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Preface to the second edition

In the ten years that have passed since the publication of the first edition of this text-
book exciting advances have taken place in every discipline of geophysics.
Computer-based improvements in technology have led the way, allowing more
sophistication in the acquisition and processing of geophysical data. Advances in
mass spectrometry have made it possible to analyze minute samples of matter in
exquisite detail and have contributed to an improved understanding of the origin of
our planet and the evolution of the solar system. Space research has led to better
knowledge of the other planets in the solar system, and has revealed distant objects
in orbit around the Sun. As a result, the definition of a planet has been changed.
Satellite-based technology has provided more refined measurement of the gravity
and magnetic fields of the Earth, and has enabled direct observation from space of
minute surface changes related to volcanic and tectonic events. The structure, com-
position and dynamic behavior of the deep interior of the Earth have become better
understood owing to refinements in seismic tomography. Fast computers and
sophisticated algorithms have allowed scientists to construct plausible models of
slow geodynamic behavior in the Earth’s mantle and core, and to elucidate the
processes giving rise to the Earth’s magnetic field. The application of advanced
computer analysis in high-resolution seismic reflection and ground-penetrating
radar investigations has made it possible to describe subtle features of environmen-
tal interest in near-surface structures. Rock magnetic techniques applied to sedi-
ments have helped us to understand slow natural processes as well as more rapid
anthropological changes that affect our environment, and to evaluate climates in the
distant geological past. Climatic history in the more recent past can now be deduced
from the analysis of temperature in boreholes.

Although the many advances in geophysical research depend strongly on the aid
of computer science, the fundamental principles of geophysical methods remain the
same; they constitute the foundation on which progress is based. In revising this
textbook, I have heeded the advice of teachers who have used it and who recom-
mended that I change as little as possible and only as much as necessary (to para-
phrase medical advice on the use of medication). The reviews of the first edition, the
feedback from numerous students and teachers, and the advice of friends and col-
leagues helped me greatly in deciding what to do.

The structure of the book has been changed slightly compared to the first
edition. The final chapter on geodynamics has been removed and its contents inte-
grated into the earlier chapters, where they fit better. Text-boxes have been intro-
duced to handle material that merited further explanation, or more extensive
treatment than seemed appropriate for the body of the text. Two appendices have
been added to handle more adequately the three-dimensional wave equation and the
cooling of a half-space, respectively. At the end of each chapter is a list of review
questions that should help students to evaluate their knowledge of what they have
read. Each chapter is also accompanied by a set of exercises. They are intended to
provide practice in handling some of the numerical aspects of the topics discussed
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Preface

in the chapter. They should help the student to become more familiar with geophys-
ical techniques and to develop a better understanding of the fundamental princi-
ples.

The first edition was mostly free of errata, in large measure because of the
patient, accurate and meticulous proofreading by my wife Marcia, whom I sincerely
thank. Some mistakes still occurred, mostly in the more than 350 equations, and
were spotted and communicated to me by colleagues and students in time to be cor-
rected in the second printing of the first edition. Regarding the students, this did not
improve (or harm) their grades, but I was impressed and pleased that they were
reading the book so carefully. Among the colleagues, I especially thank Bob
Carmichael for painstakingly listing many corrections and Ray Brown for posing
important questions. Constructive criticisms and useful suggestions for additions
and changes to the individual revised chapters in this edition were made by Mark
Bukowinski, Clark Wilson, Doug Christensen, Jim Dewey, Henry Pollack,
Ladislaus Rybach, Chris Heinrich, Hans-Ruedi Maurer and Mike Fuller. I am very
grateful to these colleagues for the time they expended and their unselfish efforts to
help me. If errors persist in this edition, it is not their fault but due to my negligence.

The publisher of this textbook, Cambridge University Press, is a not-for-profit
charitable institution. One of their activities is to promote academic literature in the
“third world.” With my agreement, they decided to publish a separate low-cost
version of the first edition, for sale only in developing countries. This version
accounted for about one-third of the sales of the first edition. As a result, earth
science students in developing countries could be helped in their studies of geo-
physics; several sent me appreciative messages, which I treasure.

The bulk of this edition has been written following my retirement two years ago,
after 30 years as professor of geophysics at ETH Ziirich. My new emeritus status
should have provided lots of time for the project, but somehow it took longer than I
expected. My wife Marcia exhibited her usual forbearance and understanding for
my obsession. I thank her for her support, encouragement and practical sugges-
tions, which have been as important for this as for the first edition. This edition is
dedicated to her, as well as to my late parents.

William Lowrie
Ziirich
August, 2006
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1 The Earth as a planet

1.1 THE SOLAR SYSTEM
1.1.1 The discovery and description of the planets

To appreciate how impressive the night sky must have
been to early man it is necessary today to go to a place
remote from the distracting lights and pollution of urban
centers. Viewed from the wilderness the firmaments
appear to the naked eye as a canopy of shining points,
fixed in space relative to each other. Early observers noted
that the star pattern appeared to move regularly and used
this as a basis for determining the timing of events. More
than 3000 years ago, in about the thirteenth century
BC, the year and month were combined in a working cal-
endar by the Chinese, and about 350 BC the Chinese
astronomer Shih Shen prepared a catalog of the positions
of 800 stars. The ancient Greeks observed that several
celestial bodies moved back and forth against this fixed
background and called them the planetes, meaning “wan-
derers.” In addition to the Sun and Moon, the naked eye
could discern the planets Mercury, Venus, Mars, Jupiter
and Saturn.

Geometrical ideas were introduced into astronomy by
the Greek philosopher Thales in the sixth century BC. This
advance enabled the Greeks to develop astronomy to its
highest point in the ancient world. Aristotle (384-322 BC)
summarized the Greek work performed prior to his time
and proposed a model of the universe with the Earth at its
center. This geocentric model became imbedded in reli-
gious conviction and remained in authority until late into
the Middle Ages. It did not go undisputed; Aristarchus of
Samos (c.310-c.230 BC) determined the sizes and dis-
tances of the Sun and Moon relative to the Earth and
proposed a heliocentric (sun-centered) cosmology. The
methods of trigonometry developed by Hipparchus
(190-120 BC) enabled the determination of astronomical
distances by observation of the angular positions of celes-
tial bodies. Ptolemy, a Greco-Egyptian astronomer in the
second century AD, applied these methods to the known
planets and was able to predict their motions with remark-
able accuracy considering the primitiveness of available
instrumentation.

Until the invention of the telescope in the early seven-
teenth century the main instrument used by astronomers
for determining the positions and distances of heavenly
bodies was the astrolabe. This device consisted of a disk

to distant star

A A

Fig. 1.1 lllustration of the method of parallax in which two measured
angles (6, and 6,) are used to compute the distances (p, and p,) of a
planet from the Earth in terms of the Earth—-Sun distance (s).

of wood or metal with the circumference marked off in
degrees. At its center was pivoted a movable pointer
called the alidade. Angular distances could be deter-
mined by sighting on a body with the alidade and reading
off its elevation from the graduated scale. The inventor of
the astrolabe is not known, but it is often ascribed to
Hipparchus (190-120 BC). It remained an important tool
for navigators until the invention of the sextant in the
eighteenth century.

The angular observations were converted into dis-
tances by applying the method of parallax. This is simply
illustrated by the following example. Consider the planet
P as viewed from the Earth at different positions in the
latter’s orbit around the Sun (Fig. 1.1). For simplicity,
treat planet P as a stationary object (i.e., disregard the
planet’s orbital motion). The angle between a sighting on
the planet and on a fixed star will appear to change
because of the Earth’s orbital motion around the Sun.
Let the measured extreme angles be 6, and 60, and the

1



2 The Earth as a planet

distance of the Earth from the Sun be s; the distance
between the extreme positions E and E’ of the orbit is
then 2s. The distances p, and p, of the planet from the
Earth are computed in terms of the Earth-Sun distance
by applying the trigonometric law of sines:

p, sin(90—4,) cosf,
2s sin(6, +6,) - sin(6, +6,)
12 coso,

25 sin(6, + 6,)

(1.1)

Further trigonometric calculations give the distances
of the planets from the Sun. The principle of parallax
was also used to determine relative distances in the
Aristotelian geocentric system, according to which the
fixed stars, Sun, Moon and planets are considered to be in
motion about the Earth.

In 1543, the year of his death, the Polish astronomer
Nicolas Copernicus published a revolutionary work in
which he asserted that the Earth was not the center of the
universe. According to his model the Earth rotated about
its own axis, and it and the other planets revolved about
the Sun. Copernicus calculated the sidereal period of each
planet about the Sun; this is the time required for a planet
to make one revolution and return to the same angular
position relative to a fixed star. He also determined the
radii of their orbits about the Sun in terms of the
Earth—Sun distance. The mean radius of the Earth’s orbit
about the Sun is called an astronomical unit; it equals
149,597,871 km. Accurate values of these parameters
were calculated from observations compiled during an
interval of 20 years by the Danish astronomer Tycho
Brahe (1546-1601). On his death the records passed to his
assistant, Johannes Kepler (1571-1630). Kepler suc-
ceeded in fitting the observations into a heliocentric model
for the system of known planets. The three laws in which
Kepler summarized his deductions were later to prove
vital to Isaac Newton for verifying the law of Universal
Gravitation. It is remarkable that the database used by
Kepler was founded on observations that were unaided by
the telescope, which was not invented until early in the sev-
enteenth century.

1.1.2 Kepler's laws of planetary motion

Kepler took many years to fit the observations of Tycho
Brahe into three laws of planetary motion. The first and
second laws (Fig. 1.2) were published in 1609 and the
third law appeared in 1619. The laws may be formulated
as follows:

(1) the orbit of each planet is an ellipse with the Sun at
one focus;

(2) the orbital radius of a planet sweeps out equal areas
in equal intervals of time;

(3) the ratio of the square of a planet’s period (7%) to the
cube of the semi-major axis of its orbit (a?) is a con-
stant for all the planets, including the Earth.

Aphelion

Fig. 1.2 Kepler's first two laws of planetary motion: (1) each planetary
orbit is an ellipse with the Sun at one focus, and (2) the radius to a
planet sweeps out equal areas in equal intervals of time.

Kepler’s three laws are purely empirical, derived from
accurate observations. In fact they are expressions of
more fundamental physical laws. The elliptical shapes of
planetary orbits (Box 1.1) described by the first law are a
consequence of the conservation of energy of a planet
orbiting the Sun under the effect of a central attraction
that varies as the inverse square of distance. The second
law describing the rate of motion of the planet around its
orbit follows directly from the conservation of angular
momentum of the planet. The third law results from the
balance between the force of gravitation attracting the
planet towards the Sun and the centrifugal force away
from the Sun due to its orbital speed. The third law is
easily proved for circular orbits (see Section 2.3.2.3).

Kepler’s laws were developed for the solar system but
are applicable to any closed planetary system. They govern
the motion of any natural or artificial satellite about a
parent body. Kepler’s third law relates the period (7) and
the semi-major axis (a) of the orbit of the satellite to the
mass (M) of the parent body through the equation

2
4’ 5

GMZFG

(1.2)
where G is the gravitational constant. This relationship
was extremely important for determining the masses of
those planets that have natural satellites. It can now be
applied to determine the masses of planets using the
orbits of artificial satellites.

Special terms are used in describing elliptical orbits.
The nearest and furthest points of a planetary orbit
around the Sun are called perihelion and aphelion, respec-
tively. The terms perigee and apogee refer to the corre-
sponding nearest and furthest points of the orbit of the
Moon or a satellite about the Earth.

1.1.3 Characteristics of the planets

Galileo Galilei (1564-1642) is often regarded as a founder
of modern science. He made fundamental discoveries in
astronomy and physics, including the formulation of the
laws of motion. He was one of the first scientists to use
the telescope to acquire more detailed information about



1.1 THE SOLAR SYSTEM

The orbit of a planet or comet in the solar system is an
ellipse with the Sun at one of its focal points. This con-
dition arises from the conservation of energy in a force
field obeying an inverse square law. The total energy
(E) of an orbiting mass is the sum of its kinetic energy
(K) and potential energy (U). For an object with mass
m and velocity v in orbit at distance r from the Sun

(mass S)

%mvz— Gm7S=E=constant (1)

If the kinetic energy is greater than the potential
energy of the gravitational attraction to the Sun (£>0),
the object will escape from the solar system. Its path is a
hyperbola. The same case results if E=0, but the path is
a parabola. If E<0, the gravitational attraction binds
the object to the Sun; the path is an ellipse with the Sun
at one focal point (Fig. B1.1.1). An ellipse is defined as
the locus of all points in a plane whose distances s, and
s, from two fixed points F, and F, in the plane have a
constant sum, defined as 2a:

s;+s8,=2a 2)

The distance 2a is the length of the major axis of the
ellipse; the minor axis perpendicular to it has length 25,
which is related to the major axis by the eccentricity of
the ellipse, e:

e=Al1-% 3)

The equation of a point on the ellipse with Cartesian
coordinates (x, y) defined relative to the center of the
figure is

X2, P

The elliptical orbit of the Earth around the Sun
defines the ecliptic plane. The angle between the orbital
plane and the ecliptic is called the inclination of the
orbit, and for most planets except Mercury (inclination
7°) and Pluto (inclination 17°) this is a small angle. A
line perpendicular to the ecliptic defines the North and
South ecliptic poles. If the fingers of one’s right hand
are wrapped around Earth’s orbit in the direction of
motion, the thumb points to the North ecliptic pole,
which is in the constellation Draco (“the dragon™).
Viewed from above this pole, all planets move around
the Sun in a counterclockwise (prograde) sense.

Box 1.1: Orbital parameters

A = aphelion
P = perihelion

Fig. B1.1.1 The parameters of an elliptical orbit.

Pole to
line of ecliptic North
equinoxes celestial
\

autumnal
equinox

equatorial

. ecliptic
plane /

plane

summer
solstice

winter
solstice

vernal \|
equinox

Fig. B1.1.2 The relationship between the ecliptic plane, Earth’s
equatorial plane and the line of equinoxes.

The rotation axis of the Earth is tilted away from
the perpendicular to the ecliptic forming the angle of
obliquity (Fig. B1.1.2), which is currently 23.5°. The
equatorial plane is tilted at the same angle to the eclip-
tic, which it intersects along the line of equinoxes.
During the annual motion of the Earth around the Sun,
this line twice points to the Sun: on March 20, defining
the vernal (spring) equinox, and on September 23,
defining the autumnal equinox. On these dates day and
night have equal length everywhere on Earth. The
summer and winter solstices occur on June 21 and
December 22, respectively, when the apparent motion of
the Sun appears to reach its highest and lowest points in
the sky.

the planets. In 1610 Galileo discovered the four largest
satellites of Jupiter (called Io, Europa, Ganymede and
Callisto), and observed that (like the Moon) the planet
Venus exhibited different phases of illumination, from full

disk to partial crescent. This was persuasive evidence in
favor of the Copernican view of the solar system.

In 1686 Newton applied his theory of Universal
Gravitation to observations of the orbit of Callisto and



4 The Earth as a planet

Table 1.1 Dimensions and rotational characteristics of the planets (data sources: Beatty et al., 1999; McCarthy and Petit,
2004, National Space Science Data Center, 2004 [http./Inssdc.gsfc.nasa.goviplanetaryl | )

The great planets and Pluto are gaseous. For these planets the surface on which the pressure is 1 atmosphere is taken as the
effective radius. In the definition of polar flattening, @ and ¢ are respectively the semi-major and semi-minor axes of the

spheroidal shape.
Mass Mean Sidereal Polar Obliquity

Mass relative density Equatorial rotation flattening of rotation
Planet M[10%kg] toEarth [kgm™3] radius[km] period[days] f=(a—c)la axis[]
Terrestrial planets and the Moon
Mercury 0.3302 0.0553 5,427 2,440 58.81 0.0 0.1
Venus 4.8369 0.815 5,243 6,052 243.7 0.0 177.4
Earth 5.974 1.000 5,515 6,378 0.9973 0.003353 23.45
Moon 0.0735 0.0123 3,347 1,738 27.32 0.0012 6.68
Mars 0.6419 0.1074 3,933 3,397 1.0275 0.00648 25.19
Great planets and Pluto
Jupiter 1,899 317.8 1,326 71,492 0.414 0.0649 3.12
Saturn 568.5 95.2 687 60,268 0.444 0.098 26.73
Uranus 86.8 14.4 1,270 25,559 0.720 0.023 97.86
Neptune 102.4 17.15 1,638 24,766 0.671 0.017 29.6
Pluto 0.125 0.0021 1,750 1,195 6.405 — 122.5

calculated the mass of Jupiter (J) relative to that of the
Earth (E). The value of the gravitational constant G was
not yet known; it was first determined by Lord Cavendish
in 1798. However, Newton calculated the value of GJ to
be 124,400,000 km? s~2. This was a very good determina-
tion; the modern value for GJ is 126,712,767 km? s~2.
Observations of the Moon’s orbit about the Earth
showed that the value GE was 398,600km?3 s=2. Hence
Newton inferred the mass of Jupiter to be more than 300
times that of the Earth.

In 1781 William Herschel discovered Uranus, the first
planet to be found by telescope. The orbital motion of
Uranus was observed to have inconsistencies, and it was
inferred that the anomalies were due to the perturbation
of the orbit by a yet undiscovered planet. The predicted
new planet, Neptune, was discovered in 1846. Although
Neptune was able to account for most of the anomalies of
the orbit of Uranus, it was subsequently realized that
small residual anomalies remained. In 1914 Percival
Lowell predicted the existence of an even more distant
planet, the search for which culminated in the detection of
Pluto in 1930.

The masses of the planets can be determined by apply-
ing Kepler’s third law to the observed orbits of natural
and artificial satellites and to the tracks of passing space-
craft. Estimation of the sizes and shapes of the planets
depends on data from several sources. Early astronomers
used occultations of the stars by the planets; an occulta-
tion is the eclipse of one celestial body by another, such as
when a planet passes between the Earth and a star. The
duration of an occultation depends on the diameter of the
planet, its distance from the Earth and its orbital speed.

The dimensions of the planets (Table 1.1) have been
determined with improved precision in modern times by the

availability of data from spacecraft, especially from radar-
ranging and Doppler tracking (see Box 1.2). Radar-ranging
involves measuring the distance between an orbiting (or
passing) spacecraft and the planet’s surface from the two-
way travel-time of a pulse of electromagnetic waves in the
radar frequency range. The separation can be measured
with a precision of a few centimeters. If the radar signal is
reflected from a planet that is moving away from the space-
craft the frequency of the reflection is lower than that of the
transmitted signal; the opposite effect is observed when the
planet and spacecraft approach each other. The Doppler
frequency shift yields the relative velocity of the spacecraft
and planet. Together, these radar methods allow accurate
determination of the path of the spacecraft, which is
affected by the mass of the planet and the shape of its grav-
itational equipotential surfaces (see Section 2.2.3).

The rate of rotation of a planet about its own axis can
be determined by observing the motion of features on its
surface. Where this is not possible (e.g., the surface of
Uranus is featureless) other techniques must be
employed. In the case of Uranus the rotational period of
17.2hr was determined from periodic radio emissions
produced by electrical charges trapped in its magnetic
field; they were detected by the Voyager 2 spacecraft
when it flew by the planet in 1986. All planets revolve
around the Sun in the same sense, which is counterclock-
wise when viewed from above the plane of the Earth’s
orbit (called the ecliptic plane). Except for Pluto, the
orbital plane of each planet is inclined to the ecliptic at a
small angle (Table 1.2). Most of the planets rotate about
their rotation axis in the same sense as their orbital
motion about the Sun, which is termed prograde. Venus
rotates in the opposite, retrograde sense. The angle
between a rotation axis and the ecliptic plane is called the
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The name radar derives from the acronym for RAdio
Detection And Ranging, a defensive system developed
during World War II for the location of enemy aircraft.
An electromagnetic signal in the microwave frequency
range (see Fig. 4.59), consisting of a continuous wave or
a series of short pulses, is transmitted toward a target,
from which a fraction of the incident energy is reflected
to a receiver. The laws of optics for visible light apply
equally to radar waves, which are subject to reflection,
refraction and diffraction. Visible light has short wave-
lengths (400-700nm) and is scattered by the atmos-
phere, especially by clouds. Radar signals have longer
wavelengths (~1cm to 30cm) and can pass through
clouds and the atmosphere of a planet with little disper-
sion. The radar signal is transmitted in a narrow beam
of known azimuth, so that the returning echo allows
exact location of the direction to the target. The signal
travels at the speed of light so the distance, or range, to
the target may be determined from the time difference at
the source between the transmitted and reflected signals.

The transmitted and reflected radar signals lose
energy in transit due to atmospheric absorption, but
more importantly, the amplitude of the reflected signal is
further affected by the nature of the reflecting surface.
Each part of the target’s surface illuminated by the radar
beam contributes to the reflected signal. If the surface is
inclined obliquely to the incoming beam, little energy
will reflect back to the source. The reflectivity and rough-
ness of the reflecting surface determine how much of the
incident energy is absorbed or scattered. The intensity of
the reflected signal can thus be used to characterize the
type and orientation of the reflecting surface, e.g.,
whether it is bare or forested, flat or mountainous.

The Doppler effect, first described in 1842 by an
Austrian physicist, Christian Doppler, explains how the
relative motion between source and detector influences
the observed frequency of light and sound waves. For

Box 1.2: Radar and the Doppler effect

example, suppose a stationary radar source emits a
signal consisting of 7, pulses per second. The frequency
of pulses reflected from a stationary target at distance d
is also n, and the two-way travel-time of each pulse is
equal to 2(d/c), where c is the speed of light. If the target
is moving toward the radar source, its velocity v shortens
the distance between the radar source and the target by
(vt/2), where ¢ is the new two-way travel-time:

t=2(d_ (cvt/Z)) =1y~ 4t (1)

t=t,/(1+v/c) (2)

The travel-time of each reflected pulse is shortened,
so the number of reflected pulses (1) received per second
is correspondingly higher than the number emitted:

n=ny(l1+v/c) 3)

The opposite situation arises if the target is moving
away from the source: the frequency of the reflected
signal is lower than that emitted. Similar principles
apply if the radar source is mounted on a moving plat-
form, such as an aircraft or satellite. The Doppler
change in signal frequency in each case allows remote
measurement of the relative velocity between an object
and a radar transmitter.

In another important application, the Doppler effect
provides evidence that the universe is expanding. The
observed frequency of light from a star (i.e., its color)
depends on the velocity of its motion relative to an
observer on Earth. The color of the star shifts toward
the red end of the spectrum (lower frequency) if the star
is receding from Earth and toward the blue end (higher
frequency) if it is approaching Earth. The color of light
from many distant galaxies has a “red shift,” implying
that these galaxies are receding from the Earth.

obliquity of the axis. The rotation axes of Uranus and
Pluto lie close to their orbital planes; they are tilted away
from the pole to the orbital plane at angles greater than
90°, so that, strictly speaking, their rotations are also
retrograde.

The relative sizes of the planets are shown in Fig. 1.3.
They form three categories on the basis of their physical
properties (Table 1.1). The terrestrial planets (Mercury,
Venus, Earth and Mars) resemble the Earth in size and
density. They have a solid, rocky composition and they
rotate about their own axes at the same rate or slower
than the Earth. The great, or Jovian, planets (Jupiter,
Saturn, Uranus and Neptune) are much larger than the
Earth and have much lower densities. Their compositions
are largely gaseous and they rotate more rapidly than the
Earth. Pluto’s large orbit is highly elliptical and more

steeply inclined to the ecliptic than that of any other
planet. Its physical properties are different from both the
great planets and the terrestrial planets. These nine bodies
are called the major planets. There are other large objects
in orbit around the Sun, called minor planets, which do
not fulfil the criteria common to the definition of the
major planets. The discovery of large objects in the solar
system beyond the orbit of Neptune has stimulated
debate among astronomers about what these criteria
should be. As a result, Pluto has been reclassified as a
“dwarf planet.”

1.1.3.1 Bode’s law

In 1772 the German astronomer Johann Bode devised an
empirical formula to express the approximate distances of
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Table 1.2 Dimensions and characteristics of the planetary orbits (data sources: Beatty et al., 1999, McCarthy and Petit,
2004; National Space Science Data Center, 2004 [http:[Inssdc.gsfc.nasa.goviplanetaryl )

Mean Inclination Mean orbital Sidereal
orbital radius Semi-major Eccentricity of orbit to velocity period of
Planet [AU] axis [10° km] of orbit ecliptic [] [kms™!] orbit [yr]
Terrestrial planets and the Moon
Mercury 0.3830 57.91 0.2056 7.00 47.87 0.2408
Venus 0.7234 108.2 0.0068 3.39 35.02 0.6152
Earth 1.0000 149.6 0.01671 0.0 29.79 1.000
Moon 0.00257 0.3844 0.0549 5.145 1.023 0.0748
(about Earth)
Mars 1.520 227.9 0.0934 1.85 24.13 1.881
Great planets and Pluto
Jupiter 5.202 778.4 0.0484 1.305 13.07 11.86
Saturn 9.576 1,427 0.0542 2.484 9.69 29.4
Uranus 19.19 2,871 0.0472 0.77 6.81 83.7
Neptune 30.07 4,498 0.00859 1.77 5.43 164.9
Pluto 38.62 5,906 0.249 17.1 4.72 248
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Fig. 1.3 The relative sizes of the planets: (a) the terrestrial planets, (b)
the great (Jovian) planets and (c) Pluto, which is diminutive compared to
the others.

the planets from the Sun. A series of numbers is created in
the following way: the first number is zero, the second is
0.3, and the rest are obtained by doubling the previous
number. This gives the sequence 0, 0.3, 0.6, 1.2, 2.4, 4.8,
9.6,19.2, 38.4, 76.8, etc. Each number is then augmented
by 0.4 to give the sequence: 0.4,0.7, 1.0, 1.6, 2.8, 5.2, 10.0,
19.6, 38.8, 77.2, etc. This series can be expressed mathe-
matically as follows:

d,=04 forn=1

d,=04+0.3x2""2 forn=2 .3)

This expression gives the distance d, in astronomical
units (AU) of the nth planet from the Sun. It is usually
known as Bode’s law but, as the same relationship had
been suggested earlier by J. D. Titius of Wittenberg, it is
sometimes called Titius—Bode’s law. Examination of Fig.
1.4 and comparison with Table 1.2 show that this rela-
tionship holds remarkably well, except for Neptune and
Pluto. A possible interpretation of the discrepancies is

Mercury

0.1 T T 1
0.1 1 10 100
Distance from Sun (AU)
predicted by Bode's law

Fig. 1.4 Bode’s empirical law for the distances of the planets from
the Sun.

that the orbits of these planets are no longer their original
orbits.

Bode’s law predicts a fifth planet at 2.8 AU from the
Sun, between the orbits of Mars and Jupiter. In the last
years of the eighteenth century astronomers searched
intensively for this missing planet. In 1801 a small plane-
toid, Ceres, was found at a distance of 2.77 AU from the
Sun. Subsequently, it was found that numerous small
planetoids occupied a broad band of solar orbits centered
about 2.9 AU, now called the asteroid belt. Pallas was
found in 1802, Juno in 1804, and Vesta, the only asteroid
that can be seen with the naked eye, was found in 1807. By
1890 more than 300 asteroids had been identified. In 1891
astronomers began to record their paths on photographic
plates. Thousands of asteroids occupying a broad belt
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between Mars and Jupiter, at distances of 2.15-3.3 AU
from the Sun, have since been tracked and cataloged.
Bode’s law is not a true law in the scientific sense. It
should be regarded as an intriguing empirical relation-
ship. Some astronomers hold that the regularity of the
planetary distances from the Sun cannot be mere chance
but must be a manifestation of physical laws. However,
this may be wishful thinking. No combination of physical
laws has yet been assembled that accounts for Bode’s law.

1.1.3.2 The terrestrial planets and the Moon

Mercury is the closest planet to the Sun. This proximity
and its small size make it difficult to study telescopically.
Its orbit has a large eccentricity (0.206). At perihelion the
planet comes within 46.0 million km (0.313 AU) of the
Sun, but at aphelion the distance is 69.8 million km
(0.47 AU). Until 1965 the rotational period was thought
to be the same as the period of revolution (88 days), so
that it would keep the same face to the Sun, in the same
way that the Moon does to the Earth. However, in 1965
Doppler radar measurements showed that this is not the
case. In 1974 and 1975 images from the close passage of
Mariner 10, the only spacecraft to have visited the planet,
gave a period of rotation of 58.8 days, and Doppler track-
ing gave a radius of 2439 km.

The spin and orbital motions of Mercury are both
prograde and are coupled in the ratio 3:2. The spin period
is 58.79 Earth days, almost exactly 2/3 of its orbital
period of 87.97 Earth days. For an observer on the planet
this has the unusual consequence that a Mercury day lasts
longer than a Mercury year! During one orbital revolu-
tion about the Sun (one Mercury year) an observer on the
surface rotates about the spin axis 1.5 times and thus
advances by an extra half turn. If the Mercury year
started at sunrise, it would end at sunset, so the observer
on Mercury would spend the entire 88 Earth days
exposed to solar heating, which causes the surface tem-
perature to exceed 700 K. During the following Mercury
year, the axial rotation advances by a further half-turn,
during which the observer is on the night side of the
planet for 88 days, and the temperature sinks below
100K. After 2 solar orbits and 3 axial rotations, the
observer is back at the starting point. The range of tem-
peratures on the surface of Mercury is the most extreme
in the solar system.

Although the mass of Mercury is only about 5.5% that
of the Earth, its mean density of 5427 kgm 3 is compara-
ble to that of the Earth (5515kgm™?) and is the second
highest in the solar system. This suggests that, like Earth,
Mercury’s interior is dominated by a large iron core,
whose radius is estimated to be about 1800-1900 km. It is
enclosed in an outer shell 500-600 km thick, equivalent to
Earth’s mantle and crust. The core may be partly molten.
Mercury has a weak planetary magnetic field.

Venus is the brightest object in the sky after the Sun and
Moon. Its orbit brings it closer to Earth than any other

planet, which made it an early object of study by tele-
scope. Its occultation with the Sun was observed telescop-
ically as early as 1639. Estimates of its radius based on
occultations indicated about 6120km. Galileo observed
that the apparent size of Venus changed with its position
in orbit and, like the Moon, the appearance of Venus
showed different phases from crescent-shaped to full. This
was important evidence in favor of the Copernican helio-
centric model of the solar system, which had not yet
replaced the Aristotelian geocentric model.

