 40 psychics,
24 dre correct and 16 are incorrect. Is this significantly better than 20
correct and 20 incorrect expected by chance?

2. A computer scientist wants to test how random her random number
generator-is. She has a computer generate 1000 random integers from 1 to
10. If the generator is truly random, then each integer should appear 10%
of the time, _

3. A researcher seeks to compare whether enough women are called for jury
duty in a given county of the United States. By using census data, the
researcher determines that 52% of the adult population is female. Of 458
persons called for jury duty 212 are females.

In each of these cases, there is a nominal variable. For the first, it is heads or
tails; for the second, it is integer from one to ten; and for the third, it is
gender. The researcher has some way of predicting the percentage of cases for
B, each category of the nominal variable. The expected frequency for a category
’ equals the total N times the proportion that is predicted for that category. So
for each category of a nominal variable, there is an observed frequency and an
expected frequency.

The observed frequency can be compared to the expected frequency. It

turns out that the expression

(observed — expected)?
expected

sum

has a y? distribution with k — 1 degrees of freedom, where k is the number of
categories of the nominal variable. If 2 is significant, the model or theory
that predicts the distribution is incorrect in some way. If y? is not significant,
the frequencies-are compatible with the theory.

Note that the formula for the x? goodness of fit test is identical to that for
the x? test of independence. The difference between the two tests is in how
the expected frequencies are computed.

Assumptions

The x? goodness of fit test requires that observations be independent. One
consequence of this assumption is that the same person may enter the table
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only once. A second assumption is that all expected values must be nonzero.
If theory predicts that a category has no members, a x? test is not necessary.
One need only see whether the categery has any members. If it does the
theory is falsified. For the y? approximation to be adequate, expected values
should be at least five.

Example

In 1866 the monk Gregor Mendel reported the results of his experiments on
the inheritance of traits. Mendel took seeds that were pure strain yellow and

pollinated them with pure strain green. A total of 529 plants were produced. If

his theory of inheritance were correct, then 25% of the peas produced should
be pure yellow, 25% pure green, and the remaining 50% should be a hybrid
mixture of yellow and green.

What Mendel found was as follows:

Yellow 126
Hybrid 271
Green _13_2
Total 529

At issuc is how well Mendel's theory of inheritance predicts the distribution
of pea plant colors.

Because the theory predicts 25% yellow, 50% hybrid, and 25% green the
expected frequency of plants are '

Yellow: .25 X 529 = 132.25
Hybrid: .50 X 520 = 264.50

Green: .25 X 529 = 132.25

Each of these expected frequencies equails the proportion predicted by the
theory times the total number of cases. The sum of these expected frequencies
is 529, which is what it should be.

Now these expected frequencies are compared with the observed frequenc-
fes.

Plant Observed Expected Observed—Expected
) Yellow 126 . 132.25 —6.25

Hybrid 271 264.50 6.50

Green 132 132.25 -.25

Note that the sum of the observed minus expected is zero, which is a

mathematical necessity. So, for Mendel’s data, the x? is found to be
25y 507 (=.25)%

(=6.25) +650 +( .

132.25  264.50 13225 46

x4 =

‘Using Appendix IG, a value of y? with two degrees of freedom requires a

value of 5.99 to be significant at the .05 level of significance. So y%(2) = .46
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is not statistically significant. The degrees of freedom are two because there
are three categories, making & equal to three, Hence the difference between
Mendel’s obtained distribution of peas and the disiribution expected by theory
can be attributed to sampling error. The results are compatible with Mendel’s
theory.

Other Models for Nominal Dependent

Variables

Summary

There are many more complex models for nominal dependent variables than
those considered in this chapter. For instance, more than one independent
variable may be present and the effect of the interaction between the two
independent variables may be of interest. Or one may wish to test the effect of
a three-level nominal variable on a nominal variable with nonindependent
groups. To estimate and test such models, a general method catled log linear
analysis can be used (Fienberg, 1977; Reynolds, 1977).

The model for log linear analysis is formally similar to an analysis of
variance model. Like the methods presented in this chapter, log linear analy-
sis produces a set of expected frequencies which are compared to the ohserved
frequencies. However, for most log linear models the expected frequencies
require extensive computation, and therefore computers must be used. The
discrepancies between observed and expected frequencies are evaluated by
the y* distribution. Log linear models are used primarily in survey research,
but they could be applied to almost any area of research.

The methods discussed in this chapter were developed for variables measured
at the nominal level of measurement, whereas the methods discussed in the
previous five chapters assume that the dependent variable is measured at the
interval level of measurement. These methods, as well as those for ordinal
dependent variables, are called distriburion-free methods because no assump-
tions are made concerning the distribution of the residual variable. There are
three reasons for using distribution-free methods. First, because the de-
pendent variable may be clearly measured at the nominal or ordinal level of
measurement, the procedures developed for interval data are inappropriate.
Second, the dependent variable may be at the interval level of measorement,
but the researcher may be unwilling to assume that the residual variable has a
normal distribution. Third, the distribution-free test evaluates a different nunll
hypothesis from that of the distribution-tied test.

The x? test of independence is used to evaluate association between a pair
of nominally measured variables. It takes as the restricted model that there is
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no association between the two variables. The x? distribution is used as an
approximation to evaluate the plausibility of the restricted model. It involves
computing the frequencies expected given no association and comparing them
with the observed frequencies. The expected frequency for a cell equals the
cell’s row margin times the cell's column margin divided by the total number
of observations. The degrees of freedom of the test are the number of rows
minus one, times the number of columns minus one.

The McNemar test evaluates whether a nominal independent variable
affects a rominal dependent variable in which the groups are not independent.
To use this test, the number of persons who switch from one category to the
other is determined. The x? test has one degree of freedom.

For the x? goodness of fit test a theory predicts the relative frequencies for
each category of the nominal variable. Like the yZ test of independence, the
goodness of fit test compares observed to expected frequencies. The number
of degrees of freedom is the number of categories less one.

More complicated models for nominal dependent variables can be tested
through the use of log linear models. Like the y° tests presented in this
chapter, log linear models involve specifying a restricted model and making
predictions concerning the expected frequencies. These expected frequencies
are compared to the observed frequencies through the y? distribution.

1. Locate in the x2 table in Appendix G the minimal value of x to achieve
statistical significance.

af  p level

a. 1 .05

b. 5 .01

c. 3 001

d 2 .05

e 10 .01

f 19 .10

2. For the following table compute and interpret the x? test of in-
dependence.
Male Female

Yes 15 30
No 25 8
Undecided 12 20

Interpret the result.

3. A researcher secks to compare- how many women are called for jury duty
in a given county of the United States, in relation to the number of men.
By using census data, the researcher finds that 52% of the population
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is female. Of 438 persons called for jury duty 212 are females. Are those
called for jury duty representative of the general population?

. The following table (Anderson, 1954) presents the relationship between
seeing an ad and buying a product.

See an Ad
Yes No
Yes 138 147
Buy the
Product
No 118 543

Compute a y? test of independence and interpret the resuit.

. Below is a table of the preferences of blacks and whites to be stationed in
a northern and southern camp during World War II (Stouffer, Suchman,
Devirney, Star, & Williams, 1949).

Blacks Whites
North 2027 2024
Regional
Preference
South 2268 1717

Compute a y? and interpret the result.
If one splits persons by where they were born, North versus South, one
obtains the following pair of 2 X 2 tables.

Area of Birth
Regional North South
Preference Blacks Whites Blacks Whites
North 1263 1829 764 195
South 286 672 1982 1045

Compute the x? test of independence separately for those born in the
North and those born in the South. For each group interpret the rela-
tionship. -
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10.

11.

In a study of extrasensory perception, a rescarcher asks 40 supposed
psychics whether a coin that is flipped-is heads or tails. Of the 40
psychics, 24 are correct and 16 are incorrect. Is this significantly better
than the 20 correct and 20 incorrect expected by chance?.

A computer scientist wants to test how random her random number
generator is. She has the computer generate 1000 random integers from 1
to 10, If the generator is truly random, then each integer should appear
about 10% of the time. She finds the following results.

Integer

1 2 3 4 3 6 7 g 9 10

105 99 101 111 85 103 101 96 101 98

Use a x? goodness of fit test to evaluate’ whethér the ten numbers are
equally likely.

. A local politician wants to know if her popularity is improving. She had

surveyed 112 persons and found that 40 thought that she was doing a
good job and 72 did not. In a more recent survey, 50 thought that she was
doing a good job and 62 did not. Given that the two groups are in-
dependent, test to see if her popularity is improving.

For problem 8, assume now that the same set of persons were interviewed
at both times. The complete set of results are as follows:

Time 1 Time 2 n

good good 35
good poor 5
poor good 15
poor poor 57

Is her popularity significantly improving?

In problem § the candidate is rated as good by 40 and poor by 72 in her
first survey. Test the hypothesis that as many persons like the candidate
as dislike her.

An investigator has 27 mothers and fathers listen to recorded cries of their
infant child and the cries of another child. Each parent is asked to identify
the cries of their own child. The results are as foliows:

Father Mother

Correct Correct n
yes yes 5
yes no 1

no yes 9
no RO 12
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Are mothers better able than fathers to recognize the cries of their own
infant?

12. Consider the variables of religion and support for or against abortion,
where the entries represent observed frequencies.

Religion
Abortion Attitude Protestant Catholic Jewish Other
Approve 33 44 14 54
Disapprove 21 65 4 33

Compute a y? test of independence. Interpret the results.
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Models for Ordinal
Dependent Variables

In the preceding chapter it was pointed out that statistical techniques that are
used for variables measured at the interval level of measurement are not
always appropriate. First, the dependent variable may clearly not be measured
at the interval Jevel of measurement. Second, the researcher may be unwilling
to make the assumptions that are required for distribution-tied tests. For
instance, the normality assumption may be clearly implausible. If either of
these cases holds, a distribution-free test may be needed. In this chapter, the
topic is the set of models for dependent variables measured at the ordinal level
of measurement. As explained in Chapter 1, the ordinal level of measurement
implies that the objects can only be rank ordered and that quantitative
differences between pairs of objects cannot be assessed.

In this chapter all models have an ordinal dependent variable. The set of
models to be considered are presented in Table 18.1. The Mann-Whitney U
test is the distribution-free analog of the two-sample ¢ test discussed in
Chapter 13. The independent variable is 2 nominal variable with two levels.
So for a Mann-Whitney test there are two groups of persons. Additionally, the
dependent variable is measured at the ordinal level of measurement. The
Kruskal-Wallis test is the distribution-free analog to one-way analysis of
variance, There are multiple groups of persons with the Kruskal-Wallis test
and so the independent variable is a nominally measured variable. Like the
Mann-Whitney test, the dependent variable is measured at the ordinal level of
measurement.

Both the Mann-Whitney and the Kruskal-Wallis presume that the groups
are independent. If the groups are not independent, then different tests must
be employed. If the independent variable is a dichotomy and the scores in
each group are linked, the sign test is appropriate. The sign test’s distribution-
tied analog is the paired ¢ test described in Chapter 13. If there are more than
two groups that are nonindependent, the appropriate test is Friedman two-way
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TABIE 18.1 Models for Ordinal Dependent Variables

Level of

Measurement

of the

Independent Independent Distribution-Tied

Variable Groups Test Counterpart

Nominal Yes Mann-Whitney t test
(dichotomy)

Nominal Yes Kruskal-Wallis One-way ANOVA
{multilevel) ANOVA

Nominal No Sign test Paired # test
(dichotomy)

Nominal No Friedman two-way Repeated measures
(multilevel) ANOVA ANOVA

Ordinal — Rank-order Correlation

coefficient

ANOVA. Its distribution-tied znalog is the repeated measures ANOVA,
which was presented in Chapter 5.

Finally, if both the independent and dependent variable are measured at the
ordinz] Jevel of measurement, then the degree of association between the two
variables is measured by the rank-order coefficient, sometimes called Spear-
man's rho. This coefficient is the distribution-free analog to the ordinary
correlation coefficient. (Because the independent variable is not nominal, it is
not relevant to refer to independent or nonindependent groups.)

It is important to realize that a distribution-free method evaluates different
null hypotheses than the comparable distribution-tied method. If the different
groups have the same distribution but different medians, the distribution-free
tests evaluate whether the groups have equal medians. If, however, the groups
have different distributions, then the null hypothesis becomes more com-
plicated to state.

For the Mann-Whitney test and Kruskal-Wallis ANOVA, the generai null
hypothesis is that the groups, when considered as a single sample, all have
mean percentile ranks of 50.0. For the sign test and Friedman two-way
ANOVA, the null hypothesis is that, for each pair of conditions, persons are
just as likely to have a higher score in one condition as they are in the other.
‘When presenting these tests, for reasons of simplicity the null hypothesis will
be stated that the groups have equal medians. It should be remembered that
when the distributions are different, the null hypothesis is more complicated.

The rank-order coefficient measures any consistent positive or negative
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relationship between a pair of variables. The ordinary cotrelation coefficient,
or r, measures only the linear association between a pair of variables. So, the
null hypothesis for Spearman’s rho is no positive or negative relationship
between the variables.

The procedures that are to be presented in this chapter for ordinal data
presume that there are no ties. If there are ties, then each score is given the

. mean of the tied rank. So, the following set of scores

5 6,6,6,9,9,12, 13, 13, 13, 13
would yield ranks of
1,3,3,3,55,55,7,95,9.5,95,95

Methods that correct for ties in the ranks for formulas described in this chapter
are described in more advanced texts (Bradley, 1968; Siegel, 1956). Howev-
er, not correcting for ties when there are not many seems to have little effect
on the p values.

When working with ranks there are two useful computational checks. The
first is to make sure that the last rank (given that it is not tied) equals #, the
sample size. If it does not, there is an error in the ranking. The second
computational check is to compute the mean of the ranks. It should equal (# +
1)/2, even if there are tied ranks. If the mean of the ranks does not equal {(n +
1)/2, there is an erfor in assigning ranks.

Mann-Whitney U Test

The Mann-Whitney U test is analogous to the two-sample ¢ test described in
Chapter 13. However, the assumptions concerning normal distribution and
homogeneity of variance are not made by the Mann-Whitney U test. 1t is then
a distribution-free “r test.” The test is fairly commonly used in medicine and
the biological sciences, but it is relatively infrequently used by most social
scientists. Nonetheless, it is an appropriate test when the assumption of
normality seems totally implausible,

The Mann-Whitney U test evaluates not the similarity of the means of two
groups but rather any consistent difference in the mean percentile scores of the
two groups. If the two groups have similar distributions, the Mann-Whitney
evaluates whether the two groups have equal medians. Because the mean and
median may not be the same, even in the population, the f test and the
Mann-Whitney test do not evaluate exactly the same null hypothesis.

The Mann-Whitney test begins with a ranking of all the scores ignoring the
fact that the perscns are in two different groups. Persons are therefore treated
as if they were members of one large group. The ranks then are averaged for
the persons in each of the groups, and the difference is computed. This
difference between the ranks in the two groups will be denoted as Q. At issne
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is whether the difference between ranks is much larger than it would be if the
ranks were assigned randomly.

One way to determine the unusualness of the value of Q is through random
assignment of a rank to each person. That is, the actual data are ignored and
the subjects are rank ordered again, but this time the ranking is done random-
ly. Then with these random ranks, the value of O is computed. If this were
done repeatedly, one would obtain a distribution for Q. One would then
determine just how unusual the obtained value of Q is relative to the values
obtained for @ by using a random procedure. This is the essence of the
Mann-Whitney U test. It essentially computes the difference between the
average rank for the persoms in the two groups and judges whether that
-difference between ranks could have occurred by chance. It does this by
comparing the obtained value of Q to what the value of Q would be if persons
were randomly assigned ranks.

Consider the following simple case:; The number of persons in each group
equals three, The data for the two groups are

Group 1: 12,19, 18
Group 2: 25, 23, 30
The six scores are rank ordered from smallest to largest, as follows:
Group 1: 1,3,2
Group 2: 5,4, 6

The mean or average rank is 2.0 for group 1 and 5.0 for group 2. The
difference between the mean rank of group 1 from the mean rank of group 2 is
3.0. At issue is how unusual the value of 3.0 is. If ranks were randomly
assigned to each of the six persons, the mean rank difference could be
computed. If done enough times, the following mean rank differences with
the following probabilities would be obtained.

Difference in Cumulative
Mean Rank Probability Probability
3.00 .05 .05
2.33 .05 10
1.67 10 20
1.00 15 35

33 15 50
- .33 A5 65
-1.00 15 80
-1.67 A0 90
-2.33 05 95
-3.00 03 1.00

For instance, a difference between mean ranks of 1.00 or greater for two
groups of size three would occur by chance 35% of the time. It can be seen
that the obtained value of the difference between ranks of 3.0 is unusual and
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would occur by chance only 5% of the time. Because a value of —3.0 would
also occur by chance 5%, the two-tailed p value is .10.

For the Mann-Whitney test, the average difference between the ranks is not
the statistic that is computed but rather a statistic that could be used to derive
it. The statistic computed is the sum of the ranks of the group with the smaller
sample size. To see that the sum of the ranks of one group yields the
difference between mean ranks, consider the example of two groups of size
three. If the sum of the ranks for one group is K, then it is a mathematical
necessity that the mean difference between ranks must be 2R/3 — 7. Soif R is
six, the mean rank difference must be —3.0. The advantage of the sum of the
ranks over the mean rank difference is that the sum of the. ranks is always a
positive integer, whereas this is not true of the mean rank difference. This fact
makes it much easier to table the sum of the ranks rather than the mean
difference.

To conduct a Mann-Whitney one proceeds as follows, All of the numbers
are rank ordered from smallest to largest. Then the ranks in the smaller sized
group are summed (not averaged). The sum of the ranks in the smaller sized
group is denoted as R. If both groups have the same sample size, the sum of
ranks of either group can be used. The sample size of the smaller group is
denoted as n; and the sample size of the larger group as n;. The Mann-
Whitney test statistic, U is:

#(n + 1)

= mny +
U nna 20

R

where R is the sum of the »; ranks. The value of U ranges from zero to nyn,. If
the ranks are, on average, larger in the n, group, U is small. If the ranks are
larger, on average, in the n, group, then U is large. So if the restricted model
of equal medians is false, the value of U is either very large or very small. To
determine whether U is unusually large or small depends on the sample sizes.
If both r;, and n, are less than or equal to 20, tables are used. If either is
greater than 20, an approximation is used.

and n; Are Less than or Equal to 20

First the value of U/ is computed. Then the obtained value is compared to
those values tabled in Appendix H. If the value of U is greater than or equal to

‘the larger value in the table or smaller than or equal to the smaller value in the

table, then the restricted model that the medians of the two groups are equal is
rejected. So for instance, if #; = r; = 10, the value of U must exceed or equal
78 to be significant at the .05 level or be less than or cqual to 28, In Appendix
H, the smaller sample size n, is the first column, and #, is the second column.
Four significance levels are given: .10, .05, .02, and .01.
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Either n; or n; Is Greater than 20

In this case, one does not use the tables in Appendix H, but rather relies on the
fact that as the sample sizes increase, the distribution of I/ approaches the
normal distribution, with a mean of

Ry7

2

and a standard deviation of

Hlnz(nl + (5] + I)
12

Using these facts, U is converted into a variable that has approximately a
standard normal distribution under the restricted model. This quantity is
denoted as Zy. That is, from U its theoretical mean is subfracted and the
difference is divided by its theoretical standard deviation. The complete
formula is

_ U~ nmny/2
Vil + np + 1712

Zy

Although the formula looks complicated, it involves only the sum of the ranks
and n, and ny. The quantity Z;, has a standard normal or Z distribution. That
is, given the restricted model, the statistic is approximately normally distrib-
uted, with a mean of zero and variance of one. Appendix C can be used to
determine the p value. The value closest to Zy; (ignoring sign and rounding
down) is located. Then take the probability for Z and subtract it from .5, and
multiply this difference by two. So for Z; = —2.51, the probability is .4838.
The p value is (.5000 — .4838) x 2 = .0324.

As was stated earlier the statistic is only approximately normally distrib-
uted, This means that the p values are only approximate. How good the
approximation is depends on n, and n,. As they get larger, the approximation
gets better. ‘

Examples

Consider the data in Table 18.2. Because the groups have the same sample
size, either group's ranks can be summed. The sum of the ranks in group A is
71. Because n; and n, are both seven, the value of U is

77 + 1)

(N +—2—— i1 =6

Looking this value up in Appendix H, a value of U of six with ny and n,
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TABLE 18.2 Example of Mann-Whitney Test

Sign Test

Group A Group B
Score Rank Score Rank
23 5 34 2
43 9 19 4
53 11 11 1
64 13 13 2
27 7 25 6
82 14 18 3
63 i2 51 10

equal to seven is statistically significant at the .05 level. This value indicates
that the groups’ distributions are significantly different.

Assume that there are two groups, n; = 18, r; = 22, and U = 246. Given
n; = 18 and n, = 22, the expected mean is

(18)(22) _ 198
2
The variance is
(18)(22)(18 + 22 + 1)
12

The square root of 1353 is 36.78. The test that U/ does not differ from its
population mean is

= 1353

246 — 198

z 36.78

= 1.31

.which is not significant. Therefore the distributions of the two groups do not

significantly differ.

Although the Mann-Whitney test does not presume normality or homogeneity
of variance, it is still required that the scores be independent from ome
another. It may happen that scores are paired, as described for the paired ¢ test
in Chapter 13. Each score in a given group is paired or linked to one and only
one score in the other group. Scores can be paired because they come from the
same person, come from a couple such as friends or littermates, or come from
two persons who interact with each other.

A procedure called the sign fest can be used to test hypotheses about the
medians of two samples whose scores are linked. The sign test is very simple.
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The two conditions are denoted as I and II, and it will be assumed that the
same person is in both conditions. (As with any nonindependent group
design, it need not be person that links together the pair of scores, but persons
" are used in the illustration. ) If a person has exactly the same score in condition
I as condition II, that person’s scores are dropped from the analysis and the n
is reduced by one. Like the paired ¢ test, a difference is computed for each
person. So the condition I score is subtracted from condition II score. The
rumber of scores with positive signs is denoted as ¢. If », the number of
untied cases, is less than or equal to 25, then Appendix I is used to determine
significance.
If n is greater than 25, the following Z approximation is used.

| 2c-n|-10
Vn

where n is the number of persons who have different scores and ¢ is the
number of persons whose difference score is positive. (The expression
| 2c~n | is the absolute value, so the sign of 2¢ — n is always positive.) To
determine the p value, the probabilities in Appendix C are used. (See the
discussion of Zy; in the Mann-Whitney section.)

As an example, each of ten nine-year-old children work with a seven-year-
old child on a task. Observers rate the degree of creativity for each child on
the task. The hypothesis is that nine-year-olds are more creative than seven-
year-olds. The data are as follows:

Z

Pair Nine-Year-Old Seven-Year-Old

DD 00 1L R L)
hWD D 00 w320 Lh & )
AW SW R G

[

First, it is noted that because the two scores are the same for pair 3, that pair is
dropped from the analysis. The » now becomes nine. The difference scores
are 2,2,4,4,3,-2,4, 3, and 2. Of these nine differences, eight are positive.
So n is nine and c¢ is eight. Using Appendix I for these values, the result is
statistically significant at the .05 level. So, it is concluded that the nine-year-
olds are more creative than the seven-year-olds.

