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All truths are easy to understand oncey/the discaoered; the point is to diseer them.

Philosoply is written in this grand book-I mean the werise-which stands continually open to our gazg, b
it cannot be understood unless one first learns to comprehend the language and interpret the characters in
which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and
other geometrical figures, without which it is humanly impossible to understand a single word of it.
Opere Il Saggiatore
Galileo Galilei (1564 - 1642)

A theory is the more impressi the greater the simplicity of its premises is, the morfemint kinds of
things it relates, and the more extended is its area of applicabhigyefore the deep impression which
classical thermodynamics made upon me. It is the onjgipal theory of uniersal content concerning
which | am cowrinced that within the framveork of the applicability of its basic concepts, it willvee be
overthrown.

Albert Einstein (1879 - 1955)
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1. Generallnformation

CHEMISTRY 223: Intr oductory Physical Chemistry I.

Kinetics 1: Gas laws, kinetic theory of collisions. Thermodynamics: Zeratlofidghermodynamics. First\aof thermodynamics, heat capacity
enthalpy, thermochemistrybond energies. Secondiaf thermodynamics; the entrpand free energy functions. Thirdweof thermodynamics,
absolute entropies, free energies, Maxwell relations and chemical and thermodynamic equilibrium states.

PrerequisitesCHEM 110, CHEM 120 or equalent, PHYS 142, or permission of instructor.

Corequisite MATH 222 or equiaent.
RestrictionsNot open to students whovetaken or are taking CHEM 203 or CHEM 204.

1.1. Contactinformation

Professor: Dwad Ronis
Office: OttoMaass 426
E-mail: David.Ronis@McGill.CA
(Help my e-mail client direct your email;
Please put CHEM 223 somewhere in the

subject.)

Tutor/Grader: Samudtdato
E-mail: Samuel.Blato@Mail.McGill.CA

Office: OttoMaass 25

Lectures: Tesday and Thursday 11:35 - 12:25

Makeups, Tutorials, _ . ) ]
or Reviev Sessions: 108y 11:35-12:25
Location: Otto Maass 217
Course Web Site: https://ronispc.chem.mcgill.ca/ronis/chem223
Note: username and password are

needed for full access.
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General Information -4- Chemistry223

| will be avay on the following dates and will makup he missed class in the Friday slot of
the same week:

Canceled Classes Makeup
(Fall, 2015) (OM 217, 11:35-12:2%)

Tuesday September 15 Fridayseptember 18
Tuesday September 29 Fridayoctober 2
TuesdayOctober 6 FridayOctober 9

1.2. Texts

Thomas Engel and Philip Rei@ihermodynamics, Statistical Thermodynamics, and Kinetids, 3r
edition(Pearson Education, Inc., 2013).

J.R. BarranteApplied Mathematics for Physical Chemis®yd edition (Pearson Education, Inc.,
2004).

1.3. SupplementaryTexts

1. G.W. Castellan,Physical Chemistrgrd edition (Benjamin Cummings PuBo., 1983) (Out
of print but ecellent. Thiswould be the text for the course if | could get copiepte that
Castellan doesh’'use Sl units and uses a older signwvention for an ley-- thermodynamic
guantity namely work.

2. R.J. Silbg, RA. Alberty and M.G. Baendi, Physical Chemistryth edition(John Wley &
Sons, Inc., 2005). This was used as the text in the fi&s1OK kbut Engel and Reid or Castellan
are better.

3. R.Kubo, Thermodynamic&hysics orientation, excellent, but somewhat advanced withrfe
chemical examples).

1.4. Grades

There will be approximately one problem seérg 2-3 lectures, one midterm and a final
exam. Themidterm will be gven between 6 and 9 P.M. on

Tuesday October 27, 2015
in Otto Maass 112 and 217 (a seating plan will be posted).

Completion and submission of the hamoek is mandatory We have a ttor/grader for the
course, Samueldpato, and the problems will be graded. Solutions to the problem sets will be
posted on the course web pagde.addition, there will be a tutorial roughlyesy second Friday
where the tutor will gower problems or revier other topics.

You ae strongly encouraged to do the hewek by yourself. The problems will wer
mary details not done in class and will prepare you for tkenes. The exams will inolve

extensve problem solving and may contain problems from the homeark! The course grad-
ing scheme is:

2015, Fall Term



Chemistry 223 -5- Generalnformation

Grade Distribution
Problems 10%

Midterm 40%
Final 50%

1.5. Random McGill Specific, Notes

McGill Uni versity values academic integrity Therefore, all students must understand the
meaning and consequences of cheating, plagiarism and other academic offenses under the
Code of Student Conduct and Disciplinary Pocedures (see wwwncgill.ca/stu-
dents/srr/honest/ for mote information).(approved by Senate on 29 January 2003)

In accord with McGill Unversity’s Charter of Students’ Rights, students in this course ltee
right to submit in English or in Frenchyawritten work that is to be graded. (apyped by Snate
on 21 January 2009)

In the erent of extraordinary circumstances beyond thevesity’s control, the content and/or
evduation scheme in this course is subject to change.

2015, Fall Term
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1.6. Tentative Course Outline

Text Chapter

Lecture Topic Silbey  Reid Castellan
Lecture 1L  Introduction: Kinetics & T hermodynamics, an @erview 1 1 2
Lecture 2 Empirical properties of gases 1 17 2
Lecture 3 Empirical properties of liquids and solids 1 1 5
Lecture 4. Molecular basis: Kinetic theory of gases 17 12,16 4
Lecture 5 Surface reactions & Effusion 17 16 30
Lecture 6. Gas phase collision rates 17 16 30

Lecture 7. Kinetics I: Collision theory of elementary gas phase

reactions: Collision rates and actration energies 19 17 33
Lecture 8 Mean free path & Diffusion
Lecture 9 Kinetics I: Review of n'th order reaction kinetics. 18 18 32
Lecture 10. Intro. to mechanims & steady state approximation.
Lecture 11. Temperature: thezeroth law of thermodynamics 1 1 6
Lecture 12. Mechanics Work, and Heat 2 2 7
Lecture 13. Reversible and irr evasible changes 2 2 7
Lecture 14. TheFirst Law of Thermodynamics: Energy 2 2,3 7
Lecture 15. Enthalpy, Hesss Law 2 3,4 7
Lecture 16. HeatCapacities, Kirchoff's Law 2 4 7
Lecture 17. Estimating Enthalpy Changes: Bond Enthalpies 2 4 7
Lecture 18. The Carnot Engine/Refrigerator 3 5 8
Lecture 19. The Second Law of Thermodynamics: Entopy 3 5 8
Lecture 20. Entropy Calculations 3 5 8
Lecture 2. TheThird Law of Thermodynamics: Absolute Entropies 3 5 9
Lecture 2. Conditionsfor Stable Equilibrium: Free Ener gies 4 6 10
Lecture 23. Equilibrium Conditions (continued) 4 6 10
Lecture 24. Maxwell Relations and applications 4 6 94
Lecture 5. Chemicalequilibrium 5 6 1

Lecture 26. Chemicalequilibrium calculations 5 6 n
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2. Divertissements

From: Ryogo KuboThermodynamic@North Holland, 1976)

2.1. Divertissemenl.: Founders of the first law of thermodynamics

If a tomb of the Unknown Scientists had beerlthin the 1850’s, the most appropriate
inscription would hae been "In memory of the grief and sacrifice of those who fought to realize
a perpetuum mobile". But thewaof consenation of enagy, or the first lav of thermodynamics,
is associated primarily with three great names, Mayelmholtz and Joule.

Julius Robert Mayer (1814-1878pw/really a genius who was born in this world only with
the errand to mak this great declaration. Hermann Ludwig Ferdinansh vHelmholtz
(1821-1894) gvethis lav the name "Erhaltung der Kraft" or "the conservation of energy'e Lik
Mayer, he garted his career as a medical doctair llved a dorious life as the greatest ygiolo-
gist and physicist of the dajames Prescott Joule (1818-188%rked over forty years to estab-
lish the experimental verification of the e¢pliénce of work and heat.

Among the three, Mayer was the first who\adliat his lav and the last whose workas
recognized. His life was most dramatic. A lightening strok genius @ertook him, a German
doctor of the age of twenty six, one day on the sea nearween he noticed thatwous blood
of a patient under surgical operation appeared an unusually fresh red. He considered that this
might be connected with kaisier's theory of oxidation in animals, which process becomes
slower in tropical zones because the rate of heat loss by animals will be slower there. A great
generalization of this observation lead him to the idea of thevaeunce of heat and mechanical
work. For three years after hioyage, while he as working as a medical doctor at home, he
devoted himself to complete the first work on the conservation of energy "Bemerkungen uber die
Krafte der unbelebten Natur" which was sent to the Poggendorf Annalen andwsaguie
lished by it. In 1842 Liebig published this paper in his journal (Annalen der Chemie und Pharma-
cie) but it was ignored for mgryears.

Mayer wrote four papers before 1851. During these years of unusual activity he cared for
nothing other than his theorin 1852 he became mentally deranged and was hospitalized. He
recovered after tvo years but neer returned to science.

2.2. Divertissemen®2: Why do we havewinter heating?

Why do we havewinter heating?The layman will answer: '@ make the room varmer."
The student of thermodynamics will perhaps spress it: "D import the lacking (innether-
mal) energy If so, then the laymas'answer is right, the scientistis wrong.

We suppose, to correspond to the actual state fairgf that the pressure of the air in the
room alvays equals that of the external.ain the usual notation, the (innghermal) energy is,
per unit mass,

u=c,T.

"The author has assumed that the specific heat ofafdsgindependent of temperature; a reasonable
approximation for the oxygen and nitrogen around room temperature.
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Divertissements -8- Chemistry223

(An additve mnstant may be éected.) Therthe energy content is, per unit of volume,
u=c,pT,
or, taking into account the equation of state, weeha

P
— =RT,
0

we hare

u=c,P/R.

For air at atmospheric pressure,

u = 0. 0604&al/cnt.

The energy content of theam is thus independent of the tenapare, solely determined by the
state of the barometefhe whole of the engy imported by the heating escapes through the
pores of the walls of the room to the outside air.

| fetch a bottle of claret from the cold cellar and put it to be tempered iratine wom. It
becomes warmer but the increased energy content is not borrowed from the air of the tdas b
brought in from outside. Then wtdo we have heating? For the same reason that life on the
earth needs the radiation of the sun. But this doesxigit@n the incident engy, for the latter
apart from a negligible amount is re-radiated, just as a man, in spite of continual absorption of
nourishment, maintains a constant body-weight. Our conditiongisterce require a determi-
nate dgree of temperature, and for the maintenance of this there is needed not additiogyof ener
but addition of entrop.

As a student, | read with aantage a small book by Wald entitled "The Mistress of the
World and her Shadow". These meant energy and enthogthe course of advancing kntedge
the two s2em to me to hee exchanged places. In the huge manufactory of natural processes, the
principle of entrog occupies the position of managéor it dictates the manner and method of
the whole business, whilst the principle of ggyemerely does the bookkeeping, balancing cred-
its and debits.

R. EMDEN

Kempterstrasse 5,
Zurich.

The abee is a rote published in Naturg41 (1938) 908. A. Sommerfeld found it so inter
esting that he cited it in his bodikhermodynamic und Statist{ikorlesungen uber theoretische
Physik, Bd. 5, Dietrich’sche Verlag, \sbaden; English translation by Kkestin, Academic
Press Tic., N&@ York, 1956). R. Emden is known by his work in astygits and meteorology as
represented by an article in der Enzyklopadie der mathematiscresenathafterhermody-
namik der HimmelskorpdiTeubueyLeipzig-Berlin, 1926).
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2.3. Divertissemen8: NicolasLeonard Sadi Carnot

In the first half of the last centyrhe steam engine, completed by introduction of the con-
denser (the low-temperature heat reservoir), due to Jam e M¥65) had come to produce more
and more reolutionary effects on delopments in industry and transportation. Maminent
physicists like Laplace and Poisson set about to study thevdd®wer of Fire. Sadi Carnot
(1796-1832) was a son of Lazare Carnogddizer of Victory in the French Relution, and vas
born and died in Paris. He probably learned the caloric theory of heat, in which d®at w
assumed to be a substance capable either of flowing from body to body (heat conduction) or of
making chemical compound with atoms (latent heat). He wrote a short but very important book,
Refleions sur la puissance motrice du feu et sur les machirgsgsra developper cette puis-
sance(Paris, 1824), which was reprinted by his brother (1878) together with some of €arnot’
posthumous manuscripts.

Carnot directed his attention to the point that, in the heat engine, work was done not at the
expense of heatut in connection with the transfer of heat from a hot body to a cold, lndy
thus heat could not be used without a cold bodgnalogy of vater falling from a high reseoir
to a lav reservoir In his book he assumed theM®f corversation of heat, namely that the quan-
tity of heat vas a state function, although he later abandoned thisnd arrved at he lav of
equivaence of heat and work: he actually proposedymaathods to estimate the mechanical
equvaent of heat. He introduced what came to bewkmas Carno$ o/cle, and established
Carnots principle.

Carnots ook had beenwerlooked until B. PE. Aapeyron (1834) gve Carnots theory
an analytical and graphicakgression by making use of the indicator diagram devised dy. W
The lav of conseration of heat assumed by Carnasacorrected by R. Clausius (1850), based
on the work of J. R.an Mayer (1841) and J. Boule (1843-49), into the form that not only a
change in the distribution of heat but also a consumption of heat proportional to the work done is
necessary to do work, and vicersa. Clausius named this modification the First bAThermo-
dynamics. H. L. Fvan Helmholtz (1847) and Clausius generalized thst¢tethe principle of the
conseration of enggy. W. Thomson (Lord Kelvin), who introducedelin’s sale of tempera-
ture (1848) based on Carmothork, also recognized thewaof equivalence of heat and avk.
The Second La of Thermodynamics was formulated by Thomson (1851) and Clausius (1867).

A sketch of the history of early thermodynamics isegi by E. Mendoza, Physicsofiay
14 (1961) No. 2, p. 32. See also E. Maehncipien der Vdrmelehre(vierte Aufl. 1923, ¥rlag
von Johann Ambrosius Barth, Leipzig).

2.4. Divertissemendl: Absolute Temperature

The absolute temperature scale means that temperature scale which is determined by a
thermodynamic method so that it does not depend on the choice of thermometric substance, the
zero of the scale being defined as the lowest temperature which is possible thermodynamically
Absolute temperature, which iswaised in thermal physics, was introduced by Lomlvih
(William Thomson) in 1848 and is also called the Kelvin temperature.

For the complete definition of the scale, wevéhavo choices; one is to use owfixed
points abge z2ro and assign their temperature difference and the other is to use one fixed point

2015, Fall Term
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and assign its numericaale. Until recently the calibration of the Kelvin temperature scak w
performed using tw fixed points: the ice poinT,°K and the boiling poinT, + 100°K of pure
water under 1 standard atm (= 101325 Pag. 8Ah measurd, by a gas thermometric method.
At low pressures, the equation of state of a real gas can be written in the form

pVvV =a +kp.

We measure the values of p¥ andk at the abwe wo fixed points.Considering that is equal
to nRT, we have

100a,

TO = —
@100~ Ao

If we putT, =0, we get the thermodynamic Celsius temperature s¢tdece,—T,°C means
absolute zero as measured by this scale.

The precise gas thermometricvéstigations of the Frenchman €happuis from 1887 to
1917 @qvethe value ofTy between 273.048 and 273.123. Inspired by this work, more than one
hundred determinations @f were performed until 1942. Among them, the results oH@lse
and J. Otto of GermgnW. H. Keesom et al. of the Netherlands, J. A. Beattie et al. of the U.S.A.
and M. Kinoshita and J. Oishi of Japan are noted for their high precision. @heis\are found
to lie between 273.149 and 273.174.

Considering these results and the fact that the triple point of pure water is very near to
0.0100C, the 10th General Conference on Weights and Measures in 1954 decided to use the
triple point of the water as the fixed point and to assign aheeV273.16 as its temperature. It
also redefined the thermodynamic Celsius temperdtGrag t = T-273.15, where T is thalue
of the absolute temperature determined from theelecision. The zero of the wethermody-
namic Celsius temperature differs by about 0.6@6dm the ice point.

For ordinary purposes, the differences in these aad old scales are quite gligible.
However, for cases where a precision @1 degree in the absolute value is required, we must
take the differences into consideration.

2.5. Divertissemen8: On the names of thermodynamic functions

The word "enagy evepyeia” can be seen in theosks of Aristotle but "internal engy"”
is due to WThomson (1852) and R. J. E. Clausius (1876). The portion "en" nidais-capac-
ity and "orgy", like the unit "erg"”, dexies from £pyov=work. "Entropy" is also attributed to
Clausius (1865) who took it fronevrpemeiv=verwandeln and meanserwandlungsin-
halt=change quantity"Enthalfy” was introduced by H. Kamerlingh Onnes (1909) from
evOa Amerv=sich erwarmen which meangarmeinhalt JW. Gibbs called it the heat function
(for constant pressure). "Free energy" is due to H. van Helmholtz (1882), and means that part of
the internal energy that can be eemed into work, as seen in the equation dF=d’A for an
isothermal quasi-static process. lasvcustomary to call the remaining part, TS, of the internal
energyU = F + TS, thegebundene engjie (bound energy), Ut this is not so common wo The
Gibbs free engyy (for constant pressure) was introduced by Gibbs, but German scientists used to
call it die freie enthalpie Thus the thermodynamic functions oftenvéadfferent names in
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German and in English.

Further on the equation of state: Kamerlingh Onnesethe namesthermiste zustands-
gleichungto p = p(T,V) and the naméalorische zustandsglemingto E = E(S,V). M. Planck
(1908) called the lattdranonische zustandsgleichung

2015, Fall Term
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3. SomeProperties of Ideal and Non-ldeal Materials

3.1. ldealGases

Very dilute gases obgethe so-called ideal gaswaor equation of state, initially deduced
from Boyle's Law’ and Charles Law', which when combined shothat

PV = NRT, (3.1)
where

Sl Units for some common quantities arising in the study of gases.

Si
Symbol Name Abbreviation Unit
P Pressure (Rscale) R kg/(m =)
V Volume m
N Number of moles. mol moles
T Absolute Emperature K Kelvin
R Gas Constant 8.314442 J/(K mol)
Na Avogadro’s Number 60225x 107 moleculesmol

Note that 1 standard atmosphere i81R325x 10°Pa = 101. 32%Pa. Under
Standard Temperature and Pressure (STP) condifign273. 1K (0C) and

P =101.32%Pa (1"atm); hence, by rearranging Eq. (3.1) we see that
V =V/N = RT/P = 0. 0224m3/mol, or more commonly as 22.kters/mol.

3.2. Dalton’s Law

In mixtures of dilute gases, Daltbshaved that the idealap equation, cf., Eq. (3.1),
needed to be modified by replacing by the total number of moles in theag i.e.,
N - Nt =2 Ni, i.e.,

RT
PZVZNi:ZPi’ (32)
I |
where
Pi = Ni RT/NV = XiP, (33)

is known as the partial pressure and is the pressure a g gomponentwould have for a
given molar volume and temperatur®Ve havealso introduced the mole fractior, = N;/Nigta»
in writing the last equalitySince 3 ; x; = 1, it can be summed towgi Eq. (3.2).

“Robert Boyle, 1627-1691, showed tiRf1N .
TJacques Alexandre 6 Charles, 1746-1823, showed tWaiT.
*John Dalton, FRS, 1766-1844.
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You might think that the partial pressure concept is some sort of mathematical game and
that the partial pressures are not physicallyeele Afterall, only Ny, matters in the equation
of state. As Dalton showed, this is not correb. see wty, consider the following experiment.

6 T, V constant a

Fig. 3.1. Dalton’s Experiment: a rigid cylinder containing a gas mix-
ture at temperature T arid] moles of gasi”. Two pressure measuring
devices (e.g., manometers) are attached toyhieder. The one on the
left is directly connected to the gas mixture via a hole &brey in the
top of the glinder. The meter on the right is connected to the mixture
through a porous plug that only allows component 1 to pass.

As expected, the left meter reaBg;, in accord with Daltors Law. The meter on the
right readsPq, the partial pressure of the permeable componghntis, in establishing its equilib-
rium with the meterthe permeable component acts as if the other components wibeza! As
we shall see latethis plays a central role in chemical equilibrium..

3.3. Bewnd Ideal Gases

D 374°, 220 atm

1 atm

61.Pa

i/°C

Fig. 3.2. Phase diagram ofater’ Shavn are the
coexistence lines for gas-solid (sublimationgsgiq- Fig. 3.3. Liquid-vapor pressure-volume phase dia-
uid (vaporization or condensation), and liquid-solid  gram near the critical poitThe solid cures are
(freezing or melting) lines. The point where all three  known as isotherms (constant temperature) and the

meet is known as the triple point. The liquiapor dashed lines correspond to liquidpor phase equi-
line terminates at the so-called critical poiRinally, librium where lov (gas, Vg) and high (liquid, V)
for water note that there are weral solid-solid cor- phases coést. Two features of interest are the criti-
istence lines (not shown) aved lower temperatures cal point, labeled ¢, and a path {12 — 3 - 4)
and/or higher pressures. whereby a liquid is vaporized without boiling.

"For example, thin Pd sheets are porousttoand not much elseAlternately small-pore zeolites can also
be used to filter/selegtly pass gases.
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Ideal & Non-ldeal Materials -14- Chemistry223

Figures 3.2 and 3.3 shwoexamples of pressure-temperature and pressure-volume phase
diagrams, respeotly. Mary of the details contained in these phase diagrams will be considered
next term. For now, sSmply note that Fig. 3.3 shows that ideal gas behavior is obdemly at
high enough temperature and molaiwne. Alsonote that only the liquid-gas equilibriusn’
shaw critical points. That's because liquids and gases differ only in details (e.g., densiyx
of refraction, etc.) and not in symmetries, i.e., both are isotropic and homogeneous, something
that solids are not by virtue of their crystal lattices.

There are manaobjections that can be raisedaaugst the ideal gas and Dalteraws. Here
are a few: a) wh don’t they depend on the chemical identity of the gas? by tredict finite
pressure for all it V - 0; and c) thg predict vanishing volume a& - OK. Some of these
objections can be dismissed if we considex far apart the gas molecules are under typical con-
ditions, i.e., around ambient temperature and pressure.

According Eg. (3.3), under STP conditions, theolume per molecule is
VINA = 0.0224m%/6. 0225x 107 = (33.39x 10 1°m)®. Thus, we see that the typical distance

between molecules in this gas is 39& which is large compared to the size of gaseous elements
and mag small molecules. Nonetheless, the distance shrinks as the pressure increases or in con-
densed liquid or solid phase&or example, gven that the molar volume of water (molecular
weight 18 g/mol, density at STPglcnt) is 18cn?/mol or 2.98 x 10 2%cn*/moleculewe see

that the typical distance between water molecules is arouh&] @®hich is approximately the

size of a vater molecule; hence, in liquid water the molecules are more or less in direct contact,
and we would expect that molecular details (geombtmding, dipole moment, etc.) to play an
important role, as tlyedo.

This discussion can be made more quantgatiwe consider the so-called compressibility
factor or ratio, Z,

PV _V
RT  Vigea

(3.4)

whereV,gea = RT/P is the molar volume an ideal gas would at the same temperature and pres-
sure. Somexamples for the van der Waals model are shown in Fig. 3.4.

One general way to deal with deviations from ideal behavior in the gas phase, at least for
low densities, is to write down the so-called viriabansion In more modern terms, the virial
expansion is a Taylor polynomial approximation, i.e.,

Z=1+Bn+Cr’+...= 3 Bn'?, (3.5)
i=1

wheren = 1N is the molar densityand whereB andC are known as the second and third viral
coeficients, respectely. The second equality is an alternate notationav@dion with B; =1,

1G. W, CastellanPhysical Chemistryard ed., (Benjamin PubCo., 1983), p. 266.

2R.J. Silbg and R.A. Alberty,Physical Chemistry3rd ed., (John Wilgy & Sons, Inc. 2001) p. 16.

“Virial n. [L. vis, viris, force.] A certain function relating to a system of forces and their points of applica-
tion, -- first used by Clausius in thevastigation of problems in molecular psics/plysical chemistry
[1913 Webster]
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B, = B, B3 =C, ec.. Ingeneral, the virial coefficients are interesifunctions of temperature
and has units of volurfié.

The theoretical tools required to calculate the virial coefficients wertoped in the mid
20th century and weé keen able to calculate the first 10 for model potentials of molecular inter
action. Lesswvell understood is the radius of a@gence of the virial xpansion, an important
guestion, if we wuld like to smehav extrapolate to the liquid phase. According to the Lee-
Yang theorend, the radius of corergence is the condensation densithich means that the
series cannot be used to study the liquid phase directly.

2

Compressibility Ratio, Z

| | | | | | |
0 2 5 8 10

Reduced Pressure, m

Fig. 3.4. The compressibility factor for the van der Waals model (see bal@an &pla-
nation of reducedariables). Notéhat both positie and ngaive deviations fromzZ =1
are possible. The changeeo temperature, the so-called reduced/iBdemperaturerg,
is that where attractt and repulsie interactions balance and the second virial fa@ent
vanishes. Br the van der Waals modgg = a/Rbwhich leads tag = 27/8= 3. 375.

TC.N. Yang and T.D. LeeStatistical Theory of Equations of State and Phaaasitions. I. Theory of Con-
densation Phys. Rer. 87, 404-409, (1952); T.D. Lee and C.NaiYg Statistical Theory of Equations of
State and Phaserdnsitions. Il. Lattice Gas and Ising Modehys. Rev. 87, 410-419, (1952). Note that
these papers are well beyond your current mathematics and physics skills.
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One of the first attempts at writing an equation of state that had liquidagad phases
was due to the Dutch physical chemist van demdlé The van der Waals model considers the
repulsve and attractie interactions separatelyirst, it corrects for the intrinsic or steriolume
per molecule by replacing the systesmbdlumeV by V — Nb, whereb, known as the van der
Waals b coefficient, and can be thought of as the minimum volume occupied by a mole of mole-
cules, assuming that thelon’t deform at high pressureNote that this wn't be he geometric
volume of the molecule, since some space is wasted due to packing considerations.

The second idea was to suggest that there are weak atriacties between molecules
(due to the so-called London dispersion forc&d)e attractions lead to the formation of weakly
bound van der Waals dimers, thereby reduce the total number of molecules in the System.
PV = NRT anything that reduced lowers the pressure.

To quantify this last idea, consider the dimerization reaction

K
2A 2 A, (3.6)

whereK is the equilibrium constant for the reaction, andes/wsmall for van der Waals dimers.
At equilibrium,

% =K, (3.7)
where [A], etc., denote molar concentrations. Since A is conserved in the reaction,

[Altotar = [A] +2[A)] (3.8)
is constant, and can be used to elimin&tg from Eq. (3.7), which becomes

2K[A]? = [Aliota + [A] = 0. (3.9)

This quadratic equation has one physical (pagitoot, namely,

~1+ (1 +8K[ Alyota)
[A] = ( 4K[ ]total) ] (3.10)
By using this in Eq. (3.8) we can easily fin&,], and finally,
- 1/2
(T Aliotal = K[ Alfptar + - - -+ for K[ Al < 1 (3.11b)

*Johannes Diderik van der Waals, 1837-1928s the first to suggestedvhoepulsive and attractie forces
(now known as van der \als or London dispersion interactions) lead to the existence of different phases
and a critical point.
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Where the last result was obtained by noting that X/[1L + x/2 — x?/8+... for [x] << 1 In
short, the dimerization reaction leads to a reduction in the molar density proportlﬁﬁ?al to

By combining the results of our discussion of the roles of repulsions and attractions, we
can write down the van der Waals equation of state

RT a
P=_— - 3.12
V-b v? (3.12)
wherea, the van der Waals "a" constant, is the proportionality constant characterizing the reduc-
tion of N due to attractions. Some results are shown in Fig. 3.5.

3

=

Reduced Pressure, m
ﬁ

O_ T R A ! ! Lo S ——
1 10"
Reduced Volume, ¢

Fig. 3.5. Semi-log plots of the reduced presswesws reduced volume for isotherms
obtained using the van der Waals equation of st@itee reduced pressuresvelige &
¢ - 1/3 and become ideal ag - oo, cf. Eq. (3.12).