Venus has the most nearly circular orbit of any planet,
with an eccentricity of only 0.007 and mean radius of
0.72 AU (Table 1.2). Its orbital period is 224.7 Earth days,
and the period of rotation about its own axis is 243.7
Earth days, longer than the Venusian year. Its spin axis is
tilted at 177° to the pole to the ecliptic, thus making its
spin retrograde. The combination of these motions results
in the length of a Venusian day (the time between succes-
sive sunrises on the planet) being equal to about 117
Earth days.

Venus is very similar in size and probable composition
to the Earth. During a near-crescent phase the planet is
ringed by a faint glow indicating the presence of an
atmosphere. This has been confirmed by several space-
craft that have visited the planet since the first visit by
Mariner 2 in 1962. The atmosphere consists mainly of
carbon dioxide and is very dense; the surface atmospheric
pressure is 92 times that on Earth. Thick cloud cover
results in a strong greenhouse effect that produces stable
temperatures up to 740K, slightly higher than the
maximum day-time values on Mercury, making Venus the
hottest of the planets. The thick clouds obscure any view
of the surface, which has however been surveyed with
radar. The Magellan spacecraft, which was placed in a
nearly polar orbit around the planet in 1990, carried a
radar-imaging system with an optimum resolution of 100
meters, and a radar altimeter system to measure the
topography and some properties of the planet’s surface.

Venus is unique among the planets in rotating in a rez-
rograde sense about an axis that is almost normal to the
ecliptic (Table 1.1). Like Mercury, it has a high Earth-like
density (5243kgm3). On the basis of its density together
with gravity estimates from Magellan’s orbit, it is thought
that the interior of Venus may be similar to that of Earth,
with a rocky mantle surrounding an iron core about
3000 km in radius, that is possibly at least partly molten.
However, in contrast to the Earth, Venus has no
detectable magnetic field.

The Earth moves around the Sun in a slightly elliptical
orbit. The parameters of the orbital motion are impor-
tant, because they define astronomical units of distance
and time. The Earth’s rotation about its own axis from one
solar zenith to the next one defines the solar day (see
Section 4.1.1.2). The length of time taken for it to com-
plete one orbital revolution about the Sun defines the solar
year, which is equal to 365.242 solar days. The eccentricity
of the orbit is presently 0.01671 but it varies between a
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minimum of 0.001 and a maximum of 0.060 with a period
of about 100,000yr due to the influence of the other
planets. The mean radius of the orbit (149,597,871 km) is
called an astronomical unit (AU). Distances within the
solar system are usually expressed as multiples of this
unit. The distances to extra-galactic celestial bodies are
expressed as multiples of a light-year (the distance trav-
elled by light in one year). The Sun’s light takes about
8 min 20s to reach the Earth. Owing to the difficulty of
determining the gravitational constant the mass of the
Earth (E) is not known with high precision, but is esti-
mated to be 5.9737 X 10%* kg. In contrast, the product GE
is known accurately; it is equal to 3.986004418 X 10'4
m? 572, The rotation axis of the Earth is presently inclined
at 23.439° to the pole of the ecliptic. However, the effects
of other planets also cause the angle of obliquity to vary
between a minimum of 21.9° and a maximum of 24.3°,
with a period of about 41,000 yr.

The Moon is Earth’s only natural satellite. The dis-
tance of the Moon from the Earth was first estimated
with the method of parallax. Instead of observing the
Moon from different positions of the Earth’s orbit, as
shown in Fig. 1.1, the Moon’s position relative to a fixed
star was observed at times 12 hours apart, close to moon-
rise and moonset, when the Earth had rotated through
half a revolution. The baseline for the measurement is
then the Earth’s diameter. The distance of the Moon from
the Earth was found to be about 60 times the Earth’s
radius.

The Moon rotates about its axis in the same sense as its
orbital revolution about the Earth. Tidal friction resulting
from the Earth’s attraction has slowed down the Moon’s
rotation, so that it now has the same mean period as its rev-
olution, 27.32 days. As a result, the Moon always presents
the same face to the Earth. In fact, slightly more than half
(about 59%) of the lunar surface can be viewed from the
Earth. Several factors contribute to this. First, the plane of
the Moon’s orbit around the Earth is inclined at 5°9" to the
ecliptic while the Moon’s equator is inclined at 1°32' to the
ecliptic. The inclination of the Moon’s equator varies by
up to 6°41’ to the plane of its orbit. This is called the libra-
tion of latitude. 1t allows Earth-based astronomers to see
6°41" beyond each of the Moon’s poles. Secondly, the
Moon moves with variable velocity around its elliptical
orbit, while its own rotation is constant. Near perigee the
Moon’s orbital velocity is fastest (in accordance with
Kepler’s second law) and the rate of revolution exceeds
slightly the constant rate of lunar rotation. Similarly, near
apogee the Moon’s orbital velocity is slowest and the rate
of revolution is slightly less than the rate of rotation. The
rotational differences are called the Moon’s libration of lon-
gitude. Their effect is to expose zones of longitude beyond
the average edges of the Moon. Finally, the Earth’s diame-
ter is quite large compared to the Moon’s distance from
Earth. During Earth’s rotation the Moon is viewed from
different angles that allow about one additional degree of
longitude to be seen at the Moon’s edge.

The distance to the Moon and its rotational rate are
well known from laser-ranging using reflectors placed on
the Moon by astronauts. The accuracy of laser-ranging is
about 2-3cm. The Moon has a slightly elliptical orbit
about the Earth, with eccentricity 0.0549 and mean
radius 384,100 km. The Moon’s own radius of 1738 km
makes it much larger relative to its parent body than the
natural satellites of the other planets except for Pluto’s
moon, Charon. Its low density of 3347 kgm ™3 may be due
to the absence of an iron core. The internal composition
and dynamics of the Moon have been inferred from
instruments placed on the surface and rocks recovered
from the Apollo and Luna manned missions. Below a
crust that is on average 68 km thick the Moon has a
mantle and a small core about 340km in radius. In con-
trast to the Earth, the interior is not active, and so the
Moon does not have a global magnetic field.

Mars, popularly called the red planet because of its hue
when viewed from Earth, has been known since prehistoric
times and was also an object of early telescopic study. In
1666 Gian Domenico Cassini determined the rotational
period at just over 24 hr; radio-tracking from two Viking
spacecraft that landed on Mars in 1976, more than three
centuries later, gave a period of 24.623hr. The orbit of
Mars is quite elliptical (eccentricity 0.0934). The large
difference between perihelion and aphelion causes large
temperature variations on the planet. The average surface
temperature is about 218 K, but temperatures range from
140K at the poles in winter to 300K on the day side in
summer. Mars has two natural satellites, Phobos and
Deimos. Observations of their orbits gave early estimates
of the mass of the planet. Its size was established quite
early telescopically from occultations. Its shape is known
very precisely from spacecraft observations. The polar flat-
tening is about double that of the Earth. The rotation rates
of Earth and Mars are almost the same, but the lower mean
density of Mars results in smaller gravitational forces, so at
any radial distance the relative importance of the centrifu-
gal acceleration is larger on Mars than on Earth.

In 2004 the Mars Expedition Rover vehicles Spirit and
Opportunity landed on Mars, and transmitted pho-
tographs and geological information to Earth. Three
spacecraft (Mars Global Surveyor, Mars Odyssey, and
Mars Express) were placed in orbit to carry out surveys of
the planet. These and earlier orbiting spacecraft and
Martian landers have revealed details of the planet that
cannot be determined with a distant telescope (including
the Earth-orbiting Hubble telescope). Much of the
Martian surface is very old and cratered, but there are
also much younger rift valleys, ridges, hills and plains.
The topography is varied and dramatic, with mountains
that rise to 24km, a 4000 km long canyon system, and
impact craters up to 2000 km across and 6 km deep.

The internal structure of Mars can be inferred from
the results of these missions. Mars has a relatively low
mean density (3933 kgm~3) compared to the other terres-
trial planets. Its mass is only about a tenth that of Earth
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(Table 1.1), so the pressures in the planet are lower and
the interior is less densely compressed. Mars has an inter-
nal structure similar to that of the Earth. A thin crust,
35km thick in the northern hemisphere and 80 km thick
in the southern hemisphere, surrounds a rocky mantle
whose rigidity decreases with depth as the internal
temperature increases. The planet has a dense core
1500-1800 km in radius, thought to be composed of iron
with a relatively large fraction of sulfur. Minute perturba-
tions of the orbit of Mars Global Surveyor, caused by
deformations of Mars due to solar tides, have provided
more detailed information about the internal structure.
They indicate that, like the Earth, Mars probably has a
solid inner core and a fluid outer core that is, however, too
small to generate a global magnetic field.

The Asteroids occur in many sizes, ranging from several
hundred kilometers in diameter, down to bodies that are
too small to discern from Earth. There are 26 asteroids
larger than 200km in diameter, but there are probably
more than a million with diameters around 1km. Some
asteroids have been photographed by spacecraft in fly-by
missions: in 1997 the NEAR-Shoemaker spacecraft
orbited and landed on the asteroid Eros. Hubble Space
Telescope imagery has revealed details of Ceres (diameter
950km), Pallas (diameter 830km) and Vesta (diameter
525 km), which suggest that it may be more appropriate to
call these three bodies protoplanets (i.e., still in the process
of accretion from planetesimals) rather than asteroids. All
three are differentiated and have a layered internal struc-
ture like a planet, although the compositions of the inter-
nal layers are different. Ceres has an oblate spheroidal
shape and a silicate core, and is the most massive asteroid;
it has recently been reclassified as a “dwarf planet.” Vesta’s
shape is more irregular and it has an iron core.

Asteroids are classified by type, reflecting their composi-
tion (stony carbonaceous or metallic nickel-iron), and by
the location of their orbits. Main belt asteroids have near-
circular orbits with radii 2-4 AU between Mars and Jupiter.
The Centaur asteroids have strongly elliptical orbits that
take them into the outer solar system. The Aten and Apollo
asteroids follow elliptical Earth-crossing orbits. The colli-
sion of one of these asteroids with the Earth would have a
cataclysmic outcome. A 1km diameter asteroid would
create a 10 km diameter crater and release as much energy
as the simultaneous detonation of most or all of the nuclear
weapons in the world’s arsenals. In 1980 Luis and Walter
Alvarez and their colleagues showed on the basis of an
anomalous concentration of extra-terrestrial iridium at the
Cretaceous—Tertiary boundary at Gubbio, Italy, that a
10 km diameter asteroid had probably collided with Earth,
causing directly or indirectly the mass extinctions of many
species, including the demise of the dinosaurs. There are
240 known Apollo bodies; however, there may be as many
as 2000 that are 1km in diameter and many thousands
more measuring tens or hundreds of meters.

Scientific opinion is divided on what the asteroid belt
represents. One idea is that it may represent fragments of
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an earlier planet that was broken up in some disaster.
Alternatively, it may consist of material that was never
able to consolidate into a planet, perhaps due to the pow-
erful gravitational influence of Jupiter.

1.1.3.3 The great planets

The great planets are largely gaseous, consisting mostly of
hydrogen and helium, with traces of methane, water and
solid matter. Their compositions are inferred indirectly
from spectroscopic evidence, because space probes have
not penetrated their atmospheres to any great depth. In
contrast to the rocky terrestrial planets and the Moon,
the radius of a great planet does not correspond to a solid
surface, but is taken to be the level that corresponds to a
pressure of one bar, which is approximately Earth’s
atmospheric pressure at sea-level.

Each of the great planets is encircled by a set of con-
centric rings, made up of numerous particles. The rings
around Saturn, discovered by Galileo in 1610, are the
most spectacular. For more than three centuries they
appeared to be a feature unique to Saturn, but in 1977 dis-
crete rings were also detected around Uranus. In 1979 the
Voyager 1 spacecraft detected faint rings around Jupiter,
and in 1989 the Voyager 2 spacecraft confirmed that
Neptune also has a ring system.

Jupiter has been studied from ground-based observato-
ries for centuries, and more recently with the Hubble
Space Telescope, but our detailed knowledge of the planet
comes primarily from unmanned space probes that sent
photographs and scientific data back to Earth. Between
1972 and 1977 the planet was visited by the Pioneer 10 and
11, Voyager 1 and 2, and Ulysses spacecraft. The space-
craft Galileo orbited Jupiter for eight years, from 1995 to
2003, and sent an instrumental probe into the atmosphere.
It penetrated to a depth of 140 km before being crushed by
the atmospheric pressure.

Jupiter is by far the largest of all the planets. Its mass
(19X 10%kg) is 318 times that of the Earth (Table 1.1)
and 2.5 times the mass of all the other planets added
together (7.7 X 10%°kg). Despite its enormous size the
planet has a very low density of only 1326 kgm 3, from
which it can be inferred that its composition is domi-
nated by hydrogen and helium. Jupiter has at least 63
satellites, of which the four largest — lo, Europa,
Ganymede and Callisto — were discovered in 1610 by
Galileo. The orbital motions of lo, Europa and
Ganymede are synchronous, with periods locked in the
ratio 1:2:4. In a few hundred million years, Callisto will
also become synchronous with a period 8 times that of
To. Ganymede is the largest satellite in the solar system;
with a radius of 2631km it is slightly larger than the
planet Mercury. Some of the outermost satellites are less
than 30km in radius, revolve in retrograde orbits and
may be captured asteroids. Jupiter has a system of rings,
which are like those of Saturn but are fainter and smaller,
and were first detected during analysis of data from
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Voyager 1. Subsequently, they were investigated in detail
during the Galileo mission.

Jupiter is thought to have a small, hot, rocky core. This
is surrounded by concentric layers of hydrogen, first in a
liquid-metallic state (which means that its atoms, although
not bonded to each other, are so tightly packed that the
electrons can move easily from atom to atom), then non-
metallic liquid, and finally gaseous. The planet’s atmos-
phere consists of approximately 86% hydrogen and 14%
helium, with traces of methane, water and ammonia. The
liquid-metallic hydrogen layer is a good conductor of elec-
trical currents. These are the source of a powerful mag-
netic field that is many times stronger than the Earth’s and
enormous in extent. It stretches for several million kilome-
ters toward the Sun and for several hundred million kilo-
meters away from it. The magnetic field traps charged
particles from the Sun, forming a zone of intense radia-
tion outside Jupiter’s atmosphere that would be fatal to a
human being exposed to it. The motions of the electric
charges cause radio emissions. These are modulated by the
rotation of the planet and are used to estimate the period
of rotation, which is about 9.9 hr.

Jupiter’s moon Europa is the focus of great interest
because of the possible existence of water below its icy
crust, which is smooth and reflects sunlight brightly. The
Voyager spacecraft took high-resolution images of the
moon’s surface, and gravity and magnetic data were
acquired during close passages of the Galileo spacecraft.
Europa has a radius of 1565 km, so is only slightly smaller
than Earth’s Moon, and is inferred to have an iron—nickel
core within a rocky mantle, and an outer shell of water
below a thick surface ice layer.

Saturn is the second largest planet in the solar system.
Its equatorial radius is 60,268 km and its mean density is
merely 687 kg m ™3 (the lowest in the solar system and less
than that of water). Thin concentric rings in its equator-
ial plane give the planet a striking appearance. The oblig-
uity of its rotation axis to the ecliptic is 26.7°, similar to
that of the Earth (Table 1.1). Consequently, as Saturn
moves along its orbit the rings appear at different angles
to an observer on Earth. Galileo studied the planet by
telescope in 1610 but the early instrument could not
resolve details and he was unable to interpret his observa-
tions as a ring system. The rings were explained by
Christiaan Huygens in 1655 using a more powerful tele-
scope. In 1675, Domenico Cassini observed that Saturn’s
rings consisted of numerous small rings with gaps
between them. The rings are composed of particles of
ice, rock and debris, ranging in size from dust particles up
to a few cubic meters, which are in orbit around the
planet. The origin of the rings is unknown; one theory
is that they are the remains of an earlier moon that
disintegrated, either due to an extra-planetary impact or
as a result of being torn apart by bodily tides caused by
Saturn’s gravity.

In addition to its ring system Saturn has more than 30
moons, the largest of which, Titan, has a radius of

2575km and is the only moon in the solar system with a
dense atmosphere. Observations of the orbit of Titan
allowed the first estimate of the mass of Saturn to be
made in 1831. Saturn was visited by the Pioneer 11 space-
craft in 1979 and later by Voyager 1 and Voyager 2. In
2004 the spacecraft Cassini entered orbit around Saturn,
and launched an instrumental probe, Huygens, that
landed on Titan in January 2005. Data from the probe
were obtained during the descent by parachute through
Titan’s atmosphere and after landing, and relayed to
Earth by the orbiting Cassini spacecraft.

Saturn’s period of rotation has been deduced from
modulated radio emissions associated with its magnetic
field. The equatorial zone has a period of 10hr 14 min,
while higher latitudes have a period of about 10 hr 39 min.
The shape of the planet is known from occultations of
radio signals from the Voyager spacecrafts. The rapid
rotation and fluid condition result in Saturn having the
greatest degree of polar flattening of any planet, amount-
ing to almost 10%. Its mean density of 687 kgm ™3 is the
lowest of all the planets, implying that Saturn, like
Jupiter, is made up mainly of hydrogen and helium and
contains few heavy elements. The planet probably also
has a similar layered structure, with rocky core overlain
successively by layers of liquid-metallic hydrogen and
molecular hydrogen. However, the gravitational field of
Jupiter compresses hydrogen to a metallic state, which has
a high density. This gives Jupiter a higher mean density
than Saturn. Saturn has a planetary magnetic field that
is weaker than Jupiter’s but probably originates in the
same way.

Uranus is so remote from the Earth that Earth-bound
telescopic observation reveals no surface features. Until
the fly-past of Voyager 2 in 1986 much had to be surmised
indirectly and was inaccurate. Voyager 2 provided detailed
information about the size, mass and surface of the planet
and its satellites, and of the structure of the planet’s ring
system. The planet’s radius is 25,559 km and its mean
density is 1270 kgm™3. The rotational period, 17.24 hr,
was inferred from periodic radio emissions detected by
Voyager which are believed to arise from charged particles
trapped in the magnetic field and thus rotating with the
planet. The rotation results in a polar flattening of 2.3%.
Prior to Voyager, there were five known moons. Voyager
discovered a further 10 small moons, and a further 12
more distant from the planet have been discovered subse-
quently, bringing the total of Uranus’ known moons to 27.
The composition and internal structure of Uranus are
probably different from those of Jupiter and Saturn. The
higher mean density of Uranus suggests that it contains
proportionately less hydrogen and more rock and ice. The
rotation period is too long for a layered structure with
melted ices of methane, ammonia and water around a
molten rocky core. It agrees better with a model in which
heavier materials are less concentrated in a central core,
and the rock, ices and gases are more uniformly distrib-
uted.
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Several paradoxes remain associated with Uranus. The
axis of rotation is tilted at an angle of 98° to the pole to
the planet’s orbit, and thus lies close to the ecliptic plane.
The reason for the extreme tilt, compared to the other
planets, is unknown. The planet has a prograde rotation
about this axis. However, if the other end of the rotation
axis, inclined at an angle of 82°, is taken as reference, the
planet’s spin can be regarded as retrograde. Both interpre-
tations are equivalent. The anomalous axial orientation
means that during the 84 years of an orbit round the Sun
the polar regions as well as the equator experience
extreme solar insolation. The magnetic field of Uranus is
also anomalous: it is inclined at a large angle to the rota-
tion axis and its center is displaced axially from the center
of the planet.

Neptune is the outermost of the gaseous giant planets.
It can only be seen from Earth with a good telescope. By
the early nineteenth century, the motion of Uranus had
become well enough charted that inconsistencies were
evident. French and English astronomers independently
predicted the existence of an eighth planet, and the pre-
dictions led to the discovery of Neptune in 1846. The
planet had been noticed by Galileo in 1612, but due to its
slow motion he mistook it for a fixed star. The period of
Neptune’s orbital rotation is almost 165 yr, so the planet
has not yet completed a full orbit since its discovery. As a
result, and because of its extreme distance from Earth,
the dimensions of the planet and its orbit were not well
known until 1989, when Voyager 2 became the first — and,
so far, the only — spacecraft to visit Neptune.

Neptune’s orbit is nearly circular and lies close to the
ecliptic. The rotation axis has an Earth-like obliquity of
29.6° and its axial rotation has a period of 16.11 hr, which
causes a polar flattening of 1.7%. The planet has a radius
of 24,766km and a mean density of 1638kgm™3. The
internal structure of Neptune is probably like that of
Uranus: a small rocky core (about the size of planet
Earth) is surrounded by a non-layered mixture of rock,
water, ammonia and methane. The atmosphere is pre-
dominantly of hydrogen, helium and methane, which
absorbs red light and gives the planet its blue color.

The Voyager 2 mission revealed that Neptune has 13
moons and a faint ring system. The largest of the moons,
Triton, has a diameter about 40% of Earth’s and its
density (2060 kgm™?) is higher than that of most other
large moons in the solar system. Its orbit is steeply
inclined at 157° to Neptune’s equator, making it the only
large natural satellite in the solar system that rotates
about its planet in retrograde sense. The moon’s physical
characteristics, which resemble the planet Pluto, and its
retrograde orbital motion suggest that Triton was cap-
tured from elsewhere in the outer solar system.

1.1.3.4 Pluto and the outer solar system

Until its reclassification in 2006 as a “dwarf planet,”
Pluto was the smallest planet in the solar system, about
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two-thirds the diameter of Earth’s Moon. It has
many unusual characteristics. Its orbit has the largest
inclination to the ecliptic (17.1°) of any major planet and
it is highly eccentric (0.249), with aphelion at 49.3 AU
and perihelion at 29.7AU. This brings Pluto inside
Neptune’s orbit for 20 years of its 248-year orbital
period; the paths of Pluto and Neptune do not intersect.
The orbital period is resonant with that of Neptune in
the ratio 3:2 (i.e.,, Pluto’s period is exactly 1.5 times
Neptune’s). These features preclude any collision bet-
ween the planets.

Pluto is so far from Earth that it appears only as a
speck of light to Earth-based telescopes and its surface
features can be resolved only broadly with the Hubble
Space Telescope. It is the only planet that has not been
visited by a spacecraft. It was discovered fortuitously in
1930 after a systematic search for a more distant planet to
explain presumed discrepancies in the orbit of Neptune
which, however, were later found to be due to inaccurate
estimates of Neptune’s mass. The mass and diameter of
Pluto were uncertain for some decades until in 1978 a
moon, Charon, was found to be orbiting Pluto at a mean
distance of 19,600 km. Pluto’s mass is only 0.21% that of
the Earth. Charon’s mass is about 10-15% of Pluto’s,
making it the largest moon in the solar system relative to
its primary planet. The radii of Pluto and Charon are
estimated from observations with the Hubble Space
Telescope to be 1137km and 586 km, respectively, with a
relative error of about 1%. The mass and diameter of
Pluto give an estimated density about 2000 kgm= from
which it is inferred that Pluto’s composition may be a
mixture of about 70% rock and 30% ice, like that of
Triton, Neptune’s moon. Charon’s estimated density is
lower, about 1300 kgm™3, which suggests that there may
be less rock in its composition.

Pluto’s rotation axis is inclined at about 122° to its
orbital plane, so the planet’s axial rotation is retrograde,
and has a period of 6.387 days. Charon also orbits Pluto
in a retrograde sense. As a result of tidal forces, Charon’s
orbital period is synchronous with both its own axial
rotation and Pluto’s. Thus, the planet and moon con-
stantly present the same face to each other. Because of the
rotational synchronism and the large relative mass of
Charon, some consider Pluto—Charon to be a double
planet. However, this is unlikely because their different
densities suggest that the bodies originated indepen-
dently. Observations with the Hubble Space Telescope in
2005 revealed the presence of two other small moons —
provisionally named 2005 P1 and 2005 P2 — in orbit
around Pluto in the same sense as Charon, but at a larger
distance of about 44,000 km. All three moons have the
same color spectrum, which differs from Pluto’s and sug-
gests that the moons were captured in a single collision
with another large body. However, the origins of Pluto,
Charon and the smaller moons are as yet unknown, and
are a matter of scientific conjecture.

Since the early 1990s thousands of new objects have
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been identified beyond the orbit of Neptune. The trans-
Neptunian objects (Box 1.3) are mostly small, but at least
one, Eris, is comparable in size to Pluto. The new discover-
ies fueled discussion about Pluto’s status as a planet. In
2006 the definition of what constitutes a planet was modi-
fied. To be a planet an object must (1) be in orbit around a
star (Sun), (2) be large enough so that its own gravitation
results in a spherical or spheroidal shape, (3) not be so
large as to initiate nuclear fusion, and (4) have cleared
the neighborhood around its orbit of planetesimals.
Conditions (1) and (3) are met by all objects orbiting the
Sun. An object that meets conditions (1) and (2) and is not
a satellite of another body is called a “dwarf planet.” Pluto
falls in this new category, along with the asteroid Ceres and
the scattered disk object Eris (Box 1.3).

1.1.3.5 Angular momentum

An important characteristic that constrains models of the
origin of the solar system is the difference between the
distributions of mass and angular momentum. To deter-
mine the angular momentum of a rotating body it is nec-
essary to know its moment of inertia. For a particle of
mass m the moment of inertia (/) about an axis at distance
ris defined as:

I=mr (1.4)

The angular momentum (%) is defined as the product of
its moment of inertia (/) about an axis and its rate of rota-
tion ({2) about that axis:

h=1Q (1.5)

Each planet revolves in a nearly circular orbit around
the Sun and at the same time rotates about its own axis.
Thus there are two contributions to its angular momen-
tum (Table 1.3). The angular momentum of a planet’s
revolution about the Sun is obtained quite simply. The
solar system is so immense that the physical size of each
planet is tiny compared to the size of its orbit. The
moment of inertia of a planet about the Sun is computed
by inserting the mass of the planet and its orbital radius
(Table 1.3) in Eq. (1.4); the orbital angular momentum of
the planet follows by combining the computed moment of
inertia with the rate of orbital revolution as in Eq. (1.5).
To determine the moment of inertia of a solid body about
an axis that passes through it (e.g., the rotational axis of a
planet) is more complicated. Equation (1.4) must be com-
puted and summed for all particles in the planet. If the
planet is represented by a sphere of mass M and mean
radius R, the moment of inertia C about the axis of rota-
tion is given by

C=kMR? (1.6)

where the constant & is determined by the density distrib-
ution within the planet. For example, if the density is
uniform inside the sphere, the value of k is exactly 2/5, or

0.4; for a hollow sphere it is 2/3. If density increases with
depth in the planet, e.g., if it has a dense core, the value of
k is less than 0.4; for the Earth, £k=0.3308. For some
planets the variation of density with depth is not well
known, but for most planets there is enough information
to calculate the moment of inertia about the axis of rota-
tion; combined with the rate of rotation as in Eq. (1.5),
this gives the rotational angular momentum.

The angular momentum of a planet’s revolution about
the Sun is much greater (on average about 60,000 times)
than the angular momentum of its rotation about its own
axis (Table 1.3). Whereas more than 99.9% of the total
mass of the solar system is concentrated in the Sun, more
than 99% of the angular momentum is carried by the
orbital motion of the planets, especially the four great
planets. Of these Jupiter is a special case: it accounts for
over 70% of the mass and more than 60% of the angular
momentum of the planets.

1.1.4 The origin of the solar system

There have been numerous theories for the origin of the
solar system. Age determinations on meteorites indicate
that the solar system originated about (4.5—4.6)x10°
years ago. A successful theory of how it originated must
account satisfactorily for the observed characteristics of
the planets. The most important of these properties are
the following.

(1) Except for Pluto, the planetary orbits lie in or close to
the same plane, which contains the Sun and the orbit
of the Earth (the ecliptic plane).

(2) The planets revolve about the Sun in the same sense,
which is counterclockwise when viewed from above
the ecliptic plane. This sense of rotation is defined as
prograde.

(3) The rotations of the planets about their own axes are
also mostly prograde. The exceptions are Venus,
which has a retrograde rotation; Uranus, whose axis
of rotation lies nearly in the plane of its orbit; and
Pluto, whose rotation axis and orbital plane are
oblique to the ecliptic.

(4) Each planet is roughly twice as far from the Sun as its
closest neighbor (Bode’s law).

(5) The compositions of the planets make up two dis-
tinct groups: the terrestrial planets lying close to the
Sun are small and have high densities, whereas the
great planets far from the Sun are large and have low
densities.

(6) The Sun has almost 99.9% of the mass of the solar
system, but the planets account for more than 99% of
the angular momentum.

The first theory based on scientific observation was the
nebular hypothesis introduced by the German philosopher
Immanuel Kant in 1755 and formulated by the French
astronomer Pierre Simon de Laplace in 1796. According
to this hypothesis the planets and their satellites were
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Box 1.3: Trans-Neptunian objects

A trans-Neptunian object (TNO) is any object in orbit
around the Sun at a greater average distance than
Neptune. They include Pluto and its moon Charon, as
well as numerous other bodies. The objects are grouped
in three classes according to the size of their orbit: the
Kuiper belt, Scattered Disk, and Oort Cloud. Their
composition is similar to that of comets, i.e., mainly ice,
although some have densities high enough to suggest
other rock-like components.

The Kuiper belt extends beyond the mean radius of
Neptune’s orbit at 30 AU to a distance of about 50 AU
(Fig. B1.3). This disk-shaped region, close to the ecliptic
plane, contains thousands of objects in orbit around the
Sun. According to some estimates there are more than
35,000 Kuiper belt objects larger than 100 km in diame-
ter, so they are much larger and more numerous than the
asteroids. Some have orbital periods that are in resonance
with the orbit of Neptune, and this has given rise to some
curious appellations for them. Objects like Pluto with
orbital periods in 3:2 resonance with Neptune are called
plutinos, those further out in the belt with periods in 2:1
resonance are called twotinos, and objects in intermedi-
ate orbits are called cubewanos. The Kuiper belt objects
are all largely icy in composition, and some of them are
quite large. For example, Quaoar, in an orbit with semi-
major axis 43.5 AU, has a diameter of 1260 km and so is
about the same size as Pluto’s moon, Charon.

Objects in orbit at mean distances greater than 50 AU
are called scattered disk objects. A large trans-Neptunian
object, 2003UB,,, was identified in 2003 and confirmed
in 2005 during a long-term search for distant moving
objects in the solar system. On the basis of its reflectivity
this object is larger than Pluto, and was at first consid-
ered to be the tenth planet in the solar system. It has an
orbital period of 557 yr, a highly elliptical orbit inclined
at 44° to the ecliptic, and is currently near to aphelion.
Its present heliocentric distance of 97 AU makes it the
most distant known object in the solar system. Now
named Eris, it is classified together with Pluto and the
asteroid Ceres in the new category of “dwarf planet.”

