Introduction to Astronomy and Astrophysics - 1

IUCAA-NCRA Graduate School 2013

Instructor: Dipankar Bhattacharya IUCAA

August - September 2013

Coordinate Systems, Units and the Solar System

Locating Objects

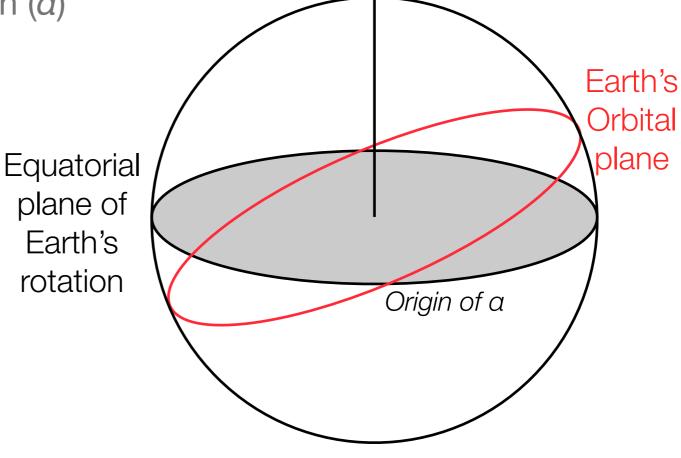
- Angular position can be measured accurately; distance difficult
- Spherical Polar Coordinate System:

latitude = Declination (δ) longitude = Right Ascension (α)

Time

Solar Day = 24 h (*time between successive solar transits*)

Earth's Spin Period: 23h56m (*time between successive stellar transits*) 24h "Sidereal Time" = 23h56m Solar Time



↑ Pole

 α is expressed in units of time Transit time of a given α = Local Sidereal Time

Different coordinate systems

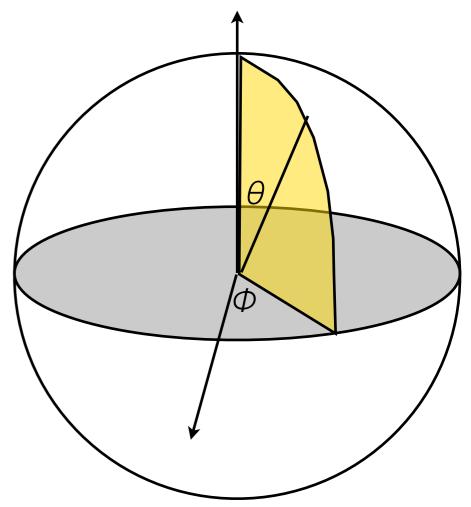
Convention: Latitude: $(\pi/2 - \theta)$; Longitude: Φ

- Equatorial: Poles: extension of the earth's spin axis
- Ecliptic: Poles: Normal to the earth's orbit around the sun
- Galactic: Poles: Normal to the plane of the Galaxy

For Equatorial and Ecliptic: same longitude reference (ascending node - vernal equinox)

For Galactic coordinates: longitude reference is the direction to the Galactic Centre

Equatorial coordinates: larger Φ , later rise: RA (a) latitude = Declination (δ)



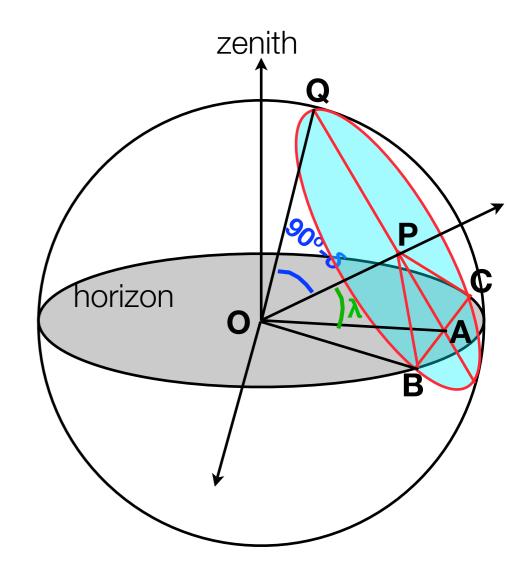
Rise and Set

Horizon: tangent plane to the earth's surface at observer's location geographic latitude λ

OP = sin δ ; QP = cos δ = PB AP = OP tan λ = sin δ tan λ \angle APB = cos⁻¹ (AP/PB) = cos⁻¹ {tan δ tan λ }

Total angle spent by the source above the horizon = $360^{\circ} - 2 \cos^{-1} \{\tan \delta \tan \lambda\}$

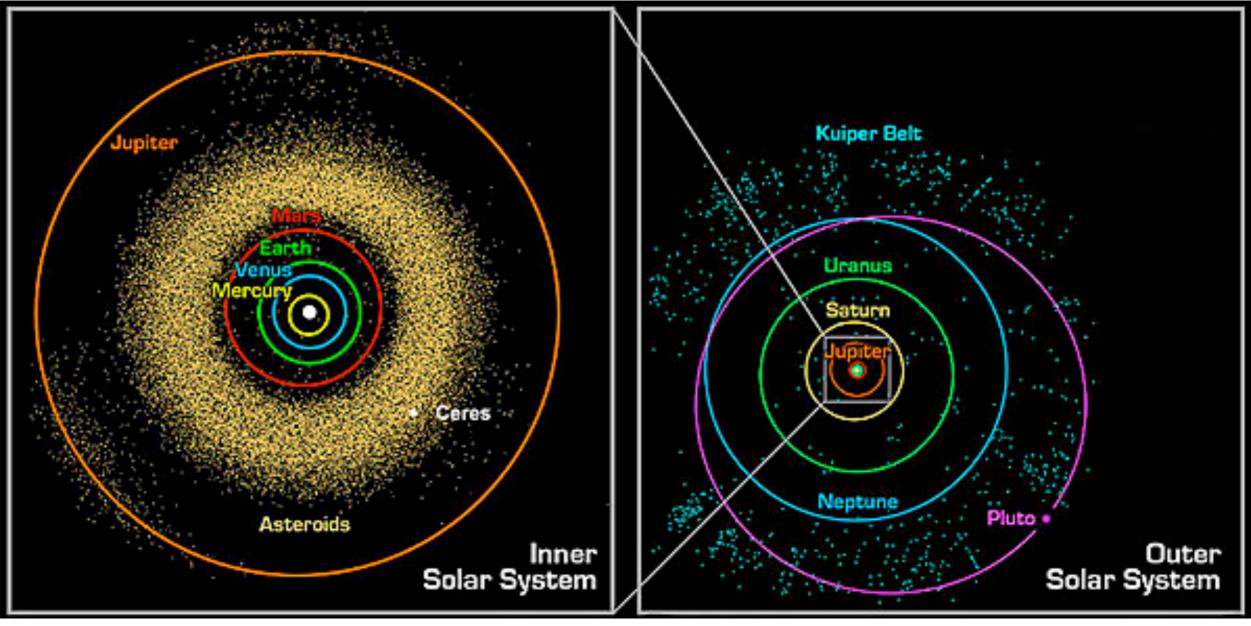
Time spent by the source above the horizon = ([$360^{\circ} - 2 \cos^{-1} \{\tan \delta \tan \lambda\}$]/15) sidereal hours = (1436/1440) ([$360^{\circ} - 2 \cos^{-1} \{\tan \delta \tan \lambda\}$]/15) hours by solar clock



Earth-Moon system

- Tidally locked. Moon's spin Period = Period of revolution around the Earth
- $M_{earth} = 5.97722 \times 10^{24} \text{ kg}$; $M_{moon} = 7.3477 \times 10^{22} \text{ kg}$
- Orbital eccentricity = 0.0549
- Semi-major axis = 384,399 km, *increasing by 38 mm/y* (1ppb/y) Earth's spin angular momentum being pumped into the orbit
- Origin of the moon possibly in a giant impact on earth by a mars-sized body; moon has been receding since formation.
- At present the interval between two new moons = 29.53 days
- Moon's orbital plane inclined at 5.14 deg w.r.t. the ecliptic
- Earth around the sun, Moon around the earth: same sense of revolution
- Moon is responsible for total solar eclipse as angular size of the sun and the moon are roughly similar as seen from the earth.

Bodies in The Solar System



A. Feild (STSCI)

Measuring Distance

- Inside solar system: Radio and Laser Ranging Earth-Sun distance: 1 Astronomical Unit = 149597871km
- Nearby stars: Parallax Parsec = distance at which 1 AU subtends 1 sec arc = $3.086 \times 10^{13} km = 3.26$ light yr
- Distant Objects: Standard Candles
 - Cepheid and RR Lyrae stars
 - Type la Supernovae
- Cosmological distance: Redshift

Linear size = angular size x distance

Measure of Intensity

 $1 \text{ Jansky} = 10^{-26} \text{ W/m}^2/\text{Hz}$

Optical Magnitude Scale Logarithmic Scale of Intensity: $m = -2.5 \log (I/I_0)$ apparent magnitude Absolute Magnitude (measure of luminosity): $M = -2.5 \log (I_{10pc} / I_0)$

The scale factor I_0 depends on the waveband, for example:

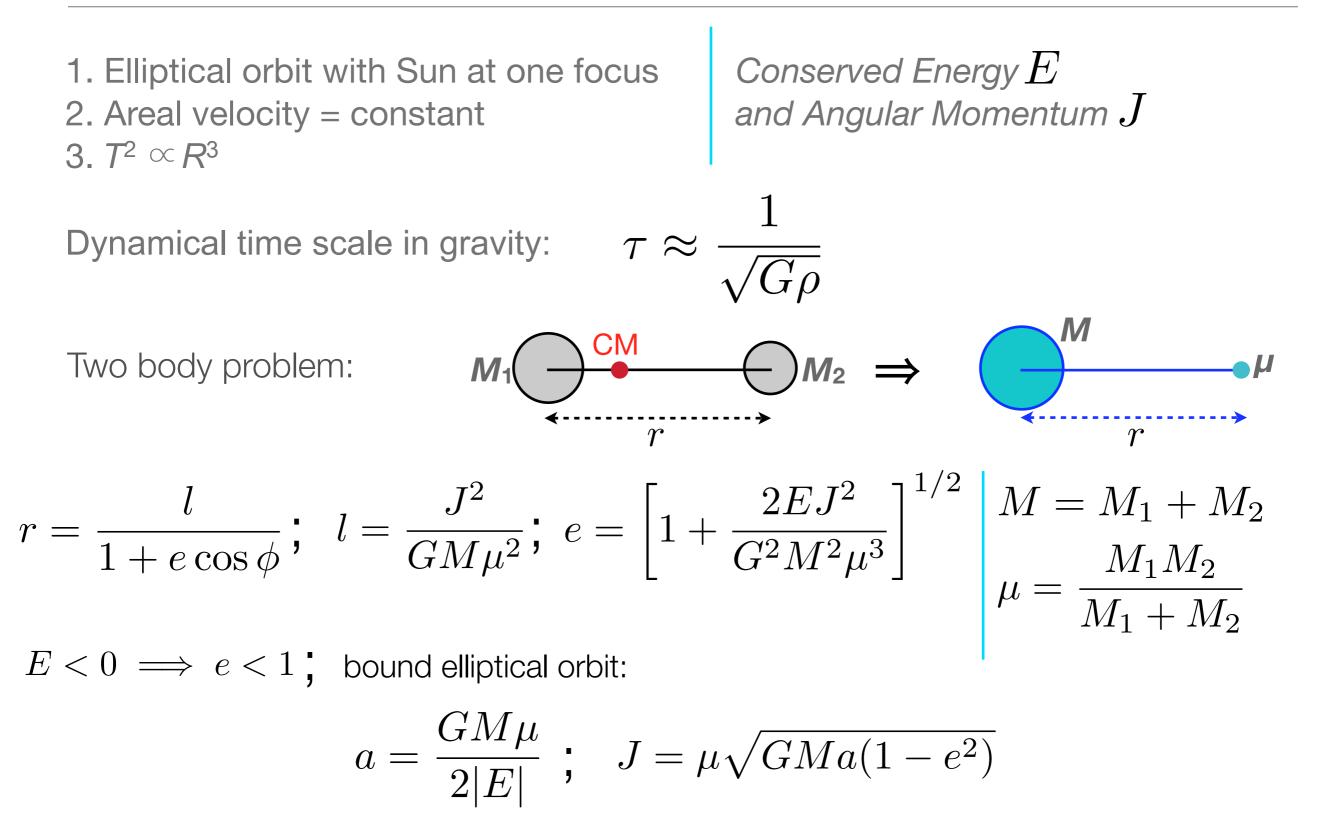
Band	lo
Johnson U	1920 Jy
В	4130
V	3690
R	3170
I	2550

References

- The Physical Universe : Frank H. Shu
- An Introduction to Modern Astrophysics : B.W. Carroll & D.A. Ostlie
- Astrophysical Quantities: C.W. Allen
- Astrophysical Formulae: K.R. Lang

Orbits

Kepler Orbit



Motion in a Central Force Field

Energy
$$E = \frac{1}{2}\mu\dot{r}^2 + \boxed{\frac{J^2}{2\mu r^2} + U(r)}{\frac{J^2}{2\mu r^2} + U(r)}$$
; $\dot{r}^2 = \frac{2}{\mu} [E - U_{\text{eff}}(r)]$
 $\phi = \int \frac{(J/r^2)dr}{[2\mu \{E - U_{\text{eff}}(r)\}]^{1/2}} + \text{const.}$ Intersections of $U_{\text{eff}}(r)$ with E give turning points in the orbit
Newtonian Gravity: $U(r) = -\frac{GM\mu}{r}$
Setting $U_{\text{eff}} = E$ gives turning points:
 $\frac{1}{r_{\min}} = \frac{GM\mu^2}{J^2} \left[1 \pm \sqrt{1 + \frac{2J^2E}{GM^2\mu^3}} \right]$
and for $E < 0$ (max does not exist for $E > 0$)
 $\Delta\phi = 2 \left[\phi(r_{\max}) - \phi(r_{\min})\right] = 2\pi$
i.e. orbit is closed. Departure from $1/r$ or r^2 potential give $\Delta\phi \neq 2\pi$ \Rightarrow precession of periastron

Departure from 1/r² gravity

Common causes of departure from 1/r form of gravitational potential:

- Distributed mass
- Tidal forces
- Relativistic effects

In relativity, effective potential near a point mass (including rest energy)

$$\bar{E} = \begin{bmatrix} \left(1 - \frac{1}{\bar{r}}\right) \left(1 + \frac{\bar{a}^2}{\bar{r}^2}\right) \end{bmatrix}^{1/2} \qquad \bar{E} = E/mc^2 \\ \bar{a} = J/mcr_g \\ r_g = 2GM/c^2$$

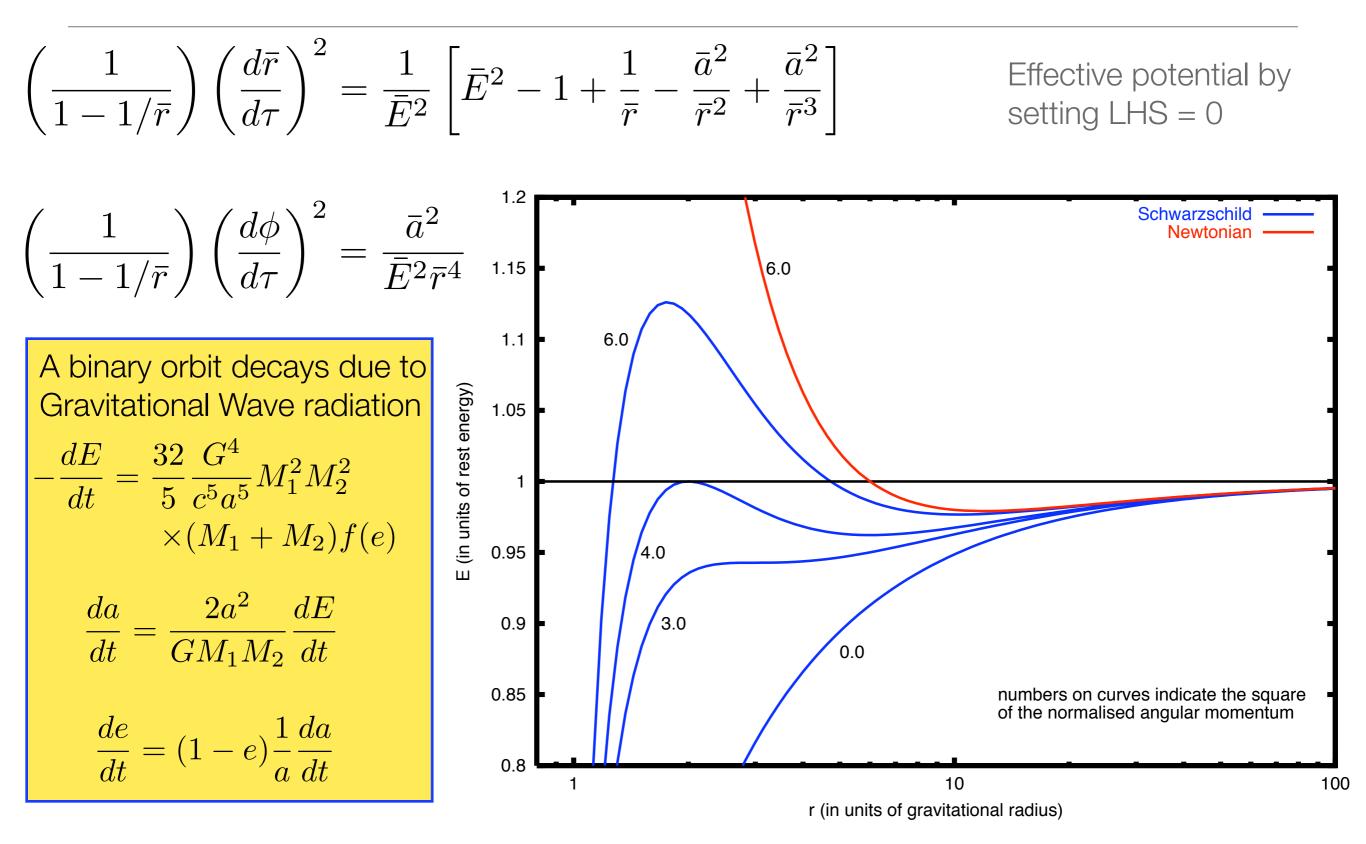
 $U = -\frac{\alpha}{r} + \frac{\beta}{r^2} \implies \delta\phi_{\text{per orbit}} = -2\pi\beta\mu/J^2$ $U = -\frac{\alpha}{r} + \frac{\gamma}{r^3} \implies \delta\phi_{\text{per orbit}} = -6\pi\alpha\gamma\mu^2/J^4$