As a second example consider 45 persons who entered a smioking reduction
program. One year later, 27 persons have reduced their amount of smoking
but 18 increased. Because » is greater than 25, the Z method is used. The
value of Z is
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5 | @27 -45]-1.0
V45

which equals 1.19 with a p value of .234, which is not statistically significant
at the .05 level of significance. Thus the number of persons that reduced their
smoking is not significantly greater than the number that increased.

Kruskal-Wallis Analysis of Variance

The Mann-Whitney test is limited to a dichotomous independent variable,
whereas the Kruskal-Wallis test allows for multilevel independent variables.
Its distribution-tied cousin is one-way analysis of variance. Although Krus-

_kal-Wallis and Mann-Whitney appear to be very different, it is a statistical

fact that Mann-Whitney is a special case of Kruskal-Wallis.

Like the Mann-Whitney U test, the Kruskal-Wallis test begins with a
ranking of all of the data from smaliest to largest. The ranks are summed in
each group. It is the sum of these ranks that are analyzed. Also, like the
Mann-Whitney test, the Kruskal-Wallis test evaluates whether the groups
have any consistent differences in mean percentile rank.

The formula for the Kruskal-Wallis analysis of variance, called H, is

- 3N+ 1}

b

i

12
NN + 1)

where N is the number of persons across groups, & is the number of groups, n;
is the sample size in the jth group, and X; is the sum of the ranks in the jth
group. The quantity H is approximately distributed as y* with k— 1 degrees of
freedom under the restricted model that the medians of all the groups are
equal. Hence a significant y? indicates that the groups differ in their medians,
It has been found that this y > approximation is quite good if the sample size in
every group is at Jeast five.

The formula for the Kruskal-Wallis test looks bewildering. Actually its
rationale, if not its derivation, is quite simple. Imagine that the scores are first
ranked. Then using the ranks, & one-way ANOVA is computed. From this
one-way ANOVA the mean squares for groups would be computed. Such a
mean sguare would take the total of the ranks and square it. These terms are
present in the Kruskal-Wallis formula. Also, the 3(N + 1) term in the formula
is analogous to the correction term for the mean in ANOVA. This mean
square for groups is not divided by the mean square for persons within groups
but rather by a population variance for groups, and that is why the distribution
is ¥ and not F (see Chapter 11). The population variance can be determined
because the scores are ranks, and the variance is therefore known.

Consider the data in Table 18.3. The sums of the ranks in the three groups
are 63, 30, and 78. The Kruskal-Wallis statistic is
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TABLE 18.3 Kruskal-Wallis Analysis of Variancé

Group A Rank Group B Rank Group C ~ Rank

24 4 19 2 53 17
29 7 21 3 46 14
34 10 36 1 39 12
47 15 17 1 ) 13
31 9 30 8 50 16
55 18 25 5 28 6
Svm 63 30 78
12 632 30 782
H=|—"—|[— + =+ —| - 3(19) = 7.05
[18(18 +1j]l6 6 6 (19)

Using the x? distribution with two degrees of freedom, the value of 7.05 is
statistically - significant at the .05 level of significance. So, the restricted
model that the groups have the same population medians is iejected.

Friedman Two-Way ANOVA

As described in Chapter 15, a design in which each person is at each level of a
nominal independent variable is called repeated measures ANOVA. Here, the
distribution-free analog to repeated measures ANOVA is presented. It is
called the Friedman two-way ANOVA.

As in repeated measures ANOVA, each person is at every level of the
independent variable or observations are linked across conditions in some
way. However, with the Friedman test, the null hypothesis is that the groups’
medians, as opposed to the groups’ means, are equal.

To conduct a Friedman ANOVA, scores are separately ranked for each
person. This is different from the Kruskal-Wallis, where the entire set of
scores is ranked. The formula for the Friedman test is

12
nk{k + 1)

where n is the number of persons in the study, k is the number of conditions,
and R; is the sum of the ranks for condition j. ‘
When there are two conditions and £ is two, the Friedman test is essentially
identical to the sign test. Two minor adjustments should be made. First, the
square root of the Friedman y? should be taken to make it comparable to the
sign test Z value, Second, the square root of x? is slightly larger than the Z
value of the sign test because the formula for sign test Z has a 1.0 value

Y R? - 3nk + 1)
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subtracted, which is not the case in the Friedman test. If there are just two
groups, the sign test should be preferred.

The data in Table 18.4 were presented earlier in this chapter. However, in
this instance it is assumed that the data are from six subjects, each of whom is -
in every condition.

In the table, the three conditions are rank ordered for each subject. The
sum of the ranks in the three conditions are 13, 7, and 16. The nis six and k is
three. The Friedman statistic is

(132 + 72 + 16%) - 3(24) = 7.00

12
18(3 + 1)

Using the x? distribution with two degrees of freedom, this value is statistical-
ly significant at the .05 level of significance.

Spearman-’s Rank-Order Coefficient

TABLE 18.4

In Chapter 8 Spearman’s rank-order coefficient was described. It is a measure

. of association between two ordinally measured variables. Spearman’s rank-

order coefficient is denoted by rs. Its formuia is the standard correlation
coefficient applied to ranks. For this measure the scores for each variable are
separately rank ordered. Like r, rs can vary between —1 and +1, and zero
indicates that there is ho association between the two variables,

There are three major reasons for employing the rank-order coefficient
instead of the distribution-tied test. First, the data may be truly ordinal, and
not interval as assumed by the ordinary correlation coefficient. Second, it is
useful in cases where it cannot be assumed that the varables have a normal
distribution. Third, the relationship between the two variables may not be
exactly linear. If as X increases, ¥ increases but in a nonlinear fashion, then
the rank-order coefficient may be a more appropriate measure of association
than the ordinary cormrelation coefficient.

Friedinan Two-Way ANOVA

Person Group A Rank Group B Rank Group C Rank

1 24 2 19 1 53 3
2 29 2 21 1 46 3
3 34 1 36 2 39 3
4 41 3 17 1 42 2
5 31 2 30 1 30 3
6 55 3 25 1 28 2

Sum . 13 7 16
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As discussed in Chapter 8, the rank-order coefficient is an actual correla-
tion between ranks. Besides actually correlating the ranks, there is a com-
' putationally simpler formula for the rank-order coefficient. It is based on the
difference between each pair of ranks for all persons. The formula is

6 2 1),'2
rs=1-—-

n(n® — 1)
where n is the sample size and D, is the difference between ranks for person i.
This formula presumes that there are no ties. If there are ties, the ranks should
be correlated using the regular formula for a correlation.

To evaluate whether the rank-order coefficient is significantly different
from zero, the distribution of ry under the restricted model of no association
can be obtained by randomly assigning the ranks to one of the two variables.
Consider the following pairs of scores.

Person X Y
1 5 3
2 8 9
3 6 4
4 4 1

If the scores are ranked separately for each variable, the following set of ranks
would be obtained.
Rank of

Person
1

— 0 b
— s b

2
3
4

Thus, there is perfect correspondence in the ranks, and the rank order
coefficient is 1.0.

To determine how uvnlikely a value of 1.0 is, the sampling distribution of rg
for n = 4 is derived. The complete set of possible ranks is enumerated; there
are a total 24 possible ranks. These 24 are listed by column, as follows:

1111 1122222233333 344444 4
2233441133441 12244112233
3 4242334141324 141223131 2
4 3 42 32 43 413142 4121323121

Using these ranks for the X variable and the ranks 1, 2, 3, and 4 for the ¥
variable, these 24 pairs of ranks produce ail the possible rank-order coeffi-
cients. There are eleven different rank-order coefficients with the following
frequencies:
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Rank-Order

Coefficient Frequency Probability

1.0 1 .04125

- .8 3 12375

b 1 04125

4 4 16500

2 2 08250

.0 2 08250

-2 2 08250

-4 4 .16500

-6 1 04125

-8 3 12375

-1.0 1 04125

So, the obtained rank-order coefficient of 1.0 would cccur by chance only
4.125% of the time. Allowing for a perfect negative rank-order coefficient,
the exact p value is .08235.

Fortunately, it is not necessary to do all this work. Tables and approxima-
tions are used to test rs. The procedure used to test whether ry is equal to zero
in the population depends on the sample size, If n is less than or equal to 30,
one uses the table in Appendix J. If the observed value of rg equals or exceeds
the tabled value in Appendix I, the value of rs is statistically significantly
different from zero at the appropriate level of significance. So for example, if
nis 15 and rs is .31, it does not exceed the critical values in Appendix J, and
50 the correlation is judged not to be statistically significant.

If n is greater than 30, one uses the ordinary test of a correlation coeffi-
cient.

rs\/n—2
Vl“rSZ

where rg is the Spearman rank-order coefficient and » the sample size. So, if
is greater than 30, the ¢ distribution is used as the test statistic. The use of the
formula is only an approximation. How good the approximation is depends on
n. As n gets larger, the approximation gets better.

To illustrate the computations, consider the following example. A total of
twelve countries are rank-ordered on their economic wealth and their rate of
literacy. The results are

1(n=2) =

Country: A B CDEVFGHT1IJJI KL
Wealth: 5 8 10121 9 3 6 4 2 7 11
Literacy: 6 8 1112 1 7 3 4 5 2 9 10

The sum of the discrepancies squared is 16 and the rank-order coefficient is

18 _ _ om

I- 20022 -1)
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Using the table in Appendix I, it is found that a .944 coefficient with an n of
12 is statistically significant at the .002 level. Thus, the association between
wealth and literacy cannot be explained by chance.

If 40 persons’ intelligence and athletic ability are ranked, the rank-order
coefficient might be .125. The test of this correlation is

125 V40 - 2
V1 - .1252

This value is not statistically significant at the .03 level.

1(38) = = 777

Power Efficiency

To measure the relative power of a distribution-free and a distribution-tied
method, statisticians have developed a measure called power efficiency.
Assume that there are two tests A and B and A is the more powerful test. Let
n, be the number of subjects needed to achieve a given level of power for test
A and »n; be the number of subjects needed for test B to achieve the same
power as test A with n, observations. Because test A is more powerful than

" test B, n, must be less than #,. The power efficiency of test B in relation to
test A is defined as

100 X == percent
ny

So, if the power efficiency of a given distribution-free test is 50%, one would
need twice as many subjects for the distribution-free test to achieve the same
power as with the distribution-tied test.

The power of the Mann-Whitney is comparable fo the power of the
standard two-sample ¢ test. When the set of assumptions hold for the two-
sample ¢ test, the power efficiency of the Mann-Whitney test for moderate
samples is about 95%. This value indicates that there is little loss of power in
employing the Mann-Whitney U test instead of the ¢ test when the distribution
is normal. There exist certain types of distributions for which the Mann-
Whitney U iest has a power efficiency greater than 100%.

The power efficiency of the sign test compared to the paired ¢ test depends
on the sample size. For very small sample sizes (1 = 6), the power efficiency
of the sign test is 95.5%. For very large samples, the power efficiency drops
to 63.7%. '

The power of the Kruskal-Wallis test is measured in its efficiency versus
the F test from an analysis of variance. When the set of assurnptions hold for
the F test, the power efficiency of the Kruskal-Wallis test is about 95%. There
is little loss of power in employing the Kruskal-Wallis test even when the
assumptions required by analysis of variance apply. This 95% figure refers to
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the normal distribution. There exist certain types of distributions for which the
Kruskal-Wallis test has a power cfficiency of greater than 100%.

The power efficiency of the Friedman two-way ANOVA depends on the
number of conditions and the number of subjects. If there are only two
conditions and many subjects, the power efficiency of the test can be as low as
63.7%. If there are either very few subjects or very many conditions, the
power efficiency of the Friedman test can be as high as 95.5%.

The power efficiency of the rank-order coefficient is 21% compared to the
ordinary correlation coefficient. So when the assumptions necessary for
computing the ordinary correlation coefficient are true and r is computed, one
needs 91% of the subjects to have the same power to be able to reject the null
hypothesis as one would need if Spearman’s rho were computed. When the
assumptions necessary for r do not hold, the power efficiency of the rank-
order coefficient may be almost as good as that of the Pearson r, and in some
cases it is even better.

When the dependent variable is a set of ranks or when one is unwilling to
make the assumptions required in distribution-tied statistics, tests that require
only variables at the ordinal level of measurement are useful.

The Mann-Whitney test is used to test whether a two-level independent
variable affects an ordinally measured dependent variable. The test primarily
evaluates whether the two groups have the same median. All the scores are
ranked and the average rank of the two groups is compared. If the number of
observations in both groups is less than or equal to 20, a table is used to
determine statistical significance. If not, an approximation to the standard
normal distribution is used.

When the independent variable is a dichotomy and the dependent variable
is set of ranks and the two groups are nonindependent, the sign fest is
appropriate. The sign test involves determining which observation is larger. If
the number of paired observations is less than or equal to 25, a table is used;
and if greater than 25, a y? approximation is used.

The Kruskal-Wallis test is an extension of the Mann-Whitney test when
there are more than two groups. Like the Mann-Whitney test, all the scores
are initially ranked, and then analyzed. The test statistic, called H, is evalu-
ated by a x? approximation. The degrees of freedom for the test are the
number of groups less one.

When there are multiple groups that are nonindependent, Friedman two-
way ANOVA can be employed. This test involves a ranking of the scores
separately for each subject and then using a y? approximation. Its dis-
tribution-tied analog is a repeated measures ANOVA.

The rank-order coefficient is used to measure association between two
ordinally measured variables. The scores for each variable are first rank
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ordered. The rank-order coefficient is a standard correlation of these ranks.
With this measure the relationship between the variables need not be exactly
linear. If the sample size is less than or equal to 30, a table is used to
determine statistical significance. If n is greater than 30, the standard ¢ test of
a correlation can be used to approximate the p value.

Distribution-free tests make weaker assumptions about the data. They do
have somewhat less power than distribution-tied methods when the assump-
tions mide by distribution-tied methods are true. However, the power effi-

ciency of distribution-free tests is usually in the mid-90s. That is, the compar-

able distribution-tied test has the same power as the distribution-free test with
about 95% of the subjects.

1. For the following data compute a rank-order coefficient, test it, and
interpret the resulis.

Person: 1 2 3 4 5 6 7 8
X: 7 9 11 3 12 4 5 16
Y. 10 7 6 12 4 5 8 3

2. Perform a Mann-Whitney U test for the following data set
A 15, 21, 28, 17, 31, 24, 18
B: 19, 7,15, §,12,19, 10

3. For the following data compute a rank-order coefficient, test it and
interpret the results.

Person: 1 2 3 4 5 6
X 10 4 10 3 15 5
Y: 6 7 6 11 3 R

4. Using a Kruskal-Wallis analysis of variance, test whether the groups’
medians differ.

I 11, 18, 19, 24, 3t
I 19, 27, 15, 8,13
I 15, 12, 21, 29, 17

5. An experimenter investigated the success of three methods of lowering
the level of cholesterol in the blood. Using a Kruskal-Wallis analysis of
variance, test whether the groups’ medians differ.

I. 111, 128, 190, 214, 198
I: 193, 207, 125, 88, 103, 176
o 150, 152, 221, 129, 171
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6. Twelve subjects were measured before and after psychotherapy on an

adjustment scale. Higher scores indicate greater adjustment. The num-
bers are as follows:

Subject Before After
23

1 32
2 27 25
3 31 40
4 32 31
5 26 38
6 25 29
7 25 3
8 24 24
9 33 40
10 22 34
il 36 38
12 29 25

Using a distribution-free test, evaluate whether persons improved after
psychotherapy.

. Subjects were asked to lift three weights and rank order them from

lightest to heaviest. All three weights were identical in objective weight,
but they differed in shape: spherical, conical, and cubical. For ihe 20
subjects the results were as follows.

Spherical Conical Cubical

Heaviest 3 5 12
Middle 9 4 7
Lightest 8 11 [

The numbers in the table indicate the number of subjects who gave the
object that rank. For example, 11 subjects felt that the conical object was
the lightest. Do the three objects differ significantly in perceived weight?

. The following scores are taken from a study that compared two different

methods of increasing vecabulary. The scores of ten persons, five under
each method, are

A: 16, 19, 20, 18, 24
B: 12, 15, 16, 15, 14

On the basis of a distribution-free test, is there any evidence that one
method is superior to the other?

. A program is developed to improve the intelligence (IQ), scores of

preschool children. Two groups of children are randomly formed. Using
a distribution-free test, test whether the program affects IQ score.

Treated group: 109, 123, 141, 119, 133, 117, 118, 120
Contro] group: 106, 193, 114, 120, 116, 107, 98
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10. Twenty persons are randomly assigned to one of two treatments. In the
treatment group, ten persons are taught a series of strategies to improve
their memory. The control group learned noné of the strategies. The
Scores on a memory test are

Memory group: 88, 76, 83, 75, 64, 80, 76, 73, 84, 78
Contro] group: 84, 73, 84, 78, 68, 78, 71, 70, 80, 79
Using a distribution-free test, are the two groups different?

I1. A psychologisi studies the degree of happiness of people at various stages
ir: life. His measure of general happiness varies from 0 to 60, In one
study he compared the happiness of married and single men aged 25.
Using a distribution-free test, is there a significant difference between the
two groups?

Married Single

58 37
45 44
50 59
54 44
49 39
39 60
50 44
51

12. Nine persons were asked to rate the taste of cola A and cola B on a scale
from one to ten. Using a distribution-free test, do persons significantly
prefer one drink to the other?

Person Cola A Cola B

OO0 1 N B L) R e
p—t

~1 00 G0N OO 00 00~

00O N~ L~ O

13. A psychologist is interested in the relationship between handedness and
athletic ability. He measures the athletic ability of three groups of
persons: left-handed, right-handed, and ambidextrous. His results are:

Left-handed: 11, 13, 14, 13, 15
Right-handed: 10, 8, 7, 10, 14
Ambidextrous: 12, 8, 6, 11, 15

Do a Kruskal-Wallis ANOVA to determine whether the groups signifi-
cantly differ.
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14.

15.

16.

17.

Problem 7 in Chapter 14 described a study of the effectiveness of three
different treatments in relieving headache pain. The drugs studied were
aspirin, acetaminophen, and a placebo. Ten different persons took one
drug and rated their pain on a ten-point scale after three hours. The scores
were

Aspirin: 7,6,9,5 3,5,3,2,4,2

Acetaminophen: 5, §,6,4,7,4,6,2,3,7
Placebo: 9,7,8,7,5,4,6,8,3,7

Using a distribution-free test, evaluate whether the groups significantly
differ,

A researcher seeks to compare the marital satisfaction of women who
have been married for varying number of years. She finds the following
(higher numbers, greater satisfaction).

One Year: 56, 48, 57, 41
Two Years: 63, 51, 65, 54
Ten Years: 70, 61, 55, 58

Using a distribution-free test, evaluate the effect of length of marriage on
satisfaction.

The following data are taken from Diehl, Kluender, and Parker (1985}.

Subject ! I i

DS 20 19 21
MM 21 18 20
JH 28 24 31
IS 17 6 10

TA 30 16 25
VS 34 29 32
CJ 21 20 20

Using a distribution-free test, test for an effect due to condition,
In a smdy involving 20 experimentals and 25 controls:

a. The sum of the ranks of the 20 experimentais is 248. Do a Mann-
Whitney test to determine if the groups’ distributions differ.
b. What would be your answer if the sum of the ranks was 3427



Postscript

Models for Ordinal Dependent Variables 327

18. For the following values of the rank-order coefficient and 7, state
whether the correlation is significantly different from zero.

s n
a. —.21 78
b. .45 42
c. .71 12
d .35 20
e. .17 99
f. 47 29
g .46 33
h. —.19 17

In Chapter 1 we began our journey. We have traveled through a sea of
numbers, terms, formulas, and tables. Research in the social and behavioral
sciences brings with it a bewildering array of symbols and terminology. If
used properly, they can help us understand why human beings are the way
they are. But even more important, they can help us understand how we can
come to be more than what we are today.
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Appendix A

Two-Stretch

Transformations of
Proportions: Arcsin,

Probit, and Logit

Fot proportions of .00 and 1.00, the valucs of .0025 and 9975 are used for probit and logit.
Arcsin in radians equals 2arcsinVp, where p is the proportion.
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Two-Stretch Transformations of Proportions