In 2004 another trans-Neptunian object, Sedna, was
discovered at a distance of 90 AU (Fig. B1.3). It is
presently closer to the Sun than Eris, but its extremely
elliptical orbit (eccentricity 0.855, inclination 12°) takes
Sedna further into the outer reaches of the solar system
than any known object. Its orbital period is 12,500 yrs
and its aphelion lies at about 975 AU. The object is
visible to astronomers only as a tiny speck so apart from
its orbit not much is known about it. It is considered to
be the only known object that may have originated in
the Oort cloud.

975 AU

Fig. B1.3 The relative sizes of the Oort cloud and Kuiper belt in
relation to the orbits of the outer planets. The inner planets and Sun
are contained within the innermost circle of the lower part of the
figure (courtesy NASA/JPL-Caltech).

The Oort cloud is thought to be the source of most
new comets that enter the inner solar system. It is visual-
ized as a spherical cloud of icy objects at an enormous
distance — between 50,000 and 100,000 AU (roughly one
light year) — from the Sun. The Oort cloud has never
been observed, but its existence has been confirmed
from work on cometary orbits. It plays a central role in
models of the origin of comets.
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formed at the same time as the Sun. Space was filled by a
rotating cloud (nebula) of hot primordial gas and dust
that, as it cooled, began to contract. To conserve the
angular momentum of the system, its rotation speeded up;
a familiar analogy is the way a pirouetting skater spins
more rapidly when he draws in his outstretched arms.
Centrifugal force would have caused concentric rings of
matter to be thrown off, which then condensed into
planets. A serious objection to this hypothesis is that the
mass of material in each ring would be too small to
provide the gravitational attraction needed to cause the
ring to condense into a planet. Moreover, as the nebula
contracted, the largest part of the angular momentum
would remain associated with the main mass that con-
densed to form the Sun, which disagrees with the observed
distribution of angular momentum in the solar system.

Several alternative models were postulated subse-
quently, but have also fallen into disfavor. For example,
the collision hypothesis assumed that the Sun was formed
before the planets. The gravitational attraction of a
closely passing star or the blast of a nearby supernova
explosion drew out a filament of solar material that con-
densed to form the planets. However, a major objection to
this scenario is that the solar material would have been so
hot that it would dissipate explosively into space rather
than condense slowly to form the planets.

Modern interpretations of the origin of the solar
system are based on modifications of the nebular
hypothesis. As the cloud of gas and dust contracted, its
rate of rotation speeded up, flattening the cloud into a
lens-shaped disk. When the core of the contracting cloud
became dense enough, gravitation caused it to collapse
upon itself to form a proto-Sun in which thermonuclear
fusion was initiated. Hydrogen nuclei combined under
the intense pressure to form helium nuclei, releasing huge
amounts of energy. The material in the spinning disk was
initially very hot and gaseous but, as it cooled, solid
material condensed out of it as small grains. The grains
coalesced as rocky or icy clumps called planetesimals.
Asteroid-like planetesimals with a silicate, or rocky, com-
position formed near the Sun, while comet-like planetesi-
mals with an icy composition formed far from the Sun’s
heat. In turn, helped by gravitational attraction, the plan-
etesimals accreted to form the planets. Matter with a high
boiling point (e.g., metals and silicates) could condense
near to the Sun, forming the terrestrial planets. Volatile
materials (e.g., water, methane) would vaporize and be
driven into space by the stream of particles and radiation
from the Sun. During the condensation of the large
cold planets in the frigid distant realms of the solar
system, the volatile materials were retained. The gravita-
tional attractions of Jupiter and Saturn may have been
strong enough to retain the composition of the original
nebula.

It is important to keep in mind that this scenario is
merely a hypothesis — a plausible but not unique explana-
tion of how the solar system formed. It attributes the
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variable compositions of the planets to accretion at
different distances from the Sun. The model can be
embellished in many details to account for the character-
istics of individual planets. However, the scenario is
unsatisfactory because it is mostly qualitative. For
example, it does not adequately explain the division of
angular momentum. Physicists, astronomers, space scien-
tists and mathematicians are constantly trying new
methods of investigation and searching for additional
clues that will improve the hypothesis of how the solar
system formed.

1.2 THE DYNAMIC EARTH
1.2.1 Historical introduction

The Earth is a dynamic planet, perpetually changing both
externally and internally. Its surface is constantly being
altered by endogenic processes (i.e., of internal origin)
resulting in volcanism and tectonism, as well as by exo-
genic processes (i.e., of external origin) such as erosion
and deposition. These processes have been active
throughout geological history. Volcanic explosions like
the 1980 eruption of Mt. St. Helens in the northwestern
United States can transform the surrounding landscape
virtually instantaneously. Earthquakes also cause sudden
changes in the landscape, sometimes producing faults
with displacements of several meters in seconds. Weather-
related erosion of surface features occasionally occurs at
dramatic rates, especially if rivers overflow or landslides
are triggered. The Earth’s surface is also being changed
constantly by less spectacular geological processes at
rates that are extremely slow in human terms. Regions
that have been depressed by the loads of past ice-sheets
are still rebounding vertically at rates of up to several
mm yr~!. Tectonic forces cause mountains to rise at
similar uplift rates, while the long-term average effects of
erosion on a regional scale occur at rates of cm yr~!. On a
larger scale the continents move relative to each other at
speeds of up to several cm yr~! for time intervals lasting
millions of years. Extremely long times are represented in
geological processes. This is reflected in the derivation of
a geological timescale (Section 4.1.1.3). The subdivisions
used below are identified in Fig. 4.2.

The Earth’s interior is also in motion. The mantle
appears hard and solid to seismic waves, but is believed to
exhibit a softer, plastic behavior over long geological time
intervals, flowing (or “creeping”) at rates of several
cm yr~ L. Deeper inside the Earth, the liquid core probably
flows at a geologically rapid rate of a few tenths of a mil-
limeter per second.

Geologists have long been aware of the Earth’s dynamic
condition. Several hypotheses have attempted to explain
the underlying mechanisms. In the late nineteenth and
early twentieth centuries geological orthodoxy favored the
hypothesis of a contracting Earth. Mountain ranges were
thought to have formed on its shrinking surface like
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wrinkles on a desiccating apple. Horizontal tectonic dis-
placements were known, but were considered to be a
by-product of more important vertical motions. The real-
ization that large overthrusts played an important role in
the formation of nappe structures in the Alps implied
amounts of horizontal shortening that were difficult to
accommodate in the contraction hypothesis. A new school
of thought emerged in which mountain-building was
depicted as a consequence of horizontal displacements.

A key observation in this context was the congruity
between the opposing coasts of the South Atlantic, espe-
cially the similar shapes of the coastlines of Brazil and
Africa. As early as 1620, despite the inaccuracy and
incompleteness of early seventeenth century maps,
Francis Bacon drew attention to the parallelism of the
Atlantic-bordering coastlines. In 1858 Antonio Snider
constructed a map showing relative movements of the
circum-Atlantic continents, although he did not maintain
the shapes of the coastlines. In the late nineteenth century
the Austrian geologist Eduard Suess coined the name
Gondwanaland for a proposed great southern continent
that existed during late Paleozoic times. It embodied
Africa, Antarctica, Arabia, Australia, India and South
America, and lay predominantly in the southern hemi-
sphere. The Gondwana continents are now individual
entities and some (e.g., India, Arabia) no longer lie in the
southern hemisphere, but they are often still called the
“southern continents.” In the Paleozoic, the “northern
continents” of North America (including Greenland),
Europe and most of Asia also formed a single continent,
called Laurasia. Laurasia and Gondwanaland split apart
in the Early Mesozoic. The Alpine-Himalayan mountain
belt was thought to have developed from a system of geo-
synclines that formed in the intervening sea, which Suess
called the Tethys ocean to distinguish it from the present
Mediterranean Sea. Implicit in these reconstructions is
the idea that the continents subsequently reached their
present positions by slow horizontal displacements across
the surface of the globe.

1.2.2 Continental drift

The “displacement hypothesis” of continental movements
matured early in the twentieth century. In 1908 F. B. Taylor
related the world’s major fold-belts to convergence of the
continents as they moved away from the poles, and in 1911
H. B. Baker reassembled the Atlantic-bordering continents
together with Australia and Antarctica into a single conti-
nent; regrettably he omitted Asia and the Pacific. However,
the most vigorous proponent of the displacement hypothe-
sis was Alfred Wegener, a German meteorologist and geol-
ogist. In 1912 Wegener suggested that all of the continents
were together in the Late Paleozoic, so that the land area of
the Earth formed a single landmass (Fig. 1.5). He coined
the name Pangaea (Greek for “all Earth™) for this super-
continent, which he envisioned was surrounded by a single
ocean (Panthalassa). Wegener referred to the large-scale

regions
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Fig. 1.5 (a) Wegener's reconstruction of Pangaea in the Late
Carboniferous, showing estimated positions of the North and South
poles and paleo-equator. Shaded areas, arid regions; K, coal deposits; S,
salt deposits; W, desert regions; E, ice sheets (modified after Kbppen
and Wegener, 1924). Relative positions of the continents are shown in
(b) the Eocene (shaded areas, shallow seas) and (c) the Early Quaternary
(after Wegener, 1922). The latitudes and longitudes are arbitrary.

horizontal displacement of crustal blocks having continen-
tal dimensions as Kontinentalverschiebung. The anglicized
form, continental drift, implies additionally that displace-
ments of the blocks take place slowly over long time inter-
vals.

1.2.2.1 Pangaea

As a meteorologist Wegener was especially interested in
paleoclimatology. For the first half of the twentieth century
the best evidence for the continental drift hypothesis and the
earlier existence of Pangaea consisted of geological indica-
tors of earlier paleoclimates. In particular, Wegener
observed a much better alignment of regions of Permo-
Carboniferous glaciation in the southern hemisphere when
the continents were in the reconstructed positions for
Gondwanaland instead of their present positions. His
reconstruction of Pangaea brought Carboniferous coal
deposits into alignment and suggested that the positions of
the continents relative to the Paleozoic equator were quite
different from their modern ones. Together with W. Koppen,
a fellow German meteorologist, he assembled paleoclimatic
data that showed the distributions of coal deposits (evi-
dence of moist temperate zones), salt, gypsum and desert
sandstones (evidence of dry climate) for several geological
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eras (Carboniferous, Permian, Eocene, Quaternary). When
plotted on Wegener’s reconstruction maps, the paleocli-
matic data for each era formed climatic belts just like today;
namely, an equatorial tropical rain belt, two adjacent dry
belts, two temperate rain belts, and two polar ice caps (Fig.
1.5a).

Wegener’s continental drift hypothesis was bolstered in
1937 by the studies of a South African geologist,
Alexander du Toit, who noted sedimentological, paleon-
tological, paleoclimatic, and tectonic similarities between
western Africa and eastern South America. These favored
the Gondwanaland reconstruction rather than the present
configuration of continents during the Late Paleozoic and
Early Mesozoic.

Some of Wegener’s theories were largely conjectural. On
the one hand, he reasoned correctly that the ocean basins
are not permanent. Yet he envisioned the sub-crustal mater-
ial as capable of viscous yield over long periods of time,
enabling the continents to drift through the ocean crust like
ships through water. This model met with profound scepti-
cism among geologists. He believed, in the face of strong
opposition from physicists, that the Earth’s geographic axis
had moved with time, instead of the crust moving relative to
the fixed poles. His timing of the opening of the Atlantic
(Fig. 1.5b, ¢) was faulty, requiring a large part of the separa-
tion of South America from Africa to take place since the
Early Pleistocene (i.e., in the last two million years or so).
Moreover, he was unable to offer a satisfactory driving
mechanism for continental drift. His detractors used the
disprovable speculations to discredit his better-documented
arguments in favor of continental drift.

1.2.2.2 Computer-assisted reconstructions

Wegener pointed out that it was not possible to fit the
continents together using their present coastlines, which
are influenced by recent sedimentary deposits at the
mouths of major rivers as well as the effects of coastal
erosion. The large areas of continental shelf must also be
taken into account, so Wegener matched the continents at
about the edges of the continental shelves, where the con-
tinental slopes plunge into the oceanic basins. The match-
ing was visual and inexact by modern standards, but more
precise methods only became available in the 1960s with
the development of powerful computers.

In 1965 E. C. Bullard, J. E. Everett and A. G. Smith
used a computer to match the relative positions of the con-
tinents bounding the Atlantic ocean (Fig. 1.6). They digi-
tized the continental outlines at approximately 50km
intervals for different depth contours on the continental
slopes, and selected the fit of the 500 fathom (900 m) depth
contour as optimum. The traces of opposite continental
margins were matched by an iterative procedure. One trace
was rotated relative to the other (about a pole of relative
rotation) until the differences between the traces were min-
imized; the procedure was then repeated with different
rotation poles until the best fit was obtained. The optimum
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Fig. 1.6 Computer-assisted fit of the Atlantic-bordering continents at
the 500 fathom (900 m) depth (after Bullard et al., 1965).

fit is not perfect, but has some overlaps and gaps.
Nevertheless, the analysis gives an excellent geometric fit of
the opposing coastlines of the Atlantic.

A few years later A. G. Smith and A. Hallam used the
same computer-assisted technique to match the coastlines
of the southern continents, also at the 500 fathom depth
contour (Fig. 1.7). They obtained an optimum geometric
reconstruction of Gondwanaland similar to the visual
match suggested by du Toit in 1937; it probably represents
the geometry of Gondwanaland that existed in the Late
Paleozoic and Early Mesozoic. It is not the only possible
good geometric fit, but it also satisfies other geological
evidence. At various times in the Jurassic and Cretaceous,
extensional plate margins formed within Gondwanaland,
causing it to subdivide to form the present “southern con-
tinents.” The dispersal to their present positions took
place largely in the Late Cretaceous and Tertiary.

Pangaea existed only in the Late Paleozoic and Early
Mesozoic. Geological and geophysical evidence argues in
favor of the existence of its northern and southern con-
stituents — Laurasia and Gondwanaland — as separate enti-
ties in the Early Paleozoic and Precambrian. An important
source of data bearing on continental reconstructions in
ancient times and the drift of the continents is provided by
paleomagnetism, which is the record of the Earth’s ancient
magnetic field. Paleomagnetism is described in Section 5.6
and summarized below.
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Fig. 1.7 Computer-assisted
fit of the continents that
formed Gondwanaland (after
Smith and Hallam, 1970).

1.2.2.3 Paleomagnetism and continental drift

In the late nineteenth century geologists discovered that
rocks can carry a stable record of the geomagnetic field
direction at the time of their formation. From the magneti-
zation direction it is possible to calculate the position of
the magnetic pole at that time; this is called the virtual geo-
magnetic pole (VGP) position. Averaged over a time inter-
val longer than a few tens of thousands of years, the mean
VGP position coincides with the geographic pole, as if the
axis of the mean geomagnetic dipole field were aligned
with the Earth’s rotation axis. This correspondence can be
proved for the present geomagnetic field, and a fundamen-
tal assumption of paleomagnetism — called the “axial
dipole hypothesis” — is that it has always been valid. The
hypothesis can be verified for rocks and sediments up to a
few million years old, but its validity has to be assumed for
earlier geological epochs. However, the self-consistency of
paleomagnetic data and their compatibility with continen-
tal reconstructions argue that the axial dipole hypothesis is
also applicable to the Earth’s ancient magnetic field.

For a particular continent, rocks of different ages give
different mean VGP positions. The appearance that the
pole has shifted with time is called apparent polar wander
(APW). By connecting mean VGP positions of different
ages for sites on the same continent a line is obtained,
called the apparent polar wander path of the continent.
Each continent yields a different APW path, which conse-
quently cannot be the record of movement of the pole.
Rather, each APW path represents the movement of the
continent relative to the pole. By comparing APW paths
the movements of the continents relative to each other
can be reconstructed. The APW paths provide strong
supporting evidence for continental drift.

Paleomagnetism developed as a geological discipline in
the 1950s and 1960s. The first results indicating large-scale

continental movement were greeted with some scepticism.
In 1956 S. K. Runcorn demonstrated that the paleomag-
netic data from Permian and Triassic rocks in North
America and Great Britain agreed better if the Atlantic
ocean were closed, i.e., as in the Laurasia configuration. In
1957 E. Irving showed that Mesozoic paleomagnetic data
from the “southern continents” were more concordant
with du Toit’s Gondwanaland reconstruction than with
the present arrangement of the continents. Since these
pioneering studies numerous paleomagnetic investiga-
tions have established APW paths for the different conti-
nents. The quality of the paleomagnetic record is good for
most geological epochs since the Devonian.

The record for older geological periods is less reliable
for several reasons. In the Early Paleozoic the data
become fewer and the APW paths become less well
defined. In addition, the oldest parts of the paleomag-
netic record are clouded by the increasing possibility of
false directions due to undetected secondary magnetiza-
tion. This happens when thermal or tectonic events alter
the original magnetization, so that its direction no longer
corresponds to that at the time of rock formation.
Remagnetization can affect rocks of any age, but it is rec-
ognized more readily and constitutes a less serious
problem in younger rocks.

Problems afflicting Precambrian paleomagnetism are
even more serious than in the Early Paleozoic. APW paths
have been derived for the Precambrian, especially for
North America, but only in broad outline. In part this is
because it is difficult to date Precambrian rocks precisely
enough to determine the fine details of an APW path. It is
often not possible to establish which is the north or south
pole. In addition, the range of time encompassed by the
Precambrian — more than 3.5 Ga —is about six times longer
than the 570 Ma length of the Phanerozoic, and the proba-
bility of remagnetization events is correspondingly higher.
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Fig. 1.8 Paleomagnetic (a)
reconstruction of the relative
positions of (a) Laurentia
(North America and
Greenland), Baltica and
Gondwanaland (South
America, Africa, Arabia,
Australia, India and
Antarctica) in the Late
Ordovician and (b) Laurussia
(North America and Baltica)
and Gondwanaland in the
Middle Silurian (after Van der
Voo, 1993).

(b) MIDDLE SILURIAN (420 Ma)
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In spite of some uncertainties, Early Paleozoic paleo-
magnetism permits reassembly of the supercontinents
Gondwanaland and Laurasia and traces their movements
before they collided in the Carboniferous to form
Pangaea. Geological and paleomagnetic evidence concur
that, in the Cambrian period, Gondwanaland very likely
existed as a supercontinent in essentially the du Toit con-
figuration. It coexisted in the Early Paleozoic with three
other cratonic centers: Laurentia (North America and
Greenland), Baltica (northern Europe) and Siberia.
Laurentia and Baltica were separated by the Iapetus
ocean (Fig. 1.8a), which began to close in the Ordovician
(about 450 Ma ago). Paleomagnetic data indicate that
Laurentia and Baltica fused together around Late
Silurian time to form the supercontinent Laurussia; at
that time the Siberian block remained a separate entity.
The Laurentia—Baltica collision is expressed in the
Taconic and Caledonian orogenies in North America and
northern Europe. The gap between Gondwanaland and
Laurussia in the Middle Silurian (Fig. 1.8b) closed about
the time of the Silurian—-Devonian boundary (about
410 Ma ago). Readjustments of the positions of the conti-
nental blocks in the Devonian produced the Acadian
orogeny. Laurussia separated from Gondwanaland in the
Late Devonian, but the two supercontinents began to
collide again in the Early Carboniferous (about 350 Ma
ago), causing the Hercynian orogeny. By the Late
Carboniferous (300 Ma ago) Pangaea was almost com-
plete, except for Siberia, which was probably appended in
the Permian.

LATE ORDOVICIAN (450 Ma)

T LAURUSSIA
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The general configuration of Pangaea from the Late
Carboniferous to the Early Jurassic is supported by
paleomagnetic results from the Atlantic-bordering
continents. However, the paleomagnetic data suggest that
the purely geometric “Bullard-fit” is only appropriate for
the later part of Pangaea’s existence. The results for earlier
times from the individual continents agree better for
slightly different reconstructions (see Section 5.6.4.4).
This suggests that some internal rearrangement of the
component parts of Pangaea may have occurred. Also, the
computer-assisted geometric assembly of Gondwanaland,
similar to that proposed by du Toit, is not the only
possible reconstruction, although paleomagnetic results
confirm that it is probably the optimum one. Other
models involve different relative placements of West
Gondwanaland (i.e., South America and Africa) and East
Gondwanaland (i.e., Antarctica, Australia and India), and
imply that they may have moved relative to each other.
The paleomagnetic data do not contradict the alternative
models, but are not precise enough to discriminate defini-
tively between them.

The consistency of paleomagnetic results leaves little
room for doubt that the continents have changed position
relative to each other throughout geological time. This
lends justification to the concept of continental drift, but
it does not account for the mechanism by which it has
taken place. Another aspect of the paleomagnetic record
— the history of magnetic field polarity rather than the
APW paths — has played a key role in deducing the mech-
anism. The explanation requires an understanding of the
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Fig. 1.9 Simplified layered
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Earth’s internal structure, the distribution of seismicity
and the importance of the ocean basins.

1.2.3 Earth structure

Early in the twentieth century it became evident from the
study of seismic waves that the interior of the Earth has a
radially layered structure, like that of an onion (Fig. 1.9).
The boundaries between the layers are marked by abrupt
changes in seismic velocity or velocity gradient. Each
layer is characterized by a specific set of physical proper-
ties determined by the composition, pressure and temper-
ature in the layer. The four main layers are the crust,
mantle and the outer and inner cores. Their properties are
described in detail in Section 3.7 and summarized briefly
here.

At depths of a few tens of kilometers under continents
and less than ten kilometers beneath the oceans seismic
velocities increase sharply. This seismic discontinuity, dis-
covered in 1909 by A. Mohorovigig, represents the
boundary between the crust and mantle. R. D. Oldham
noted in 1906 that the travel-times of seismic compres-
sional waves that traversed the body of the Earth were
greater than expected; the delay was attributed to a fluid
outer core. Support for this idea came in 1914, when
B. Gutenberg described a shadow zone for seismic waves
at epicentral distances greater than about 105°. Just as
light waves cast a shadow of an opaque object, seismic
waves from an earthquake cast a shadow of the core on

the opposite side of the world. Compressional waves can
in fact pass through the liquid core. They appear, delayed
in time, at epicentral distances larger than 143°. In 1936
I. Lehmann observed the weak arrivals of compressional
waves in the gap between 105° and 143°. They are inter-
preted as evidence for a solid inner core.

1.2.3.1 Lithospheric plates

The radially layered model of the Earth’s interior
assumes spherical symmetry. This is not valid for the crust
and upper mantle. These outer layers of the Earth show
important lateral variations. The crust and uppermost
mantle down to a depth of about 70-100 km under deep
ocean basins and 100-150 km under continents are rigid,
forming a hard outer shell called the /ithosphere. Beneath
the lithosphere lies the asthenosphere, a layer in which
seismic velocities often decrease, suggesting lower rigidity.
It is about 150km thick, although its upper and lower
boundaries are not sharply defined. This weaker layer is
thought to be partially molten; it may be able to flow over
long periods of time like a viscous liquid or plastic solid,
in a way that depends on temperature and composition.
The asthenosphere plays an important role in plate tec-
tonics, because it makes possible the relative motions of
the overlying lithospheric plates.

The brittle condition of the lithosphere causes it to frac-
ture when strongly stressed. The rupture produces an
earthquake, which is the violent release of elastic energy
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Fig. 1.10 The geographical
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distribution of epicenters for
30,000 earthquakes for the
years 1961-1967 illustrates
the tectonically active regions
of the Earth (after Barazangi
and Dorman, 1969).
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due to sudden displacement on a fault plane. Earthquakes
are not distributed evenly over the surface of the globe, but
occur predominantly in well-defined narrow seismic zones
that are often associated with volcanic activity (Fig. 1.10).
These are: (a) the circum-Pacific “ring of fire”; (b) a
sinuous belt running from the Azores through North
Africa and the Alpine-Dinaride-Himalayan mountain
chain as far as S.E. Asia; and (c) the world-circling system
of oceanic ridges and rises. The seismic zones subdivide the
lithosphere laterally into tectonic plates (Fig. 1.11). A plate
may be as broad as 10,000 km (e.g., the Pacific plate) or as
small as a few 1000 km (e.g., the Philippines plate). There
are twelve major plates (Antarctica, Africa, Eurasia, India,
Australia, Arabia, Philippines, North America, South
America, Pacific, Nazca, and Cocos) and several minor
plates (e.g., Scotia, Caribbean, Juan de Fuca). The posi-
tions of the boundaries between the North American
and South American plates and between the North
American and Eurasian plates are uncertain. The bound-

ary between the Indian and Australian plates is not sharply
defined, but may be a broad region of diffuse deformation.

A comprehensive model of current plate motions
(called NUVEL-1), based on magnetic anomaly patterns
and first-motion directions in earthquakes, shows rates of
separation at plate boundaries that range from about
20mm yr~! in the North Atlantic to about 160 mm yr~!
on the East Pacific Rise (Fig. 1.11). The model also gives
rates of closure ranging from about 10 mm yr~! between
Africa and Eurasia to about 80mm yr~! between the
Nazca plate and South America.

1.2.4 Types of plate margin

An important factor in the evolution of modern plate tec-
tonic theory was the development of oceanography in the
years following World War II, when technology designed
for warfare was turned to peaceful purposes. The bathyme-
try of the oceans was charted extensively by echo-sounding
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and within a few years several striking features became
evident. Deep trenches, more than twice the depth of the
ocean basins, were discovered close to island arcs and some
continental margins; the Marianas Trench is more than
I1km deep. A prominent submarine mountain chain —
called an oceanic ridge — was found in each ocean. The
oceanic ridges rise to as much as 3000 m above the adjacent
basins and form a continuous system, more than
60,000 km in length, that girdles the globe. Unlike conti-
nental mountain belts, which are usually less than several
hundred kilometers across, the oceanic ridges are
2000-4000 km in width. The ridge system is offset at inter-
vals by long horizontal faults forming fracture zones.
These three features — trenches, ridges and fracture zones —
originate from different plate tectonic processes.

The lithospheric plates are very thin in comparison to
their breadth (compare Fig. 1.9 and Fig. 1.11). Most
earthquakes occur at plate margins, and are associated
with interactions between plates. Apart from rare
intraplate earthquakes, which can be as large and disas-
trous as the earthquakes at plate boundaries, the plate
interiors are aseismic. This suggests that the plates behave
rigidly. Analysis of earthquakes allows the direction of
displacement to be determined and permits interpreta-
tion of the relative motions between plates.

There are three types of plate margin, distinguished by
different tectonic processes (Fig. 1.12). The world-wide
pattern of earthquakes shows that the plates are presently
moving apart at oceanic ridges. Magnetic evidence, dis-
cussed below, confirms that the separation has been going
on for millions of years. New lithosphere is being formed
at these spreading centers, so the ridges can be regarded as
constructive plate margins. The seismic zones related to
deep-sea trenches, island arcs and mountain belts mark
places where lithospheric plates are converging. One plate
is forced under another there in a so-called subduction
zone. Because it is thin in relation to its breadth, the lower
plate bends sharply before descending to depths of
several hundred kilometers, where it is absorbed. The sub-
duction zone marks a destructive plate margin.

Constructive and destructive plate margins may consist
of many segments linked by horizontal faults. A crucial
step in the development of plate tectonic theory was made
in 1965 by a Canadian geologist, J. Tuzo Wilson, who rec-
ognized that these faults are not conventional transcurrent
faults. They belong to a new class of faults, which Wilson
called transform faults. The relative motion on a transform
fault is opposite to what might be inferred from the off-
sets of bordering ridge segments. At the point where a
transform fault meets an oceanic ridge it transforms the
spreading on the ridge to horizontal shear on the fault.
Likewise, where such a fault meets a destructive plate
margin it transforms subduction to horizontal shear.

The transform faults form a conservative plate margin,
where lithosphere is neither created nor destroyed; the
boundary separates plates that move past each other hor-
izontally. This interpretation was documented in 1967 by

LITHOSPHERE

Fig. 1.12 Schematic model illustrating the three types of plate margin.
Lightly hachured areas symbolize spreading ridges (constructive
margins); darker shaded areas denote subduction zones (destructive
margins); dark lines mark transform faults (conservative margins). The
figure is drawn relative to the pole of relative motion between plates A
and B. Small arrows denote relative motion on transform faults; large
arrows show directions of plate motion, which can be oblique to the
strike of ridge segments or subduction zones. Arrows in the
asthenosphere suggest return flow from destructive to constructive
margins.

L. Sykes, an American seismologist. He showed that
earthquake activity on an oceanic ridge system was con-
fined almost entirely to the transform fault between ridge
crests, where the neighboring plates rub past each other.
Most importantly, Sykes found that the mechanisms of
earthquakes on the transform faults agreed with the pre-
dicted sense of strike—slip motion.

Transform faults play a key role in determining plate
motions. Spreading and subduction are often assumed to
be perpendicular to the strike of a ridge or trench, as is
the case for ridge X in Fig. 1.12. This is not necessarily the
case. Oblique motion with a component along strike is
possible at each of these margins, as on ridge Y. However,
because lithosphere is neither created nor destroyed at a
conservative margin, the relative motion between adja-
cent plates must be parallel to the strike of a shared trans-
form fault. Pioneering independent studies by D. P.
McKenzie and R. L. Parker (1967) and W. J. Morgan
(1968) showed how transform faults could be used to
locate the Euler pole of rotation for two plates (see
Section 1.2.9). Using this method, X. Le Pichon in 1968
determined the present relative motions of the major tec-
tonic plates. In addition, he derived the history of plate
motions in the geological past by incorporating newly
available magnetic results from the ocean basins.

1.2.5 Sea-floor spreading

One of the principal stumbling blocks of continental drift
was the inability to explain the mechanism by which drift
took place. Wegener had invoked forces related to gravity
and the Earth’s rotation, which were demonstrably much
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Fig. 1.13 Symmetric striped
pattern of magnetic
anomalies on the Reykjanes
segment of the Mid-Atlantic -
Ridge southwest of Iceland.
The positive anomalies are
shaded according to their
age, as indicated in the
vertical column (after Heirtzler

etal., 1966). - 61°N
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too weak to drive the continents through the resistant
basaltic crust. A. Holmes proposed a model in 1944 that
closely resembles the accepted plate tectonic model
(Holmes, 1965). He noted that it would be necessary to
remove basaltic rocks continuously out of the path of an
advancing continent, and suggested that this took place at
the ocean deeps where heavy eclogite “roots” would sink
into the mantle and melt. Convection currents in the
upper mantle would return the basaltic magma to the con-
tinents as plateau basalts, and to the oceans through innu-
merable fissures. Holmes saw generation of new oceanic
crust as a process that was dispersed throughout an ocean
basin. At the time of his proposal the existence of the
system of oceanic ridges and rises was not yet known.