Notice the inflection point at the critical poinEor temperatures belothe critical temperature
three states are possible, one at sialhe at lage ¢, and one in the middlelt is reasonable to
identify the two outermost as a liquid and gas, respetyi The state in the middle is ungical
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because its slope is posgdji.e., its molar volume increases with increasing pressure and leads to
a negdive compressibility.

Other thermodynamic quantities are easily found for the van der Waals nk@dekam-
ple the compressibility factor becomes:

1 a/RT

715V TV

(3.13)

and finally the thermal expansion coefficient is found by differentiating #reder Waals equa-
tion, with respect td keeping Pconstant Some examples are shown in Fig. 3.4. Note that the
compressibility drerges at the critical point, cf. Eq. (3.15) belo

We @n male contact with the virial @pansion, cf. Eq. (3.5), by recalling the geometric
series

1
T X+ X2+ X5+,
1-x

which when used in Eqg. (3.13) shows that

apl thif obd
Z:1+S)—— e 3.14

RTLUV OvO [vO ( )
Thus, B, =b-a/RT and B; = b'™, for i =3. Thehigher order virial coefficients are simply
related to the excluded volume effects characterized by powers of the varaalstb\Woeffi-
cient. Thisis probably not correct.

Only the second virial cotient, b — a/RT, is nontrivial. Firstnote that it can be posig
(e.g. as inH,) or negdive (e.g., as inN,) depending on whether repulsions or attractions are
more important, particulan particulat it will be positve for large temperatures andgagve for
low temperaturé. The model predicts a zero initial slope wher Tg = a/(Rb), known as the
Boyle temperature Physically it is the temperature at which attractions and repulsions balance
each other and the gas be¢smmore ideally than expected.

Perhaps the most interesting feature of e der Waals model is the existence of the so-
called critical point; i.e., the one where the differences between the liquichpod phasesan-
ish (see, e.e., point ¢ in Fig. 3.3his implies that one can choose a path (such as
1 - 2 - 3 - 4) which starts with a high-density (liquid) phase and ends up as delusity
(gas) phase withoutver have2 phase coexistence (no bubbles form and the system tibegh’
This was contreersial in the 19th centuryput is nav well established.

The critical state is the inflection point on the critical isotherm, cf. Figs. 3.3 or 3.5; i.e,,
where the first and second detives of the pressurealume critical cure vanish. ©r the \an
der Waals model this implies that

_@PO__ RT  2a _O’PO _ 2RT  6a
_EWDr_ (\7—b)2+\73 and O_EBVZQ_(\_/—b)s o (3.15)

"This assumes thatandb don't depend on temperature.
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cf. Eq. (3.12). These can be solved for a and b, giving

V, _
b= ?C and a=3P.V¢, (3.16)
or
Ve=3b To= -2  and P, = -2 (3.17)
CTn T 27RD’ ©” 2702’ '
where we hee wsed Eq. (3.12) to get the critical pressBee.
Something interesting happens if we introduce reduced variables, i.e.,
P T \Y}
=E = d o= — A

mE o T TC,an v (3.18)

all of which are dimensionles8y using the reduced variables and Eq. (3.17) we can rewrite the
van der Waals equation, Eq. (3.12), as

8r 3
30-1 & (3.19)
All material dependent pametes (e.g, a and b have canceled outHence,if the van der
Waals model wer exact, equations of state plotted in terms of reduced variables wousdttg
same curves, cf. Figs. 3.4 and 3'Bhe materials are said to be in corresponding stabs
phenomena is known as thavlaf corresponding states or weisality. Note that this can be
done for ag 2 parameter model. In realitthe "law" is only an approximation.

In summarythe van der Waals equation is qualueiy correct, predicting 2-phase cog
tence, a critical point, and wersal behavior On the other hand, it is quantitedly incorrect,
and in practice, other models are used. Problem 3 of problemgabies this claim more care-
fully.

3.4. Liquidsand Solids

Depending on the question asked, solids and liquids can be easier or harder to treat than
gases. IBr example, since both are faifilt to compress, linear approximations are often satis-
factory, e.g.,

AV
V = _KAP, (320)

where the isothermal compressibiliky, is defined as

"The story is a bit more complicated. It turns out thatyrdisparate materials exhibit wetsality close
enough to the critical point. An interesting observation because all of the classical modelsxhitite e
ing universal behwior, fail to describe manof the basic details of the behavior close to the critical point.
This was sorted out in the 1980by B. Wdom (chemistry), M. E. Fisher (chemistry), L. Kaddnof
(physics), and K.G. Wilson (physics), and led to Wilson winning the 1982 Nobel prize in physics.
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1 Vv
~_lovo (3.21)
V IOPL ¢
Notice the explicit - sign in the definition ef All stable materials h& positive « (things get
smaller when you squeeze them). Thetdr of 1/V maksk intensve, and therefore easier to
tabulate.

The isothermal compressibiljthecomes P for the ideal gas, or more generally for the
van der Waals liquid or gas

LpPo U g RTV 2art

K=-Vier 0 = e = (3.22)
DEBVQ,ND OV -b)2 20
cf. Eq. (3.15).
Similarly, for small temperature changes,

AV

7 = O'AT, (323)
where the (isobaric or constant pressure) thermal expansion coeftiGientefined as

1mvVQO
=_— — : 3.24
TV T, (3:24)

Like «, the factor of 1/V maksa intensve. Howeve, unlike «, the thermal expansion cdef
cient can be posite a negdive (e.g., it \anishes for liquid water at 4C and 1 atrijr the ideal
gas,a = 1/T, while for the van der Walls gas or liquid

_QV-b)o RV _2arfl’

E R EN—b)Z_szE’ (3.25)

a

which is obtained by differentiating the van der Walls equation of state with respect to tempera-
ture keeping pressure constant, using the chain rule, notingth@ij, = Va, and the solving
the resulting equation far.

For so-called ideal solids, these being crystalline materials with roughly harmonie inter
atomic interactions, one can go considerably farther in calculating mechanical quangties lik
anda, as well as elastic constants, heat capacities, energies, electronic properties, etc.; this is
well beyond the scope of this courskiquids are less tractable than solids having the same com-
plications arising from the molecules being close together without the simplifications associated
with having an underlying periodicity or crystal lattice. At present, coxdgids are studied
theoretically by using brute force methodseliklonte Carlo or molecular dynamics computer
simulations.

"However, e, e.g., M. Born and K. HuanBynamical Theory of Crystal Lattice¢Clarendon Press,
1962).
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4. Probability and Statistics

As we hae dressed in class, when dealing with a macroscopic sample of a material it is
practically impossible to measure or calculate all the microscopic propertiesof @h&atoms
or molecules in the systenfrortunately mary kinds of phenomena do not depend on the precise
behaior of ary single particle, and onlyv&rage properties of the constituent particles are impor
tant. Inorder to quantify theseverages, we must consider some simple ideas in probability and
statistics.

We dl encounter probabilistic concepts in daily life. Results of opinion polls, life
expectanyg tables, and grade distributions are butva &gamples. Shan belav, are two grade
distributions for tvo dasses taking an hourly exam in some course.

R L R R R R RN R L LR RN R RN NN RN RN RN RN AR
4 :
3E Average = 50 E

] E 3

T ~E 3

© 2E o =417 E

& E 3
1E E

< E 3

'_: ;J\\‘HH‘HH‘HH‘HHMH < 0bbdbbbsbobbbdbibss & \H‘HH‘HH‘HH‘HHMHE

g ?

_E 7;\H\HH‘HH\HH‘H\\\HH‘HH\HH‘HH\H H\H\\‘HHUH\‘\\HUH\‘HH\HH‘HH\HL

06 Average = 50 E

5 OE g =5 k

T 40 ;
35 E
QE E
1= E
O it iisataialiiialiiialiisas \HH\HH\HH\HH\“uhuAUuluumubmnu
0 10 20 30 40 50 60 70 80 90 100

Grade
Fig. 4.1. Two hypothetical grade distributions with the same mean

How would you use this information?

Perhaps the simplest quantity to compute is Yeeage grade; i.e.,

100 N(i)
AVERAGE GRADE > i, 4.1)

i=0 Ntotal

where N(i) is the number of students with grade i adgy, is the total number of students in
each class. Notice thaven though the tw distributions are very different, thehavethe same
avaage grade.

How much information is contained in theesage grade and horelevant is the a&erage
to ary individual in the class? In the hypothetical distribution therage tells the whole stary
The distribution is extremely namp and thus practically \eryone got the werage grade.The
same is not true in the real distriton; there is a significant spread in the scores. This spread
can be quantified by defining the probabijli®), of finding ary student with grade i.For this
example,
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NG)

N total

P(i) = (4.2)

which is simply thedction of students with grade i. Notice that probabilities are "normalized" in
the sense that

> P()=1. (4.3)

This is just a complicated way of stating the fact tharyestudent taking the exam reees
some grade.

A measure of the width of the distution can be obtained by computing the standavd de
ation. Ifwe denote theva@rage grade by <i>, then the standard deviatigns defined as:

d?=3 P()[i-<i>T (4.4)

(Note,o is the Greek letter sigma).

When we consider atomic and molecular systems the situation becomeghsbmmre
complicated, although the basic ideas are the same as those introduced in theagnatke dis-
cussed abee. You have dready used probability when you learned about atomic and molecular
orbitals. Inthe kinetic theory of gsses, a different sort of question is being asked; nahuosly
do the molecules nve?

To be gecific, suppose we want the distribution of velocities in the x direction for a sam-
ple of gas containing 13 molecules. Eegn if we ignore the experimental impossibility of mea-
suring the elocities of all of the molecules, what would we do with this huge amount of infor
mation? Itwould be useful to makthe kind of histogram used in discussing grade digiohs;
however there is an additional complicatiofor the exam discussed al@ no fractional grades
were assigned, and thus there is a natural bin width of 1 grade point. On the other hand, nature
does not assign discrete values to the x components of the moleslokties. Henceif we
were to mak aur bins too small in constructing our histogram, most of them would contain only
0 or 1 particles, gen for a sample containing foparticles.

In order to get around this @dulty, we must include some information about the size of
the "bin" in our introduction of probabilityThis is done by definingrobability density, f(v,):

Orhe probability thag nolecule has

f(vy) Avy =
(Vx) Avy S/elocity between yand \ + Av,

Notice that the bin size is explicitly contained in our definition and is responsible for the proba-
bility of an infinitely precise result, i.eAv, =0, vanishes. Alsmote that in general probability
densities hze wnits (in this example the units arerénse velocity).

Once we knw the probability densityaverages can be computed just as in the grade
example considered abe For example,
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<VE>=3 VD f(v,) Av,. (4.5)

Vx

Throughout this part of the course, we will denoterage quantities by surrounding them with
"< >". What should this\arage be for n=0 or 1? What is the physical significance ofviére a
age for n=27?

Of course, typical samples of thaggcontain a large number of particles, and thus, the bins
can be taken to be very small. What does the sum in Eq. (4.5) become in thislienkfow
that this is an integral, and we therefore rewrite Eq. (4.5) as

<V1>= ﬁo VD £ (vy) dvy. (4.6)

Finally, one more aspect of probability must be considered. In the moleceliacity
example, we discussed only the x componéfibwever, velocity is a vector and there are also
the y and z component$iow would we describe the probability thatyamolecule is traeling
in some specific direction€learly, for molecules in a gas, the probability that the x component
of the velocity lies in some intea/should be independent of what the other tamponents are
doing. For such situations, the probability that a molecule legcity with components in the
intervalsv, to v, +Av,, vy tovy +Avy, andv, tov, + Av, is

F (v, Vy, VAV, AV Ay, = (vy) f(vy) f(V)AV, AV Ay, 4.7)

If you are having trouble believing this, consider the probability that three coins come up heads
or tails in ay set of three of tossesThis is a model the velocity probability distribution in a uni-
verse were all the magnitudes of the velocity components in the three directions are equal.

Further aspects of probability densities asdinetics will be discussed in class, but this
material should get you started.
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5. Maxwell-Boltzmann Distribution

The molecular description of theilk properties of a gas depends upon our knowing the
mathematical form of theelocity distribution; That is, the probabiliti (v, vy, V,)Av,Av Av,,
of finding a molecule with velocity components in the ramgéo v, +Av, , v, to vy + Av,, and
v, to v, + Av, (see the last chapter). This can be found by makiogsy simple assumptions:

a) All directions are equalent (space is isotropic). This implies that the probability of finding
a nmolecule moving with a certairelocity cannot depend on the direction; it is equally proba-
ble to find a molecule with gnspeed v maing in ary direction. Mathematicallythis
implies that the probability density can only depend on the magnitude oélt@ty or the
molecular speed. Hence,

F (Vi Vy, Vi) = F([VZ + V5 + V2] 12). (5.1)

b) Thethree components of the velocity are independent of each dfther implies that the
velocity probability density can be written as:

F (Vi vy, Vi) = (Vi) F(vy) F(v2) (5.2)

By comparing Egs. (5.1) and (5.2), wevba
F(v) f(vy) F(v2) = F(IVE + V5 + V312 (5.3)
Very few functions can satisfy Eq. (5.3); in fact, the only one is:
f(v) =A™, i=xy,z (5.4)

where A andb are, as yet, arbitrary constants. Verify thagiven by Eq. (5.4) satisfies Eq. (5.3).

To show that Eq. (5.4) is the only possible function requires some mathematics which might be
beyond the lgel of the course; nonetheless, the proof is contained in the appendix for those of
you who are interested.

How do we cetermine the alues of the constansandb? The function f, is a probability
density and wery molecule must hee sme \elocity. From the previous section, we kmdhat
this means

1= S f(v)Av, - IZ F(v,)dvy, (5.5)

Vy=—00

where the integral is obtained when we mAk, very small. By going to a table of irdeals we
find that

12
© b\ _ EV_Tﬁ
I_oo dv Ae® = ADb - (5.6)

which when used in Eq. (5.5)vgs
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D) ﬁ/Z

A= (5.7)

The parameter b is found as folle: We will compute the pressure that a dilusgxerts
on the valls of its container and then compare the result with experiment (i.e., the ideal gas equa-
tion of state). What is the pressure andvih@lo we et it from the velocity distribtion? The
pressure is the forcexerted by the gs per unit areaMoreover, the force is the rate of change of
momentum per unit time due to collisions with the wall.

Imagine the molecules which comprise our gas as billiard balls and assume thalishe w
are perfectly smooth. What happens when a molecule collides withattie Actuallyrelatively
little; the normal component of the velocity changes sign (see Fig. 5.1).

Fig. 5.1. Elastic collisions with a smooth wall of unit area.

If the wall is taken to be the y-z plane, the momentum chaxi®ds

Ap = _vax = _Fx,molecule on WaAt! (5-8)

where m is the mass of the molecule and Wifgoecule on wanlS the x-component of the force
exated by the molecule on thealtwhen it collides.A typical velocity is 18 cm/sec; what is a
typical momentum change forggm? Hav mary molecules with elocity v, will collide with
the wall per unit area in tim&t? Fom Fig. 5.1, it should be clear thatyamolecule within a
distancev, At will hit the wall in timeAt, assuming of course, that < 0 for the way the figure
was drawn (i.e., with the wall on the left). The number per unit area is therefore:

n(vy)|vy|At, (5.9
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where n(v) is the number of molecules per unit volume wikhcomponent of velocity in the
rangev, to v, + Av,. This is related to the molecular velocity distribution by

n(vy) = Ng f(vy)Av,, (5.10)

whereng is the number of molecules per unglvme. Bymultiplying Egs. (5.8) and (5.9), then
substituting according to Eq. (5.10), andiding by At, we finally arrive & the pressurexerted
by those molecules with x velocity component in the range v, +Av,, P,y .y, :

F X1 >(+A X
2mr‘bvg(f(VX)AVX = # = vavvx+AVx’ (511)
whereF, , .ay, is the contrilntion to the force on the wall from molecules with x velocity com-
ponent in the rangeg, to v, +Av,. All that remains is to include the contributions from all
velocities corresponding to molecules movingvands the vall. The total pressure, ,Rhus
equals:

2 b ﬂ/z —-bv2

0 0 00
P= 5 dv, 2mnyV2 f(vy) = I_oo dvy, 2mnoV2 f (vy) = J’O dvy 2mrvaD7—TD e ", (5.12)

Vy=—00

where the last equality comes from using the explicit form of the probability deissiéyEqs.
(5.4) and (5.7)]. The value of the integral is:

If we use this result in Eq. (5.12), we find that

_ M
P=20 (5.13)

Next we write the ideal gas equation of state in terms of the number density:
P= nokBT,

wherekg is Boltzmanns mnstant:

R R

N— = m =1.38x 10_23J/K.
A .

kg

By comparing this with Eqg. (5.13) we see that

m
2KgT

The velocity probability density for the x component caw be witten as

2015, Fall Term



Chemistry 223 -27- Maxwell-BoltzmanrDistribution

2 mé
o m % - ™
f(v,) = 2kgT 14
V)= o & (614
or for the full velocity as
/2 E
m _—
F(vx,vy,vx)-D d KeT (5.15)

whereE = m(v2 + v§ +Vv2)/2 is the kinetic energy of a molecul&his is referred to as the Max-
well-Boltzmann distribution function and is illustrated in the following figure:

Velocity Distribution

} “‘:(Hyig;}f“jiyzgé““‘HH‘HHH‘;

0.8F. e E

3 (m/ksT)"=4 E

0.7E 3
(m/ksT)"*=3

0.65 3
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N E E
= 04F 3
0.3 3
0.2E E
“(m/kT) =1 3
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v,(Arbitrary Units)

Fig. 5.2. The Maxwell-Boltzmann 1-D velocity distiition. Notethat the probability of
finding faster molecules is increased if we raise the temperature or lower the mass.

Notice that increasing the temperature or reducing the mass makes it more probable to find
molecules with higheralocities and that the probability of observing aiven velocity will
decrease as the energy associated with #latiy increases. This last comment is not limited
to our simple billiard ball model of the molecules.

What is the gerage kinetic energy of the molecules; i.e., what is

12
m , 5 5 3m_, 3m[ m

+ Vi + — —
Sy Wt vyt VI o e S ket O

o0 _ V2 _ 3
17 dy emizeTE = 2T,

where the first equality follows from our assumption that all directions areamqiiand where
the last uses the integralvgn above. Notice that the \erage kinetic energy is independent of
the mass of the molecules and predicts a constant heat capacity; specifically

MPED

Cv BT Oy

3
=-R
2
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This is well born out for noble gases and is an example of the so-called lzulong and Petit.

For example, our result predicts a constant volume heat capacity of 12k471mbl ™ the \alue

in the CRC Handbook ges 12.472 JK ™! mol™” It turns out that our result is more general, in

that it also applies to all molecules as long as rotation, vibration and electronic effects can be
ignored. Inaddition, in molecular dynamics computer simulations the temperature is often
defined in terms of theverage kinetic energy.

For mary applications, the full Maxwell-Boltzmannelocity distribution gres tbo much
detail. Inparticular remember that it is a probability density for the vectdoeity. Suppose we
are interested in some property which depends only on the speed of the molecules and not their
direction. Whais the probability density which describes the distribution of molecular speeds?

The speed distribution functiof,(c) dc, is the probability of observing a molecule with a
speed in the inteal c to ¢ + dc irrespectve d its direction. It can be obtained from the full
velocity distribution, cf. Eq. (5.15), by integrating (summingperothe possible velocity direc-
tions, i.e.,

F(c)dc= X F(vy Vy, V)AV, AV Av, = F(vx,vy,vz)D 2 Av,AvAv,. (5.16)

c<|vlgc+de Chv=c c<|Vlgc+de

The sums in these last equations arer @ll velocities such that the speed is betweeand

c+dc. The second equality comes from noting that F only depends on the magnitude of the
velocity (see Eq.(5.15)). Whatis this last sum?Av,Av,Av, is a volume element in a coordi-

nate system whose axes are the componenel@dity. The sum represents the volume between
two concentric spheres of radiasand e-dc, respectrely. Thus

_4m 3_ 30 2
2 Av,AvAv, = 3 gc +dc)°-c ol 4mrcedc, (5.17)

c<|v|gc+de

where the last expression was obtained by expanding the products and dropping nonlinear terms
in dc (remember that we will consider infinitesimally small dc). If we use Eq. (5.17) in (5.16),
we find that

F(c) = 471c2F (v, vy, v,)H = 4mc?——
(©) = 4nCF (v vy, Vo), =470 5 30

(5.18)
This is the speed distribution and is shown in Fig. 5.3vbelotice that it vanishes when= 0
evan though the velocity distribution is a maximum at zero velo¥ithy?

There are various ways to characterize the molecular speed iaghdog example, con-
sider the most probable speed, is found by setting the derivative d Eq. (5.18) to zero; i.e.,

/2 mc
0m 0% m 2keT _ o0

0=dn—1 _ m ,
" rkeT O keT 0 m 0

which gives physical roots atc=0 (a minimum) and atc’” = (2kgT/m)*2, which is the

"Note, that the CRC repor@. As we $all see lateiCp = C,, + Rfor an ideal gas.
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maximum. Thiscan be compared witht(= (8kgT/7m)Y? and cgrys = VB2CE (kg T/m)Y?, f.

Eq. (5.19). Note that™ < [¢[K crys All three results hae the form kgT/m)Y? times some
dimensionless number; the first factor has the units of speed (length / time) and must be there
unless there is another quantity that has the units of speed, which is not the casehéere.
dimensionless number depends on the details of the question being asked.

Speed Distribution

\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\\\\\\\\\
<(m/kT)"/*=5
“(m/k,T)"?=4
<(m/k,T)"*=3

<(m,/k,T)"*=2

F(c)

<(m/k,T)""*=1

O\\\\\\\\\\\\\ Ly T R R R
0 1 2 3 4 0}

Speed, ¢ (Arbitrary Units)
Fig. 5.3. The speed distribution for various temperatures and/or massesis Alsarcase
with the velocity distrilntion, cf. Fig. 5.2, the probability of finding faster molecules
increases if we raise the temperature of lower the mass.

The speed distriltion is used to\grage quantities that dardepend on the direction the
molecules are mang. Amongthese, the most useful are the mean-speed and root-mean squared

speed (or velocity)y/[¢2[] where

gekeTd?
Mmm O "
oo ch/24 * de d"*ze_;'%T = DSD—kBT n=2 (5.19)
[RrkgT O 7, o m '
okeT (92 2

El] m O 7—,Tr((n+3)/2)), in general,

wherel (x) is the gamma function and where a table of integrals can be used to look up these
results. Noticehat all the werages contain factors kgT/m which has units of velocity.

5.1. Appendix: Proof of Equation (5.4)

You are not responsible for this pioof. Differentiate both sides of Eq. (5.3) with respect
to v,, using the chain rule for the right hand side, and divide,byYou get:
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dF(v)d
df (vy) —0
o, f(vy) F(v2) L T

= 5.20
v (Vg + VD)2 520

By repeating this fov,, equating the results and carrying out a little algebra, we find that:

df(v,)  df(vy)
dVX - dVy
Vi f(vi) vy F(vy)

(5.21)

The right hand side of the equation depends only,cand the left hand side depends only on
V4. Since these t@ components of velocity can be chosen independehtyonly way that this
last equation can be satisfied is if both sides are equal to the same constant. Hence,

df(v) _ _
dv, = 2w, (5.22)

whereb is, as yet, some arbitrary constant. This is a first order differential equation. It has a
general solution which will depend on a single multipliGationstant. Thisolution is gven by
Eq. (5.4).
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6. Collisions,Reactions, and Transport

6.1. Effusion,Surface Collisions and Reactions

In the previous section, we found the parameter b by computinyétega force xerted
on the walls of the containeBuppose, instead, that the rate of collisions (i.e., the number of col-
lisions per unit area per unit time) was desired. This is important for a number of practical con-
siderations; e.g., if a chemical reactioneslplace wery time a molecule hits the surface, then
the rate of the reaction will just be the collision rate.

We dbtain the collision rate by repeating the analysis which determined the force on the
wall in the previous section. Thus, the number of molecules per unit areaehattity v, which
collide in time intervalAt is

N(Vy)|VxlAt, (6.1)

where we are using the same notation as in the preceding sedtmngotal number of colli-
sions becomes:

e

2 2
om o -2k T) |y AL = ke T
[(RrkgT O X (2rmO

0
Z At = J’_oo dv, ny No/At (6.2)

Hence, the wall collision rat&,,,, is gven by
Zwa” = — Ng = - E:Dho, (63)
mm 4

where[¢lis the &erage speed, introduced in the preceding secthAside from the pré@ously
mentioned example of chemical reaction on aamexfanother application of this expression is in
effusionthough a pinhole. If there is a hole of ar@an the surface, the rate that molecules
escape the system is just,, A. Notice that heavier molecules or isotopes will escape more
slowly (with a /ymassdependence); hencefueion through a pinhole is a simple way in which
to separate different mass species.

The assumption thatvery collision leads to reaction is not quite right for mamaasons
(e.g., orientation of the molecule, its internal motion, etc.). The most important of these is easy
to understand, namelthe molecule must ka enough enagy to overcome some sort of agé
tion barrier For our model this means that the molecule must beingdast enough when it
collides and this is easily incorporated into Eq. (6.2):

12
. ~Vmin |:| m j — \/'2 1 u
Zreactive — dv,ng——— — @ ™/keNy | = - [@hye EakeT 6.4
wall _I._OO X OIIn_kBT |:| | X| 4 0 ( )

whereE, = : mVZ,;, is called the actation enegy. This is just the well known Ahrennius beha
2

ior seen in most reaction ratedlote that plotting logZ's3™9 vs /T would give an gpproxi-
mately straight line, and experimentally this is known as an Arrhenius plot.
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6.2. GasPhase Collisions and Chemical Reactions

Fig. 6.1. Any blue molecule contained in the cylinder will collide with our ed A
molecule in timeAt

Next consider the number of collisions which a molecule of type Aesakth those of
type B in a @s. W will model the two molecules as hard spheres of rddj and Rg, respec-
tively. Moreover, in order to simplify the calculation, we will assume that the B molecules are
stationary (this is a good approximatiomig > m,). An A molecule moving with &locity v
for time At will collide with any B molecule in a glinder of radiusR, + Rg (cf. Fig. 1) and
length y|At. Hence, volume swept out will just be

VAt 77(RA + Rg)?, (6.5)

and the actual number of collisions wil} x volume swept out Thevarage A-B collision rate, is
obtained by multiplying by the probability density for A molecules wilogity v and aerag-

ing. Morewer, gnce only the speed of the molecule is important, we may use the molecular
speed distribtion function obtained in the preceding section terage oer the speed of A.
Thus, we get

/2
0 ma O —mc2/(2k T)D 2
e A B R, + Rg)“cAtng, 6.6

U

o U 5
Z pwith 8Dt = J.O dc e
U

where note that the quantity in the square brackets is just the seed probability, Ggnkity
When the integral isveluated, we find that

Zpwith s = T(Ra + RB)ZE:AmB’ (6.7)

wherel[¢[ds the aerage molecular speed of A; i.e.,
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keT 172
o= ke i |
DﬂmAD

(6.8)

This is the number of collisiormneA suffers in timeAt. The number of collisions with B'that
all the A molecules in a unit volume suffer per unit tiig g, is

Zag =NaZawiths = T(Ra + RB)ZEAmAnB- (6.9)

As was mentioned at the outset, our expression is correct if thaéBhot meing. It
turns out that the correction for the motion of B is rather simple (astlvés going to what is
called the center-of-mass frame, which is nat, which is described in the Appendix); specifi-
cally, al we do is replace then, in the definition of the mean speed bygi the reduced mass
for the A,B pair The reduced mass is defined as:

mMaMg . 1 1 1

=E———, or alently, — = — + —. 6.10
HaB Ma+ Mg equiv y Hao  Ma Mg ( )

If mg >>mjy, Pap = Mjy, i.€., the mass of the lighter species, whil& # B, pa o = Ma/2.

With this correction, our expression becomes
Zpg =m(Ra+ RB)ZE:A,BmAnBy (6.11)
where
BkeT 0

[CaBlE g0 (6.12)

is the mean speed of A relagito B. A special case of this expression it the rate of collision of A
molecules with themseds. Inthis case, Eq. (6.11) becomes

1
Zna= 5 o3 e a2Y%n3, (6.13)

whereo, = 2R, is the molecular diameter of A and where weehdvided by 2 in order to not
count each A-A collision twice. Note that wevieaeypressed our result in terms @f,[Jand not
[¢a AL Which is the origin of the additional factor df2in Eq. (6.13).