Proportion Arcsin Probit Logit Proportion Arcsin Probit Logit
.00 .000 -2.807 ~5.989 21 1.591 025 .040
.01 200 -2.326 —4.595 52 1.611 050 080
.02 .284 -2.054 ~3.802 .53 1.631 075 120
.03 348 -1.881 —3.476 .54 1.651 .100 160
.04 .403 -1.751 -3.178 .55 1.671 126 201
.05 451 -1.645 -2.944 .56 1.691 151 241
.06 .493 -1.555 -2.752 .57 1.711 176 282
.07 536 -1.476 —2.587 .58 1.731 .202 323
.08 574 -1.405 -2.442 .59 1.752 228 364
09 .609 -1.341 -2.314 .60 1.772 253 405
.10 644 -1.282 ~2.197 .61 1,793 279 447
Al 676 -1.227 -2.091 .62 1.813 305 .490
A2 707 -1.175 =1.992 .63 1.834 332 532
A3 738 -1.126 -1.901 .64 1.855 .358 575
14 767 -~1.080 -1.815 .65 1.875 385 619
.15 795 -1.036 -1.735 .66 1.897 412 663
.16 .823 -.994 -1.658 .67 1.918 .440 708
17 .850 -.954 -1.586 .68 1.939 468 154
.18 .B76 -915 -1.516 .69 1.961 496 800
19 902 -.878 -1.450 10 1.982 524 .B47
20 927 ~,842 -1.386 7 2.004 .553 895
21 952 -.806 -1.325 .12 2.026 .583 944
.22 976 =772 -1.266 .73 2.049 613 995
23 1.000 -.739 -1.208 .74 2.071 643 1.046
24 1.024 - 706 -1.153 .75 2.094 674 1.059
.25 1.047 -.674 -1.099 76 2.118 .706 1.153
.26 1.070 ~-.643 ~1.046 n 2.141 739 1.208
27 1.093 -.613 -.995 .78 2.165 T2 1.266
28 1.115 -.583 ~.944 79 2.190 306 1.325
.29 1.137 -.553 —.805 .80 2.214 842 1.386
.30 1.159 -.524 —-.847 R} 2.240 878 1.45¢
31 1.181 —.496 ~.800 .82 2.265 915 1.516
32 1.203 . 468 -.754 .83 2.292 954 1.586
33 1.224 —.440 —-.708 .34 2.319 994 1.658
.34 1.245 —.412 -.663 .85 2.346 1.036 1.733%
35 1.266 —-.385 -.619 .86 2.375 1.080 1.815
36 1.287 ~.358 -.575 .87 2.404 1.126 1.901
37 1.308 -.332 .—-.532 .88 2.434 1.175 1.992
.33 1.328 -.305 —.490 .89 2.465 1.227 2.091
39 1.349 -.279 —.447 .90 2.498 1.282 2.197
.40 1.369 -.253 —.405 91 2.532 1.341 2.314
41 1.390 —.228 -.364 92 2.568 1,405 2.442
42 1.410 -.202 -.323 93 2.606 1.476 2.587
43 £.430 -.176 -.282 94 2.647 1.555 2.752
44 1.451 -15 —.241 95 2.691 1.645 2.944
45 1.471 -.126 =201 96 2,739 1.751 3.178
46 1.491 —-.100 -.160 87 2.793 1.88% 3.476
A7 1.511 -.075 =120 98 2.858 '2.054 3.892
48 1.531 -.050 —.080 .99 2.941 2.326 4.595
49 1.551 ~.025 —-.040 1.06 3.142 2.807 5.989
.50 1.571 .000 000
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56307 81882 01267 60636 27616 94931 B5877 33199 31923 04259
53170 66366 22597 69962 72660 36044 39661 46332 69063 69126
25441 24626 23769 44450 23392 53407 52835 80126 44220 21071
67767 75065 46060 52061 75922 75232 70485 02836 50285 16779
72158 36963 33973 61639 21384 11576 35060 83597 82196 57280
32677 29310 32886 42903 55303 84893 91062 92422 32258 79833
44262 70799 84371 61764 71740 12999 81527 95516 95997 63680
99218 78661 33220 90874 62120 15759 50368 63479 66303 27346
93070 74521 22764 95558 22262 09234 41209 65445 36943 90999
17536 73852 98382 45537 45349 16219 98549 69084 01392 71552
67357 97691 01644 11410 25441 52188 63424 42944 54006 88783
371779 64441 76173 59967 55136 37006 85750 56453 88846 60510
20213 92212 638812 60050 29080 89076 04321 78746 98507 06600
08921 99991 19084 80209 41627 27679 62120 77491 77637 44282
98842 07646 74416 91041 85667 71803 05700 21238 19419 94011
82280 31234 70089 59339 53797 38971 77804 80586 17913 73601
53589 92380 69774 55115 43007 49929 22053 22325 66889 02919
06830 07729 97336 46918 44137 20443 82949 16470 59820 99197
34600 97147 03860 01831 51246 73016 02354 31569 89891 81715
32719 79038 32970 91334 59276 22827 26529 34705 52333 68289
93105 72681 27993 81924 61702 90623 96750 97357 40916 79958
10092 95893 31966 43320 51706 95684 58690 87194 47942 33952
78348 68540 89975 44952 24521 54655 55386 71593 67767 49552
89096 05026 45642 53609 71573 88574 30753 21154 94450 44575
39034 34286 41125 40477 87507 14672 28411 03839 20589 38887
19878 65654 22974 71760 66679 51058 91689 88490 42003 50851
26570 21824 31589 18059 03149 19063 64797 43655 50702 98695
52585 18854 14107 48507 89515 35040 91648 38762 41920 02459
91104 78369 11514 29603 15251 18561 15864 41773 07080 79707
36189 17014 69188 32238 R7884 87737 80774 21530 43175 48841
82782 54655 29874 23496 BE302 63898 30585 47754 41042 30314
22012 10866 38364 73685 13103 62225 05214 87528 95914 40762
49406 02585 37988 50473 " 58106 03463 59109 11159 00389 00075
59025 49971 71781 22409 15320 06893 25943 86315 49113 27304
43467 70548 84830 60092 78808 89159 52752 82719 36441 42066
97377 83890 19586 30314 43509 71301 82279 67453 55261 60677
15111 08105 20543 01915 01727 T0548 59318 10824 99343 03505
88386 63354 31924 44617 48988 06182 27197 81673 63334 83950
12142 67160 95286 26675 77010 97190 30125 48549 35243 35123
79854 37926 57N 17223 80732 61096 12016 78536 22305 62183
85876 94931 60364 85102 52459 18645 15320 43112 05115 R7654
23099 58336 47273 98863 88888 86775 85709 08775 82321 20937
86402 44492 62413 25587 80565 85646 65048 45245 47105 09485
68269 72973 50577 36754 23601 32781 97252 20777 94701 44115
62873 63061 55094 00034 10301 47754 28285 05680 16533 52522
64337 33743 19000 82802 33847 48674 99134 66449 08419 53107
66428 03714 86211 55658 90644 55701 55178 73978 62371 65152
62622 90205 00347 B6566 72116 85186 40331 95349 73622 07645
46102 13668 05909 45538 72811 57875 97043 99699 34768 59281
12100 90748 47106 98779 86210 91878 69816 55868 40456 57290
53212 43656 65508 16888 07248 06181 01685 33576 82697 02124
10050 97189 28076 53818 20213 90163 74082 41020 85291 23078
83659 51435 42463 86315 98088 31610 26863 57164 11054 19691
01225 72639 53630 27302 51664 45956 58607 38762 43969 96018
57101 80084 07243 44450 T4416 527173 12936 52606 76633 71928
45349 892756 44011 07478 60699 71343 32007 67536 03693 64651
57354 28180 10176 85814 02229 19481 61200 54446 19502 93467
50226 07104 48193 46248 95119 17056 44429 80418 15780 78536

34684 47628 01392 58795 31673 82468 25316 14388 88637 36210



86001
37946
83994
18499
34350
25316
84872
07373
§8051
17160
91689
03651
47105
16993
05617
06161
13856
22472
24312
14902
85959
33597
50117
29875
65759
51539
3186l
49908
50912
76299
20715
77344
41418
06705
64337
11012
39620
42756
15069
50912
43174
85625
71739
97043
53254
35312
35521
02773
23308
32300
22639
89264

24480

21468
76633
£1401
30418
18038
37152

68750
87989
24919
97650
25169
27344
22576
27804
64358

48590

01246
40435
83973
51727
62100
33199
83186
35583
03965
08440
67997
01330
26842
63814
31234
46624
30732
00493
76069
74931
[6805
19649
02501
84057
82718
18938
09360
73852
30815
99532
97817
45538
59925
61430
67871
97942
70046
95851
06976
55073
57959
35500
04527
85520
97441
57039
83839
98444
17349

16324
33388
973717
52793
43844
13271
03525
61451
27741
48653
66638
25023
68017
40707
84370
44680
65843
89431
60239
21593
18875
93655
90727
54592
27114
54550
78180
43676
92902
70945
22598
88846
15069
45182
21635
90100
92442
74919
77637
47440
27365
60155
90602
62037
17494
02062
59360
09799
48862
79351
45475
88803
55303
87130
29665
25651
17536
52167
70234

92003
15299
96646
04885
08566
75943
78495
81548
55994
68917
90623
89954
34287
93049
34203
28934
43446
47168
10406
99657
£4642
33617
16888
00953
56704
51225
54822
33994
59632
99991
23036
93779
94596
79916
23873
94136
60426
90999
54989
21238
58294
33241
17557
78912
85855
07813
11576
86065
42192
25211
03672
47001
23162
02167
50221
39096
35583
09695
28808

06244
12894
44220
94368
58021
28513
98967
64002
17202
51455
60531
40247
81443
80523
28912
22430
53087
14943

- 02940

10552
25751
57060
83785
04613
13858
04530
70276
05784
03065
57352
62413
11723
99636
17871
62539
24772
01267
83743
67139
44931
106301
57311
78557
71029
24395
36232
96792
01769
08754
33889
72702
18080
63793
3316
31004
40916
25651
78682
95537

Random Number Table

32655
90122
70046
92003
76445
41188
03756
83722
01539
72681
18184
57625
06767
86943
15676
11368
93299
81631
92714
47294
62309
57917
51644
63061
11451
14630
91292
61012
41898
52940
12831
41146
54823
72848
16261
01121
47880
74354
59238
43279
22242
56286
65278
65278
77909
19816
10865
22325
77616
74939
34747
73685
11619
66951
580963
05470
26340
39975
64483

46018
51915
86922
93438
16114
99009
84914
18624
42296
02430
39577
99552

25734

61158
50012
37445
64086
76215
17746
31129
59695
48821
41251
80606
11389
76633
20255
87047
19168
60824
55930
49281
83032
01393
48277
67306
02982
98340
97294
44296
79017
51665
01811
74250
12309
60196
61827
54132
63040
44680
42379
00347
61326
70109
68854
04112
16282
31330
52585

25796
82593
54404
09193
15801
42777
59548
34078
36378
33827
95851
90414
87528
55742
63312
78201
71594
49695
61932
97440
85060
9334]
91710
48131
31443
10197
52647
29100
08398
56746
45914
42694
15926
35332
69168
86566
55198
44784
24751
61891
26215
86274
10322
68666
27804
58628
28223
78285
24877

35834
37591
29142
79624
56704
28933
65738
36253
08147

30377
34182
95287
06286
61828
55094
80146
30753
00389
82237

715317

60366
44889
15612
69440
97796
95328
55219
72702
40372
51706
01058
82488
89766
15194
54300
98799
44805
84621
12602
21635
06663
59987
77135
50996
74165
42463
47900
85709
48486
30879
24897
20047
28452
25232
09298
74709
48277
83868
70527
00556
694382
69021
94115
39410
96918
60699
24521
83032

337

87233
49720
41480
83555
92003
87278
87194
10447
76612
04969
13334
19230
43404
03964
19899
09504
92380
85437
09235
81297
21196
47043
78996
33408
31024
91125
29184

67417

23036
15341
62141
83304
96060
20862
75525
78745
50096
07687
70506
57248
80316
75817
45913
15299
02375
25253
04090
07436
74563
90832
74647
44115
19397
18017
59548
63271
45830
27093
26633



338 Appendix B

80355 59297 16825 63522 69015 18854 63083 51142 29414 62560
44639 45036 36734 80628 93153 22953 26737 33492 577129 52689
19669 91502 72116 48947 61159 94011 88344 24333 61744 18060
03024 17683 67181 38260 66302 51309 91230 91334 33764 74730
86127 43446 65843 17934 03818 13835 78432 04215 69314 43153
63626 86022 11723 55952 67474 00284 93864 32405 61284 41146
28703 65864 48151 19983 49574 29059 82321 42693 04613 88573
75420 00787 20506 7974% 44471 19439 85960 06265 91606 03835
97545 08314 70360 046706 45056 90414 50159 89327 15445 05052
89724 09193 42505 61535 47440 59506 17662 62476 71363 11200
43969 21531 81443 21572 43927 46290 32091 93676 53128 42150
54341 64316 29038 52104 27700 68875 37947 51769 54216 13960
L5780 55073 30376 21405 92819 47419 78264 05303 67808 48256
20589 13375 30251 99782 34224 95448 96939 23706 87967 62853
64295 58503 69648 54906 44220 44534 38825 74939 08461 75274
39787 08272 95119 55324 17160 99615 46019 27846 23936 06265
39661 82551 48235 70464 47106 86022 62748 52145 26403 72764
59137 98569 73789 68289 26654 21280 32928 16094 11096 94931
92024 16779 15111 18812 51623 23789 o079 87654 70611 90288
30585 34998 16407 90582 12852 11660 09004 36838 99594 78410
T0360 91520 21594 50682 06746 06223 02438 31025 91230 78578
03651 65947 73120 69419 25901 23831 25567 39640 39578 08607
24814 76361 16658 14462 64965 84057 19670 31819 38406 87194
27908 42150 94073 55533 15947 05010 25247 75232 81192 32739
06704 82008 50451 62058 72511 06850 99678 40770 62288 65696
54676 13166 29414 00828 31966 a7101 73706 94345 74584 02710
65006 57248 74291 41857 84245 25336 93780 07436 13020 64813
31756 30899 29289 52521 24103 79665 05575 46541 65900 63080
49866 52815 37152 (4592 45600 89075 53296 81380 39578 34120
11640 42568 41501 63639 43677 72262 77344 81381 16115 79382
11431 19440 88009 93824 09465 48800 24855 13333 93279 23162
42129 00075 19712 81547 38490 35625 39160 48423 63375 35604
98674 05512 79352 78285 24814 52898 62120 54028 23099 83848
74542 52982 10552 SR001 61033 19314 38825 98402 62998 36880
62915 62936 58984 89536 41794 52103 12894 51853 79184 63396
39026 52020 66512 41439 60280 72890 27658 80878 65132 82969
54299 40101 77051 83137 09381 98319 27323 56369 12852 13709
44555 45580 35395 82593 R5207 47085 55805 46583 17579 75776
21803 86566 84872 09820 80063 37591 56725 20653 71507 85521
81276 §4392 69691 32196 87131 91460 73413 45077 71656 62518
15571 54236 31422 19147 01644 24166 43904 91920 08837 26047
19335 18017 17202 39808 15027 55575 29456 27093 77512 95098
86922 92672 68018 61849 24270 03262 56349 20904 71447 ‘87193
70318 67704 69607 81715 89599 34496 92936 36797 49866 78327
32426 56454 78139 30607 18289 22325 03108 80920 89348 34956
26027 49552 71279 24500 09632 22200 78264 28766 22346 09862
44889 66867 94116 32823 58859 51936 63835 46541 44387 19983
83660 27972 87925 25881 57395 30230 03735 03672 47189 85479
34350 48632 98381 69000 99887 76654 40414 69293 25692 25044
92192 51351 68519 34245 30690 09318 17202 12246 73371 57080
49782 51309 42254 38659 93865 47210 79477 99908 83408 00870
02940 69251 63208 00326 30836 07854 71155 02878 51037 74228
42505 23287 74709 40310 88595 11995 33513 87946 68854 97022
64881 33576 20966 74855 57980 77742 13396 26299 30335 86482
61493 16470 47064 74563 34224 22611 51497 84140 20833 63062
28160 92715 94283 07394 11095 67369 94074 32070 61410 44576
58064 79247 Q7122 42192 83242 29519 83576 38051 17662 49720

42923 56227 30962 47503 41501 27470 64504 72066 93237 96896



80021
60489
78683
28662
04195
98758

05533

19753
34015
42965
39787
17369
70652
93111
79101
21510
14107
50368
24646
31004
63208
13563
77595
47022
17955
82697
35604
69565
79519
58942
01017
98632
47900
41125
71489
34224
21928
29247
48193
75169

62350
96018
16512
41648
90121
81505
35082
67495
99783
48005
33785
74939
88992
96688
14964
63982
61263
25211
77449
33450
13082
35918
20067
84517
46792
27637
45161
17181
62302
00368
50389
30272
58712
55282
38093
24960
36922
90037
05931
01246

07373
81150
96792
90165
24354
24581
41376
17745
98005
24604
43216
95704
27156
81192
01142
30041
12977
93572
15153
20757
55470
61744
85249
67850
53463
86880
11430
70150
08126
67808
93697
30000
19461
05700
33220
45056
86204
99385
28829
17662

51585
44743
74646
51016
40937
13542
38845
85395
20276
13793
34789
51811
31945
45495
61304
47921
74772
08649
19565
77240
48758
03254
09569
36252
527131
28139
30146
27302
89034
34475
81296
49218
56495
72262
65362
03170
35115
91501
78829
87988

82279
98172
83827
31255
35688
90895
90351
27239
95621
90435
03986
29456
62078
95621
22388
37904
35061
07625
49072
52584
13396
25274
80523
73496
98255
49741
19084
00639
89640
79854
63585
34015
87549
15612
14023
74793
91983
59360
70401
20632

Random Number Table

80209
07604
26884
58503
19105
28557
06433
69669
38427
31401
66993
63312
30347
14964
08566
38260
21865
80418
31150
93342
85981
26591
35918
30899
30523
54655
20527
48590
56662
63438
87319
48758
64400
52940
35123
29059
52564
24332
6511
90663

79895
73664
89431
71698
63500
09925
52250

36148

04655
01685
70861
56684
01016
50117
45265
32133
53755
54048
76633
64839
64045
15822
63793
54802
29540
31923
07917
99678
51414
05868
07833
00640
28494
35311
63542
58858
63124
21426
76215
73162

00410
93592
19606
48465
47545
86274
32614
56579
25545
10113
77072
96437
35583
65111
51811
66868
76487
51267
59172
67871
48256
68582
96813
01790
52062
17055
65906
66282
86733
97859
66449
61347
52271
08649
97273
88155
49845
505938
60720
46709

82489
77135
73287
63250
40205
99385
34559
38030
05324
28159
02648
19920
76675
63459

- 76382

08521
53086
05282
56934
02689
36901
52459
43132
03567
26947
06160
36148
10385
23225
66386
35981
24312
24563
33137
41460
43007
33304
05240
52585
68812

339

06558
95349
83137
88322
30188
27721
98444
61932
36294
41690
94471
15382
23706
36085
72388
51016
91250
12079
31024
67662
41271

69670

71552
66491
71426
07687
92798
45161
84057
27302
95935
06014
76821
28515
79791
47880
52062
11326
44366
0757



Appendix C

Probabilities for the
Z. Distribution

The value of p is the probability that a sampled value is greater than or equal to zero and less
than or equal to Z. To determine the probability that a sampled value is greater than or equal to Z,
subtract p from .5.
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342 Appendix C

Zz P Z r Z r

00 0000 .50 1915 1.00 3413
.0f .0040 .51 1950 1.0 3438
02 0080 - 52 .1985 1.02 61
.03 0120 53 2019 1.03 3485
.04 0160 54 .2054 1.04 3508
.05 0199 S5 2088 1.05 .3531
., 06 0239 .56 2123 1.06 .3554
07 0279 57 ‘ 2157 1.07 3577
.08 .0319 .58 ' 2190 1.08 3599

.09 0359 59 2224 1.09 J621
10 0398 - .60 2257 L.10 .3643
11 .0438 .61 .2291 L .3665
12 0478 .62 2324 1.12 3686
A3 0517 .63 2357 1.13 3708
14 0557 - .64 .2389 1.14 3729
1S 0596 65 2422 1.15 3749
.16 0636 .66 2454 1.16 3770
A7 0675 .67 .2486 1.17 3790
.18 ) 0714 .68 2517 i.18 3810
19 0753 .69 2549 1.19 3830
.20 0793 .70 2580 1.20 3849
.21 .0832 N 2611 L.21 3869
22 .0871 ' .72 2642 1.22 3HR8
23 . 0910 : 73 .2673 1.23 3907
.24 0948 14 2704 1.24 3925
.25 0987 75 273 1.25 3944
.26 1026 .76 2164 1.26 3962
.27 1064 77 2794 127 .3980
28 - . 1103 Y 2823 1.28 3997
.29 H4) .79 2852 1.29 4015
.30 1179 .80 2881 1.30 ..4032
) 1217 .81 2910 1.31 4049
.32 1255 .82 2939 1.32 4066
.33 .1293 .83 2967 1.33 4082
34 1331 .84 2995 1.34 4099
.35 1368 .BS 3023 1.35 A1LS
.36 1406 .86 - .3051 1.36 4131
37 1443 .87 3078 1.37 4147
.38 .1480 .88 3106 1.38 4162
39 1517 8% - 3133 1.39 4177
40 1554 90 . 3159 1.40 A192
-4 1591 91 3186 1.41 . 4207
_ 42 .1628 } 92 3212 1.42 4222
’ - A3 1664 .93 .3238 1.43 4236
- 44 1700 .94 3264 1.44 4251
45 - 1736 : 95 3289 1.45 4268
.46 1772 96 3315 1.46 A279
47 1808 97 - .3340 1.47 4292
48 1844 : .08 3365 1.48 4306
1.49 4319

49 18 99 - 339
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V4 p
.50 4332
51 4345
.52 4357
53 4370
54 - 4382
.55 4394
56 4406
57 Ad18
.58 4429
59 4441
60 4452
.61 4463
.62 4474
63 4484
.64 4495
.65 4505
.66 A3
67 4525
.68 4535
.69 4545
J0 4554
71 4564
72 A573
73 4582
74 4591
.75 4599
76 4608
) 4616
.18 4625
19 L4633
.80 A4
.81 4649
.82 4656
.83 4664
B4 4671
.85 4678
.B6 - 4686
87 4693 -
.88 4699
89 AT06
20 4713
.81 A4Ne
92 AT26
.93 4732
94 4738
95 4744
96 4750
97 4756
R 4761
99 4767

Probabilities for theé Z Distribution

4 r
200 . A2
2.01 4778
-2.02 4783
2.03 4788
2.04 4793
2.0 4798
2.06 4803
2.07 © 4808
2.08 4812
2.09 4817
2.10 4821
2.11 4826
2.12 4830
2.13 L4834
2.14 4838
2.15 4842
2.16 4846
2.17 4850
2.18 4854
2.19 4857
2.20 4861
2.21 4864
2.22 4868
2.23 4871
2.24 4875
2.25. 4878
2.26 4881
2.27 4884 -
2.28 4887
2.29 4890
12,30 4893
2.31 4896
2.32 4898
2,33 4901
2.34 4904
2.35 4906
2.36 4909
237 4911
2,38 4913
2.39 4916
2.40 4918
241 4920
2.42 4922
243 4925
2.44 4927
2.45 4929
2.46 4931
2.47 4932
2.48 4934
2.49 4936
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Appendix D

Two-Tailed Critical
Values of t

To determine the approximate p value, first round down the degrees of freedom (df). Then
locate the largest value that the ¢ test statistic equals or exceeds. Finally, read the column heading
for the approximate p value.