Newtonian approximation $\bar{r} \gg 1$

Next order correction, upon expanding the square root: $-\frac{\bar{a}^2}{2\bar{r}^3}$

Gives
$$\delta \phi_{\text{per orbit}} = \frac{6\pi GM}{a(1-e^2)c^2} \Rightarrow \text{Precession of perihelion of Mercury}$$

Schwarzschild Gravity: Equation of Motion & Effective Potential



Photon Orbit in Schwarzschild Gravity

 \overline{b}^2

 $\overline{\overline{r}^3}$

setting
$$m=0,\ \bar{E}
ightarrow\infty,\ \bar{a}
ightarrow$$

2

 $\infty, \ \frac{\bar{a}}{\bar{E}} \to \frac{b}{r_g} \equiv \bar{b} \qquad b = \text{impact parameter at } \infty$

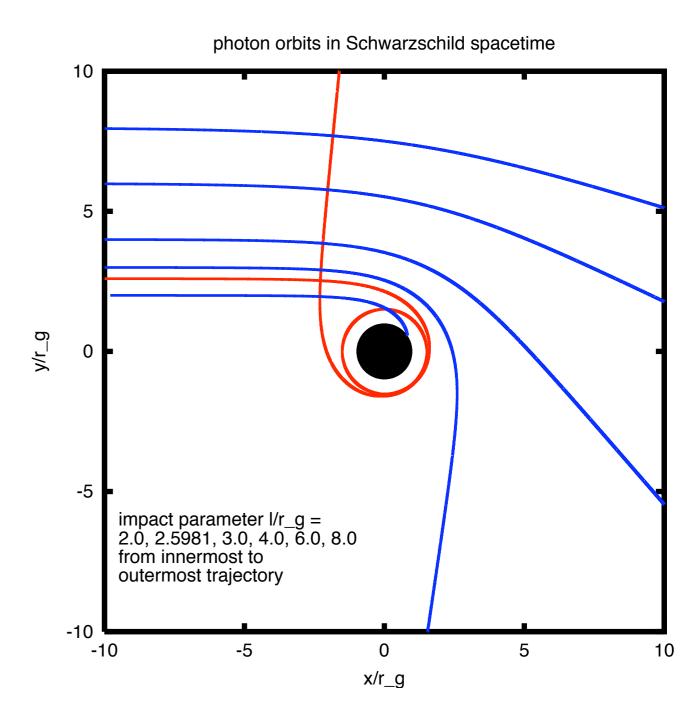
$$\left(\frac{1}{1-1/\bar{r}}\right) \left(\frac{d\bar{r}}{d\tau}\right)^2 = 1 - \frac{b^2}{\bar{r}^2} + \left(\frac{1}{1-1/\bar{r}}\right) \left(\frac{d\phi}{d\tau}\right)^2 = \frac{\bar{b}^2}{\bar{r}^4}$$

hence

$$\left(\frac{dr}{d\phi}\right)^2 = \frac{r^4}{b^2} \left(1 - \frac{b^2}{r^2} + r_g \frac{b^2}{r^3}\right)$$

integrate to get orbit. 3rd term on RHS causes curvature of light path

Gravitational Lensing



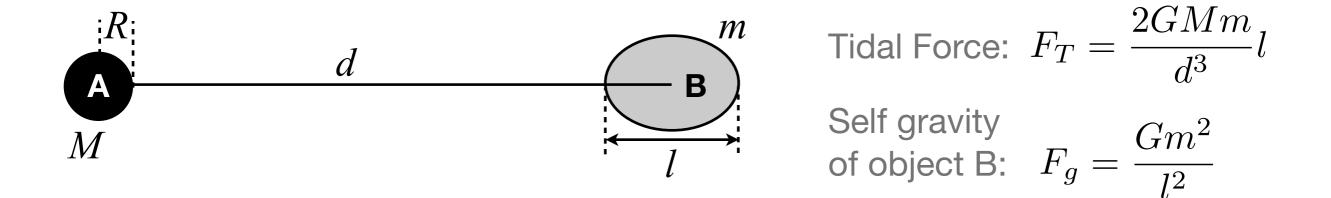
References

- Classical Mechanics : *H. Goldstein*
- Relativistic Astrophysics : Ya B. Zeldovich & I.D. Novikov
- Gravitation : C. Misner, K.S. Thorne & J.A. Wheeler
- Classical Theory of Fields : L.D. Landau & E.M. Lifshitz

Tidal forces and Roche Potential

Tidal effect

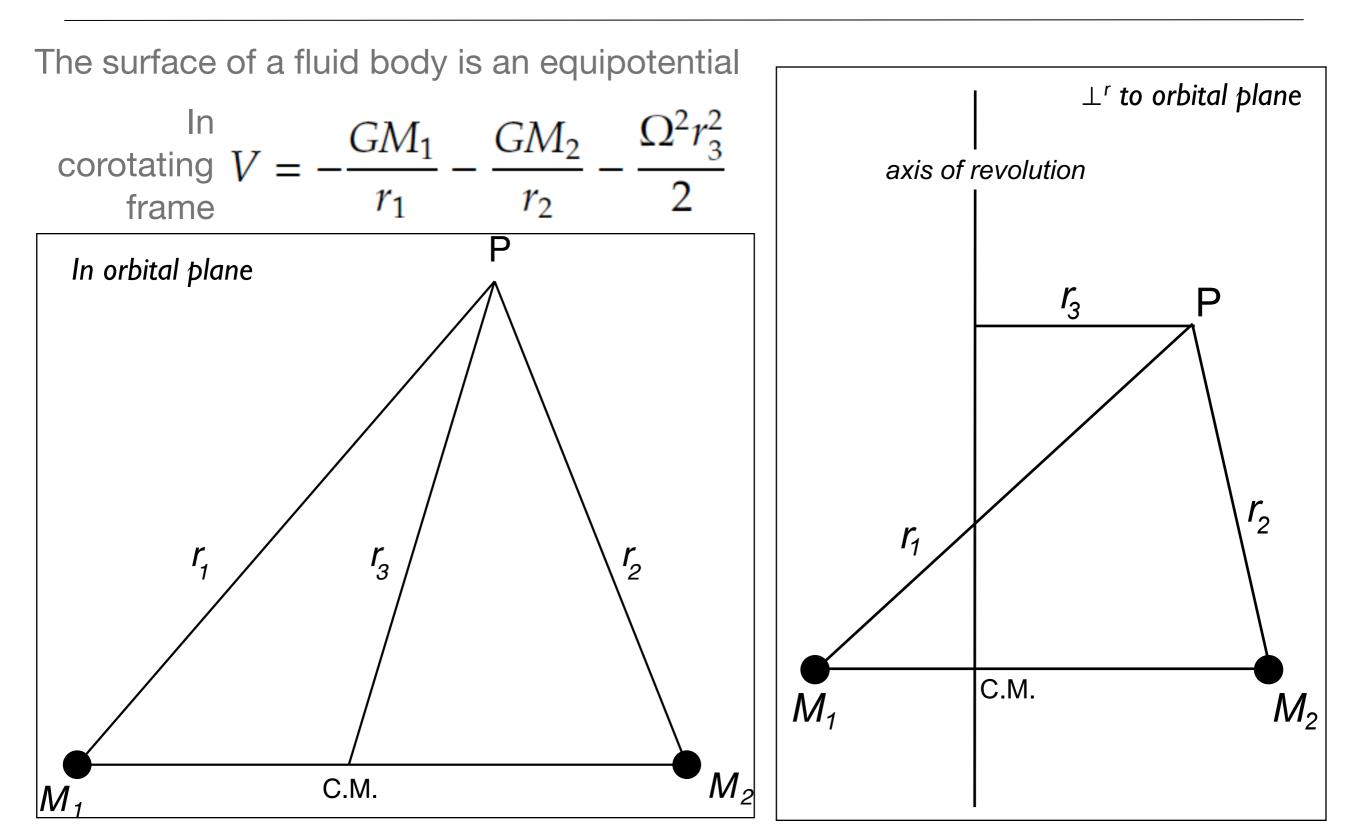
Gradient of external gravitational force across an extended body tends to deform the object - responsible for tides on Earth



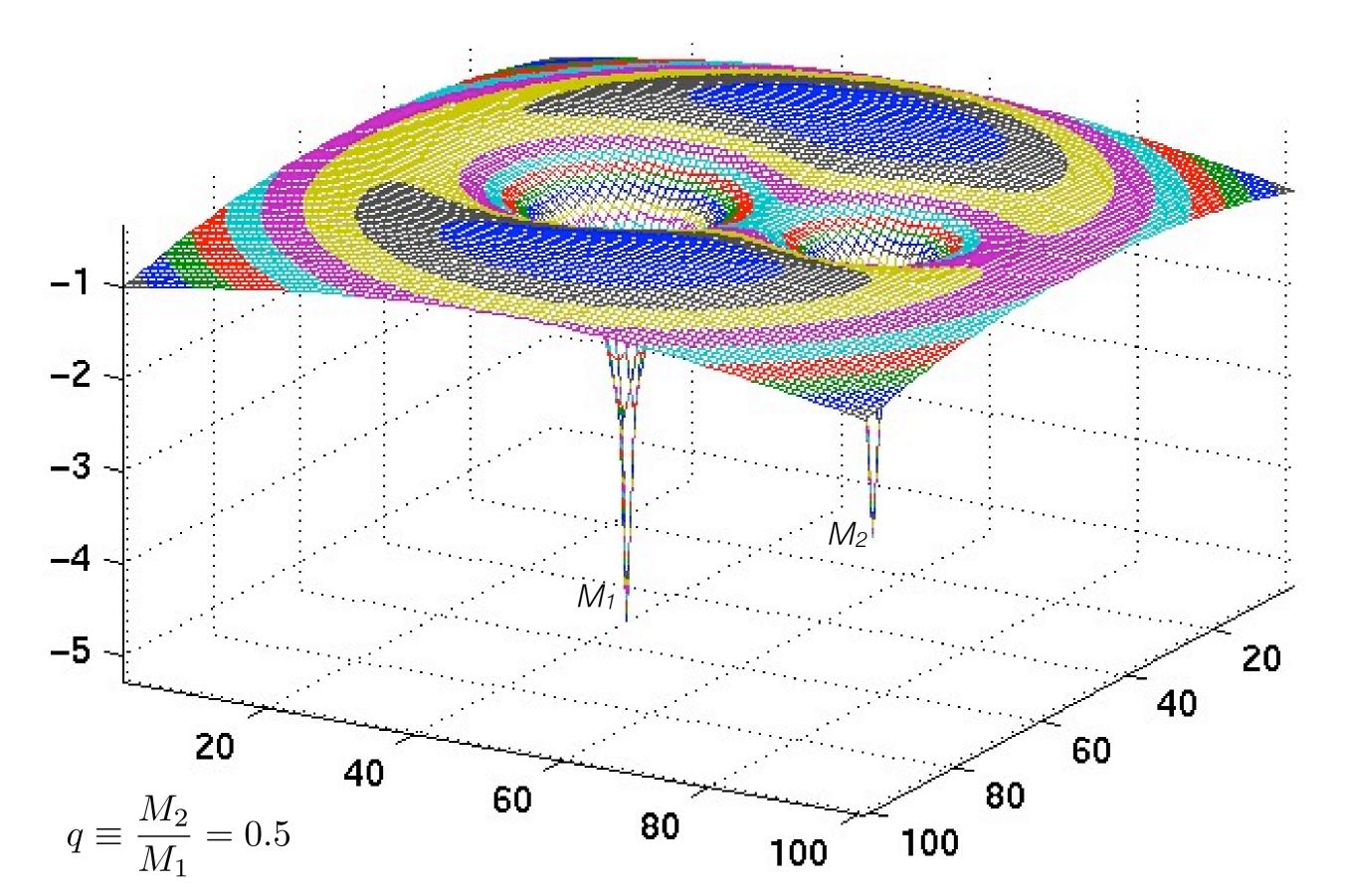
Object B would not remain intact if $F_T > F_g$

$$\therefore \text{ condition for stability:} \quad l^3 < \frac{m}{2M} d^3 \text{ , } \text{ or } \frac{l}{d} < \left(\frac{q}{2}\right)^{1/3} \text{ , } q \equiv \frac{m}{M}$$
Disruption would occur if $d^3 < 2\frac{l^3}{m}M = 2R^3\left(\frac{M}{4\pi R^3/3}\right)\left(\frac{m}{8 \times 4\pi (l/2)^3/3}\right)^{-1}$
i.e. for $d < 2^{4/3}R\left(\frac{\rho_M}{\rho_m}\right)^{1/3}$: Roche limit

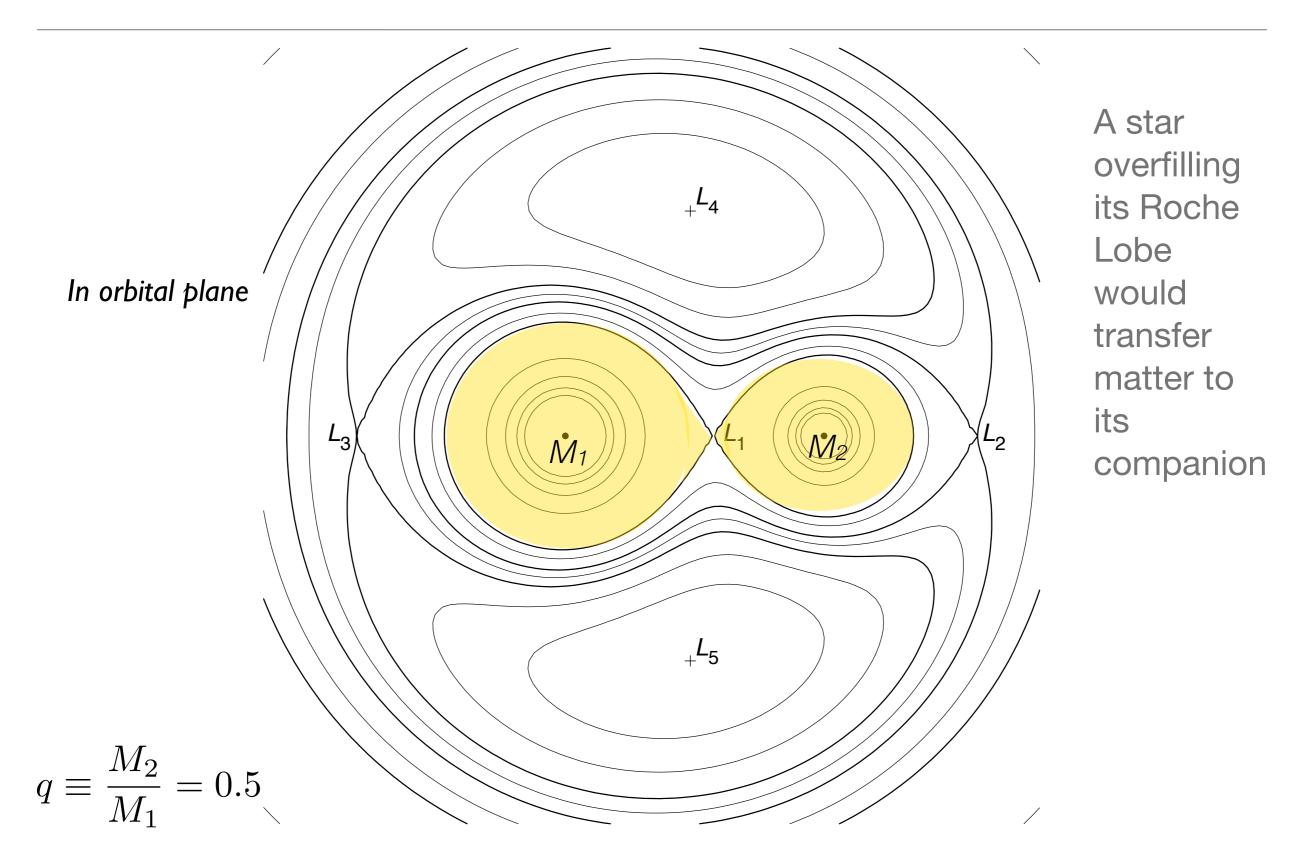
Roche Potential in a binary system



Roche Potential in the equatorial plane



Lagrangian points and the Roche Lobe



References

- Theoretical Astrophysics, vol. 1 sec. 2.3 : T. Padmanabhan
- Close Binary Systems : Z. Kopal
- Hydrodynamic and Hydromagnetic Stability: S. Chandrasekhar
- Astrophysical Journal vol. 55, p. 551 (1984) ; S.W. Mochnacki

Hydrostatic Equilibrium

Equations of Fluid Mechanics

Continuity Equation: $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{v}) = 0$ Euler Equation: $\rho \left[\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} \right] = -\vec{\nabla} P + \rho \vec{g}$ Equation of State: $P = P(\rho)$ Stationarity follows by setting time derivatives $\frac{\partial}{\partial t}$ to zero

Hydrostatic equilibrium follows by setting both $\frac{\partial}{\partial t}$ and \vec{v} to zero:

$$\vec{\nabla}P = \rho \vec{g}$$

The fluid is described

by the quantities

space and time.