Equations (6.11) or (6.13)\@ the rate of chemical reaction per undglume, assuming
zeo activation enegy (this is still an upper bound to the rate of reactiof$. in the collision
with a wall discussion, this is easily generalized by including in the collision rate only those mol-
ecules with enough (relas) kinetic energy; i.e.,

Ea
kgT

o0

RATE= nangm(Rp + RB)ZIC dc F(c)c = m(Rp + RB)ZE:A,B@‘EA”‘BTSL + SwAnB, (6.14)

min

whereF(c) is the (relatve) speed distribution an& 5 = pA,Bcﬁﬂnlz. When A=B we hege o add
the additional factor of 1/2, cf. Eq. (6.13).
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This expression has the correct Arrhenius form except for the extra non-expometia f
containing temperatureHowever, compared with the exponentighdtor these usually do not
change very rapidly with temperature and can approximately be treated as constant; recall that
we normally sha Arrhenius behavior by plotting In(Ra@onstant)versus 1T to obtain a
straight line. The non-exponential terms end up in a logarithm which usually toeange
much wver the range of temperatures studied. Thus, we lgarived an goproximate gpression
for the bi-molecular rate constant which has at least some of the gualfgtures of those
found in gas reactions. Note that in either case we hagcond order reactionverall, either
first order in A and first order in B or second order in A, cf. EQ. (6.14y00ring an activation
energy (6.13), respectely.

It is important to understand what we mean by 'RATE’ in Eq. (6.14). It is {bage
number of reacte wllisions per unit vlume, per unit time. This need not be the rate of disap-
pearance of reactants or appearance of products per unit time pesluméyv D get these we
need the stochiometries in the reaction under consideration. Consider the following reaction

A+A S A, (6.15)

In each reactie wllision two A's are consumed, while only on&, is produced; thus the rate of
disappearance ok is twice the rate of appearanceAf, which in turn happens once pefest.
Hence,

d[A]
dt

= RATE  while % = —2x RATE (6.16)

Note that Eq. (6.16) implies thad] + 2[A,] is constant. Wl should this not be a surprise?

6.3. MeanFree Path and Transport Phenomena

Next, we will consider hav far a molecule can mre kefore it sufers a collision.For sim-
plicity, we will only consider a one componenagy Accordingto Eq. (6.7), the mean time
between collisions is

1 1
Tcollision =~ =
® Zawith s 22moi[EaMA |

(6.17)

whereo, = 2R, is the diameter of and. Hence, the typical distance vsed by a molecule
between collisions) is approximatelyr.qjision[€a0Or

1

A= ——5—.
2
212g4n,

(6.18)

This distance is called the mean free padtlote that it only depends on the number density of
the gas and the size of the molecules, but not its mass or the temperature.

We @n use these results to obtain an approximate expression foayhe which concen-
tration diferences equilibrate in a dilute gas. Consider a gas containtngirtds of molecules
in which there is a concentration gradient; i.e., the density of molecules peolumiteyn;(z)
depends on position. One way in which the concentration becomes uniform is via diffusion.
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To quantify diffusion, we vant to find the net number of molecules of eegitype that
cross a plane in the gas per unit area per unit time; this vgnkase the diffusion flux.To e
how the diffusion flux depends on molecular parameters, consider the following figure.

Fig. 6.2. Any molecule that starts around a mean free path from the mid-plane will not
collide with anything and will cross the mid-plane, therefore contributing to thardpw

or dovnward flux. The net rate per unit area is just what we considered in our discussion
of effusion.

We want the net flux through the plane at z. From our preceding discussion of mean free paths,
clearly aty molecule that starts roughly from a mean free pativealobelow z, moving towvards

z, will not suffer ag collisions and will cross. The number that cross the planes atper unit

area, per unit time is the same as the wall collision rates we calculatexithbbis

ke T 12 1
%g n(z%4) = 5 CAI(Z:: A), (6.19)

where we hee rewritten Eq. (6.3) in terms of theverage molecular speed, cf. Eq. (6.8ince
all the molecules that wancollide and will thus cross the plane at z, the net flux (upward) is just

J= % [CaM(z—A) - % [Eem(z+A) =- % [Eain(z+ A) —n(z- A)]. (6.20)

Since, for most experiments the density barely changesi@naodstance comparable to the
mean free path, we use the Taylor expansion to write

dn(z) G+l d?n(2)

n(zxA)=n(z)+ iz > dz

A%+ (6.21)

which, when used in Eg. (6.20vgs FHck’s Frst Law of diffusion,
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Mn(z,t) 0

J:_DD oz [}

(6.22)

where we hee nodified the notation to include the time dependence of the density and where

1
= AT (6.23)

D
2

D is known as the diffusion constant and has uniterajtif/time.

The factor of 1/2 in our expression fDris not quite right, bt the other factors are; e.g.,
for hard spheres the correct diffusion constantzi83 1. 178. . times lager than the one \gn
aboe” Note that only the leading order ternasvkept in obtaining Egs. (6.22) and (6.23) from
Egs. (6.20) and (6.21); the next order one contai(d*n(z, t)/0z°),, and in general, only odd
powers ofA and numbers of desdtives will appear.

Next consider the total number of molecules inside of some region bounded by planes at
and z+ L. The lengthL is small compared to the scales that characterize the concentration
nonuniformity but large compared with the mean free pattiearly the only way for the total
number of molecules in ourgi®n, n(z, t)L, to dhange is by flugs at the surfaces aandz + L.

Thus,

on(z,t)L _ __, 03(z1)
o J(z+L,t)+J(z,t)=-L 37

(6.24)

where we hee agan used a Taylor expansion,wdor the flux itself. Finallyby using our result
for the diffusion flux and canceling the factors of L, we see that

Pn(z )0 _ BNz )0
0o O 0O a2 O

(6.25)

which is a kinetic equation for the relaxation of the concentration and venkas the dffision
equation. Although value of the fiision constant is quite different, the diffusion equation actu-
ally is more general than our deaion might suggest and holds in liquids and solids as well.
Finally, note that we ha mly considered systems where the concentration is only nonuniform
in one spatial direction. Should this not be the case, then some simple modifications of our
expressions must be introduced, but these will not be considered here.

There are standard ways in which to satiffusion equations, either analyticalfpr spe-
cial geometries, or numericallyHowever, there is one general feature of systems relaxirfg-dif
sively. Imagine introducing a small droplet of an impurity into a system. Clearly the droplet will
spread in time, and you might wely think that the werage droplet size would gnolike [¢[T.
Of course, this ignores collisions and is incorrect. From the diffusion equation dimensional

"See, e.g., Joseph O. Hirschfe|d@narles FCurtiss, R. Byron BirdMolecular Theory of Gases
and Liquids(Wiley-Interscience, 1964), Chapters 788e warned, the math and physics required
is very non-trivial!

TSee, e.g., W.H. Press, S.Aukolsk/, W.T. Vetterling, and B.FFlannery,Numerical Recipes in C: The Art
of Scientific Computin@nd ed., (Cambridge Uwirsity Press, 1992), Ch. 19.
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analysis correctly suggests that

1 D
-—= — 6.26
TR (6.26)

or R=VDt, which is much shwver than the linear time behavior that would arise in the absence
of collisions? This is what is observed.

The preceding analysis can be applied to other transport phenomena; in particular to
enegy or momentum transport. One interesting example is to so-called transport of shear
momentum. Considea flowing system with velocity in the x direction and gradient in the z
direction, or

v(r) = ev(2). (6.27)

For linear profiles we hae a @uette flov, for parabolic ones a Poiseuillevlogtc. Themomen-

tum per unit lume (or momentum density) is justmnv(z) Repeating our analysis of Fig. 2,

but now for the flux for the x component of the momentum being transported in the z direction,
denoted as, y, gives

A PV AV
Tyy = —imAmnr{v(zH\) —V(z—/])] =~ - _ mAmn@DE _HEEU

5 (6.28)

wheren = A[E,0MN2 is known as the dynamic viscositf{Again, like the diffusion codfcient,
the factor of 2 isi’quite right, but the rest is.)

If we repeat the steps leading to the diffusion equation, we find that

DUz )0 _ V(@00
0o O 0O 2 [

(6.29)

wherev = n/mnis known as the kinematic viscosity and has unitgengttf/time. Note that

v = D in our treatment, but this is an accidental consequence of our modeldies fof 2 aret’
quite right). This last equation is a special case of theek&toles equations (in particulare
have ignored the role of pressure in directkeing a force on the molecules, thereby changing
the momentum).

6.4. Appendix: TheCenter of Mass Frame

Here are the details of the center of mass calculation mentioned ixth¢Ytau are not
responsible for these details Considerwo particles with massesy, at positionsr;, moving
with velocitiesv;, i =1, 2. The center of mass for this system igegiby
mry + Myl

R. =
cm m1+m2

(A.1)

Also define the relate awordinate for the pair as

* For a pherical droplet the exact answeiRs- V6Dt.
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Fp=rqy=ry (A.2)

Similar definitions hold for the center of mass and nadavdocities. Alittle algebra allows us
to express the original coordinates in terms of the center of mass ana r@las; namely,

_ my
ri =Rem+ e+ rio (A.3a)
and
_ AL
2 = Rem M, + m, I12, (A.3b)

where, again, similar expressions are obtained relating the velocities.

Now consider the probability densities for finding particle ledbwity v, and 2 at elocity

Vo.!
/2 2 2
O mpmy ﬁ O mMVvi+mMyVvs [
f(Vy,Vp) = 2 R T A A.4a
V1 Vo) = ez PO T 26T O (A4a)
_omy+mypr?? 0 (Mg + mp)VE, + g,
O@rkgT)2 0 P00 2kgT 0
_dm+my 0 (my+moVE00 B E?’Zexp 0 Wi, O
= fem(Vem) X f12(V12), (A.4b)

where the second equality is obtained by expressing the individual velocities in terms of the cen-
ter of mass and relag vdocities, cf. Eqgs. (A.3a) and (A.3b), with pvagn by Eq. (6.10). The

third equality is obtained by splitting up thepenentials and the factors in front, and finaihe

last equality is obtained by defining the center of mass orvehadiocity distributions as usual,

but with the masses replaced by the total mass or reduced mass, velgpecti

Thus, weve shown that the probability densities for theagarticles’ center of mass and
relatve vdocities factorize; i.e., theare statistically independent. (Strictly speaking weehia
check one more thing, nametiiatdv,dv, = dV.,dvi,. This is easily done by showing that the
Jacobian for the transformation, cf. Egs. (A.3a) and (A.3b), is,wnitigh it is. Jacobians are a
Cal 11l concept). In apevent, Eq. (A.4b) shows that gmuestion that only asks about the rela-
tive notion of the patrticles (e.g., as in a collision) can ignore the center of mass part completely
and as was mentioned in the maixttén practice means that we replace the mass by the reduced
mass in the distribution.
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7. Work, Heat, and Energy

7.1. Zeroth Law of Thermodynamics

If two bodies at equilibrium are brought intbermal contact (i.e., no
mechanical, electrical, magnetic, gravitational, etorkws performed)
andnothing happens, then there at the same temperature.

Given this, we can alays measure the temperature oy apstem by bringing it into ther
mal contact with some standard thermomefes we $all see, a very cemnient choice is the
ideal-gas thermometerHere a manometer is used to measure the pressure of a fixed amount of
gas in a fixed volume and the relation

_NRT

\Y

is used to calculate the temperature. Needless (mibmy temperature standards can (and are)
used.

7.2. SomdDefinitions

Intensve Doesnt depend on the size of the system; e.gT, Bartial molar quantities.

Extensve The opposite of inteng; e.g., mass, volume, energy (but not energy per unit
volume or mass), heat capacities (but not specific heats).

System Thepart of the unierse under imestigation. Systemsan be:

a) Isolated:no interaction of ap kind with surroundings.Note that real
systems cannot be truly isolatedit tan be approximately so on the
time-scale of relance.

b) Closedenergy can be exchanged with surroundings, but matter cannot.
C) Open: matter and energy can be exchanged.
Surroundings Theart of the unierse not under westigation.

Boundary Whatlivides the system from the surroundings (and controls whether the sys-
tem is open, closed, or isolated).

State Asystems state is specified when all measurable propertiesifanite \al-
uesto the accuracy of the experiment

State \ariables  Aset of measurable quantities, which when known, completely specify the
state of the system. In classical or quantum mechanics there are on the order
of 107 state variables; heever, in thermodynamics, experience tells us that
the macroscopicstate of the system is specified after a small set of measure-
ments are made (e.g.,  V, X1, ...,X%).

Process Somethinghereby the state of a system is chang&grocess has taparts:
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Reversible

State Function

a) Initial and final states (i.e., where the system starts and ends).

b) A Pah. Thepath describes lothe change was fetcted. Inorder to
specify the path, intermediate changes in the system, surroundings and
boundary must be specified. This is clearly something which outdw
like to avoid in mary cases.

Aprocess is said to bevegsible if it is possible to returboth the system and
the surroundings to their original state. If not, it isvasible (even if the
system can be returned to the original state).

A property of the system which only depends on the current state of the sys-
tem. Hencechanges in state functions do not depend on the path.téltate
functions play a &y role in thermodynamics and aanacroscopic properties

of matter to be studied in a rigorous, systematic manBeamples of state
functions are: engy, entropy (to be introduced later),, ®/, T, efic. A one-
component ideal gas has a pressure, P(T,N,VEendly PV=NRT no matter
what--hav the TV, or N dtained their current values is irreéat.
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7.3. Euler's Theorem, Partial Molar Quantities, and the Gibbs-Duhem Relations

Next consider ay extensve quantity in a mixture containing components; i.e.,
A(T,P,Ny,...,N,). Realexamples could be the emggr volume, mass, heat capaciégc.. Con-
sider the small change i associated with changes in its arguments, namely

MPAD PAD 00A O 00A O
dA= — dT + —— dP+ —— dN;+. ..+ dN,.
[BTQ’N ..... N [BPDfN ..... N DaNlDf,P,Nz ..... N, EB'\qupNl ..... N r
(7.1)
Now, by assumption A is extensre; hence,
AA(T,P,Ny,...,N) = A(T,P,ANg, ..., AN,). (7.2)

If we differentiate both sides of this equation with respect amd &aluate the result at =1 it
follows that

N0A [ O0A O
AT,P,Nq,...,N;) = — N+ .+ — N (7.3)
' r [ON; Q',P,Nz ..... N, ! CON, D(,P,Nl ..... Ny_g r
r —
= Z]_AI Ni1 (74)
1=
where
_ [OA[
A= (7.5)
[ONi L p N,

is called gpartial molar quantity Note that the partial molar quantities are intemsin obtain-

ing Eq. (7.3) you may use E@7.1) fordT =dP =dN; =0 andd(AN;) = N;jdA fori =1,...).
Also note that Eq. (7.3) is a special case of Esibgéorem for homogeneous functions in calcu-
lus.

Equations (7.3) or (7.4) allous to plicitly express the nontrivial features of axtem-
sive quantity in terms of intengé mes, thereby reducing the number of dependencies we must
worry about. It also turns out that the partial molar quantities (or more specifichiyges in

“Note that we may use Eq. (7.1) to work out what is known as a totedtilexi Consider the case where
r=1,ie.,N; =N(T,P). We'll keepP constant and consider the remainiidoe a function oflf andP.
By dividing Eq. (7.1) by dT it follows that

WAD _(PAD |, (PAD [OND
Th, OTL EBNI;L’PEDTQ;'

Note that the first term on the right hand side is just the usuabiileiwhile the second is an example of
the chain rule.
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them) are not all independerifo se this, we calculat@A from Eq. (7.4):

dA

_gAidNi +NidA, (7.6)

where we hee wsed the calculus resud{xy) = xdy+ ydx. Of course,dA could hae been com-
puted from Eq. (7.1); i.e.,

r
aa=PAD ar + PA dP+ 3 AdN, 7.7)

[BTQ-",Nl ..... N; EBPQ‘,Nl ,,,,, N, i=1

where we hee rewritten the dewnatives with respect to the numbers of moles in terms of the par
tial molar quantities, cf. Eqg. (7.5). By equating the right hand sides of Egs. (7.6) and (7.7) it fol-
lows that

DAD DAL r _
T aT+5p dP-3 NidA =0, 7.8
EBT |$lNl ----- Nr [BPQ-,NJ_ ..... Nr |§1 I Ai ( )

and hence, the changes in the partial molar quantities and othetidesiae not all indepen-
dent. Equatior{8) is known as a Gibbs-Duhem relation and can be used to relate seemingly dis-
parate thermodynamic destives.

As an ercise, what are the partial molanlumes for an ideal gas mixture obeying Dal-
ton’s law d partial pressures? Do thebey the Gibbs-Duhem relation?

7.4. Work and Heat in Thermodynamics

Two central concepts in thermodynamics are work and h¥att probably hae sen
examples of the former in your freshman physics class, and the latter is somethinggou e
ence in daily life. In thermodynamics, bothvearey precise definitions.

Work: Anything which crosses the boundary of the system and is completelgridale into
the lifting of a weight in the surroundings.

Note that work only appears at the boundary of a system, during a change of state, is
extensve, and is manifested by an effect in the surroundings. From mechanics, wehato

dW = Fdx = -mgdx (7.9)

where dW is the incremental work done, F is the force beiageel on the system, and dx is the
distance treersed. Thesecond equality is for moving a mass m a distance dx invaaranal
field (g is the gratational acceleration constant). Note that there acedgn corventions for
work in thermodynamics. In the oldehe force is thatxerted by the system on the surround-
ings, and the corresponding work is therkvdone by the system on the surroundings. In the
newer comvention, things are rersed; the force is the force the surroundingsteon the system
and the work is that done by the surroundings on the sysEntce Neton’s law dates that
these tw forces must be equal and opposite, the danventions differ by a sign. The text, and
we, will use the latter coention here although note that Castellan uses the oldeertiion.
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Consider the following apparatus:

M (mass)

A (area)

dx —

The inside of the piston is filled with some gas at pressure P
and is maintained at constant temperatureliistead of
characterizing the @rk done in terms of the mass, it is
more coNenient to introduce the pressurgedged on the

top of the piston (i.e., force per unit area, A)

=— (7.10)
and acts downard. Notethat Py, need not equal P.

Thus

& W = —Pg,Adx = —Pg,dV, (7.11)

where dV is the incremental change in tlsdume of the system. The workvinlved in these
sorts of processes is known as pressure-volume work.

Note that the work done ot a date function--it depends on the pressuerted on the
piston (the path) and is not simply a function of the state of the gas in the pistdmess this
fact, the notatiord will be used for infinitesimal changes in quantities which depend on the path.

For an pocess whereby the gas ispanded against some pressuwi¥,> 0, and hence,
d W < 0. Corversely, in a mompression procesd,W > 0, i.e., ngative work is done by the sys-
tem. Thesurroundings do posie work on the system.

Isothermal Expangion

Preggure

Volume

V final
W =-

initial

This diagram shwes a process for the isothermal
expansion of a gas (in this case an ideat)g Thesolid
curve gves the pressure of the gas (i.e., its equation of
state). Thedotted cure gves the opposing pressure actu-
ally used in the xpansion. Notehat the latter lies com-
pletely belov the former If at any point this were not the
case, then the expansion would not proceed spontaneously
(i.e., the opposing pressurewd be too large and theg
would contract).

The total work done by the surroundings on the sys-
tem (- the total work done by the system on surroundings)
is just the ngaive d the area under the dotted curve:

\% inal
Pop(V)dV > - I " PNV)AV =W, (7.12)

initial

If the gas inside the piston is ideal, then the ideal-gas equation of state is valid and

Vira NRT
Wiey = —J —— dV = =NRTIn(V tinai/Vinitiar )- (7.13)
initial
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Note that the maximumaevk you can get out of a spontaneous expansion is obtained when
the opposing pressure is infinitesimally less than the pressure Beitefldy the gas in the pis-
ton. Inthis caseWW = Wg. Unfortunatelythe rate of such an expansion would be zero,agdv
be the power delered by the system. On the other hand, it is easy tov ¢t the path gien
by Pop, = P is the only reersible one for the isothermal expansion of an ideal gas.

Consider the following apparatus (from L. K. NaBtements of Chemical Thermodynam-
ics, Addison-Weslg, 1970):

1g 0.5 g 0.25 ¢

I 0.25 g

05 g 025 g

025 g

0g 0 g O0g

11 (a) (b) (c)

The spring is assumed to ghbidooke’s law (.e, the force is proportional to the elatign). A
series of experiments are performed whereby weights arednm pan from platforms atarious
heights in the surroundings. In doing so, the system (the spring and panjram state | to Il.

How much work is performed in each of the cases(@)(assume that there is a total 1cm elon-
gation of the spring and ignore the mass of the pan and spring)?

In order to reerse the process (i.e., the expansion of the spring) the weights aed mo
back to the adjacent platformblowever, it is easy to see that while the spring will be fully com-
pressed at the end of the experiment, the surroundings will not be restored to their initial state;
specifically in the best case, the topmost weight will be transferred to the lowest platform, no
matter hav mary platforms are usedClearly the biggest change in the surroundings will happen
in case (a) and the smallest in (8Joreover, the smaller the individual weights we use, the more
reversible the process becomes (i.e., the change to the surroundings decrBasgm)ocess is
reversible in the limit where the applied force (the weight) is only infinitesimally more than the
force eerted by the spring.

This argument can easily be extended to our discussion of pressure-volume work or to
other kinds of wrk. Hencethe maximum work in a P-V expansion is obtained forvarsible
path.

Another ley quantity in thermodynamics is heat.

Heat: Anything which flows across the boundary of a system by virtue of a temperatare dif
ence between the system and the surroundings.
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Heat is quantified by measuring the temperature risallpiri a standard material (e.g., a
calorie corresponds to the amount of heat required to raise the temperature ofdtey ar@).
Like work, heat appears only at the boundary of a system, during a change of sxiésigee
and is manifested by anfe€t in the surroundings. It is also not a state function since it depends
on the nature of the thermal contact allowed at the boundary of the system.

In a classic set of experiments in the 19'th centdryP. dule showed that the same
changes in the state of a system could be asthiey ather adding work or heat to the system.
One of his devices is shown belo

As the weight falls, the paddles turn and
heat up the liquid in the container by friction
(viscous heating). The same temperature
rise can be achwed by drectly heating the
container using a known amount of heat.

The amounts of heat and work were
definite and Joule concluded that work and
heat were simply tw dfferent ways in
which energy could be added to a system.
Specifically Joule showed that

1 calorie = 4. 184kg nf/sec.

We ae nav ready to state the firstleof thermodynamics.

7.5. TheFirst Law of Thermodynamics:

In any cyclic process (i.e., one wherthe system eturns to its initial
state) the net heat absorbed by the system is equal to the workopr
duced by the system.

Suppose this were not the caskhen you could presumably find a process which pro-
duced more work than it absorbed hebhis extra work could be used to run a generathich
in turn could be used to produce more heat, which could run more of the process, progicing e
more excess work, and so on. The gwarisis, electric bills, etc. would be things of the past.
Unfortunately no such device hasver been built and the firstvastill stands.

In mathematical terms, the firstlamplies that there is a state function, called the internal
energy of the system, defined up to an arbitrary agdatinstant through its differential

dE=d Q+d W, (7.14)

whered W is the work done by the surroundings on the system (tlgetive o the work done
by the system on the surrounding$jor a finite change of state, the change in the internal
energyAE, is gven by
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final state
AE = dQ+dW. (7.15)

initial state

The first lav states that

foE = faQ+faw=o. (7.16)

The first lav implies that the energy change computed along different paths meidtbei
same answerlf not, two such paths could be used to to build the energy-creating device dis-
cussed abe (.e., by reersing one of the paths)lhe appendix contains a detailed discussion of
the conservation of energy in (classical) mechanics; as expected there the discuskies re
around forces, which while similar to the discussiorra¥ in special cases, lees the connec-
tion to heat andir Q somewhat obscure.

7.6. SomeProperties of the Energy

In order to calculate or measure anes, we note that W = 0 for constant volume sys-
tems, assuming that only pressure-volume work can be déerece,dE = dQ,, where we hee
dropped thed in favar of d and hae put a "V" subscript on the Q to emphasize that we are
working at constant volume. (Whs this wvalid?). Inthe absence of phase changes (eappk
ization), the increments of heat absorbed by the system are proportional to the incremental tem-
perature change of the system; i.e.,

dE = dQ, = C,dT, (7.17)

WED
T LN
property of the system that depends orP,Tmposition and phase, and is pastin general.
Since E = > NRT for an ideal gas of point particles, it follows ti@&g = - NR By integrating

both S|des of the equation we find that

wereC,, = is known as the constant volume heat capacity and in generabitcasie

.
AEr 1, =Qy :J’T_‘ Cv(T,V, N)dT. (7.18)

Note thatAE is positve for an endothermic constant volume process and gdtime for an
exothermic one.If there is a phase change during the experiment, we aadd the latent
enegy change of the phase transition (i.e., the heat we wouklthadd at the transition tem-
perature to corert all the material from one phase to another) to the right hand side of our
expression.

Thus, we hee found a simple situation in which the energy change is related to heat.
Unfortunately the requirement of constant volume, while realizable to high agcurdbe lab,
is incorvenient. Isthere another quantity that becomes the heat absorbed by the system under
other conditions, and in particular for constant pressure?adnthere is and a simply trick
allows us to find it.

Consider the quantityd = E + PV, known as the Enthajp Snce E and PV are state
functions, so too i$l. Next, by taking the differential of each side of the definition and using the
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First Lav, we find that
dH = dE+ PdV +VdP = ¢ Q + (P - Py,)dV + VdP, (7.19)

where only pressure-volume work has been allowed; d.&/ = -P,,dV. As we dscussed
above, for reversible changes?,, = P and

dH =dQ+VdP (7.20)
For processes where the pressure is conskapt= P anddP = 0, which gves
dH = dQp = CpdT (7.21)

PHQO
where, Cp = —
0T O}

5 5 . .
H=E+PV= > NRT, and thus,Cp = > NR. Note thatCp > Cy,, something that is true more
generally Finally, by repeating the discussion we had for the enetrdggllows that

is the constant pressure heat capacitiyor the ideal gs,

AH =Qp = J’TT Cp(T, P, N)dT, (7.22)

again with extra terms to account for the latent enthdlpeat) of transition(s) should phase
changes occurThis procedure is known as a Legendre transformation, and we will see other
applications of it later.

7.7. Appendix: Enemgy in Classical Mechanics

You probably hae heard the statement "energy is consdtV Whatdoes this mean
exactly? Considen system comprised of N point particles of massat positionsrq,...,ry,
and moving with elocitiesvy, . ..,vy. The system is subjected teternal forces described by a
time dependent potential.(r,t), €.g., as might arise from the interaction of the molecules in
the system with a nuing piston, or with the atoms in the bottom of a container being heated
from belav. In addition, assume that M&on’s laws of motion are walid and that the particles
interact via pairwise addie forces which are desble from a potential; i.e., the force partigle
exats oni, F; ; is given by

_ auiij
Fij= _a_ri ,

(7.23)

wherey; ; is the potential energy of interaction between molecubssd j and depends on the
molecular positions through —r; (i.e., only through the separation between the molecules).

Consider the mechanical ener§y defined as

Mz

E

N3

V2 +

NI =

N
2
i=1]

i#]

N
lui,j + Zl Pexi(Ti, 1). (7.24)
i=

1l
LMz
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Note that the last term describes the interaction between the system and its surroundings, and the
internal energy would drop this term in its definitidHhow does E change as the particlesveo
around under the action of Newteraws?