345



346 Appendix D

Critical Values for t

df .20 10 05 .02 01 .002 001
1 3.078 6.314 12.706 31.821 63.657 318.309 636.619
2 1.886 2.920 4.303 6.965 9.925 22.327 31.598
3 1.638 2.353 3182 4.541 5.841 10.214 12.924
4 1.533 2,132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 251 3.365 4.032 5.893 6.869
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 -1.895 2.365 2.998 3.499 4.785 5.408
g 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 T 4,297 4,781
10 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 1.363 1.796 2.201 2718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4,318
13 1.350 1.771 2.160 2.650 3.012 3852 4.221
14 1.345 1.761 2.145 2.624 2,977 3.787 4.14¢
15 1.341 1.753 213 2.602 2.947 3.733 4073
16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
13 1330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3519 3.883
20, 1.325 1.925 2.086 2.528 2.845 3.552 3.850
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2,787 3450 3.725
20 1.315 1.706 2.056 2475 2,779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.7 3.421 3.650
28 1.313 1.70% 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2,756 3.396 3.659
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646
35 1.306 1.690 2.030 2438 2,724 3.340 3.591
40 1.303 1.634 2.021 2.423 2704 3.307 3.551
45 1.301 1.679 2.014 2412, 2.690 3.28] 3.520
50 [.299 1.676 2.009 2.403 2.678 3.261 3.496
55 1.297 1.673 2.004 2.396 2.668 3.245 3.476
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460
70 1.294 1.667 1.994 2.381 2.648 32n 3.435
g0 1.292 1.664 1.9%0 2.374 2.639 3.195 3.416
90 1.291 1.662 1.987 2.368 2.632 3.183 3.402
100 1.2%0 1.660 1.984 2.364 2.626 3.174 3.390
120 1.289 1.658 1.980 2.358 2.617 3.153 3.373
200 1.286 1.652 1.972 2.345 2.601 3.131 3.340
500 1.283 1.648 1.965 2.334 2.586 3.107 3.310

o 1.282 1.645 1.960 2.326 2.576 3.000 3.291



Appendix E

Critical Values for
the F Distribution

To detenmine the approximate p value, round down the degrees of freedom on the numerator
(df,) and the degrees of freedom on the denominator (4f,). Locate df,, in the top row and df; in the
first column. Using the row labels (.10, .05, .0}, and .001), determine the approximate p value
for the intersection of df, and df,.
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348 Appendix E
df, 1 2 3 4 5 6 7 8 9 10
dfa .
.10 39.86 49.50 53.59 55.83 57.24 58.20 58.91 3944 59.86 60.19
i .05 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 2419
.10 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39
2 05 18.51 19.00 15.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
.01 98.50 95.00 59.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40
001 998.5 999.0 999.2 999.2 999.3 999.3 999.4 999.4 999.4 999.4
10 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23
3 a5 10.13 9.535 9.28 9.12 2.01 8.94 B.89 8.85 8.81 8.79
K] 34.12 30.82 20,46 28.71 28.24 27.91 27.67 27.49 27.35 21.23
001 167.0 148.5 141.1 137.1 134.6 132.8 131.6 130.6 129.9 129.2
.10 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92
4 .05 .1 6.4 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
.03 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55
001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47 48.05
.10 4.06 3.78 3.62 352 345 3.40 3.37 3.34 3.32 3.30
5 .05 6.61 5.79 541 5.19 5.05 4.95 4.88 4.82 4.77 4.74
.0 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05
.001 47.18 37.12 33.20 31.09 29.75 28.84 28.16 27.64 27.24 26.92
.10 3.78 3.46 3,29 318 3.11 3.05 3.01 2.98 2.96 2.94
6 .05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
01 13.75 10.92 9.78 9.15 8.75 8.47 B.26 8.10 7.98 7.87
.001 35.51 27.00 23.70 21.92 20.81 20,03 19.46 19.03 18.69 18.41
10 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70
7 .05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64
.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62
.001 29.25 21.69 18.77 17.1¢ 16.21 15.52 15.02 14.63 14.33 14.08
.10 3.46 3.1 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54
8 .05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3144 3.39 3.35
01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81
.01 25.42 18.49 15.83 14.39 13.49 12.86 12.40 12.04 11.77 11.54
10 336 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.4 ’ 2.42
9 05 512 4,26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14
.0l 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26
001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11 9.89
.10 3.29 2.92 2.73 2.61 2.32 2.46 2.4] 2.38 2.35 232
10 .05 4.96 410 371 3.48 333 3.22 3.14 3.07 3.02 298
.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85
001 21.04 14.91 12.55 11.28 10.48 9.92 9.52 9.20 8.96 8.75
.10 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25
11 .05 4.84 3.98 3.59 3.36 3.20 3.09 3.0 2,93 2.90 2.85
RI) 9.65 7.21 6.22 5.67 532 5.07 4.89 474 4.63 4.54
.001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 3.12 7.92
10 3.18 2.81 2.61 2.48 2,39 2.33 2.28 2.24 2.21 2.19
12 05 4.75 3.89 3.49 3.26 31 3.00 2.91 2.85 2.30 2.75
01 9,33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30
.001 18.64 10.80 9.63 §.89 8.38 3.00 7.71 7.48 7.29
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Critical Values for the F Distribution 349
df, 12 15 20 24 30 40 60 120 ]
dfs ) }
10 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33
1 .05 243.9 245.9 248.0 249 1 250.1 251.1 252.2 2533 254.3
.10 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49
2 .05 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50
.01 90.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
.001 999.4 999.4 999.4 999.5 999.5 999.5 099.5 999.5 999.5
.10 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13
3 .05 8.74 8.70 8.66 8.64 8.62 .59 8.57 8.55 8.53
.01 27.05 26.87 .26.69 26.60 26.50 26.41 26.32 26.22 26.13
.001 128.3 127.4 126.4 125.9 125.4 125.0 124.5 124.0 123.5
.10 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76
4 05 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
.01 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46
.001 47.41 46.76 46,10 4577 45.43 45,09 44.75 44,40 44.05
.10 3.27 3.24 3.21 3.19 3.17 3.16 3.14 312 3.10
5 05 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 436
.01 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02
.001 26.42 25.91 25.39 25.14 2487 24.60 24.33 24.06 23.79
.10 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72
6 05 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67
.01 7.72 7.56 7.40 7.31 1.23 7.14 7.06 6.97 6.8
001 17.99 17.56 17.12 16.89 16.67 16.44 16.21 15.99 1575
. 10 2.67 2.63 2.59 2.58 2.56 2.54 1.5t 2.49 2.47
7 .05 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23
.01 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
.001 13.71 13.32 12.93 12.73 12.53 12.33 12.12 11.91 11.70
A0 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29
8 .05 3.28 3.22 3.15 3.12 3.08 3.4 3.01 2.97 2.93
.01 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4,95 4.86
.001 11.19 10.84 10.48 10.30 10.11 2.92 9.73 9.53 9.33
1o 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16
9 .05 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.1
.01 5.11 4,96 4.81 4.73 4.65 4.57 4.48 4.40 4.31
001 9.57 9.24 8.90 8.72 8.55 8.37 8.19 8.00 7.81
A0 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06
G 05 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54
.01 4.7 4.56 4.41 4,33 4,25 4,17 4,08 4,00 3.91
001 8.45 8.13 7.80 7.64 7.47 7.30 7.12 6.94 6.76
.10 2.21 2.17 212 2.10 2.08 2.05 2.03 2.00 1.97
11 .05 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40
201 4.40 4.25 4.10 4.02 1.94 3.86 1.78 3.69 3.60
2001 7.63 7.32 7.01 6.85 6.68 6.52 6.35 6.17 6.00
.10 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.0
12 .08 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30
.01 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
.001 7.00 6.71 6.40 6.25 6.09 5.93 5.76 5.55 5.42



350 Appendix E

df, 1 2 3 4 5 6 7 8 9 10
4 i
.10 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14
13 .05 4.67 3.81 341 3.18 3.03 292 2.83 2.77 2.1 2.67
01 9.07 §.70 5.74 3.21 4.86 4,62 4.44 4.30 4.19 4.10
001 17.81 12.31 10.21 9.07 8.35 71.86 7.49 7.21 6.98 6.80
10 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10
14 03 4.60 3.74 334 in 2.96 2.85 2.76 2.70 2,65 2.60
.01 8.86 6.51 5.56 5.04 4.69 4.46 428 4.14 4.03 3.94
001 17.14 11.78 9.73 8.62 7.92 7.43 7.08 6.80 6.58 6.40
.10 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06
15 .05 4,54 3.68 3.29 3.06 2.90 2,79 27 2.64 2.59 2.54
.01 8.68 6.36 5.42 4.89 4.56 4.32 4,14 4,00 3.89 3.80
.00 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08
.10 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03
16 .05 4.49 3.63 324 3;m 2.85 2.74 2.66 2.59 2.54 2.49
.0 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 378 3.69
.001 16.12 10.97 3.00 7.94 7.27 6.81 6.46 6.19 598 5.81
.10 3.03 2.64 2.44 2.31 222 2.15 2.10 2.06 2.03 2.00
17 05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
.M 8.40 6.11 5.18 4.67 4.34 4,10 393 3179 3.68 3.59
.001 15.72 i0.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75 5.58
10 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98
18 .05 4.41 3.55 .16 2.93 2.77 2.66 2.38 2.51 2.46 2.41
.01 8.29 6.01 3.09 4.58 4.25 4.01 3.84 3.7 3.60 351
.00t 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5,96 5.3¢9
.10 2.99 2.61 2.40 .27 2.18 2.11 2.06 2.02 1.98 1.96
19 .05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38
.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 343
.001 15.08 10.16 3.28 7.26 6.62 6.18 5.85 5.59 5.39 5.22
10 2.97 2.59 2.38 225 2.16 2.09 2.04 2.00 1.96 1.94
20 .05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
201 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37
.001 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08
.10 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92
21 .05 432 347 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2,32
.01 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31
.001 14.5¢ 9.77 7.94 6.95 6.32 5.88 3.56 5.31 5.1 4.95
19 2.95 2.56 2.35 2.22 2,13 2.06 2.01 1.97 1.93 1.90
22 .05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 230
.0t 7.95 5.72 4.82 4.31 3.99 3.76 3,59 3.45 3.35 3.26
.001 14.38 9.601 7.80 6.81 6.19 5.76 544 5.19 4.99 4.83
.10 294 2.55 2.34 221 2.11 2.05 1.99 1.95 1.92 1.89
23 .05 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27
.01 7.88 5.66 476 426 ° 394 3.71 3.54 341 330 3.21

001 14.19 9.47 7.67 6.69 6.08 5.65 5.33 5.09 4.89 4.73



Critical Values for the F Distribution 351

dar. 12 15 20 24 30 40 60 120 ®
dfa
.10 2.10 2.05 2.01 1.98 [.96 1.93 1.90 1.88 1.85
13 .05 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21
.01 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
.001 6.52 6.23 5.93 5.78 5.63 5.47 5.30 5.14 4.97
10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80
14 .05 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13
.01 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
.001 6.13 5.85 5.56 5.4] 5.25 5.10 4.94 4.77 4.60
10 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76
15 05 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07
01 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87
001 5.81 5.54 5.25 5.10 4.95 4.80 4.64 4.47 4.31
10 1.99 [.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72
16 .05 2.42 2.35 2.28 2.24 2.19 2.15 2.1 2.06 2.01
.01 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
.001 5.55 527 4.99 4.85 4.70 4.54 4.39 4.23 4.06
10 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69
17 .05 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96
.01 - 3.46 3.31 316 3.08 3.00 2.92 2.83 2.75 2.65
001 5.32 5.05 4.78 4.63 4,48 4.33 4.18 4.02 3.85
10 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66
18 .05 2.34 2.27 2.19 2.15 2.H 2.06 2.02 1.97 1.92
01 3.37 3.23 3.08 3.00 2.92 2.84 2,75 2.66 2.57
{001 5.13 4.87 4.59 4.45 4.30 4.15 4.00 3.84 3.67
10 i.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63
19 .05 2.31 2.23 2.16 2.11 2.067 2.03 - [.98 1.93 1.88
.01 3.30 315 3.00 2.92 2.84 2.76 2.67 2.58 2.49
.00 4.97 4.70 4.43 4.29 4.14 3.99 3.84 3.68 3.51
.10 1.89 1.84 1.79 1.717 1.74 1.71 1.68 1.64 1.61
20 05 2.28 2.20 2.12 2.08 2.04 1.99 [.95 1.90 1.84
K} 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42
001 4.82 4.56 4.29 4.15 4.00 3.86 3.70 3.54 3.38
10 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59
21 05 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
01 3.7 3.03 2.88 2.80 2.72 2.64 2,55, 2.40 2.36
001 4.70 4.44 4.17 4.03 3.88 3.74 3.58 3.42 3.26
10 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57
22 05 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78
01 3.12 2.98 2.83 275 2.67 2.58 2.50 2.40 2.31
.001 4,58 4.33 4,06 3.92 3.78 3.63 3.48 332 3.15
10 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55
23 Ris 2.20 213 2.05 2.01 1.96 1.91 1.86 1.81 1.76
.01 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26

.00 4.48 4.23 3.96 3.82 . 3.68 3.53 3.38 322 3.05




352 Appendix E

df, 1 2 3 4 5 6 7 8 9 10
4
.10 2.93 2.54 2.33 2,19 2.10 2.04 1.98 1.94 1.51 1.88
24 05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25
.01 7.82 5.61 4.72 4.22 3.50 3.67 3.50 3.36 3.26 317
001 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 4.64
10 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87
25 05 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24
.01 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 322 3.13
.001 13.88 9.22 7.45 6.49 5.88 5.46 5.15 4.91- 4.71 4.56
.10 2.91 2.52 2.3 2.17 2.08 2.01 1.96 1.92 1.88 1.86
26 05 4.23 3.37 2.98 2.74 2.59 247 2.39 2.32 2.27 2.22
01 7.72 5.53 4.64 4.14 382 3.59 342 3.29 318 3.09
.001 13.74 9.12 7.36 6.41 5.80 5.38 5.67 4.83 4.64- 4.48
.10 2.90 2.51 2.30 217 2.07 2.00 1.95 1.91 1.87 1.85
27 .05 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20
01 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06
001 13.6] 9.02 7.27 6.33 5.73 5.31 5.00 4.76 4.57 4.4]1
10 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84
28 .05 4.20 3.34 2.95 2.7 2.56 2.45 2.36 2.29 2.24 2.19
.01 7.64 5.45 4,57 4.07 3.75 3.53 3.36 3.23 3R 3.03
.001 13.50 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50 4,35
10 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83
29 .05 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2,22 2.18
.01 7.60 542 4.54 4.04 3.73 3.50 333 3.20 3.09 3.60
.00 13.39 8.85 712 6.15 5.59 5.18 4.87 4.64 4.45 4.29
.10 2.88 2.4% 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82
30 .05 4,17 3.32 292 2.6% 2.53 2.42 2.33 2.27 2.21 2.16
.01 7.56 5.39 4.51 4.02 .70 3.47 3.30 3.17 3.07 2.98
.001 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24
.10 2.84 244 .2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76
40 .05 4.08 3.23 2.84 2.61 2.45 234 225 218 2.12 2.08
.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80
.001 12.61 825 6.60 5.70 5.13 4,73 4.44 4.21 4.02 3.87
.10 2,79 239 - 2.18 2.04 1.95 1.87 1.82 177 1.74 1.71
60 05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99
.01 7.08 4,98 4.13 3.65 3.34 3.12 2.95 2.82 2 2.63
001 11.97 7.76 6.17 5.31 4,76 4.37 4.09 3.87 3.69 3.54
10 2.75 2.35 213 1.99 1.90 1.82 1.77 1.72 1.68 1.65
120 05 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2,02 1.96 1.91
.01 6.85 4,79 3.95 3.48 3.7 2.96 2.79 2.66 2.56 2.47
001 11.38 7.32 5.79 4.95 4.42 4.04 3.7 3.55 3.38 3.24
.10 271 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60
L .05 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83
.01 6.63 4.61 378 3.32 3.02 2.80 2.64 2.51 2.41 2.32

.001 10.83 6.91 5.42 4.62 4.10 3.74 347 3.27. 3.10 2,96



Critical Values for the F Distribution 353
df, 12 15 20 24 30 40 60 120 @
dfa )

10 1.83 1.78 1.73 1.70 1.67 i.64 1.61 1.57 1.53
24 .05 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73
.01 3.03 2.8% 274 2.66 2.58 2.49 2.4¢ 2.31 2.21
.00l 4.39 4.14 3.87 3.74 3.59 3.45 3.29 3.14 2.97
10 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52
25 .05 2.16 2.09 2.01 1.96 1.92 1.87 1.82 L7 1.71
01 2.99 2.85. 12,70 2.62 2.54 2.45 2.36 2.27 2.17
001 431 4.06 3.79 3.66 3.52 3.37 3.22 3.06 2.89
.10 1.81 1.76 .1 1.68 1.65 161 1.58 1.54 1.50
26 .05 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.715 1.6%
01 2.96 2.81 2.66 2.58 2.50 2.42 2.33 223 2.13
001 4.24 3.99 372 3.59 3.44 3.30 3.15 2.99 2.82
10 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49
27 .05 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67
01 293 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.16
.001 4.17 3.92 3.66 3.52 -3.38 3.23 3.08 2,92 .75
10 1.7% 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48
28 .05 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
.01 2.90 2.75 2.60 2.52 244 2.35 2.26 2.17 2.06
.001 4.11 3.86 3.60 3.46 332 318 3.02 2.86 2.69
10 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47
29 05 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64
Ot 2.87 2,73 2.57 2.49 2.41 2.33 2.23 2.14 2.03
001 4.05 3.80 3.54 3.41 3.27 3.12 2.97 2.81 2.64
10 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46
30 .05 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62
.01 2.84 2,70 2.55 2.47 2.39 2.30 2.21 211 2.01
001 4,00 3.75 3.49 3.36 3.22 3.07 2.92 2.76 2,59
10 1.71 1.66 1.61 1.57 1.54 £.51 1.47 1.42 1.38
40 05 2.0 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51
01 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
001 3.64 3.40 3.15 3.00 2.87 2.73 2.57 241 2.23
10 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29
64 05 1.92 1.84 1.75 L.70 1.65 1.59 1.53 1.47 1.3%
.01 2.50 2.35 2.20 2.2 2.03 1.54 1.84 1.73 1.60
.00 3.31 3.08 2.83 2.69 2.55 2.41 2,25 2.08 1.89
N ] 1.60 1.55 [.48 1.45 1.41 1.37 1.32 1.26 i.19
120 .05 1.83 1.75 1.66 1.61 1.55 1.50 [.43 1.35 1.25
.01 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38
.001 3.02 2.78 2.53 2.40 2.26 2.1 [.95 1.76 1.54
10 1.55 [.49 1.42 1.38 1.34 1.30 1.24 117 1.00
£ .05 1.75 1.67 1.57 1.52 1.46 1.39 1.32 i.22 1.00
.01 2.1% 2.04 1.88 1.79 1.70 i.59 1.47 1.32 1.00
001 2.74 2.51 2.27 213 1.99 1.84 1.66 1.45 i.00



Appendix F

I. Transformation of
r to Fisher's z

II. Transformation of
Fisher's z tor

355



356 Appendix F

I. Transformation of r to Fisher's z

r z r z r z

.01 .0100 34 .3541 67 8107
.02 .0200 .35 3654 .68 8201
03 .6300 .36 3769 .69 .B480
.04 .0400 37 .3884 70 8673
05 .0500 .38 .4001 n .8872
06 .0601 39 4118 72 9076
07 .6701 .40 4236 .13 9287
.08 - .0B02 41 4356 14 9505
.09 .0902 42 4477 5 9730
.10 .1003 43 4599 76 9962
11 1104 44 4722 T 1.0203
A2 1206 45 4847 18 1.0454
13 A307 .46 4973 79 1.0714
.14 1409 47 5101 .80 1.0986
A5 511 .48 5230 81 1.1270
16 1614 .49 5361 .82 1.1568
U7 0717 .50 .5493 .83 1.1881
18 .1820 .51 .5627 .84 1.2212
19 1923 .52 .5763 .85 1.2562
.20 .2027 53 .5801 .86 1.2933
21 2132 54 6042 .87 1.3331
22 .2237 .55 6184 .88 1.3758
23 .2342 .56 6328 .89 1.4219
.24 .2448 57 .6475 .80 1.4722
25 .2554 1 6625 91 1.5275
.26 .2661 .59 6777 .92 1.5890
27 2769 .60 .6931 .93 1.6584
.28 .2877 .61 7089 94 1.7380
29 .2986 .62 1250 .95 1.8318
30 .3095 .63 7414 .96 1.9459
31 .3205 .64 1582 97 2.0923
32 3316 65 753 .98 2.2976
33 3428 .66 7928 .59 2.6467

NOQOTE: For a given correlation, r, its comesponding Fisher’s z is presented.



H. Transformation of Fishersz tor 357
II. Transformation of Fisher's z to

H .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
RU G000 0100 .0200 -.0300 0400 0500 .05%9 {0699 0798 0898
.1 0997 1086 1194 1293 .1391 .148% 1586 .1684 1781 1877
2 1974 2070 2165 .2260 2355 .2449 .2543 2636 2729 2821
.3 2013 3004 .3095 3185 3275 3364 .3452 .3540 3627 3714
4 L3800 .3885 .3969 4053 4136 4219 .4301 4382 4462 4542
5 4621 4699 4717 4854 4930 5005 .5080 5154 .5227 5299
.6 5370 .5441 5511 .5581 .5649 ST17 5784 5850 5915 5980
g 6044 .6107 6169 6231 .6291 6351 6411 .6469 6527 6584
.8 .6640 .6696 6751 .6805 (6858 6911 .6963 7014 7064 7114
.8 7163 211 7259 7306 7352 7398 7443 7487 7531 7574
1.0 7616 7658 .7699 7739 TT19 1818 7857 7895 7932 7965
1.1 .8005 .8041 8076 811 .8144 8178 8210 8243 8275 8306
1.2 .8337 .8367 8397 .B426 8455 .8483 51 8538 .8565 8591
1.3 .8617 .8643 8668 8692 8717 8741 8764 8787 8810 .8832
1.4 .B854 8875 .B896 .8917 .8937 8957 .8977 8996 9015 9033
1.5 .9051 .9069 .9087 9104 9121 9138 9154 8170 .9186 .9201
1.6 9217 9232 9246 9261 9275 5289 9302 9316 9329 9341
1.7 9354 9366 9379 .9391 9402 5414 .9425 9436 5447 D458
1.8 9468 9478 9488 .9498 9508 9517 8527 9536 9545 9554
1.9 9562 9571 9579 9587 9595 9603 9611 .9618 8626 .9633
2.0 9640 .5e47 -.9654 .9661 9667 .9674 9680 9687 9693 9699
21 9705 9710 9716 9721 9727 5732 9737 .9743 9748 9753
2.2 9757 9762 9767 9771 9776 9780 9785 .9789 9793 9797
2.3 .9801 9505 9809 9812 9816 9820 L9823 .9827 9830 9833
2.4 9837 .9840 9843 .9846 9849 9852 9855 .9858 9861 9863
2.5 9866 9869 9871 9874 9876 9879 5881 9884 9886 9888
2.6 .9830 .9892 9895 .9897. .9899 .9501 5903 .9905 9906 9508
27 9910 9912 .9914 .9915 9917 9919 .9920 9922 9923 9925
2.8 9926 8928 .9929 .8931 9932 19933 9935 9936 L9937 9938
29 9540 9941 .9942 9943 - 9944 9945 .9946 9947 .9945 9950

: 7
NOTE: To determine r locate the digits of z to the left and right of the decimal place in the first column. Locate the second decirnal
place in the top column, The intersection of the row and column gives r.