 ρ, P, \vec{v}

that are functions of

Viscosity is ignored

Hydrostatic Equilibrium

$$\vec{\nabla}P=\rho\vec{g}$$

In spherical symmetry:

Supplement with appropriate equation of state and solve for the structure of self-gravitating configurations such as stars, planets etc

Virial Theorem

$$rac{dP}{dr} = -rac{GM(r)
ho(r)}{r^2}$$
 (hydrostatic equilibrium)

Multiply both sides by $4\pi r^3$ and integrate over the full configuration: $r = 0 \rightarrow R$

$$4\pi R^3 P(R) - \int_0^R 4\pi r^2 \cdot 3P dr = \int_0^R 4\pi r^2 dr \left[-\frac{GM(r)\rho(r)}{r} \right]$$

RHS = Total gravitational energy of the configuration E_g (< 0) and since $P = (\gamma - 1)u_{\rm th}$, where $u_{\rm th}$ is the Thermal (kinetic) energy density, the 2nd term in LHS = $3(\gamma - 1)E_{\rm th}$, $E_{\rm th}$ being the total thermal (kinetic) energy Hence $E_g + 3(\gamma - 1)E_{\rm th} = 4\pi R^3 P(R)$: Virial Theorem must be obeyed by all systems in hydrostatic equilibrium For $\gamma = 5/3$ and P(R) = 0: $E_g + 2E_{\rm th} = 0$ Note: $E_{\rm tot} = E_g + E_{\rm th} = E_g/2 = -E_{\rm th}$

A Rough Guide to Stellar Structure

$$\frac{dP}{dr} = -\frac{GM(r)\rho(r)}{r^2}$$

stellar radius Rcentral pressure $P_{\rm c}$ total mass M

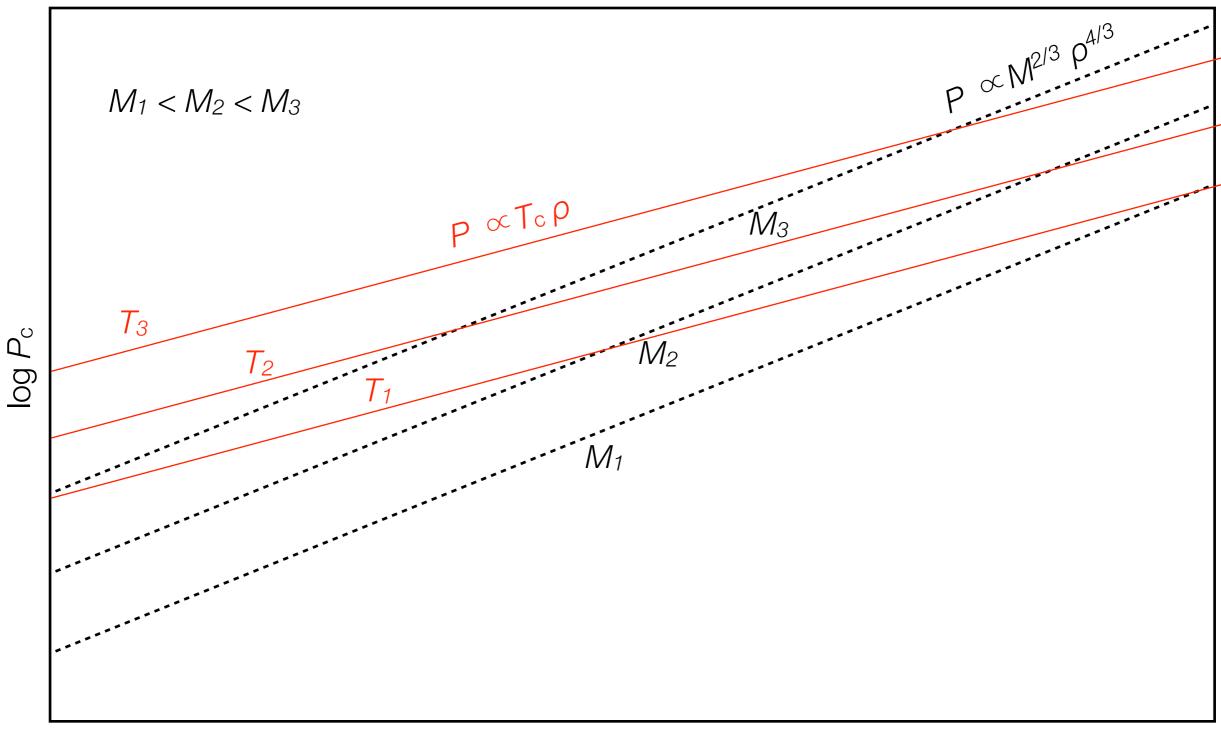
Using a linear approximation: $\frac{0 - P_{\rm c}}{R} = -\frac{GM}{R^2} \cdot \frac{M}{\frac{4\pi}{2}R^3}$

$$P_{\rm c} = \frac{3}{4\pi} \frac{GM^2}{R^4} = \left(\frac{4\pi}{3}\right)^{1/3} GM^{2/3} \rho^{4/3}$$
 ("gravitational pressure" $P_{\rm grav}$)

For equilibrium, this pressure needs to be matched by the Equation of State

e.g. Thermal Pressure:
$$P = \frac{kT}{\mu m_{\rm p}} \rho$$

Thermal pressure support



References

- Astrophysics I : Stars : *R.L. Bowers*
- The Physical Universe : F.H. Shu
- Stellar Structure and Evolution : R. Kippenhahn and A. Weigert
- Physics of Fluids and Plasmas : A. Rai Choudhuri

Stars

Main Sequence

Hydrogen burning star $T_{\rm c} \approx T_{\rm H}$

$$P_{\rm c} \approx G M^{2/3} \rho^{4/3} = \frac{k T_{\rm H}}{\mu m_{\rm p}} \rho \quad :: \quad \rho \propto M^{-2} ; \ R \propto M \text{ and } T_{\rm c} \propto \frac{M}{R}$$

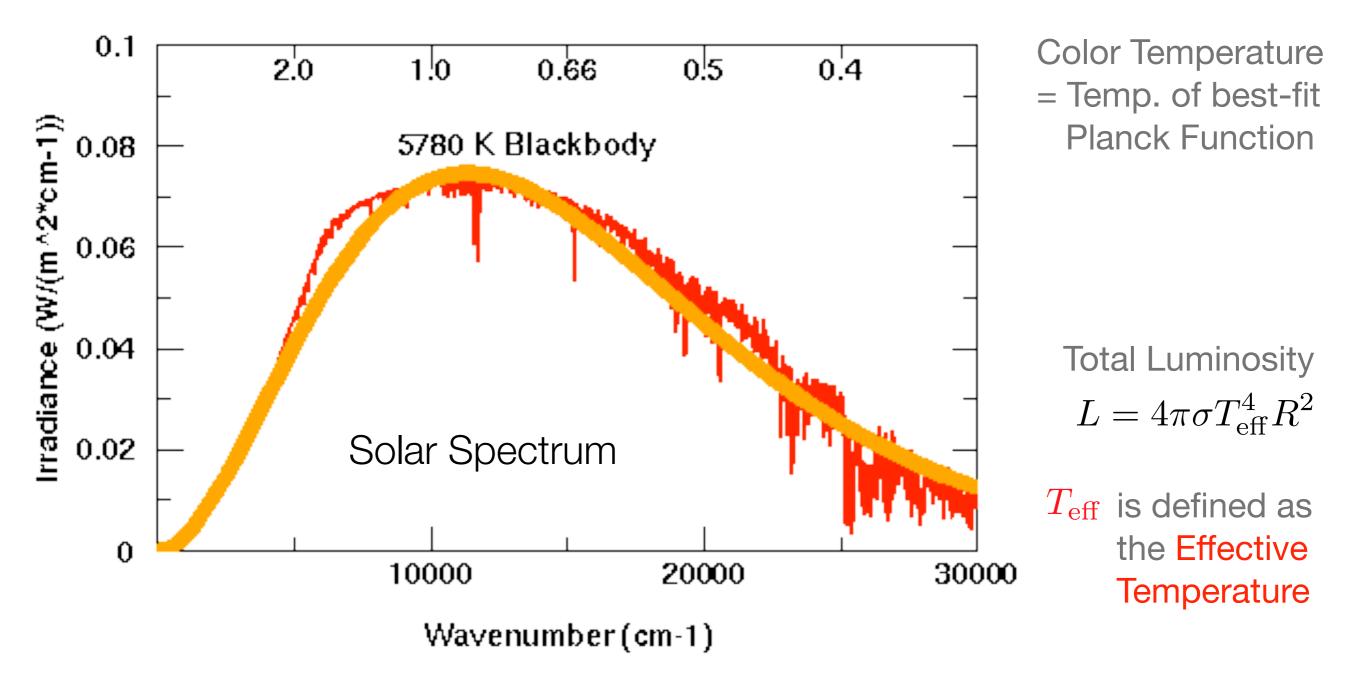
Luminosity L = Radiative Energy Content / Radiation Escape Time

Radiation Escape Time =
$$\left(\frac{R}{l}\right)^2 \cdot \frac{l}{c}$$
 where l = mean free path = $\frac{1}{n\sigma} = \frac{1}{\rho\kappa}$
Hence $L \approx \frac{aT^4R^3}{(R^2/lc)} \approx aclT^4R$ In Main Sequence: $L \propto lR \propto lM$
High mass stars: opacity: Thomson scattering κ = constant; $l \propto \frac{R^3}{M}$:: $L_{\rm MS} \propto M^3$

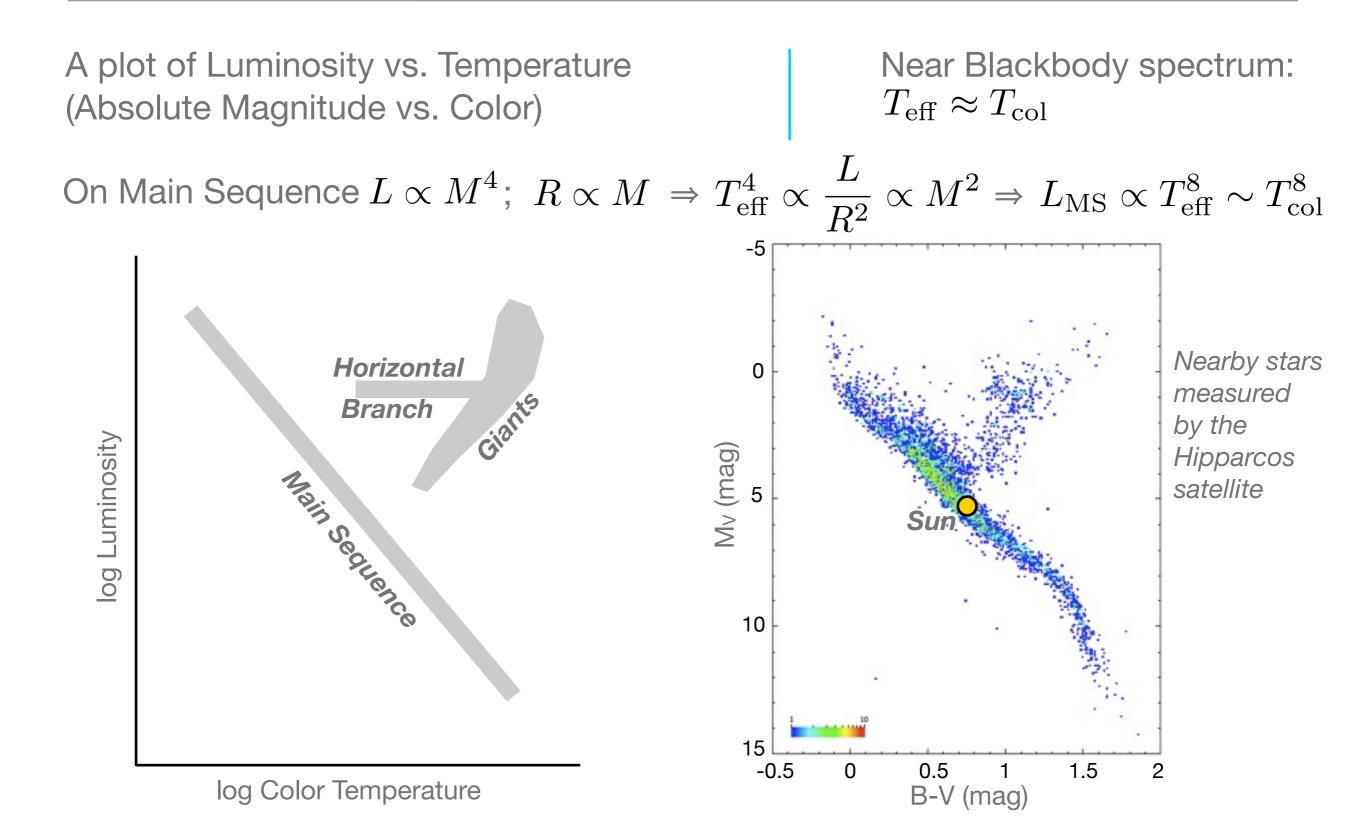
Low mass stars:
$$l \propto \frac{I^{-n}}{\rho^2} :: L_{\rm MS} \propto M^5$$
 On average $\begin{bmatrix} L_{\rm MS} \propto M^4 \\ t_{\rm MS} \propto M^{-3} \end{bmatrix}$