= ZuF-52 2R, - v>+zE*t‘f’“’eX5(tr"t)D Vi Faers 0D (7.29
i=1 i=1 j=1

B U

iZ]

whereFe(r,t) = —(0gex(r, t)/or);, is the external force, an; = 3 F; j + Fex(ri, 1), is the total
ji

force acting on the i'th particle. By using this expressionHoin the rate of change of E we

find that

dE 1M N N D@exri, ) O 13N N D@ex(ri, ) O
Ezlg |J[(V|+V)+Z Tqi EEIE(FH"'FU)B/ _Z Tqi(7-26)

j i#]

where the dummy summation indices, i and j, were exchanged for the tevmminbtaining
the last equality Newton’s third law states that; j = —F;;; i.e., the force ixerts on j is equal in
magnitude and opposite in direction to thatgres on i. Using this in our laskpression imme-
diately shows that

dE _ & gl )0
d ~&0 ot O

i=1
In other words, in the absence efplicitly time-dependenéxternal forces, the energy of our
classical system of particles dodstiiange in time i.e., it is consew. Thesame is true under
the laws of quantum mechanics.

(7.27)

Finally, note that our result is dependent on our definition of theggnéior example, if
we consider the so-called internal energy,

m 2 N N
Eint = Z 2 Z zul,j’ (7-28)
i=1 i=1j=1
i#]

cf. Eq. (7.24), and repeat the steps leading to Eq. (7.27), it follows that

St = 3, Pt 1), (7.29)

which is essentially the result we obtain by starting vathV = F [dr.

The first lav of thermodynamics also has something to say about changesgy, @teough not

in precisely the same way as in classical or quantum mechapeifically where are \wrk

and heat, and is ouxgression for the energy (or internal energy) a state function? Indeed, all
that appears the rate of change of the internabgnefr Eq.(7.29), are forces acting on the full
mary-body system; no distinction is made between heat, mecharodal @c., and which while
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certainly correct, leges ane wondering where to find the practical simplifications the thermody-
namic approach ges.
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8. Thermochemistry

8.1. Enthalpy Calculations: Chemical Reactions and Hess’ Law

The enthalp change for a procesAH, is equal to the heat absorbed by the system if that
process is done under constant pressure conditions (and assuming that onlyrlP#¥/ possi-
ble). Sincethe enthalp of a g/stem, H = E + PVis a sate function, we can systematize
enthally calculations by considering a path whereby the compounds first turn into their con-
stituent elements in their standard states (byedion at 25°C and 1 atm pressure) and then
recombine to form the products. The entlgadbange in the latter step is just the enthalpfor-
mation of the products and the former is the enthalpdestruction (i.e., the getive d the
enthalfy of formation) of the reactants. Hence,

AH =Y %H?(products - AH?(reactantsg (8.1)

Since we are interested in calculating a difference, the absolute grih#ie elements in
their standard states is unimportant [it cancels out of Eq. (8.1)], and we adoptvbioarthat
the enthalp of formation of an element in its standard state is zero.

Consider the following example (reduction of iron oxide):

Fe,04(s) +3H,(g) - - ™ 2Fe(s) + 3H,0(1). (8.2)

A table of thermochemical datavgs:

Enthalpies of Formation at 1 atm and 25 C

Compound AHY (kJ/mol)
Fe,04(s) 8242
H»(g) 0.0
Fe(s) 0.0
H,0() -285.830

By using these in Eq. (8.1), we find that
AH =[3(-285. 830) (-824. 2)]kJ/mok - 33. 29kJ/mol. {8.3)

Note that the calculated enthglghange depends on\udhe reaction &s written. For example,
if we wrote

1 3 °C, 3
SFe0s(9)+ S Ha@) - Fe(s) + 5 Hy0(), 8.4)

thenAH = -16. 65kJ/mol.
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8.2. MeasuringAH?

There are a number of ways in which to measure the eptbfdprmation of a compound;
here are tw. Themost olvious is to simply carry out the formation reaction from the con-
stituent elements in their standard states in a constant pressure calorimeter (reidll=te@g).

For example, consider the combustion of graphite to form carbon dioxide

) 25°C, 1 &
C(graphite + O,(g) o CO,(9). (8.5)

The heat released in this reaction-dsH$(CO,), since the standard enthylpf formation of the
reactants is zero. Note that the entliadbange in this sort of reaction is also referred to as the
heat of combustion.

For this method to work, ter conditions must be metl) thereaction goes to completion
and 2) only one product is formed. Thus, the reaction

25°C, 1 am

C(graphite +2H,(g) -  CHy(0) (8.6)

is not suitable for this method since it do¢seadily go to completion and we get a complicated
mixture of hydrocarbons.

In order to get around this, note that it is often possible to burn something to completion
(and measurAH .,mpustion the heat released). Thus consider

CH,(g) +20, ™™ CO,(g) +2H,0(). (8.7)
Equation (8.1) gles
AHcombustion: AH ?(Coz(g)) +2AH ?(Hzo(l)) -AH ?(CH4(9))- (8-8)

The standard enthalpies of formation of carbon dioxide atdrvean be measured using the first
method; hence, once we measure the heat of combustion, the onlyvanisnthe standard
enthalfy of formation of methane (CA—) and a little algebra ges:

AH?(CH4(9)) = AH?(COZ(Q)) + ZAH?(HZO(D) - AHcombustion

= [-398. 51+ 2(-285. 83)- (-890. 36)]kJ/mok ~74. 81kJ/mol (8.9)

In general, in order to measure the enthalpformation, all you need to to is findyan
reaction where all but one of the standard enthalpies of formation ae lamal where the reac-
tion goes to completion. These sorts of manipulations are valid because theyeisthadate
function, and are referred to as Hedaiv. Also note that the same arguments could be made for
the energy changes (under constant volume conditions).
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8.3. Reactionsat Different Temperatures: Kir choff’'s Law

What happens if the temperature at which you perform the reaction (either at constant P or
V) is different than that of your table of enthalpies of formation. Since the entisadpdate
function, an alternate path can be found whereby the egptbladmge, calculated using the tem-
perature of your table, can be used. Consider the constant pressure case depicted below

Reactants = Products (T 1)

A

¥

Reactants > Products (T,)

The enthalp change for the reaction @i is equal to the enthalgchange afl, plus the enthalp
change for paths 1 and Powever, on 1 or 2, aly the constant pressure heating or cooling of
the reactants or products is performed (i.e., no chemical reactempkdce). Since the constant
pressure heat capaciyy was defined as

MHQO

Co= —_ , 8.10
P ST o, (8.10)
the incremental heat absorbed by the system on 1 & &li§. Integrating gres:
To T
AH; = IT Cp(reactant3dT = - IT Cp(reactant3dT (8.11)
and
T,
AH, = IT Cp(product9dT. (8.12)
0
Adding the contributions togethervgs
AH(T,) = AH(To) + [ ducty - C tant3- T 8.13
= + roduct9 — Cp(reactan : :
(T1) = BH(To) + [~ £p(product) - Co( 30 (8.13)

This is known as Kirchdfs law. What changes must be made for the energy?

Consider our example of the reductionFa,O5;. What is the enthajpchange at 358K?
We will assume that the heat capacities are constantloe temperature range 298 - 358 K.

2015, Fall Term



Chemistry 223 -53- Thermochemistry

Constant Pressure Heat Capacities at 1 atm and 25 C

Compound Cp (J/mol/K)
Fezog(S) 103.8
H,(9) 28.8
Fe(s) 25.1
H,O(l) 75.3

Note that elements in their standard statesatdave z2ro heat capacities. Using the data in the
table, and the result of our earlier calculatioregi

[2(25. 1)+ 3(75. 3)- 103. 8- 3(28. 8)][358- 298]
1000

AH,,,(358K) = -33. 29+

= -28. 1kJ/mol.

Note that no change in phase occurred when we cooled (heated) the reactants (products).
What changes would fia o be made if the reaction was carried out at 400 K?

8.4. BondEnergies

Consider the combustion reaction of ethanol:

C,HsOH(1) +30, =" ™ 3H,0(1) + 2COx(g). (8.14)

The standard enthalpies of formation for these compounds are:

Standard Enthalpies of Formation at 25C

AHY?
Compound (kd/mol)
C,HOH(l) -277.7
H,O(l) -285.830
CO,(9) -393.51

which gves AH ompustion= 3 % (—285. 830} 2 x (—=393. 51)- (-277. 7)= -138%J/mol for the
reaction as written. This is quitxahermic. Wheredoes the energy come from? If yo&’
been told that if related to breaking bonds, yoa’ keen misinformed; as our example clearly
shows, it comes from forming bonds, specifically the strong bor@d®jrandH,0.

We @an male this idea more quantitag & by @mnsidering the typical engies in bonds.
This is a useful, albeit very approximateaywo calculate enthalpchanges in chemical reac-
tions. Considethe following reaction
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CH,; - CHs+H; (8.15)

i.e., one C-H bond is brek. ExperimentallyAH for this reaction is 102 kcal/molSimilarly,
AH =96 kcal/mol for

A survey d such reactions will she that the heat required to break a single C-H bond is in the
range 96-102 kcal/molWe @an thus assign 98 kcal/mol as arerage bond engy for the C-H

bond. Similattends are observed in the bond strength of other types of bonds, and the results are
summarized in the following table

Average Bond Energies
Enegy Enegy
Bond  camony B (kcalimol)
H-H 103 C-H 98
C-C 80 N-H 92
Cc=C 145 O-H 109
c=cC 198 CI-H 102
N-N 37 Br-H 87
N=N 225 I-H 71
0-0 34 C-Cl 78
0=0 117 C-N 66
CI-ClI 57 C=N 210
Br-Br 45 C-O0 79
I-1 35 C=0 173

How can this be used? Consider the hydrogenation of ethlyene:

H2C :CH2+H -H = H3C_CH3. (817)
At the molecular leel, we break one H-H and one C=C bond, and form one C-C am@#4
bonds. Theenegy change is just the net eggreft in the molecule in such a process. From the
table, the bond breaking stepsdald5+103=248 kcal/mol.The bond formation will gie df
80+2(98)=276 kcal/molHence the net energy change in the system is 248-276 = -28 kcal/mol.
To get the enthalpchange, note that at constant pressure,

AH = AE + PAV. (8.18)

For this reaction, all reactants and products are gases. If we assume that the gases are ideal, we
can computdV;i.e.,

AV = —— AN. (8.19)

HereAN = -1 and thus
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AH =-28-1.9872x 10 3kcal/molK x 298K = — 28. 6kcal/mol.

(Note that here the difference betwa®H andAE is relatvely small). The correct answer is
-32.7 kcal/mol. Thus, while the bond energy method is not exacves gieasonable estimate.
The reason for the discrepans the assumption that the bond energy ddedgpend on what
other bonds are present in the molecule--in general this is not true.

8.5. SomeéManipulations Involving Thermodynamic Functions

8.5.1. Therelationship betweenCp and Cy,
We know that

_M@ED MH O

= h = — .
Cy BT Oy and that Cp BTG,

(8.20)

How these tw quantities are related is a googleesise in manipulating thermodynamic func-
tions. SinceH = E + PV,

_DED |, pOVD (8.21)

o, TG,

where the last dertive $ould be recognized aéa, wherea is the thermal expansion ctief
cient,

1mvVQ
=_— — : 8.22
TV OT, (8.22)
If we view the energy as a function of N,V,T,
WED WEO [ PEO VO WED
— = — + — — =Cyt+taV_—_ . 8.23
BT, | BTGy VR, BTG, v 7oV, (829
Hence,
O Eng O VTa?
Cp-Cy = [P DELD ., (8.24)
0 bV EL,‘TD K
where
1V[Q
=-— — 8.25
VvV P ( )

is the isothermal compressibilitgnd where the last equality will be mem later The compress-
ibility must be positre (.e., things get smaller when squeezed) and this implieihatC,,.
For an ideal gas, Joule showed that the internalggnper mol did not depend on thelwme. In
this case,
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Cp - C_:V = O'P\_/ =R (826)

8.5.2. TheJoule-Thompson Experiment

Consider the follwing adiabatic (i.e, Q=0) process, whereby a gas is squeezed through a
porous, rigid plug. Initially all the gas is in the left chamlaad is pushed by the piston through
the porous plug,@rting a constant pressure;. As this happens, the piston in the right cham-
ber is withdravn under constant pressui®;. Note thatP; and P, are the opposing pressures
discussed earligdthough the initial and final system pressures wilPheandP,, respectiely.

]

Porous Plug

Fig. 8.1. The Joule-Thompson Experimentitially, the piston on the right is against the porous plug and
the one on the left is withdnan. Asthe experiment progresses, the piston on the left ieanio, keeping

the pressure in the left chamberRgt and the one on the right is withdrawn, keeping the pressure in the
right chamber aP,.

Since, by assumption, Q=0,
AE = E(P,,V,) — E(P1,V;) =W = PV, = P,V,. (8.27)
By rearranging this expression we canvglioat
E(P1, V1) + P1Vy = E(P5,V5) + PV, (8.28)

i.e., the enthalg H, is constant in the Joule-Thompson expansion.

In practice, lage temperature changes can be obtained in this type of expansion (which can
be used in designing a refrigerator or in liquefyiragag). Theéey parameter is the so-called
Joule-Thompson coefficient:

_@TO

Mt = EB_PQN (8.29)

In order to express;g in terms of more readily measurable quantities, note that

2015, Fall Term



Chemistry 223 -57- Thermochemistry

@Pf0

@yg _ HoxG

SRR (8.30)
[y O

which is sometimes known as the "cyclic rule” or "implicit functioredéntiation.” Itis proved
by noting that

_@fo +[ﬁfD

setting df=0, and by solving for the ratio dy/dx.
By using the cyclic rule in Eq. (8.29), we find that
PH
[P 1 PH[ v O 0 EQp M
UJT:_ﬂ:__ o - A kPt = [
MHO CeloPLr Cepg g BVHIMm
00T L}
\Y K \
- Q.- —cyd=_Y 11—
e % v Ce-Cu)g c [1-aT], (8.32)

where the second to last equality follows when the definition of the entimberms of the
enegy is used and the manipulations used in calcul&ipg C,, are repeatedx is the isother
mal compressibility Note that the Joule-Thompson coefficient vanishes for an idesal-thisis

not surprising gien the kinetic theory of gases point of wienamely we know that E = °RT
2

andH = E + PV/N = > RT; hence, keeping H (and N) constant implies thig constant.
2

It is interesting to consider phkically why the non-ideal gas can change its temperature.
According to problem 7.30 in Castellan; |+ (2a/RT - b)/Cp for the van der Waalsag. Thus,
at lov enough temperatures, it is the attractions and the van der Waals dimers that dogpinate p
through the "a" coéitient. Whenwe expand the ag, these dimers will dissociate and this
requires engy; since the process is adiabatic, the only place where this energy can be obtained
is from the kinetic energy of the gas, and hence, the temperature drops with a drop in pressure
(i.e., 7t > 0). At higher temperatures the steric interactions dominate; these are higk-ener
configurations, and reducing the pressure leads to these breaking up, releasing thetoeher
system, thereby raising the temperaturg 0).

Note that the expression we just used f@rig only valid for very dilute gses (with the
usual caeats about the accunaof the van der Waals equation). In general, there are higher
order density corrections, and a more complete expression can be found by applyydidhe ¢
rule toa, i.e.,
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1vVo _ 1@PO | @PO

= — == — - . 8.33
TTvoTn, VTR, Bvh, (8:33)
By applying this to the van der Waals equation of state,
_ NRT  [NO
=V-NG aD\_/D’ (8.34)

using the result in our last expression fgf,|and carrying out some simple algebra, we find that

Ti(l-bp)*-T
Mot =

= ColT ~T,bp(i-bp)] (8.35)

wherep = N/V is the molar density anti = 2a/(Rb) is the irversion temperature (the tempera-
ture where the zero density Joule Thompson coefficient changes $lgrg, we see that finite
density systems ka Ilower efectve invasion temperatures; indeed by letting
T°" = 2a(1 - pb)*/Rb< T;, it follows that

1-Tme"
Co[TT ~bp]

Mot = (8.36)
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9. Ideal Gas Carnot Engines and Efficiency

5 @[VII“IH[HII“HI[HYwIHIUIH‘HIHIHI“YH[HII“IH[HIwIHHHH“HHHH“HHH
AN ]
L ~Isothermal (T}) .
40 ]
AL ]
z [ <V, ]
A L i
3k Adiabatic- -
i <V, <Adiabatic 4
L [sothermal (T.)> 4
Zk A ERENE FREE ERRNI ARRRE RRNN) SRRRU RNRTE SRRRE RNNNE FRRRA RUNNE SRRRANRNNE SRRRARNREE FRRRERRNE SR )
1 1.1 1. 1.3 14 15 1. 1. 1.8 1. 2

Vv

Fig. 9.1. TheCarnot Cycle

The Carnot engine is a useful construction for relating the mathemadiga  for a
spontaneous process in an isolated system) and trsicphstatements of the SecondnlLaf
Thermodynamics (heat spontaneously flows from hot to cold, etc.). This section goes through
the analysis of the amounts obik and heat produced in the isothermal and adiabatic parts of
the Carnot cycle for an ideal gas.

9.1. Enegy in an Ideal Gas: Joule’s Experiment

In his study of the thermal properties of gases, Joule considered the isothgramali@n
of dilute gases using the apparatus depicted below:
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-~ Thermometer

P=0

Fig. 9.2. Joules Experiment

The bulb on the right wasvacuated initially and heat ag allowed to exchange with the heat
bath, whose temperature was measufeat. sufficiently dilute gases, Joule found that the tem-
perature of the bath didrchange. Thisias some important consequences.

For this process, the systesn(here the tw bulbs) volume doest’change, and hence,
W = 0. Moreover, ance the temperature of the bath remained constant, no heat was absorbed by
the system, and thusE = 0. Whatdoes this say about the functional form of the energy of an
ideal gas?

We know that we can write the energy of a one-component system as
E(N,V,T) = NE(T,V/N),

where molar volume (thewerse of the molar density)as chosen instead of pressure as an inde-
pendent variable (as camalys be done if the equation of state isWwnd. InJoules experiment

T and N were held fixed but the volume accessible by the gaapd/hence N/Vchanged.
Nonetheless, E didhthange. Therefore, for an ideal gas,

E(N,V,T) = NE(T);

i.e., the energy per mole of an ideal gas depends only on the temperaturead. tignglarly

the heat capacity will only be a function of temperature (as it turns out, the heat capacity of an
ideal gas is usually only weakly dependent on temperatiitas shouldrnt come as a total sur

prise, since our simple kinetic theory aisgmodel for the energy (translational energyyeg

E = > NRT. Note that including other deees of freedom for the molecular motion, e.g., vibra-

tion 2or rotation, will change the temperature dependencg(®), but the lack of a alume
dependence will remain.
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9.2. Reversible, Adiabatic Expansion or Compression of an Ideal Gas

When an ideal gas isvesibly expanded (compressed) adiabaticallly temperatureafls
(rises). Inorder to relate the temperature and volume changes, we note that thedreeideal
gas depends only on the temperature; hence,

dv
dE=CVdT:dQ+dW=d‘Q—NRTV, 9.1)
whereC,, is the heat capacity at constant volume and where the last equality is obtained by using
the ideal gas equation of stateor an aliabatic processy Q = 0. Aftera little algebra, Eq. (9.1)
can be rearranged tovei

Cy dT __aVv

NR T Ve

If we assume that,, is independent of temperature (this a good approximation for gases of sim-
ple molecules such as A(EO2 etc.), this equality can be summed (or integrated) the entire
adiabatic expansion; that is,

O (0T Gy Tl _ et Nl
NR Tt T NR 7" initial ] -[Vinitial \ [Vinitial ]

where the integrals kia been @auated and "In" is the natural logarithm functioinally, both
sides of Eq. (9.2) are exponentiated, and we find that

/ /
Vinitial _ OT finat L7V N° or P final _ OT finat 70
Viina  linitiar U Piitial  initar &

9.3)

where the secondkpression is obtained by noting that for ideasgs,PV = NRT (even for an
adiabatic change) and thag = C,, + NR This shows he@ volume and temperature changes are
related along an adiabatic patfAgain, no violation of Charles’ or Bte's laws is implied)
Notice, if Vihiia < Viinal,» then the gs is cooler after thexpansion. Thigs to be expected since
the expansion renves enelgy from the system, energy which is not replaced by the addition of
heat from a heat reservoir.

Finally, for an adiabatic change in an ideal gas,
T final
AE =W = +AU echanical™ .[T Cyv(T)dT = CyAT,

initial

whether or not the path isvesible!

9.3. Reversible, Isothermal Expansion or Compression of an Ideal Gas

Since the energy of an ideal gas depends only on the temperatureriiains constant
during arty isothermal process (i.e., dE = 0). From the finst this implies that
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dQ=-dW=PdV= NRTO\'/—V (9.4)

If the dQ%s gven by Ej. (9.4) are summed/er the entire gpansion (i.e., between the initiabdlv
ume,Viiia @and the final volumey 5,4) we find that

flnal dV D\/f' | |:|
~W = Qisothermal = NRTI nva = NRTIn _ |.n.a| 0 (9.5)
|n|t|a D Inltla D

9.4. Entropy Changes in the Ideal Gas Carnot Cycle

Next we use Eg. (9.5) for the isothermal portions of the Caywé ¢see Fig. 1, part 1 and
3); it is easy to shw that

Qn , Qc O/,v, O
= + == = NRIn 9.6
Ty Tc U1V25 (9.6)

However, if we use Eg. (9.3) on part 2 of the cycle, it follows that

v = gV/NR
V2 SED '

Similarly, for the adiabatic compression,

V1 o, ﬁIV/NR
S

Thus, if we use these tnexpressions in Eq. (9.6) the argument of the logarithm becomes equal
to 1, and

Qu , Qc 9.7)

— +—=—==0.
T Tc

This is an explicit demonstration of the Secondrlod Thermodynamics (i.e., that the entyap
a date function).

Note that the diciengy, (denoted by the Greek letter etd, of the Carnot cycle (i.e., o
much work is produced per unit heat absorbed) is easily obtained using Eq. (9.7):

W _Qu+Qc _q__c
Qv Qx Ty
where the second equality follows form the first lnd where the last equality follows from Eq.

(9.7). Asis shown on the following pages, thisi@gengy formula must hold no matter what the
working fluid in the Carnot engine, and hence, Eq. (9.7) must hold for materials other than ideal

n (9.8)
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gases.

Note that running the Carnot engine backwards creates a refrigerator or heat ptkrip; w
is added to the system and pumps heat from hot to cold (sinwetgeehe signs on thg@’s and
W'’s in our preceding calculation to see thigjor our purposes we @n't distinguish between the
efficieng/ of a Carnot engine or refrigeratoboth will be defined as if the refrigerator was run
backwards as an engine, thereby giving Eq. (9.8). On the other hand it is interesting to consider
the eficiengy of a refrigerator defined in terms that would be meaningful to a consumer (say
browsing refrigerators in Searsh reasonable definition is:

Qc .

EfﬁCienCyRefrigerator: W ’ (9 . 9)

i.e., the amount of heat pumped out of the cold reseive., the ice box, into the carnotcte
refrigerator per unit work done on the system. By repeating the steps that led to Eq. (9.8) it is
easy to see that

Qc Tc 1

Efficiencyrefrigerator= ~ Qc + O = . = Nera
ngine

-1, (9.10)

Note that the refrigerator fefiency becomes infinite a$, - T¢ and is< 1 for Ty = 2T. For
example, takinglc = 274. 7% (1.6 C) andl'y = 293. 1K (20 C), gVes ngefrigerator= 14. 9.

Finally, for a heat pump,

%: 1 = Qu = Th
W nengine Qu+Qc Tw-Tc

Efficiencyyear pump= — >1, (9.11)

which also drerges asTy — T¢; this is the reason whheat pumps are very efficient ways to
heat homes in the winteFor example, if it5 20C inside and OC outside, the Carnot heat pump
efficieng is 15! Thatis, you get 15J of heat fovery joule of energy used to run the punn

reality, you can get close to this theoretical limit only for certain temperature ranges--when the
temperature is very g the operation of the heat pump becomes inefficient, i.evergible).
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10. IdealGas Carnot Engines and Efficiency

The second la of thermodynamics ges information concerning the direction of sponta-
neous change. If the seconavlgays that a certain process is impossible, you will not be able to
get the process to go. On the other hand, note that if the sevosalykthat a process is possi-
ble, you still hae to worry about kinetics--you wva o find a way in which to carry out the
process in a reasonable amount of time.

There are a number of egdient physical statements of the second td thermodynam-
ics. Accordingio Kubo (Thermodynamics, North Holland Publishing Co., 1976) e

1. Clausius principle: A process which wolves no change other than the transfer of heat
from a hotter body to a cooler body is wessible; or it is impossible for heat to transfer
spontaneously from a colder to a hotter body without causing other changes.

2. Thompson’s (or Kelvin’s) principle: A process in which work is transformed into heat
without ary other changes is irversible; or it is impossible to corert all the heat tadn
from a body of uniform temperature into work without causing other changes.

3. Impossibility of perpetual motion of the second kind (due to Max Planck) It is impossi-
ble to devise an engine operating inya&lewhich does work by taking heat from a single
heat reservoir without producingyaother change.

4.  Caratheodory’s principle: For a gven thermal equilibrium state of a thermally uniform
system, there exists another state which is arbitrarily close tatitytich can neer be
reached from it by an adiabatic change.

Any of these physical statements can be used teeph® others, and to finally pre the
mathematical statement of the secomnd ¢ thermodynamics:

5.  Any spontaneous process satisfies the Clausius inequality:
aQ
— <0
T
which implies that there exists a state function, the epifdgnoted by the letter S)

aQ

ASzI?

where, in either expression, the equality holds when the processrsblke.

Before showing he 1.-4. imply 5., lets first consider hwe the different physical state-
ments imply one anotheror example, hw does one shw that Clausius’ principle implies
Thompsons? Supposé didn't; i.e., Clausius principle is correct, but Thompsanis rot. This
means that you can build an engine which produaa®,vand which is connected to a single
heat reservairlf so, consider the following device:
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T
where, E is the Thompson violatend R is a Carnot refrigerator.

L

If we adjust the sizes of E and R such that all the work is used to run the Carnot refrigera-
tor, and view the combined E-R apparatus as the system, we si@aceeded in creating auee,
which spontaneously pumps heat from cold to hot withoyiark input from the surroundings.
This violates Clausius’ principle and thus wevéngroved Thompsons principle by contradic-
tion.

Similarly, we @an use Thompsos'principle to prae Qausius’. Aguin, the proof is by
contradiction. IfClausiuss principle is untrue, then you can find a device which spontaneously
(i.e., without ag work input) transfers heat from a colder body to a hotter @uasider the fol-
lowing apparatus:

Q1+ Q2

Clausius W=Q,

Violator Q

Q1

Te

where C is a Carnot engine and where the sizes of the Carnot engine and our Clausius violator
are adjusted such that the heats transferred are as indicated.
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What is the net result after ongcte? Work has been produced in the surroundings, b
there is no net change in the heat content in the cooler ogserence, it is as if the system
were operating in contact with a single reservoir and produoaml i the surroundings, in con-

tradiction to Thompsog'grinciple.
These kind of arguments can be used togitoe equralence of the other physical formu-
lations of the secondwa
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10.1. Efficiency of Real Carnot Engines

Why is the Efficiency of a Carnot Engine
Independent of the Kind of Working Material?

Here are tw proofs that the diciencgy of any revasible Carnot engine is the same and
depends only on the temperatures of the heat baths.

10.1.1. Methodl using Thompsons Principle

Q,

W w’
QL
TL
where

W' =the work produced by the engine,
Qy =the heat absorbed by the engine from the hot reservoir,
Q. = the heat gien off by the engine to the cooler reservoir,
wW = the work used to run the Carnot refrigerator,
Qny  =the heat gien off by the refrigerator to the hot reservoir,
Q. =the heat absorbed by the refrigerator from the cooler reservoir.

The sizes of the engine and refrigerator are adjusted such that no net hestt isotakthe
cool reservoir in one cycle (i.e€Q, =Q.'). Accordingto Thompsors grinciple, no net posiie
work can be realized in the surroundings frony davice which takes heat from a single heat
source. Thus,

W' -W <0. (10.1.1.1)

However, from the First L, the net work produced must equal the net heat absorbed by the sys-
tem; i.e.,

W -W =Q' - Q4. (10.1.1.2)
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If we denote the "engine efficiencies" of the refrigerator and engineadn’, respectrely, Eq.
(10.1.1.2) can be rewritten as:

1-n) :(1—,7)% > (1- 7). (10.1.1.3)
H

The last inequality follows from Egs. (10.1.1.1) and (10.1.1.2), @g.= Q4 and hence,
Qu/Qy' = 1. By rearranging Eq. (10.1.1.3) we see that

nzn. (10.1.1.4)

That is, the engine efficiepof the refrigerator is greater than that of the engine, no matter what.