Appendix G

Critical Values for
Chi Square

To determing the approximate p value, Jocate the degrees of freedom (df) in the first column.
Then find the largest value that the chi square test statistic equals or exceeds, and read the column
heading for the approximate p value.
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Critical Values for Chi Square

df 20 .10 05 02 Bu .001
1 1.64 2.71 384 5.41 6.63 10.83
2 3.22 4.61 5.99 7.82 9.2} 13.82
3 4.64 6.25 7.81 9.34 11.34 16.27
4 5.99 7.78 9.49 11.67 13.28 18.47
5 7.29 9.24 11.07 13.39 15.09 20.52
6 B.56 10.64 12.5% 15.03 16.81 22.46
7 9.80 12.02 14.07 16.62 8.48 24.32
8 11.03 13.36 15.51 18.17 - 20.09 26.12
9 12.24 14.68 16.92 19.68 21.67 27.88
10 13.44 15.99 18.31 21.16 23.21 29.59
1] 14.63 17.28 19.68 22.62 24.72 31.26
12 15.81 18.55 21.03 24.05 26.22 32.91
13 16.98 19.81 22.36 25.47 27.69 34.53
14 18.15 21.06 23.68 26.87 29.14 | 36.12
i3 19.31 22.31 25.00 28.26 30.58 37.70
16 20.46 23.54 26.30 29.63 32.00 39.25
17 21.62 24.77 27.59 31.00 33.41 40.79
18 22.76 25.99 28.87 32.35 3431 42.31
19 23.90 27.20 30.14 33.60 36.19 43.82
I — 20 25.04 28.41 31.41 35.02 37.57 45.32
2] 26.17 29.62 32.67 36.34 38.93 46.80
2 27.30 30.81 33.92 37.66 40.29 48.27
23 28.43 32.01 35.17 38.97 41.64 49.73
24 29.55 33.20 36.42 40.27 42.98 51.18
25 30.68 34.38 37.65 41.57 44.3] 52.62
26 31.80 35.56 38.89 42.86 45.64 54.05
27 32.91 36.74 40.11 44.14 46.96 55.48
28 34.03 37.92 41.34 45.42 48.28 56.89
29 3514 39.09 42.56 46.69 49.59 58.30

30 36.25 40.26 43.77 47.96 50.89 59.70



Appendix H

Two-Tailed Critical
Values for the
Mann-Whitney U Test

To determine the approximate p value, locate 1, the number of scores in the smaller group, in
the first column and n; in the second column. The value of U must be smaller than or equal to the
first number, or Jarger than or equal to the second number, to be significant at the level given by
the column heading.
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n; 1 .10 05 02 ot
3 3 0-9 — — —
3 4 0-12 — — —
4 4 1-15 0-16 — —
2 5 0-10 - — —
3 5 1-14 015 — —
4 5 218 1-19 0-20 —
5 5 421 2-23 1-24 0-25
2 6 0-12 — — —

3 6 2-16 1-17 — —
4 6 321 2-22 1-23 0-24
5 6 525 3-27 2-28 1-29
6 6 7-29 5-31 333 2-34
2 7 0-14 — — —
3 7 2-19 1-20 0-21 —_
4 7 424 3-25 1-27 0~28
5 7 6-29 5-30 332 1-34
é 7 8-34 6-36 4-38 3-39
7 7 11-38 841 6-43 4-45
2 g 1-15 0-16 —_ —
3 - 8 3-21 2-22 0-24 —
4 g 5-27 4-28 2-30 1-31
5 g 832 6-34 4-36 2-38
6 g 10-38 840 642 444
7 8 1343 10-46 7-49 6-50
8 8 15-49 13-51 a55 7-57
2 9 C1-I7 018 — —
3 9 423 225 1-26 0-27
4 9 6-30 432 3-33 1-35
5 9 936 7-38 540 3-42
6 9 1242 10-44 747 549
7 9 15-48 12-51 954 7-56
8 9 18-54 15-57 11-61 9-63
9 9 21-60 17-64 14-67 1170
2 10 1-19 0-20 — -
3 10 426 3-27 1-29 0-30
4 10 7-33 5-35 3-37 2-38
5 10 11-39 842 6-44 4-46
6 10 14-46 11-49 852 6-54
7 10 17-53 14-56, 11-59 961
8 10 20-60 17-63 13-67 11-69
9 10 24-66 20-70 16-74 13-77

10 10 27-73 2377 19-81 16-84
2 11 1-21 -2 — —
3 1 5-2% 330 1-32 0-33
4 11 8-36 6-38 4-40 242
5 1 12-43 946 7-48 5-50
6 11 16-50 13-53 957 7-59
7 11 19-58 16-61 12-65 10-67
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ny I 10 05 02 .01
8 11 23-65 19-69 15-73 13-75
9 11 27-72 23-76 18-81 16-83
10 11 31-79 26-84 22-88 1892
11 11 34-87 30-91 25-96 21-100
2 12 2-22 1-23 —_ —_
3 12 §-31 4-32 2-34 1-35
4 12 9-39 741 543 345
5 12 1347 1149 8-52 6-54
[+) 12 17-55 14-58 11-61 963
7 12 21-63 18-66 14-70 12-72
g 12 26-70 22-74 17-79 15-81
9 12 30-78 26-82 21-87 18-90
10 12 34-86 20-91 24-96 2199
il 12 38-94 33-99 28104 24-108
12 12 42-102 37-107 31-113 27-117
2 13 2-24 1-25 0-26 —
3 13 6-33 4-35 2-37 1-38
4 13 1042 844 547 349
5 13 15-50 12-53 93-56 7-58
6 13 19-59 1662 12-66 10-68
7 13 24-67 20-71 16-75 13-78
8 13 28-76 24-80 20-84 17-87
9 13 33-84 28-89 23-94 20-97
10 13 37-93 33-97 27-103 24-106
11 13 42-101 37-106 31-112 27-116
12 13 47-109 41-115 35-121 31-125
13 13 51-118 45-124 39-130 34-135
2 14 3-25 1-27 0-28 —
3 14 7-35 5-37 240 1-41
4 14 1145 947 6-50 4-52
5 14 16-54 13-57 10-60 7-63
6 i4 21-63 17-67 1371 11-73
7 14 26-72 22-76 17-81 15-83
8 14 31-81 26-86 22-90 18-94
9 14 36-90 31-95 26100 22-104
10 14 41-99 36-104 30-110 26-114
11 14 46-108 40-114 34-120 30-124
12 14 51117 45-123 38-130 34-134
13 14 56-126 50-132 43-139 38-144
14 14 61-135 55-141 47-149 42-154
2 15 3-27 1-29 0-30 —
3 15 7-38 5-40 3-42 243
4 15 1248 10-50 7-53 5-55
5 15 18-57 1461 11-64 867
6 15 23-67 19-71 15-75 12-78
7 15 28-77 24-81 19-86 16-89
8 15 33-87 29-91 24-96 20-100
9 15 39-96 34-101 28-107 24-111
10 15 44-106 39-111 33-117 20-121
i1 15 50-115 44-121 37-128 33-132
i2 15 55-125 49-131 42-138 37-143
i3 15 61-134 54-141 47-148 42-153
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m n, .10 .05 02 01
14 15 66-144 59-151 51-15% 46-164
15 15 72-153 64-161 56-169 51-174
2 16 3-29 1-31 0-32 —
3 16 840 6-42 345 246
4 i6 14-50 11-53 T-57 5-59
5 16 1961 15-65 12-68 -7
6 16 2571 21-75 16-80 13-83
7 16 30-32 26-86 21-91 1894
8 16 3692 © 31-97 26-102 22-106
9 16 42-102 37-107 31-113 27-117
10 16 48-112 42-118 36-124 31-129
11 16 54-122 47-129 41-135 36-140
12 16 60-132 53-139 46-146 41-15%
13 16 65-143 59-149 51-157 45-163
14° 16 71-153 64-160 56-168 50-174
15 16 77-163 70-170 61-179 55-185
16 16 83-173 75-181 66-190 §0-196
2 17 3-31 2-32 0-34 —
3 17 042 645 4-47 249
4 17 15-53 11-57 860 6-62
5 17 20-65 1768 13-72 10-75
6 17 26-76 22-80 18-84 15-87
ki 17 3386 28-91 23.96 19100
8 17 39-97 34-102 28-108 24-112
9 17 45-108 3%-114 33120 20-124
10 17 51-118 45-125 38-132 34-136
11 17 57-130 51-136 44-143 39-148
12 17 64-140 57-147 49-155 44-160
13 17 T0-151 63-158 55-166 49-172
14 17 77-161 69-169 60-178 54-184
15 17 83-172 75-180 66-189 60-195
16 17 89-183 81-191 71-201 65-207
17 17 96-193 87-202 77-212 70-219
2 18 4-32 2-34 0-36 —
3 18 945 747 4-50 2-52
4 13 16-56 12-60 9-63 6-66
5 18 2268 18-72 14-76 11-79
6 18 28-80 24-84 19-39 16~92
7 18 35-91 30-96 24-102 21-105
8 18 41-103 36-108 30-114 26-118
9 18 48-114 42-120 36-126 3113
10 18 55-125 48-132 41-139 37-143
11 i8 61-137 55-143 47-151 42-156
12 18 68148 61-155 53163 47-169
13 18 75-159 67-167 59-175 53181
14 18 82-170 74-178 65-187 58-194
15 18 B8-182 80-190 T70-20Q 64-206
16 18 95-193 86-202 76-212 70-218
17 18 102-204 93-213 82224 75-231
18 18 109-235 99-225 88-236 81-243
1 15 0-19 —_ — —_
2 19 434 2-36 1-37 0-38
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n 1 .10 05 02 0l
3 19 1047 7-50 453 354
4 19 17-59 13-63 9-67 7-69
5 19 2372 19-76 15-80 12-83
6 19 30-84 25-89 20-94 17-97
7 15 37-96 32-101 26-107 22-111
8 19 44-108 8114 32-120 28-124
9 19 51-120 45-126 38-133 33-138

10 19 58132 52-13% 44-146 39-151

il 19 65-144 58-151 50-159 45-164

12 1% 72-156 65-163 56-172 51-177

13 19 80167 72175 63-184 57-190

14 19 87-179 78-188 69-197 63-203

15 19 94-191 85-200 75-210 69-216

16 19 101-203 92-212 £2-222 74-230

17 19 109-214 99-224 £8-235 81-242

18 19 116-226 106-236 94248 B7-255

19 19 123-238 113-248 101-260 93-268
] 20 0-20 — — —

2 20 4-36 2-38 1-39 040
3 20 1145 8-52 5-55 3-57
4 2 18-62 14-66 10-70 872
5 20 25-75 20-80 16-84 13-87
6 20 32-88 27-53 22-98 18-102
7 20 39-10] 34-106 28-112 24-116
8 20 47-113 41-119 34-126 30-130
9 20 54126 43-132 40-140 36-144

10 20 62-138 55-145 47-153 42-158

11 20 69-151 62-158 53-167 48172

n 20 77-163 69-171 60-180 54-186

13 20 84-176 T6-184 67-193 60-200

14 20 52-188 83-197 73-207 67-213

15 20 100-200 90-210 80-220 73-227

16 20 107-213 98-222 §7-233 79-241

17 20 115-225 105-235 93-247 86-254

18 20 123-237 112-248 100-260 92-268

19 20 130-250 119-261 107273 99-28]

20 20 138-262 127273 114-286 105-295



Appendix I

Two-Tailed Critical
Values for the Sign
Test (n < 26)

Locate n, the number of untied cases, in the first column. Let ¢ be the number of pasitive
differences. To determine the approximate p value, note the largest value that ¢ or n — ¢ equals or
exceeds. Read up to the column heading for the approximate p value.
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Appendix I
Sign Test Critical Values

n .10 05 02 .01 002 001
5 5 — — — — —
6 6 6 — — — —
7 7 7 7 — — —
8 7 8 8 B - —_—
9 8 8 9 9 — —
(t] 9 9 10 10 10 —
11 9 10 10 11 11 11
12 10 10 11 11 12 12
13 10 11 12 12 13° 13
14 11 12 12 13 13 14
15 12 12 13 13 14 14
16 12 13 14 14 15 15
17 13 13 14 ‘15 16 16
18 13 14 15 15 i6 17
19 14 15 15 16 17 17
20 15 15 16 17 18 18
21 15 16 17 17 18 19
22 16 17 17 18 19 19
23 16 17 18 19 20 20
24 17 18 19 19 20 21
25 18 18 15 20 21 21



Appendix J

Two-Tailed Critical
Values for
Spearman’s Bho

To determine the approximate p value, locate the number of pairs of scores in the left-hand
column. Find the largest value that the test statistic, ignoring sign, equals or exceeds. Read the
column heading for the approximate p value.
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Spearman’s Rho Critical Values

Number

of Pairs 0 .05 .02 .01 002

4 1.000 — — —_— —

5 900 1.000 1.000 —_ —

6 .829 886 543 1.000 [
7 714 .786 .893 929 1.000
8 643 738 833 881 952
9 600 700 .783 833 917
10 .564 648 745 794 .879
i1 536 619 709 764 845
12 .503 587 678 734 825
13 484 .560 648 703 797
14 464 538 626 679 771
15 446 521 .604 657 750
16 420 .503 585 635 729
17 414 488 .566 .618 711
18 401 474 550 600 692
19 391 460 535 584 675
20 380 447 522 570 660
21 370 436 509 556 647
22 361 425 497 544 633
23 353 416 .486 532 620
24 344 407 476 521 .608
25 .337 398 466 511 597
26 331 .390 475 501 586
27 324 383 449 492 576
28 318 375 441 483 .567
29 312 .369 433 475 557

30 .306 362 426 A67 548



Answers fo
Selected Problems

Chapter 1: Introduction

1. a. number: 76; object: John,; variable: midterm grade
. number: 6.98; object: Rolling Stones album; variable: record cost
. number: 28; object: 1986 Ford Tempo; variable: miles per gallon

. number: brown-eyed; object: Mary; variable: eye color

e o

2. a. interval b. nominal ¢. ordinal
3. a. 4.20 b. —.60

5.2. .52  b.-32 ¢ .84 d .53
e. —48 f. -13 g —-13 h. .36

6. a. 39 b. 251 c. 1521 d. 31 e. 38 f 181
Category Proportion Odds
40

A . .67
B .15 .18
C A1 12
D .09 .10

Chapter 2: The Distribution of Scores

1. Class Interval Frequency Relative Frequency

46t0 50 1 .

Stto 55 0 0.0
56 to 60 1 4.2
6l to 65 3 12.5
66 to 70 3 12,5
T1to 75 3 i2.5
76 to 80 5 20.8
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1. {continued)

Class Interval Frequency Relative Freguency

8lto 85 5 20.8

86 to 90 i 4.2

91 to 95 1 4.2

96 to 100 1 42
2.2
b.
C.

3. Assume that the peak is not in the middle. Because the distribution is
symmetric, it would have two peaks, one on each side. So the distribu-
tion must be peaked in the middle if there is a single peak.

5. Class Interval Freguency Smoothed Frequency
-1.40 to -1.21 0 25
-1.20t0-1.01 1 .50
-1.00t0 —-.81 0 .23

—80to -.61 0 .25
-60to —41 1 2.50
-40t0 -.21 8 4.75
~20t0 —.01 2 6.25

Oto .19 13 8.00
20t .39 4 5.75
Alto .59 2 2.25
.60to .79 1 1.00
B0to .99 0 25
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6. a. The unit is one, but most scores are multiples of five so the class width
should be a muitiple of five. The range is 425 minus 230, which
equals 195. The maximum class width is 195/8 = 24.375 and the
minimum is 195/15 = 13. Reasonable class widths are 15 and 20. The
lowest lower limit should be some value less than or equal to 230, the
lowest score.

b. Rent Freguency Relative Frequency
226-250 2 5
251-275 7 18
276-300 12 32
301-325 8 21
326-350 2 5
351-375 2 5
376-400 4 11
401 -425 1 3

c. The distribution is positively skewed.

12 — —

4 - _'

238 288 338 388

8. a. Males

Class Interval Frequency Relative Frequency

35.0t0 39.9 2 7
40.0 to 44.9 3 10
45.0 to 49.9 4 13
50.0 to 54.9 4 13
55.0 to 39.9 5 17
60.0 to 64.9 3 10
65.0 to 69.9 g 21
70.0 to 74.9 1 3
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Females
Class Interval Freguency Relative Frequency
350 t0 39.9 2
46,0 to 44.9 1 3
45.0 10 49.9 5 17
50.0 10 54.9 4 13
55.0 to 59.9 2 7
60.0 to 64.9 4 13
65.0 to 69.9 2 7
70.0 to 74.9 ) 20
75.0 10 79.9 4 13
b. Both distributions are negatively skewed. Females live longer than
males.
9. Males Females
35|67 35|69
40(113 40|0
45(5789 45|56678
50(1333 5011333
5567799 55(78
60(234 6010123
65|5678859% 65|67
702 70134444
75|5667

4. a. .25 b. 20

Chapter 3: Central Tendency

1. mode = 6; median = 6; mean = 5.29
mode = 2; median = 3.5; mean = 3.5
modes = 2, 8; median = 4.5, mean = 5

mode = 3; median = 4.5; mean = 16

b ow

2. sample c, because of the two modes;
sample d, because of the outlier of 96

3. a. mean = 3.90; median = 3.5; mode = 3
b. mean = 12.64; median = 4; mode = 3
The mean changed the most.
¢. mean = 4.45; median = 4; mode = 3
The mean is most affected.

5. a. mean = 1110%.33; median = 8780.5
b. the median

7. negatively skewed
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14. a. mean: $28.49; median: $22; mode: $8 and $45
b. the median because of the outlier of $120

Chapter 4: Variability

1. a. range = 10; interquartile range = 6; s = 3.54
b. range = 13; interquartile range = 8.5; s = 4.54
c. range = 13; interquartile range = 9; 5 = 4.72

2. a 42.25 b. 84.50

. § = 46.11; range = 144, interquartile range = 10
. § = 5.01; range = 16; interquartile range = 6
c. the interquartile range

oo

4. a. Marvel Motors: range = 8; interquartile range = 6; 5 = 3,22
Amazing Auto: range = 2; interquartile range = 2; s = .89
b. Amazing Auto

6.a.yes b.mo c.no d no

7. a. Control: X = 87.00; s = 7.24; 5
Experimental: X = 94.57; s = 4.06; 5*
b. The control group is more variable.

52.44
16.48

9. The median is 19 and the interquartile range is 8.5. To be an outlier a score
must be less than 2.00 or greater than 36.00. Using these criteria, the score
37 qualifies as an outlier.
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Chapter 5: Transformation

1. a. 2.303

3.

b. 6.245 c. 2.094 d. .021 e. 412

Z Score
~1.14
-91
—.68
—.45

Original Score

pait- - R e R
)
LVH]

4. Multiply each score by .09 and then add 1.0.

5. a. mean: 53
b. mean: 16

. mean
b. mean

;80 30
8 5 .2
Number Percentile Rank
8 27.5
12 52.5
17 82.5

30; s and 5% remain the same
75,5 = 9.6; 5* = 92.16

Chapter 6: Measuring Association:
The Regression Coefficient

1. slope: 1.0; i

ntercept: 40

f. .160

2. a. no cigarettes: 2.23 days; 20 cigarettes: 3.85 days; 40 cigarettes: 5.47

days
b. 114.21 4

. Predictor,

a0 o

. Predictor

. positive

Predictor:

. Predictor:

ays (15 x 94 x .081)

similarity; criterion: marital satisfaction

: effort; criterion: performance

sleep; criterion: efficiency

: mood; criterion: health

d. positive

b. positive c. negative
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. a. slope: 3.8793; intercept: —89.138; variance of errors; 534.48

b. Score Predicted Score Error
140 143.62 -3.62
170 159.14 10.86
210 190.17 19.83
180 174.66 5.35
150 182.41 -32.41
. a, causal b. predictive
. a, . 7 L._ .
6 .
£ 51— .
g
S 40— s .
=
2
£ 3 .
2 . . H . .
] |— L1 .::.
1 | | | | ! |

1 2 3 4 5 6 7
Satisfaction (X)

b. The relationship appears negative. The slope equals ~.77. It shows that
less satisfaction with privacy was associated with more avoidance
behaviors. The intercept equals 6.18. This is the predicted avoidance
score for someone with a score of zero on satisfaction. Because the
lowest possible score on satisfaction is one, the intercept is an ex-
trapolation.

c. variance of X: 2.03; variance of ¥: 3.31; variance of errors: 2.23

Chapter 7: Relationship: The Correlation

Coefficient

ok o

Fyy = 1.000
yxy = 404
4. bxy = .20 b. bxy =-1.0 C. I'yy = .10

. ryy = .463. There is a fairly large positive correlation between typing and
preparing stencils, such that those who perform one of these tasks will
tend to perform the other task well. The 2sd advantage is about .762. So
someone who is one standard deviation above the mean on typing is
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12.

about 75% more likely to better at preparing stencils than someone who is
one standard deviation below the mean on typing.

8511 — (749)(195)/16
V(37011 — 745%16)(2853 — 195%16)

= —.641

The relationship between memory and age is a large negative one. So as
persons age, their memory declines. The 2sd advantage is about .887. So
someone who is one standard deviation above the mean in age is about
89% more likely to have a worse memory than someone wha is one
standard deviation below the mean in age,

a. Because school and not person is the unit in the correlation, aggrega-
tion is likely to increase the size of the cormrelation.

b. Because the child’s initial height is used to measure how much the
child grew (growth equals current height minus initial height), there is
a part-whole problem. The most likely outcome is that the correlation
will be negative.

c. Because almost all air-traffic controllers experience high levels of
stress, there is likely to be a restriction in range of the stress variable.
The size of the correlation will likely be underestimated.

d. The likely form of this relationship is nonlinear. Persons who eat
nothing will not likely be very happy and persons who overconsume
will also be unhappy. The resulting pattern will mean that only those
who eat moderate amounts will have relatively high scores, resulting
in convex curvilinearity. A linear measure of association such as a
correlation coefficient will understate the true size of the relationship.

e. A single item on an intelligence test is not a very reliable measure of
intelligence and so the strength of the correlation will be lessened by
unreliability .

Chapter 8: Measures of Association:
Ordinal and Nominal Variables

1.

2.

a. Members of religions: Protestant, Catholic, Jewish
Nonmembers: agnostic, atheist

b. Precipitation: rainy, snowy
No precipitation: clear, cloudy

a. X = .347, s = .479
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Political Capital Punishment

Party Approve Disapprove

Democrat 76 73 149

Republican 108 111 219
184 | 184 368

Percentage difference 2%; phi .02; logit difference .07

. Percentage difference: 43%; the difference between the percentage of
women who smoke minus the percentage of men who smoke is 43%.
Phi: .43; the correlation between gender and smoking is .43. This is a
moderate to large correlation.

Logit difference: 1.86. The odds of a woman smoking are about six (the
antilog of the logit difference) times greater than for a man in this sample.

. Percentage difference = —-39%; people over 30 are 39% less likely to
agree than persons under 30.

Phi: —.32; the correlation between age and opinion is —.32. The correla-
tion is moderate in size.

Logit difference: —1.66. The odds of a younger person agreeing are about
five times more than an older person agreeing.

. a. ) : Intimacy
Sclitude Primary Secondary Public
Primary ( 28 20 34
Secondary |~ 3 0 4
Public 69 80 62
L .

100 100 100
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b. Intimacy

Solitude Primary Secondary Public
\

Primary 39 3 57 99

Secondary 43 0 57 160
|

Public 45 6 49 100

|

10. Rho equals -.571.

Chapter 9: Statistical Principles

1. a. nonrandom b. nonrandom ¢. nonrandom d. random

2. Although statistic p is unbiased, statistic g is to be preferred. Its standard
error is so much smaller than g’s that g is a better statistic.

5. a, yes b. k c. For k the standard error is 4.47 and for g the
standard error is 5.00.

6. a. yes b. V1/in—2)
9. It is more efficient.

11, o X Frequency

)
>
O OMNMNOWR=NR O -

12.0

Mean of the random sampling distribution: 8.75; standard deviation:
1.58.
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15. 6! (1 (5)°

8] (8 - a
16. ‘

5t (5 4[31 !

411 [36] \36] ~ ol

Chapter 10: The Normal Distribution

1. a. .2794 b. .0438 c. 4115 - .1293 = 2822
d. .5000 - .2642 = 2358

2. a. .3413 b. .4082 — 2486 = .159%6 c. .5000 - .1293 = 3707
4. a. 412 b. —1.282

5. Percentile Ranks: 6, 17, 28, 39, 50, 61, 72, 83, 64
Normalized ranks: -1.555, —.954, —-.583, -.279, .000, .279, .583,
.954, 1.555

7. The ranks are first transformed into percentile ranks, The percentile ranks
for one through ten are 5, 15, 25, 33, 45, 55, 65, 75, 85, and 95,
respectively. The normalized ranks for the ten cities are

Trans. Econ.  Average Ave. Rank
Atlanta -1.036 -.126 —.581 3.5
Boston 126 -.383 —-.130 5
Chicago -.126 1.645 760 7.5
Cincinnati 674 .674 .674 S
Dallas .385 ~-1.645 -.630 4
Denver -.385 -1.036 ~-.710 3
New York -1.645 385 -.630 4
Phoenix 1.645 -.674 .486 6.5
Pittsburgh 1.036 1.036 1.036 9
San Francisco -.674 126 -274 4.5

Note that a lower score means that the city is ranked ahead of the other
city. Now comparing the average rank (fourth column of numbers) to the
average of the normalized ranks (third columu of numbers), it is found
that five cities’ ranks do not change. The following changes do occur.
First, using normalized ranks Cincinnati is ranked ahead of Chicago.
Second, using normalized ranks both Dallas and New York are ranked
ahead of Atlanta.