The important role of oceanic ridges was first recog-
nized by H. Hess in 1962. He suggested that new oceanic
crust is generated from upwelling hot mantle material at
the ridges. Convection currents in the upper mantle
would rise to the surface at the ridges and then spread out
laterally. The continents would ride on the spreading
mantle material, carried along passively by the convec-
tion currents. In 1961 R. Dietz coined the expression
“sea-floor spreading” for the ridge process. This results in
the generation of lineated marine magnetic anomalies at
the ridges, which record the history of geomagnetic
polarity reversals. Study of these magnetic effects led to
the verification of sea-floor spreading.

1.2.5.1 The Vine-Matthews—Morley hypothesis

Paleomagnetic studies in the late 1950s and early 1960s of
radiometrically dated continental lavas showed that the
geomagnetic field has changed polarity at irregular time

intervals. For tens of thousands to millions of years the
polarity might be normal (as at present), then unaccount-
ably the poles reverse within a few thousand years, so that
the north magnetic pole is near the south geographic pole
and the south magnetic pole is near the north geographic
pole. This state may again persist for a long interval,
before the polarity again switches. The ages of the rever-
sals in the last 5 million years have been obtained radio-
metrically, giving an irregular but dated polarity sequence.
A magnetic anomaly is a departure from the theoretical
magnetic field at a given location. If the field is stronger
than expected, the anomaly is positive; if it is weaker than
expected, the anomaly is negative. In the late 1950s mag-
netic surveys over the oceans revealed remarkable striped
patterns of alternately positive and negative magnetic
anomalies over large areas of oceanic crust (Fig. 1.13), for
which conventional methods of interpretation gave no sat-
isfactory account. In 1963 the English geophysicists F. J.
Vine and D. H. Matthews and, independently, the
Canadian geologist L. W. Morley, formulated a landmark
hypothesis that explains the origin of the oceanic mag-
netic anomaly patterns (see also Section 5.7.3).
Observations on dredged samples had shown that
basalts in the uppermost oceanic crust carry a strong rema-
nent magnetization (i.e., they are permanently magnetized,
like a magnet). The Vine—Matthews—Morley hypothesis
integrates this result with the newly acquired knowledge of
geomagnetic polarity reversals and the Hess—Dietz
concept of sea-floor spreading (Fig. 1.14). The basaltic
lava is extruded in a molten state. When it solidifies and its
temperature cools below the Curie temperature of its mag-
netic minerals, the basalt becomes strongly magnetized in
the direction of the Earth’s magnetic field at that time.
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Along an active spreading ridge, long thin strips of magne-
tized basaltic crust form symmetrically on opposite sides
of the spreading center, each carrying the magnetic imprint
of the field in which it formed. Sea-floor spreading can
persist for many millions of years at an oceanic ridge.
During this time the magnetic field changes polarity many
times, forming strips of oceanic crust that are magnetized
alternately parallel and opposite to the present field, giving
the observed patterns of positive and negative anomalies.
Thus, the basaltic layer acts like a magnetic tape recorder,
preserving a record of the changing geomagnetic field
polarity.

1.2.5.2 Rates of sea-floor spreading

The width of a magnetic lineation (or stripe) depends on
two factors: the speed with which the oceanic crust
moves away from a spreading center, and the length of
time that geomagnetic polarity is constantly normal or
reversed. The distance between the edges of magnetized
crustal stripes can be measured from magnetic surveys at
the ocean surface, while the ages of the reversals can be
obtained by correlating the oceanic magnetic record with
the radiometrically dated reversal sequence determined
in subaerial lavas for about the last 4 Ma. When the dis-
tance of a given polarity reversal from the spreading axis
is plotted against the age of the reversal, a nearly linear
relationship is obtained (Fig. 1.15). The slope of the best
fitting straight line gives the average half-rate of spread-
ing at the ridge. These are of the order of 10mm yr~!in
the North Atlantic ocean and 40-60mm yr~! in the
Pacific ocean. The calculation applies to the rate of
motion of crust on one side of the ridge only. In most
cases spreading has been symmetric on each side of the
ridge (i.e., the opposite sides are moving away from the
ridge at equal speeds), so the full rate of separation at a
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Fig. 1.15 Computation of half-rates of sea-floor spreading at different
spreading centers by measuring the distances to anomalies with known
radiometric ages (after Vine, 1966).

ridge axis is double the calculated half-rate of spreading
(Fig. 1.11).

The rates of current plate motion determined from
axial anomaly patterns (Fig. 1.11) are average values over
several million years. Modern geodetic methods allow
these rates to be tested directly (see Section 2.4.6). Satellite
laser-ranging (SLR) and very long baseline interferometry
(VLBI) allow exceptionally accurate measurement of
changes in the distance between two stations on Earth.
Controlled over several years, the distances between pairs
of stations on opposite sides of the Atlantic ocean are
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increasing slowly at a mean rate of 17mm yr~! (Fig. 1.16).
This figure is close to the long-term value of about
20mm yr~! interpreted from model NUVEL-1 of current
plate motions (Fig. 1.11).

Knowing the spreading rates at ocean ridges makes it
possible to date the ocean floor. The direct correlation
between polarity sequences measured in continental lavas
and derived from oceanic anomalies is only possible for
the last 4 Ma or so. Close to the axial zone, where linear
spreading rates are observed (Fig. 1.15), simple extrapola-
tion gives the ages of older anomalies, converting the
striped pattern into an age map (Fig. 1.13). Detailed mag-
netic surveying of much of the world’s oceans has
revealed a continuous sequence of anomalies since the
Late Cretaceous, preceded by an interval in which no
reversals occurred; this Quiet Interval was itself preceded
by a Mesozoic reversal sequence. Magnetostratigraphy in
sedimentary rocks (Section 5.7.4) has enabled the identifi-
cation, correlation and dating of key anomalies. The
polarity sequence of the oceanic anomalies has been con-
verted to a magnetic polarity timescale in which each
polarity reversal is accorded an age (e.g., as in Fig. 5.78).
In turn, this allows the pattern of magnetic anomalies in

the ocean basins to be converted to a map of the age of the
ocean basins (Fig. 5.82). The oldest areas of the oceans lie
close to northwest Africa and eastern North America, as
well as in the northwest Pacific. These areas formed
during the early stages of the breakup of Pangaea. They
are of Early Jurassic age. The ages of the ocean basins
have been confirmed by drilling through the sediment
layers that cover the ocean floor and into the underlying
basalt layer. Beginning in the late 1960s and extending
until the present, this immensely expensive undertaking
has been carried out in the Deep Sea Drilling Project
(DSDP) and its successor the Ocean Drilling Project
(ODP). These multinational projects, under the leader-
ship of the United States, are prime examples of open sci-
entific cooperation on an international scale.

1.2.6 Plate margins

It is important to keep in mind that the tectonic plates are
not crustal units. They involve the entire thickness of the
lithosphere, of which the crust is only the outer skin.
Oceanic lithosphere is thin close to a ridge axis, but thick-
ens with distance from the ridge, reaching a value of
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80-100km; the oceanic crust makes up only the top
5-10km. Continental lithosphere may be up to 150 km
thick, of which only the top 30-60km is continental
crust. Driven by mechanisms that are not completely
understood, the lithospheric plates move relative to each
other across the surface of the globe. This knowledge
supplies the “missing link” in Wegener’s continental drift
hypothesis, removing one of the most serious objections
to it. It is not necessary for the continents to plow
through the rigid ocean basins; they are transported pas-
sively on top of the moving plates, as logs float on a
stream. Continental drift is thus a consequence of plate
motions.

The plate tectonic model involves the formation of new
lithosphere at a ridge and its destruction at a subduction
zone (Fig. 1.17). Since the mean density of oceanic lithos-
phere exceeds that of continental lithosphere, oceanic
lithosphere can be subducted under continental or oceanic
lithosphere, whereas continental lithosphere cannot under-
ride oceanic lithosphere. Just as logs pile up where a stream
dives under a surface obstacle, a continent that is trans-
ported into a subduction zone collides with the deep-sea
trench, island arc or adjacent continent. Such a collision
results in an orogenic belt. In a continent—continent colli-
sion, neither plate can easily subduct, so relative plate
motion may come to a halt. Alternatively, subduction may
start at a new location behind one of the continents, leaving
a mountain chain as evidence of the suture zone between
the original colliding continents. The Alpine-Himalayan
and Appalachian mountain chains are thought to have
formed by this mechanism, the former in Tertiary times, the
latter in several stages during the Paleozoic. Plate tectonic
theory is supported convincingly by an abundance of geo-
physical, petrological and geological evidence from the
three types of plate margin. A brief summary of the main
geophysical observations at these plate margins is given in
the following sections. Later chapters give more detailed
treatments of the gravity (Section 2.6.4), seismicity
(Sections 3.5.3 and 3.5.4), geothermal (Section 4.2.5) and
magnetic (Section 5.7.3) evidence.

1.2.6.1 Constructive margins

Although the ridges and rises are generally not centrally
located in the ocean basins, they are often referred to
as mid-ocean ridges. The type of oceanic basalt that
is produced at an oceanic spreading center is even
called a mid-ocean ridge basalt (MORB for short).
Topographically, slow-spreading ridges have a distinct
axial rift valley, which, for reasons that are not under-
stood, is missing on faster-spreading ridges. Partially
molten upper mantle rocks (generally assumed to be peri-
dotites) from the asthenosphere rise under the ridges. The
decrease in pressure due to the changing depth causes
further melting and the formation of basaltic magma.
Their chemical compositions and the concentrations of
long-lived radioactive isotopes suggest that MORB lavas
are derived by fractionation (i.e., separation of compo-
nents, perhaps by precipitation or crystallization) from
the upwelling peridotitic mush. Differentiation is thought
to take place at about the depth of the lower crustal gab-
broic layer beneath the ridge in a small, narrow magma
chamber. Some of the fluid magma extrudes near the
central rift or ridge axis and flows as lava across the ocean
floor; part is intruded as dikes and sills into the thin
oceanic crust. The Vine-Matthews—Morley hypothesis
for the origin of oceanic magnetic anomalies requires
fairly sharp boundaries between alternately magnetized
blocks of oceanic crust. This implies that the zone of dike
injection is narrow and close to the ridge axis.

The distribution of earthquakes defines a narrow band
of seismic activity close to the crest of an oceanic ridge.
These earthquakes occur at shallow depths of a few kilo-
meters and are mostly small; magnitudes of 6 or greater
are rare. The seismic energy released at ridges is an
insignificant part of the world-wide annual release.
Analyses show that the earthquakes are associated with
normal faulting, implying extension away from the ridge
axis (see Section 3.5.4).

Heat flow in the oceans is highest at the ocean ridges
and decreases systematically with distance away from the
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ridge. The thermal data conform to the model of sea-
floor spreading. High axial values are caused by the for-
mation of new lithosphere from the hot uprising magma
at the ridge axis. The associated volcanism on the floor
of the axial rift zones has been observed directly from
deep-diving submersibles. With time, the lithosphere
spreads away from the ridge and gradually cools, so that
the heat outflow diminishes with increasing age or dis-
tance from the ridge.

Oceanic crust is thin, so the high-density mantle rocks
occur at shallower depths than under the continents. This
causes a general increase of the Earth’s gravity field over
the oceans, giving positive gravity anomalies. However,
over the ridge systems gravity decreases toward the axis so
that a “negative” anomaly is superposed on the normally
positive oceanic gravity anomaly. The effect is due to the
local density structure under the ridge. It has been inter-
preted in terms of anomalous mantle material with
density slightly less than normal. The density is low
because of the different mantle composition under the
ridges and its high temperature.

The interpretation of magnetic anomalies formed by
sea-floor spreading at constructive margins has already
been discussed. The results provide direct estimates of
the mean rates of plate motions over geological time
intervals.

1.2.6.2 Destructive margins

Subduction zones are found where a plate plunges
beneath its neighbor to great depths, until pressure and
temperature cause its consumption. This usually happens
within a few hundred kilometers, but seismic tomography
(Section 3.7.6) has shown that some descending slabs may
sink to great depths, even to the core—mantle boundary.
Density determines that the descending plate at a subduc-
tion zone is an oceanic one. The surface manifestation
depends on the type of overriding plate. When this is
another oceanic plate, the subduction zone is marked by a
volcanic island arc and, parallel to it, a deep trench. The
island arc lies near the edge of the overriding plate and is
convex toward the underriding plate. The trench marks
where the underriding plate turns down into the mantle
(Fig. 1.17). It may be partly filled with carbonaceous and
detrital sediments. Island arc and trench are a few
hundred kilometers apart. Several examples are seen
around the west and northwest margins of the Pacific
plate (Fig. 1.11). Melting of the downgoing slab produces
magma that rises to feed the volcanoes.

The intrusion of magma behind an island arc pro-
duces a back-arc basin on the inner, concave side of the
arc. These basins are common in the Western Pacific. If
the arc is close to a continent, the off-arc magmatism may
create a marginal sea, such as the Sea of Japan. Back-arc
basins and marginal seas are floored by oceanic crust.

A fine example of where the overriding plate is a conti-
nental one is seen along the west coast of South America.

HIGH STRENGTH

Fig. 1.18 Stresses acting on a subducting lithospheric plate. Arrows
indicate shear where the underriding plate is bent downward. Solid and
open circles within the descending slab denote extension and
compression, respectively; the size of the circle represents qualitatively
the seismic activity. In (a), (b) and (d) extensional stress in the upper part
of the plate is due to the slab being pulled into low-strength
asthenosphere. In (b) resistance of the more rigid layer under the
asthenosphere causes compression within the lower part of the slab; if
the plate sinks far enough, (), the stress becomes compressional
throughout; in some cases, (d), the deep part of the lower slab may
break off (after Isacks and Molnar, 1969).

Compression between the Nazca and South American
plates has generated the Andes, an arcuate-folded moun-
tain belt near the edge of the continental plate. Active vol-
canoes along the mountain chain emit a type of lava, called
andesite, which has a higher silica content than oceanic
basalt. It does not originate from the asthenosphere type of
magma. A current theory is that it may form by melting of
the subducting slab and overriding plate at great depths. If
some siliceous sediments from the deep-sea trench are
carried down with the descending slab, they might enhance
the silica content of the melt, producing a magma with
andesite-type composition.

The seismicity at a subduction zone provides the key to
the processes active there. Where one plate is thrust over
the other, the shear causes hazardous earthquakes at
shallow depths. Below this region, earthquakes are sys-
tematically distributed within the subducting plate. They
form an inclined Wadati—Benioff seismic zone, which may
extend for several hundred kilometers into the mantle.
The deepest earthquakes have been registered down to
about 700 km.

Studies of the focal mechanisms (Section 3.5.4) show
that at shallow depths the downgoing plate is in a state of
down-dip extension (Fig. 1.18a). Subducting lithosphere
is colder and denser than the underlying asthenosphere.
This gives it negative buoyancy, which causes it to sink,
pulling the plate downward. At greater depths the mantle
is more rigid than the asthenosphere, and its strength
resists penetration (Fig. 1.18b). While the upper part is
sinking, the bottom part is being partly supported by the
deeper layers; this results in down-dip compression in the
lower part of the descending slab and down-dip extension
in the upper part. A gap in the depth distribution of seis-
micity may arise where the deviatoric stress changes from
extensional to compressional. In a very deep subduction
zone the increase in resistance with depth causes down-
dip compression throughout the descending slab (Fig.
1.18c). In some cases part of the slab may break off and
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sink to great depths, where the earthquakes have com-
pressional-type mechanisms (Fig. 1.18d); a gap in seis-
micity exists between the two parts of the slab.

Heat flow at a destructive plate margin reflects to some
extent the spreading history of the plate. The plate
reaches its maximum age, and so has cooled the furthest,
by the time it reaches a subduction zone. The heat flow
values over deep ocean basins are uniformly low, but the
values measured in deep-sea trenches are the lowest found
in the oceans. In contrast, volcanic arcs and back-arc
basins often have anomalously high heat flow due to the
injection of fresh magma.

Gravity anomalies across subduction zones have
several distinctive features. Seaward of the trench the
lithosphere flexes upward slightly before it begins its
descent, causing a weak positive anomaly; the presence of
water or low-density sediments in a deep-sea trench gives
rise to a strong negative gravity anomaly; and over the
descending slab a positive anomaly is observed, due in
part to the mineralogical conversion of subducted
oceanic crust to higher-density eclogite.

Subduction zones have no particular magnetic signa-
ture. Close to an active or passive continental margin the
contrast between the magnetic properties of oceanic and
continental crust produces a magnetic anomaly, but this
is not a direct result of the plate tectonic processes. Over
marginal basins magnetic anomalies are not lineated
except in some rare cases. This is because the oceanic
crust in the basin does not originate by sea-floor spread-
ing at a ridge, but by diffuse intrusion throughout the
basin.

1.2.6.3 Conservative margins

Transform faults are strike-slip faults with steeply
dipping fault planes. They may link segments of subduc-
tion zones, but they are mostly observed at constructive
plate margins where they connect oceanic ridge segments.
Transform faults are the most seismically active parts of a
ridge system, because here the relative motion between
neighboring plates is most pronounced. Seismic studies
have confirmed that the displacements on transform
faults agree with the relative motion between the adjacent
plates.

The trace of a transform fault may extend away from a
ridge on both sides as a fracture zone. Fracture zones are
among the most dramatic features of ocean-floor topog-
raphy. Although only some tens of kilometers wide, a
fracture zone can be thousands of kilometers long. It
traces the arc of a small circle on the surface of the globe.
This important characteristic allows fracture zones to be
used for the deduction of relative plate motions, which
cannot be obtained from the strike of a ridge or trench
segment, where oblique spreading or subduction is
possible (note, for example, the direction of plate conver-
gence relative to the strike of the Aleutian island arc in
Fig. 1.11).

Any displacement on the surface of a sphere is equiv-
alent to a small rotation about a pole. The motion of one
plate relative to the other takes place as a rotation about
the Euler pole of relative rotation between the plates (see
Section 1.2.9). This pole can be located from the orienta-
tions of fracture zones, because the strike of a transform
fault is parallel to the relative motion between two adja-
cent plates. Thus a great circle normal to a transform
fault or fracture zone must pass through the Euler pole
of relative rotation between the two plates. If several
great circles are drawn at different places on the
fracture zone (or normal to different transform faults
offsetting a ridge axis) they intersect at the Euler pole.
The current model of relative plate motions NUVEL-1
was obtained by determining the Euler poles of rotation
between pairs of plates using magnetic anomalies, the
directions of slip on earthquake fault planes at plate
boundaries, and the topography that defines the strikes
of transform faults. The rates of relative motion at
different places on the plate boundaries (Fig. 1.11) were
computed from the rates of rotation about the appropri-
ate Euler poles.

There may be a large change in elevation across a frac-
ture zone; this is related to the different thermal histories
of the plates it separates. As a plate cools, it becomes
more dense and less buoyant, so that it gradually sinks.
Consequently, the depth to the top of the oceanic lithos-
phere increases with age, i.e., with distance from the
spreading center. Places facing each other across a trans-
form fault are at different distances from their respective
spreading centers. They have different ages and so have
subsided by different amounts relative to the ridge. This
may result in a noticeable elevation difference across the
fracture zone.

Ultrabasic rocks are found in fracture zones and there
may be local magnetic anomalies. Otherwise, the mag-
netic effect of a transform fault is to interrupt the oceanic
magnetic lineations parallel to a ridge axis, and to offset
them in the same measure as ridge segments. This results
in a very complex pattern of magnetic lineations in some
ocean basins (e.g., in the northeast Pacific).

A transform fault can also connect subduction zones.
Suppose a consuming plate boundary consisted origi-
nally of two opposed subduction zones (Fig. 1.19a). Plate
Y is consumed below plate X along the segment ab of the
boundary, whereas plate X is consumed beneath plate Y
along segment bc. The configuration is unstable, because
a trench cannot sustain subduction in opposite directions.
Consequently, a dextral transform fault develops at the
point b. After some time, motion on the fault displaces
the lower segment to the position b'c (Fig. 1.19b). An
example of such a transform boundary is the Alpine fault
in New Zealand (Fig. 1.19¢). To the northeast of North
Island, the Pacific plate is being subducted at the
Tonga—Kermadec trench. To the southwest of South
Island, the Pacific plate overrides the Tasman Sea at the
anomalous Macquarie Ridge (earthquake analysis has
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Fig. 1.19 (a) A consuming plate boundary consisting of two opposed
subduction zones; along ab plate Y is consumed below plate X and
along bc plate X is consumed beneath plate V. (b) Development of a
transform fault which displaces bc to the position b’c. (c) The Alpine
fault in New Zealand is an example of such a transform boundary (after
McKenzie and Morgan, 1969).

shown that the plate margin at this ridge is compressive;
the compression may be too slow to allow a trench to
develop). The Alpine fault linking the two opposed sub-
duction zones is therefore a dextral transform fault.

1.2.7 Triple junctions

It is common, although imprecise, to refer to a plate
margin by its dominant topographic feature, rather than
by the nature of the margin. A ridge (R) represents a con-
structive margin or spreading center, a trench (T) refers to
a destructive margin or subduction zone, and a transform
fault (F) stands for a conservative margin. Each margin is
a location where two tectonic plates adjoin. Inspection of
Fig. 1.11 shows that there are several places where three
plates come together, but none where four or more plates
meet. The meeting points of three plate boundaries are
called triple junctions. They are important in plate tecton-
ics because the relative motions between the plates that
form a triple junction are not independent. This may be
appreciated by considering the plate motions in a small
plane surrounding the junction.

Consider the plate velocities at an RTF junction
formed by all three types of boundary (Fig. 1.20a). If the
plates are rigid, their relative motions take place entirely at
their margins. Let , Vi, denote the velocity of plate B rela-
tive to plate A, ;V . the velocity of plate C relative to plate
B, and .V, the velocity of plate A relative to plate C. Note
that these quantities are vectors; their directions are as
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Fig. 1.20 (a) Triple junction formed by a ridge, trench and transform
fault, and (b) vector diagram of the relative velocities at the three
boundaries (after McKenzie and Parker, 1967).

important as their magnitudes. They can be represented
on a vector diagram by straight lines with directions paral-
lel to and lengths proportional to the velocities. In a circuit
about the triple junction an observer must return to the
starting point. Thus, a vector diagram of the interplate
velocities is a closed triangle (Fig. 1.20b). The velocities
are related by

AVt Vet Va=0 (1.7)

This planar model is a “flat Earth” representation. As
discussed in Section 1.2.9, displacements on the surface
of a sphere are rotations about Euler poles of relative
motion. This can be taken into account by replacing each
linear velocity V in Eq. (1.7) by the rotational velocity o
about the appropriate Euler pole.

1.2.7.1 Stability of triple junctions

The different combinations of three plate margins define
ten possible types of triple junction. The combinations
correspond to all three margins being of one type (RRR,
TTT, FFF), two of the same type and one of the other
(RRT, RRF, FFT, FFR, TTR, TTF), and all different
(RTF). Different combinations of the sense of subduc-
tion at a trench increase the number of possible junctions
to sixteen. Not all of these junctions are stable in time.
For a junction to preserve its geometry, the orientations
of the three plate boundaries must fulfil conditions which
allow the relative velocities to satisfy Eq. (1.7). If they do
so, the junction is stable and can maintain its shape.
Otherwise, the junction is unstable and must evolve in
time to a stable configuration.

The stability of a triple junction is assessed by consid-
ering how it can move along any of the plate boundaries
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Fig. 1.21 Plate margin geometry (left) and locus ab of a triple junction
in velocity space (right) for (a) a trench, (b) a transform fault, and (c) a
ridge (after Cox and Hart, 1986).

that form it. The velocity of a plate can be represented by
its coordinates in velocity space. Consider, for example, a
trench or consuming plate margin (Fig. 1.21a). The point
A in velocity space represents the consuming plate, which
has a larger velocity than B for the overriding plate. A
triple junction in which one plate margin is a trench can lie
anywhere on this boundary, so the locus of its possible
velocities is a line ab parallel to the trench. The trench is
fixed relative to the overriding plate B, so the line ab must
pass through B. Similar reasoning shows that a triple junc-
tion on a transform fault is represented in velocity space
by a line ab parallel to the fault and passing through both
A and B (Fig. 1.21b). A triple junction on a ridge gives a
velocity line ab parallel to the ridge; in the case of symmet-
rical spreading normal to the trend of the ridge the line ab
is the perpendicular bisector of AB (Fig. 1.21c¢).

Now consider the RRR-type of triple junction, formed
by three ridges (Fig. 1.22a). The locus of the triple junction
on the ridge between any pair of plates is the perpendicular
bisector of the corresponding side of the velocity triangle
ABC. The perpendicular bisectors of the sides of a triangle
always meet at a point (the circumcenter). In velocity space
this point satisfies the velocities on all three ridges simulta-
neously, so the RRR triple junction is always stable.
Conversely, a triple junction formed by three intersecting
transform faults (FFF) is always unstable, because the
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Fig. 1.22 Triple junction configuration (left), velocity lines of each
margin in velocity space (center), and stability criteria (right) for selected
triple junctions, TJ (after Cox and Hart, 1986).

velocity lines form the sides of a triangle, which can never
meet in a point (Fig. 1.22b). The other types of triple junc-
tion are conditionally stable, depending on the angles
between the different margins. For example, in an RTF
triple junction the velocity lines of the trench ac and trans-
form fault bc must both pass through C, because this plate
is common to both boundaries. The junction is stable if the
velocity line ab of the ridge also passes through C, or if the
trench and transform fault have the same trend (Fig.
1.22¢). By similar reasoning, the FFT triple junction is
only stable if the trench has the same trend as one of the
transform faults (Fig. 1.22d).

In the present phase of plate tectonics only a few of the
possible types of triple junction appear to be active. An
RRR-type is formed where the Galapagos Ridge meets
the East Pacific Rise at the junction of the Cocos, Nazca
and Pacific plates. A TTT-type junction is formed by the
Japan trench and the Bonin and Ryukyu arcs. The San
Andreas fault in California terminates in an FFT-type
junction at its northern end, where it joins the Mendocino
Fracture Zone.

1.2.7.2 Evolution of triple junctions in the northeast Pacific

Oceanic magnetic anomalies in the northeast Pacific form
a complex striped pattern. The anomalies can be identified
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by interpreting their shapes. Their ages can be found by
comparison with a geomagnetic polarity timescale such as
that shown in Fig. 5.78, which gives the age of each num-
bered chron since the Late Jurassic. In the northeast
Pacific the anomalies become younger toward the North
American continent in the east, and toward the Aleutian
trench in the north. The anomaly pattern produced at a
ridge is usually symmetric (as in Fig. 1.13), but in the
northeast Pacific only the western half of an anomaly
pattern is observed. The plate on which the eastern half of
the anomaly pattern was formed is called the Farallon
plate. It and the ridge itself are largely missing and have
evidently been subducted under the American plate. Only
two small remnants of the Farallon plate still exist: the
Juan de Fuca plate off the coast of British Columbia, and
the Rivera plate at the mouth of the Gulf of California.
The magnetic anomalies also indicate that another plate,
the Kula plate, existed in the Late Mesozoic but has now
been entirely consumed under Alaska and the Aleutian
trench. The anomaly pattern shows that in the Late
Cretaceous the Pacific, Kula and Farallon plates were
diverging from each other and thus met at an RRR-type
triple junction. This type of junction is stable and pre-
served its shape during subsequent evolution of the plates.
It is therefore possible to reconstruct the relative motions
of the Pacific, Kula and Farallon plates in the Cenozoic
(Fig. 1.23a—c).

The anomaly ages are known from the magnetic
timescale so the anomaly spacing allows the half-rates of
spreading to be determined. In conjunction with the trends
of fracture zones, the anomaly data give the rates and
directions of spreading at each ridge. The anomaly pattern
at the mouth of the Gulf of California covers the last 4 Ma
and gives a mean half-rate of spreading of 3 cm yr~! paral-
lel to the San Andreas fault. This indicates that the Pacific
plate has moved northward past the American plate at this
boundary with a mean relative velocity of about 6cm yr—!
during the last 4 Ma. The half-rate of spreading on the
remnant of the Farallon-Pacific ridge is 5cm yr™!, giving
a relative velocity of 10cm yr~! between the plates. A
vector diagram of relative velocities at the Farallon—
Pacific-American triple junction (Fig. 1.23d) shows con-
vergence of the Farallon plate on the American plate at a
rate of 7cm yr~!. Similarly, the spacing of east-west trend-
ing magnetic anomalies in the Gulf of Alaska gives the
half-rate of spreading on the Kula—Pacific ridge, from
which it may be inferred that the relative velocity between
the plates was 7cm yr~!. A vector diagram combining
this value with the 6cm yr~! northward motion of the
Pacific plate gives a velocity of 12cm yr~! for the Kula
plate relative to the American plate.

Using these velocities the history of plate evolution in
the Cenozoic can be deduced by extrapolation. The inter-
pretation is tenuous, as it involves unverifiable assump-
tions. The most obvious is that the Kula—Pacific motion
in the late Cretaceous (80 Ma ago) and the American—
Pacific motion of the past 4 Ma have remained constant
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Fig. 1.23 (a)-(c) Extrapolated plate relationships in the northeast Pacific
at different times in the Cenozoic (after Atwater, 1970). Letters on the
American plate give approximate locations of some modern cities for
reference: MC, Mexico City; LA, Los Angeles; SF, San Francisco; S,
Seattle; A, Anchorage. The shaded area in (a) is an unacceptable
overlap. (d) Vector diagrams of the relative plate velocities at the
Kula—Pacific-American and Farallon—Pacific—American triple junctions
(numbers are velocities in cm yr~' relative to the American plate).

throughout the Cenozoic. With this proviso, it is evident
that triple junctions formed and migrated along the
American plate margin. The Kula—American—Farallon
RTF junction was slightly north of the present location of
San Francisco 60 Ma ago (Fig. 1.23c¢); it moved to a posi-
tion north of Seattle 20 Ma ago (Fig. 1.23a). Around that
time in the Oligocene an FFT junction formed between
San Francisco and Los Angeles, while the Farallon—
Pacific-American RTF junction evolved to the south. The
development of these two triple junctions is due to the col-
lision and subduction of the Farallon—Pacific ridge at the
Farallon— American trench.