Note that Eq. (10.1.1.4) is validwen if one or both of the engines is notavesible. If
both engines are versible, then the roles of engine and refrigerator can be interchanged and we
conclude that

n' =n. (10.1.1.5)

In light of Eq. (10.1.1.4) this is possible onlyjit= »'. Note that for this case, the net work pro-
duced by the device is zero!.

Thus we hae $rown that the engine ffiency of al reversible Carnot cycle engines are
the same; since this includes the ideal gas Carnot engine we analyzed earlier it follows that

T
Nrey =1- T—L . (10.1.1.6)
H

Finally, if the engine is irneersible, an upper bound to itsfiefencgy can be obtained by using a
reversible refrigeratar In this case, Eq. (10.1.1.4) implies that

T
Umgﬂ%vzl‘TL- (10.1.1.7)
H
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10.1.2. Methodll using Clausius’ Principle

Qy QL
w
E > R
Q L
QL
TL
where

W = the work produced by the engine
Qy =the heat absorbed by the engine from the hot heat bath
Q. =the heat released by the engine to the cool heat bath
Qn  =the heat released by the refrigerator to the hot heat bath
QL =the heat absorbed by the refrigerator from the cool heat bath

We will assume that the Carnot engine is morficieit than the Carnot refrigerator and
that the size of the engine is adjusted so that th& wutput of the former equals that needed to
run the latter; i.e.,

”E:@ >’7R:(\DN—,H- (10.1.2.1)
By assumption therefore,
Qy < Q. (10.1.2.2)
Since the engine and the refrigerator run in a cycle, the fivgelts us that4AE = 0):
W=Qu -QL=Qy ~QL, (10.1.2.3)
which when combined with (10.1.2.2) shows that
Q. -Q.=0Q4 -Q, <0. (10.1.2.4)
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What does this mean? The quan@y — Q}, is the net heat tak OUT of the hotter heat
source. Hwever, cf. Eq. (10.1.2.4), we ha& just shown that it is mgetive; i.e., a net amount of
heat (>0) has been transfert&IO the hotter heat source from the cooler oNe. net work has
been done by the surroundings (i.e., by us), and thus our initial assumption violates Clausius
statement of the secondmdaf thermodynamics. Henceje must conclude thatz < ng. This
reverses the inequality in Eqg. (10.1.2.4); i.e.ywnihe net heat tadn OUT of the hotter body and
going INTO the colder one is posit, and does not violate Clausius’ statement of the second
law.

If both the engine and refrigerator areemsible, then thg can both be run in werse;
hence the engine noacts as a refrigerator and the refrigerator as an endifighe signs on
work and heat flip and we conclude that < 7 (where the R and E refer to the original
devices). Theonly way out of this contradiction is for thefiefencies of all reersible Carnot
cycles to be equal no matter what the nature of the material in the engine or refrigerator.
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10.2. The Clausius Inequality and the Second Law

Here is a proof of the Clausius inequality relating the word and mathematical statements of
the Second ha. Consider the device shown in the following figure:

»GLWC

CrWTotaI

Fig. 10.2.1. A revesible Carnot engine takes hedat Qg from a part of the
system at temperature groduces wrk, & W,, in the surroundings, andvgs
the remaining heat to a reservoir at temperafigreWhile this happens, the
system absorbs hedtQg and produces wore W.

From our definition of diciency and the fact that the efficiencies of alveesible Carnot engine
are the same (cf. previous section), weeha

0,0
adW, = -0 Qg = D?° - 1Dd Q.. (10.2.1)

From Kelvin/Thompsors principle and Eq. (10.2.1), it follows that

-
Whotar = f adWs+d W, = f oW+ g?" - 150‘ Qs<0. (10.2.2)

This inequality must hold if the process is to proceed as writtev we integrate Eq. (10.2.2)

around one cycle of the systemv@esible or not) and use the fact that the systeemémy is
conserved; i.e.,
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fd W, = fd Qs.
After a little algebra, this ges:
dTQS <0, (10.2.3)

where the constant, posii nultiplicative factor, Ty, has been dropped. This is the Clausius
inequality.

Equation (10.2.3) holds foany spontaneous process which can occur in the system;
although, all irrgersible processes will require a net work input in order to run in the configura-
tion depicted abee. The inequality in Thompsos'ginciple, cf. the last chaptebecomes an
equality only for reersible processes (no matter what the path) and thus Eq. (10.2.3) becomes:

0= f a ?rev = fds, (10.2.4)

where the entropis defined along anrevesible path (Eqg. (10.2.4) is a proof that it is a state
function) through

dss= a CTQrev . (10.2.5)

Proof that dS> g

B
Path |
Path 1l
(reversible)
A
Fig. 10.2.2.

Consider some process, cf. Fig. 10.2.2, whereby a system changes from state A to B along
path I; the process may bevessible or irrerersible. Afterthe A - B, path I, process is finished,
the system is restored to its initial state (A) alongvarsgble path IlI. If we apply the Clausius
inequality to this cycle, we ke
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B d-QI + A d-Qrev<

IA, path I T IB, patht T ° 0. (10.2.1)

Since path Il is neersible, the process can be carried out wenge [This is not necessarily true
for path |) and thus:

A a Qrev - _ d Qrev
J-B, path I T _IA, path il T

By using Eq. (10.2.2) in Eq. (10.2.1) we conclude that

BdQ
ASAHBZIA?I,

= -AS, ;. (10.2.2)

or for infinitesimal changes
aQ
ds= —.
T
Note that the equality holds only foveesible processes.

10.3. Entropy Calculations
We haveshown that the entrgpdefined through its differential as

ds= a QReversibIe

, 10.3.1
T ( )
is an extense (because Q is) state function with units of energy/K; hence,
a .
f QR_Itiversmle: 0. (10'3'2)

Since entrop is a gate function (according to Eq. (10.3.2)), we can aisgreversible path to
calculate it, and are guaranteed to get the same answer (something you demonstrated in home-
work).

How do you calculate entrgpchanges? Clearlirom Eq. (10.3.1)

Bd QReversibIe
)

ASAAB = IA T (1033)

but how do you use this?The first criterion is to find a versible path connecting your initial and
final states. In some cases, this is almost all yoe kedo. For example, suppose the system is
at constantelume. W know thatdQ, = C,,dT, which when used in Eg. (10.3.3) shows that

— _ — T CV(T’V! N) - DTf 0
ASy 7, = (T, V.N) =SV, N) = [ 7 =2 dT = Cy In o (10349)
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where the last approximation folle by assuming tha,, is independent of temperature (at least
approximately).

Similarly, if instead the pressure is held constant, we 0, = Cp,dT and Eqg. (10.3.3)
becomes

ors O

T Cp(T P, N)
R SEAR AL 0 (10.3.4b)

AS: 1, =S(T;,P,N) - (T, P,N) = I dT =Cpln

where we hee gyan treatedCp as approximately constant to get the last relationgeneral,
note thatAS;, _ +, arenotthe same in constant volume and pressure processes.

What happens if there is a phase change sher® betweeit; andT;, eg., atT,? Atthe
phase transition, heat (e.g., the latent heat of fusion, sublimatioaporization) is added to the
system, with no resulting change in temperature, until all the material vertsah from one
phase to anotheAt constant pressure, the contribution to the entispustAH;,nsition/ To (What
is it for constant volume?) and we can write

T: Cp (T, P, N)
———=dT 10.3.
+J'To = dT, (10.3.5)

To Cpi(T,P,N) AHeansition
AS = . daT +
ST'_»Tf J.Ti T TO

whereCp /¢ is the heat capacity in the initial/final phadéor example, if we were to warm one
mole of ice from -10C (263K) to 10C (283K) at 1 atm, Eqg. (10.3.%@sgftreating the heat
capacities as constants):

[Q D fus [Q D
AS = Cp(lce)lntﬁﬁD >73 Cp(water)InE1273D

(10.3.6)

whereAH ;s is the molar heat of fusion ofater Smilarly, warming 1 mole of water from 90C
(363K) to 110C (383K) gies

[BD vap 8830

AS = Cp(water) | +Cp(stean)|
p(waten nE863D 373 T Cesteanin oy

(10.3.7)

whereAH,, is the latent heat of vaporization foater Note that there is an empirical relation,
known as Touton’s le, which asserts that for mafiquids, AS,,, = AH 4/ Ty = 90J/K/mol.
There are, hwever, mary examples where the rule fails (e.g.ater acohols, amines). (As a
review exercise, calculate the enthglghanges for the tavexamples gren in Egs. (10.3.6) and
(20.3.7)).

Matters become somewhat more complicated if neither pressure or volume is held con-
stant, but we will soon va the tools needed to handle the general case.
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11. TheThird Law of Thermodynamics

The preceding section has shohav to compute entrop changes in much the sameyv
as we did for enthalpand energy changes. What happens in a chemical reacBonww2S is a
state function, we can imagine the reaction proceeding by way of the constituent elements in
their standard states of aggagon, and exactly as was done for the entpalp

AS = AS¢ (product9 — AS; (reactants. (11.1)

How should we define the standard statédu might think that it should be defined exactly as it
was for the enthaly; i.e., pure elements at 1 atm in their standard states ofgatigreare arbi-
trarily assigned zero entrppf formation. Whilethere is nothing wrong with this, it turns out
that experiments performed in the early 20’th century suggest another choice.

In 1902, TW. Richards found, for a wide class of reactions, that the gnwbpeaction
approached zero as the temperature approached absolute zero. In 1906, using Richards’ data,
Nernst argued that this meant that all materiale Hae same entrgpat asolute zero (which
can arbitrarily assigned to be zero). This was summarized by Planck in 1912 in what is no
known as the Third L& of Thermodynamics:

The entropy of all perfect crystalline solids at absolute zeris zero.

There is a good microscopic reason for this, albeit one that is beyondv¢hefl¢his
course. Agnary of you may hae ®en in your general chemistry course, there is a relationship
between entropand randomness; specificallyf. the section on entrgpof mixing in ideal sys-
tems,S = kg In Q, whereQ is the number of ways of realizing the systelinthere is only one
way to realize the system, the entyois zero and this turns out to be the case for perfect crystals
at absolute zero.

The third lav leads to the introduction of an absolute entragale, where all entropies (of
perfect crystalline states) are zero at absolute zero; hencg,fatisntemperature

_TdQp _ T Cp
S(T,P,N) _Io - _.[o —dT, (11.2)
where a similar expression holds in term&gffor constant volume processes. The lagires-
sion must be modified slightly if phase transitions occur between OK and T {as. alvoprac-
tice, this means that entropies of formation of the pure elements at 298.15 and 1 HT are
zero!

You might think that the preceding discussion is just a@umlrent about some cemntion.
In part you would be correct; either eention would give identical answers IAS calculations.
However, the Third Lav does hae & least one important physical consequence; nartiedy
heat capacities must vanish as absolute zero is approachked. werent the case then the last
integral in Eq. (11.9) wuld diverge logarithmically and the entrop would be infinite, not zero!
This is indeed the casperimentally dthough sometimesx¢raordinarily lav temperatures
must be attained to see the heat capacidash. Ondroubling result is our prediction from the

kinetic theory of gases, whichage C, = ’R and Cp = 2 R, independent of tempsure and
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clearly nonzero.Again, the detailed answer lies beyond this coungeirbshort, the third la is

intimately bound to quantum mechanics and gyn&uantization, something our simple kinetic
theory model had completely ignored.
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12. TheChemical Potential

Up to nav, we havenot seriously considered the consequences of changing the composi-
tion of a thermodynamic system. In practice, this can happenanmays: 1) by gternally
adding or removing material or 2) by changing the composition through chemical reaction.
Nonetheless, as far as state functions are concerned, the same results must be considered.

There is an engy change associated with changing the composition of the sy$tam.
example, you may add compounds withfeliént types of bonds and this will change the gyner
available to carry out other processes (e.g., via combustion).

In order to account for the energy change associated with adding material to the system we
introduce a n@ kind of work done on the system:

d W, = g opdN;, (12.1)

wheredN; is the change in the amount of the i'th component (i.e., mass, number of moles, etc.)
and where i, is called the opposing chemical potential (and is analogous to the opposing pres-
sure). fer reversible processes, the opposing chemical potential equals the chemical potential,
K, of componenti in the system. In general, the chemical potential for comparierd system

is intensve and is a function of ;P, composition and phaseMoreover, like the equation of state,

it must be measured or calculated from a microscopic thawtywe will consider some specific
examples later.

The energy change of the system caw he written as:

dE = 0 Q- PgpdV + ¥ 1 opdN, (12.2)
i

or for reversible paths as

dE = TdS- PdV + 3 p;dN.. (12.3)
i

Henceforth, we will restrict oursedg to processes where the addition of mattevessible and
thus drop the subscript "op" on p.

Equation (12.2) has an interesting consequeliceie view the energy of a system as a
function of S, Vand theN; (all of which are gtensve), then the steps that lead to our applica-
tion of Eulers theorem to extenge quantities imply that

oShy, ~ VRN TNy,

(Simply replace some of thHg;’s by S andV, both of which are alsoxéensve). Thepartial de-
rivatives immediately follev from Eq. (12.4), and we find that

E(SV,N;)) =

E=TS-PV+3 uN;. (12.4)
i
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We dso obtain the Gibbs-Duhem equation

0=SdT-VdP+3 Ndy. (12.5)
i

By using Eq. (12.4) andl = E + PV, it follows that

H=TS+S wN. (12.6)
i

As we will see, the chemical potentials play ey kole in ary quantitatve analysis of
chemical equilibria.
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13. StateFunctions, Exact Differentials, and Maxwell Relations

Consider the differential form:
df = M(x, y)dx+ N(x, y)dy. (13.1)

If can we define &ingle-valued,differentiable function f(x,y) which satisfies Eqg. (13.1), then
M(x, y)dx + N(X, y)dy is said to be anxact diferential. Ofcourse, we canabys define f(x,y)

by integrating the right hand side of Eq. (13.1) along some patheJdan, we require that the
function be single-alued (i.e., that it be a state function); hence, different paths nuesthgi
same answer.

THEOREM:

If M and N hare continuous first partial dertives & all points of some open rectangle,
the differential form, (13.1), is exact at each point of the rectangle if and only if the condition

PMO _OND
Ooy O Oox [

is satisfied throughout the rectangh/hen this holds, the function f(x,y) isvgn by the line
integral

(13.2)

f(x,y) = z[ M(s,t)ds+ N(s, t)dt (13.3)

along a path from (a,b) to (x,y), e.g., as shown in Fig. 13.1.

1’\ (xy)

~

(ab) v

S
Fig. 13.1. Two paths,C andC', connecting
state @,b) and (x,y). For a state function,
you hae 1 get the same answaro matter
which path is used.
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The proof is gren in the Appendix you ae ot responsible for the pof, but you must know
how to use the resiilt

13.1. Applications to Thermodynamics: Maxwell Relations

We havebeen able to combine the first and second laws of thermodynamics to write
dE =TdS- PdV, (13.4)

whereN is held constant for this discussio8inceE is a state function, Eq. (13.2) must hold,
and thus Eq. (13.4) ¢gs

PT0 __OPO

V0" s, (13.5)

This is called a Maxwell relation and is awsoful tool for relating different quantities thermo-
dynamics.

Another Maxwell relation can be obtained from the enth&dp which

dH = TdS+ VdP. (13.6)
Hence, Eq. (13.2) ges

PTO _mVO

(P}~ (BSG, (13.7)

Clearly every state function will generate one or more Maxwell relations. The trick is t& kno
which ones to use in ggiven goplication.

13.2. Maxwell Relations: AComplicated Example

Suppose we want txpress the change in the eny@s a tinction of T and P (i.e., choose
a thermodynamic point of vie). To begn, note that

SO dT+mSD

=g, org,

dP+ Sd\,

whereS is the partial molar entrgp(remember that entrgpis extensive and Eulers theorem
must hold). The term in dT is easy to rqaess. Wherthe pressure is constant, the change in
the entrop is

_dQe _Co
dS= T TT dT

and thus

dS———dT+q§D dP+SaN.
P,
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A new entropy derivative dill remains to be reexpressed in terms of something more con-
ventional. T do so we Wl use a Maxwell relationWe know that

H _ °H
aToP  oPOT '

(13.8)

however, from Eq. (13.6)

S O /S 9°S
Eg— +VD—[a U +T

LHS U = P>
PG, 'O PG, aToP

0 U
=37 o +Va,
U
where recall tha¥ a = (0V/0T)p . Smilarly,

O0mso O 9%S
RHS= — [ ==- [= .
aP 0T pg  OPOT

Since the entrgpis a gate function, its mixed second detives must be equal; hence, equating
the LHS and RHS of Eq. (13.8) and carrying out some algebes: gi

S0 _ Vo __
EB_PDLN_ BT, Va. (13.9)

Thus, we hee succeeded in expressing the change in the enptroferms of readily measurable
guantities; namely

ds= & dT -VadP+ SoN. (13.10)

(Actually, there is a much simpler route to Eq. (13.9) using the Maxwell relation for thesGibb’
Free energysee belw). For finite changes in state, Eq. (13.10)egi

(T, P) = S(T,, Po) + I(To) Ce dT -VadP,

where the choice of path is unimportamMote that no change in phase must occur along the
path. If not, corrections for the enthglwhange associated with the transition (i.e., the heat)
must be included.

With Eq. (13.10), we can finish our discussion of theeddhce between the heat capaci-
ties. InSec. 8.5.1 of the Thermochemistry chapter we showed that

0 ER O
Co-Cy =avip+2ED g (13.11)
S VL

cf. Eq. (8.24). But, by choosing aveesible path and éepingN constant,dE = TdS- PdV;
hence,
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PE0 _ SO _,_ S0 PO _,
VR DV POV Ry

where the second equality fals from the chain rule. Equation (13.10yes the entrog deriv-
ative, and the pressure deative is equal to-1/(V«), wherex is the isothermal compressibility

Thus,

WE [ Ta
— =—-P 13.12
EBVEL,’T K (13.12)

and

VTa?
Cp_CV: a .

Note thatCp > C,, for all materials! Also note that, agpected from Joulg’ experiments, our
last result for dE/0V )t \ vanishes for an ideal gas, where= 1/T andx = 1/P.

Express the Joule-Thompson coefficient in terma,of, and Cp/V and verify that it @nishes
for an ideal gas.

13.3. Appendix: Poof of Green's Theorem in the Plane
THEOREM:

Consider the differential form:

df = M(x, y)dx+ N(X, y)dy. (A.1)

If M and N hae mntinuous first partial dertives & all points of some open rectangle,
the differential form, Eq. (A.1), is exact at each point of the rectangle if and only if the condition

OMD _OND
Doy 0, 0ox [

is satisfied throughout the rectangM/hen this holds, the function f(x,y) isvgn by the line
integral

(A.2)

f(x,y) = l M (s, t)ds+ N(s, t)dt (A.3)

along the path from (a,b) to (x,y) shown in Fig. 13.1.
Proof:
The necessity of the condition is shown by noting that if f is exact, then

@f0O

[D_Xq/ = M(X, y)
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and

@wfo _
EB_YQ(_ N(X!y)

However, if the second partial degtives o a function are continuous then the order ofetén-
tiation is immaterial and

?f(x,y) _ 0°f(xy)

oxay ayox '

which when expressed in terms of defives of M and N gives Eq. (A.2).

To show that the condition is sfi€ient is slightly more complicated. First, consider a
point infinitesimally close to (a,b); i.e., (a+dx,b+dyh this case, we can makinear approxi-
mations for the behaviors of M and N and the function defined dg Bgecomes

d d
Afe =on M(a+s, b)ds+IOy N(a+dx, b +t)dt

OM ONO WNO

EM a,b) + S@Is+ n\l a,b)+ dx + t@lt

I @b+ 5oy Qeay=b O .[ @b+ fox XDeaysp  00Y Degymn [

_ M O d® O N[O O  ONQ dy’
S Dok Gy 2 T DX Gy D Y gy 2

which is valid up to terms of third order in dx and/or text we repeat the precedinggament
on the path C’ shown in Fig. 13.1. Thives

ON [ dy’ DM O OM dx?
Afe = N(a, b)dy+Da—u(_ay_ U\/I(a b) + 0y e s dygjx COX sy 2 . (A5)

If f is single-\alued, fc = fc. By equating the right hand sides of Egs. (A.4) and (A.5) we see
that

N ] Mo O
fc — fo = dxd ] A.6
“ y%]ax q—ay b Day @—ay—bD ( )

which vanishes if Eq. (A.2) holddncidentally note that the left hand side of Eq. (A.6) is just a
line integral around a closed path and the quantity on the right hand side is an approximate sur
face integral.

Of course, Eq. (A.6) is valid only for (x,y) infinitesimally close to (a,Bxr arbitrary
paths, and (x,y) we break up the interior of the path into small rectangles as shown inuhe follo
ing figure:
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If the rectangles are small enough, then Eq. (A.6) can be used on each one and the results addec
together This leads to cancellations of all the line integrals on the edges of adjacent rectangles
inside the path (because of the directions of thayiat®ns) but not those on the edges of the

path, and thus finally ges

jiM(x y)dx+ N(x, y)dy = IIdxdy?LN %'\;l =

In calculus, this result is called Gregiiieorem in the planelinally, snce weve assumed that
(A.2) holds,

f M(x, y)dx+ N(x, y)dy=0 (A.7)

which is just what we need to shohat f defined by Eq. (13.3) is singlailued (i.e., it is a state
function).
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14. Thermodynamic Stability: Free Energy and Chemical Equilibrium

14.1. Spontaneityand Stability Under Various Conditions

All the criteria for thermodynamic stability stem from the Clausius inequalityEq.
(8.7.3). Inparticular we howved that for ap possible infinitesimal spontaneous change in
nature,

dS= aQ : (14.2)
T
Corversely; if
dS< 2 (14.2)

for every allowed change in state, then the system cannot spontaneougtytheacurrent state
NO MATTER WHAT ; hence the system is in what is called stable equilibrium.

The stability criterion becomes particularly simple if the system is adiabatically insulated
from the surroundings. In this case, if all allowed variations lead to a decrease iry,eéhop
nothing will happen. The system will remain where it &aid another ay, the entrog of an
adiabatically insulated stable equilibrium system is a maximum. Notice that thaltewed
plays an important rolefFor example, if the system is in a constantume containgrchanges in
state or variations which lead to a change in tilarme need not be considereaeif they lead
to an increase in the entsop

What if the system is not adiabatically insulated from the surroundifggifere a more
convenient test than Eq. (14.2)Phe answer is yesTo e hav it comes about, note we can re-
write the criterion for stable equilibrium by using the first &

d Q = dE + PgpdV — gpdN > TdS (14.3)
which implies that
dE + PyodV — hgp,dN = TdS> 0 14.4)

for all allowed variations if the system is in equilibriurRquation (14.4) is thedy dability
result. Asdiscussed abwe, if E, V, and N are held figd @ Q =0 and the stability condition
becomesiS< 0 as before.

What if S,V,N is held constant? From Eq. (14.4), the system will be staie>f0; i.e.,
the energy is a minimum. This has a nice mechanical analogysider a ball rolling on a fric-
tionless parabolic surface in a gravitational fielearly, if we place the ball at rest at thenlest
point then it will stay there fower. This is the point which minimizes the energy.

Of course, it is not alays easy to see foto hold the entrop constant in real »@eri-
ments. (Whens the entrop constant?) Amore common situation is when the temperature of
the system is held fed. Whatis the stability criterion?The problem and its solution are similar
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to those which led to the introduction of the enthalpf (N,T,V) are held fixed, Eq. (14.4)
becomes

(dE)ntyv —T(d9N TV >0, (14.5a)
or since T is constant,
d(E _TS)N,T,V > 0 (145b)

Thus, we see that awestate function, A= E - TS is a mnimum for a stable equilibrium where
(N,T,V) are not allowed toary. This nav state function, is defined via a Legendre transforma-
tion on the energy and is called the Helmholtz free energy.

From the definition of A, for a general change in state (i.e., not necessarilgdwiti0,
etc.)

dA= dE - SAT-TdS= (' Q - TdS + d W — SAT+ ppdN. (14.6)

The Clausius inequality implies that the quantity in the parenthesigg@ivee (©r zero for a
reversible process) for gnspontaneous change in the state of the systdoreover, if we con-
sider systems where T and N are held fixed

dASEW or —-W<-AA (14.7)

This means theAA is the maximum wrk you can get out of a process run under constant T and
N conditions (hence the name "free aq&). Inaddition, since A is a state function, you can get
the bound without knowing anything about the path (or device)--just byikgdhe initial and
final states and hoto carry out a calculation similar to those we did in thermochemistry.

Since A is a state function, we caways compute changes alongessible paths. In this
case,

dA=-SdT- PdV + pdN. (14.8)
In addition, we pick up some weMaxwell relations, e.g.,

MSO _@PO _a
BV, BTh, « (49

wherea :V‘l(aV/aT)p,N is the thermal expansion coefficient and —V‘l(aV/aP)T,N is the
isothermal compressibility; the last equality follows by using the cyclic rule,

Clearly, there are mandifferent choices of which statamnables can be held constante
will only consider tvo more. Firstsuppose (S,R) is held fixed. Thisis analogous to what we
encountered with the enthglpin this case, Eq. (14.4) becomes

d(E+PV)spn =(dH)spn >0 (14.10)

for stable equilibrium; i.e., the enthglis a mnimum.
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Finally, and perhaps most importantguppose TP, and N are held fid. Thisis the most
commonly encountered case. W&q. (14.4) becomes

d(E+PV-TYrpy > 0. (14.11)

Thus a ne state functionG=E+PV-TS=H -TS is a mnimum for a stable equilibrium
with fixed temperature, pressure, and mass. This state function is called the Gibbs free energy.

As was the case with the Helmholtz free ggeAG has a direct physical interpretation.
From its definition, for a constant (T,P,N) processes,

dG = dE-TdS+ PdV = (¢ Q- TdS + (¢ W + PdV) < (4 W+ PdV),  (14.12)

where the last inequality follows from the Clausius inequaliyr finite changes in state, we
thus find that

-W - [ PdV < -AG. (14.13)

What does this mean? Up tomowe have mainly considered PV ark. Of course, there are
other kinds (magnetic, electricalitto name tw). HenceAG provides an upper bound to the

non-PV work done by the system on the surroundings ¢W/,— [ PdV) that can be obtained

from a constant ,PN process. If you are manufacturing electric batteries you probably don’
care about the amount of PV work which is wasted if the battery expands or contracts--all you
want is the electrical work.

As in the case of the Helmholtz free enerwe @n consider arbitrary changes in the
Gibbs free energy alongvasible paths. From its definition

dG = -SdT+VdP+ 3 i dN.. (14.14)
i

As before, this gies additional Maxwell relations, for example

SO _ Vo _
P, BT, Va, (14.15)

which we obtained in a very complicated way in an earlier section.

As an illustration of the usefulness of Maxwell relations, reconsider our discussion of the
Joule-Thompson coefficient:

1 PHQO D mso O v
Myt =~ =T ET +VO=-—(1-Ta),
where the last equality follows by using Eq. (14.15) and the one before that by noting that
dH = TdS+VdP+ udN. Note that the notation oftenvgs a due where to look for a Maxwell
relation. Inour example, the entrgperivative is with respect to Fkeeping T and N constant.

The state function whose natural or canonical variables,&eald N is G, and this is where we
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got the Maxwell relation just used.

One final point, note that the partial molar Gibbs free energy is

_ 0G
G_D O

=2 = 14.16
| mNI Iq-'PYthi ”’1 ( )

where Eq. (14.14) was usetlence, in a one component system, the Gibbs free energy per mole
is just the chemical potentiaMore generallyG;, the partial molar quantity for the i'th compo-
nent is , and hence, from Eules’theorem

G=3 Nil. (14.17)

As we discussed earliein order that Egs. (14.17) and (14.14) be consistent, a Gibbs-Duhem
relation must hold; i.e.,

0=SdT-VdP+ > N;du, (14.18)
i
which shows that the changes in temperature, pressure and chemical potentials are not all inde-

pendent.

The various stability results are summarized in the following table.