8. The sampling distribution of X with n = 36 has a mean of 50 and variance
of 81/36. The standard error of X is 1.5. So the probability that X is
between 50 and 51 equals the probability that Z is between zero and
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(51 —50)/1.5 or .67. This probability is .2486. Because the probability
that X is between 49 and 50 is also .2486, the probability that X is
between 49 and 51 is .4972.

12, a. .253 b. —.496 ¢. —.553

Chapter 11: Special Sampling
Distributions

1.
2. a .70 b. 2.21
3.
5
8

Chapter 12:

1.

a. normal b. chi square c.t d. chi square

64
a. .5000 — 3413 = .1587 b. .5000 — .4207 = .0793

. First, because #(df)> = F(1,df), then 1(2)*> = F(1,®).

Second, because F(1,) = y?(1), then #(®)* = x*(1).

Testing a Model

a. 3.055  b. 2.069 ¢. 3.435 (not 3.416, because one rounds
down the df)

a. .20 b. .10 c. .01

_29.556 — 25
12.720V9

This ¢ with eight degi'ees of freedom is not statistically significant. There is
then insufficient evidence to claim that the inmates score any differently
from the national norm of 25.

_ 12,667 — 10
3.01/V6

This ¢ with five degrees of freedom is marginally significant at the .10
level. Using the conventional .05 level of significance, there is not suf-
ficient evidence to claim that the subjects are performing above chance.

£(8) = 1.075

= 2.170

.a 2,131 b. 2.004
. A Type I error is concluding that the restricted model is false when in fact

itis not, A Type II error is concluding that there is insufficient evidence to
reject the restricted model when in fact the complete model is true.
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8. @) = 112.125 — 100
13.250/\V'8

This ¢ with seven degrees of freedom is statistically significant at the .05
Ievel. So the couples believe that they do significantly more than 100% of
the housework. :

= 2.588

9. The first model is the complete model and the second is the restricted
model. The restriction is that the independent variable has no effect.

Chapter 13: The Two-Group Design
1. a. 2.056 b. 3.707 c. 1.684

2. The mean for method A is 19.40.and the mean for method B is 14.40.
Method A is superior to method B. The test of whether this difference is
statistically significant is #(8) = 3.356, which is statistically significant at
the .01 level. (The pooled variance is 5.55.)

3. The six subjects lost an average of 8.5 pounds.

_ -85
7.007/V6
This ¢ with five degrees of freedom is statistically significant at the .05

level. The weight loss then is statistically significant and cannot be
explained by chance.

4, a. .59 b. 42
5. a. .33 b. .29 c. .99

6. The mean for the treatment group is 122.50 and the mean for the control
group is 109.14. To test this difference a #(13) = 2.846 is obtained which
is statistically significant at the .02 level. The program does significantly
increase IQ. (The pooled variance is 82.220.)

K(5) = -2.971

8. The use of individual therapy as the control group would contro! for
therapeutic experience because all subjects would receive some form of
therapy. It would then contrast two different types of talk therapy. Its
weakness is that it is a low power test because presumably both types of
therapy are effective.

Having a hypnosis control group would control for receiving some
intervention that was attempting to reduce smoking. Because the two
types of treatments are so very different, it would be difficult to de-
termine why it is that one treatment is more effective than the other.

The film condition would control for information and for the motiva-
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13.

15.

tion to quit smoking. It would alse provide the most powerful test. It
would provide ne evidence about why group therapy is effective.

The standard deviation of the treatment group is §.06. The standard
deviation of the control group is 4.75. Although the difference is large
because the sample sizes are equal, the unequal variances should not have
much effect on the p values.

a. 32 b. 26

Chapter 14: One-Way Analysis of

Variance

1.

2.

a 449 b 261 ¢ 323  d 1197

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F
Factor A 140.0 4 35 3.5
Subjects 380.0 38 10

within A

(S/A)

Total 520.0 42

The F(4,38) = 3.5 is statistically significant at the .05 level.

. The means for the three groups are 13.2, 9.8, and 10.4. The test that they

are significantly different is F(2,12) = 16.467/7.233 = 2.28, which is not
a significant difference. The value of o is .15, which is small to moderate
in size.

. a. One cannot do the Tukey lsd test because the overall F test is not

statistically significant.
b. The mean square for the constant equals 15(11.1333 — 10)* = 19.266.
The F(1,12) is 2.66, which is not significant at the .05 level.

. The result of the £ test is #(15) = 2.794, which is statistically significant at

the .02 level. The result of the one-way ANOVA is F(1, 15) = 114.421/
14.654 = 7.81, which is significant at the .05 level. The mean for group I
is 18.7 and for group Il is 13.43. Note that 2.794” equals, within the level
of rounding error, 7.81.

. The contrast weights are 1, 1, -1, -1, and 0. (Also acceptable are -1, -1,

1, 1, and 0). Each mean is multiplied by twelve to obtain a group total: 24,
38.4, 49.2, 62.4, and 61.2. The mean square for the contrast is
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(24 + 38.4 — 49.2 — 62.4)*
(12)(4)
55.33 - (3)(2.49) _
194.77 + 2.49

.24

This indicates a moderate effect size.

= 50.43

Chapter 15: Two-Way Analysis of Variance

i.

2.

385

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F
A 6.3 3 2.1000 3.13
B 4.3 2 2.1500 3.21
AxXB 6.0 6 1.0000 1.49
Subiects 72.4 108 .6704

within AB

(S/AB)

Total 89.0 119

The F tests for A and B are statistically significant at the .05 level while
- the F for A X B is not significant.

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F
Meat (M) 105.8 1 105.8 3.04
Region (R) 57.8 1 57.8 1.66
M xR 1.8 1 1.8 05
Pigs 556.8 16 34.8

within MR

(P/MR)

Total 722.2 19

None of the F tests is statistically significant at the .05 level. The main
effect for meat is marginally significant at the .10 level. The fat content of
bacon, 33.6, is higher than ham, 29.0.

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F
A 7.225 1 7.225 1.57
B 25,750 4 6.438 1.40
AXB 78.150 4 19.538 4.24
Subjects 138.250 30 4.608

within AB

(S/AB)

Total 249.375 39
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The interaction is significant at the .05 level. The table of cells means is:

B
1 2 3 4 5
1 6.75 3.25 6.75 4.75 2.50
A
2 3.50 3.25 3.75 2.50 6.75

The Al cell mean is higher than the A2 cell mean for B1, B3, and B4.
However, the A2 cell mean is higher than the Al cell mean for BS.
Finally, the two cell means do not differ for B2.

5. There is evidence for a main effect of A. The Al means are lower than the
A2 means. There is also an indication of a main effect of B. The B3 means
are the highest, then the B1 mcans, and finally the B2 means. There is
little evidence for interaction because the A effect across levels of B is
always about 3.0.

6. Source of Sum of Degrees of Mean
Variation Squares Freedom Square F
Day (D) 555.4 3 185.13 12.51
Subject (8) 664.8 4 166.20
DX3 177.6 12 14.80
Total 1397.8 19

The effect for day is statistically significant at the .01 level of significance.
Performance is highest at day 4 and lowest at day 1.

1. Source of Sum of Degrees of Mean
Variation Sguares Freedom Square F
A 124 2 62.000 23.25
B 25 3 8.333 3.12
C 48 1 48.000 18.00
AXB 12 6 2.000 3
AXC 19 2 9.500 3.56
BxC 14 3 4.667 1.75
AXBXC 12 6 2.000 75
S/ABC 64 24 2.667
Total 318 47

Significant results: A main effect, p < ,001; B main effect, p < .05; C
main effect, p < .001; A X C interaction, p < .05.
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Chapter 16: Testing Measures of

Association
1. 142V 146
K146) = ——— = 13.374
V11— 7422
The positive correlation between age and susceptibility to glare is statisti-
cally significant at the .001 level.

2. a. —.1307 b. .0701 c. 1.5275 d. .9287

3. a. —,6963 b. —.4053 c. 7211 d. .0599

4, 31Vv3L.93

H42) = = 2.581
22.41 ~ (.312)(31.93)
42
The positive regression coefficient is statistically significant at the .02
level.
5. 2342 — 523(
2=22-20 _ 60
1,1
209 133
The difference between the two correlations is statistically significant at
the .01 level.
6. .35V82
K82) = ————= = 3.835
V1 - .39?
The positive correlation is statistically significant at the .001 level.

8. a. #(142) = 5,186, p < .001 (K = .563)

b. Z =3.00, p = .0026 (@ = .464)

9. Test of the difference between slopes: #(106) = —1.434, which is not
statistically significant. The pooled slope is .331 and its #(104) = 4.529,
which is statistically significant at the .001 level. So-the siopes do pot
differ, and the poocled slope does differ from zera.

-10. The average of the four correlations yields a Fisher’s z of 336.2733/480

12,

13

= 7006, which when converted back to r is .6044. The test that the
pooled correlation is different from zero yields Z = .7006/V 1/480 =
15.35, which is statistically significant at the .001 level. The test that the
correlations differ is y(3) = 8.79, which is statistically significant at the
.05 level. The four correlations differ significantly.

a. .06 b. .92
a, 384 b. 8
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Chapter 17: Madels for Nominal
Dependent Variables

1.

a. 3.84 b. 15.09 c. 16.27

2. Men are less likely to agree (29%) than women (52%). The test of

11.

independence yields a x*(2) = 15.48, which is statistically significant at
the .001 level.

Female Male
Observed 212 246
Expected 238.16 219.84

x*(1) = 5.99, which is statistically significant at the .02 level. So women
are underrepresented in the juries of the county.

Persons are more likely to buy a product when they have seen the ad
(54%) than when they have not seen the ad (21%). The test of in-
dependence yields a y%(1) = 94.28, which is statistically significant at
the ,001 level. )

. Blacks prefer less to live in the North (47%) than whites (54%). The test

of independence yields x2(1) = 38.18, which is statistically significant at
the .001 level. When the data are split by area of birth, the result
reverses. Of persons who were born in the North, blacks are mare likely
to prefer the North (81%) than whites (73%). This difference is statisti-
cally significant y2(1) = 37.43 at the .001 level. Of persons who were
born in the South, blacks are more likely to prefer the North (28%) than
whites (16%). This difference is statistically significant y2(1) = 68.41 at
the .001 level. .

Fathers are less likely to recognize their infants’ cries (22%) than are
mothers (52%). To test this difference, McNemar’s test is used. The
result is ¥%(1) = (|9 - 1]- 1)¥10 = 4.90, which is statistically
significant at the .05 level.

Chapter 18: Models for Ordinal
Dependent Variables

1.

_ (6)146) _
(8)(63)

This negative rank-order coefficient is statistically significant at the .05
level.

2. The sum of the ranks in group A is 70.5 and the value of U/ is 49 + 28 —

70.5 = 6.5. This value of U/ with group sizes both equal to seven is
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statistically significant at the .05 level. Using group B, the sum of the
ranks is 34.5 and U is 42.5. This value of U is also significant at the .03
level, as it should be,

46.5° + 332 + 40.5° _
[(15)(16)” 5 7 -~ (3)(16) = 915

A x* test statistic of .915 with two degrees of freedom is not statistically
significant. There is no evidence to conclude that the groups. differ.

. Eight values are higher in the after measure, three are lower, and one is

tied. Using the sign test with n = 11, an eight is not significant.

. Let heaviest have a rank of one, middie a rank of two, and lightest a rank

of three. The sum of the ranks for the spherical condition is 3 + 2(9) +

- 3(8) = 45; for the conical condition the sum is 5§ + 2(4) + 3(11) =

and for the cubical condition the sum is 12 + 2(7) + 3(1) = 29, The
Friedman test is

(20)(3)4)

A X with two degrees of freedom is statistically significant at the .02
level. The groups® distributions significantly differ.

[——-'2—] (452 + 46% + 29%) — (3)(20)@) = 9.1

. The sum of the ranks in group B is 15.5 and the value of U is 25 + 15~

15.5 = 24.5. This value of U with group sizes both equal to five is
statistically significant at the .02 level of significance. Using group A,
the sum of the ranks is 39.5 and U is .5, This value of U is also
significant at the .02 level, as it should be.

The sum of the ranks in control group is 34.5 and the value of U is 56 +

28 - 34.5 = 49,5, This value of U/ with a control group n equal to seven

and experimental group n equal to eight is statistically significant at the -
-02 level of significance. One cannot use the sum of the treated group

ranks because the sample sizes of the two groups differ.

* = 20)25) + (2”2(20) 248 = 462

462 — (20)(25)12 _
V(20)25)(@6)12

This value of Z is statistically significant at the .001 level,

a. 76y = -1.872, p < .10
b. #40) = -3.187, p < .01
c. p<.,02

d. not stausucally 51gn1f' cant
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Mathematical Symbols

b> ¢
b<c¢
b=c¢
bE=c¢

§8l+'+

X
lel
nt
€

In{c)
log(c)

Statistical Symbols

a
a, b, ¢, and d
A, B, and C

“a@,‘.bn.qv

b greater than ¢

b less than ¢

b equal to ¢

b approximately equal to ¢

Plus

Minus

Plus or minus

Infinity

Square root

Multiplication or interaction in ANOVA
Absolute value of ¢; negative signs are ignored
Factorial; n(n - 1)(n —2) . . . (32D
The number 2.718. . .

Natural Jogarithm; logarithm fo base e
Commonb logarithm; logarithm to base 10

Intercept

Frequencies in a 2 X 2 table
Factors in ANOVA

Regression coefficient

Correction term for the mean
Cohen’s measure of effect size
Difference between ranks or scores
Degrees of freedom

Frequency

Test statistic for Kruskal-Wallis test
Null hypothesis



Glossary of Symbols 391

ko Number of levels in one-way ANOVA
lsd Least significant difference

MS Mean square

n Sample size

N Sample size in analysis of variance

p value; also proportion or probability
Correlation coefficient
Sum of the ranks of the group with the smaller n
i Score I’s rank
rs Rank-order correlation or Spearman’s rho

i B

K] Sample standard deviation

5 Sample variance

5p° Pooled variance

Syxt Error variance

2 X 2 table Table with two rows and columns
2sd advantage Two standard deviation advantage
S Subject or person

S/A Subjects within leveis of A

S8 Suom of squares

T Sum of scores or total

TOT Total variability

7 Test statistic for Mann-Whitney test
x Number of successes in # trials
Xand ¥ Variables

X Sample mean

¥ Predicted score of ¥

z Fisher’s z transformation

z Standard normal distribution

Greek Letters

Alpha: probability of making a Type 1 error

Beta: probability of making a Type II error

Mu: population mean

Phi: comrelation between two dummy coded dichotomies
Rho: population correlation coefficient

Sigma: population standard deviation

Sigma squared: population variance

Summation sign

Chi-square distribution

Omega squared

ExXMQ9QOESE®™R
o N
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Aggregation: Creating a score that is an average or sum of other scores.
Alpha:  Probability of making a Type I error.

Alternative hypothesis: Hypothesis that is true if the null hypothesis is
false.

Analysis of variance:  Procedure for testing the differences between means.
Analysis of variance table: Table with sums of squares, mean squares,

‘degrees of freedom, and F ratios.

ANOVA: Analysis of variance.

Antilog: For x = log(y), v is the antilog of x; inverse logarithm function.
Aresin transformation: Two-streich transformation of proportions that
stretches less than probit and logit.

Asymmetric distribution: Distribution whose shape changes when its mir-
ror image is examined.

Bar graph: Graph of the frequencies of a nominal variable.

Bimodol distribution: Distribution with two peaks.

Binomial distribution: Distribution that describes the probability of x suc-
cesses in # independent trials.

Cell: Particular row and column combination.

Central limif theorem: With increasing sample size, the distribution of the
mean approaches a normal distribution, regardless of the shape of the original
distribution of the scores.

Central tendency: Typical value of an observation from the sample.
Chi square distribution: Sampling distribution with a lower limit of zero
and no upper limit; sum of independent Z? values; y2.

Chi square test of independence: Test to evaluate whether two nominal
variables are associated.

Circle diagram: Representation of the partitioning of sums of squares and
degrees of freedom in analysis of variance.

Class inferval: Range of possible scores that can be a member of a given
class.
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Class midpoint: One-half the sum of a class’s lower and upper limits.
Class width: Difference between adjacent lower limits.

Coefficient of variation: Standard deviation divided by the mean.
Cohen’sd: Measure of effect size in a two-group study; difference between
the means divided by the pooled within-groups standard deviation.
Complete model: Model that contains the term that is to be tested.
Concave curvilinearity: Relationship that begins negative and becomes
positive; U shape.

- Constant in model: Term added to every score; often the population mean

!

of the dependent variable.

Contrast:  Set of weights assigned to levels of the independent variable in
ANOVA; weights that are chosen for theoretical reasons. and must sum to
Zero.

Convex curvilinearity: Relationship that begins positive and becomes
negative; inverted U shape.

Correction term of the mean:  Squared sum of all the observations which is
divided by the total number of observations; symbolized by C.

Correlated correlations: Two or more correlations computed using the
same sample of objects.

Correlation coefficient: Regression coefficient between Z scored variables
that varies from -1 to +1; r.

Criterion variable: Outcome or dependent variable in a regression equa-

‘tion.

Critical value: Value that the test statistic must meet or exceed to be
deemed statistically significant.

Cummulative frequency: Sum of the frequencies of all classes that are less
than or equal to the class’s upper limit.

Curvilinearity: ~Nonlincar relationship in which the relationship changes
direction.

Data: Numerical values given to objects.

Datum: Single score.

Degrees of freedom for a contrast:  One.

Degrees of freedom for x° goodness of fit test: Number of levels of the
nominal variable less one.

Degrees of freedom for x° test of independence: (r — 1)(c - 1).
Degrees of freedom for error variance in a regression equation: n— 2.
Degrees of freedom for F in one-way ANOVA: k-1 in the numerator and
N — k in the denominator.

Degrees of freedom for interaction in two-way ANOVA: (a - 1)(b - 1).
Degrees of freedom for pooled variance:. n, + ny - 2. B ..
Degrees of freedom for t:  For one-sample test, n — 1; for two-sample test,
ny + np — 2; for a test of a single correlation or regression cocfficient, n - 2.
Degrees of freedom of the standard deviation:  Sample size minus one, or
n-1,
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Dependent variable: Outcome or variable caused by the independent vari-
able.

Descriptive statistics: Numerical values that summarize sample data.
Dichotomy: Nominal variable with two levels.

Distribution: Shape of a sample or population; usually represented by a
histogram.

Distribution-free test: Procedure for testing a model that makes no dis-
tributional assumptions.

Distribution-tied test: Test that assumes a normal distribution that is an-
alogous to a distribution-free test.

Dummy coding: Numbers used to create a dummy variable.

Dummy variable: Numerical variable that is created by assigning arbitrary
numbers to the levels of a nominal variable.

Ecological fallacy: Inferring individual relations from aggregate relations.
Effect size;: Measure of the strength of effect as opposed to its p value,
Efficient statistic: Statistic with a relatively small standard error.

Error in a regression equation:  Observed score minus the predicted score;
the vertical distance in the scatterplot from the regression line to the point.
Factor: Nominal independent variable in ANOVA.

Factorial design: In two-way ANOVA, the creation of all possible com-
bipations of two independent variables.

F distribution: Sampling distribution that is the ratio of two independent
variances.

Fisher's z transformation: Transformation of a correlation that makes its
distribution approximately normal.

Flat distribution: Distribution in which all scores are equally likely.
Flat transformation: Transformation that changes the shape of a distribu-
tion into flat one; rank order and percentile rank.

Freguency: Number of observations that fall in a cell of a table or the
number of observations in a class interval. '
Frequency table: Table with the classes and their frequencies.
Friedman two-way ANOVA: Test used to evaluate the medians and other
aspects of two or more nonindependent groups.

Goodness of fit x* test: Test to compare the observed distribution of a
nominal variable to a predicted distribution.

Histogram: Graph of the frequency table of a distribution with the X axis
being the classes and the ¥ axis being the frequency.

Hotelling test:  Test of the equality of two nonindependent correlations in
which two of the variables are in common.

Independent groups: Two or more samples that contain different persons
who do not influence one another.

Independent sampling: If one object is sampled, every other object in the
population has the same probability of being sampled.
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Independent variable: Causal variable in a2 model.

Inferential statistics: Using sample data to draw conclusions about the
population; tests of models.

Interaction: Effect of an independent variable changes as a function of a
second variable.

Intercept:  Predicted value of ¥ when X is zero in a regression equation in
which X is the predictor and ¥ the criterion.

Interquartile range: Difference between the upper median and the lower
median.

Interval level of measurement: Measurement level at which numbers can
be used to quantify differences between objects.

Kruskal-Wallis ANOVA: Test used to compare the medians and other
aspects of two or more independent groups.

Leaﬁ In a stem and leaf display, the next digit after the stem.

Least significant difference test: Post hoc test of means in one-way AN-
OVA,; Tukey Isd.

Leptokurtic distribution:  Distribution that has a high peak in the center and
skinny tails.

Linearity: Onc-unit change in X produces the same change in ¥ regardiess
of where the change in X comes. :
Logarithm: 1f ¥ = b, y is the logarithm of b to base x.

Logit difference: In a 2 X 2 table the difference between logits; also the
natural logarithm of the odds ratio.

Logit transformation: Natural logarithm of the odds.

Log linear model:  Model for multiple nominal independent variables and a
nominal dependent variabie.

Lower median: Median of scores below the median of the sample.
Lowest lower limit: Lower limit of the lowest class interval.
MeNemar’s test:  Test of the effect of a dichotomous independent variable
on a dichotomous dependent variable when groups are nonindependent.
Main effect: In two-way ANOVA the effect of an independent variable
averaged across levels of the other independent variable.

Mann-Whitney test: Distribution-free test that compares the medians and
other aspects of two independent groups; U.

Margin: In a table, sum of frequencies across a row or a column.
Mean: Sum of the observations divided by the sample size.

Mean square: In ANOVA the sum of squares divided by degrees of
freedom.

Measurement: Assignment of numbers to objects by a rule.

Median: Middle observation in a sample.

Mode: Most frequent observation in a sample,

Model: Mathematical equation specified by a theory.

Negative association: As one variable increases, the other decreases.
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Negative skew: Distribution with a long, skinny tail on the left side.
Nominal level of measurement: Measurement level at which only dif-
ferentiation of objects is possible.

Nonindependent groups: Two or more samples that contain the same
persons ot sampling units.

Nonlinearity: Relationship between two variables that varies in strength as
a function of one variable, -

Normal distribution: Unimodal, symmetric, bell-shaped distribution with
limits of positive and negative infinity.