At the time of magnetic anomaly 13, about 34 Ma ago,
a north—south striking ridge joined the Mendocino and
Murray transform faults as part of the Farallon—Pacific
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Fig. 1.24 Formation of the
San Andreas fault as a result
of the evolution of triple
junctions in the northeast

. ) . Mendocino
Pacific during the Oligocene: —
plate geometries at the times )
of (a) magnetic anomaly 13, Pacific
about 34Ma ago, (b) anomaly (@) P Plate
9, about 27Ma ago (after -
McKenzie and Morgan, Murta
1969), and (c) further Anomaly13: Y F
development when the 34 Ma ago

Murray fracture zone collides
with the trench. Double-
headed arrows show
directions of migration of
triple junctions 1 and 2 along
the consuming plate margin.

Anomaly 9:
27 Ma ago

plate margin to the west of the American trench (Fig.
1.24a). By the time of anomaly 9, about 27 Ma ago, the
ridge had collided with the trench and been partly con-
sumed by it (Fig. 1.24b). The Farallon plate now con-
sisted of two fragments: an FFT junction developed at
point 1, formed by the San Andreas fault system, the
Mendocino fault and the consuming trench to the north;
and an RTF junction formed at point 2. Both junctions
are stable when the trenches are parallel to the transform
fault along the San Andreas system. Analysis of the
velocity diagrams at each triple junction shows that point
1 migrated to the northwest and point 2 migrated to the
southeast at this stage. Later, when the southern segment
of the Farallon—Pacific ridge had been subducted under
the American plate, the Murray transform fault changed
the junction at point 2 to an FFT junction, which has sub-
sequently also migrated to the northwest.

1.2.8 Hotspots

In 1958 S. W. Carey coined the term “hot spot” — now often
reduced to “hotspot” — to refer to a long-lasting center of
surface volcanism and locally high heat flow. At one time
more than 120 of these thermal anomalies were proposed.
Application of more stringent criteria has reduced their
number to about 40 (Fig. 1.25). The hotspots may occur on
the continents (e.g., Yellowstone), but are more common in
the ocean basins. The oceanic hotspots are associated with
depth anomalies. If the observed depth is compared with
the depth predicted by cooling models of the oceanic
lithosphere, the hotspots are found to lie predominantly in
broad shallow regions, where the lithosphere apparently
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swells upward. This elevates denser mantle material, which
creates a mass anomaly and disturbs the geoid; the effect is
partially mitigated by reduced density of material in the
hot, rising plume. The geoid surface is also displaced by
subduction zones. The residual geoid obtained by remov-
ing the effects associated with cold subducting slabs shows
a remarkable correlation with the distribution of hotspots
(Fig. 1.25). The oceanic hotspots are found in conjunction
with intraplate island chains, which provide clues to the
origin of hotspots and allow them to be used for measur-
ing geodynamic processes.

Two types of volcanic island chains are important in
plate tectonics. The arcuate chains of islands associated
with deep oceanic trenches at consuming plate margins
are related to the process of subduction and have an
arcuate shape. Nearly linear chains of volcanic islands
are observed within oceanic basins far from active plate
margins. These intraplate features are particularly
evident on a bathymetric map of the Pacific Ocean. The
Hawaiian, Marquesas, Society and Austral Islands form
subparallel chains that trend approximately perpendicu-
lar to the axis of ocean-floor spreading on the East
Pacific rise. The most closely studied is the Hawaiian
Ridge (Fig. 1.26a). The volcanism along this chain
decreases from present-day activity at the southeast, on
the island of Hawaii, to long extinct seamounts and
guyots towards the northwest along the Emperor
Seamount chain. The history of development of the
chain is typical of other linear volcanic island chains in
the Pacific basin (Fig. 1.26b). It was explained in 1963 by
J. T. Wilson, before the modern theory of plate tectonics
was formulated.
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Fig. 1.25 The global
distribution of 41 hotspots
and their relationship to the
residual geoid obtained by
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Fig. 1.26 (a) The Hawaiian Ridge and Emperor Seamount volcanic
chains trace the motion of the Pacific plate over the Hawaiian
hotspot; numbers give the approximate age of volcanism; note the
change in direction about 43 Ma ago (after Van Andel, 1992).

(b) Sketch illustrating the formation of volcanic islands and
seamounts as a lithospheric plate moves over a hotspot (based

on Wilson, 1963).

the mantle below the lithosphere. A volcanic complex is
built up above the magmatic source, forming a volcanic
island or, where the structure does not reach sea-level, a
seamount. The motion of the plate transports the island
away from the hotspot and the volcanism becomes
extinct. The upwelling material at the hotspot elevates the
ocean floor by up to 1500 m above the normal depth of
the ocean floor, creating a depth anomaly. As they move
away from the hotspot the by now extinct volcanic islands
sink beneath the surface; some are truncated by erosion to
sea-level and become guyots. Coral atolls may accumulate
on some guyots. The volcanic chain is aligned with the
motion of the plate.

Confirmation of this theory is obtained from
radiometric dating of basalt samples from islands and
seamounts along the Hawaiian Ridge portion of the
Hawaiian—Emperor chain. The basalts increase in age
with distance from the active volcano Kilauea on the
island of Hawaii (Fig. 1.27). The trend shows that
the average rate of motion of the Pacific plate over the
Hawaiian hotspot has been about 10cm yr~! during the
last 20-40 Ma. The change in trend between the Hawaiian
Ridge and the Emperor Seamount chain indicates a
change in direction and speed of the Pacific plate about
43 Ma ago, at which time there was a global reorganiza-
tion of plate motions. The earlier rate of motion along
the Emperor chain is less well determined but is estimated
to be about 6¢cm yr 1.

Radiometric dating of linear volcanic chains in the
Pacific basin gives almost identical rates of motion over
their respective hotspots. This suggests that the hotspots
form a stationary network, at least relative to the lithos-
phere. The velocities of plate motions over the hotspots
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are therefore regarded as absolute velocities, in contrast
to the velocities derived at plate margins, which are
the relative velocities between neighboring plates. The
assumption that the hotspots are indeed stationary has
been contested by studies that have yielded rates of inter-
hotspot motion of the order of 1.5-2c¢m yr~! (compara-
ble to present spreading rates in the Atlantic). Thus, the
notion of a stationary hotspot reference frame may only
be valid for a limited time interval. Nevertheless, any
motions between hotspots are certainly much slower than
the motions of plates, so the hotspot reference frame pro-
vides a useful guide to absolute plate motions over the
typical time interval (~10 Ma) in which incremental sea-
floor spreading is constant.

As well as geophysical evidence there are geochemical
anomalies associated with hotspot volcanism. The type
of basalt extruded at a hotspot is different from the
andesitic basalts formed in subduction zone magma-
tism. It also has a different petrology from the mid-
oceanic ridge basalts (MORB) formed during sea-floor
spreading and characteristic of the ocean floor. The
hotspot source is assumed to be a mantle plume that
reaches the surface. Mantle plumes are fundamental fea-
tures of mantle dynamics, but they remain poorly under-
stood. Although they are interpreted as long-term
features it is not known for how long they persist, or how
they interact with convective processes in the mantle.
Their role in heat transport and mantle convection, with
consequent influence on plate motions, is believed to be
important but is uncertain. Their sources are controver-
sial. Some interpretations favor a comparatively shallow

origin above the 670 km discontinuity, but the prevailing
opinion appears to be that the plumes originate in the
D” layer at the core-mantle boundary. This requires
the mantle plume to penetrate the entire thickness of the
mantle (see Fig. 4.38). In either case the stationary
nature of the hotspot network relative to the lithosphere
provides a reference frame for determining absolute
plate motions, and for testing the hypothesis of true
polar wander.

1.2.9 Plate motion on the surface of a sphere

One of the great mathematicians of the eighteenth
century was Leonhard Euler (1707-1783) of Switzerland.
He made numerous fundamental contributions to pure
mathematics, including to complex numbers (see Box
2.6) and spherical trigonometry (see Box 1.4). A coroll-
ary of one of his theorems shows that the displacement
of a rigid body on the surface of a sphere is equival-
ent to a rotation about an axis that passes through its
center. This is applicable to the motion of a lithospheric
plate.

Any motion restricted to the surface of a sphere takes
place along a curved arc that is a segment of either a great
circle (centered, like a “circle of longitude,” at the Earth’s
center) or a small circle. Small circles are defined relative
to a pole of rotational symmetry (such as the geographi-
cal pole, when we define “circles of latitude”). A point on
the surface of the sphere can be regarded as the end-point
of a radius vector from the center of the Earth to the
point. Any position on the spherical surface can be speci-
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The sides of a triangle on a plane surface are straight
lines and the sum of its internal angles is 180° (or
radians). Let the angles be 4, B and C and the lengths of
the sides opposite each of these angles be a, b and ¢, as
in Fig. Bl.4a. The sizes of the angles and the lengths of
the sides are governed by the sine law:

sind _sinB_sinC
2 == m

The length of any side is related to the lengths of the
other two sides and to the angle they include by the
cosine law, which for the side a is

a?=Db2+ c2—2bccosA )

with similar expressions for the sides » and c.

The sides of a triangle on a spherical surface are
great circle arcs and the sum of the internal angles is
greater than 180°. The angle between two great circles at
their point of intersection is defined by the tangents to
the great circles at that point. Let the angles of a spheri-
cal triangle be A, B and C, and let the lengths of the
sides opposite each of these angles be @, b and ¢, respec-
tively, as in Fig. B1.4b. The lengths of the sides may be
converted to the angles they subtend at the center of the
Earth. For example, the distance from pole to equator
on the Earth’s surface may be considered as 10,007 km
or as 90 degrees of arc. Expressing the sides of the
spherical triangle as angles of arc, the law of sines is

sind _sinB_sinC

cosa cosh cosc Q)
and the law of cosines is
cosa =coshcosc + sinbsinccos 4 4

Box 1.4: Spherical trigonometry

(a) A

Fig. B1.4 The sides and angles of (a) a plane triangle, (b) a spherical
triangle.

fied by two angles, akin to latitude and longitude, or,
alternatively, by direction cosines (Box 1.5). As a result of
Euler’s theorem any displacement of a point along a
small circle is equivalent to rotating the radius vector
about the pole of symmetry, which is called the Euler pole
of the rotation. A displacement along a great circle — the
shortest distance between two points on the surface of the
sphere — is a rotation about an Euler pole 90° away from
the arcuate path. Euler poles were described in the discus-
sion of conservative plate margins (Section 1.2.6.3); they
play an important role in paleogeographic reconstruc-
tions using apparent polar wander paths (see Section
5.6.4.3).

1.2.9.1 Euler poles of rotation

Geophysical evidence does not in itself yield absolute
plate motions. Present-day seismicity reflects relative
motion between contiguous plates, oceanic magnetic

anomaly patterns reveal long-term motion between
neighboring plates, and paleomagnetism does not
resolve displacements in longitude about a paleopole.
The relative motion between plates is described by
keeping one plate fixed and moving the other one rela-
tive to it; that is, we rotate it away from (or toward) the
fixed plate (Fig. 1.28). The geometry of a rigid plate on
the surface of a sphere is outlined by a set of bounding
points, which maintain fixed positions relative to each
other. Provided it remains rigid, each point of a moving
plate describes an arc of a different small circle about the
same Euler pole. Thus, the motion between plates is
equivalent to a relative rotation about their mutual Euler
rotation pole.

The traces of past and present-day plate motions are
recorded in the geometries of transform faults and frac-
ture zones, which mark, respectively, the present-day and
earlier locations of conservative plate margins. A
segment of a transform fault represents the local path of
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It is often useful to express a direction with the aid of
direction cosines. These are the cosines of the angles that
the direction makes with the reference axes. Define the
z-axis along the Earth’s spin axis, the x-axis along the
Greenwich meridian and the y-axis normal to both of
these, as in Fig. BL.5. If a line makes angles o, a, and
a_ to the x-, y- and z-axes, respectively, its direction
cosines with respect to these axes are
[=cosa, m= cosa, n=cosa, (1)
Consider a position P on the Earth’s surface with lat-
itude A and longitude ¢. A line of length R from the
center of the Earth to the point P has projections
Rcosa_(= RsinA) on the z-axis and Rsina, (= RcosA)
in the equatorial plane. The latter has projections
(RcosAcos¢) and (RcosAsing) on the x- and y-axes,
respectively. The direction cosines of the line are thus

[= cosAcos¢
m= cosAsing 2)

n=sinA

The angle A between two lines with direction cosines
(/;, m,n,) and (/,, m,, n,) is given by

Box 1.5: Direction cosines
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Fig. B1.5 The definition of direction cosines.

cosA =/, + mm,+nmn, (3)

These relationships are useful for computing great
circle distances and the angular relationships between
lines.

Euler
rotation

Fig. 1.28 lllustration that the displacement of a rigid plate on the
surface of a sphere is equivalent to the rotation of the plate about an
Euler pole (after Morgan, 1968)

relative motion between two plates. As such, it defines a
small circle about the Euler pole of relative rotation
between the plates. Great circles drawn normal to the
strike of the small circle (transform fault) should meet at
the Euler pole (Fig. 1.29a), just as at the present day
circles of longitude are perpendicular to circles of lati-
tude and converge at the geographic pole. In 1968, W. J.

Morgan first used this method to locate the Euler rota-
tion pole for the present-day plate motion between
America and Africa (Fig. 1.29b). The Caribbean plate
may be absorbing slow relative motion, but the absence
of a well-defined seismic boundary between North and
South America indicates that these plates are now
moving essentially as one block. The great circles normal
to transform faults in the Central Atlantic converge and
intersect close to 58°N 36°W, which is an estimate of the
Euler pole of recent motion between Africa and South
America. The longitude of the Euler pole is determined
more precisely than its latitude, the errors being + 2° and
+5° respectively. When additional data from earthquake
first motions and spreading rates are included, an Euler
pole at 62°N 36°W is obtained, which is within the error
of the first location.

The “Bullard-type fit” of the African and South
American coastlines (Section 1.2.2.2) is obtained by a
rotation about a pole at 44°N 31°W. This pole reflects
the average long-term motion between the continents. A
rotation which matches a starting point with an end-
point is a finite rotation. As the difference between the
present-day and age-averaged Euler poles illustrates, a
finite rotation is a mathematical formality not necessarily
related to the actual motion between the plates, which
may consist of a number of incremental rotations about
different poles.
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Fig. 1.29 (a) Principle of the method for locating the Euler pole of
rotation between two plates where great circles normal to transform
faults on the plate boundary intersect (after Kearey and Vine, 1990). (b)
Location of the Euler pole of rotation for the motion between Africa
and South America, using transform faults on the Mid-Atlantic Ridge in
the Central Atlantic (after Morgan, 1968).

1.2.9.2 Absolute plate motions

The axial dipole hypothesis of paleomagnetism states
that the mean geomagnetic pole — averaged over several
tens of thousands of years — agrees with the contempora-
neous geographic pole (i.e., rotation axis). Paleomagnetic
directions allow the calculation of the apparent pole
position at the time of formation of rocks of a given age
from the same continent. By connecting the pole posi-
tions successively in order of their age, an apparent polar
wander (APW) path is derived for the continent. Viewed
from the continent it appears that the pole (i.e., the rota-
tion axis) has moved along the APW path. In fact, the
path records the motion of the lithospheric plate bearing
the continent, and differences between APW paths for
different plates reflect motions of the plates relative to
each other.

During the displacement of a plate (i.e., when it
rotates about an Euler pole), the paleomagnetic pole
positions obtained from rocks on the plate describe a
trajectory which is the arc of a small circle about the
Euler pole (Fig. 1.30). The motion of the plate over an
underlying hotspot leaves a trace that is also a small circle
arc about the same hotspot. The paleomagnetic record
gives the motion of plates relative to the rotation axis,
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Fig. 1.30 Development of an arcuate apparent polar wander path and
hotspot trace as small circles about the same Euler pole, when a mobile
plate M moves relative to a fixed plate F (after Butler, 1992).

whereas the hotspot record shows the plate motion over a
fixed point in the mantle. If the mantle moves relative to
the rotation axis, the network of hotspots — each believed
to be anchored to the mantle — shifts along with it. This
motion of the mantle deeper than the mobile lithosphere
is called true polar wander (TPW). The term is rather a
misnomer, because it refers to motion of the mantle rela-
tive to the rotation axis.

Paleomagnetism provides a means of detecting whether
long-term true polar wander has taken place. It involves
comparing paleomagnetic poles from hotspots with con-
temporary poles from the stable continental cratons.
Consider first the possibility that TPW does not take
place: each hotspot maintains its position relative to the
rotation axis. A lava that is magnetized at an active
hotspot acquires a direction appropriate to the distance
from the pole. If the plate moves from north to south over
the stationary hotspot, a succession of islands and
seamounts (Fig. 1.31a, A-D) is formed, which, indepen-
dently of their age, have the same magnetization direction.
Next, suppose that true polar wander does take place: each
hotspot moves with time relative to the rotation axis. For
simplicity, let the hotspot migration also be from north to
south (Fig. 1.31b). Seamount A is being formed at present
and its magnetization direction corresponds to the present-
day distance from the pole. However, older seamounts B, C
and D were formed closer to the pole and have progres-
sively steeper inclinations the further south they are. The
change in paleomagnetic direction with age of the volcan-
ism along the hotspot trace is evidence for true polar
wander.

To test such a hypothesis adequately a large number of
data are needed. The amount of data from a single plate,
such as Africa, can be enlarged by using data from other
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Fig. 1.31 lllustration of the effect of true polar wander on
paleomagnetic inclination: (a) north-south plate motion over a
stationary hotspot, (b) same plate motion over a north—-south migrating
hotspot. A, B, C and D are sequential positions.

plates. For example, in reconstructing Gondwanaland,
South America is rotated into a matching position with
Africa by a finite rotation about an Euler pole. The same
rotation applied to the APW path of South America
allows data from both continents to be combined.
Likewise, rotations about appropriate Euler poles make
the paleomagnetic records for North America and
Eurasia accessible. Averaging the pooled data for age-
windows 10Ma apart gives a reconstructed paleomag-
netic APW path for Africa (Fig. 1.32a). The next step is to
determine the motions of plates over the network of
hotspots, assuming the hotspots have not moved relative
to each other. A “hotspot” apparent polar wander path is
obtained, which is the track of an axis in the hotspot ref-
erence frame presently at the north pole. The appearance
of this track relative to Africa is shown in Fig. 1.32b.

‘We now have records of the motion of the lithosphere
relative to the pole, and of the motion of the lithosphere
relative to the hotspot reference frame. The records coin-
cide for the present time, both giving pole positions at the
present-day rotation axis, but they diverge with age as a
result of true polar wander. A paleomagnetic pole of a
given age is now moved along a great circle (i.e., rotated
about an Euler pole in the equatorial plane) until it lies on
the rotation axis. If the same rotation is applied to the
hotspot pole of the same age, it should fall on the rotation
axis also. The discrepancy is due to motion of the hotspot
reference frame relative to the rotation axis. Joining loca-
tions in order of age gives a true polar wander path (Fig.
1.32c). This exercise can be carried out for only the last
200 Ma, in which plate reconstructions can be confidently
made. The results show that TPW has indeed taken place

but that its amplitude has remained less than 15° for the
last 150 Ma.

1.2.10 Forces driving plate tectonic motions

An unresolved problem of plate tectonics is what mecha-
nism drives plate motions. The forces acting on plates
may be divided into forces that act on their bottom sur-
faces and forces that act on their margins. The bottom
forces arise due to relative motion between the lithos-
pheric plate and the viscous asthenosphere. In this
context it is less important whether mantle flow takes
place by whole-mantle convection or layered convection.
For plate tectonics the important feature of mantle rheol-
ogy is that viscous flow in the upper mantle is possible.
The motion vectors of lithospheric plates do not reveal
directly the mantle flow pattern, but some general infer-
ences can be drawn. The flow pattern must include the
mass transport involved in moving lithosphere from a
ridge to a subduction zone, which has to be balanced by
return flow deep in the mantle. Interactions between the
plates and the viscous substratum necessarily influence
the plate motions. In order to assess the importance
of these effects we need to compare them to the other
forces that act on plates, especially at their boundaries
(Fig. 1.33).

1.2.10.1 Forces acting on lithospheric plates

Some forces acting on lithospheric plates promote motion
while others resist it. Upper mantle convection could fall
into either category. The flow of material beneath a plate
exerts a mantle drag force (Fi,) on the base of the plate. If
the convective flow is faster than plate velocities, the
plates are dragged along by the flow, but if the opposite is
true the mantle drag opposes the plate motion. Plate
velocities are observed to be inversely related to the area
of continent on the plate, which suggests that the greater
lithospheric thickness results in an additional continental
drag force (F,) on the plate. The velocity of a plate also
depends on the length of its subduction zone but not on
the length of its spreading ridge. This suggests that sub-
duction forces may be more important than spreading
forces. This can be evaluated by considering the forces at
all three types of plate margin.

At spreading ridges, upwelling magma is associated
with the constructive margin. It was long supposed that
this process pushes the plates away from the ridge. It also
elevates the ridges above the oceanic abyss, so that poten-
tial energy encourages gravitational sliding toward the
trenches. Together, the two effects make up the ridge push
Jorce (Fyp).

At transform faults, high seismicity is evidence of inter-
active forces where the plates move past each other. A
transform force (Fip) can be envisioned as representing
frictional resistance in the contact zone. Its magnitude
may be different at a transform connecting ridge segments,
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Fig. 1.32 (a) Paleomagnetic
APW path reconstructed for
Africa using data from several
plates. (b) Hotspot APW path
(motion of an axis at the
geographic pole relative to
the hotspot reference frame).
(c) Computed true polar
wander path (based on data
from Courtillot and Besse,
1987, and Morgan, 1982).
Values represent age in Ma.

Paleomagnetic
Apparent
Polar Wander

Fig. 1.33 Diagram illustrating
some of the different forces
acting on lithospheric plates
(after Forsyth and Uyeda,
1975; Uyeda, 1978).
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where the plates are hot, than at a transform between sub-
duction zones, where the plates are cold.

At subduction zones, the descending slab of lithosphere
is colder and denser than the surrounding mantle. This
creates a positive mass anomaly — referred to as negative
buoyancy — which is accentuated by intraplate phase tran-
sitions. If the descending slab remains attached to the
surface plate, a slab pull force (Fgp) ensues that pulls the
slab downwards into the mantle. Transferred to the entire
plate it acts as a force toward the subduction zone.
However, the subducting plate eventually sinks to depths
where it approaches thermal equilibrium with the sur-
rounding mantle, loses its negative buoyancy and experi-
ences a slab resistance force (Fgy) as it tries to penetrate
further into the stiffer mantle.

Plate collisions result in both driving and resistive
forces. The vertical pull on the descending plate may cause

the bend in the lower plate to migrate away from the sub-
duction zone, effectively drawing the upper plate toward
the trench. The force on the upper plate has also been
termed “trench suction” (Fg;). The colliding plates also
impede each other’s motion and give rise to a collision-
resistance force (Fg). This force consists of separate
forces due to the effects of mountains or trenches in the
zone of convergence.

At hotspots, the transfer of mantle material to the
lithosphere may result in a hotspot force (Fyg) on the
plate.

In summary, the driving forces on plates are slab pull,
slab suction, ridge push and the trench pull force on the
upper plate. The motion is opposed by slab resistance, col-
lision resistance, and transform fault forces. Whether the
forces between plate and mantle (mantle drag, continental
drag) promote or oppose motion depends on the sense of
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Torque (arb. units)
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Fig. 1.34 Comparison of the magnitudes of torques acting on the 12
major lithospheric plates (after Chapple and Tullis, 1977).

the relative motion between the plate and the mantle. The
motive force of plate tectonics is clearly a composite of
these several forces. Some can be shown to be more impor-
tant than others, and some are insignificant.

1.2.10.2 Relative magnitudes of forces driving plate
motions

In order to evaluate the relative importance of the forces
it is necessary to take into account their different direc-
tions. This is achieved by converting the forces to torques
about the center of the Earth. Different mathematical
analyses lead to similar general conclusions regarding the
relative magnitudes of the torques. The push exerted by
hotspots and the resistance at transform faults are negli-
gible in comparison to the other forces (Fig. 1.34). The
ridge push force is much smaller than the forces at a con-
verging margin, and it is considered to be of secondary
importance. Moreover, the topography of oceanic ridges
is offset by transform faults. If the ridge topography were
due to buoyant upwelling, the fluid mantle could not
exhibit discontinuities at the faults but would bulge
beyond the ends of ridge segments. Instead, sharp offsets
are observed, indicating that the topography is an expres-
sion of local processes in the oceanic lithosphere. This
implies that upwelling at ridges is a passive feature, with

mantle material filling space created by the plates moving
apart.

The torque analysis shows that the strongest force
driving plate motions is the pull of a descending slab on its
plate; the force that pulls the upper plate toward a trench
may also be considerable. The opposing force due to the
collision between the plates is consistently smaller than the
upper plate force. The resistance experienced by some slabs
to deep mantle penetration may diminish the slab pull
force. However, seismic evidence has shown that some
slabs may become detached from their parent plate, and
apparently sink all the way to the core-mantle boundary.
The descending motion contributes to mantle circulation,
and thus acts indirectly as a driving force for plate motions;
it is known as slab suction. However, analysis of this force
has shown that it is less important than slab pull, which
emerges as the most important force driving plate motions.
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1.5 EXERCISES

1.4 REVIEW QUESTIONS

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Write down Kepler’s three laws of planetary motion.
Which law is a result of the conservation of momen-
tum? Which law is a result of the conservation of
energy?

. The gravitational attraction of the Sun on an orbiting

planet is equal to the centripetal acceleration of the
planet. Show for a circular orbit that this leads to
Kepler’s third law of motion.

. What causes the precession of the Earth’s rotation

axis? Why is it retrograde?

. What other long-term changes of the rotation axis or

the Earth’s orbit occur? What are the periods of these
motions? What are their causes?

. If a planet existed in place of the asteroid belt, what

would Bode’s law predict for the radius of its orbit?
What would be the period of its orbital motion
around the Sun?

. What is the nebular hypothesis for the origin of the

solar system?

. What geological evidence is there in support of conti-

nental drift? What is the essential difference between
older models of continental drift and the modern
theory of plate tectonics?

. What was Pangaea? When and how did it form?

When and how did it break up?

. What is the Earth’s crust? What is the lithosphere?

How are they distinguished?

What are the major discontinuities in the Earth’s
internal structure? How are they known?

Distinguish between constructive, conservative and
destructive plate margins.

Make a brief summary, using appropriate sketches, of
geological and geophysical data from plate margins
and their plate tectonic interpretations.

What kind of plate margin is a continental collision
zone? How does it differ from a subduction zone?
Describe the Vine-Matthews—Morley hypothesis of
sea-floor spreading.

Explain how sea-floor spreading can be used to
determine the age of the oceanic crust. Where
are the oldest parts of the oceans? How old are
they? How does this age compare to the age of the
Earth?

What are the names of the 12 major tectonic plates
and where do their plate margins lie?

With the aid of a globe or map, estimate roughly a
representative distance across one of the major
plates. What is the ratio of this distance to the thick-
ness of the plate? Why are the tectonic units called
plates?

What is a triple junction? Explain the role of triple
junctions in plate tectonics.

What is a hotspot? Explain how the Hawaiian
hotspot provides evidence of a change in motion of
the Pacific plate.
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20. How may the Euler pole of relative rotation between

two plates be located?

1.5 EXERCISES

1.

Measured from a position on the Earth’s surface at
the equator, the angle between the direction to the
Moon and a reference direction (distant star) in the
plane of the Moon’s orbit is 11°57" at 8§ p.m. one
evening and 14°32" at 4 a.m. the following morning.
Assuming that the Earth, Moon and reference star
are in the same plane, and that the rotation axis is
normal to the plane, estimate the approximate dis-
tance between the centres of the Earth and Moon.

The eccentricity e of the Moon’s orbit is 0.0549 and

the mean orbital radius r, = (ab)"?is 384,100 km.

(a) Calculate the lengths of the principal axes a and
b of the Moon’s orbit.

(b) How far is the center of the Earth from the center
of the elliptical orbit?

(c) Calculate the distances of the Moon from the
Earth at perigee and apogee.

. If the Moon’s disk subtends a maximum angle of

0° 31’ 36.8” at the surface of the Earth, what is the
Moon’s radius?

Bode’s Law (Eq. (1.3)) gives the orbital radius of the
nth planet from the Sun (counting the asteroid belt)
in astronomical units. It fits the observations well
except for Neptune (n=9) and Pluto (n=10).
Calculate the orbital radii of Neptune and Pluto pre-
dicted by Bode’s Law, and compare the results with
the observed values (Table 1.2). Express the discrep-
ancies as percentages of the predicted distances.

. An ambulance passes a stationary observer at the

side of the road at a speed of 60km h™!. Its dual tone
siren emits alternating tones with frequencies of 700
and 1700 Hz. What are the dual frequencies heard by
the observer (a) before and (b) after the ambulance
passes? [Assume that the speed of sound, ¢, in ms™!
at the temperature 7' (°C) is c= 331+ 0.6077.]

. A spacecraft landing on the Moon uses the Doppler

effect on radar signals transmitted at a frequency
of 5GHz to determine the landing speed. The pilot
discovers that the precision of the radar instrument
has deteriorated to =100Hz. Is this adequate to
ensure a safe landing? [Speed of light 300,000 kms™!.]

Explain with the aid of a sketch the relationship
between the length of a day and the length of a year
on the planet Mercury (see Section 1.1.3.2).

The rotations of the planet Pluto and its moon
Charon about their own axes are synchronous with
the revolution of Charon about Pluto. Show with the
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10.

I1.

12.

The Earth as a planet

aid of simple sketches that Pluto and Charon always
present the same face to each other.

The barycenter of a star and its planet — or of a

planet and its moon — is the center of mass of the

pair. Using the mass and radius of primary body and

satellite, and the orbital radius of the satellite, as

given in Tables 1.1-1.3 or below, calculate the loca-

tion of the barycenter of the following pairs of

bodies. In each case, does the barycenter lie inside or

outside the primary body?

(a) Sun and Earth.

(b) Sun and Jupiter.

(¢) Earth and Moon.

(d) Pluto (mass 1.27 X 10*? kg, radius 1137 km) and
Charon (mass 1.9 X 10%! kg, radius 586 km); the
radius of Charon’s orbit is 19,640 km.