Criteria for Stable Equilibrium

| ilibri —
Held Fixed Statg Definition Differential Stab E.qw.lbrlum Slmp est
Function Criterion Physical Content
Adiabatic
S _ erev _ erev maximum -
(e.g., E,V,N) AS—I T ds= =
S,V.N E AE=Q+W E = TdS-PdV + > p,dN, minimum AEy N =Qun
i
S,EN H H=E+PV dH=TdS+VdP+ 3 pdN; minimum AHp N =Qp N
i
T,V,N A A=E-TS dA= -SdT-PdV + 3 dN, minimum Wi < -AAry
i
T,PN G G=H-TS dG=-SdT+VdP+ > dN; minimum “Whon-pv < “AGp
i

"E,N,V implies adiabatic in systems where oRlYy or chemical work is allowed, thevase is not true if other kinds or
work (e.g., electrical) are possible.
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14.2. Examplesof free energy calculations

Free energy calculations are carried out in much the same as gmtilalpations. There
are tables of standard free energies of formation of compoufldsients in their standard
states ae assigned zeo as heir Gibbs free energy of formation.

Consider the following chemical reaction:

H2(g) +Cla(g) — 2HCI(g).

Will the reaction proceed as written under constant T and P conditidrs®ee energy change
is simply

> AGP)(producty - AGP(reactant3 (14.19)

which for the case at hand is jusﬂ&@(fo)(HCI, g) or -184.62 kJ/mol (from Barke). Hence,a
mixture of hydrogen and and chlorine can lower its freeggnésy a substantial amount) by
reacting to form HCI.

This is an interestingcample for another reason; if you mix stoichiometric amounts.of
andCl,, you will not see ayperceptible reaction--the rate of reaction (no matter what the ther
modynamics says) is in this case extremelysl@®n the other hand, a small amount of light at
the right frequengwill catalyze the reaction which then proceeds expébgdi

Next consider the reaction between graphite and diamond,
C(graphite s) » C(diamond s).

Now AG = 2.90 kJ/mol. The reaction does not proceed as written (too bad). What is perhaps
more troubling is that the verse reaction should proceed spontaneously at $3&wly invest
in diamonds?)

What happens at other temperatures or pressufesanswer this note that from Eg.
(14.14), for ag compound,

(T.P)
AG(T,P) =AG? + J -S(T, P)dT +V(T, P)dP,
(298K, 1 atm)

where ag corvenient path can be chosen.

Thus if we raise the pressure,
(298K ,P)

DG (T, P) = AGR) + J AV, 0P (14.20)
(298K, 1 atm)

At STP AV,,, = -1.9 cnt/mol. Hence, increasing the pressure decreases the Gibbs frgg ener
change. Ifwe assume that the molar densities of carbon are roughly independent of pressure, we
can calculate the pressure at which the reaction will proceed as written; thus,
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AG,(T, P) = 2. 90— 1. 9% 107°AP (kJ/mol)

Hence, the reaction begins to be possible wienl. 530x 10°Pa or about 15,000 atm.

Similarly, AS® =-3.36J/K mol, hence, keeping the pressure constant and raising the
temperature ges:

AG,(T, P) = 2.90x 10° + 3. 36 T — 298. 15)(J/mol).

Hence, raising the temperature only makes graphite more stable (but is good for increasing the
rates of reaction)SettingAG,,,, =0 gives T = -565K, which is clearly impossible. Hence, tem-
perature alone canbe wsed to change the stable phase of carbon. Oreatcaveve gproxi-
matedAS®) as independent of temperaturEhis cant be rue at temperatures around absolute
zero by the 3rd Law!

14.2.1. CoupledReactions

In some cases, the direct formation of a certain compound by direct reaction is thermody-
namically forbidden. An example is the formation of titanium tetrachlbride
from commonTiO, ore; i.e.,

TiO,(s) + 2Cl5(g) — TiCly(l) + Ox(9).

It turns out thatAG = +152. kJ/mol. Nonetheless, we can n&ake reaction go by coupling it
to one which pulls it alongFor example, suppose we use the produced oxygen to burn carbon;
ie.,

C(s, graphitg) + O(g) ~ CO,(9),

where hereAG = -394. 3&J/mol. The free energy change for the coupled processes is -394.36
+ 152.3 = -242.1 kJ/mol, and thus the coupled reaction can proddedburning carbon sup-
plies the needed free energy to méle desired reactionak. Notethat the @erall reaction is

TiO,(s) + 2Cl5(g) + C(s, graphite) — TiCl,(l) + CO,(g),
which also gres AG = -242. kJ/mol using the standard calculation.

14.2.2. Generallrends

For this discussion, we will consider systems were the reactioegiiate at a fixed tem-
perature and pressure; as such, the direction of change is determined by

AG =AH -TAS,
1TiCl, is a precursor used in making piievia the reaction
TiCly + 2Mg - 2MgCl, + Ti or TiCl, +4Na - 4NaCl + Ti

it is also used as a catalyst or precusor for various catalysts (e.g., the Ziegler-Natta catalysts).
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whereAH andAS are the enthalpand entroy change for the procesat the actual tempature
and pessue. As we hae sid, for constant pressure and temperature procesGes,0 for the
reaction to proceed as written. There can lveraéways to arkie & a negdive AG. For exam-
ple, AG will always be ngaive if AH < 0andAS > 0. On the other hand, AH < 0andAS< 0
then we canxpectAG <0 only if T is low enough (this neglects grchanges iMAH andAS
with temperature). These trends are summarized in the following table:

Constant T & P Process Proceeds as Written

AH
AS >0 <0
<0 Neve Low enough T
>0 High enough T Alvays

"Of course, keep in mind that> 0; hence, it is not alays possible to
find a physical temperaturewcenough to dive an enthalpy driven reac-
tion. Thiswas the case in our discussion of the graphite/diamond equi-

librium
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14.3. ChemicalEquilibrium

14.3.1. Thermodynamicof Chemically Reacting Systems

A very important example of thermodynamic equilibrium is that of chemical equilibrium
at constant pressure and temperature. Consider the following general chemical reaction:

2A+B 7 3C+D.

The chemical equation imposes a strong constraint on the changes in the numbers of moles of
each component; for the foand reaction, each time a mole of B reacts, 2 of A are used up and 3
of C and one of D are produced. Mathematically,

dNa _ dNg _ dNc _ dNp _
&= =g =7 =4 (14.21)

where the etent of the reaction is characterized by the quadtitthe Greek lettempronounced
kse) called the progressaviable. for an arbitrary chemical reactionveiving r chemical com-
ponents, the last expression generalizes to

— === = dé, (14.22)

wherev; is the stoichiometric coefficient for the i'th component in the reaction (byeotan, it
iS nggative for reactants).This is just a mathematical formulation of thevlaf definite propor
tions due to Joseph Proust, 1806, who wrote:

"l shall conclude by deducing from these experiments the principled é&sab-
lished at the commencement of this memai. that iron like mary other metals is
subject to the \a of nature which presides avery true combination, that is to say
that it unites with tw constant proportions of oxygen. In this respect it does not dif-
fer from tin, mercuryand lead, and, in a word, almosteey known combustible."

One can easily relate the actual amounts of compounds preseyntsttgenof the reaction
imply by integrating Eq. (14.22); i.elN; = N +v,&, whereN© is the amount of compourid
present whei = 0, i.e., at the start of the reaction.

For constant temperature and pressure and total mass (for each element) conditions, the
reaction can proceed until the Gibbs free energy is a minimum with respecaltovedid varia-
tions in the state of the systeBy knowing the amounts of the various compounds in terngs of
it is easy to express the Gibbs free energy in terrdsusing Eulers theorem (cf. Eq. (14.17)):

00G [ )
= S(NO + v O,
NGy, T

where |is usually a function of as well.

G(¢) = Z N;

For fixed total mass, temperature, and pressure, the only variations which can be consid-
ered are those which chan§eHence, we could use the last equation to GI@) versusé; i.e.,

2015, Fall Term



Chemistry 223 -93- FreeEnergy & Equilibrium

the reaction mees dther to the right or left untiG(¢) is a mnimum. Insteadf determining the
equilibrium point graphicallywe an use calculusWe know that G can be a minimum with
respect to changes in the progress variable only if

96

=0 (14.23)
Daf |q:PthotaI
and
2
G
[6_2 U >0, (14.24)
Da{ |q-rpnNtotal

By using the differential form for the change in the free gnéwgether with Eq. (14.22) we find
that

r
dG =-SdT+VdP+ Y v;dé, (14.25)
i=1
which when used in Eq. (14.23vgs

AG

Da{ lq-vPthotaI i

at equilibrium. AG is called the reaction Gibbs free egyer Since the pare the partial molar
Gibbs free energies, Eq. (14.26) is ealént to AG = 0. At equilibrium the free energy
change in the reaction per mole anishes.(Indeed, this is the principle we applied in the "reac-
tion" between graphite and diamonditom the definition of the Gibbs free energy (G = H -TS),
it follows that

vils =0 (14.26)

@GO r
=1

_ AH
AS= —
T

at equilibrium.

What happens if we change temperature or pressure by a small amount? Which way will
the equilibrium shift?To answer this, first note the following Maxwell relations:

P O 00S O =
.l = =-5 (14.27a)
[BT |gj,NJ mNI @,T,thi

and

Ow 0 0oV [

i} == =V (14.27b)
[BPQ-,N] EBN' |%,T,Nj;ﬂ I

which follow from the Gibbs free engy. Thus the changes in the chemical potential associated
with temperature or pressure are related to the partial molar entropiekioes, respectely.
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Next consider

O O K O P vik) O
d(C vip) =3 v, dT + S v, dp + —<=117 d
(Zvu) ZVEBTQJN Z EBPDrN 0 0 Doy &
PAG [
=-ASdl +AVdP + dé, (14.28)
Da |q>PNtotal

where, cf. Egs. (14.270S= 3 v;§ andAV = 3 v;V,; are the entropand volume changes per
mole of reaction. Equation (14.28) showsahthe free energy change per mole of reaction
changes when we changgePT a ¢.

What happens if we change, T or P in a system where chemical reaction is poskible?
progress variable will change until Eq. (14.26) is agaildy Sinceboth the initial and final
states satisfy Eq(14.26), the change iAG must vanish; i.e.dAG = d(3 vii) =0. FromEqg.

i

(14.28) this implies that

ASdr - AV dP
dé=——rc—. 14.29
{= 860 (14.29)

D af q P, Ntotal

Moreover, the denominator of the right hand side of the equation is y®giti Egs. (14.24) and
(14.26). Equatiorf14.29) can be rewritten by noting [cf. Eq. (14.26)] th&t= AH/T; i.e.,

AH
— dT-AVdP

dé = BMG - . (14.30)

D af q P, Ntotal

Equation (14.30) is a mathematical statemeriteffhatellier’s principle. For reactions
which lead to an increase in the volun®/ (> 0), increasing (decreasing) the pressure will shift
the equilibrium to the reactantl{ < 0) [product (& > 0)] side of the equation. Thew&se is
true if the volume change is gative. Similarly, increasing the temperature shifts the equilib-
rium to the reactant side for reactions which are exotheic< 0) and to the product side for
reactions which are endothermic.

14.4. Chemicalequilibria in dilute gases

14.4.1. ChemicaPotentials in Pure Materials

For a ane-component material, the pressure dependence of the chemical potential (free
energy per mole) is easily obtained by integrating Eq. (14.12a); i.e.,

— 0 P o 1 ’
o= (T)+IP V(T,P)dP.
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Where [£)(T) is the standard Gibbs free eggrof formation at one atm and temperatuyer

V(T, P) is the molar wlume. For solids and liquids, and moderate pressure changes, the molar
volume doesr’change much with pressure; hence we will consider it as approximately constant.
Thus,for pure lids and liquids, we find that

p= pO(T) +V(T)(P - P,). (14.31a)

In gases, on the other hand, th@ume changes significantly with pressuféor low enough
pressures we can consider the gas to be ideal, and thus, noting Va&Tifel that

— ) OP O_ ¢
W, P) == (M) + RTIn 5= K

(]

O(T) + RTIn(P), (14.31b)

where the second equality follows whiegp = latmand P is the pressue in atmospheres

14.4.2. ChemicaPadtentials in Ideal Gas Mixtures

Our last result can be generalized &s gnixtures if we recall our discussion of Dalton’
law of partial pressures. There we considereds mixture where one of the components could
diffuse in and out of the system through a selecporous film into a container containing a
pure sample of that component. At equilibrium, the pressure in the pure saastg e par
tial pressure of the i'th component in the mixture.

If we view the process as the following “"chemical reaction”
Component i in mixturg Component i in p& sample
The equilibrium condition becomes:
s miturelT» P X0, Xe1) = W pure(T, P) = O(T) + RTIn(Py). (14.32)

Hence, the form of the chemical potential in a gas mixture is very similar to that in a pure sam-
ple, with the exception that the pressure is not the total pressure afsthaugis the partial pres-
sure of the component in questibn.

* What happens if a seleat fiter cannot be found for one of the compounds in the gas mixQre®
sider a tva component gas mixture where only component "1" isaknto obg Eq. (14.32). The Gibbs-
Duhem relation for a binary mixture, with and P constant, isN;dp; + N,dy, =0, and can be used to
shaw that

where we hee dvided by (N; + N,)dx; and used Eq. (14.32) with, = Px, for |y. Sincex, =1 - Xy, the
chain rule can be used to rewrite the last result as

PO _RT
x4 p X2

This can be integrated, giving
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Knowing this, we are ready to discuss chemical equilibricaseg. Frontg. (14.26), the
equilibrium condition becomes:

0=3 v;{O(T) + RTIn(P Py P!) (14.33)
i
or
VipVY2...pVr — - 1<, 0 O_ ~AGORT
PPy P =Kp(T) =exp -2 vil (T)/RT=e : (14.34)

whereKp(T) is called the pressure equilibrium constant. Notice that it is only a function of tem-
perature, the stoichiometric coefficients, and properties of the pure (i.e., unmixed) gases.

We @an use Daltos' law d partial pressures to reexpress Eq. (14.33b) in terms of concen-
trations or mole fractionskor example, sincei] = N;/V = P;/RT, substitution into Eq. (14.33b)
gives

~AGORT

Vi[o1Va. - [rIVr — e =
W21 0" = s = Ke(D): (14.35)

Similarly, snce P; = Px;, wherex; is the mole fraction afandP is the total pressure, wevs

-0GOIRT

X:|_1X22"'err = W = KX(T) (1436)
One final point. In the preceding examples,wgessumed that all the compounds aasag, and
hence, hee wsed Eqg. (14.31b) for the chemical potentighould one or more of the compo-
nents be in a condensed (strictly speaking, pure) phase, e.g., solid or liquid, thenl&vbare
to use Eg. (14.31a) insteatMoreover, snce the molar volumes of liquids and gases are small,
we can ignore the pressure term in Eq. (14.31a) as long BstRg isn’t too lage. For our dis-
cussion of equilibrium constants, this has one consequence; ndmelgndensed phase compo-
nents drop out of stoichiometric quotient. Note that this is not true for solutions.

14.5. Examplef Chemical Equilibrium Calculations

14.5.1. Determinationof Free Energies of Formation

There are a number ofays in which to measure the standard free energies of formation of
a ompound. Considehe formation of ammonia,

1 3
> N>(9) + > Ha(9) = NH3(9),

b = 1o + RTIN(X,).

I is known as the "apparent free energy" and becomes the standaréo)oriiewa can letx; - 0, i.e.,
almost pure "2", and still wa "1" obey Eq. (14.32). This is easy to ensure for gas mixtures, but can be
problematic in solutions.
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at STP The free engyy change for the reactionG'”(NHg, g). If we measure the equilibrium
constant,

PnH AGO

— ~AGO(NH3,0)/RT

sizpaE —€ (14.37)
Nz * H,

then we can easily compute the free energy of formation of ammonia.

14.5.2. Determinationof the Extent of a Reaction

Reconsider the reaction

N204(9) = 2NO(9).

The extent of the reaction is easily measured by measuring the apparent deviation from the ideal
gas law. As hbefore, leta be the fraction oN,O, dissociated. Ithere wereNy moles ofN,O,

initially, then there are (2a)Ngy and ZrNy moles of N,O, and NO, at equilibrium, respec-

tively. The corresponding partial pressures can be computed from RBd#on’

When the result is used in the equilibrium constant condition we find that

P3 40% NoRT _ 4a?P
Kp= o = 20 00 - (14.38)
PN204 1-a V 1-o
where P is the total pressure on the syst&tis can be solved for the fraction dissociated, with
the result that

_ 0O Kp jlz

7T Ky +4PO

Thus, if we calculate the equilibrium constant from a table of fregyesethe degree of dissoci-
ation is easily found.Note that the result depends on both T and-®m tables of standard

enthalpies of formation (Castellan)AH(o) =2x33.18-83.7=-17.3kJ/mol<0 and

AV = Vo, —Vn,0, = RT/P >0, assuming ideal @ses. Henceaccording to LeChatellies’
principle we expect that the reaction should shift to the left (i.e., less dissociation) as pressure is
increased. Ouiinal equation for shaws this. For this reaction, as we shall see in the next sec-
tion, Kp(T) decreases as temperature increases, which when used witkpoesseon fora is

again consistent with LeChatellisigrinciple.

14.5.3. Bmperature Dependence oKp

The equilibrium constanKp, is only a function of the temperature. From its definition,
cf. Eq. (14.34),

din(Kp) _ daGPRT) _ 1 H d@ac?) A G(O)D— TAS? +AG?  ARO
ar dT  ~ RTg dr = R R’
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(14.39)

where the second to last equality follows when Eqgs. (14.27a) and (14.34) areThseds
known as the Gibbs-Helmholtz equation. Thus, by integrating we find that

Kp(T)O T ARO AR 01 1

In = = — -
o(TD O [, " R On, T,0

(14.40)

The last equality in Eqg. (14.40) follows if we assume iat? is approximately constant with

respect to temperature, or egaléntly, that ACp = 0 (which also implies thaaS? is constant.
Why?). Indeedith this approximation, Eq. (14.40) simply states that

=(0 ~(0
Ke(T2) _ oy AC°(T2) , AGOTy -
Kp(T,) 0 R RT,

(14.41)

whereAGO(T) = AR@ -TAS®, as sual. Finally note, that as in our discussion of LeChatel-
lier's principle, the equilibrium will shift to the product side, i€y increases, when the temper

ature is raised inH© > 0.

There is a simple graphical way in which to apply the Gibbs-Helmholtz equdsipn.
expressing Eq. (14.39) as a differential, it follows that

5(0) 5(0)
AH AH o
Ane) = 7=~ 951

hence, plotting INp) versus 1T will give a airve whose slope at grpoint is ~-AAO/R, and to
the extent thaaH @ is independent of temperature, wilvgia $raight line. This is a peerful

way to determine enthalp(and entropy) changes without having to do calorimetry.
14.5.4. Fee Energy and Entropy of Mixing

Perhaps the simplest process is one wheoestmples of different pure gases are isother
mally mixed as depicted in the figure below

APTV) + B(P,T\V)

As you might expect, this processvays occurs spontaneouslfhe total pressufeand temper
ature remain constant during the process (at least for an @®al\yhais the Gibbs free engy

A+B (P,T,2V)

*For this to happen, it is necessary that the pressures in the unmixed state be identical; hence,

P _Na_Ng_Na+Ng
RT V. Vg Va+Vg'
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change?

From Eq. (14.32), it follows that the free energy of the final state is
G nar = NiH7(T) + RTIn(Py) H N, HE(T) + RTIn(P,) (14.42)
Similarly, the Gibbs free energy of either of the pure samples is
G = N,GOm) + RTIn(P)B (14.43)
and hence, the free energy of mixing per mole of mixiGs,;y, is

AGpix = RTx In(xq) + RT% In(xy), (14.44)

where x; is the mole fraction of i and where Daltedaw d partial pressuresP; = Px;, was
used. lItis easy to generalize this result to arbitrary mixtures of ideal gases

AGmiX = RTZ Xi |n(Xi). (1445)

Since 0 <x; < 1, the free energy change isgaBve and the mixing occurs spontaneously.

Equation (14.45) can be used to calculate the entog enthaly of mixing. By using
Eq. (14.14) it follows that

& _ @AGmixingD
ASy = g ar leXi, (14.46)
which when used in Eq. (14.45vgs
Asmix = _RZ X |n(Xi) > 0. (1447)
i
Moreover, Snce
AH mix = AG iy + TAgmix, (14.48)

it follows that the heat of mixing associated with the mixing of ideal gases isNmetweat is
absorbed or released for the mixing of ideal gase¥he process is dren entirely by entrop.
As we shall see next term, a similar result holds for the mixing of dilute solutRinslarly,
note that there is noolume change for mixing ideal gases (see Eq. (14.14) ardatplessure
derwative). Ina hinary mixture, what composition has the mogjaige free energy of mixing?

where the first tw equalities are conditions on the initial state, while the last oneafslfoom the preced-
ing two.
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15. ThermodynamicStability

Fig. 15.1. An isolated system considered ag sabsystems, eachxehang-
ing heat (entrop if revasible), volume, and mass with each other.

The fact that thewerall state functions must be minima (E,H,A,G) or maxima (S) at equi-
librium under specified conditions has some interesting consequelRaesxample, consider
reversible changes system with const&htv and N;,. As we $ioved earlier the energy of the
entire system is a minimum at equilibrium under these conditions. It is important to realize that
we are talking about the tot8 V and N; for the system (viewed as a black box). Nothing is
implied for the local values of§(V, N;), and in particularf we imagine that the system is split
into two subsystems, internal processes of the type shown in Fig. 15.1 are completegdallo
provided that

ds, +dS, =0, (15.1a)
dv; +dV, =0, (15.1b)
and
dN; +dN, =0 for each component (15.1¢)
Given that
dEiotal = dE; + dEy, (15.2)
where, as usual,
dE = T,dS - P,dV; + p dN;, (15.3)
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we have, using Egs. (15.1a)-(15.1c),
dEita = (T2 — T2)dS; = (P1 = P2)dVy + (K — o) dN;. (15.4)

Since the total engy system of our must be a minimum at equilibrium, andd®e dV; and
dN; are arbitrary (and in particular canvleaany ggn), we see thak,, can be a minimum only
if dE;oi = 0, which in turn requires that

T,=T, P;=P, and Y4 = W; (15.5)

i.e., the temperature, pressure and chemical potentials must be unNotmthat this requires
that the exchanges depicted in Fig. 15.1 are possifeuld the system be composed ob tw
sub-parts that are, foxample, thermally insulated thels;, = dS, = 0 and these parts can equili-
brate with different temperatures, etc..

Our result in Eg. (15.5) only guarantees that the totabgrieran &tremum. Considethe
entrofy dependence of the egges. Byusing a Taylor expansion in entgopve have

1 P’EQ
E =TdS += —— +. .. 15.
dE =TdS ZEBSZQ,’NdSZ (15.6)
which when used in Egs. 2-5, shows that the second order energy change is
1 @%E
2, =1 PED (4g 1 dsp) (15.7)

otal — E E@Q/N

which must be posite if the total engyy is a minimum (this is just the usual secondvadixie
test you learned in calculus). In turn, this implies that

PED _oTo _ T

B0, S 050, " O >0 (15.8)

i.e.,Cy > 0. This same reasoning can be applied tod¥i@nddN contributions.

More generallywe nmust consider the possibility that multiple internal processes are taking
place simultaneouslyBy generalizing the Taylorgansion to functions of more than orexiv
able it follows that

2 2 2
@ 1°E 00°E O LIDED o
dE® = | d§+EBSOVELIdeV' + ZEBVZDS,NidV' +... (15.9)

was positive, where terms wolving changes olN; have been droppedMoreover, by using the
expressions for the demtives of the internal energyeq. (15.9) can be rewritten as:

T O 1@PQO

.
@=___ il -
d&7 = 5, 99 * v M2,

dv2 +..., (15.10)
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or in matrix notation:

E T PTo
1Ld C [ov Lot
dE® = 3 v S OpHS (15.11)
2 V. To PO ORVip

U
V |%,Ni mv |%,Ni |:|

which must be posite for arbitrarydS anddV;.

The matrix in Eq. (15.11) is symmetric and thg@ression on the right hand side of Eq.
(15.11) is knwn as a symmetric bi-linear form. From linear algebra, wenkitiat symmetric
matrices can be diagonalized; i.e., a basis indli$e §V;] space can be found where the matrix
elements are zeraxeept for the diagonal ones which are equal to the eayes (denoted as
A.). Inthis basis, EqQ. (15.11) becomes

de® = % (1,dS2 + A_dc), (15.12)

wheredc, are the expansion coefficients df, dV;] in the special basis.

In order that the right hand side of Eqgs. (15.3) or (15.12) pedir all possible aria-
tions of the system, it is necessary andigeht that the eigeraues of the matrixi,, be posi-
tive. They satisfy the characteristic equation, i.e.,

OT pPg O T pPo  OTQH

0=A2- Ml — oo 07 = oo VO
- v LoV %rNiD CV LoV %yNi LoV %’Ni

(15.13)

This quadratic equation is easily solved and follows that in order that theabigesnbe positie,

Cy >0, (15.14a)
PO
v 2, >0, (15.14b)

and

oTd __ T @PO

W, T BV, (15.14c)

The inequality in Eq. (15.14a) is just what we obtained earTieat in Eq. (15.14b) implies that
the adiabatic compressibility (cf. Problem Set 5),

1@VQO

K=V R,
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is positve.

The analysis for variationsvalving the number of moles of avgn gecies follows in
exactly the same manner.
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16. Entropy & Randomness

As was mentioned in class, it is possible wegh smple quantitatre mcroscopic dekia-
tion of the expression for the entyopf mixing for an ideal solution or ideal gas mixturéo
begin, consider the following simple lattice model for the system:

Fig. 16.1. Each cell is labeled according to the kind of molecule it contains.

The wlume occupied by the mixture has been divided into Mvetguit cells, and each is ran-
domly occupied by a single molecule of aegi type in the systemLet N; be the number of
molecules of the i'th species (the "solvent" counts as a species).

How mary states are\ailable for the system in this model®pecifically how marny ways
can the molecules occyphe cells? Consider species 1: The first molecule can choose M cells,
the second M-1, etc.Finally, the last species 1 molecule can choose MtNlifferent cells to
occupy. Thus the number of ways of assigning the species 1 molecules to the cells is

M!

MM -1)(M-N;-1)= M=N!’

(16.1)

whereN! = N(N - 1)(N - 2)'1 is called the factorial function.

The other species must still be added to the latti@ensider species 2Now there are
only M — N; cells to choose from; by repeating the preceding argument, it is easywdhstio
the number of ways of adding species 2 is

(M = Ny)!
(M =N =Nyl

(16.2)
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The total number of ays of adding both species 1 and species 2 to the lattice is the product of
the ways of adding each; i.e.,

M!
(M =N =Nyl

(16.3)

Finally, we @an repeat the gument until the entire lattice is filled. The total number of ways of
adding the molecules to the system is

M1, (16.4)

Does each of these ways correspond to a state of the sySteenanswer is no, not
because we e made an error in our calculationjtdbecause we kia ignored a basic property
of nature; namejythe Heisenbey Uncertainty Principle. Equation (16.4)owid be correct if we
could distinguish the different molecules of each species. The uncertainty principle makes this
impossible, and thus each state of the system cannot depend on which of hergguiole-
cules are in the specific cells -- it is impossible to tell.

Thus Eq. (16.4) wer-counts the number dfifferent states wailable to the systemBy
how much? Agin consider species 1. After thg cells are chosen one still has the freedom to
permute species 1 molecules between tHeréifit chosen cells; there axg! ways of permuting
the species 1 molecules, and these permutations are included in Eq. libvE)er, as we have
just argued, quantum mechanics makes these permutationsantdie the calculation of the
number of inequialent states\ailable to the system, and hence, Eq. (16.1) should be divided by
the number of ways of rearranging the egaient molecules on the same set of lattice cehig.
repeating this gument for all species, it follows that the number of inegient states of the
system are:

M!