Normalized ranks transformation: Transformation that alters a variable’s
distribution to make the distribution more normal.

No-stretch transformation: Constant multiplied or added to each score;
basic shape of the distribution not altered.

Null kypothesis: Constraint on the complete model that is present in the
restricted model; H,.

Odds: - Proportion divided by the quantity one minus the proportion.
Odds ratio: In a2 X 2 table (ad)/(bc).

Omega squared: Measure of variance explained in one-way ANOVA,
One-siretch transformation: Transformation to remove positive skew,
which stretches the left side of the distribution; square root, logarithm, and
reciprocal.

One-tailed test: Test in which only one alternative hypothesis is consid-
ered.

One-way analysis of variance:  Method used to test for differences between
independent means.

Operational definition: Set of procedures used to measure a construct.
Ordinal level of measurement: Measurement level at which objects can be
rank ordered.

Outlier: Extremely large or small score. _

Paired t rest: Test of the difference between two nonindependent means.
Parameter: Quantity computed using all objects in the population, often
symbolized by a Greek letter,

Part-whole problem: Two variables, one of which is derived from the
other,

Pearson Filon test:  Test of the equality of two nonindependent correlations
in which none of the variables are in common.

Percentage difference: In a 2 X 2 table, the diffcrence between per-
centages computed across either rows or columns.

Percentile rank: Percentage of scores that the object is greater than.
Phi: Correlation between two dummy-coded dichotomies.

Platykurtic distribution:  Distribution with a low peak in the center and fat
tails.

Pooled variance: Weighted average of variances used in two-group ¢ test,
where the weights are sample size minus one for each group.
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Population:  All possible observations.

Positive association: As one variable increases, the other increases.
Positive skew: Distribution with a long, skinny tail on the right side.
Post hoc test of means: Test in which all possible pairs of means are
compared.

Power: Probability of rejecting the restricted model when the restricted
model is false; one minus the probability of making a Type II error.
Power efficiency: Ratio of sample size needed for a distribution-tied test to
the sample size needed for a distribution-free test in which the same power is
achjeved and the assumptions of the distribution-tied test hold.

Predicted score: In a regression equation, the intercept plus the predictor
score times the regression coefficient.

Probit fransformation:  Two-stretch transformation of proportions based on
the standard pormal distribution.

p value; The probability of obtaining a value of the test statistic at least as
large as the one obtained.

Random assignment: Each object having the same probability of being
assigned to a level of the independent variable.

Random sample: Each object equally likely to be chosen from the popula-
tion.

Range: Crude measure of variability; largest score minus the smallest
score.

Rank-order correlation; Spearman’s rho; correlation between ranks; rs.
Rank-ogrder transformation: Scores rank ordered from smallest to largest
and the smallest score assigned a 1, the next a 2, and so on.

Reciprocal transformation: One-stretch transformation in which one is
divided by the score; 1/X.

Rectangular distribufion: Flat distribution,

Regression coefficient: Measure of association of how much a one-unit
change in the predictor variable creates in the criterion variable.
-Regression equation: Criterion equals the intercept plus the regression
coefficient times the predictor.

Regression toward the mean: Predicted scores in a regression equation are
less variable than the scores of the criteriorn.

Relative frequency: One huridred times the frequency divided by sample
size.

Reliability: Proportion of true variance in a variable.

Repeated measures design: All subjects measured at each level of the
independent variable.

Residual variable:  All other sources of variation in the dependent variable
besides that due to the independent variables.

Restricted model: Model that is a constrained version of the complete
model, the constraint being the null hypothesis.

Restriction in range: Variable with limited variability,
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Robust statistic:  Statistic not influenced much by outliers.

Sample: Set of scores that refer to different objects.

Sample size:  Number of observations in the sample; n.

Sampling distribution:  Distribution of a statistic that is created by drawing
repecated samples and recomputing the statistic.

Sampling error: The fact that a statistic changes when it is recomputed
using a different sample.

Scatterplot: Graph to represent the association between two variables;
variables form the axes and points are the data.

Significance level: Alpha or the probability of making a Type I error.
Sign fest: Distribution-free test for evaluating the difference between the
medians and other aspects of two nonindependent groups.

Skew: Long, skinny tail on just one side of a distribution.

Slope: Regression coefficient; linear measure of association.

Smoothed frequency: One-half the class’s frequency plus one-quarter the
sum of the adjacent class frequencies.

Smoothing: Procedure to make a frequency table less influenced by choice
of lowest lower limit and class width.

Spearman’s rho:  Correlation coefficient of ranks; rs.

Standard deviation: Measure of variability that uses all observatlons
square root of the variance; s.

Standard error of the mean: Standard deviation divided by the square root
of the sample size.

Standard normal distribution: Z distribution; normal distribution with a
mean of zero and a variance of one.

Standard score: Z score; score minus the mean and the difference divided
by the standard deviation.

Statistic:  Quantity computed from sample data.

Statistically significant: p value is equal to or less than the significance
level.

Stem: Lower limit of a class used to represent a class interval in a stem and
leaf display.

Stem and leaf display:  Vertical histogram that essentially preserves the raw
data.

Sum of squares: In ANOVA the numerator of a mean square.
Summation sign: Symbol that represents the sum of all the scores; Z,
Symmetric distribution: Distribution that when folded vertically perfectly
coincides. '

Tail of a distribution: Frequency of very large or very small values.

t distribution: Sampling distribution used to test hypotheses about means
and to test correlation coefficients,

Test statistic:  Quantity computed from sample data used to evaluate the
plausibility of a restricted model.

Tukey least significant difference test:  Post hoc test in one-way ANOVA,



Glossary of Terms 399

Two-standard devigtion advantage: Measure of effect size of r that equals
how much more likely someone who is one standard deviation above the
mean on X will outscore on Y someone who is one standard deviation below
the mean on X.

Two-streich transformation: Transformation that is used to remove lower
and upper limits, commonly used on proportions; arcsin, probit, and logit.
Two-tailed test:  Test in which the two alternative hypotheses are consid-
ered.

Two-way analysis of variance: Procedure to evaluate models with two
nominal independent variables and an interval dependent variable.

Type I error: Rejecting the restricted model when it is true; alpha, or a.
Type I error: Retaining the restricted model when it is false.

Unbiased statistic:  Statistic whose mean of the sampling distribution equals
the population parameter that the statistic is estimating.

Unimodal distribution: Distribution with one peak.

Unit in a distribution: Smallest possible difference between a pair of
scores. . .
Unit of measurement: Term that defines the meaning of a one-point differ-
ence between two scores.

Upper mediarn: Median of scores above the median of the sample.
Variability: How much the observations differ from one another,
Varianee: Measure of variability that is based on deviations from the
mean; s2.

X axis: Horizontal (left to right) axis in a graph.

* Y axis: Vertical (up and down) axis in a graph.

Z distribution: Stapdard normal distribution; a normal distribution with a
mean of zero and a variance of one.

Z score:  Score in which the mean has been subtracted and this difference is
divided by the standard deviation.

z transformation: Transformation to make the distribution of » more nor-
mal, commonly called Fisher’s r to z transformation.

Z fransformation: Scores in which the mean has been subtracted and this
difference is divided by the standard deviation.
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a priori test, 237
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Aggregate data, 119
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Aliernative hypothesis, 188
Altman, 1., 89, 142, 330
Analysis of variance
assumptions of, 233-234
Friedman, 317-318
interpretation, 234
Kruskal-Wallis, 316317
one-way, 224-245, 246
repeated measures, 264265
table, 226231, 258-259
three-way, 262-264
two-way, 246-269
Anderson, T. W., 305, 328
Aresin transformation, 82, 118, 334
Association
curvilinear, 116
linear, 91
measures of, 127-143
testing, 270-291
measuring, 90-107
negative, 92
nonlinear, 91, 116-118
positive, 91, 92
Average slope, 94-97
Average squared difference, 62

Ball, §., 246, 328
Ballard, K. D., 54, 328

Bane, M. J,, 329

Baxter, J., 124, 328

Benson, L., 138, 328
Best-fitting line, 97-98

Beta, 197

Binomial distribution, 154-155
Bogatz, G. A., 246, 328
Boyer, R., 172, 328
Bradiey, 1. V., 310, 328
Brown, B., 89, 142, 330
Brown, C. E., 295, 296, 328

Calculator, use in statistical work, 13
Causality, correlation and, 122-123
Cells, 246-247
Central limit theorem, 161, 208
Central tendency, 42-54, 57, 80, 85
computation of, 4549
Ieast-squares estimate of, 50
measures of, 4344
Chi square, critical values for, 359-360
Chi square distribution, 179-180, 278,
297, 299, 301, 316, 317
Chi square goodness of fit test, 295,
301303
Circle diagram, 231-232, 256-257,
263-264
Class interval, 23, 36
midpoint of, 26
Class width, 23, 26
Coefficient of variation, 80
Cohen, D., 329
Cohen, J., 214, 215, 273, 274, 328
Cohen’s d, 212, 235
Cole, R. E., 139, 329
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Computational errors, 13, 67-68
Constant, test of the, 187, 233
Contrasts, 235-237
Control group, 203, 216
Correction for continuity, 299300
Correlated correlations, 276, 279282
Correlation, causality and, 122-123
Correlation coefficient, 108-126, 153,
210, 270

computation, 110111

converting to b, 110

interpretation of, 111-116

phi, 133

rationale for the, 109-110

size of, factors affecting, 116-122

tests of, 271-282, 287-288
Counts, 131
Criterion, 93-94
Critical values, t93, 206

-Crooks, T. 1., 54, 328

Cumulative frequency, 23
Cumulative relative frequency, 24, 50
Curtona, C. E., 15, 328

Data, 4
aggregate, 119
grouped, 50-51
Data transformations, 168-170
Datum, 4, 5
Degrees of freedom, 178, 179, 180,
191, 206, 230, 257258, 262—
263, 272, 297, 299, 301, 315,
317
DePaulo, B. M., 26, 28, 33, 34, 40,
328
Dependent variable, 185-186
Dermer, M., 300, 329
Descriptive statistics, 5, 19-143, 147
Design, two-group, see Two-group de-
sign '
Deviations, squared, 64
Devinney, L. C., 305, 330
Dichotomy, 127, 130, 204
Diehl, R. L., 222, 326, 328
Distribution(s}, 21
asymmeltric, 32
bimodal, 29, 293
binomial, 154-155

chi square, 179180

F, 180, 227-228, 347-353

features of, 28-33

flat (rectangular), 30, 31, 128

leptolaurtic, 29

pormal, 33, 83, 115, 159-173

peaks, 29, 30

platykurtic, 29

sampling, 151-152, 174-183, 191

skewed, 32-33, 48, 78, R1-82, 128,

161, 194

symmetric, 30, 32

t, 177-178, 191, 206

upit of, 25

Z, 162, 174, 341-343
Distribution-free tests, 292
Distribution-tied tests, 292
Dolliver, J,, 330
Dummy variable, 129-130, 133, 237
Duncan, S. D., Ir., 74, 108, 329

Ecological fallacy, 119
Effect size, 212-213, 234-235, 273
Equal variances, 80, 208, 233, 259
Error
computational, 67-68
measurement, 119
model comparison, 196-197
sampling, 148-149, 151, 204
standard, 151-152
type [, 196-197
type [E, 196-197
Expected frequency, 296, 297, 301
Extrapolation, 102

F distribution, 180, 227-228, 258,
287-288

critical values for the, 347-353
Factor, 225, 248, 249
Factorial design, 246-247
Ferguson, G., 141, 330
Fienberg, S. E., 137, 320
Filon, L. N. G., 281, 330
Fisher’s r to z transformation, 275, 356
Fiske, D. W., 74, 108, 329
Foss, C., 89, 142, 330
Freedom, degrees of, 178
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smoothing, 36-38
Frequency, 23
curnulative, 23
curpuiative relative, 24
relative, 23, 27
Frequency table, 23-24, 27, 28, 29, 35
Fridkin, K., 289, 330
Friedman two-way ANQVA, 308-309,
317-318

Gaiion, 139
Gintis, H., 329
Gaoodness of fit test, 198, 295, 301—
303
Grand mean, 228
Graphing, 26, 252
Greek letters, 391
Grouped data, 50-51
Grouping, 25-26
Groups
independent, 199
nonindependent, 199
paired, 199

Hammersla, K. S., 29, 329
Hastie, R., 187, 330
Heynes, B., 329
Histogram, 24, 26-30, 35, 36
Holahan, C. J., 290, 329
Hotelling test, 279-280
Hughes, J. L., 70, 329
Hypothesis

alternative, 188

nuil, 187-188, 1594, 204

. IIchigin, D., 92

Independence, 208-209, 233, 259,
272, 274, 298

Independence of two nominal variables,
test of, 294, 205-299

Independent groups, 199

Independent sampling, 149-150, 154

Independent variable, 185-186

Inferential statistics, 5, 145-327

Interaction, 251-254, 284

crossover, 259
Intercept, 98, 102
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Interpretability, 73

Interquartile range, 59, 60-61, 67, 68,
85

Interval level of mezsurement, 6,7

Facobson, J., 281, 282, 329
Jacobson, L., 38, 330
Jencks, C., 57, 329
Johnson, R. C., 139, 329

Keliey, H., 224
Kenny, D. A,, 58, 320

Kluender, K. R., 222, 326, 328
Kuight, J,, 300, 329

Korytnyk, N. X., 131, 329
Kruskal-Wallis test, 198, 316-317

La Voie, L., 58, 329

Leaf, 33

Least squares, 50, 97, 98

Leonard, L. B., 54, 330

Linearity, 80, 91, 116-118

Logarithms, 10-11, 78-79
natural, 11, 79, 83

Logit difference, 134-136

Logit transformation, 83, 333334

Lowest lower limit, 25

Main effect, 250
Manning, M. M., 274, 329
Mann-Whitney I7 test, 198, 308-314
two-tailed critical values for, 361—
365
Margins, 132, 295-296, 298
Mathematical symbols, 390
McClean, G, E., 139, 329
McNamara, W. I., 70, 329
MecNemar test, 199, 294, 299-301
Mean, 43, 4449, 64, 68, B0, 85, 153,
161, 224
correction term for, 232, 255
properties of the, 49-50
regression toward the, 103
Mean square, 230-231
Measurement, 4
error of, 119
level of, 6-8, 49
mterval, 6, 7
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Measurement, level of (continued)
nominal, 6, 7
ordinal, 6, 7
ratio, 8
unit of, 7, 76, 108
Median, 4349, 68, 80
lower, 60
upper, 60
Michelson, §., 329
Midpoint of a class interval, 26
Milgram, 5., 25, 46, 50, 147, 329
Mita, T. H., 300, 329
Mode, 43-49, 68, 80
Model(s)
analysis of variance, 225-228, 258
comparison of, 186-197
errors in, 196-197
complete, 186-189, 194
log lincar, 303
for nominal dependent variables,
292-307
for ordinal dependent variables, 308—
327
restricted, 187-192
statistical
defined, 184
testing, 184-202
two-group design, 203-207
Moos, R. H., 290, 329
Myers, I. L., 237, 265, 329

Nagoshi, C. T., 139, 329
Neff, J. A., 290, 329
Nezlek, 1., 277, 331
Nominal dependent variables, models
for, 202-307
Nominal level of measurement, 6, 7
Nominal variables, 6, 7, 127-137
with more than two levels, 136-137
Nonindependent groups, 199
Nonligearity, 80, 116-118, 139
Nonparametric test, 292
Normal distribution, 159-173
properties of, 159-162
standard, 162-168, 174-176
Normality assuroption, £15, 153-154,
194, 207-208, 233, 259, 272,
292

Normalized ranks transformation, 169-
170
Null hypothesis, 187-188, 194, 294
Number of classes, 25
Numbers, 34, 5
rounding, 89
squaring, 10
uses for, 6

Object, 4, 5, 90
Observed frequency, 296-297, 301
Qdds, 10, 83, 134
Odds ratio, 134
Omega squared, 234
One-tailed test, 207, 272
Operational definition, 4, 5
Ordinal dependent variables, models
for, 308-327
Ordinal level of measurement, 6, 7
Ordipal variables, 6, 7, 127-128, 130-
131, 137-139
Oslick, A., 138, 328
Outliers, 26-28, 294
correlation and, 120-122
detection of, 67
mean and, 49
varjance and, 67

p value, 193, 194, 195, 206

Paired groups, 199, 209, 264, 299,
314, 317

Paired ¢ test, 209-210

Parameters, 148, 155

Parker, E. M., 222, 326, 328

Part-whole correlation, 119-120

Path diagram, 185

Peaks in distributions, 29

Pearson, K., 281, 330

Pearson-Filon test, 280-282

Percentage difference, 132-133, 134,
135

Percentages, 9-10, 132, 137

Percentile ranks, 73, 84-85, 169-170,
309

Perkins, D. V., 131, 329

Phi coefficient, 130, 133, 134, 135,
298

Pooled error variance, 285, 286



Pooled regression coefficient, 285

Pooled variance, 205, 211, 226

Population, 5, 148

Population parameters, 155

Post hoc tests, 237-238

Power, 197, 213-214, 234, 259, 273,
276, 281, 284, 300

Power efficiency, 321-322

Prediction, 102

Predictor, 93-94

Principles, statistical, 147-158

Probabilities, determining, 163-167

Probit transformation, §2-83, 168,
333-334

Proportions, 9-10, 168

two-stretch transformations of, 82~

83, 333.334

Protected test, 237

Puiling, N. H., 288, 330

r, transformation to Fisher’s z, 275,
356
Random assignment, 215-216, 234
Random number table, 335-339
Random sampling, 149-151, 194, 196,
216
Random sampling distribution, 151
Range, 5968, 85
interquartile, 59, 60-61, 68, 85
restriction in, 120
Rank order, 24-25, 83-84, 138, 310
Rank-order coefficient, Spearman’s,
137139, 318-321
Rasinski, K., 289, 330
Ratio, level of measurement, 8
Reciprocal transformation, 79
Regression coefficient, 93-103, 108,
109, 270, 271
computation, 98-101
converting to r, 110
interpretation of, 101-103
test of, 283-288%
Regression equation, 98
Regression toward the mean, 103
Reis, H., 277, 331
Relationship, 108-126
Relative frequency, 23, 27
Reliability, 119
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Repeated measures design, 199, 264—
265, 317

Residual variable, 185-186

Restriction in range, 120

Reynolds, H. T., 137, 330

Robinson, L. B., 187, 330

Robust statistic, 154

Rosenthal, R., 26, 28, 33, 34, 37, 40,
58, 115, 328, 330

Rounding, 8-9

Rubin, D. B., 115, 330

Sample, 5, 147-149
central tendency of, 42-52
typical value of, 43
Sampling
independent, 149-150
random, 149-151
Sampling distribution, 151-152, 174
183, 191
Sampling error, 149, 151, 190, 204,
296
Savagean, D., 172, 328
Scale limits, changes of, 76-77
Scatterplot, 93-94, 95, 101, 112~
113
Schifter, D. E., 299, 330
Schwartz, R. G., 54, 330
Score, 4, 5
distribution of, 21-41
standard, 77-78
Segal, M. W, 8, 330
Shults, 253, 331
Siegel, S., 310, 330
Sign test, 314-316
two-tailed critical values for, 367-
368
Significance level, 192-193, 194
Skew, 32-33, 48, 78, 81-82, 128,
161, 194
Slope, 93-94
average, 94-97
Smith, M., 21, 21n, 23, 50, 330
Smith, M., 329
Smoothing, 36-38, 45
Spearman’s rank-order coefficient,
318-321
Spearman’s rho, 137-139, 318-321
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Spearman’s tho (continued)
two-tailed critical values. for, 369—
370
Square root(s), 10
Squarg, root transformation, 78
Squares, 10
Standard deviation, 59, 61-66, 68, 85,
153, 161
computation of the, 65
Standard error, 151-152, 175, 190,
204
Standard normal distribution, 162-168,
174-176, 212
used to determine percentile ranks,
167-168
used 1o determine probabilities, 163—
167
Standard scores, 77-78, 109, 162, 168
Star, S. A., 305, 330
Statistical symbols, 360-391
Statistics
defined, 5, 148
descriptive, 5, 19-143, 147
inferential, 5, 145-327
properties of, 152-154
robust, 154
Steiger, J. H., 281, 330
Stem and leaf display, 33-35
Stoudt, H. W., 164, 172, 330
Stouffer, S, A., 305, 330
Sturgies, S. P., 330
Suchman, E. A., 305, 330
Sum of cross-products, 99
Sum of sguares, 99
computational formulas for, 232-
233, 255-256
Summation sign, 11-12, 248
Symbols '
mathematical, 390
statistical, 390-391
Symmetry, 30-33, 74, 80

t, two-tailed critical values of, 345-346
t distribution, 177-178, 191, 239, 264,
" 272, 279, 283, 285, 320
Tails, 29, 31, 151
Taylor, R. B., 141, 330
Test of independence of two nominal
variables, 294, 295-29%

Test statistic, 190-192, 194, 206
Transformations, 73-8%
arcsin, 82, 334
flat, 83-85
logarithmic, 78-79
logit, 83
normalized ranks, 169-170
no-stretch, 75-78, 159
‘one-stretch, 78-82, 118
percentile ranks, 84, 169-170
probit, 82-83, 168, 333-334
reciprocal, 79
square root, 78
two-stretch, 82-83, 118
two-variable, 85
True score, 119
Tukey, J. W., 33, 237
Tukey least significant difference test,
237
Two-group design, 203-223
assumptions, 207--209
computational formulas, 211
design issues, 214-216
effect size, 212-213
illustrations of, 216-219
model for, 203-207
power, 213-214
Two-standard-deviation advantage,
115-116
Tyler, T. R., 289, 330
Type [ error, 196-197, 208
Type U error, 196-197, 213
Typical values, 43

Unit of measurement, 7, 76, 108
Unreliability, 119

Vaillancourt, D. R., 330
Value, absolute, 64
Values, typical, 43
Variability, 56-72
measures of, 59-66
Variable(s), 4-8
dependent, 185-186
dichotomous, 131
dummy, 129-130
independent, 185-186
nominal, 6, 7, 127-137
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307
ordinal, 127-128, 130-131, 137-13¢%
ordinal dependent, rnodels for, 308
327
residpal, 185-186, 207
Variance, see Standard deviation
Variance explained, 113
Vinsel, A., 89, 142, 330

West, 5. G., 253, 331
Wheeler, L., 277, 331
Williams, E. 1., 279
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Williams, R. M., Jr., 305, 330
Winer, B. 1., 237, 265, 331
Wolf, E., 330

Wright, T. L., 274, 32%

Yuen, 5., 139, 329

z, Fisher’s, 273
Z distribution, 162, 174, 276, 277-
278, 313, 315
probzbilities for the, 341-343
Zajone, R., 300
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Mathematical Symbols

b> ¢
b<c¢
b=c¢
bE=c¢

§8l+'+

X
lel
nt
€

In{c)
log(c)

Statistical Symbols

a
a, b, ¢, and d
A, B, and C

“a@,‘.bn.qv

b greater than ¢

b less than ¢

b equal to ¢

b approximately equal to ¢

Plus

Minus

Plus or minus

Infinity

Square root

Multiplication or interaction in ANOVA
Absolute value of ¢; negative signs are ignored
Factorial; n(n - 1)(n —2) . . . (32D
The number 2.718. . .