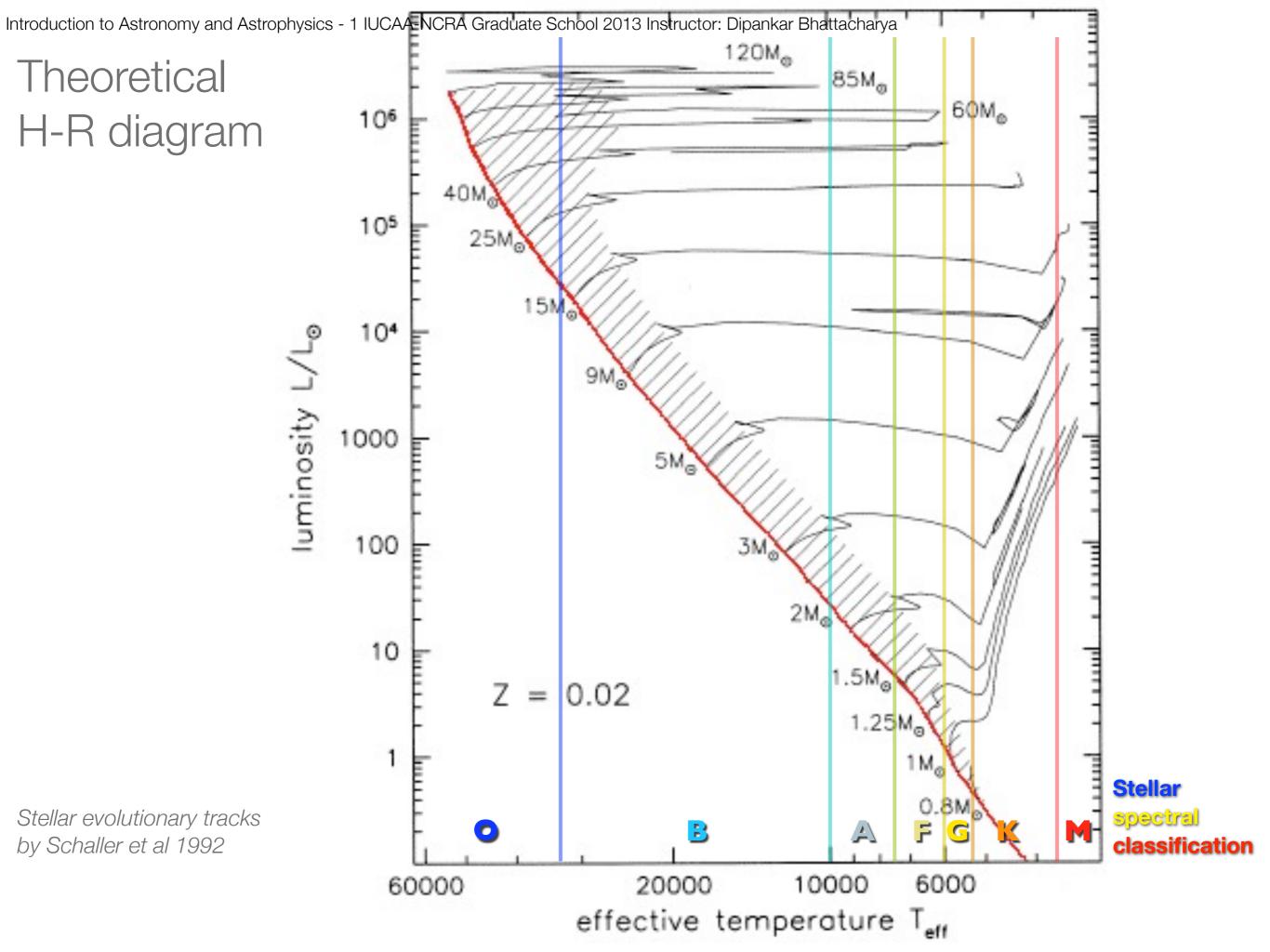
Effective Temperature

A typical stellar spectrum is nearly a blackbody



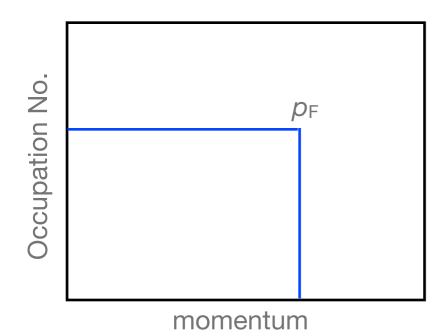
Hertzsprung Russell Diagram for Stars





Degeneracy Pressure

Momentum space occupation in cold Fermi gas



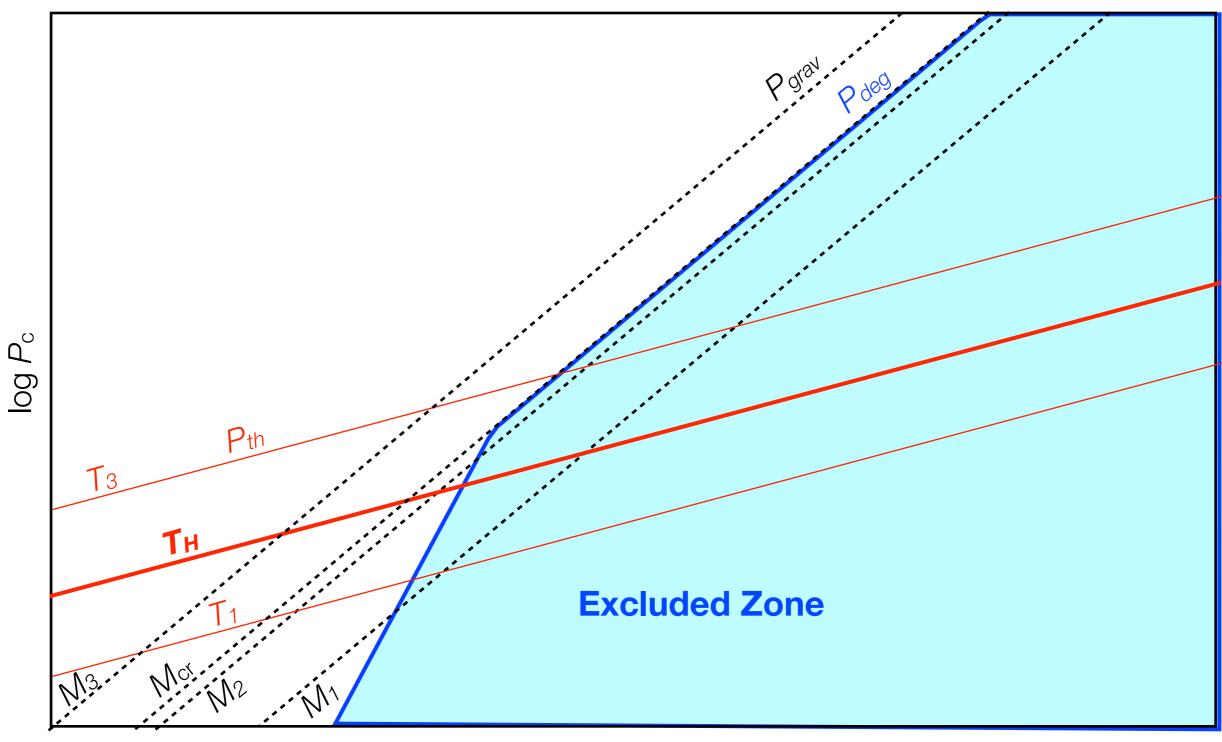
No. of particles per unit volume
$$n = \left(\frac{g}{h^3}\right) \frac{4\pi}{3} p_F^3$$

hence $p_F = \left(\frac{3}{4\pi g}\right)^{1/3} hn^{1/3}$
Pressure $P \sim n \cdot v \cdot p_F \propto v \cdot n^{4/3}$

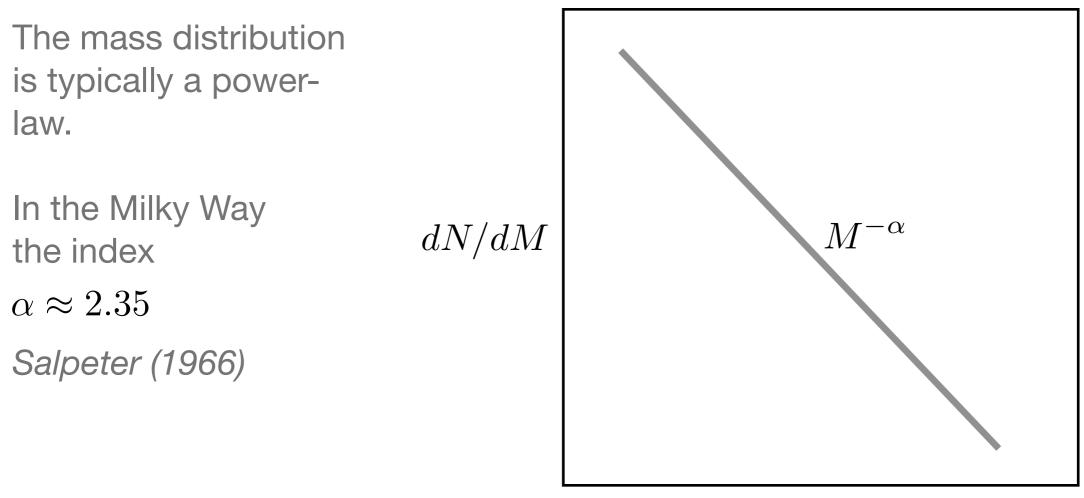
Electron degeneracy: $v = p_{\rm F}/m_{\rm e}$ (non-relativistic) and v = c (relativistic) $n_{\rm e} = \rho/(\mu_{\rm e}m_{\rm p})$ in both regimes

 \therefore Electron Degeneracy Pressure $$P_{
m deg}\propto
ho^{5/3}$$ (non-relativistic) $$\propto
ho^{4/3}$$ (relativistic)

Stellar Equilibrium



Stellar Mass Function



M

References

- Astrophysics I : Stars : *R.L. Bowers*
- The Physical Universe : F.H. Shu
- Stellar Structure and Evolution : R. Kippenhahn and A. Weigert
- Structure and Evolution of the Stars: M. Schwarzcshild
- <u>http://www.rssd.esa.int/index.php?project=HIPPARCOS&page=HR_dia</u>

Compact Stars

White Dwarfs

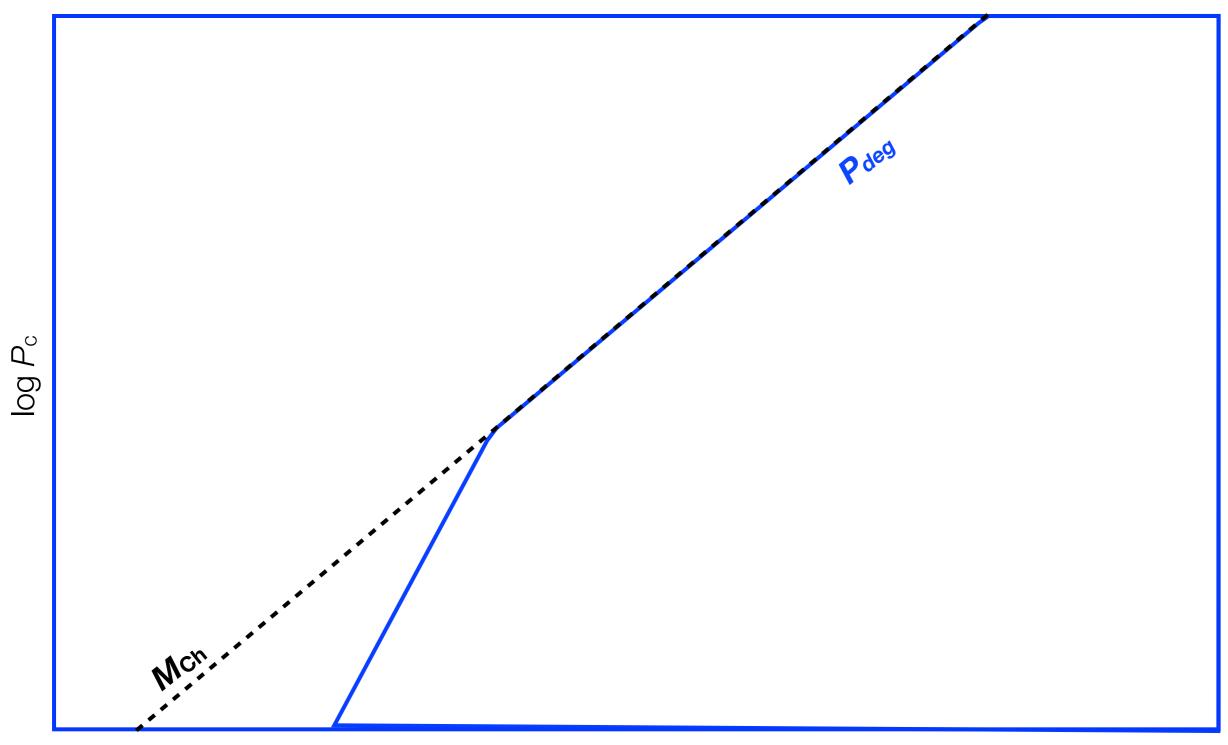
Configurations supported by Electron Degeneracy Pressure

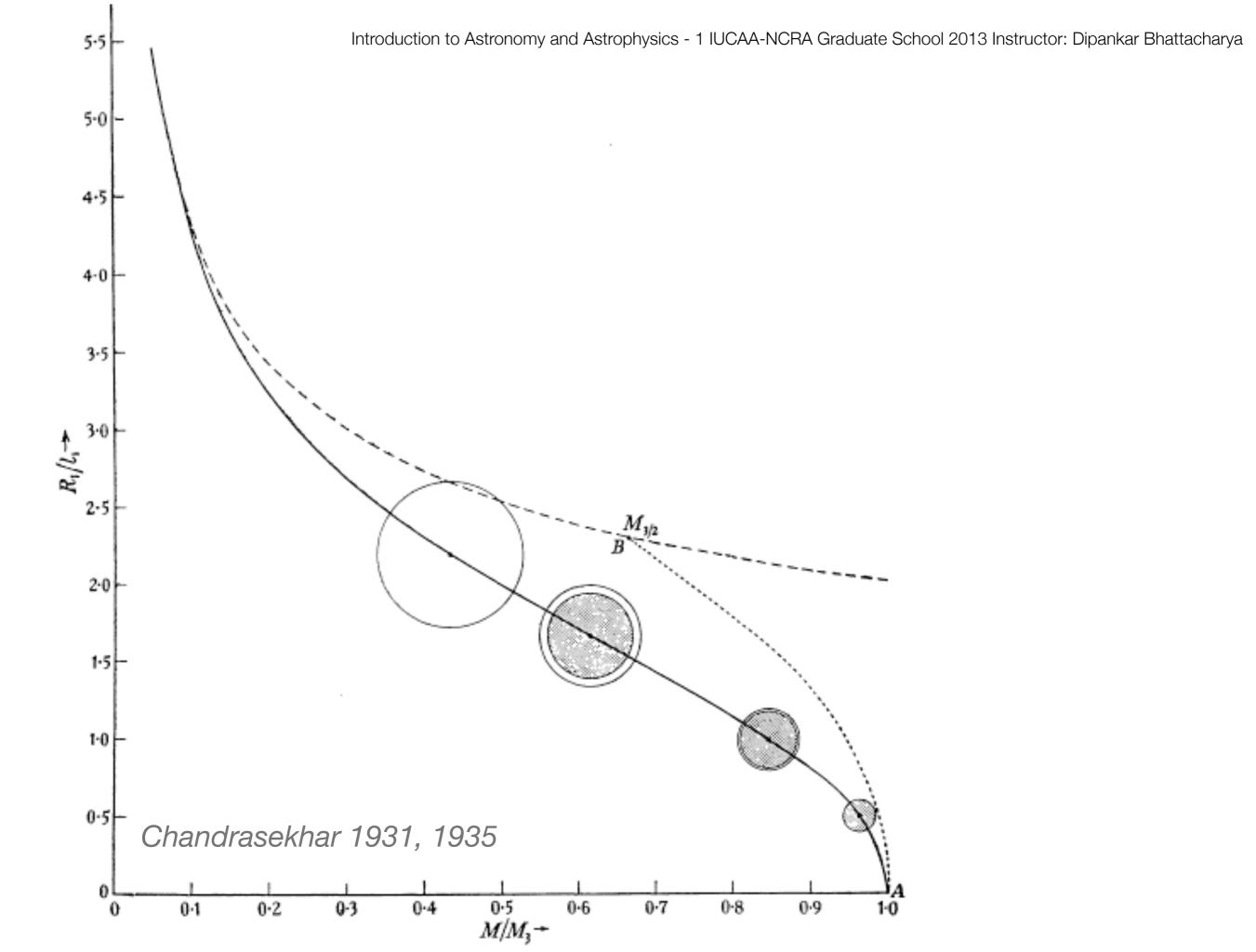
$$\begin{split} P_{\rm deg} &= K_1 m_{\rm e}^{-1} (\rho/\mu_{\rm e} m_{\rm p})^{5/3} \text{ (non-relativistic)} \\ P_{\rm deg} &= K_2 (\rho/\mu_{\rm e} m_{\rm p})^{4/3} \text{ (relativistic) :: when } p_{\rm F} \gtrsim m_{\rm e} c \text{ (} \rho \gtrsim 10^6 \text{ g cm}^{-3}\text{)} \\ \\ \text{Equilibrium condition: } P_{\rm deg} &\approx G M^{2/3} \rho^{4/3} \\ \Rightarrow \text{ Non-relativistic: } R \propto m_{\rm e}^{-1} \mu_{\rm e}^{-5/3} M^{-1/3} \text{ (} R \sim 10^4 \text{ km for } M \sim 1 M_{\rm sun}\text{)} \end{split}$$

Relativistic:
$$M \sim \left(\frac{K_2}{G}\right)^{3/2} (\mu_{\rm e} m_{\rm p})^{-2}$$
 : Limiting Mass (Chandrasekhar Mass)

$$M_{\rm Ch} = 5.76 \mu_{\rm e}^{-2} \ M_{\odot}$$

Limiting Mass of White Dwarf





Neutron Stars

Supported by Neutron degeneracy pressure and repulsive strong interaction

TOV equation + nuclear EOS required for description Beta equilibrium : > 90% neutrons, < 10% protons and electrons