S 16.5
NpIN,! (16.5)

The calculation of the entrgmf mixing now follows by using the statistical (Boltzmann)
expression for the entropy:

S = kg In (number of statgs (16.6)

wherekg is Boltzmanns mnstant kg = R/IN, = 1. 38x 10233 K™). By using Eg. (16.5) in Eq.
(16.6), we obtain

ASmixing = kBSn(M!) - Zln(Ni!)g (16.7)
[ : U

This still doesrt' look like the expression we obtained in class. Noteydver, that the &ctorials
which appear in Eq(16.7) are factorials of huge numbersi(?®). Thereis an accurate approx-
imation for the natural logarithm of a large factorial known as Stidifagimula, specifcally,
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IN(NY) = N[In(N) - 1] (16.8)

(try it for N=50). If Eq. (16.8) is used in Eq. (16.7) and we rememberNhat> N;, a little
i

algebra shows that

m\n
Smixing =~ kB IZ Ni In DMlD

(16.8)
Since,x;, the mole fraction of species i is

N;

M )

Eq. (16.8) is equilent to the expression we obtained by examining ideal gas mixtures tlyat obe
Dalton’s law a, a you will see, solutions that opérRaoult’s Law a. (Recall that the gas con-
stantR = kg N, whereN 4 is Avogadro’s number).
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17. Electrochemical Cells

—O

Salt Bridge

Anode (oxidation) Cathode (reduction)

ﬂ2n+2 N ‘

Fig. 17.1. TheGalvanic or Daniels cell. Oxidation occurs at the anode, whilesduc-
tion occurs at the cathode.For the compounds shown, the diyeviated cell reaction

is Zn|Zn*?||Cu?|Cu.

17.1. GeneralConsiderations

Figure 17.1 shows a simple device used that functions as a btitesp-called Gahnic
or Daniels cell. Basically when the switch is closed, the zinc electrode will oxidize, loosing 2
electrons per atom, and producing a zinc idimese trael through the external circuit (doing
work), and reenter the cell at the cathode, where one copper ion is reduced to copper metal.
Thus, we can describe the redox chemistry in terms of the half-reactions:

Zn - Zn'?+2e  (at theanode)

Cu?+2e - Cu (at thecathode)
and
Zn+Cu" - Zn*?>+Cu (overall).

Note that the reaction leads to a net charge imbalance in the cell and this is restondddgoy ha
the counter-ions of the salts diffuse as needed through the salt-bridge.

The first question to answer is\k namely how much work can be obtained per mole of
reaction in this cell?At least under constaiit and P conditions this can be answered by recall-
ing that

“Whon-pv < “AGxn
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or

~0 Wion-py < —dAG, == Z Vil dé = -AG,d¢, (17.1)
i

where-W,,r-py IS just the non-mechanical (here electrical) work being done by the system on
the surroundings, and where the inequality becomes an equality when the processikdere
Indeed, one can come close twihg the cell operate versibly by having very little current run
through the external circuit. Equation (17.1) is just what wewhen we used thewaof defi-

nite proportion in chemical reactions.

In electrical terms, suppose there is a voltageerifice AE, between the tw dectrodes.
Thus, by definition, each electron will change its energyddy€ as it mwes through the eter-
nal circuit (rememberby convention, electrons hee regdive chage). Equvalently, they do
eA& electricalwork on the surroundings. Hence, by using Eq. (17.1) we see that

AG xn

AE < - ,
nF

(17.2)

where n is the number of moles of electrons transferred in the reaction (2 forxaompke
above), -F = -Npe is the chage associated with one mole of electrons, and is known as the
Faraday; It has the value

F = 96,487 coul/mol or 2.89% 10'* esu/mol.

Henceforth, we will restrict our discussion tovaesible cells, in which case Eq.(17.2)
becomes an equalityNotice that the cell EMF is independent of the preciag you balance the
overall reaction. Actually, the main thing that is important in balancing the redox reactioes gi
above is that we produce the same number of electrons in the oxidation at the anode as are con-
sumed in the reduction at the cathode. Lets write the free energy change for each half-reaction as

AG half-reaction — ¥ n l:A"::hah‘ —reaction

where we’ll use the - sign for reductions and the + sign for oxidations, i.e., we define the half-
reaction potentials for reductions; hence, for our example,

O
~AGiyy = 2FAE i = 2F glfcquu ~AEznapzny

For the reaction to proceed as written when the circuit is closed, weAiged< 0, or equwa
lently, A€ 2 0. If we assume standard state conditions, we can simply look up the reduction
potentials in a table, which for our reaction has

IFor historical reasons, this is also known as the electremfiice or EMF.
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Standard Reduction Potentials

AE
(Volts, V)

Half Reaction

Zn+2e - Zn -0.763
Cll+2e - Cu 0.337

Hence, the werall cell EMF is 0337—- (0. 763)= 1. 100/ and the cell operates as writteNote

that the standard state for electrochemical reactions is defined not with respect to elements in
their standard states, but rathagainst a standard electrode, the so-called standgtidogen
electrode (SHE).

What happens if the conditions aredfandard? W can still get an expression for the
reversible cell EMF from Eqgs. (17.1) and (17.2) if we wnwhat the chemical potentials are.
Recall that we hae

b = 19 + RTIn(a), (17.3)

where g; is the activity of compound it is the partial pressure iatm for ideal gases, or the
molar concentration in ideal solutionsitlmtherwise is more complicated. When the steps lead-
ing to Eq. (17.2) are repeated it follows that

0.05916
0 - log,o(at-al), (17.4)

RT
AE < NEV - e In(aja) = A&

whereAE®© is the standard cell EMRs @lculated abee, the term with the logrithm accounts
for ary non-standard conditions and the last equality is what you get at 20@rtoon to
base-10 logrithms. Thigs known as the Nernst equation.

17.2. ConcentrationCells

One useful application of the Nernst equation aalslagnic cells is the so-called concentra-
tion cell. Here, both cells contain the same metal/ion pairs, just the concentrationteagatdif

e.g.,
Agl Ag+(aanod9 | |Ag+(acathod9 | Ag,

where agnoddcathode are the activities (molar concentration for ideal solutions) in each [Eail.
this systemAE© =0, and thus

_ Er [agathodeD
nF  0a% g0 U

anode

A€ =

wheren = v = 1 for the Ag|Ag" example. Ifone of the cells is a standard solution, a simple elec-
trical measurement and application of the last equatia@s die activity (molar concentration) of
the other This is the basic idea behind thingseligH neters etc. Note that for really accurate
work, the role of the salt bridge must be considered more carefoityething not considered
here.
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17.3. Connectiornto Equilibrium Constants
If we run the cell until the system is at equilibrium the EMF will be zero, hence, by using
the Nernst equation, it follows that

VieeaVe — ¢ — SMFAEQIRT
a'ar=K=e : (17.5)

where gves another connection between equilibrium constants and thermodynamic quantities.

Again, voltage is easy to measure very accurasaly this is a good way to measure con-
centration effects etc. on equilibrium.

17.4. Temperature dfects

By using the basic relation between the cell EMF and the Gibbs free energy change, it fol-
lows that

I:aASD :_i [aAernD :Agrxn
O0oT G, nFOOT O, nF ~

(17.6)

If we assume thakS,,,, is independent of temperature (i&Gp is small), we can integrate Eq.

(17.6), to gve

ASyn
nF

AE(T) =AE(Ty) + (T = Tp). a7.7)

Note that for may redox reactionsAS,, is small (less than 50J/K). This leads to only
10° -10* V/K change inAE; hence, the cell EMF is relagly insensitve © temperature.
Finally, by noting that at constant temperatufeyl = AG + TAS, and using Eqg. (17.6), we see
that

_ U A 0
AR = -nFpe -TERED (17.8)

0 0oT Ly
or equvalently,

MAE/RTO _ AH
0 oT 0, nFRT2’

(17.9)

which is basically the Gibbs-Helmholtz equation introduced earlier.
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18. Problem Sets

Note that the due datesealast years. Thisyear’s will be announced in class and on the web
site.

18.1. Poblem Set 1
DUE: Friday September 25, 2015

L_1mvVQ 1@p0
1. a) In a one-component system, df = — — , show that g = —— —— ,
) P y VBT 3, T TG,
o = N/V is the molar densityNote, shav this for an arbitrary material, doot assume that the

system is an ideal gas!

where

b)  Moregenerally show that

de =—adT +«dP,
o
1 Vv . . -
wherex = — v ES—PEN is the isothermal compressibility.

c) At25°C a =aled, rigid container is completely filled with liquichter If the temperature
is raised by 10C, what pressure will vdep in the container? For water,
a =2.07x10%K andk =4.50x 10°/atm. Note: Donot use the ideal @ equation in
a)-C).

2. Usethe van der Waals equation and complete thevaten of the relationship between the a
and b parameters and the critical pressure, temperature and molar volunpg, Tg.andV,,
respectrely.

3. (Castellanproblem 3.3) The critical constants foater are 374C, 22.1 MPa, and 0.0566
L/mol (be careful with units he). Calculatevalues of a, b, and R using the van der Waals equa-
tion’s expressions for the critical constants and compare dheevof R with the correctalue.
Compute the constants a and b frppandT. (and the correctalue of R. Finally, using these
vaues, compute the criticalolume and compare with the experimentalue. Whats all this
telling you?

4. (Castellanproblem 4.2)

a) Comparehe average speed of an oxygen molecule with that of a molecule of carbon tetra-
chloride at 20C;

b) Compareheir average kinetic energies.

5. (Castellan,problem 4.5) An oxygen molecule having theerage velocity at 30K is
released from the earthaurface to trael upward. Ifit could move without colliding with other
molecules, har high would it go before coming to rest?ow high could it go if it had thever-
age kinetic energy?
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18.2. Problem Set 2

DUE: Monday October 19, 2015

1.

a) Derve the expression for the most probable speed in a gas.

b)  Anotherway to characterize the width of a probability distribution is to compute the stan-
dard deviationg. Calculateo for thespeedistribution; i.e.,

(HINT: you may find the calculation easier if you first whothat
<(c-<c>)P>=<c?>-<c>d).

C) In order to decide whether the speed distribution maaiowide, considew/ < ¢ >. What
is it?
2. Computethe number of collisions angon atom has per second at 1 atm pressure and 25C.

Assume that the gon atom has a 3diameter What is the mean free path under these condi-
tions?

3. Atroom temperature, twvgases, ammonia and hydrochloric acid react to form a white solid,
ammonium chloride; i.e.,

NHs(g) + HCI(g) - NH,4CI(s).

Two balls, one soad in concentrate#iCl and the other ilNH,OH, are placed at the left and
right ends of a 1m longvecuated glass tube, respeely. HCI and ammonia vaporize andveh
down the tube, reacting to form a white ring whereg theet. Wheraloes the ring form?

4. (Silbg, Alberty & Bawendi, Problem 17.45) The vapor pressure of water %@ 253160

Pa (a) If every water molecule that strs the surface of liquid water sticks, what is the rate of
evgooration of molecules from a square centimeter ofasef? (b)Jsing this result, find the rate
of evaporation ing/cn? of water into perfectly dry air.

5. Thereaction
A+B - AB
proceeds using a surface catalyst via the following mechanism:
kS *
A+S - A +S

* kAB
A +B - AB,
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where A" is a gas-phase intermediate and where the rate constants can be estimated using the
collision theory deeloped in class.

a)  Writedown the kinetic equations for thevavall rates of change of AA", B, and AB (you
should leae your answers in terms & andk sg).

b) Itis often difficult to measure small concentrations of intermediates. Nonetheless;tthe f
that the concentration @ is very small can be used to simplify your answer inNjke
the so-calledsteady-state appximation which, here, assumes that the net rate of change
of the intermediated” is zero (usually the rate will beery small if the concentration of
the intermediate is). This allows you tapécitly solve for [A'] and substitute your
answer into the remaining kinetic equations. What do you ¢&#® would you tell an
experimentalist to plot their data in order to confirm your res@H®NT: remember ha
the integrated rate laws are tested).

6. Aninterference pattern is created using lasers iasaaj molecules that are photo-reaeti
The lasers are adjusted to@ia initial periodic concentration profile of the photo-reaeirod-
ucts of the form:

n(x,t = 0) = ng(1+ Asin(kx)), (1)

wherek is the waverector of the interference pattern aAds its amplitude.At t=0 the laser is
switched of and the pattern starts to dissipate. Assume that Eq. (1) is valid-for(with a time
dependent amplitud&(t)) and use the diffusion equation we dediiin dass to obtain an equa-
tion for dA(t)/dt. What is the solution to this equation and what does it predict for the 1/e-life of
the pattern (i.e., where the amplitu@dld to 1/e of its initial &lue)? Finallyevaluate your 1/e-
lives for methane at 1 atm pressure and 298.15K, assuming that0, 100. 0Oand 16 cm ™.

Use 0.4 nm for the diameter of methane.
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18.3. Problem Set 3
DUE: ThursdayNovember 5, 2015

1. Howv much work will be produced in the isothermaleaesible expansion frov; to V, of a
gas with the equation of state:

oV = RT+ (bRT-a)
V

2. (Barrav, Problem 5-1) The acceleration due to\gta on the eartls surface is about 9.8
—2
m £C “.

a)  Whatis the force of gravity on a 1-kg mass?

b) How much mechanical energy could be obtained by fully harnessing theadod mae-
ment of a 1-kg mass through a distance of 58 m (the height of Niagara Falls)?

) Honv much thermal engy would be produced if the mass were allowed to fall freely
through this distance?

d) If the mass consisted of water and all the thermabgneere absorbed by theater How
much would the temperature of the water rise?

3. a) Consider a process where the heat absorbed by the system per metebis g

_ RT _
ige) 8 yp_ O P gjv.

4TI T DV -b o722
Evaluate the heat absorbed by the system along the following paths:
||) Tl!\_/l — Tl’\_/Z — Tz,\_/z

b) Shav that 1/T is an intgrating factor ford Q (i.e., d Q/T becomes the differential of a
state function) byaluating the integral off Q/T along paths i) and ii).

4. An average man (mass = 70 kg, specific heat - same as water) produces &HaubflBeat
each day through metabolic activity.

i) If he were an isolated system, what would his temperature rise be in one day?

i)  He s, of course, really an open system--losing heat throughoeation of vater.
How much water must heveporate per day to maintain his constant temperature
of 37°C? You must first calculatAH,, at 37°.

Note that the notation is suggesid the van der Walls equation. This cannot be the case. If you look at
your result for the first part of path i), i.d;,V; - T,,Vy, you'll see thatd Q <0 if a> 0 and

T, >Ty; i.e., heat is released on raising the temperature at constant volume, thereby Gyaking.

This is unphysical unlesa < 0. Lettinga — —a fixes this problem.
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iii)  The heat of combustion of cane sugds 3.95 kcal/g.How marny grams of sugar will
furnish energy for one dag/metabolism, assuming the transfer of heat from cane
sugar bonds to metabolic heat to be perfectly efficient?

5. Inthe thermite reaction:
2A|(s) + Fe203(s) — 2Fe(|) + A|203(S),

what is the maximum temperature attainable by the produths® is known as the adiabatic

flame temperature. Assume that the reactants are at 1 atm pressure and 25C, and that all hea
capacities are constanvep the required temperature rangeéu will need to go to tables of
thermodynamic constants; a good place to look is in Langahbook of Chemistry or in the

CRC handbook (both arevalable on-line at McGill). Is the assumption thakl,05 is solid in

writing the reaction reasonable? Briefly describeviveould you change your calculation if

Al,O3 wasn't solid?

6. Considethe following two isomers ofC;Hg:

CH»

H)C e CH _CH3

CH,

CH2

Cyclopropane Propene

a) CalculateAH for the intercowmersion of ¢clopropane and propene using a table of stan-
dard heats of formation.

b)  CalculateAH for this reaction using a table of bond energies.
c)  Whichanswer is more reliable? WR Whatare the sources of error?

d)  Whichcompound would yield more heat upon complete combustion in oxygen?
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18.4. Problem Set 4
DUE: ThursdayNovember 19, 2015

1. (CastellanProblem 7.30) The Joule-Thompson ¢wednt for a van der Waals gas isven by
Myt = (2a/RT - b)/Cp. At 300K, calculate the value d&fH for the isothermal, compression of 1
mole of nitrogen from 1 to 500 atra:= 0. 136m°® Pa/mol* andb = 0. 039Wn?/mol.

2. (Castellan, Problem 7.31) The boiling point of nitrogen is -196CGand 7/2 R. The \an

der Waals constants angrrare gven in the preceding problem. What must the initial pressure

be if nitrogen, in a single stage Joule-Thompson expansion, is to drop in temperature from 25 C
to the boiling point? (The final pressure is 1atm).

3. A chemistry 223 student wasesheard arguing with a friend in management about wa

have winter heating. The latter stated that it was to enthle air in the room armer while the
chemistry 223 student claimed that isvto increase the energy content of the air in the room.
Who is right? Why?

4. (CastellanProblem 8.4)

a) Liquid helium boils at about 4K and liquid hydrogen boils at about 20K. What isfthe ef
cieng of a revasible Carnot engine operating between heat reservoirs at these tempera-
tures?

b) If we wanted the samefiefency as in part (a) for an engine with a cold reservoir at 300K,
what must the temperature of the hot reservoir be?

5. (CastellanProblem 8.17) Consider the folling cycle using 1 mol of an ideal gas, initially
at 20C and 1 atm pressure:

Step 1.Isothermal expansion against zero pressure to double the volume (Joule expansion).
Step 2.Isothermal, reersible compression frony2 am to 1 atm.

a)  Calculatehe value OT aQIT.

b)  CalculateASfor step 2.
C) Realizingthat for the cyclepS; e = 0, find ASfor step 1.
d)  ShavthatASfor step 1 ismotequal to the Q for step 1 divided by Why isn't it?

6. Considera system comprised of tw 1000g blocks of copperc( = 0. 1cal/g/°K). If one
block is at 300K and the other is at 400K, what is the maximum amountréfthat can be
extracted from the system if no additional heat is allowed o ifitdo or out of the systemhat
will the final temperature be after themk is extracted? Describa process whereby you could
extract the maximum wark. In working out this problem, ignore grPV work associated with
the expansion of the blocks.
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18.5. Problem Set 5
DUE: TuesdayDecember 1, 2015

1. (CastellanProblem 9.1) The temperature of 1 mole of an idaalig increased from 100K to

300K;Cy = 2 R.

a) CalculateAS if the volume is constant.

b) CalculateASif the pressure is constant.

c)  Whatwould AS be if 3 moles were used instead of 1 mole?

2. (CastellanProblem 9.10) The standard entyayf lead at 25C €545 = 64. 80J/K mol. The
heat capacity of solid lead i€p(s)[J/K mol] =22.13+0.01177 +0.96x 10°T 2. The melt-
ing point is 327.4 C and the heat of fusion is 47#ol. The heat capacity of liquid lead is
Cp(N[J/K mol] = 32.51-0.0030T.

a)
b)

Calculatehe standard entrgpf liquid lead at 500 C.
Calculatehe AH for changing solid lead at 25C to liquid lead at 500C.

3. (CastellanProblem 9.18) Consider one mole of an ide=s, &, = : R, in the initial state:
2
300K, 1 atm. For each transformation, (a) through (g), calculate Q A\®, AH, and AS; com-

pareASto Q/T.

a) Atconstant volume, the gas is heated to 400K.

b)  atconstant pressure, 1 atm, the gas is heated to 400K.

c) Thegas is xpanded isothermally andvesibly until the pressure drops to 1/2 atm.

d) Thegas is xpanded isothermally against a constant external pressure equal to 1/2 atm
until the gas pressure reaches 1/2 atm.

e) Thegas is expanded isothermally agnst zero opposing pressure (Joule expansion) until
the pressure of the gas is 1/2 atm.

f) The gas is «panded adiabatically against a constant pressure of 1/2 atm until the final
pressure is 1/2 atm.

g) Thegas is expanded adiabatically andvegsibly until the final pressure is 1/2 atm.

4. (CastellanProblem 9.26) She that

a0 __(peC
(OP L} EBTQ;'

wherea andx are the thermal expansion coefficient and isothermal compressiiedipectrely.
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5. (CastellanProblem 10.23) From the purely mathematical properties of the exact differential

_ PE[Q
dE = C,dT + = Drclv,

0
4

. C
6. (CastellanProblem 10.28) Knowing thalS = ?P dT - VadP, show that

shaw that if %E/av is a function only of volume, thed\, is a function only of temperature.

a) @Y0P), =«Cy/Ta.
b) (@S0V)p = Cp/TVa.

c) «s=-VAVIOP)s=«kly, wherey = Cp/Cy, whereks is knavn as the adiabatic com-
pressibility and geerns the speed of sound in materials.
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18.6. Problem Set 6

DUE: TuesdayDecember 15, 2015

1. (CastellanProblem 11.4)

a) Calculatehe entrog of mixing of 3 moles of hydrogen with 1 mole of nitrogen.
b) Calculatahe Gibbs free energy of mixing at 25C.

c) At 25C, calculate the Gibbs energy of mixing-(&) moles of nitrogen, 3(% &) moles of
hydrogen, and £moles of ammonia as a function&f Plot your result for @< & < 1.

d) If AG$(NH3)=-16.%J/mol at 25C, calculate the Gibbs energy of the mixture for
0< & <1. PlotG versusé if the initial state is the mixture of 1 mole B, and 3 moles of
Ho,.

e)  Calculates for &eqyitibrium @t P = latm.

NOTE: Usea readsheet or other program to do the numeriocakw this problem. Use 10 or
S0 points for your plots.

2. (CastellanProblem 11.8) At 500K we ha the data

AHSOOO SgOO
Substance y ymol (37K mol)
HI(Q) .41 221.63
Ha(g) 5.88 145.64
1,(q) 69.75 279.94

One mole ofH, and one mole of, are placed in a vessel at 500K. At this temperature only
gases are present and the equilibrium

Ha(9) +12(9) 2 2HI(9g)

is established.CalculateKp at 500K and the mole fraction of HI present at 500K and latm.
What happens at 10 atm?

3. (CastellanProblem 11.10) For ozone at 25459 (03) = 163. 2kJ/mol.

a) At25C, compute the equilibrium constait for the reaction

30,(g) 2 205(9)

b)  Byassuming that the advancement at equilibriéigpis very much less than unity (whs
this reasonable?), sivahat g = E7F>T<P. (Let the original number of moles &, and
2

O3 be 3 and zero, respeacdy).
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c) CalculatK, andK, at 5 atm.
4. (CastellanProblem 11.22) Consider the equilibrium

CO(g) + H20(g) = CO,(g) + Ha(9).

a) At1000K the composition of a sample of the equilibrium mixture is:

Substance CO, H, (6{0) H,O
mol % 271 271 229 229

CalculateKp andAG° at 1000K.

b)  Given the answer to part (a) and the data:

Substance CO, H, (6{0) H,O

AH? -39351 0  -110.52 -241.81
(kd/mol) ' ' '

Calculate AG® for this reaction at 298.15KCompare your answer to that computed
directly at 25C. What are the sources of discrepancy?

5. (CastellanProblem 11.32) For the reaction

Ha(l) +10,(9) = HgO(s),

0.42x10°
AGP® = -91044+1.54T InT +103. 8T - 10.33x 107372 - — (J/mol).

a)  Whatis the vapor pressure of oxygeveoliquid mercury and solid HgO at 600K?
b)  Expressn Kp, AH®, and AS® as functions of temperature.

6. (CastellanProblem 11.35) At 25C the data for the various isome€bff;, in the gas phase
are

AH? AG?
Substance (kd/mol) log K¢
A = 1-pentene -20.920 78.605 -13.7704
B = cis-2-pentene -28.075 71.852 -12.5874
C = trans-2-pentene -31.757 69.350 -12.1495

D = 2-methyl-1-lutene  -36.317 64.890 -11.3680
E = 3methyl-1-lutene  -28.953 74.785 -13.1017
F = 2methyl-2-lutene  -42.551 59.693 -10.4572
G = ¢yclopentane -77.24 38.62 -6.7643
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Consider the equilibria
A2B2C2D_2EZ2F2G
which might be established with a suitable catalyst.
a) Calculatehe mole ratios of A/G, B/G, ..., F/IG present at equilibrium at 25C.
b) Dothese ratios depend on the total pressure?
c) Calculatehe mole percents of the various species in the equilibrium mixture.

d)  Calculatehe composition of the equilibrium mixture at 500K.

7. (CastellanProblem 11.40) One mole &f,0, is placed in a@ssel. Whethe equilibrium

N2O4(9) 2 2NO,(9)

is established, the enthglpf the equilibrium mixture is
H = (1-&)H°(N,Oy, g) + 26H°(NO,, g).

What assumption are we making by using molar enthalpies of pure substancel trerefix-
ture remains in equilibrium as the temperature is raised,

a) shav that the heat capacity isvgh by

mH°

Cp Cp(N204,9) , . Cp(NO2, 0)
- R ORT O

- = —_ —} _2
= =m0 T 2f T 41 E(1- 8)

b) Shav that the last term has a maximum value wenl/~3;

C) Plot Cp/R versus T from 200K to 500K at 1 atm usim@p(N,O,, g)/R=09. 29,
Cp(NO,, 9)/R = 4. 47,AH g = 57. 2kJ/mol; and AG3gg = 4. 77kJ/mol.

8. (CastellanProblem 11.43)An athlete in the weight room lifts a 50kg mass throughréoal
distance of 2.0mg=9.8m/s?). Themass is allwed to fall through the 2.0m distance while
coupled to an electrical generatdihe electrical generator produces an equal amount of electri-
cal work which is used to produce aluminium by the Hall electrolytic process

Al,O5(soln) + 3C(graphite) — 2AI(l) + 3CO(Qg).

AG° =593kJ/mol. How mary times must the athlete lift the 50kg mass tovpdosufficient
Gibbs enegy to produce one soft drink cam 27g). Note:This is the energy for the electrolysis
and ignores the gfiency of the generator and other losses. The actual number is roughly three
times larger than your number.

2015, Fall Term
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19. Past Midterm Exams

19.1. 201Midterm Exam
INSTRUCTIONS

Nobooks or notes are permitted.
Calculatorsare not needed and aret permitted.
Answerall questions and shoall work clearly.

Thereare 5 questions and each is of equal value.

a r w0 N PE

Besure to indicate the total number of exam books handed in on your exam book and on
the log sheet.

6. You may need the following data:

Useful Constants
Constant Ylue

Gas Constant, R 8.31442K * mole?
Boltzmanns Constantkg 1.381x 10°22J/K
Speed of Light in ¥cuum 2998x 10®m/sec

Faraday,F 96,484.6 Coul/mole
Standard Atmosphere 1.01325x 10°Pa
Avogadro’s Number 60225x 107

1 cal 4.184]

7. You may need the following results from calculus:

J-°° &gy = VoA, J-B w g2y = L E?—aAZ/Z _ grasi2l]
o0 A a N

B a2 + 2)e a2 _ (g2 + D)e aB2
J-A XSe—alede — ( ) az( ) ’

B dx Bdx 1 1
Ja = InE/A), o2 a" B

In(1+ x) = x, and =1l+x+x2+ " for x| <1

Thursday October 25, 2012
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8. GoodLuck.
1. (20%)

a) Whatis the \an der Waals equation of state? What do the various modifications to the
ideal gas equation account,fand why do they havethe forms thg do?

b)  Sketch the pressure-volume phase diagram for highala critical temperatures for the
van der Waals equation. Identify the critical point and label the various regimes.

c) Useyour result in part a) to des equation(s) for the critical point in the pressurdeme
phase diagram. What is the physical significance of the critical point?

d)  Whatis the lav of corresponding states? Describerhypou would use the equations you
got in part c¢) to transform theam der Waals equation into a form that shows this (Don’
bother solving the equations).

2. (20%) Starting from the Maxwell-Boltzmann velocity distribution, derihe rate lav and
expression for the rate constant for a catalytic surface reaction. Assume that vhtoacti
energy isE,. What assumption(s) are you making?

3. (20%) Give ckfinitions, or a general equation defining the quarfotythe following terms in
thermodynamics:

a) Work. b) Pah.
c) Enthally  d) Revesible.
e) State Function.

4. (20%)
a) Whatare extensie and intensve quantities in thermodynamics? \&ian example of each.

b)  For an etensve function, A(T, P, Ny Ny, ....,N;), derve Euler's theorem and shohow
partial molar quantities can be used to repregerftor concreteness, assume thatP,
and theN; have their usual meanings; i.e., temperature, pressure, and number of moles of
compound, respectiely.