Natural Jogarithm; logarithm fo base e
Commonb logarithm; logarithm to base 10

Intercept

Frequencies in a 2 X 2 table
Factors in ANOVA

Regression coefficient

Correction term for the mean
Cohen’s measure of effect size
Difference between ranks or scores
Degrees of freedom

Frequency

Test statistic for Kruskal-Wallis test
Null hypothesis
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ko Number of levels in one-way ANOVA
lsd Least significant difference

MS Mean square

n Sample size

N Sample size in analysis of variance

p value; also proportion or probability
Correlation coefficient
Sum of the ranks of the group with the smaller n
i Score I’s rank
rs Rank-order correlation or Spearman’s rho

i B

K] Sample standard deviation

5 Sample variance

5p° Pooled variance

Syxt Error variance

2 X 2 table Table with two rows and columns
2sd advantage Two standard deviation advantage
S Subject or person

S/A Subjects within leveis of A

S8 Suom of squares

T Sum of scores or total

TOT Total variability

7 Test statistic for Mann-Whitney test
x Number of successes in # trials
Xand ¥ Variables

X Sample mean

¥ Predicted score of ¥

z Fisher’s z transformation

z Standard normal distribution

Greek Letters

Alpha: probability of making a Type 1 error

Beta: probability of making a Type II error

Mu: population mean

Phi: comrelation between two dummy coded dichotomies
Rho: population correlation coefficient

Sigma: population standard deviation

Sigma squared: population variance

Summation sign

Chi-square distribution

Omega squared

ExXMQ9QOESE®™R
o N



392

Glossary of Terms

Aggregation: Creating a score that is an average or sum of other scores.
Alpha:  Probability of making a Type I error.

Alternative hypothesis: Hypothesis that is true if the null hypothesis is
false.

Analysis of variance:  Procedure for testing the differences between means.
Analysis of variance table: Table with sums of squares, mean squares,

‘degrees of freedom, and F ratios.

ANOVA: Analysis of variance.

Antilog: For x = log(y), v is the antilog of x; inverse logarithm function.
Aresin transformation: Two-streich transformation of proportions that
stretches less than probit and logit.

Asymmetric distribution: Distribution whose shape changes when its mir-
ror image is examined.

Bar graph: Graph of the frequencies of a nominal variable.

Bimodol distribution: Distribution with two peaks.

Binomial distribution: Distribution that describes the probability of x suc-
cesses in # independent trials.

Cell: Particular row and column combination.

Central limif theorem: With increasing sample size, the distribution of the
mean approaches a normal distribution, regardless of the shape of the original
distribution of the scores.

Central tendency: Typical value of an observation from the sample.
Chi square distribution: Sampling distribution with a lower limit of zero
and no upper limit; sum of independent Z? values; y2.

Chi square test of independence: Test to evaluate whether two nominal
variables are associated.

Circle diagram: Representation of the partitioning of sums of squares and
degrees of freedom in analysis of variance.

Class inferval: Range of possible scores that can be a member of a given
class.
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Class midpoint: One-half the sum of a class’s lower and upper limits.
Class width: Difference between adjacent lower limits.

Coefficient of variation: Standard deviation divided by the mean.
Cohen’sd: Measure of effect size in a two-group study; difference between
the means divided by the pooled within-groups standard deviation.
Complete model: Model that contains the term that is to be tested.
Concave curvilinearity: Relationship that begins negative and becomes
positive; U shape.

- Constant in model: Term added to every score; often the population mean

!

of the dependent variable.

Contrast:  Set of weights assigned to levels of the independent variable in
ANOVA; weights that are chosen for theoretical reasons. and must sum to
Zero.

Convex curvilinearity: Relationship that begins positive and becomes
negative; inverted U shape.

Correction term of the mean:  Squared sum of all the observations which is
divided by the total number of observations; symbolized by C.

Correlated correlations: Two or more correlations computed using the
same sample of objects.

Correlation coefficient: Regression coefficient between Z scored variables
that varies from -1 to +1; r.

Criterion variable: Outcome or dependent variable in a regression equa-

‘tion.

Critical value: Value that the test statistic must meet or exceed to be
deemed statistically significant.

Cummulative frequency: Sum of the frequencies of all classes that are less
than or equal to the class’s upper limit.

Curvilinearity: ~Nonlincar relationship in which the relationship changes
direction.

Data: Numerical values given to objects.

Datum: Single score.

Degrees of freedom for a contrast:  One.

Degrees of freedom for x° goodness of fit test: Number of levels of the
nominal variable less one.

Degrees of freedom for x° test of independence: (r — 1)(c - 1).
Degrees of freedom for error variance in a regression equation: n— 2.
Degrees of freedom for F in one-way ANOVA: k-1 in the numerator and
N — k in the denominator.

Degrees of freedom for interaction in two-way ANOVA: (a - 1)(b - 1).
Degrees of freedom for pooled variance:. n, + ny - 2. B ..
Degrees of freedom for t:  For one-sample test, n — 1; for two-sample test,
ny + np — 2; for a test of a single correlation or regression cocfficient, n - 2.
Degrees of freedom of the standard deviation:  Sample size minus one, or
n-1,



394

Glossary of Terms

Dependent variable: Outcome or variable caused by the independent vari-
able.

Descriptive statistics: Numerical values that summarize sample data.
Dichotomy: Nominal variable with two levels.

Distribution: Shape of a sample or population; usually represented by a
histogram.

Distribution-free test: Procedure for testing a model that makes no dis-
tributional assumptions.

Distribution-tied test: Test that assumes a normal distribution that is an-
alogous to a distribution-free test.

Dummy coding: Numbers used to create a dummy variable.

Dummy variable: Numerical variable that is created by assigning arbitrary
numbers to the levels of a nominal variable.

Ecological fallacy: Inferring individual relations from aggregate relations.
Effect size;: Measure of the strength of effect as opposed to its p value,
Efficient statistic: Statistic with a relatively small standard error.

Error in a regression equation:  Observed score minus the predicted score;
the vertical distance in the scatterplot from the regression line to the point.
Factor: Nominal independent variable in ANOVA.

Factorial design: In two-way ANOVA, the creation of all possible com-
bipations of two independent variables.

F distribution: Sampling distribution that is the ratio of two independent
variances.

Fisher's z transformation: Transformation of a correlation that makes its
distribution approximately normal.

Flat distribution: Distribution in which all scores are equally likely.
Flat transformation: Transformation that changes the shape of a distribu-
tion into flat one; rank order and percentile rank.

Freguency: Number of observations that fall in a cell of a table or the
number of observations in a class interval. '
Frequency table: Table with the classes and their frequencies.
Friedman two-way ANOVA: Test used to evaluate the medians and other
aspects of two or more nonindependent groups.

Goodness of fit x* test: Test to compare the observed distribution of a
nominal variable to a predicted distribution.

Histogram: Graph of the frequency table of a distribution with the X axis
being the classes and the ¥ axis being the frequency.

Hotelling test:  Test of the equality of two nonindependent correlations in
which two of the variables are in common.

Independent groups: Two or more samples that contain different persons
who do not influence one another.

Independent sampling: If one object is sampled, every other object in the
population has the same probability of being sampled.
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Independent variable: Causal variable in a2 model.

Inferential statistics: Using sample data to draw conclusions about the
population; tests of models.

Interaction: Effect of an independent variable changes as a function of a
second variable.

Intercept:  Predicted value of ¥ when X is zero in a regression equation in
which X is the predictor and ¥ the criterion.

Interquartile range: Difference between the upper median and the lower
median.

Interval level of measurement: Measurement level at which numbers can
be used to quantify differences between objects.

Kruskal-Wallis ANOVA: Test used to compare the medians and other
aspects of two or more independent groups.

Leaﬁ In a stem and leaf display, the next digit after the stem.

Least significant difference test: Post hoc test of means in one-way AN-
OVA,; Tukey Isd.

Leptokurtic distribution:  Distribution that has a high peak in the center and
skinny tails.

Linearity: Onc-unit change in X produces the same change in ¥ regardiess
of where the change in X comes. :
Logarithm: 1f ¥ = b, y is the logarithm of b to base x.

Logit difference: In a 2 X 2 table the difference between logits; also the
natural logarithm of the odds ratio.

Logit transformation: Natural logarithm of the odds.

Log linear model:  Model for multiple nominal independent variables and a
nominal dependent variabie.

Lower median: Median of scores below the median of the sample.
Lowest lower limit: Lower limit of the lowest class interval.
MeNemar’s test:  Test of the effect of a dichotomous independent variable
on a dichotomous dependent variable when groups are nonindependent.
Main effect: In two-way ANOVA the effect of an independent variable
averaged across levels of the other independent variable.

Mann-Whitney test: Distribution-free test that compares the medians and
other aspects of two independent groups; U.

Margin: In a table, sum of frequencies across a row or a column.
Mean: Sum of the observations divided by the sample size.

Mean square: In ANOVA the sum of squares divided by degrees of
freedom.

Measurement: Assignment of numbers to objects by a rule.

Median: Middle observation in a sample.

Mode: Most frequent observation in a sample,

Model: Mathematical equation specified by a theory.

Negative association: As one variable increases, the other decreases.
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Negative skew: Distribution with a long, skinny tail on the left side.
Nominal level of measurement: Measurement level at which only dif-
ferentiation of objects is possible.

Nonindependent groups: Two or more samples that contain the same
persons ot sampling units.

Nonlinearity: Relationship between two variables that varies in strength as
a function of one variable, -

Normal distribution: Unimodal, symmetric, bell-shaped distribution with
limits of positive and negative infinity.

Normalized ranks transformation: Transformation that alters a variable’s
distribution to make the distribution more normal.

No-stretch transformation: Constant multiplied or added to each score;
basic shape of the distribution not altered.

Null kypothesis: Constraint on the complete model that is present in the
restricted model; H,.

Odds: - Proportion divided by the quantity one minus the proportion.
Odds ratio: In a2 X 2 table (ad)/(bc).

Omega squared: Measure of variance explained in one-way ANOVA,
One-siretch transformation: Transformation to remove positive skew,
which stretches the left side of the distribution; square root, logarithm, and
reciprocal.

One-tailed test: Test in which only one alternative hypothesis is consid-
ered.

One-way analysis of variance:  Method used to test for differences between
independent means.

Operational definition: Set of procedures used to measure a construct.
Ordinal level of measurement: Measurement level at which objects can be
rank ordered.

Outlier: Extremely large or small score. _

Paired t rest: Test of the difference between two nonindependent means.
Parameter: Quantity computed using all objects in the population, often
symbolized by a Greek letter,

Part-whole problem: Two variables, one of which is derived from the
other,

Pearson Filon test:  Test of the equality of two nonindependent correlations
in which none of the variables are in common.

Percentage difference: In a 2 X 2 table, the diffcrence between per-
centages computed across either rows or columns.

Percentile rank: Percentage of scores that the object is greater than.
Phi: Correlation between two dummy-coded dichotomies.

Platykurtic distribution:  Distribution with a low peak in the center and fat
tails.

Pooled variance: Weighted average of variances used in two-group ¢ test,
where the weights are sample size minus one for each group.
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Population:  All possible observations.

Positive association: As one variable increases, the other increases.
Positive skew: Distribution with a long, skinny tail on the right side.
Post hoc test of means: Test in which all possible pairs of means are
compared.

Power: Probability of rejecting the restricted model when the restricted
model is false; one minus the probability of making a Type II error.
Power efficiency: Ratio of sample size needed for a distribution-tied test to
the sample size needed for a distribution-free test in which the same power is
achjeved and the assumptions of the distribution-tied test hold.

Predicted score: In a regression equation, the intercept plus the predictor
score times the regression coefficient.

Probit fransformation:  Two-stretch transformation of proportions based on
the standard pormal distribution.

p value; The probability of obtaining a value of the test statistic at least as
large as the one obtained.

Random assignment: Each object having the same probability of being
assigned to a level of the independent variable.

Random sample: Each object equally likely to be chosen from the popula-
tion.

Range: Crude measure of variability; largest score minus the smallest
score.

Rank-order correlation; Spearman’s rho; correlation between ranks; rs.
Rank-ogrder transformation: Scores rank ordered from smallest to largest
and the smallest score assigned a 1, the next a 2, and so on.

Reciprocal transformation: One-stretch transformation in which one is
divided by the score; 1/X.

Rectangular distribufion: Flat distribution,

Regression coefficient: Measure of association of how much a one-unit
change in the predictor variable creates in the criterion variable.
-Regression equation: Criterion equals the intercept plus the regression
coefficient times the predictor.

Regression toward the mean: Predicted scores in a regression equation are
less variable than the scores of the criteriorn.

Relative frequency: One huridred times the frequency divided by sample
size.

Reliability: Proportion of true variance in a variable.

Repeated measures design: All subjects measured at each level of the
independent variable.

Residual variable:  All other sources of variation in the dependent variable
besides that due to the independent variables.

Restricted model: Model that is a constrained version of the complete
model, the constraint being the null hypothesis.

Restriction in range: Variable with limited variability,
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Robust statistic:  Statistic not influenced much by outliers.

Sample: Set of scores that refer to different objects.

Sample size:  Number of observations in the sample; n.

Sampling distribution:  Distribution of a statistic that is created by drawing
repecated samples and recomputing the statistic.

Sampling error: The fact that a statistic changes when it is recomputed
using a different sample.

Scatterplot: Graph to represent the association between two variables;
variables form the axes and points are the data.

Significance level: Alpha or the probability of making a Type I error.
Sign fest: Distribution-free test for evaluating the difference between the
medians and other aspects of two nonindependent groups.

Skew: Long, skinny tail on just one side of a distribution.

Slope: Regression coefficient; linear measure of association.

Smoothed frequency: One-half the class’s frequency plus one-quarter the
sum of the adjacent class frequencies.

Smoothing: Procedure to make a frequency table less influenced by choice
of lowest lower limit and class width.

Spearman’s rho:  Correlation coefficient of ranks; rs.

Standard deviation: Measure of variability that uses all observatlons
square root of the variance; s.

Standard error of the mean: Standard deviation divided by the square root
of the sample size.

Standard normal distribution: Z distribution; normal distribution with a
mean of zero and a variance of one.

Standard score: Z score; score minus the mean and the difference divided
by the standard deviation.

Statistic:  Quantity computed from sample data.

Statistically significant: p value is equal to or less than the significance
level.

Stem: Lower limit of a class used to represent a class interval in a stem and
leaf display.

Stem and leaf display:  Vertical histogram that essentially preserves the raw
data.

Sum of squares: In ANOVA the numerator of a mean square.
Summation sign: Symbol that represents the sum of all the scores; Z,
Symmetric distribution: Distribution that when folded vertically perfectly
coincides. '

Tail of a distribution: Frequency of very large or very small values.

t distribution: Sampling distribution used to test hypotheses about means
and to test correlation coefficients,

Test statistic:  Quantity computed from sample data used to evaluate the
plausibility of a restricted model.

Tukey least significant difference test:  Post hoc test in one-way ANOVA,
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Two-standard devigtion advantage: Measure of effect size of r that equals
how much more likely someone who is one standard deviation above the
mean on X will outscore on Y someone who is one standard deviation below
the mean on X.

Two-streich transformation: Transformation that is used to remove lower
and upper limits, commonly used on proportions; arcsin, probit, and logit.
Two-tailed test:  Test in which the two alternative hypotheses are consid-
ered.

Two-way analysis of variance: Procedure to evaluate models with two
nominal independent variables and an interval dependent variable.

Type I error: Rejecting the restricted model when it is true; alpha, or a.
Type I error: Retaining the restricted model when it is false.

Unbiased statistic:  Statistic whose mean of the sampling distribution equals
the population parameter that the statistic is estimating.

Unimodal distribution: Distribution with one peak.

Unit in a distribution: Smallest possible difference between a pair of
scores. . .
Unit of measurement: Term that defines the meaning of a one-point differ-
ence between two scores.

Upper mediarn: Median of scores above the median of the sample.
Variability: How much the observations differ from one another,
Varianee: Measure of variability that is based on deviations from the
mean; s2.

X axis: Horizontal (left to right) axis in a graph.

* Y axis: Vertical (up and down) axis in a graph.

Z distribution: Stapdard normal distribution; a normal distribution with a
mean of zero and a variance of one.

Z score:  Score in which the mean has been subtracted and this difference is
divided by the standard deviation.

z transformation: Transformation to make the distribution of » more nor-
mal, commonly called Fisher’s r to z transformation.

Z fransformation: Scores in which the mean has been subtracted and this
difference is divided by the standard deviation.
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Spearman’s rho, 137-139, 318-321
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two-tailed critical values. for, 369—
370
Square root(s), 10
Squarg, root transformation, 78
Squares, 10
Standard deviation, 59, 61-66, 68, 85,
153, 161
computation of the, 65
Standard error, 151-152, 175, 190,
204
Standard normal distribution, 162-168,
174-176, 212
used to determine percentile ranks,
167-168
used 1o determine probabilities, 163—
167
Standard scores, 77-78, 109, 162, 168
Star, S. A., 305, 330
Statistical symbols, 360-391
Statistics
defined, 5, 148
descriptive, 5, 19-143, 147
inferential, 5, 145-327
properties of, 152-154
robust, 154
Steiger, J. H., 281, 330
Stem and leaf display, 33-35
Stoudt, H. W., 164, 172, 330
Stouffer, S, A., 305, 330
Sturgies, S. P., 330
Suchman, E. A., 305, 330
Sum of cross-products, 99
Sum of sguares, 99
computational formulas for, 232-
233, 255-256
Summation sign, 11-12, 248
Symbols '
mathematical, 390
statistical, 390-391
Symmetry, 30-33, 74, 80

t, two-tailed critical values of, 345-346
t distribution, 177-178, 191, 239, 264,
" 272, 279, 283, 285, 320
Tails, 29, 31, 151
Taylor, R. B., 141, 330
Test of independence of two nominal
variables, 294, 295-29%

Test statistic, 190-192, 194, 206
Transformations, 73-8%
arcsin, 82, 334
flat, 83-85
logarithmic, 78-79
logit, 83
normalized ranks, 169-170
no-stretch, 75-78, 159
‘one-stretch, 78-82, 118
percentile ranks, 84, 169-170
probit, 82-83, 168, 333-334
reciprocal, 79
square root, 78
two-stretch, 82-83, 118
two-variable, 85
True score, 119
Tukey, J. W., 33, 237
Tukey least significant difference test,
237
Two-group design, 203-223
assumptions, 207--209
computational formulas, 211
design issues, 214-216
effect size, 212-213
illustrations of, 216-219
model for, 203-207
power, 213-214
Two-standard-deviation advantage,
115-116
Tyler, T. R., 289, 330
Type [ error, 196-197, 208
Type U error, 196-197, 213
Typical values, 43

Unit of measurement, 7, 76, 108
Unreliability, 119

Vaillancourt, D. R., 330
Value, absolute, 64
Values, typical, 43
Variability, 56-72
measures of, 59-66
Variable(s), 4-8
dependent, 185-186
dichotomous, 131
dummy, 129-130
independent, 185-186
nominal, 6, 7, 127-137
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ordinal, 127-128, 130-131, 137-13¢%
ordinal dependent, rnodels for, 308
327
residpal, 185-186, 207
Variance, see Standard deviation
Variance explained, 113
Vinsel, A., 89, 142, 330
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Z distribution, 162, 174, 276, 277-
278, 313, 315
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Formulas for Compufation

For the text discussion of each fohnula, refer to the page number at right.

Binomial Probability

x ? Test of Independence

_CorreIa tion _Caetﬁcient .

Figher’s r to z Transformation
Friedman Two-Way ANOVA

Goodness of Fit x* Test

Hotelling Test

where
Intercept
Kruskal-Wallis ANOVA
Logit Difference

!
gy

xi(n — x)!_

R

XAr-De-Dj= %

i 1

tVf— T+ ™

m o]

XY — (X)2Y)in

o
A X - XYY - QX in]

1 47

In

1
2 l-r

12 L
[m E Rjz —3ntk + 1)

x2(k - 1) = sum

(observed — expected)?
' expected

(riz—r)Vin— 1)‘(1 + r12)

t{n-3) =

(n=1) | (ras f ria)’ 3
\/ZK (n_3) + 4 (1—?’12)

_ 2 2 2
K=1-rp"—riz"—ra" + 2rpnsrs

a=Y~bX
H=__.1_.2_2£J.2_ —.(N+1).
N(N_—i— 8] ny

2] - i)

In

154

297

213

A11

- 275

-317 -

301

279

99

316

134




154

297

213

1

275

317

301

279

99

3i6

134

- Mann-Whitney U Test

McNemar Test

Mean

© One-Way ANOVA:

Correction Term for the Mean

Omega Squared

S8 Contrast

58 Groups (Equal n)
- 88 Groups (Unequal n)

88 Persons Within Groups

SS Total

Paired t Test

U= HiHy +

XX =

2

nylng + 1)

R
2.0

(la~d|-1.07

a+ d

n

)25
N

88,4 — (k- 1)MSg,

SStor + MSg.

Ty
J
ny.pi’
T ?
88, = 217 C
n
2
SSA e ZJ"" - C

SSgm = S88tor - SISA

SSTOT = EEX,JF -C

tn~ 1) =

Xp

YD* - (YD)

n(n — 1)

312

299

45

232

234

237

233

233

233

233

211




Formulas for Computation

.(Continued from front endleaf.)

Vi{n -3y — z34) 280
V2-0(1- 7‘2)2

Pearson-Filon Test

where

Q= (riz—ranraa—ran) + (rg—riznras—ri?) + (ria—raH(raa—rer)
+ {r1a — r2aP)ras — ragr)

“and
Y + raq
2
Percentage Difference : - ‘ a ¢ 135
100 -
a+ b c+d
Percentile Rank R-.5 : 84
100
n
Phi 5 ad - be | 133
| ‘ V(a+b)c+dYa+ )b+ d
H
| ‘ ) .
Pooled Variance - : o2 IX2 - GX i + X - CXo)n, 205
l{: =
i -F n+n-2-
| .
Predicted Score Y=a+bx " 98
Regression Coefficient b = XY - OX)EY)n 7 99
X - XY n
Sign Test ' 7 |2¢—n|-1.0 315
Vn
d | : Spearman’s Rho ' 6307 138
' rs=1- —2—
ar” —1)

Standard Deviation




-Test of Constant
- Test of a Correlation Coefficient

Test of the Difference Between
Regression Coefficients

Test of a Regression Coefficient

Test of Two Independent Correlations

Test of Two Means

Two-Way ANOVA:
S8 Interaction

" df Inferaction

Variance of Errors
Z Score

Z Test of U

Zy

tin-1) = —M
sV
' -2
tn-2) = ——
Vl-r2
by —
tn 4 n,—4) = 1= b
1 + 1
s — + —
TXVSS, S8y,
byxV
t(n-2) = YX_SSX
Sy-x
7 = 2y — Zg
1 1
+
H1—3 ﬂ2~3
Xi—-X,
fm + np—2) = —A22
1.1
Sp m Ho

SSA;,(B = SSAB - SSA bl SSB

Cdfsxg =(@-1Db-1)

n-—1
Syx = (s — b5y
n-2 _
X, -X
Z,' = -
_ 5
U~ nno/2

Vnna(ny + ny + 1712

- 190

272

285

283

276

205

256

257

99

77

313
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