A planet with radius R has a mantle with uniform
density p = enclosing a core with radius r, and
uniform density p_. Show that the mean density of
the planet p is given by

P~ Pm _[Ic)

Pc=Pm \R

The radius of the Moon is 1738 km and its mean
density is 3347kgm™3. If the Moon has a core
with radius 400 km and the uniform density of the

overlying mantle is 3300 kgm ™3, what is the density
of the core?

Summarize the geological and geophysical evidence
resulting from plate tectonic activity in the following
regions: (a) Iceland, (b) the Aleutian islands, (c)
Turkey, (d) the Andes, (e) the Alps?

13.

14.

15.

16.

17.

18.

Using the data in Fig 5.77, compute the approximate
spreading rates in the age interval 25-45Ma at the
oceanic ridges in the S. Atlantic, S. Indian, N. Pacific
and S. Pacific oceans.

Three ridges A, B and C meet at a triple junction.
Ridge A has a strike of 329° (N31W) and a spreading
rate of 7.0cm yr~!; ridge B strikes at 233° (S53W)
and has a spreading rate of 5.0cm yr~!. Determine
the strike of ridge C and its spreading rate.

Three sides of a triangle on the surface of the spheri-
cal Earth measure 900 km, 1350km, and 1450 km,
respectively. What are the internal angles of the trian-
gle? If this were a plane triangle, what would the
internal angles be?

An aircraft leaves a city at latitude A, and longitude
¢, and flies to a second city at latitude A, and longi-
tude ¢,. Derive an expression for the great circle dis-
tance between the two cities.

Apply the above formula to compute the great circle

distances between the following pairs of cities:

(a) New York (A=40° 43’ N, ¢, =74° 1" W)—
Madrid (40° 25" N, 3°43’ W);

(b) Seattle (A=47° 21" N, ¢, =122° 12" W)-—
Sydney (A =33°52' S, ¢, =151°13" E);

(c) Moscow (A=55° 45" N, ¢,=37° 35" E)-
Paris (A =48°52" N, ¢, =2°20" E);

(d) London (A=51° 30" N, ¢,=0° 10" W)—
Tokyo (A=35°42" N, ¢, =139°46' E).

Calculate the heading (azimuth) of the aircraft’s
flight path as it leaves the first city in each pair of
cities in the previous exercise.



2 Gravity, the figure of the Earth and geodynamics

2.1 THE EARTH'S SIZE AND SHAPE
2.1.1 Earth’s size

The philosophers and savants in ancient civilizations
could only speculate about the nature and shape of the
world they lived in. The range of possible travel was
limited and only simple instruments existed. Unrelated
observations might have suggested that the Earth’s surface
was upwardly convex. For example, the Sun’s rays con-
tinue to illuminate the sky and mountain peaks after its
disk has already set, departing ships appear to sink slowly
over the horizon, and the Earth’s shadow can be seen to be
curved during partial eclipse of the Moon. However, early
ideas about the heavens and the Earth were intimately
bound up with concepts of philosophy, religion and
astrology. In Greek mythology the Earth was a disk-
shaped region embracing the lands of the Mediterranean
and surrounded by a circular stream, Oceanus, the origin
of all the rivers. In the sixth century BC the Greek
philosopher Anaximander visualized the heavens as a
celestial sphere that surrounded a flat Earth at its center.
Pythagoras (582-507 BC) and his followers were appar-
ently the first to speculate that the Earth was a sphere. This
idea was further propounded by the influential philoso-
pher Aristotle (384-322 BC). Although he taught the sci-
entific principle that theory must follow fact, Aristotle is
responsible for the logical device called syllogism, which
can explain correct observations by apparently logical
accounts that are based on false premises. His influence on
scientific methodology was finally banished by the scien-
tific revolution in the seventeenth century.

The first scientifically sound estimate of the size of the
terrestrial sphere was made by Eratosthenes (275-195
BC), who was the head librarian at Alexandria, a Greek
colony in Egypt during the third century BC. Eratosthenes
had been told that in the city of Syene (modern Aswan)
the Sun’s noon rays on midsummer day shone vertically
and were able to illuminate the bottoms of wells, whereas
on the same day in Alexandria shadows were cast. Using
a sun-dial Eratosthenes observed that at the summer sol-
stice the Sun’s rays made an angle of one-fiftieth of a
circle (7.2°) with the vertical in Alexandria (Fig. 2.1).
Eratosthenes believed that Syene and Alexandria were on
the same meridian. In fact they are slightly displaced;
their geographic coordinates are 24° 5'N 32° 56’E and

e

Fig. 2.1 The method used by Eratosthenes (275-195 BC) to estimate
the Earth’s circumference used the 7.2° difference in altitude of the
Sun’s rays at Alexandria and Syene, which are 5000 stadia apart (after
Strahler, 1963).

31° 13'N 29° 55’E, respectively. Syene is actually about
half a degree north of the tropic of Cancer. Eratosthenes
knew that the approximate distance from Alexandria to
Syene was 5000 stadia, possibly estimated by travellers
from the number of days (“10 camel days”) taken to travel
between the two cities. From these observations
Eratosthenes estimated that the circumference of the
global sphere was 250,000 stadia. The Greek stadium was
the length (about 185m) of the U-shaped racecourse on
which footraces and other athletic events were carried
out. Eratosthenes’ estimate of the Earth’s circumference
is equivalent to 46,250km, about 15% higher than the
modern value of 40,030 km.

Estimates of the length of one meridian degree were
made in the eighth century AD during the Tang dynasty in
China, and in the ninth century AD by Arab astronomers
in Mesopotamia. Little progress was made in Europe until
the early seventeenth century. In 1662 the Royal Society
was founded in London and in 1666 the Académie Royale
des Sciences was founded in Paris. Both organizations
provided support and impetus to the scientific revolution.
The invention of the telescope enabled more precise geo-
detic surveying. In 1671 a French astronomer, Jean Picard
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(1620-1682), completed an accurate survey by triangula-
tion of the length of a degree of meridian arc. From his
results the Earth’s radius was calculated to be 6372km,
remarkably close to the modern value of 6371 km.

2.1.2 Earth's shape

In 1672 another French astronomer, Jean Richer, was sent
by Louis XIV to make astronomical observations on the
equatorial island of Cayenne. He found that an accurate
pendulum clock, which had been adjusted in Paris pre-
cisely to beat seconds, was losing about two and a half
minutes per day, i.e., its period was now too long. The
error was much too large to be explained by inaccuracy of
the precise instrument. The observation aroused much
interest and speculation, but was only explained some 15
years later by Sir Isaac Newton in terms of his laws of
universal gravitation and motion.

Newton argued that the shape of the rotating Earth
should be that of an oblate ellipsoid; compared to a sphere,
it should be somewhat flattened at the poles and should
bulge outward around the equator. This inference was
made on logical grounds. Assume that the Earth does not
rotate and that holes could be drilled to its center along the
rotation axis and along an equatorial radius (Fig. 2.2). If
these holes are filled with water, the hydrostatic pressure at
the center of the Earth sustains equal water columns along
each radius. However, the rotation of the Earth causes a
centrifugal force at the equator but has no effect on the axis
of rotation. At the equator the outward centrifugal force
of the rotation opposes the inward gravitational attraction
and pulls the water column upward. At the same time it
reduces the hydrostatic pressure produced by the water
column at the Earth’s center. The reduced central pressure
is unable to support the height of the water column along
the polar radius, which subsides. If the Earth were a hydro-
static sphere, the form of the rotating Earth should be an
oblate ellipsoid of revolution. Newton assumed the Earth’s
density to be constant and calculated that the flattening
should be about 1:230 (roughly 0.5%). This is somewhat
larger than the actual flattening of the Earth, which is
about 1:298 (roughly 0.3%).

The increase in period of Richer’s pendulum could
now be explained. Cayenne was close to the equator,
where the larger radius placed the observer further from
the center of gravitational attraction, and the increased
distance from the rotational axis resulted in a stronger
opposing centrifugal force. These two effects resulted in a
lower value of gravity in Cayenne than in Paris, where the
clock had been calibrated.

There was no direct proof of Newton’s interpretation. A
corollary of his interpretation was that the degree of merid-
ian arc should subtend a longer distance in polar regions
than near the equator (Fig. 2.3). Early in the eighteenth
century French geodesists extended the standard meridian
from border to border of the country and found a puzzling
result. In contrast to the prediction of Newton, the degree

reduced
pressure
supports

shorter centrifugal
column force reduces
—>> gravity

central pressure is
reduced due to
weaker gravity

ellipsoid of
rotation

Fig. 2.2 Newton’s argument that the shape of the rotating Earth should
be flattened at the poles and bulge at the equator was based on
hydrostatic equilibrium between polar and equatorial pressure columns
(after Strahler, 1963).
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Fig. 2.3 (a) The length of a degree of meridian arc is found by
measuring the distance between two points that lie one degree apart
on the same meridian. (b) The larger radius of curvature at the flattened
poles gives a longer arc distance than is found at the equator where the
radius of curvature is smaller (after Strahler, 1963).

of meridian arc decreased northward. The French interpre-
tation was that the Earth’s shape was a prolate ellipsoid,
elongated at the poles and narrowed at the equator, like the
shape of a rugby football. A major scientific controversy
arose between the “flatteners” and the “elongators.”



2.2 GRAVITATION

To determine whether the Earth’s shape was oblate or
prolate, the Académie Royale des Sciences sponsored two
scientific expeditions. In 17361737 a team of scientists
measured the length of a degree of meridian arc in
Lapland, near the Arctic Circle. They found a length
appreciably longer than the meridian degree measured by
Picard near Paris. From 1735 to 1743 a second party of
scientists measured the length of more than 3 degrees of
meridian arc in Peru, near the equator. Their results
showed that the equatorial degree of latitude was shorter
than the meridian degree in Paris. Both parties confirmed
convincingly the prediction of Newton that the Earth’s
shape is that of an oblate ellipsoid.

The ellipsoidal shape of the Earth resulting from its
rotation has important consequences, not only for the
variation with latitude of gravity on the Earth’s surface,
but also for the Earth’s rate of rotation and the orienta-
tion of its rotational axis. These are modified by torques
that arise from the gravitational attractions of the Sun,
Moon and planets on the ellipsoidal shape.

2.2 GRAVITATION
2.2.1 The law of universal gravitation

Sir Isaac Newton (1642-1727) was born in the same year
in which Galileo died. Unlike Galileo, who relished
debate, Newton was a retiring person and avoided con-
frontation. His modesty is apparent in a letter written in
1675 to his colleague Robert Hooke, famous for his exper-
iments on elasticity. In this letter Newton made the
famous disclaimer “if I have seen further (than you and
Descartes) it is by standing upon the shoulders of
Giants.” In modern terms Newton would be regarded as a
theoretical physicist. He had an outstanding ability to
synthesize experimental results and incorporate them
into his own theories. Faced with the need for a more
powerful technique of mathematical analysis than existed
at the time, he invented differential and integral calculus,
for which he is credited equally with Gottfried Wilhelm
von Leibnitz (1646-1716) who discovered the same
method independently. Newton was able to resolve many
issues by formulating logical thought experiments; an
example is his prediction that the shape of the Earth is an
oblate ellipsoid. He was one of the most outstanding syn-
thesizers of observations in scientific history, which is
implicit in his letter to Hooke. His three-volume book
Philosophiae Naturalis Principia Mathematica, published
in 1687, ranks as the greatest of all scientific texts. The
first volume of the Principia contains Newton’s famous
Laws of Motion, the third volume handles the Law of
Universal Gravitation.

The first two laws of motion are generalizations from
Galileo’s results. As a corollary Newton applied his laws
of motion to demonstrate that forces must be added as
vectors and showed how to do this geometrically with a
parallelogram. The second law of motion states that the
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rate of change of momentum of a mass is proportional
to the force acting upon it and takes place in the direction
of the force. For the case of constant mass, this law serves
as the definition of force (F) in terms of the acceleration
(a) given to a mass (m):

@.1)

The unit of force in the SI system of units is the
newton (N). It is defined as the force that gives a mass of
one kilogram (1 kg) an acceleration of 1 ms™2.

His celebrated observation of a falling apple may be a
legend, but Newton’s genius lay in recognizing that the
type of gravitational field that caused the apple to fall was
the same type that served to hold the Moon in its orbit
around the Earth, the planets in their orbits around the
Sun, and that acted between minute particles characterized
only by their masses. Newton used Kepler’s empirical third
law (see Section 1.1.2 and Eq. (1.2)) to deduce that the
force of attraction between a planet and the Sun varied
with the “quantities of solid matter that they contain” (i.e.,
their masses) and with the inverse square of the distance
between them. Applying this law to two particles or point
masses m and M separated by a distance r (Fig. 2.4a), we
get for the gravitational attraction F exerted by M on m

F= —c"M;
r

F=ma

2.2)

In this equation f is a unit vector in the direction of
increase in coordinate r, which is directed away from the
center of reference at the mass M. The negative sign in the
equation indicates that the force F acts in the opposite
direction, toward the attracting mass M. The constant G,
which converts the physical law to an equation, is the con-
stant of universal gravitation.

There was no way to determine the gravitational con-
stant experimentally during Newton’s lifetime. The
method to be followed was evident, namely to determine
the force between two masses in a laboratory experiment.
However, seventeenth century technology was not yet up
to this task. Experimental determination of G was
extremely difficult, and was first achieved more than a
century after the publication of Principia by Lord
Charles Cavendish (1731-1810). From a set of painstak-
ing measurements of the force of attraction between two
spheres of lead, Cavendish in 1798 determined the value
of G to be 6.754X 107! m3 kg=! s72. A modern value
(Mohr and Taylor, 2005) is 6.674 210 X 10~ m? kg=!s72.
It has not yet been possible to determine G more precisely,
due to experimental difficulty. Although other physical
constants are now known with a relative standard uncer-
tainty of much less than 1 X 107, the gravitational con-
stant is known to only 150 X 1076,

2.2.1.1 Potential energy and work

The law of conservation of energy means that the total
energy of a closed system is constant. Two forms of
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(a) point masses

(c) point mass on Earth's surface

Fig. 2.4 Geometries for the gravitational attraction on (a) two point
masses, (b) a point mass outside a sphere, and (c) a point mass on the
surface of a sphere.

energy need be considered here. The first is the potential
energy, which an object has by virtue of its position rela-
tive to the origin of a force. The second is the work
done against the action of the force during a change in
position.

For example, when Newton’s apple is on the tree it has
a higher potential energy than when it lies on the ground.
It falls because of the downward force of gravity and loses
potential energy in doing so. To compute the change in
potential energy we need to raise the apple to its original
position. This requires that we apply a force equal and
opposite to the gravitational attraction on the apple and,
because this force must be moved through the distance the
apple fell, we have to expend energy in the form of work. If
the original height of the apple above ground level was &
and the value of the force exerted by gravity on the apple is
F, the force we must apply to put it back is (—F).
Assuming that F'is constant through the short distance of
its fall, the work expended is (— F)A. This is the increase in
potential energy of the apple, when it is on the tree.

More generally, if the constant force F moves through
a small distance dr in the same direction as the force, the
work done is dW= Fdr and the change in potential
energy dEp is given by

dE,= —dW= —Fdr (2.3)

In the more general case we have to consider motions
and forces that have components along three orthogonal
axes. The displacement dr and the force F no longer need
to be parallel to each other. We have to treat F and dr as
vectors. In Cartesian coordinates the displacement vector
dr has components (dx, dy, dz) and the force has compo-
nents (£, F, y, F)) along each of the respective axes. The

work done by the x-component of the force when it is dis-
placed along the x-axis is F dx, and there are similar
expressions for the displacements along the other axes.
The change in potential energy dEp is now given by

dE,= —dW= —(F,dx+ F,dy + F.dz) (2.4)

The expression in brackets is called the scalar product
of the vectors Fand dr. It is equal to F dr cosf, where 6 is
the angle between the vectors.

2.2.2 Gravitational acceleration

In physics the field of a force is often more important than
the absolute magnitude of the force. The field is defined as
the force exerted on a material unit. For example, the elec-
trical field of a charged body at a certain position is the
force it exerts on a unit of electrical charge at that loca-
tion. The gravitational field in the vicinity of an attracting
mass is the force it exerts on a unit mass. Equation (2.1)
shows that this is equivalent to the acceleration vector.

In geophysical applications we are concerned with
accelerations rather than forces. By comparing Eq. (2.1)
and Eq. (2.2) we get the gravitational acceleration ag, of
the mass m due to the attraction of the mass M:

2.5)

The SI unit of acceleration is the m s~2 this unit is
unpractical for use in geophysics. In the now superseded
c.g.s. system the unit of acceleration was the cm s™2,
which is called a gal/ in recognition of the contributions of
Galileo. The small changes in the acceleration of gravity
caused by geological structures are measured in thou-
sandths of this unit, i.e., in milligal (mgal). Until recently,
gravity anomalies due to geological structures were sur-
veyed with field instruments accurate to about one-tenth
of a milligal, which was called a gravity unit. Modern
instruments are capable of measuring gravity differences
to a millionth of a gal, or microgal (mgal), which is
becoming the practical unit of gravity investigations. The
value of gravity at the Earth’s surface is about 9.8 m s™2,
and so the sensitivity of modern measurements of gravity
is about 1 partin 10°.

2.2.2.1 Gravitational potential

The gravitational potential is the potential energy of a
unit mass in a field of gravitational attraction. Let the
potential be denoted by the symbol Ug. The potential
energy E of a mass m in a gravitational field is thus equal
to (mUg). Thus, a change in potential energy (dEp) is
equal to (m dUg). Equation (2.3) becomes, using Eq. (2.1),

mdUg = Fdr=—magdr (2.6)

Rearranging this equation we get the gravitational accel-
eration
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dUs
aG=—"g |

2.7)

In general, the acceleration is a three-dimensional
vector. If we are using Cartesian coordinates (x, y, z), the
acceleration will have components (a , a, a_). These may
be computed by calculating separately the derivatives of
the potential with respect to x, y and z:

dUg UG dUg

a. = ——— a = ———— a=——

x 0x y ay z 0z (2.8)

Equating Eqgs. (2.3) and (2.7) gives the gravitational
potential of a point mass M:
dUG_ M

5 =G (2.9)

the solution of which is
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Ug=— (2.10)

2.2.2.2 Acceleration and potential of a distribution of mass

Until now, we have considered only the gravitational
acceleration and potential of point masses. A solid body
may be considered to be composed of numerous small
particles, each of which exerts a gravitational attraction at
an external point P (Fig. 2.5a). To calculate the gravita-
tional acceleration of the object at the point P we must
form a vector sum of the contributions of the individual
discrete particles. Each contribution has a different direc-
tion. Assuming m, to be the mass of the particle at dis-
tance r; from P, this gives an expression like

@.11)

Depending on the shape of the solid, this vector sum can
be quite complicated.

An alternative solution to the problem is found by first
calculating the gravitational potential, and then differen-
tiating it as in Eq. (2.5) to get the acceleration. The
expression for the potential at P is

m n, ms

UG: —GTI—GTZ—GT3—"' (2.12)
This is a scalar sum, which is usually more simple to cal-
culate than a vector sum.

More commonly, the object is not represented as an
assemblage of discrete particles but by a continuous mass
distribution. However, we can subdivide the volume into
discrete elements; if the density of the matter in each
volume is known, the mass of the small element can be
calculated and its contribution to the potential at the
external point P can be determined. By integrating over
the volume of the body its gravitational potential at P can
be calculated. At a point in the body with coordinates (x,
¥, z) let the density be p(x, y, z) and let its distance from P
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Fig. 2.5 (a) Each small particle of a solid body exerts a gravitational
attraction in a different direction at an external point P. (b) Computation
of the gravitational potential of a continuous mass distribution.

be r(x, y, z) as in Fig. 2.5b. The gravitational potential of
the body at P is

Ug = —fofwdxdydz (2.13)
Xy z

r(x,p,2)

The integration readily gives the gravitational potential
and acceleration at points inside and outside a hollow or
homogeneous solid sphere. The values outside a sphere at
distance r from its center are the same as if the entire mass
E of the sphere were concentrated at its center (Fig. 2.4b):

E

Uy= —GE (2.14)
ag = —G%f 2.15)

2.2.2.3 Mass and mean density of the Earth

Equations (2.14) and (2.15) are valid everywhere outside
a sphere, including on its surface where the distance from
the center of mass is equal to the mean radius R (Fig.
2.4c¢). If we regard the Earth to a first approximation as a
sphere with mass E and radius R, we can estimate the
Earth’s mass by rewriting Eq. (2.15) as a scalar equation
in the form

Rlag
E=—¢ (2.16)

The gravitational acceleration at the surface of the
Earth is only slightly different from mean gravity, about
9.81m s~ 2, the Earth’s radius is 6371 km, and the gravita-
tional constant is 6.674 X 10~ m? kg™! s72. The mass of
the Earth is found to be 5.974 X 10%* kg. This large number
is not so meaningful as the mean density of the Earth,
which may be calculated by dividing the Earth’s mass by its
volume (37 R3). A mean density of 5515kgm 3 is obtained,
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which is about double the density of crustal rocks. This
indicates that the Earth’s interior is not homogeneous,
and implies that density must increase with depth in the
Earth.

2.2.3 The equipotential surface

An equipotential surface is one on which the potential is
constant. For a sphere of given mass the gravitational
potential (Eq. (2.15)) varies only with the distance r from
its center. A certain value of the potential, say U,, is real-
ized at a constant radial distance r,. Thus, the equipo-
tential surface on which the potential has the value U, is
a sphere with radius r|; a different equipotential surface
U, is the sphere with radius r,. The equipotential sur-
faces of the original spherical mass form a set of concen-
tric spheres (Fig. 2.6a), one of which (e.g., U,) coincides
with the surface of the spherical mass. This particular
equipotential surface describes the figure of the spheri-
cal mass.

By definition, no change in potential takes place (and
no work is done) in moving from one point to another on
an equipotential surface. The work done by a force Fin a
displacement dr is Fdrcosf which is zero when cosf is
zero, that is, when the angle 6 between the displacement
and the force is 90°. If no work is done in a motion along
a gravitational equipotential surface, the force and accel-
eration of the gravitational field must act perpendicular
to the surface. This normal to the equipotential surface
defines the vertical, or plumb-line, direction (Fig. 2.6b).
The plane tangential to the equipotential surface at a
point defines the horizontal at that point.

2.3 THE EARTH'S ROTATION
2.3.1 Introduction

The rotation of the Earth is a vector, i.e., a quantity char-
acterized by both magnitude and direction. The Earth
behaves as an elastic body and deforms in response to the
forces generated by its rotation, becoming slightly flat-
tened at the poles with a compensating bulge at the
equator. The gravitational attractions of the Sun, Moon
and planets on the spinning, flattened Earth cause
changes in its rate of rotation, in the orientation of the
rotation axis, and in the shape of the Earth’s orbit around
the Sun. Even without extra-terrestrial influences the
Earth reacts to tiny displacements of the rotation axis
from its average position by acquiring a small, unsteady
wobble. These perturbations reflect a balance between
gravitation and the forces that originate in the Earth’s
rotational dynamics.

2.3.2 Centripetal and centrifugal acceleration

Newton’s first law of motion states that every object con-
tinues in its state of rest or of uniform motion in a

(@)

equipotential
surface

(b)

Fig. 2.6 (a) Equipotential surfaces of a spherical mass form a set of
concentric spheres. (b) The normal to the equipotential surface defines
the vertical direction; the tangential plane defines the horizontal.

straight line unless compelled to change that state by
forces acting on it. The continuation of a state of motion
is by virtue of the inertia of the body. A framework in
which this law is valid is called an inertial system. For
example, when we are travelling in a car at constant speed,
we feel no disturbing forces; reference axes fixed to the
moving vehicle form an inertial frame. If traffic condi-
tions compel the driver to apply the brakes, we experience
decelerating forces; if the car goes around a corner, even
at constant speed, we sense sideways forces toward the
outside of the corner. In these situations the moving car is
being forced to change its state of uniform rectilinear
motion and reference axes fixed to the car form a non-
inertial system.

Motion in a circle implies that a force is active that
continually changes the state of rectilinear motion.
Newton recognized that the force was directed inwards,
towards the center of the circle, and named it the cen-
tripetal (meaning “center-seeking”) force. He cited the
example of a stone being whirled about in a sling. The
inward centripetal force exerted on the stone by the sling
holds it in a circular path. If the sling is released, the
restraint of the centripetal force is removed and the
inertia of the stone causes it to continue its motion at
the point of release. No longer under the influence of the
restraining force, the stone flies off in a straight line.
Arguing that the curved path of a projectile near the
surface of the Earth was due to the effect of gravity,
which caused it constantly to fall toward the Earth,
Newton postulated that, if the speed of the projectile
were exactly right, it might never quite reach the Earth’s
surface. If the projectile fell toward the center of the
Earth at the same rate as the curved surface of the Earth
fell away from it, the projectile would go into orbit around
the Earth. Newton suggested that the Moon was held in
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orbit around the Earth by just such a centripetal force,
which originated in the gravitational attraction of the
Earth. Likewise, he visualized that a centripetal force due
to gravitational attraction restrained the planets in their
circular orbits about the Sun.

The passenger in a car going round a corner experi-
ences a tendency to be flung outwards. He is restrained
in position by the frame of the vehicle, which supplies
the necessary centripetal acceleration to enable the pas-
senger to go round the curve in the car. The inertia of the
passenger’s body causes it to continue in a straight line
and pushes him outwards against the side of the vehicle.
This outward force is called the centrifugal force. It arises
because the car does not represent an inertial reference
frame. An observer outside the car in a fixed (inertial)
coordinate system would note that the car and passenger
are constantly changing direction as they round the
corner. The centrifugal force feels real enough to the
passenger in the car, but it is called a pseudo-force, or
inertial force. In contrast to the centripetal force, which
arises from the gravitational attraction, the centrifugal
force does not have a physical origin, but exists only
because it is being observed in a non-inertial reference
frame.

2.3.2.1 Centripetal acceleration

The mathematical form of the centripetal acceleration
for circular motion with constant angular velocity
about a point can be derived as follows. Define orthogo-
nal Cartesian axes x and y relative to the center of the
circle as in Fig. 2.7a. The linear velocity » at any point
where the radius vector makes an angle 0 = (wt) with the
x-axis has components

v, = —vsin(wt) = —rwsin(wt)
’ (2.17)

v, = veos(wt) = row cos(wt)

The x- and y-components of the acceleration are
obtained by differentiating the velocity components with
respect to time. This gives

a, = —wvcos(wl) = —rw’cos(w!)
: 2.18)

a, = —wysin(wr) = —rw? sin(wt)

These are the components of the centripetal accelera-
tion, which is directed radially inwards and has the mag-
nitude w?r (Fig. 2.7b).

2.3.2.2 Centrifugal acceleration and potential

In handling the variation of gravity on the Earth’s surface
we must operate in a non-inertial reference frame attached
to the rotating Earth. Viewed from a fixed, external inertial
frame, a stationary mass moves in a circle about the Earth’s
rotation axis with the same rotational speed as the Earth.
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Fig. 2.7 (a) Components v, and v, of the linear velocity v where the
radius makes an angle 8 (wt) with the x-axis, and (b) the components a,
anda, of the centripetal acceleration, which is directed radially inward.

However, within a rotating reference frame attached to the
Earth, the mass is stationary. It experiences a centrifugal
acceleration (a,) that is exactly equal and opposite to the
centripetal acceleration, and which can be written in the
alternative forms

2

aC:w r
2
a,=" (2.19)

The centrifugal acceleration is not a centrally oriented
acceleration like gravitation, but instead is defined relative
to an axis of rotation. Nevertheless, potential energy is
associated with the rotation and it is possible to define a
centrifugal potential. Consider a point rotating with the
Earth at a distance r from its center (Fig. 2.8). The angle 6
between the radius to the point and the axis of rotation is
called the colatitude; it is the angular complement of the
latitude A. The distance of the point from the rotational
axis is x (= r sinf), and the centrifugal acceleration is w?x
outwards in the direction of increasing x. The centrifugal
potential U_is defined such that

C

&= T Ox

&= (02X)% (2.20)

where X is the outward unit vector. On integrating, we
obtain

U= - %wzxz = — %cuzr2 cos?tA = — %wzr2 sin20

(2.21)
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Fig. 2.8 The outwardly directed centrifugal acceleration a_ at latitude A
on a sphere rotating at angular velocity w.

2.3.2.3 Kepler's third law of planetary motion

By comparing the centripetal acceleration of a planet
about the Sun with the gravitational acceleration of the
Sun, the third of Kepler’s laws of planetary motion can
be explained. Let S be the mass of the Sun, . the distance
of a planet from the Sun, and T ) the period of orbital
rotation of the planet around the Sun. Equating the grav-
itational and centripetal accelerations gives

e (2T
Twphp T Tp P

Rearranging this equation we get Kepler’s third law of
planetary motion, which states that the square of the
period of the planet is proportional to the cube of the
radius of its orbit, or:

G (2.22)

)

3
r _GS

=5 = 4.5 = constant (2.23)

T; 417

2.3.2.4 Verification of the inverse square law of gravitation

Newton realized that the centripetal acceleration of the
Moon in its orbit was supplied by the gravitational attrac-
tion of the Earth, and tried to use this knowledge to
confirm the inverse square dependence on distance in his
law of gravitation. The sidereal period (7} ) of the Moon
about the Earth, a sidereal month, is equal to 27.3 days.
Let the corresponding angular rate of rotation be w; . We
can equate the gravitational acceleration of the Earth at
the Moon with the centripetal acceleration due to w; :

¢E-wrr, (2.24)
L
This equation can be rearranged as follows
E\[R L

o)l pote(z) e

Comparison with Eq. (2.15) shows that the first quan-
tity in parentheses is the mean gravitational acceleration
on the Earth’s surface, a;. Therefore, we can write

so=GE=upr(sf (2.26)

In Newton’s time little was known about the physical
dimensions of our planet. The distance of the Moon was
known to be approximately 60 times the radius of the
Earth (see Section 1.1.3.2) and its sidereal period was
known to be 27.3 days. At first Newton used the accepted
value 5500 km for the Earth’s radius. This gave a value of
only 8.4m s™2 for gravity, well below the known value
of 9.8m s~2. However, in 1671 Picard determined the
Earth’s radius to be 6372 km. With this value, the inverse
square character of Newton’s law of gravitation was
confirmed.

2.3.3 Thetides

The gravitational forces of Sun and Moon deform the
Earth’s shape, causing tides in the oceans, atmosphere
and solid body of the Earth. The most visible tidal effects
are the displacements of the ocean surface, which is a
hydrostatic equipotential surface. The Earth does not
react rigidly to the tidal forces. The solid body of the
Earth deforms in a like manner to the free surface, giving
rise to so-called bodily Earth-tides. These can be observed
with specially designed instruments, which operate on a
similar principle to the long-period seismometer.