C) Derwve the Gibbs-Duhem relation related to your result in b).

d) Theenepgy is an &tensve quantity and can be considered to be a function of thasme
sive quantities (for a one component system); namely,

E = E(S,V, N),

whereV is the systens wlume, N is the number of moles, a8ds the entrop of the sys-
tem (to be ceered in detail later in the courseffor small reversible changes in state

dE = TdS- PdV + pdN,

whereT, P and p are the systesntemperature, pressure and chemical potential, respec-
tively (the chemical potential is intens). Generalizeyour answer in part b) and sko
that

Thursday October 25, 2012
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E=TS-PV +uN.
What is the Gibbs-Duhem relation in this case?
5. (20%) The reaction for nuclear fission is

ki
n+2y - X+Y+an, 1)

wheren is a neutronX andY are the fission products, ands the number of neutrons released,
usually between 2 and 3. This is an example of what ikras a branching chain reaction and
can lead to runaay or explosive kinetics. \éry crudely this is preented by introducing a so-
called moderatgre.g., graphite oD,0, that slows the neutrons down and a neutron absotber
e.g.,23% or the so-called control rods, into the reactorby having the neutron escap&hese
last two processes are approximately described by the following elementary reactions:

ka ks
n+ A - stable products, and n - escapes the system, (2)

respectrely.
a) Derve the rate equation gerning the neutron concentratiom](t).

b)  Underthe assumption thawerything but the neutrons is in large excess (this is valid at
least initially):

i) Whatorder kinetics does your answer in part a) become?
i)  Whatis the integrated ratevafor the neutrons?
iii)  How should you plot experimental data to peahe mechanism?

c)  Whatare the conditions for a stable or rumag/explosve reactions?

ThursdayOctober 25, 2012
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19.2. 2013 Midterm Exam.
INSTRUCTIONS

a » w0 N

o

7.

No books or notes are permitted.

Calculatorsaarenot needed and amot permitted.

Answerall questions and shwoall work clearly.

Thereare 5 questions and the exam has 3 pages including this one.

Besure to indicate the total number of exam books handed in on your exam book and on
the log sheet.

You may need the following data:

Useful Constants
Constant Ylue

Gas Constant, R 8.31442K 1 mole™
Boltzmanns Constantkg 1.381x 1023J/K
Speed of Light in ¥cuum 2998x 10®m/sec

Faraday,F 96,484.6 Coul/mole
Standard Atmosphere 1.01325< 10°Pa
Avogadro’s Number 60225x 107

1 cal 4.184]

You may need the following results from calculus:

® a2 4y, _ 7 B a2y _ L0 amn _ _agtel]
J’_ooe dx =V2nla, IA X € dx = a E? e -
75 2 —ap2/2 2 —aB?/2
Ioo e aXI2 gy = V2rla | IB 2y = (aA? +2)eg 12 _ (aB? + 2)e @ |
—00 a A a2

B dx B dx
IA - In(B/A), J-A @

>~
W~

1
In(1+x) = x, and 1—=l+x+x2+'" for |x| < 1

ThursdayNovember 7, 2013
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8. GoodLuck.

1. (20%) Give a cefinition or an equation defining the following properties:

a) Mean free path b) The enthalpy

c) Detailed balance d) Steady state approximation
e) The First Lav of Thermodynamics  fA revasible process

g) Work in thermodynamics h) State function

i) The effusion rate ) The speed probability density.

2. (20%) Consider the homogeneous gas phase elementary reaction

k
2A(9) ' Products

Use the kinetic theory ofages to deve arealistic form for the rate &, and the corresponding
expression for the rate cdigient, k;. Be careful to define the symbols you use and clearly state
ary assumptions you make.

3. (20%)

a) You suspect that a chemical reaction obeys second order kineticgjoowould plot
your experimental data to w® a disprove the assumed mechanism? @hehy and shav
your work!

b)  Considethe following mechanistfor the decomposition of ozone:

ky
O3(9) +M _ 0y(g) +O(g) + M (3.1)
Ky
and
k
O(g) +Os(g) - 20,(g), (3.2)

whereM is an inhomogeneous catalyst (e.g., walls or particulate matter in the system).
i) Write down the kinetic equations g&ning the reaction rates @f;, O, andO.

i)  Usethe steady-state approximation to simplify your result; in particsaat is the
resulting kinetic equation for the rate@f consumption?

1s.W Benson and A.E. Axworth J Chem. Phys26, 1718 (1957).

ThursdayNovember 7, 2013
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iii)  How does your answer in part ii) simplify if tHe; concentration is either high or
low? (Bemore specific about what you mean by "high" or "low").

iv)  To what order reaction, if gndo your answers in part iii) correspond?

4. (15%, FROM THE HOMEW ORK) An interference pattern is created using lasers iasa g
of molecules that are photo-reaetifrreversibly). Thelasers are adjusted tovgian initial peri-
odic concentration profile of the photo-reaetproducts of the form:

n(x,t =0) = ny(1 + Asin(kx)), 4.1)

wheren(x,t) is the density of the photo-reaai peciesk is the vavevector of the interference
pattern andA is its amplitude. At t=0 the laser is switchedl aid the pattern starts to dissipate.
Assume that Eq. (4.1) is valid for O, with a time dependent amplitudt), and use the dii-
sion equation we desed in dass to obtain an equation fdA(t)/dt. What is the solution to this
equation and what does it predict for the 1/e-life of the pattern (i.e., where the amlitside f
1/e of its initial value)?

5. (25%)
a) Explainhow the heat capacitie€,p andC,,, are related to the energy and entlyalp
b)  Shavthat

MEQ U
Cp aV[P v Q,Ng (5.1)

wherea = V‘1(6V/6T)p,N is the thermal expansion coefficient.

c) Describethe Joule-Thompsonxperiment. Whathermodynamic quantity is constant in
the experiment?

d) Definethe Joule-Thompson coefficientgpand shav, in part, using Eqg. (5.1), that

__VO_ X i~ _and
Hot = C—P% v (Cp CV)D (5.2)

wherex = -V™1(dV/aP); \ is the isothermal compressibility.

ThursdayNovember 7, 2013
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19.3. 2014 Midterm Exam
INSTRUCTIONS

No books or notes are permitted.
Calculatorsaarenot needed and amot permitted.
Answerall questions and shwoall work clearly.

Thereare 5 questions and the exam has 3 pages including this one.

a » w0 N

Besure to indicate the total number of exam books handed in on yaur ook and on
the log sheet.

o

You may need the following data:

Useful Constants
Constant Ylue

Gas Constant, R 8.31442K 1 mole™
Boltzmanns Constantkg 1.381x 1023J/K
Speed of Light in ¥cuum 2998x 10®m/sec

Faraday,F 96,484.6 Coul/mole
Standard Atmosphere 1.01325< 10°Pa
Avogadro’s Number 60225x 107

1 cal 4.184]

7. You may need the following results from calculus:

® a2 4y, _ 7 B a2y _ L0 amn _ _agtel]
J’_ooe dx =vV2mla, IA X e dx = a E? e -
—_—r _ 2/ _ 2/
-0 a A a
B dx Bdx 1 1
— = |n B/A ’ — = — — = l
IA X ( ) J-A x2 A B

1
In(1+x) = x, and 1—=l+x+x2+'" for |x| < 1

TuesdayOctober 21, 2014
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8. GoodLuck.

1. (20%) Define or gve an equation defining the following terms:
a) Extensie.

b)  Partial molar quantity.

c)  Statefunction.

d) Areversible change.

e) Themean free path in a one-component gas.

2. (20%) (From Silbsy, Alberty and Bavendi, Physical Chemistiyln the mid-1970s it was dis-
covered that chlorine atoms from the photolysis of chloroflupdobcarbons (e.g.
CFCl; + hv — CFCl, +Cl, ec.) at the lgdl of the ozone layer can catalyze the decomposition
of ozone through the following mechanism

Ky
Cl+0; - CIO+0, (1a)
and
Ky
CIO+0 - CI+0,. (1b)

a)  Whatis the werall reaction for this mechanism?

b)  Writeout the kinetic equations for each of the specieglwied in this mechanism. In par
ticular, what does your mechanism say for the rate of chand@ pf [CIO]?

c)  Whatis/are the intermediate(s) for this reaction?

d) Invoke the steady-state approximation and write out tWatl rate lav. [Hint: you may
have © use your result in the last part of b)].

e) Briefly discuss your result, and in particylesmment on aylimiting cases where simple
n™ order kinetics is obtained.

"The destruction of ozone by chlorine atoms in the stratosphere has become a serious issue because of the
"ozone hole" in the Antarctic region, which can be seyed by satellite.This has led to international con-

trols on the manufacture @FCl; andCF,Cl,. Seveal g/cles of the type gen in Eq. (1) are inolved

and there has been intense interest in quamgtaticulations of the lifetimes of various chlorofluoyeh
drocharbons in the stratospherehe 1995 Nobel Prize in chemistry wagsaeded to Paul Crutzen, Mario

J. Molina, and FSherwood Rownald for their research on this topic.

TuesdayOctober 21, 2014
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3. (20%, From the homework) At room temperature, twgases, ammonia andydirochloric
acid react to form a white solid, ammonium chloride; i.e.,

NHs(g) + HCI(g) — NH,CI(9).

Two balls, one soad in concentrate#iCl and the other ilNH,OH, are placed at the left and
right ends of a 1m longvecuated glass tube, respeely. HCI and ammonia vaporize andveh
down the tube, reacting to form a white ring where theet. Wheraloes the ring form?

4. (20%) Derive exressions for the following (be sure to define all symbols apthiea ary
assumptions you make):

a)  Zawith s the number of collisions per unit time an A molecule collides with a B in an dilute
gas.

b)  Theeffusion rate.

c) Thereaction rate constant for the gas phase reaction:

A+ A - Products

d) Thevan der Waals equation of state. In particukxplain the physical motations behind
ary of modifications you introduce and justify the mathematical formg tiage

5. (20%) State the first la of thermodynamics, carefully defining the symbols you use. Briefly
discuss its significanceUnder what conditions does it simplifyn particulat leading to some-
thing that can readily measured.

TuesdayOctober 21, 2014
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19.4. 2015 Midterm Exam

INSTRUCTIONS

1. Nobooks or notes are permitted.

2. Calculatorsare permitted.

3. Answerall questions and shwoall work clearly.

4. Thereare 5 questions and the exam has 2 pages including this one.

5. Besure to indicate the total number of exam books you hand in on your exam book and on

the log sheet.

6. You may need the following data:

Useful Constants
Constant Ylue

Gas Constant, R 8.31442K 1 mole™
Boltzmanns Constantkg 1.381x 1023J/K
Speed of Light in ¥cuum 2998x 10®m/sec

Faraday,F 96,484.6 Coul/mole
Standard Atmosphere 1.01325< 10°Pa
Avogadro’s Number 60225x 107

1 cal 4.184]

7. You may need the following results from calculus:

® a2 4y, _ 7 B a2y _ L0 amn _ _agtel]
J’_ooe dx =vV2mla, IA X e dx = a E? e -
—_—r _ 2/ _ 2/
-0 a A a
B dx Bdx 1 1
— = |n B/A ’ — = — — = l
IA X ( ) J-A x2 A B

1
In(1+x) = x, and 1—=l+x+x2+'" for |x| < 1

TuesdayOctober 27, 2015
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8. GoodLuck.

1. (20%) For each of the following quantities,\@@ a efining equation and briefly discuss their
physical meaning:

a) The isothermal compressibility b) The critical point.
c) The lav of corresponding states.  d) The diffusion flux.
e) Detailed balance.

2. (20%) Starting from the Maxwell-Boltzmannelocity distribution, devie an expression for
the average number of reagg wllisions on a surface per unit area per unit time. Assume that
the normal component of velocity must exceed some threshold velocity for reaction to occur.

3. (20%, Castellan,Problem 32.37)A mechanism proposed for the gas phase decomposition
of N,Os is

kq k
N,Os = NO, + NO; = NO+ 0O, + NO, (3.1)
k_
and '
ks
NO+ NO; - 2NO,. (3.2)

a)  Writeout kinetic equations for each of the specieslired in this mechanism.

b) Invoke the steady-state approximation fdO; and NO and dene the rate of disappear
ance 0fN,Os.

c) Briefly discuss your result; in particuJalomment on ay limiting cases where simplg"
order kinetics is obtained.

4. (20%, From the homework, Silbey Alberty & Bawendi, Problem 17.45)The vapor pres-
sure of water at 2& is 3160 Pa. (a) Ifwery water molecule that strikes the swoé of liquid
water sticks, what is the rate o¥aporation of molecules from a square centimeter ofasef?
(b) Using this result, find the rate ofsporation ing cm™ s™* of water into perfectly dry air.

5. (20%)

a) Wiritedown the van der \A&ls equation of state and briefly explain the physical origin of
the various modifications to the ideal gas.la

b)  Shav how the van der \&lls equation leads to the appearance of a critical pdative
the equations giving the critical poiryiou dont need to solve them

TuesdayOctober 27, 2015
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c) Shav how to turn the van der Waals equation into virial expansion; in partjowlaat is
the second virial coefficient?

TuesdayOctober 27, 2015
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20. Past Final Exams

20.1. 201ZFinal Exam

INSTRUCTIONS

Nobooks or notes are permittedranslation dictionaries and calculators are permitted.
Answerall questions in the exam book and\stal work clearly.

Thereare 3 pages (including this one) and 5 questions, each of equal value.

Besure to indicate the total number of exam books handed in on book 1.

Keep the exam.

S R o

Useful Constants

Constant Ylue
Gas Constant, R 8.31442K * mol™
Boltzmanns Constantkg ~ 1.381x 1022J/K
Standard Atmosphere 1.01325< 10°Pa
Avogadro’s Number 60225x 107
1cal 4.184J

7. You may need the following results from calculus:

J'°° e 2y = Vorla, J‘B X @ 24y = E E?—aAZ/Z _ e—aBZ/ZD
—00 A a O

B 3g-axi2 (aA2 + 2)e‘aA2’2 - (aB2 + 2)e—a82/2
_IA Xe dx = = ’

B dx Bdx 1 1
IA?_In(B/A)’ IAQ_K_E’

1
In(1+x) = x, and m=1+x+x2+-" for |x| < 1

8. GoodLuck.

Monday December 17, 2012
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1. (20%, Castellan, Problem 32.36)Consider the following mechanism for the decomposition
of ozone into oxygen:

Kq
O; 2 0,+0 (1)
Ky
and
Ky
0O3+0 - 20,. 2

a) Derve the rate expressions for each specieslved in the reaction.

b) Whatspecies is the most likely to be an intermediate? What happens toxypoesson
for dOs/dt in this case?

C) Underwhat condition will the reaction be first order in ozort&fonv how the equation for
dOs/dt reduces in this situation.

2. (20%) For each of the following gie a cfinition (an equation is sufficient as long as you
define your terms):

a) A Maxwell relation. b) TheClausius Inequality.
¢) The third Lav of Thermodynamics.  d) Maximum work obtainable from a
constant T,N process.
e) The chemical potential of one of the components in an ideal gas mixture.

3. (20%)

a)  Whatis the Joule-Thompson expansion?

b)  Shavwhat remains constant during the Joule-Thompson expansion.
c) Definethe Joule-Thompson coefficientrt

d) Shavthat
\
=——(@-aT

wherea EV‘l(aV/aT)p,N is the thermal expansion ctiefent. (Note you dont haveto
use the devition we initially discussed in class).

Monday December 17, 2012
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4. (20%)

Dervve the general expression\goning where a chemical reaction comes to equilibrium;
use the corention that the stochiometric coefficients arewith v; < 0 for reactants and
> O for products. Do not assume ideality (see the next part).

a)

b)

c)

d)

5. (From the homework, 20% Castellan, Problem 11.8) At 500K and 1 atm weehihe data:

One mole ofH, and one mole of, are placed in a vessel at 500K. At this temperature only

-136-

Shav how your general pression in part a) simplifies for chemical reactions in ideal g

Whatis Kp and hav is it used to determine the composition at equilibium in an idasl g

Useyour expression in part c) to dezithe Gibbs-Helmholtz equation.

AHZ
Substance ., 5,0 (J/%cr)?lol)
Hi(g) 3241 221.63
Ha(q) 588 14564
1,() 6075  279.94

gases are present and the equilibrium

is established.CalculateKp at 500K and the mole fraction of HI present at 500K and 1 atm;

Ha(g) +12(9) = 2HI(9)

shawv your work. Whathappens at 10 atm?

Monday December 17, 2012
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20.2. 2013 Final Exam

INSTRUCTIONS

Nobooks or notes are permittedranslation dictionaries and calculators are permitted.
Answerall questions in the exam book and\statl work clearly.

Thereare 3 pages (including this one) and 5 questions, each of equal value.

Besure to indicate the total number of exam books handed in on book 1.

Keep the exam.

2 S o

Useful Constants

Constant Ylue
Gas Constant, R 8.31442K * mol™
Boltzmanns Constantkg ~ 1.381x 1022J/K
Standard Atmosphere 1.01325< 10°Pa
Avogadro’s Number 60225x 107
1cal 4.184J

7. You may need the following results from calculus:

® a2 4y — T B a2y, _ E Ll -am22 _ -aB?2U]
J’_ooe dx =V2rla, IA X e dx = a De e -
—_—r—— _ 2/ _ 2/
-0 a A a
B dx Bdx 1 1
— =In(B/A), — ===,
IA X ( ) J-A x> A B

1
In(1+x) = x, and 1—=1+x+x2+'" for |x| < 1

8. GoodLuck.

1. (20%) One of the problems with solar eggrsystems is the need to store the solar energy for
use at night or on cloudy days. One suggestion is to use the solar energy to dehydtettea h
and then rehydrate the material as needext example, consider

Friday, December 6, 2013
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CuSQ [bH,0(s) - CuSQ(s)+5H,0(0g) (1.2)
and
25C
CuSQ(s) +5H,0(l) - CuSQ BH,O(s). (1.2)

Given the data in the table,

Table 1: Some Thermochemical Data at 25C

Compound AH? AG? S
(kcal/mol)  (kcal/mol)  (cal/Kmol)
CuSQ(s) -184.00 -158.2 27.1
CuSQ [BbH,0(s) -544.45 -449.3 73.0
H,O(l) -68.32 -56.69 16.72
H,0(q) -57.80 -54.64 45.11

'From Langes Handbook of ChemistryOth edition.

a) ComputéAH,y,, AG,,, and AS,, at 25C for each reaction.
b)  How much solar energy is required to dehydrate the copper sulphate?
c) How much heat is released upon rehydration?

d) Atwhat (if any) temperature does the dehydration step become spontar¢musfuch
heat is required? What assumptions are you making?

2. (20%) Consider the Langmuir model for surface adsorption kinetics:

Ky
A+S ~ AS (2.1)

«—

K-y

whereAis a gas-phase adsorbate &1id the surhce. Langmuiassumed that the surface izs
binding sites per unit area, and that adsorpti@s womplete when all the binding sites are
bound. Inaddition he assumed that the gas is igdagxcess (i.e., the bulk gas concentration is
negligibly changed by the adsorption processnewith 100% ceerage). Introducehe frac-
tional surface ceered,6(t), as

[AS = N@(t) and [S] = N[1 - 6(t)] (2.2)

and:

a)  Writedown the kinetic equation for the fractionaverage. Expresgour answer in terms
of the adsorbats’partial pressure in the gas phase.

b)  Whatdoes your answer in a) predict for the pressure dependence of the fractveradeo
at equilibrium? Sketch your result. (This is known as the Langmuir adsorption isotherm).

Friday, December 6, 2013
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c) Assumingthat 8(0) = 0, sole the kinetic equations to \@ the time dependence of the
adsorption.

d)  How would you plot your data to demonstrate the validity of the mechanism?

3. (20%) Give the Clausius and Kelvin (Thompson) statements of the Secamabi@hermo-
dynamics. Shw that if the Clausius statement is correct then the Kelvin statement must also be.

4. (20%)

a) Gwve mathematical definitions for the folldng thermodynamic quantities,vg their dif-
ferential forms and naturabviables, and state whether the quantity is a minimum or maxi-
mum at equilibrium under certain conditions (specify them):

i) Enegy i) Enthalpy
i) Entropy  iv) Helmholtz Free Energy
V) Gibbs Free Energy

b)  UseMaxwell relations to expre<s, — C,, in terms ofa, «, T, and V.
c) Derve LeChatelliers principle.

5. (20% From the Homework: Castellan, Problem 11.32)For the reaction

Ha(l) +10,(9) = HgO(s),

0.42x10°
AGS,, = -91044+1.54T InT +103. 8T - 10.33x 10°T? - —— (J/mol),

whereT is the absolute temperature.
a)  Whatis the vapor pressure of oxygeveoliquid mercury and solid HgO at 600K?

b)  ExpressnKp, AHY,, andASS, as functions of temperature.

Friday, December 6, 2013
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20.3. 2014 Final Exam

INSTRUCTIONS

1. Nobooks or notes are permittedranslation dictionaries and calculators are permitted.
2. Answerall questions in the exam book and\statl work clearly.

3. Thereare 3 pages (including this one) and 5 questions, each is of edqual MOTE
THAT THE EXAM IS PRINTED ON BOTH SIDES OF THE PAPER.

4. Besure to indicate the total number of exam books handed in on book 1.

5. Keep the exam.

Useful Constants

Constant ¥lue
Gas Constant, R 8.31442K * mol™
Boltzmanns Constantkg ~ 1.381x 1022J/K
Standard Atmosphere 1.01325x 10°Pa
Avogadro’s Number 60225x 107
1 cal 4.184J

7. You may need the following results from calculus:

Q- _ax22 = B —ax2/2 B E 0 _amr2 —aBZIZD
I_ooe dx = V27la, IA x & %2 gy = — 3 esfel
N i .
J_oo 2 @l2 gy = VZnla | J_B B2y = (a2 + 2)g 2~ —2(a82 +2)e B2 |
T a A a
B dx Bdx 1 1
J.A X ( ) J.A X2 A B

8. GoodLuck.
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1. (20%) Consider the following mechanism for a gas-phase reaction:

kg ka
AY 2 A+Y and A+X 2 AX. (1.1)
K1 K_o
a) Whatis the werall reaction and what is the intermediate?
b)  Writeout kinetic equations for the concentrations of each species.
c)  Shav that the mechanism conserves total A, X andHW({: think of each of these as an
individual atom).
d) Invoke the steady-state approximation and use it to eliminate the intermgdaieéntra-
tion from the remaining kinetic equations.
e) Commenbn the order of the resulting rate expressions in various limits.
2. (20%)
a) Sletch the pressure-volume diagram for\eersible Carnot gcle in an ideal gs. Besure
to label the conditions for the sub-paths of the process.
b) Calculatehe amounts of heat and work absorbed by the system in each part of the cycle.
c)  Useyour results in part b) to find the engine efficiefar the cycle.
d) Usethe Kelvin formulation of the Second Wwaof Thermodynamics and your result in part
c) to obtain the Clausius inequality.
e) How does your result in part d) lead to the definition of the entropy?
3. (20%)
a) Ingeneral, sho that
Cy a aViQ
ds= Y dT+ L av+ Bé—— N, 3.1
R 1)
wherea = V‘1(6V/0T)P,N andx« = —V‘l(OV/aP)T,N_, are the thermal expansion cteient
and isothermal compressibilityespectiely, while § andV; are the partial molar entrpp
and volume, respeusly.
b)  Shavthat
VTa®
Cp-Cy = K" , (3.2)

Monday December 15, 2014



2014 Final Exam -142- Chemistry223

HINT: Where possible, use the much simpberd shorterderivations based on the techniques
we developed later on in the course.

4. (20%)
a) How does the chemical potential in a one component ideal gas depend on pressure? Why?

b)  Useyour result in part a) to deduce the forms of the chemical potentials in an &deal g
mixture.

c) Whatgoverns the point at which a chemical reaction comes to equilibrium in a system
with constant, B and N? Why?

d)  Byusing your results in parts a)--c), shbow the standard equilibrium constant formula-
tion of chemical equilibrium in@ses can be obtained. Whakis, the constant pressure
equilibrium constant.

e) Derve the Gibbs-Helmholtz equation g&ning the temperature dependence of the equi-
librium constant.

5. (20%) Silbey, Alberty and Bawendi, Problem 5.64)Consider the reaction
2NOCI(g) = 2NO(qg) + Cl»(9)

at 1 atm total pressure and 227 The partial pressure of the nitrosyl chloridédClI) is 0.64
atm and onlyNOCI was present initially.

a) CalculateAGES?1 for this reaction.

b)  Atwhat total pressure will the partial pressur€gfbe 0.1 atm?

Monday December 15, 2014
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20.4. 2015 Final Exam

INSTRUCTIONS

1. Nobooks or notes are permittedranslation dictionaries and calculators are permitted.
2. Answerall questions in the exam book and\statl work clearly.

3. Thereare 3 pages (including this one) and 5 questions, each is of equal value.

4. Besure to indicate the total number of exam books handed in on book 1.

5. If you want me to grade material on the left hand page, indicate so explicitly.

6. Donot write in red.

7.  Keep the exam.

8.

Useful Constants

Constant Ylue
Gas Constant, R 8.31442K * mol™
Boltzmanns Constantkg ~ 1.381x 1022J/K
Standard Atmosphere 1.01325< 10°Pa
Avogadro’s Number 60225x 107
1cal 4.184J

9. You may need the following results from calculus:

® a2 4y — T B a2y, _ E Ll -am22 _ -aB?2U]
I_ooe dx =V2nla, IA X € dx = a = e -
T —aAl/ —aB?/
—00 a A a
B dx Bdx 1 1
— =1In(B/A), — = — - —,
I A X ( ) .[ A X A B

10. GoodLuck.
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1. (20%) For the reaction
A - Products (20.4.1.1)

Lindemann showed kofirst order kinetics can arise homogenequsithout having to imolve
surfaces and/or externally applied radiation.

a)  Whatis the Lindemann mechanism?

b)  Apply the steady state approximation and use the result teedbe rates of product fer
mation andA disappearance.

C) Ingeneral, what, if an is the order of the reaction?
d) Inwhat limits are first or second order kinetics obtained?

e) How else might homogeneous first order kinetics be obtained?

2. (20%)

a) Describethe Joule-Thompson expansion andvshwhat state function remains constant
during the experiment.

b)  Definethe Joule-Thompson coefficientp

c)  Shavthat
\Y
M =—-—=—(@Q-aT), (20.4.2.1)
Ce

wherea is the thermal expansion coefficient.

d)  Whatis pyr for an ideal gas?

3. (20%)
a) For an ideal gas momuch work and heat are absorbed by the system, as wil,as
i) Thegas is panded reersibly and isothermally fromT{y, V4) to (T, V5').

i)  The gas is xpanded reersibly and adiabatically fromilg,V,') to (T¢ V,). Dearve
an expression showing hovg' andV, related tory andT?

b)  Sketch the reersible Carnot cycle and use your results in part a) tor shat

Qu , Q_y (20.4.3.1)

Tw  Tc
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c)  Whatis the engine efficierycn, of the reversible Carnot Engine?

d) i) Whatis the Clausius statement of the Secomnd bAThermodynamics?

i)  Use the Clausius statement to shahat the efficiencies of all versible Carnot
engines are the same.

4. (20%, FROM THE HOMEW ORK) Consider a system comprised ofotd000g blocks of
copper €, = 0. 1cal/g/°K). If one block is at 300K and the other is at 500K, what is the maxi-
mum amount of wrk that can be extracted from the system if no additional heat is allowed to
flow into or out of the systemWhat will the final temperature be after the work x&racted?
Describe a process whereby you could extract the maximank vin working out this problem,
ignore ay PV work associated with the expansion of the blocks.

5. (20%)
a) For the Helmholtz (A) and Gibbs (G) Free energies
i) Give their definitions and slwowhat their differentials are.
i)  Underwhat conditions does each determine stable equilibrium? How?
iii) In what sense a®A or AG related to the possible work obtainable in some process?

b)  Supposeve hare a hiemical reaction
> VA =0, (20.4.5.1)
i
under constant mass, temperature \aidmeconditions.
)] Work out what the general equilibrium condition.

i)  Whatdoes it become if all reactants and products are ideal gases?

i)  Considerthe reaction
N>0O4(9) = 2NO,(Q). (20.4.5.2)

Assuming that there wend; moles ofN,O, initially and noNO,, what fraction of
N,O, has dissociated at equilibrium under constant volume conditions?

ThursdayDecember 17, 2015
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