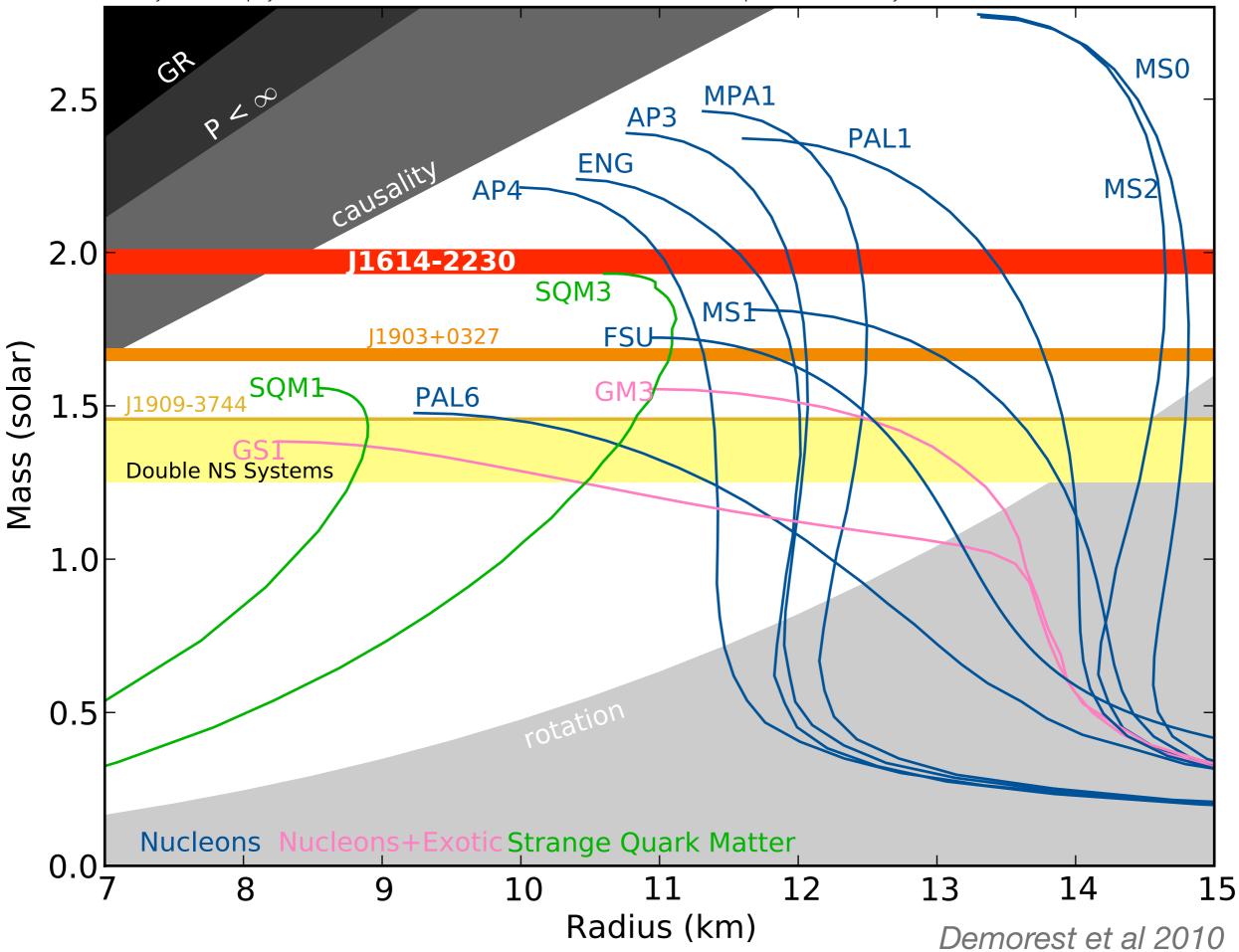
Uncertainty in the knowledge of nuclear EOS leads to uncertainty in the prediction of Mass-radius relation and limiting mass of neutron stars *(upon exceeding the max. NS mass a Black Hole would result)*

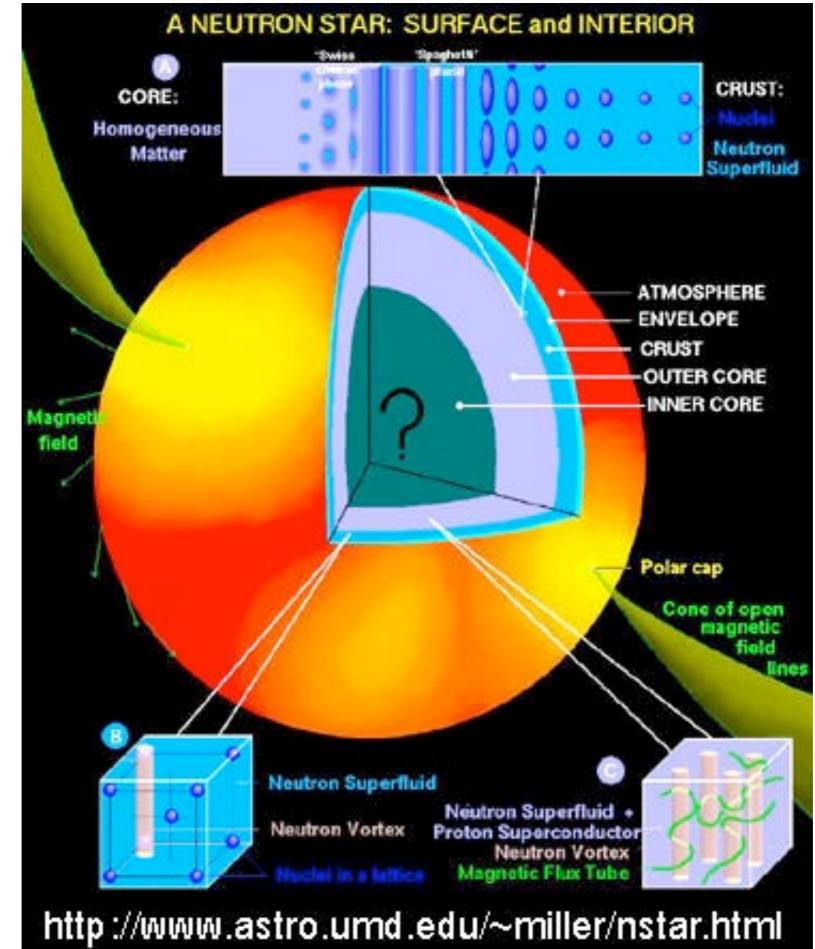
```
Inter-nucleon distance ~ 1 fm \Rightarrow n ~ 10<sup>39</sup> , \rho ~ 10<sup>15</sup> g cm<sup>-3</sup>
```

```
R \sim 10 km for M \sim 1 M_{sun}
```

Neutron stars spin fast: $P \sim ms - mins$ and have strong magnetic field: $B_{surface} \sim 10^8 - 10^{15} G$

Exotic phenomena: Pulsar, Magnetar activity





References

- The Physical Universe : F.H. Shu
- Stellar Structure and Evolution : R. Kippenhahn and A. Weigert
- An Introduction to the Study of Stellar Structure: S. Chandrasekhar
- White Dwarfs, Neutron Stars and Black Holes : S.A. Shapiro and S.L. Teukolsky

Stellar Evolution

Schönberg-Chandrasekhar limit

Core-envelope configuration: Inert core surrounded by burning shell

Core surface pressure $P_c = \frac{2E_{\rm th} + E_g}{4\pi R_c^3} = c_1 \frac{M_c T_c}{R_c^3} - c_2 \frac{M_c^2}{R_c^4}$ Envelope base pressure $P_e = c_3 \frac{T_e^4}{M^2}$

For mechanical and thermal balance $T_e = T_c$ and $P_e = P_c$

But P_c has a maximum as a function of R_c

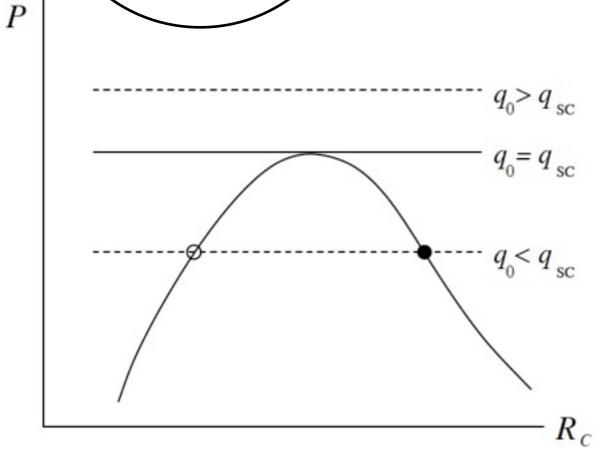
$$P_{c,\max} = c_4 \frac{T_c^4}{M_c^2}$$

So balance is possible only if $P_e \leq P_{c,\max}$

i.e.
$$q_0 \equiv \frac{M_c}{M} \le \sqrt{\frac{c_4}{c_3}} \equiv q_{\rm sc} \approx 0.37 \left(\frac{\mu_{\rm env}}{\mu_{\rm core}}\right)^2$$

if core mass grows beyond this, then core collapse would occur.