The height of the marine equilibrium tide amounts to
only half a meter or so over the free ocean. In coastal
areas the tidal height is significantly increased by the
shallowing of the continental shelf and the confining
shapes of bays and harbors. Accordingly, the height and
variation of the tide at any place is influenced strongly
by complex local factors. Subsequent subsections deal
with the tidal deformations of the Earth’s hydrostatic
figure.

2.3.3.1 Lunar tidal periodicity

The Earth and Moon are coupled together by gravitational
attraction. Their common motion is like that of a pair of
ballroom dancers. Each partner moves around the center
of mass (or barycenter) of the pair. For the Earth-Moon
pair the location of the center of mass is easily found. Let
E be the mass of the Earth, and m that of the Moon; let the
separation of the centers of the Earth and Moon be r; and
let the distance of their common center of mass be d from
the center of the Earth. The moment of the Earth about
the center of mass is Ed and the moment of the Moon is
m(r; — d). Setting these moments equal we get

m

=Frm

2.27)
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Fig. 2.9 Paths of the Earth and Moon, and their barycenter, around the
Sun.

The mass of the Moon is 0.0123 that of the Earth and
the distance between the centers is 384,100 km. These
figures give d=4600km, i.e., the center of revolution of
the Earth-Moon pair lies within the Earth.

It follows that the paths of the Earth and the Moon
around the Sun are more complicated than at first
appears. The elliptical orbit is traced out by the barycen-
ter of the pair (Fig. 2.9). The Earth and Moon follow
wobbly paths, which, while always concave towards the
Sun, bring each body at different times of the month
alternately inside and outside the elliptical orbit.

To understand the common revolution of the
Earth—-Moon pair we have to exclude the rotation of the
Earth about its axis. The “revolution without rotation” is
illustrated in Fig. 2.10. The Earth-Moon pair revolves
about S, the center of mass. Let the starting positions be as
shown in Fig. 2.10a. Approximately one week later the
Moon has advanced in its path by one-quarter of a revolu-
tion and the center of the Earth has moved so as to keep
the center of mass fixed (Fig. 2.10b). The relationship is
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Fig. 2.10 lllustration of the “revolution without rotation” of the
Earth—-Moon pair about their common center of mass at S.

maintained in the following weeks (Fig. 2.10c, d) so that
during one month the center of the Earth describes a circle
about S. Now consider the motion of point number 2 on
the left-hand side of the Earth in Fig. 2.10. If the Earth
revolves as a rigid body and the rotation about its own axis
is omitted, after one week point 2 will have moved to a new
position but will still be the furthest point on the left.
Subsequently, during one month point 2 will describe a
small circle with the same radius as the circle described by
the Earth’s center. Similarly points 1, 3 and 4 will also
describe circles of exactly the same size. A simple illustra-
tion of this point can be made by chalking the tip of each
finger on one hand with a different color, then moving your
hand in a circular motion while touching a blackboard;
your fingers will draw a set of identical circles.

The “revolution without rotation” causes each point in
the body of the Earth to describe a circular path with iden-
tical radius. The centrifugal acceleration of this motion
has therefore the same magnitude at all points in the Earth
and, as can be seen by inspection of Fig. 2.10(a—d), it is
directed away from the Moon parallel to the Earth—-Moon
line of centers. At C, the center of the Earth (Fig. 2.11a),
this centrifugal acceleration exactly balances the gravita-
tional attraction of the Moon. Its magnitude is given by

—
aL—Gr2
L

(2.28)

At B, on the side of the Earth nearest to the Moon, the
gravitational acceleration of the Moon is larger than at
the center of the Earth and exceeds the centrifugal accel-
eration a;. There is a residual acceleration foward the
Moon, which raises a tide on this side of the Earth. The
magnitude of the tidal acceleration at B is
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Fig. 2.11 (a) The relationships of the centrifugal, gravitational and
residual tidal accelerations at selected points in the Earth. (b) Latitude
effect that causes diurnal inequality of the tidal height.

ar Gm<(rL “ Ry — "i) (2.29)
-2
aT—G%«l —%) - 1) (2.30)

Expanding this equation with the binomial theorem and
simplifying gives

m(, R R\?
aT=GE(2ﬁ+ 3(@) +>

At A, on the far side of the Earth, the gravitational
acceleration of the Moon is less than the centrifugal
acceleration @, . The residual acceleration (Fig. 2.11a) is
away from the Moon, and raises a tide on the far side of
the Earth. The magnitude of the tidal acceleration at A is

(2.31)

_ 11
ar= Gm(r2L (rp + R)2> (2.32)
which reduces to
m(,R R\
aT:Gg<2E—3<E> +) (2.33)

At points D and D’ the direction of the gravitational
acceleration due to the Moon is not exactly parallel to the
line of centers of the Earth—Moon pair. The residual tidal
acceleration is almost along the direction toward the
center of the Earth. Its effect is to lower the free surface in
this direction.

The free hydrostatic surface of the Earth is an equipo-
tential surface (Section 2.2.3), which in the absence of the
Earth’s rotation and tidal effects would be a sphere. The
lunar tidal accelerations perturb the equipotential
surface, raising it at A and B while lowering it at D and
D’, as in Fig. 2.11a. The tidal deformation of the Earth
produced by the Moon thus has an almost prolate
ellipsoidal shape, like a rugby football, along the
Earth—Moon line of centers. The daily tides are caused
by superposing the Earth’s rotation on this deformation.
In the course of one day a point rotates past the points A,
D, B and D’ and an observer experiences two full tidal
cycles, called the semi-diurnal tides. The extreme tides are
not equal at every latitude, because of the varying angle
between the Earth’s rotational axis and the Moon’s orbit
(Fig. 2.11b). At the equator E the semi-diurnal tides are
equal; at an intermediate latitude F one tide is higher
than the other; and at latitude G and higher there is only
one (diurnal) tide per day. The difference in height
between two successive high or low tides is called the
diurnal inequality.

In the same way that the Moon deforms the Earth, so
the Earth causes a tidal deformation of the Moon. In
fact, the tidal relationship between any planet and one of
its moons, or between the Sun and a planet or comet, can
be treated analogously to the Earth—-Moon pair. A tidal
acceleration similar to Eq. (2.31) deforms the smaller
body; its self-gravitation acts to counteract the deforma-
tion. However, if a moon or comet comes too close to the
planet, the tidal forces deforming it may overwhelm the
gravitational forces holding it together, so that the moon
or comet is torn apart. The separation at which this
occurs is called the Roche limit (Box 2.1). The material of
a disintegrated moon or comet enters orbit around the
planet, forming a system of concentric rings, as around
the great planets (Section 1.1.3.3).

2.3.3.2 Tidal effect of the Sun

The Sun also has an influence on the tides. The theory of
the solar tides can be followed in identical manner to the
lunar tides by again applying the principle of “revolution
without rotation.” The Sun’s mass is 333,000 times greater
than that of the Earth, so the common center of mass is
close to the center of the Sun at a radial distance of about
450 km from its center. The period of the revolution is one
year. As for the lunar tide, the imbalance between gravita-
tional acceleration of the Sun and centrifugal acceleration
due to the common revolution leads to a prolate ellip-
soidal tidal deformation. The solar effect is smaller than
that of the Moon. Although the mass of the Sun is vastly
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Suppose that a moon with mass M and radius R, is in
orbit at a distance d from a planet with mass P and
radius Rp. The Roche limit is the distance at which the
tidal attraction exerted by the planet on the moon over-
comes the moon’s self-gravitation (Fig. B2.1.1). If the
moon is treated as an elastic body, its deformation to an
elongate form complicates the calculation of the Roche
limit. However, for a rigid body, the computation is
simple because the moon maintains its shape as it
approaches the planet.

Consider the forces acting on a small mass m forming
part of the rigid moon’s surface closest to the planet
(Fig. B2.1.2). The tidal acceleration a; caused by the
planet can be written by adapting the first term of Eq.
(2.31), and so the deforming force F7. on the small mass
is

R PR
FTZmaT=G%P(27M)=2Gmd3 M (1

This disrupting force is counteracted by the gravita-
tional force F; of the moon, which is

mM
(Ry)?

Fo=mas=G

2)

The Roche limit d} for a rigid solid body is determined
by equating these forces:

mPRM_ mM
2675V = 6 s 3)
(d)? =24 (Ry)? 4)

If the densities of the planet, pp, and moon, p,,, are
known, Eq. (4) can be rewritten

GmpRyY (& )
() =2 gy Ry (0" = 2 ) R0 )
dy = RP<25—;)”3 = 1.26RP(5—;)1/3 (©6)

If the moon is fluid, tidal attraction causes it to elongate
progressively as it approaches the planet. This compli-
cates the exact calculation of the Roche limit, but it is
given approximately by

Box 2.1:The Roche limit
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Fig. B2.1.1 (a) Far from its parent planet, a moon is spherical in
shape, but (b) as it comes closer, tidal forces deform it into an
ellipsoidal shape, until (c) within the Roche limit the moon breaks up.
The disrupted material forms a ring of small objects orbiting the
planet in the same sense as the moon’s orbital motion.
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Fig. B2.1.2 Parameters for computation of the Roche limit.
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Comparison of Eq. (6) and Eq. (7) shows that a fluid
or gaseous moon disintegrates about twice as far from
the planet as a rigid moon. In practice, the Roche limit
for a moon about its parent planet (and the planet about
the Sun) depends on the rigidity of the satellite and lies
between the two extremes.

greater than that of the Moon, its distance from the Earth
is also much greater and, because gravitational accelera-
tion varies inversely with the square of distance, the
maximum tidal effect of the Sun is only about 45% that of
the Moon.

2.3.3.3 Spring and neap tides

The superposition of the lunar and solar tides causes a
modulation of the tidal amplitude. The ecliptic plane is
defined by the Earth’s orbit around the Sun. The Moon’s
orbit around the Earth is not exactly in the ecliptic but is
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Fig. 2.12 The orientations of the solar and lunar tidal deformations of
the Earth at different lunar phases.

inclined at a very small angle of about 5° to it. For discus-
sion of the combination of lunar and solar tides we can
assume the orbits to be coplanar. The Moon and Sun
each produce a prolate tidal deformation of the Earth,
but the relative orientations of these ellipsoids vary
during one month (Fig. 2.12). At conjunction the (new)
Moon is on the same side of the Earth as the Sun, and the
ellipsoidal deformations augment each other. The same is
the case half a month later at opposition, when the (full)
Moon is on the opposite side of the Earth from the Sun.
The unusually high tides at opposition and conjunction
are called spring tides. In contrast, at the times of quadra-
ture the waxing or waning half Moon causes a prolate
ellipsoidal deformation out of phase with the solar defor-
mation. The maximum lunar tide coincides with the
minimum solar tide, and the effects partially cancel each
other. The unusually low tides at quadrature are called
neap tides. The superposition of the lunar and solar tides
causes modulation of the tidal amplitude during a month
(Fig. 2.13).

2.3.3.4 Effect of the tides on gravity measurements

The tides have an effect on gravity measurements made
on the Earth. The combined effects of Sun and Moon
cause an acceleration at the Earth’s surface of approxi-
mately 0.3 mgal, of which about two-thirds are due to the
Moon and one-third to the Sun. The sensitive modern
instruments used for gravity exploration can readily detect
gravity differences of 0.01 mgal. It is necessary to compen-

sate gravity measurements for the tidal effects, which vary
with location, date and time of day. Fortunately, tidal
theory is so well established that the gravity effect can be
calculated and tabulated for any place and time before
beginning a survey.

2.3.3.5 Bodily Earth-tides

A simple way to measure the height of the marine tide
might be to fix a stake to the sea-bottom at a suitably shel-
tered location and to record continuously the measured
water level (assuming that confusion introduced by wave
motion can be eliminated or taken into account). The
observed amplitude of the marine tide, defined by the dis-
placement of the free water surface, is found to be about
70% of the theoretical value. The difference is explained
by the elasticity of the Earth. The tidal deformation cor-
responds to a redistribution of mass, which modifies the
gravitational potential of the Earth and augments the ele-
vation of the free surface. This is partially counteracted
by a bodily tide in the solid Earth, which deforms elasti-
cally in response to the attraction of the Sun and Moon.
The free water surface is raised by the tidal attraction, but
the sea-bottom in which the measuring rod is implanted is
also raised. The measured tide is the difference between
the marine tide and the bodily Earth-tide.

In practice, the displacement of the equipotential
surface is measured with a horizontal pendulum, which
reacts to the tilt of the surface. The bodily Earth-tides
also affect gravity measurements and can be observed
with sensitive gravimeters. The effects of the bodily
Earth-tides are incorporated into the predicted tidal cor-
rections to gravity measurements.

2.3.4 Changes in Earth’s rotation

The Earth’s rotational vector is affected by the gravita-
tional attractions of the Sun, Moon and the planets. The
rate of rotation and the orientation of the rotational axis
change with time. The orbital motion around the Sun is
also affected. The orbit rotates about the pole to the plane
of the ecliptic and its ellipticity changes over long periods
of time.

2.34.1 Effect of lunar tidal friction on the length of the day

If the Earth reacted perfectly elastically to the lunar tidal
forces, the prolate tidal bulge would be aligned along the
line of centers of the Earth-Moon pair (Fig. 2.14a).
However, the motion of the seas is not instantaneous and
the tidal response of the solid part of the Earth is partly
anelastic. These features cause a slight delay in the time
when high tide is reached, amounting to about 12
minutes. In this short interval the Earth’s rotation carries
the line of the maximum tides past the line of centers by a
small angle of approximately 2.9° (Fig. 2.14b). A point on
the rotating Earth passes under the line of maximum
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Fig. 2.13 Schematic
representation of the
modulation of the tidal
amplitude as a result of
superposition of the lunar and
solar tides.
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Fig. 2.14 (a) Alignment of the prolate tidal bulge of a perfectly elastic
Earth along the line of centers of the Earth—Moon pair. (b) Tidal phase
lag of 2.9° relative to the line of centers due to the Earth’s partially
anelastic response. (c) Tidal decelerating torque due to unequal
gravitational attractions of the Moon on the far- and near-sided

tidal bulges.

Day of month

tides 12 minutes after it passes under the Moon. The
small phase difference is called the tidal lag.

Because of the tidal lag the gravitational attraction of
the Moon on the tidal bulges on the far side and near side
of the Earth (F}, and F,, respectively) are not collinear
(Fig. 2.14b). F, is stronger than F| so a torque is produced
in the opposite sense to the Earth’s rotation (Fig. 2.14c).
The tidal torque acts as a brake on the Earth’s rate of
rotation, which is gradually slowing down.

The tidal deceleration of the Earth is manifested in a
gradual increase in the length of the day. The effect is very
small. Tidal theory predicts an increase in the length of
the day of only 2.4 milliseconds per century. Observations
of the phenomenon are based on ancient historical
records of lunar and solar eclipses and on telescopically
observed occultations of stars by the Moon. The current
rate of rotation of the Earth can be measured with very
accurate atomic clocks. Telescopic observations of the
daily times of passage of stars past the local zenith are
recorded with a camera controlled by an atomic clock.
These observations give precise measures of the mean
value and fluctuations of the length of the day.

The occurrence of a lunar or solar eclipse was a
momentous event for ancient peoples, and was duly
recorded in scientific and non-scientific chronicles.
Untimed observations are found in non-astronomical
works. They record, with variable reliability, the degree of
totality and the time and place of observation. The
unaided human eye is able to decide quite precisely just
when an eclipse becomes total. Timed observations of
both lunar and solar eclipses made by Arab astronomers
around 800-1000 AD and Babylonian astronomers a
thousand years earlier give two important groups of data
(Fig. 2.15). By comparing the observed times of alignment
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Fig. 2.15 Long-term changes in the length of the day deduced from
observations of solar and lunar eclipses between 700 BC and 1980 AD
(after Stephenson and Morrison, 1984).

of Sun, Moon and Earth with times predicted from the
theory of celestial mechanics, the differences due to
change in length of the day may be computed. A straight
line with slope equal to the rate of increase of the length of
the day inferred from tidal theory, 2.4 ms per century, con-
nects the Babylonian and Arab data sets. Since the
medieval observations of Arab astronomers the length of
the day has increased on average by about 1.4ms
per century. The data set based on telescopic observations
covers the time from 1620 to 1980 AD. It gives a more
detailed picture and shows that the length of the day fluc-
tuates about the long-term trend of 1.4 ms per century. A
possible interpretation of the difference between the two
slopes is that non-tidal causes have opposed the decelera-
tion of the Earth’s rotation since about 950 AD. It would
be wrong to infer that some sudden event at that epoch
caused an abrupt change, because the data are equally
compatible with a smoothly changing polynomial. The
observations confirm the importance of tidal braking, but
they also indicate that tidal friction is not the only mecha-
nism affecting the Earth’s rotation.

The short-term fluctuations in rotation rate are due to
exchanges of angular momentum with the Earth’s atmos-
phere and core. The atmosphere is tightly coupled to the
solid Earth. An increase in average global wind speed
corresponds to an increase in the angular momentum of
the atmosphere and corresponding decrease in angular
momentum of the solid Earth. Accurate observations by
very long baseline interferometry (see Section 2.4.6.6)
confirm that rapid fluctuations in the length of the day
are directly related to changes in the angular momentum

of the atmosphere. On a longer timescale of decades, the
changes in length of the day may be related to changes in
the angular momentum of the core. The fluid in the outer
core has a speed of the order of 0.1 mm s~ ! relative to the
overlying mantle. The mechanism for exchange of
angular momentum between the fluid core and the rest of
the Earth depends on the way the core and mantle are
coupled. The coupling may be mechanical if topographic
irregularities obstruct the flow of the core fluid along the
core-mantle interface. The core fluid is a good electrical
conductor so, if the lower mantle also has an appreciable
electrical conductivity, it is possible that the core and
mantle are coupled electromagnetically.

2.3.4.2 Increase of the Earth—-Moon distance

Further consequences of lunar tidal friction can be seen
by applying the law of conservation of momentum to the
Earth—Moon pair. Let the Earth’s mass be FE, its rate of
rotation be w and its moment of inertia about the rota-
tion axis be C; let the corresponding parameters for the
Moon be m, €}, and C|, and let the Earth-Moon dis-
tance be ;. Further, let the distance of the common
center of revolution be d from the center of the Earth, as
given by Eq. (2.27). The angular momentum of the
system is given by

Co + EQ,d?>+mQ, (r, —d)>+ C,Q,; =constant (2.34)

The fourth term is the angular momentum of the
Moon about its own axis. Tidal deceleration due to the
Earth’s attraction has slowed down the Moon’s rotation
until it equals its rate of revolution about the Earth. Both
Q, and C| are very small and the fourth term can be
neglected. The second and third terms can be combined
so that we get

Cow+ <E fM>mQLrL constant (2.35)

The gravitational attraction of the Earth on the Moon
is equal to the centripetal acceleration of the Moon about
the common center of revolution, thus

G—_Q 2(r —d) = (2.36)

E
L”L<E+ M)

from which

O, 12 =NG(E+m)r, 2.37)

Inserting this in Eq. (2.35) gives

Em
N(E +m)

Co + \Gr; = constant (2.38)

The first term in this equation decreases, because tidal
friction reduces w. To conserve angular momentum the
second term must increase. Thus, lunar tidal braking of the
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Earth’s rotation causes an increase in the Earth-Moon dis-
tance, 7. At present this distance is increasing at about
3.7cmyr~!. As a further consequence Eq. (2.37) shows
that the Moon’s rate of revolution about the Earth (£),) -
and consequently also its synchronous rotation about its
own axis — must decrease when r; increases. Thus, tidal
friction slows down the rates of Earth rotation, lunar rota-
tion, and lunar orbital revolution and increases the
Earth-Moon distance.

Eventually a situation will evolve in which the Earth’s
rotation has slowed until it is synchronous with the
Moon’s own rotation and its orbital revolution about the
Earth. All three rotations will then be synchronous and
equivalent to about 48 present Earth days. This will
happen when the Moon’s distance from Earth is about 88
times the Earth’s radius (r, =88R; it is presently equal to
about 60R). The Moon will then be stationary over the
Earth, and Earth and Moon will constantly present the
same face to each other. This configuration already exists
between the planet Pluto and its satellite Charon.

2.3.4.3 The Chandler wobble

The Earth’s rotation gives it the shape of a spheroid, or
ellipsoid of revolution. This figure is symmetric with
respect to the mean axis of rotation, about which the
moment of inertia is greatest; this is also called the axis of
figure (see Section 2.4). However, at any moment the
instantaneous rotational axis is displaced by a few meters
from the axis of figure. The orientation of the total
angular momentum vector remains nearly constant but

millisec of arc along
meridian 90°E

the axis of figure changes location with time and appears
to meander around the rotation axis (Fig. 2.16).

The theory of this motion was described by Leonhard
Euler (1707-1783), a Swiss mathematician. He showed
that the displaced rotational axis of a rigid spheroid would
execute a circular motion about its mean position, now
called the Euler nutation. Because it occurs in the absence
of an external driving torque, it is also called the free nuta-
tion. It is due to differences in the way mass is distributed
about the axis of rotational symmetry and an axis at right
angles to it in the equatorial plane. The mass distributions
are represented by the moments of inertia about these
axes. If Cand A are the moments of inertia about the rota-
tional axis and an axis in the equatorial plane, respectively,
Euler’s theory shows that the period of free nutation is
Al(C — A) days, or approximately 305 days.

Astronomers were unsuccessful in detecting a polar
motion with this period. In 1891 an American geodesist
and astronomer, S. C. Chandler, reported that the polar
motion of the Earth’s axis contained two important com-
ponents. An annual component with amplitude about
0.10 seconds of arcis due to the transfer of mass between
atmosphere and hydrosphere accompanying the chang-
ing of the seasons. A slightly larger component with
amplitude 0.15 seconds of arc has a period of 435 days.
This polar motion is now called the Chandler wobble. It
corresponds to the Euler nutation in an elastic Earth.
The increase in period from 305 days to 435 days is a
consequence of the elastic yielding of the Earth. The
superposition of the annual and Chandler frequencies
results in a beat effect, in which the amplitude of the
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Fig. 2.17 (a) The precession and forced nutation (greatly exaggerated)
of the rotation axis due to the lunar torque on the spinning Earth (after
Strahler, 1963). (b) Torque and incremental angular momentum
changes resulting in precession.

latitude variation is modulated with a period of 67 years
(Fig. 2.16).

2.3.4.4 Precession and nutation of the rotation axis

During its orbital motion around the Sun the Earth’s axis
maintains an (almost) constant tilt of about 23.5° to the
pole to the ecliptic. The line of intersection of the plane of
the ecliptic with the equatorial plane is called the line of
equinoxes. Two times a year, when this line points directly
at the Sun, day and night have equal duration over the
entire globe.

In the theory of the tides the unequal lunar attractions
on the near and far side tidal bulges cause a torque about
the rotation axis, which has a braking effect on the Earth’s
rotation. The attractions of the Moon (and Sun) on the
equatorial bulge due to rotational flattening also produce
torques on the spinning Earth. On the side of the Earth
nearer to the Moon (or Sun) the gravitational attraction
F, on the equatorial bulge is greater than the force F; on
the distant side (Fig. 2.17a). Due to the tilt of the rotation
axis to the ecliptic plane (23.5°), the forces are not

collinear. A torque results, which acts about a line in the
equatorial plane, normal to the Earth-Sun line and
normal to the spin axis. The magnitude of the torque
changes as the Earth orbits around the Sun. It is
minimum (and zero) at the spring and autumn equinoxes
and maximum at the summer and winter solstices.

The response of a rotating system to an applied torque
is to acquire an additional component of angular
momentum parallel to the torque. In our example this will
be perpendicular to the angular momentum (/%) of the
spinning Earth. The torque has a component (1) parallel
to the line of equinoxes (Fig. 2.17b) and a component
normal to this line in the equatorial plane. The torque 7
causes an increment A/ in angular momentum and shifts
the angular momentum vector to a new position. If this
exercise is repeated incrementally, the rotation axis moves
around the surface of a cone whose axis is the pole to the
ecliptic (Fig. 2.17a). The geographic pole P moves around
a circle in the opposite sense from the Earth’s spin. This
motion is called retrograde precession. It is not a steady
motion, but pulsates in sympathy with the driving torque.
A change in orientation of the rotation axis affects the
location of the line of equinoxes and causes the timing of
the equinoxes to change slowly. The rate of change is only
50.4 seconds of arc per year, but it has been recognized
during centuries of observation. For example, the Earth’s
rotation axis now points at Polaris in the constellation
Ursa Minor, but in the time of the Egyptians around 3000
BC the pole star was Alpha Draconis, the brightest star in
the constellation Draco. Hipparchus is credited with dis-
covering the precession of the equinoxes in 120 BC by
comparing his own observations with those of earlier
astronomers.

The theory of the phenomenon is well understood.
The Moon also exerts a torque on the spinning Earth and
contributes to the precession of the rotation axis (and
equinoxes). As in the theory of the tides, the small size of
the Moon compared to the Sun is more than compen-
sated by its nearness, so that the precessional contribution
of the Moon is about double the effect of the Sun. The
theory of precession shows that the period of 25,700 yr is
proportional to the Earth’s dynamical ellipticity, H (see
Eq. (2.45)). This ratio (equal to 1/305.457) is an impor-
tant indicator of the internal distribution of mass in the
Earth.

The component of the torque in the equatorial plane
adds an additional motion to the axis, called nutation,
because it causes the axis to nod up and down (Fig.
2.17a). The solar torque causes a semi-annual nutation,
the lunar torque a semi-monthly one. In fact the motion
of the axis exhibits many forced nutations, so-called
because they respond to external torques. All are tiny per-
turbations on the precessional motion, the largest having
an amplitude of only about 9 seconds of arc and a period
of 18.6yr. This nutation results from the fact that the
plane of the lunar orbit is inclined at 5.145° to the plane
of the ecliptic and (like the motion of artificial Earth
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satellites) precesses retrogradely. This causes the inclina-
tion of the lunar orbit to the equatorial plane to vary
between about 18.4° and 28.6°, modulating the torque
and forcing a nutation with a period of 18.6yr.

It is important to note that the Euler nutation and
Chandler wobble are polar motions about the rotation
axis, but the precession and forced nutations are displace-
ments of the rotation axis itself.

2.3.4.5 Milankovitch climatic cycles

Solar energy can be imagined as flowing equally from the
Sun in all directions. At distance r it floods a sphere with
surface area 4mr2. The amount of solar energy falling per
second on a square meter (the insolation) therefore
decreases as the inverse square of the distance from the
Sun. The gravitational attractions of the Moon, Sun, and
the other planets — especially Jupiter — cause cyclical
changes of the orientation of the rotation axis and varia-
tions in the shape and orientation of Earth’s orbit. These
variations modify the insolation of the Earth and result in
long-term periodic changes in Earth’s climate.

The angle between the rotational axis and the pole to
the ecliptic is called the obliguity. It is the main factor
determining the seasonal difference between summer and
winter in each hemisphere. In the northern hemisphere, the
insolation is maximum at the summer solstice (currently
June 21) and minimum at the winter solstice (December
21-22). The exact dates change with the precession of the
equinoxes, and also depend on the occurrence of leap
years. The solstices do not coincide with extreme positions
in Earth’s orbit. The Earth currently reaches aphelion, its
furthest distance from the Sun, around July 4-6, shortly
after the summer solstice, and passes perihelion around
January 2-4. About 13,000 yr from now, as a result of pre-
cession, the summer solstice will occur when Earth is close
to perihelion. In this way, precession causes long-term
changes in climate with a period related to the precession.

The gravitational attraction of the other planets causes
the obliquity to change cyclically with time. It is currently
equal to 23°26’ 21.4" but varies slowly between a minimum
of 21° 55" and a maximum of 24° 18’. When the obliquity
increases, the seasonal differences in temperature become
more pronounced, while the opposite effect ensues if oblig-
uity decreases. Thus, the variation in obliquity causes a
modulation in the seasonal contrast between summer and
winter on a global scale. This effect is manifest as a cyclical
change in climate with a period of about 41 kyr.

A further effect of planetary attraction is to cause the
eccentricity of the Earth’s orbit, at present 0.017, to
change cyclically (Fig. 2.18). At one extreme of the cycle,
the orbit is almost circular, with an eccentricity of only
0.005. The closest distance from the Sun at perihelion is
then 99% of the furthest distance at aphelion. At the
other extreme, the orbit is more elongate, although with
an eccentricity of 0.058 it is only slightly elliptical. The
perihelion distance is then 89% of the aphelion distance.
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Fig. 2.18 Schematic illustration of the 100,000 yr variations in
eccentricity and rotation of the axis of the Earth’s elliptical orbit. The
effects are greatly exaggerated for ease of visualization.

These slight differences have climatic effects. When the
orbit is almost circular, the difference in insolation
between summer and winter is negligible. However, when
the orbit is most elongate, the insolation in winter is only
78% of the summer insolation. The cyclical variation in
eccentricity has a dominant period of 404 kyr and lesser
periodicities of 95kyr, 99kyr, 124kyr and 131kyr that
together give a roughly 100 kyr period. The eccentricity
variations generate fluctuations in paleoclimatic records
with periods around 100 kyr and 400 kyr.

Not only does planetary attraction cause the shape of
the orbit to change, it also causes the perihelion—aphelion
axis of the orbit to precess. The orbital ellipse is not truly
closed, and the path of the Earth describes a rosette with a
period that is also around 100 kyr (Fig. 2.18). The preces-
sion of perihelion interacts with the axial precession and
modifies the observed period of the equinoxes. The 26 kyr
axial precession is retrograde with a rate of 0.038
cycles/kyr; the 100 kyr orbital precession is prograde, which
speeds up the effective precession rate to 0.048 cycles/kyr.
This is equivalent to a retrograde precession with a period
of about 21 kyr. A corresponding climatic fluctuation has
been interpreted in many sedimentary deposits.

Climatic effects related to cyclical changes in the Earth’s
rotational and orbital parameters were first studied
between 1920 and 1938 by a Yugoslavian astronomer,
Milutin Milankovi¢ (anglicized to Milankovitch). Period-
icities of 21kyr, 41 kyr, 100kyr and 400 kyr — called the
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Milankovitch climatic cycles — have been described in
various sedimentary records ranging in age from Quater-
nary to Mesozoic. Caution must be used in interpreting
the cyclicities in older records, as the characteristic
Milankovitch periods are dependent on astronomical
parameters that may have changed appreciably during the
geological ages.