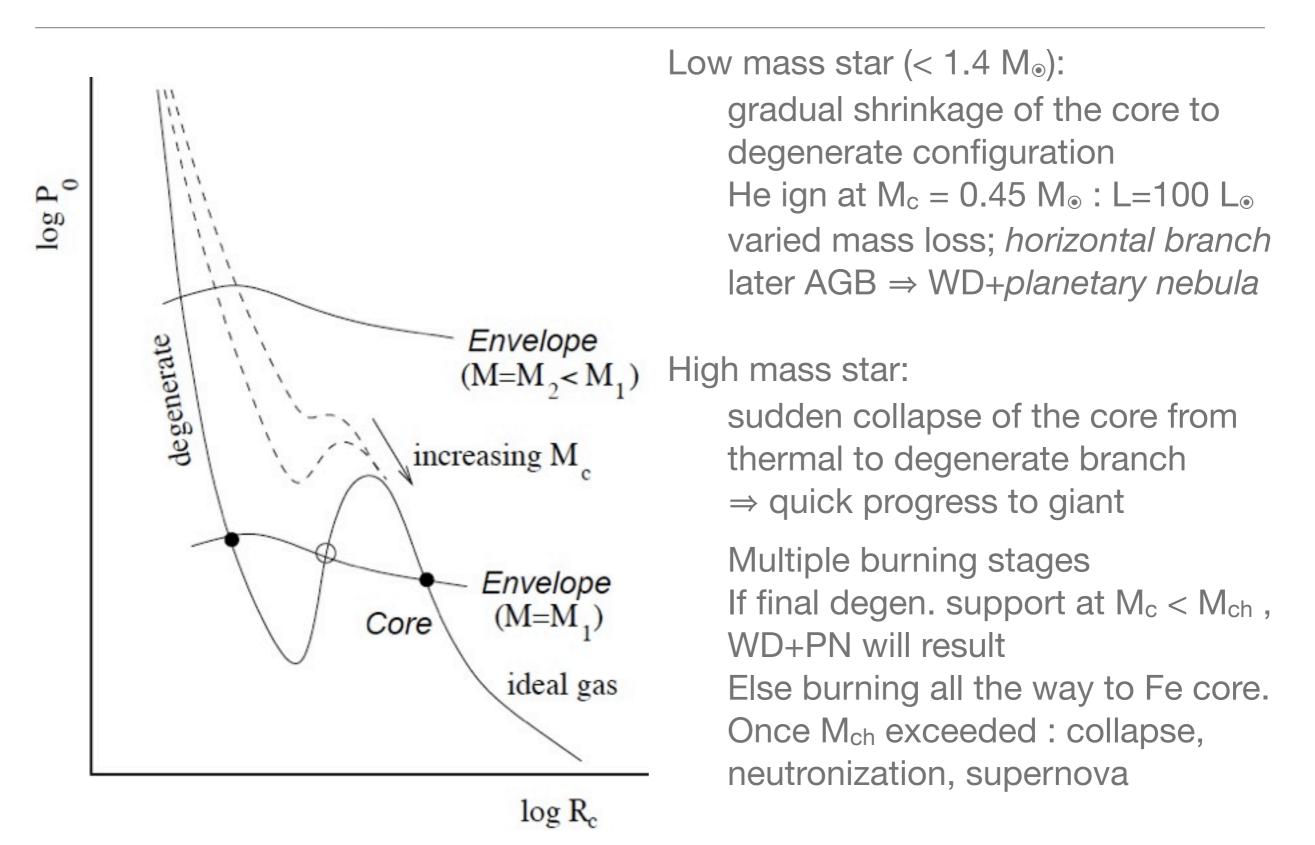
⇒ contraction until degeneracy support



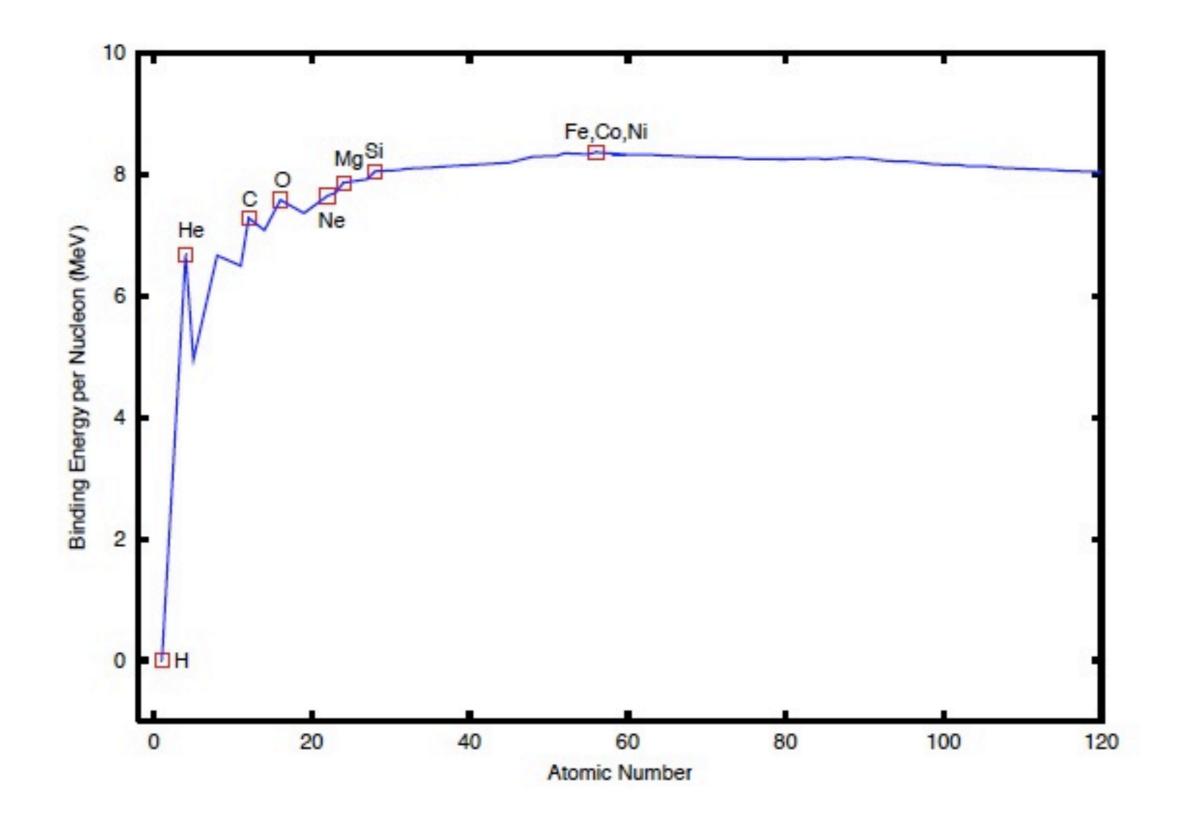
R

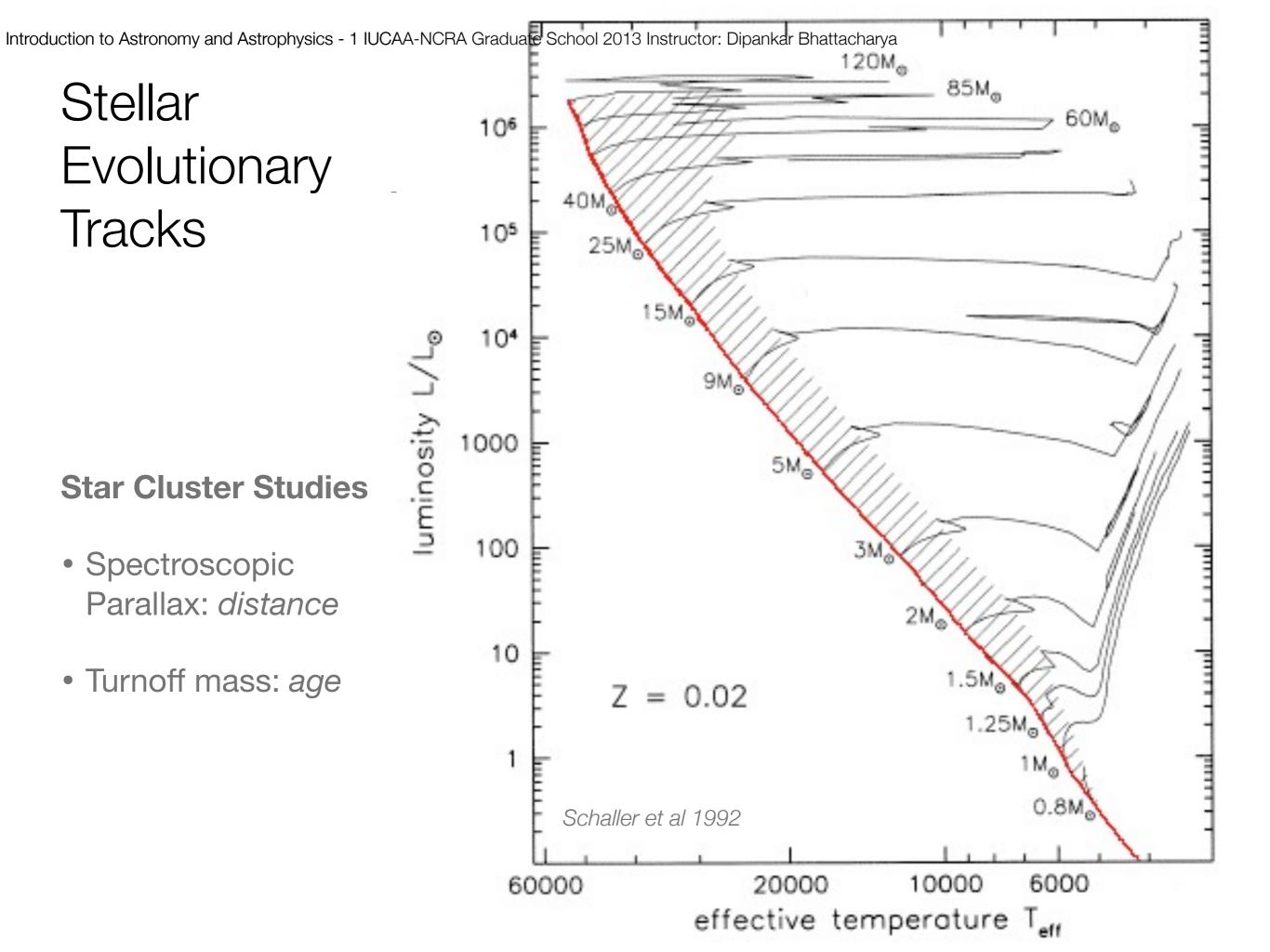
М

Post Main Sequence Evolution

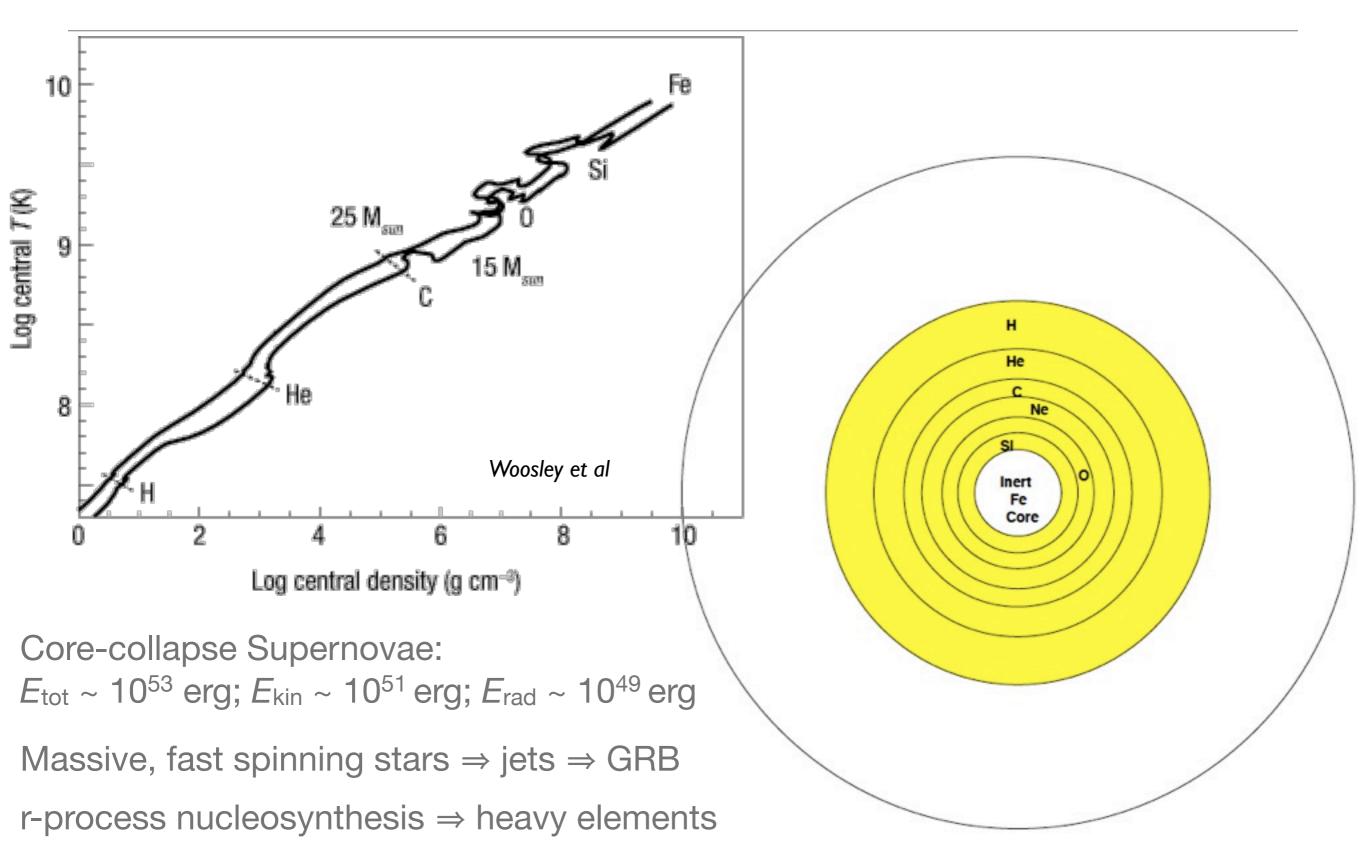


Nuclear burning stages





A star's journey to a supernova



Supernovae of Type Ia

Occur due to mass transfer in double WD binary followed by complete explosion. No core collapse

WD composition: C+O

Accretion increases WD mass \Rightarrow M_{ch} approached \Rightarrow rapid contraction \Rightarrow heating

 \Rightarrow degenerate C-ignition \Rightarrow thermal runaway \Rightarrow explosion

 $E_{tot} \sim 10^{51}$ erg ; Generates radioactive Ni which powers light curve

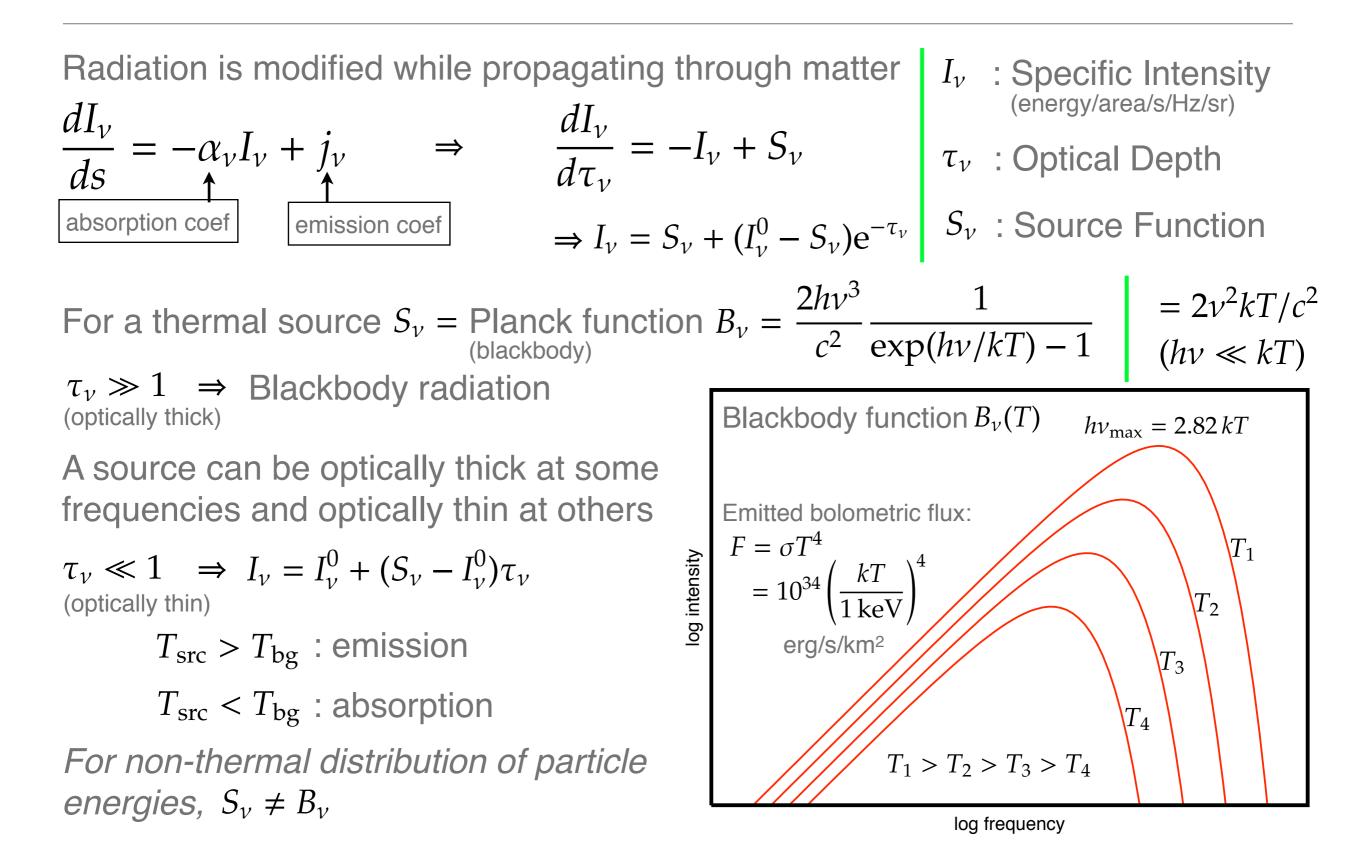
Standard conditions, standard appearance \Rightarrow Distance Indicators

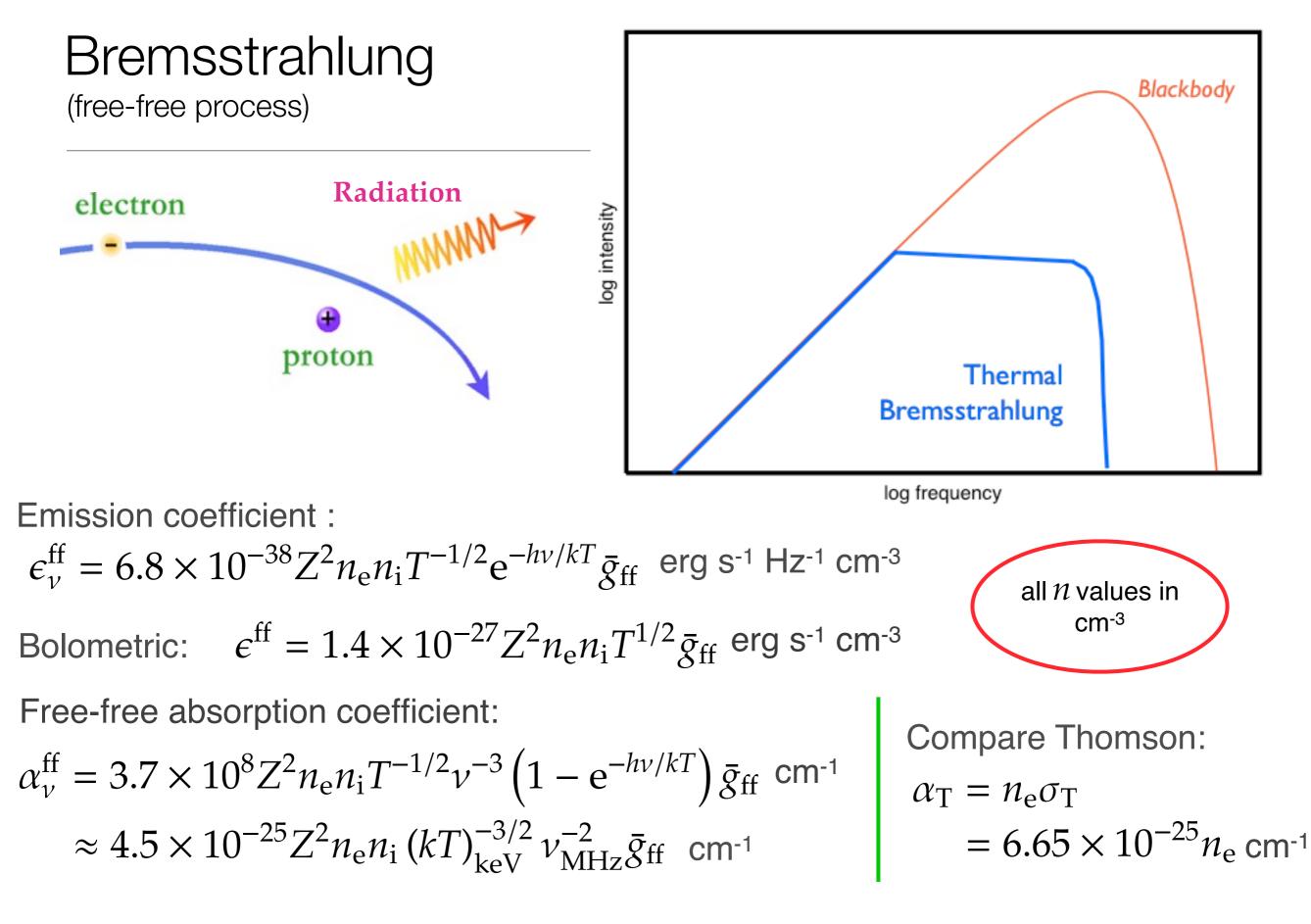
References

- Stellar Structure and Evolution : R. Kippenhahn and A. Weigert
- Stars: Their Birth, Life and Death : I.S. Shklovskii
- An Introduction to the Theory of Stellar Structure and Evolution : D. Prialnik
- An Invitation to Astrophysics : T. Padmanabhan

Radiation

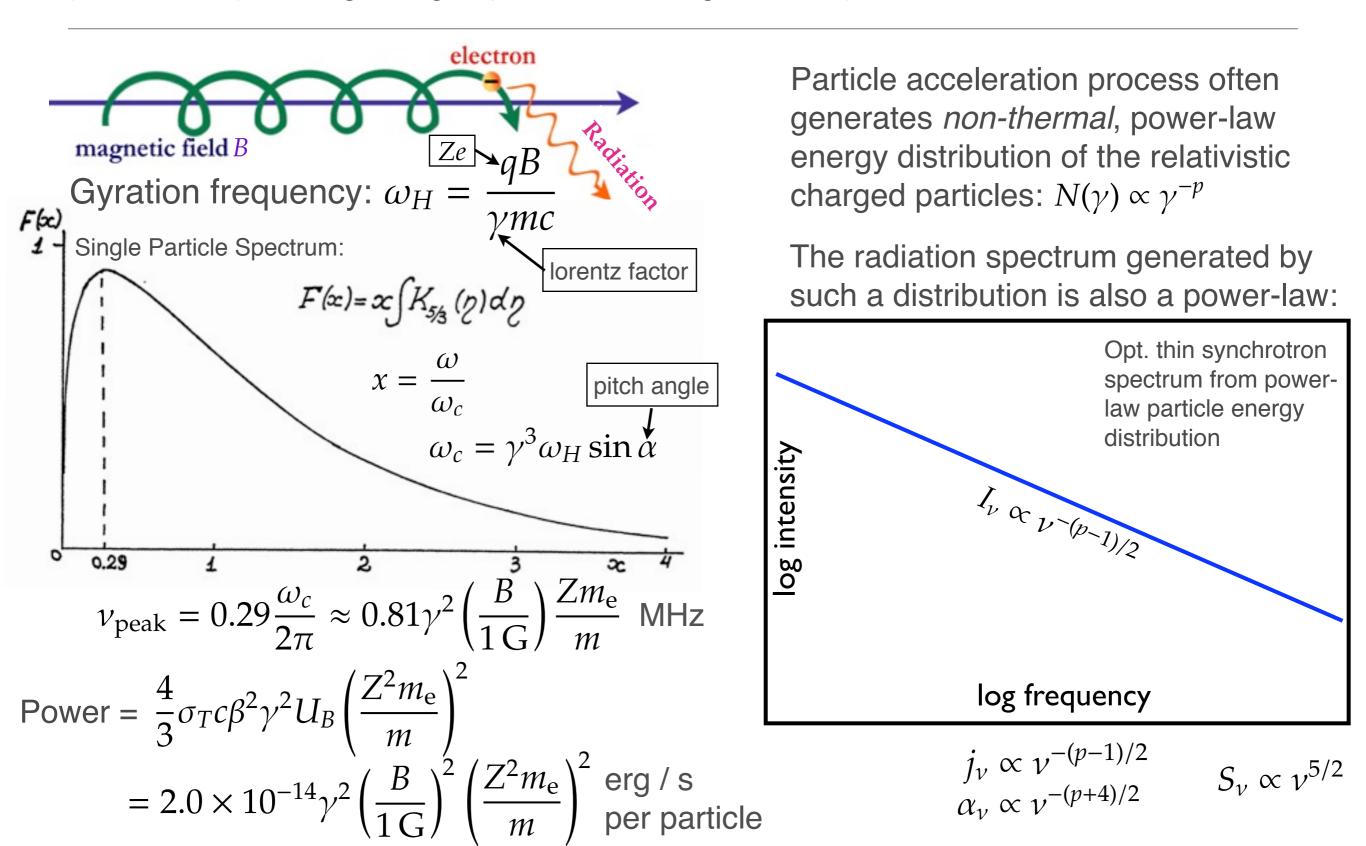
Radiative Transfer



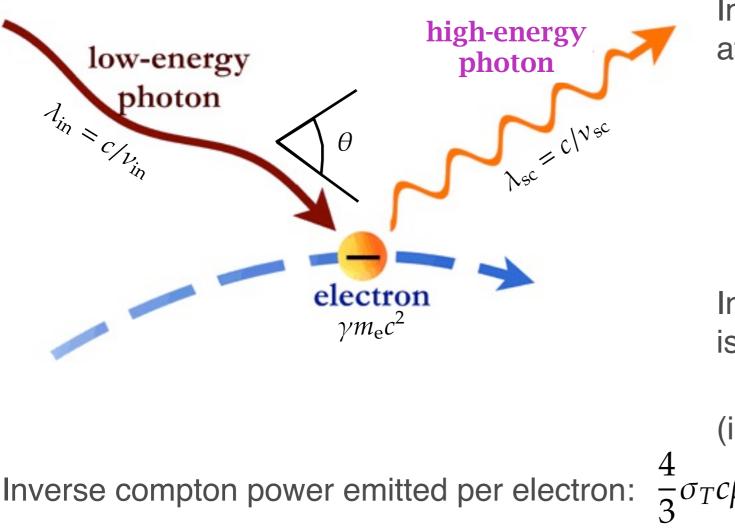


Synchrotron

(relativistically moving charged particle in a magnetic field)



Compton scattering



In the frame where the electron is initially at rest,

$$\lambda_{\rm sc} - \lambda_{\rm in} = \frac{n}{m_{\rm e}c}(1 - \cos\theta)$$

and cross section: Klein-Nishina

 $\sigma_{\rm KN} \approx \sigma_T \qquad (h\nu_{\rm in} \ll m_{\rm e}c^2)$ $\propto v_{\rm in}^{-1}$ $(hv_{\rm in} \gg m_{\rm e}c^2)$

In the observer's frame, where the electron is moving with a lorentz factor γ ,

 $v_{\rm sc} \approx \gamma^2 v_{\rm in}$ for $h v_{\rm in} \ll m_{\rm e} c^2 / \gamma$ (inverse compton scattering)

Inverse compton power emitted per electron: $\frac{4}{3}\sigma_T c\beta^2 \gamma^2 U_{ph}$; U_{ph} = photon energy density

Non-thermal comptonization \Rightarrow spectral shape akin to synchrotron process

Thermal comptonization \Rightarrow number conserving photon diffusion in energy space \Rightarrow power-law, modified blackbody or Wien spectrum (for different limiting cases of opt. depth and y-parameter)

Compton y parameter = (av. no. of scatterings) x (mean fractional energy change per scattering)

References

- Radiative Processes in Astrophysics : G.B. Rybicki and A.P. Lightman
- High Energy Astrophysics : *M. Longair*
- The Physics of Astrophysics vol. I: Radiation : F.H. Shu
- Theoretical Astrophysics vol. 1 : T. Padmanabhan

Diffuse Matter

Diffuse matter between stars: the ISM

Interstellar matter exists in a number of phases, of different temperatures and densities. Average density of Interstellar medium is ~ 1 atom / cm³

At such low densities heat transfer between different phases is very slow. So phases at multiple temperatures coexist at pressure equilibrium.

Cooling: free-free/free-bound continuum, atomic and molecular lines, dust radn. Heating: Cosmic Rays, Supernova Explosions, Stellar Winds, Photoionization Ionization fraction $x: \frac{x^2}{1-x} = \frac{2g_i}{g_0 n} \left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} e^{-\chi/kT}$ (Saha equation) \Rightarrow Hydrogen is fully ionized at T > 10⁴ K

Ionization states are denoted by roman numeral: I: neutral, II: singly ionized.....

Gas around hot stars are photoionized by the stellar UV photons. Ionization balance: *Recombination rate* = *Rate of supply of ionizing photons*

Strömgren sphere:
$$\frac{4\pi}{3}R^3n_en_i\alpha = \dot{N}_{UV} \Rightarrow R = \left(\frac{3\dot{N}_{UV}}{4\pi n_e^2\alpha}\right)^{1/3}$$
 (singly ionized: HII region)
recombination coef

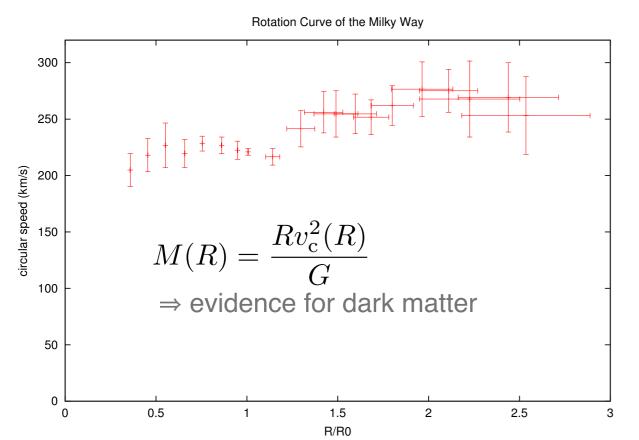
ISM phases and constituents

- Coronal Gas: T ~ 10⁶ K
- Warm Ionized Medium: T ~ 8000 K
- Warm Neutral Medium: T ~ 6000 K
- Cold Neutral Medium: T ~ 80 K (HI clouds)
- Molecular Clouds: T < 20 K

Cosmic rays, diffuse starlight, magnetic field: ~ 1eV/cm³ each

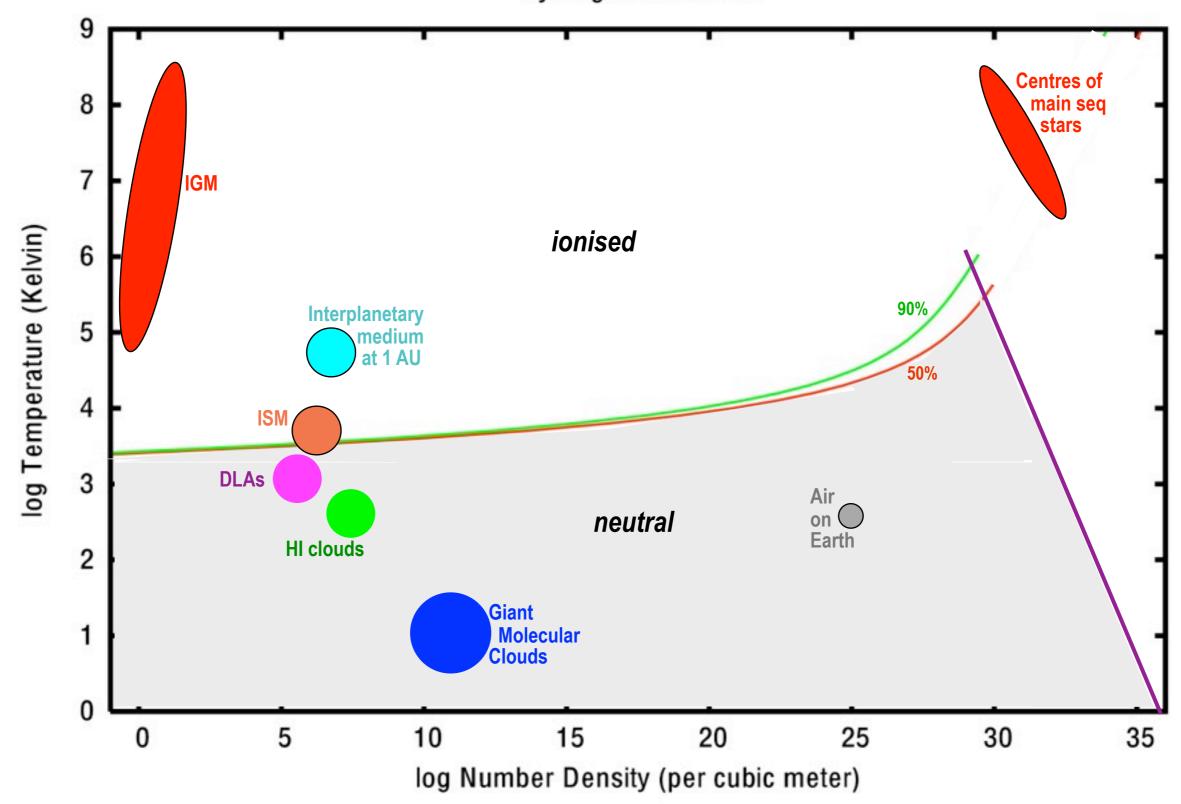
Dust: solid particles - graphite, silicates, PAHs etc.

Distributed HI gas produces 1420 MHz (21-cm) hyperfine transition line. \Rightarrow vital probe of density, temperature, kinematics (*e.g. rotation curve*)



Molecular regions can be studied through mm-wave rotational transitions, e.g. of CO

Dust causes extinction and reddening, re-radiates energy in Infrared, polarizes starlight, provides catalysis for molecule formation, shields molecular clouds from radiation damage, depletes the diffuse gas of some elements.



Hydrogen Ionisation

Star Formation

Stars form by gravitational collapse and fragmentation of dense molecular clouds Gravitational Instability occurs at masses larger than the Jeans' scale $M_{\rm J} \sim \rho_0 L_{\rm I}^3$

where
$$\frac{GM_{\rm J}}{L_{\rm J}}\mu m_{\rm p} = kT_0 \implies L_{\rm J} = \left[\frac{kT_0}{G\mu m_{\rm p}\rho_0}\right]^{1/2} \implies M_{\rm J} = \left[\frac{kT_0}{G\mu m_{\rm p}}\right]^{3/2} \frac{1}{\rho_0^{1/2}}$$

Collapse can proceed only in presence of cooling. Hence star formation rate is strongly dependent on cooling. Cooling is provided by atomic and molecular transitions. More molecules \Rightarrow faster cooling.

Dust aids the formation and survival of molecules. Formation of dust needs heavy elements

In early epochs, star formation was slow; fewer, very massive stars formed With enrichment, star formation rate (SFR) increased, many small stars produced

Infrared emission from hot dust is tracer of star formation activity Ultra-Luminous Infra Red Galaxies (ULIRGs): example of high SFR

High SFR \rightarrow High SN rate \rightarrow More CR \rightarrow stronger Sychrotron emission (radio) \Rightarrow Radio - FIR correlation

Free Electrons

Ionization provides free electrons in the ISM: $\langle n_e \rangle \sim 0.03 \, \mathrm{cm}^{-3}$

Propagation through this plasma causes Dispersion of e.m. radiation, measurable at radio wavelengths. Can be used to infer distances of, *e.g.* pulsars. Plasma frequency of the ISM $\omega_p \sim 6 \,\text{kHz}$

Magnetic Field permeates the Interstellar Medium. Polarized radio waves undergo Faraday Rotation while propagating through the magnetized plasma. \Rightarrow *key probe of distributed magnetic field*

Typical interstellar field strength: ~ $1 \mu G$ Cyclotron resonance: $\omega_c \sim 20 \text{ Hz}$

Dispersion relation of circularly polarized eigenmodes:

$$k_{\rm r,l} = \frac{\omega}{c} \left[1 - \frac{\omega_{\rm p}^2}{2\omega^2} \left(1 \mp \frac{\omega_{\rm c}}{\omega} \right) \right] \quad \text{for } \omega \gg \omega_{\rm p}, \omega_{\rm c}$$

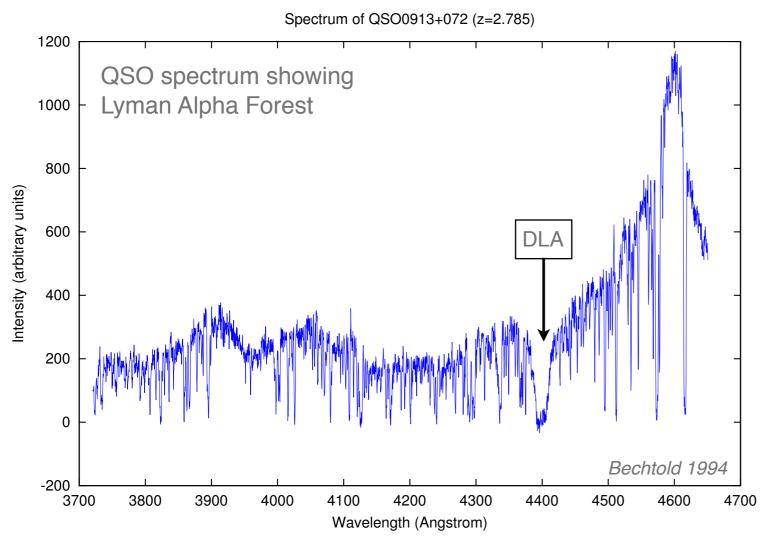
Dispersion Measure: $DM = \int_0^L n_e ds$

Rotation Measure: $RM = \int_0^L n_e B_{\parallel} ds$

Intergalactic Medium

ISM of line-of-sight galaxies, gas clouds and the diffuse intergalactic medium can show up in absorption against the radiation of distant galaxies and QSOs

Lyman Alpha provides a strong absorption at 1216 Å in the rest frame of the absorbing gas. Due to cosmological redshift, absorption by different gas clouds in the line of sight occur at different wavelengths \Rightarrow Lyman Alpha Forest



Clouds with large Hydrogen content (e.g. galaxies) produce deep absorption with damping wings: Damped Lyman Alpha systems (*DLA*s)

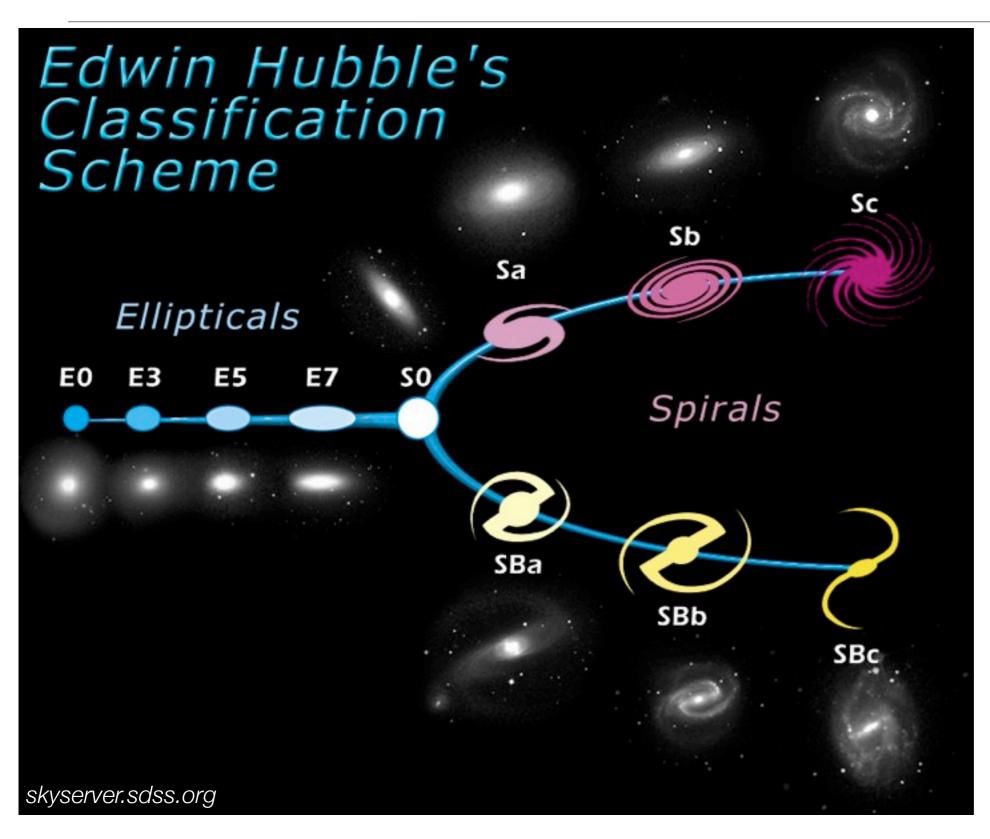
Diffuse Intercloud Medium is almost fully ionized. If not, then radiation shortward of emitted Ly-*a* would have been completely absorbed: *Gunn-Peterson* effect

References

- Physical Processes in the Interstellar Medium : L. Spitzer Jr.
- The Physical Universe: F.H. Shu
- An Invitation to Astrophysics : T. Padmanabhan

Galaxies

Hubble Classification



Galaxies are the basic building blocks of the universe

Various shapes and sizes:

- flattened **spirals** with high net ang. mom.
- ellipticals with lower net ang. mom.
- early galaxies mainly irregular

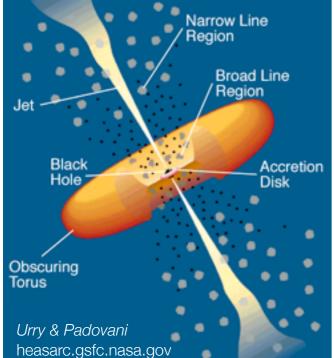
Baryon content ~ $10^6 M_{\odot}$ (dwarfs) to ~ $10^{12} M_{\odot}$ (giant ellipt.)