2.3.5 Coriolis and E6tvos accelerations

Every object on the Earth experiences the centrifugal
acceleration due to the Earth’s rotation. Moving objects
on the rotating Earth experience additional accelerations
related to the velocity at which they are moving. At
latitude A the distance d of a point on the Earth’s surface
from the rotational axis is equal to RcosA, and the rota-
tional spin w translates to an eastwards linear velocity v
equal to wRcosA. Consider an object (e.g., a vehicle or
projectile) that is moving at velocity v across the Earth’s
surface. In general v has a northward component v and
an eastward component vp. Consider first the effects
related to the eastward velocity, which is added to the
linear velocity of the rotation. The centrifugal accelera-
tion increases by an amount Aa_, which can be obtained
by differentiating a_ in Eq. (2.19) with respect to w

Aa,=2w(Rcos))Aw = 2wvg (2.39)

The extra centrifugal acceleration Aa, can be resolved
into a vertical component and a horizontal component
(Fig. 2.19a). The vertical component, equal to 2wvg cosA,
acts upward, opposite to gravity. It is called the Eotvos
acceleration. Its effect is to decrease the measured gravity
by a small amount. If the moving object has a westward
component of velocity the E6tvds acceleration increases
the measured gravity. If gravity measurements are made
on a moving platform (for example, on a research ship or
in an airplane), the measured gravity must be corrected to
allow for the Eotvos effect. For a ship sailing eastward at
10km h™! at latitude 45° the Eotvds correction is
28.6mgal; in an airplane flying eastward at 300km h™!
the correction is 856mgal. These corrections are far
greater than the sizes of many important gravity anom-
alies. However, the E6tvos correction can be made satis-
factorily in marine gravity surveys, and recent technical
advances now make it feasible in aerogravimetry.

The horizontal component of the extra centrifugal
acceleration due to v is equal to 2wvg sinA. In the north-
ern hemisphere it acts to the south. If the object moves
westward, the acceleration is northward. In each case it
acts horizontally zo the right of the direction of motion.
In the southern hemisphere the sense of this acceleration
is reversed; it acts to the left of the direction of motion.
This acceleration is a component of the Coriolis accelera-
tion, another component of which derives from the north-
ward motion of the object.

Consider an object moving northward along a meridian
of longitude (Fig. 2.19b, point 1). The linear velocity of a
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Fig. 2.19 (a) Resolution of the additional centrifugal acceleration Aa.
due to eastward velocity into vertical and horizontal components. (b)
The horizontal deviations of the northward or southward trajectory of
an object due to conservation of its angular momentum.

Q)

point on the Earth’s surface decreases poleward, because
the distance from the axis of rotation (d= Rcos)\)
decreases. The angular momentum of the moving object
must be conserved, so the eastward velocity vy must
increase. As the object moves to the north its eastward
velocity is faster than the circles of latitude it crosses and
its trajectory deviates to the right. If the motion is to the
south (Fig. 2.19b, point 2), the inverse argument applies.
The body crosses circles of latitude with faster eastward
velocity than its own and, in order to maintain angular
momentum, its trajectory must deviate to the west. In each
case the deviation is o the right of the direction of motion.
A similar argument applied to the southern hemisphere
gives a Coriolis effect to the left of the direction of motion
(Fig. 2.19b, points 3 and 4).

The magnitude of the Coriolis acceleration is easily
evaluated quantitatively. The angular momentum /% of a
mass 1 at latitude A is equal to mw R? cos?A. Conservation
of angular momentum gives
dh

T mR? cos%%—? + mwR*(—2cosA sin/\)% =0 (2.40)

Rearranging and simplifying, we get



2.4 THE EARTH'S FIGURE AND GRAVITY

9y

d .
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(2.41)
The expression on the left of the equation is an acceler-
ation, ay, equal to the rate of change of the eastward
velocity. The expression in brackets on the right is the
northward velocity component vy. We can write this
component of the Coriolis acceleration as 2wv, sinA. The
north and east components of the Coriolis acceleration
are therefore:

an = 20Vv;Ssin A
N E7 (2.42)
ap = 2wvysinA

The Coriolis acceleration deflects the horizontal path
of any object moving on the Earth’s surface. It affects the
directions of wind and ocean currents, eventually con-
straining them to form circulatory patterns about centers
of high or low pressure, and thereby plays an important
role in determining the weather.

2.4 THE EARTH'S FIGURE AND GRAVITY
2.4.1 The figure of the Earth

The true surface of the Earth is uneven and irregular,
partly land and partly water. For geophysical purposes
the Earth’s shape is represented by a smooth closed
surface, which is called the figure of the Earth. Early con-
cepts of the figure were governed by religion, superstition
and non-scientific beliefs. The first circumnavigation of
the Earth, completed in 1522 by Magellan’s crew, estab-
lished that the Earth was probably round. Before the era
of scientific awakening the Earth’s shape was believed to
be a sphere. As confirmed by numerous photographs
from spacecraft, this is in fact an excellent first approxi-
mation to Earth’s shape that is adequate for solving many
problems. The original suggestion that the Earth is a
spheroid flattened at the poles is credited to Newton, who
used a hydrostatic argument to account for the polar flat-
tening. The slightly flattened shape permitted an explana-
tion of why a clock that was precise in Paris lost time near
to the equator (see Section 2.1).

Earth’s shape and gravity are intimately associated.
The figure of the Earth is the shape of an equipotential
surface of gravity, in particular the one that coincides
with mean sea level. The best mathematical approxima-
tion to the figure is an oblate ellipsoid, or spheroid (Fig.
2.20). The precise determination of the dimensions of the
Earth (e.g., its polar and equatorial radii) is the main
objective of the science of geodesy. It requires an exact
knowledge of the Earth’s gravity field, the description of
which is the goal of gravimetry.

Modern analyses of the Earth’s shape are based on
precise observations of the orbits of artificial Earth satel-
lites. These data are used to define a best-fitting oblate
ellipsoid, called the International Reference Ellipsoid. In
1930 geodesists and geophysicists defined an optimum
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R-c=~142km sphere

a-R=71km

ellipsoid

a = 6378.136 km
¢ = 6356.751 km
R = 6371.000 km

Fig. 2.20 Comparison of the dimensions of the International Reference
Ellipsoid with a sphere of equal volume.

reference ellipsoid based on the best available data at the
time. The dimensions of this figure have been subse-
quently refined as more exact data have become available.
In 1980 the International Association of Geodesy adopted
a Geodetic Reference System (GRS80) in which the refer-
ence ellipsoid has an equatorial radius (a) equal to
6378.137 km and a polar radius (c) equal to 6356.752 km.
Subsequent determinations have resulted in only minor
differences in the most important geodetic parameters.
Some current values are listed in Table 2.1. The radius of
the equivalent sphere (R) is found from R = (a%c)'” to be
6371.000km. Compared to the best-fitting sphere the
spheroid is flattened by about 14.2km at each pole and
the equator bulges by about 7.1 km. The polar flattening f
is defined as the ratio

(2.43)

The flattening of the optimum reference ellipsoid defined
in 1930 was exactly 1/297. This ellipsoid, and the
variation of gravity on its surface, served as the basis of
gravimetric surveying for many years, until the era of
satellite geodesy and highly sensitive gravimeters showed
it to be too inexact. A recent best estimate of the flatten-
ingis f=3.35287Xx 1073 (i.e., f = 1/298.252).

If the Earth is assumed to be a rotating fluid in perfect
hydrostatic equilibrium (as assumed by Newton’s theory),
the flattening should be 1/299.5, slightly smaller than the
observed value. The hydrostatic condition assumes that
the Earth has no internal strength. A possible explanation
for the tiny discrepancy in f is that the Earth has sufficient
strength to maintain a non-hydrostatic figure, and the
present figure is inherited from a time of more rapid rota-
tion. Alternatively, the slightly more flattened form of the
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Table 2.1 Some fundamental parameters relevant to the shape, rotation and orbit of the Earth. Sources: [1] Mohr and

Taylor, 2005; [2] McCarthy and Petit, 2004, [3 ] Groten, 2004

Parameter Symbol Value Units Reference
Terrestrial parameters (2004)

Gravitational constant G 6.673x 10711 m3kg 1572 [1]
Geocentric gravitational constant GE 3.9860044 X 1014 m3s72 2]
Mass of the Earth: E=(GE)/G E 5.9737x 10 kg

Earth’s equatorial radius a 6378.137 km [3]
Earth’s polar radius: c=a(1 —f) ¢ 6356.752 km

Radius of equivalent sphere: R = (a%¢)"3 R, 6371.000 km

Mean equatorial gravity & 9.7803278 ms~2 [2]
Mean angular velocity of rotation Q 7.292115% 1073 rad s™! 2]
Dynamical form-factor J, 1.0826359 %1073 [3]
Flattening f 1:298.252 [3]
Equatorial acceleration ratio m 1:288.901 [3]
Dynamical ellipticity H 1:305.457 [3]
Orbital parameters (2003)

Astronomical unit AU 149,597,870.691 km [2]
Solar mass ratio Mg 332,946.0 [2]
Lunar mass ratio M 0.012300038 [2]
Obliquity of the ecliptic EN 23°26' 21.4" [2]
Obliquity of lunar orbit to ecliptic 5°0.9 [3]
Eccentricity of solar orbit of barycenter 0.01671 [3]
Eccentricity of lunar orbit 0.05490 [3]
Earth may be due to internal density contrasts, which ﬁ P(r, 6)

could be the consequence of slow convection in the
Earth’s mantle. This would take place over long time
intervals and could result in a non-hydrostatic mass dis-
tribution.

The cause of the polar flattening is the deforming
effect of the centrifugal acceleration. This is maximum
at the equator where the gravitational acceleration is
smallest. The parameter m is defined as the ratio of the
equatorial centrifugal acceleration to the equatorial grav-
itational acceleration:

wta _ o*dd

M= GEl@~ GE

(2.44)

The value of m based on current geodetic values (Table
2.1)is 3.461 39 X 1073 (i.e., m = 1/288.901).

As a result of the flattening, the distribution of mass
within the Earth is not simply dependent on radius. The
moments of inertia of the Earth about the rotation axis
(C) and any axis in the equatorial plane (4) are unequal.
As noted in the previous section the inequality affects the
way the Earth responds to external gravitational torques
and is a determining factor in perturbations of the
Earth’s rotation. The principal moments of inertia define
the dynamical ellipticity:

_C—5(4+B) _(Cc-4
C

H C

(2.45)

The dynamical ellipticity is obtained from precise obser-
vations of the orbits of artificial satellites of the Earth
(see Section 2.4.5.1). The current optimum value for H is
3.273 787 5% 1073 (i.e., H=1/305.457).

Fig. 2.21 Parameters of the ellipsoid used in MacCullagh’s formula. A,
B, and C are moments of inertia about the x-, y- and z-axes, respectively,
and /is the moment of inertia about the line OP.

2.4.2 Gravitational potential of the spheroidal Earth

The ellipsoidal shape changes the gravitational potential
of the Earth from that of an undeformed sphere. In
1849 J. MacCullagh developed the following formula for
the gravitational potential of any body at large distance
from its center of mass:

(A+B+C-3D)

E
Us=-G5—G 53

(2.46)
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The first term, of order !, is the gravitational potential of
a point mass or sphere with mass E (Egs. (2.10) and (2.14));
for the Earth it describes the potential of the undeformed
globe. If the reference axes are centered on the body’s
center of mass, there is no term in #~2. The second term, of
order r73, is due to deviations from the spherical shape. For
the flattened Earth it results from the mass displacements
due to the rotational deformation. The parameters A4, B,
and C are the principal moments of inertia of the body and
I is the moment of inertia about the line OP joining the
center of mass to the point of observation (Fig. 2.21). In
order to express the potential accurately an infinite number
of terms of higher order in r are needed. In the case of the
Earth these can be neglected, because the next term is
about 1000 times smaller than the second term.

For a body with planes of symmetry, /is a simple com-
bination of the principal moments of inertia. Setting 4
equal to B for rotational symmetry, and defining the angle
between OP and the rotation axis to be 6, the expression
for Iis
I= Asin20 + Ccos?0 (2.47)

MacCullagh’s formula for the ellipsoidal Earth then
becomes

E (C—A)(3cos20—1)
£_g¢

Us=-G 5 5

(2.48)

The function (3cos? — 1)/2 is a second-order polyno-
mial in cosf, written as P,(cosf). It belongs to a family of
functions called Legendre polynomials (Box 2.2). Using
this notation MacCullagh’s formula for the gravitational
potential of the oblate ellipsoid becomes

E_(C—-4)

Us=-G7—-G 3 P,(cos0) (2.49)
This can be written in the alternative form

E C—A\(R\?
Ug= —G7<1 —( R ><7> Pz(cose)) (2.50)

Potential theory requires that the gravitational poten-
tial of the spheroidal Earth must satisfy an important
equation, the Laplace equation (Box 2.3). The solution of
this equation is the sum of an infinite number of terms of
increasing order in 1/r, each involving an appropriate
Legendre polynomial:

Uy = —G%(l -3 (%)"ann(cose)) 2.51)

n=2
In this equation the coefficients J, multiplying
P (cosf) determine the relative importance of the term
of nth order. The values of J, are obtained from satellite
geodesy: J, = 1082.6X107% J,=-254X107
J4=—1.59><10‘6; higher orders are insignificant. The
most important coefficient is the second order one, the
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Fig. 2.22 The third-order term in the gravitational potential
describes a pear-shaped Earth. The deviations from the reference
ellipsoid are of the order of 10-20 m, much smaller than the
deviations of the ellipsoid from a sphere, which are of the order
of 10-20km.

dynamical form-factor J,, which describes the effect of
the polar flattening on the Earth’s gravitational poten-
tial. Comparison of terms in Eqs. (2.48) and (2.51) gives
the result

C—4

J=5x (2.52)

The term of next higher order (n=3) in Eq. (2.51)
describes the deviations from the reference ellipsoid
which correspond to a pear-shaped Earth (Fig. 2.22).
These deviations are of the order of 7-17m, a thousand
times smaller than the deviations of the ellipsoid from a
sphere, which are of the order of 7-14 km.

2.4.3 Gravity and its potential

The potential of gravity (Ug) is the sum of the gravita-
tional and centrifugal potentials. It is often called the
geopotential. At a point on the surface of the rotating
spheroid it can be written

U, = Ug — 3?rsin%0 (2.53)
If the free surface is an equipotential surface of
gravity, then U is everywhere constant on it. The shape of
the equipotential surface is constrained to be that of the
spheroid with flattening f. Under these conditions a
simple relation is found between the constants f, m
and J,;:
5, =1r-m) (2.54)
By equating Egs. (2.52) and (2.54) and re-ordering
terms slightly we obtain the following relationship

A=Lar-m

(2.55)

This yields useful information about the variation of
density within the Earth. The quantities f, m and
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In the triangle depicted in Fig. B2.2 the side u is related
to the other two sides r and R and the angle 6 they
enclose by the cosine law. The expression for 1/u can
then be written:

1_ 1
U (R4 7r2—2rRcosf)!?

2 —1/2
=%[1 + <£2—21’;c050>] (1)

which on expanding becomes

1_1 r r2(3cos?0 — 1
ﬁ,ﬁ[] +ﬁ0080+ﬁ<f>
3 (5cos8’0 —3cosh) ,
Ly o0~ 3cosd) | 6

This infinitely long series of terms in (#/R) is called the
reciprocal distance formula. It can be written in short-
hand form as

-1 2 <%)nPn(cosﬂ) 3)

The angle 0 in this expression describes the angular
deviation between the side r and the reference side R. The
functions P (cosf) in the sum are called the ordinary
Legendre polynomials of order nin cos@. They are named
after a French mathematician Adrien Marie Legendre
(1752-1833). Each polynomial is a coefficient of (#/R)" in
the infinite sum of terms for (1/u), and so has order n.
Writing cosf = x, and P, (cos0) = P (x), the first few poly-
nomials, forn=0, 1,2, and 3, respectively, are as follows
P =1 Pyx)=3(3x2—1)

| O
P(x)=x Pi(x)= E(Sx3 —3x)

By substituting cosf for x these expressions can be
converted into functions of cosf. Legendre discovered
that the polynomials satisfied the following second-
order differential equation, in which # is an integer and

y=P(x):

9
L (1= +n(n+1)y=0 (5)

Box 2.2: Legendre polynomials

R

Fig. B2.2 Reference triangle for derivation of Legendre
polynomials.

This, named in his honor, is the Legendre equation. It
plays an important role in geophysical potential theory
for situations expressed in spherical coordinates that
have rotational symmetry about an axis. This is, for
example, the case for the gravitational attraction of a
spheroid, the simplified form of the Earth’s shape.

The derivation of an individual polynomial of order
n is rather tedious if the expanded expression for (1/u) is
used. A simple formula for calculating the Legendre
polynomials for any order n was developed by another
French mathematician, Olinde Rodrigues (1794-1851).
The Rodrigues formula is

P,(x) = 3y 27 (2 = 1y ©6)

A relative of this equation encountered in many prob-
lems of potential theory is the associated Legendre equa-
tion , which written as a function of x is

2

%(1—xZ)%—k(n(n—irl)—(l’fxz))y:O @)

The solutions of this equation involve two integers,
the order n and degree m. As in the case of the ordinary
Legendre equation the solutions are polynomials in x,
which are called the associated Legendre polynomials
and written P”(x). A modification of the Rodrigues
formula allows easy computation of these functions
from the ordinary Legendre polynomials:

Pr(x) = (1= 222250 () ®)

To express the associated Legendre polynomials as
functions of 0, i.e. as P"(cos#), it is again only neces-
sary to substitute cosf for x.

(C—A)/C are each equal to approximately 1/300.
Inserting their values in the equation gives C~0.33ER.
Compeare this value with the principal moments of inertia
of a hollow spherical shell (0.66ER?) and a solid sphere
with uniform density (0.4ER?). The concentration of
mass near the center causes a reduction in the multiplying
factor from 0.66 to 0.4. The value of 0.33 for the Earth

implies that, in comparison with a uniform solid sphere,
the density must increase towards the center of the Earth.

2.4.4 Normal gravity

The direction of gravity at a point is defined as perpendic-
ular to the equipotential surface through the point. This
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Many natural forces are directed towards a central
point. Examples are the electrical field of a point
charge, the magnetic field of a single magnetic pole, and
the gravitational acceleration toward a center of mass.
The French astronomer and mathematician Pierre
Simon, marquis de Laplace (1749-1827) showed that,
in order to fulfil this basic physical condition, the
potential of the field must satisfy a second-order
differential equation, the Laplace equation. This is one
of the most famous and important equations in physics
and geophysics, as it applies to many situations in
potential theory. For the gravitational potential U the
Laplace equation is written in Cartesian coordinates

(x,y,z)as

P?Us  PU;  9#*Ug
FroaR 9y? o2 =0 M

In spherical polar coordinates (r, 6, ¢) the Laplace
equation becomes

19 ,9Ug 1 9 aUg 1 azUG

—— 0 ging— 9 +
r2sin 96 sing 90  rsinZ0 9¢?

=0 (2)

The variation with azimuth ¢ disappears for symmetry
about the rotational axis. The general solution of the
Laplace equation for rotational symmetry (e.g., for a
spheroidal Earth) is

% Bn
U= Z()(Anr” + rnH)Pn(cosO) 3)

where P (cosf) is an ordinary Legendre polynomial of
order n and the coordinate 6 is the angular deviation of

Box 2.3: Spherical harmonics

the point of observation from the reference axis (see
Box 2.1). In geographic coordinates 6 is the co-latitude.

If the potential field is not rotationally symmetric —
as is the case, for example, for the geoid and the Earth’s
magnetic field — the solution of the Laplace equation
varies with azimuth ¢ as well as with radius r and axial
angle 6 and is given by

0 B n
Ug= %(Anr" + r"*nl>z (arcosme

m=0

+ b'sinme) P (cos6) )

where in this case P?(cos@) is an associated Legendre
polynomial of order n and degree m as described in Box
2.2. This equation can in turn be written in modified
form as

© B \

Us= E(Anr" + fl) Y(0,¢) )
n=0 m=0

The function

Y"(8,¢) = (acosme + bsinme) P (cos) 6)

is called a spherical harmonic function, because it has the
same value when 6 or ¢ is increased by an integral multi-
ple of 2. It describes the variation of the potential with
the coordinates # and ¢ on a spherical surface (i.e., for
which r is a constant). Spherical harmonic functions are
used, for example, for describing the variations of the
gravitational and magnetic potentials, geoid height, and
global heat flow with latitude and longitude on the
surface of the Earth.

defines the vertical at the point, while the plane tangential
to the equipotential surface defines the horizontal (Fig.
2.20). A consequence of the spheroidal shape of the
Earth is that the vertical direction is generally not radial,
except on the equator and at the poles.

On a spherical Earth there is no ambiguity in how we
define latitude. It is the angle at the center of the Earth
between the radius and the equator, the complement to
the polar angle 0. This defines the geocentric latitude A'.
However, the geographic latitude in common use is not
defined in this way. It is found by geodetic measurement
of the angle of elevation of a fixed star above the
horizon. But the horizontal plane is tangential to the
ellipsoid, not to a sphere (Fig. 2.20), and the vertical
direction (i.e., the local direction of gravity) intersects
the equator at an angle A that is slightly larger than the
geocentric latitude A’ (Fig. 2.23). The difference (A —A")
is zero at the equator and poles and reaches a maximum

at a latitude of 45°, where it amounts to only 0.19°
(about 12").

The International Reference Ellipsoid is the standard-
ized reference figure of the Earth. The theoretical value of
gravity on the rotating ellipsoid can be computed by
differentiating the gravity potential (Eq. (2.53)). This
yields the radial and transverse components of gravity,
which are then combined to give the following formula
for gravity normal to the ellipsoid:

g, = &.(1+B;sin?A + B,sin?21) (2.56)
Where, to second order in f'and m,
3 27
gn=ge<l +f—§m +f2—ﬁfm>
15 ,_ 17 (2.57)

Bl=§m—f+zm
Br=g/> g/

14m
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gravity = g = ag+a,

Fig. 2.23 Gravity on the ellipsoidal Earth is the vector sum of the
gravitational and centrifugal accelerations and is not radial;
consequently, geographic latitude (1) is slightly larger than geocentric
latitude (A").

Equation (2.56) is known as the normal gravity
formula. The constants in the formula, defined in 1980
for the Geodetic Reference System (GRS80) still in com-
mon use, are: g,=9.780 327m s~% B, =5.30244 X 1073;
B, = —5.8%x107 They allow calculation of normal
gravity at any latitude with an accuracy of 0.1 mgal.
Modern instruments can measure gravity differences
with even greater precision, in which case a more exact
formula, accurate to 0.0001 mgal, can be used. The
normal gravity formula is very important in the analysis
of gravity measurements on the Earth, because it gives
the theoretical variation of normal gravity (g,) with
latitude on the surface of the reference ellipsoid.

The normal gravity is expressed in terms of g, the
value of gravity on the equator. The second-order terms
f2, m* and fm are about 300 times smaller than the first-
order terms f and m. The constant 3, is about 1000
times smaller than 8,. If we drop second-order terms
and use A =90°, the value of normal gravity at the pole is
g, =8, (1 +B,), so by rearranging and retaining only
first-order terms, we get
&8 5

g 2/

(2.58)

This expressionis called Clairaut’s theorem. It was devel-
oped in 1743 by a French mathematician, Alexis-Claude
Clairaut, who was the first to relate the variation of gravity
on the rotating Earth with the flattening of the spheroid.
The normal gravity formula gives g =9.832 186m s>
Numerically, this gives an increase in gravity from
equator to pole of approximately 5.186X 1072 m s™2, or
5186 mgal.

() hill

ellipsoid

local

(b) gravity

mass
excess S

Fig. 2.24 (a) A mass outside the ellipsoid or (b) a mass excess below the
ellipsoid elevates the geoid above the ellipsoid. N is the geoid
undulation.

There are two obvious reasons for the poleward
increase in gravity. The distance to the center of mass of
the Earth is shorter at the poles than at the equator. This
gives a stronger gravitational acceleration (ag) at the
poles. The difference is

Adg = (@ - G—E) (2.59)

2 &

This gives an excess gravity of approximately
6600 mgal at the poles. The effect of the centrifugal force in
diminishing gravity is largest at the equator, where it
equals (mag), and is zero at the poles. This also results in a
poleward increase of gravity, amounting to about 3375
mgal. These figures indicate that gravity should increase by
a total of 9975mgal from equator to pole, instead of the
observed difference of 5186 mgal. The discrepancy can be
resolved by taking into account a third factor. The compu-
tation of the difference in gravitational attraction is not so
simple as indicated by Eq. (2.59). The equatorial bulge
places an excess of mass under the equator, increasing the
equatorial gravitational attraction and thereby reducing
the gravity decrease from equator to pole.

2.4.5 The geoid

The international reference ellipsoid is a close approxi-
mation to the equipotential surface of gravity, but it is
really a mathematical convenience. The physical equipo-
tential surface of gravity is called the geoid. It reflects the
true distribution of mass inside the Earth and differs
from the theoretical ellipsoid by small amounts. Far from
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Fig. 2.25 World map of
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land the geoid agrees with the free ocean surface, exclud-
ing the temporary perturbing effects of tides and winds.
Over the continents the geoid is affected by the mass of
land above mean sea level (Fig. 2.24a). The mass within
the ellipsoid causes a downward gravitational attraction
toward the center of the Earth, but a hill or mountain
whose center of gravity is outside the ellipsoid causes an
upward attraction. This causes a local elevation of the
geoid above the ellipsoid. The displacement between the
geoid and the ellipsoid is called a geoid undulation; the
elevation caused by the mass above the ellipsoid is a posi-
tive undulation.

2.4.5.1 Geoid undulations

In computing the theoretical figure of the Earth the dis-
tribution of mass beneath the ellipsoid is assumed to be
homogeneous. A local excess of mass under the ellipsoid
will deflect and strengthen gravity locally. The potential
of the ellipsoid is achieved further from the center of the
Earth. The equipotential surface is forced to warp
upward while remaining normal to gravity. This gives a
positive geoid undulation over a mass excess under the
ellipsoid (Fig. 2.24b). Conversely, a mass deficit beneath
the ellipsoid will deflect the geoid below the ellipsoid,
causing a negative geoid undulation. As a result of the
uneven topography and heterogeneous internal mass
distribution of the Earth, the geoid is a bumpy equipoten-
tial surface.

The potential of the geoid is represented mathemati-
cally by spherical harmonic functions that involve the asso-
ciated Legendre polynomials (Box 2.3). These are more
complicated than the ordinary Legendre polynomials
used to describe the gravitational potential of the ellipsoid
(Egs. (2.49)—(2.51)). Until now we have only considered

variation of the potential with distance r and with the co-
latitude angle 6. This is an oversimplification, because
density variations within the Earth are not symmetrical
about the rotation axis. The geoid is an equipotential
surface for the real density distribution in the Earth, and
so the potential of the geoid varies with longitude as well
as co-latitude. These variations are taken into account by
expressing the potential as a sum of spherical harmonic
functions, as described in Box 2.3. This representation of
the geopotential is analogous to the simpler expression for
the gravitational potential of the rotationally symmetric
Earth using a series of Legendre polynomials (Eq. (2.51)).

In modern analyses the coefficient of each term in
the geopotential - similar to the coeflicients J, in Eq. (2.51)
— can be calculated up to a high harmonic degree. The
terms up to a selected degree are then used to compute a
model of the geoid and the Earth’s gravity field. A combi-
nation of satellite data and surface gravity measurements
was used to construct Goddard Earth Model (GEM) 10. A
global comparison between a reference ellipsoid with flat-
tening 1/298.257 and the geoid surface computed from the
GEM 10 model shows long-wavelength geoid undulations
(Fig. 2.25). The largest negative undulation (—105m) is in
the Indian Ocean south of India, and the largest positive
undulation (+73m) is in the equatorial Pacific Ocean
north of Australia. These large-scale features are too
broad to be ascribed to shallow crustal or lithospheric
mass anomalies. They are thought to be due to hetero-
geneities that extend deep into the lower mantle, but their
origin is not yet understood.

2.4.6 Satellite geodesy

Since the early 1960s knowledge of the geoid has been
dramatically enhanced by the science of satellite geodesy.



68 Gravity, the figure of the Earth and geodynamics

Fig. 2.26 The retrograde precession of a satellite orbit causes the line of
nodes (CN,, CN,) to change position on successive equatorial crossings.

The motions of artificial satellites in Earth orbits are
influenced by the Earth’s mass distribution. The most
important interaction is the simple balance between the
centrifugal force and the gravitational attraction of the
Earth’s mass, which determines the radius of the satel-
lite’s orbit. Analysis of the precession of the Earth’s rota-
tion axis (Section 2.3.4.4) shows that it is determined by
the dynamical ellipticity H, which depends on the
difference between the principal moments of inertia
resulting from the rotational flattening. In principle, the
gravitational attraction of an artificial satellite on the
Earth’s equatorial bulge also contributes to the preces-
sion, but the effect is too tiny to be measurable. However,
the inverse attraction of the equatorial bulge on the satel-
lite causes the orbit of the satellite to precess around the
rotation axis. The plane of the orbit intersects the equato-
rial plane in the /ine of nodes. Let this be represented by
the line CN;, in Fig. 2.26. On the next passage of the satel-
lite around the Earth the precession of the orbit has
moved the nodal line to a new position CN,. The orbital
precession in this case is retrograde; the nodal line
regresses. For a satellite orbiting in the same sense as the
Earth’s rotation the longitude of the nodal line shifts
gradually westward; if the orbital sense is opposite to the
Earth’s rotation the longitude of the nodal line shifts
gradually eastward. Because of the precession of its orbit
the path of a satellite eventually covers the entire Earth
between the north and south circles of latitude defined by
the inclination of the orbit. The profusion of high-quality
satellite data is the best source for calculating the dynami-
cal ellipticity or the related parameter J, in the gravity
potential. Observations of satellite orbits are so precise
that small perturbations of the orbit can be related to the
gravitational field and to the geoid.
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Fig. 2.27 Changes in the arc distance between satellite laser-ranging
(SLR) stations in Australia and Hawaii determined from LAGEOS
observations over a period of four years. The mean rate of convergence,
63 =3mm yr', agrees well with the rate of 67 mm yr-' deduced from
plate tectonics (after Tapley et al., 1985).

24.6.1 Satellite laser-ranging

The accurate tracking