Dark Matter ~10-100 x Baryons

Properties of Galaxies

- Disk galaxies and irregulars are gas-rich, Ellipticals gas poor
- Star formation more prevalent in spirals/irregulars, more old stars in Ellipticals
- More Ellipticals found in galaxy clusters
- Ellipticals grow by merger: giants (cDs) found at centres of rich clusters
- Every galaxy appears to contain a central supermassive black hole

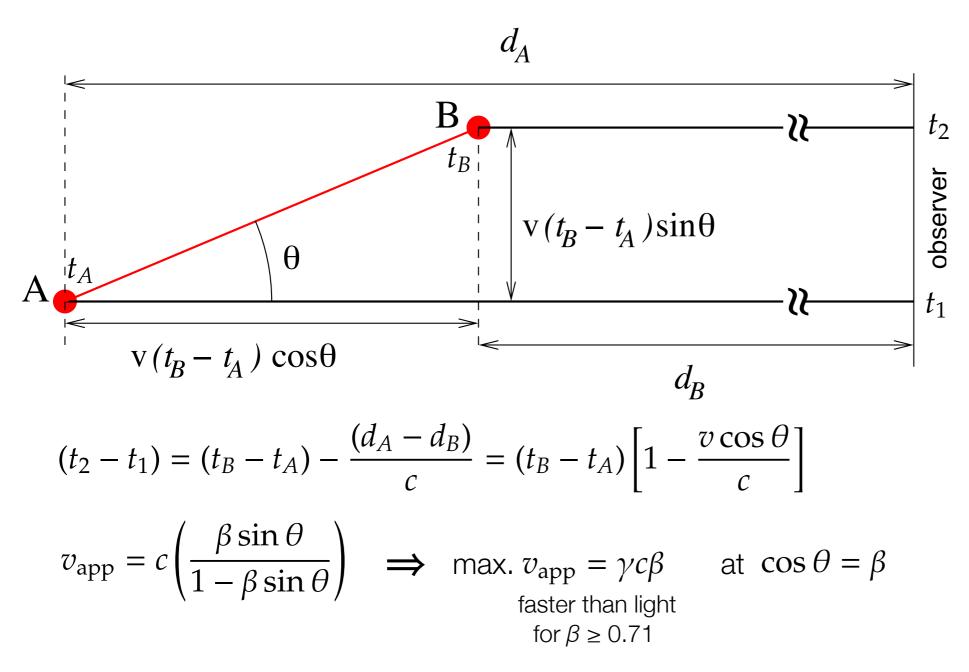
- Correlations: Ellipticals: <i>Fundamental Plane</i> : $R \propto \sigma^{1.4\pm0.15} I^{-0.9\pm0.1}$	R : size σ : velocity dispersion
Spirals: Tully-Fisher relation: $L \propto W^{\alpha}$ $\alpha \sim 3 - 4$ depending on wavelength	I : surface brightnessL : luminosity
$a \sim 3 - 4$ depending on wavelength W : rotation velocity Central Black Hole Mass: $M_{\rm BH} \propto \sigma^5$, $\sigma = {}^{\rm velocity}$ dispersion of elliptical galaxy or of central bulge in a spiral galaxy	



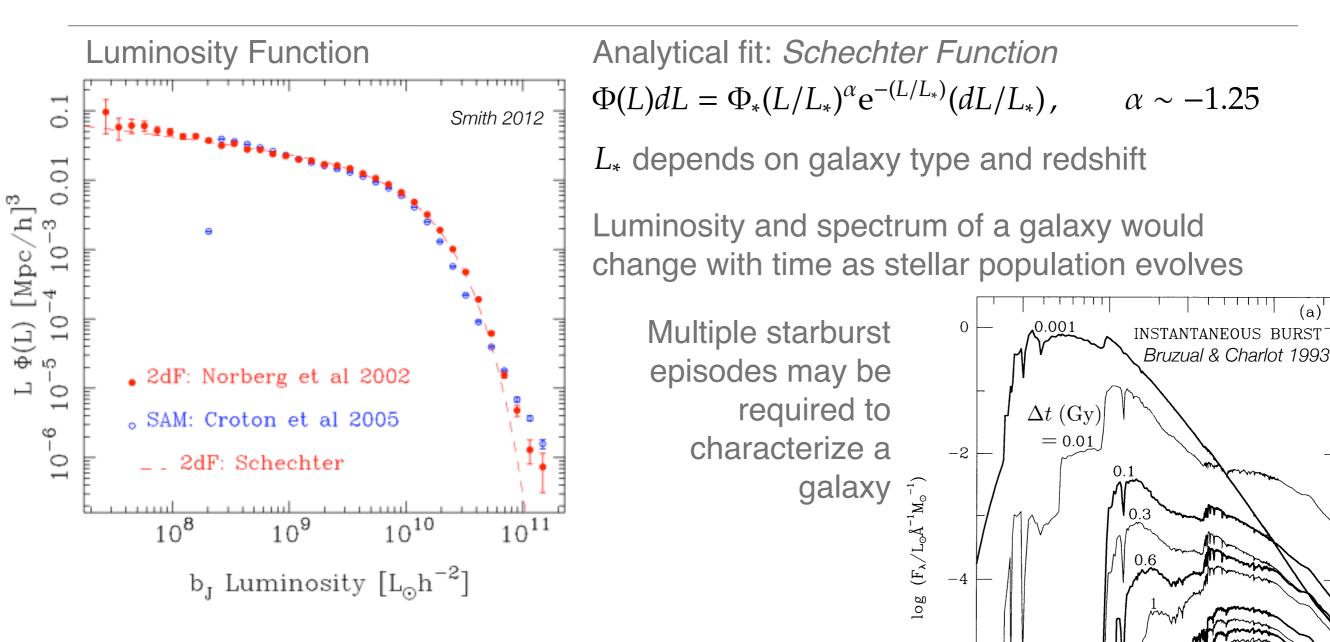
- If central BH is fed by copious accretion, Active Galactic Nucleus (AGN) results: High nuclear luminosity, relativistic jets, non-thermal emission
 - > Broad Line Region, Narrow Line Region, Disk, Torus
 - > Diversity of appearance depending on viewing angle & jet strength: Seyferts, Radio Galaxies, QSOs, Blazars, LINERs.....
 - Emission is variable
 - Reverberation mapping of BLR allows measurement of BH mass: light echo $\rightarrow R$; spectrum $\rightarrow v$; $M_{BH} = Rv^2/G$

Superluminal Motion

Proof of relativistic bulk motion in AGNs



Galaxy Populations



-6

300

1000

3000

λ/Å

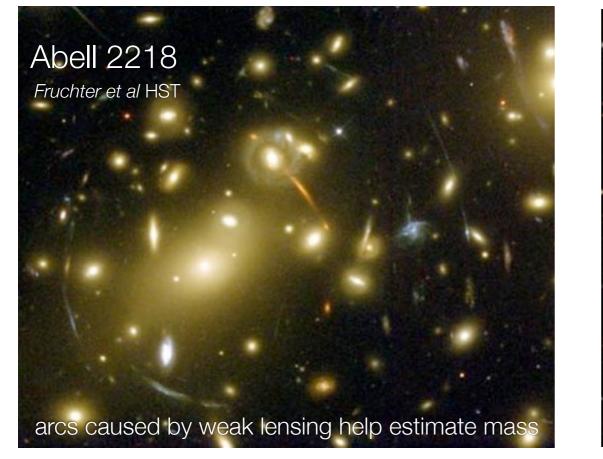
10000

Large fraction of galaxies are found in groups and clusters. Interaction with other galaxies and with the cluster gas can strip a galaxy of gas and terminate star formation

Galaxy Clusters

- A rich cluster can contain thousands of galaxies bound to a large dark matter halo.
- Diffuse gas in clusters fall into the deep potential well, get heated and emit X-rays.
- Hot gas Compton scatters the cosmic microwave background: Sunyaev-Zeldovich.
- Gravitational lensing can be used to measure cluster mass, revealing dark matter.
- Groups and Clusters grow via collision and mergers.

Density profile of a DM halo: $\rho(r) = \rho_0 / [x(1 + x)^2]$, $x \equiv r/R_s$ (*NFW*: from simulations) Virial radius: $\bar{\rho}(r_{vir}) = 200\rho_c(z)$. If hot gas at cluster core has time to cool then it will condense and flow inwards: *Cooling Flow*. Found to be rare: energization by AGN?



References

- Galactic Astronomy : J. Binney & M. Merrifield
- An Invitation to Astrophysics : T. Padmanabhan
- www.astr.ua.edu/keel/galaxies/

Introduction to Astronomy and Astrophysics - 1 IUCAA-NCRA Graduate School 2013 Instructor: Dipankar Bhattacharya

Cosmology

Hubble Expansion

Over large scales, the Universe is homogeneous and isotropic, and it is expanding. Scale factor a(t) multiplies every coordinate grid.

Let object A receive radiation from object B. The coordinate (comoving) distance between them is d_c , which remains constant, and the proper distance is $d = a(t)d_c$. Due to cosmological expansion, the proper distance between these two points increases at a rate $v = \dot{a}(t)d_c$. This is an apparent relative velocity which causes a Doppler shift:

$$\frac{\delta v}{v} = -\frac{\dot{a}(t)d_c}{c} = -\frac{\dot{a}}{a}\left(\frac{d}{c}\right) = -\frac{\dot{a}}{a}\delta t = -\frac{\delta a}{a}, \quad \text{giving } v(t)a(t) = \text{constant} \Rightarrow \frac{\lambda_{\text{em}}}{\lambda_{\text{obs}}} = \frac{a_{\text{em}}}{a_{\text{obs}}}$$
Thus redshift $z = \frac{\lambda_{\text{obs}} - \lambda_{\text{em}}}{\lambda_{\text{em}}} = \frac{a_{\text{obs}}}{a_{\text{em}}} - 1, \quad \text{or } 1 + z = \frac{a_{\text{obs}}}{a_{\text{em}}} = \frac{a_0}{a(z)}$
subscript 0 denotes a quantity at present epoch and $v = \left(\frac{\dot{a}}{a}\right)d = Hd$; $H \equiv \left(\frac{\dot{a}}{a}\right) = \text{Hubble parameter. Present value: } H_0 \simeq 67 \text{ km/s/Mpc}$

Hubble Time $t_H = \frac{a}{\dot{a}} = \frac{1}{H(t)} \sim \text{age of the universe.}$ Present value: $t_{H,0} \approx 14.5 \text{ Gy}$

Dynamics of the Universe

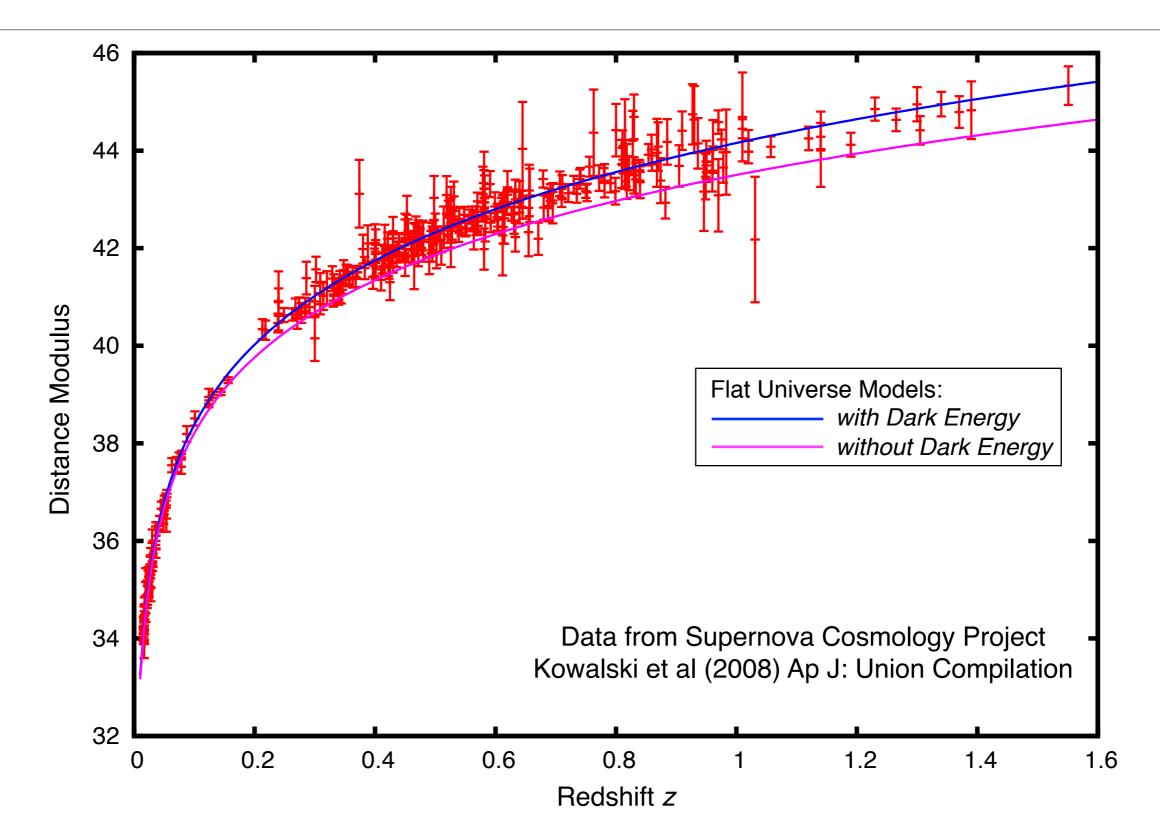
Dynamical equations for cosmology follow from a fully relativistic framework. However a Newtonian analogy may be drawn to mimic the basic equations: per unit mass K.E.+P.E. = const. : $\frac{1}{2}\dot{a}^2 - G\left(\frac{4\pi}{3}\rho a^3\right)\frac{1}{a} = \text{const.} = -\frac{1}{2}k$ hence $\left(\frac{\dot{a}}{a}\right)^2 + \frac{k}{a^2} = \frac{8\pi G}{3}\rho(t)$ or $H^2 + \frac{k}{a^2} = \frac{8\pi G}{3}\rho(t)$ $\Omega(t) \equiv \rho(t)/\rho_c(t)$ $\Omega(t) = 1 + k/a^2 = 1$ for k = 0In our Universe $k \approx 0$, *i.e.* $\rho = \rho_c \equiv \frac{3H^2}{8\pi G}$. At present $\rho_{c,0} \approx 0.84 \times 10^{-29}$ g/cm³ Solution of the dynamical equation requires knowledge of $\rho(a)$: Equation of State Adiabatic evolution: $P \propto V^{-\gamma} \propto a^{-3\gamma}$ while $P = (\gamma - 1)u = (\gamma - 1)\rho c^2$. Thus $\rho \propto a^{-3\gamma}$ Using this the dynamical equation yields the solution $a \propto t^{\frac{2}{3\gamma}}$ ($\gamma \neq 0$) flat universe For non-relativistic matter $P \propto u_{kin} \ll \rho c^2$, so $\gamma \approx 1. \Rightarrow \rho \propto a^{-3} \Rightarrow a \propto t^{\frac{2}{3}}$ matter dominated $\Rightarrow \rho \propto a^{-4} \Rightarrow a \propto t^{\frac{1}{2}}$ radiation dominated For relativistic matter or radiation $\gamma = 4/3$ For "Dark Energy" $\rho c^2 \approx \text{const.}$, *i.e.* $\gamma \approx 0 \qquad \Rightarrow \rho \propto a^0 \Rightarrow a \propto e^t$ acceleration, inflation In cosmology the EoS is usually labelled by the parameter $w \equiv (\gamma - 1)$

Present day universe: $\Omega_{tot} \approx 1$, $\Omega_m \approx 0.3$, $\Omega_{DE} \approx 0.7$, $\Omega_b \approx 0.048$, $\Omega_{rad} \approx 5 \times 10^{-5}$

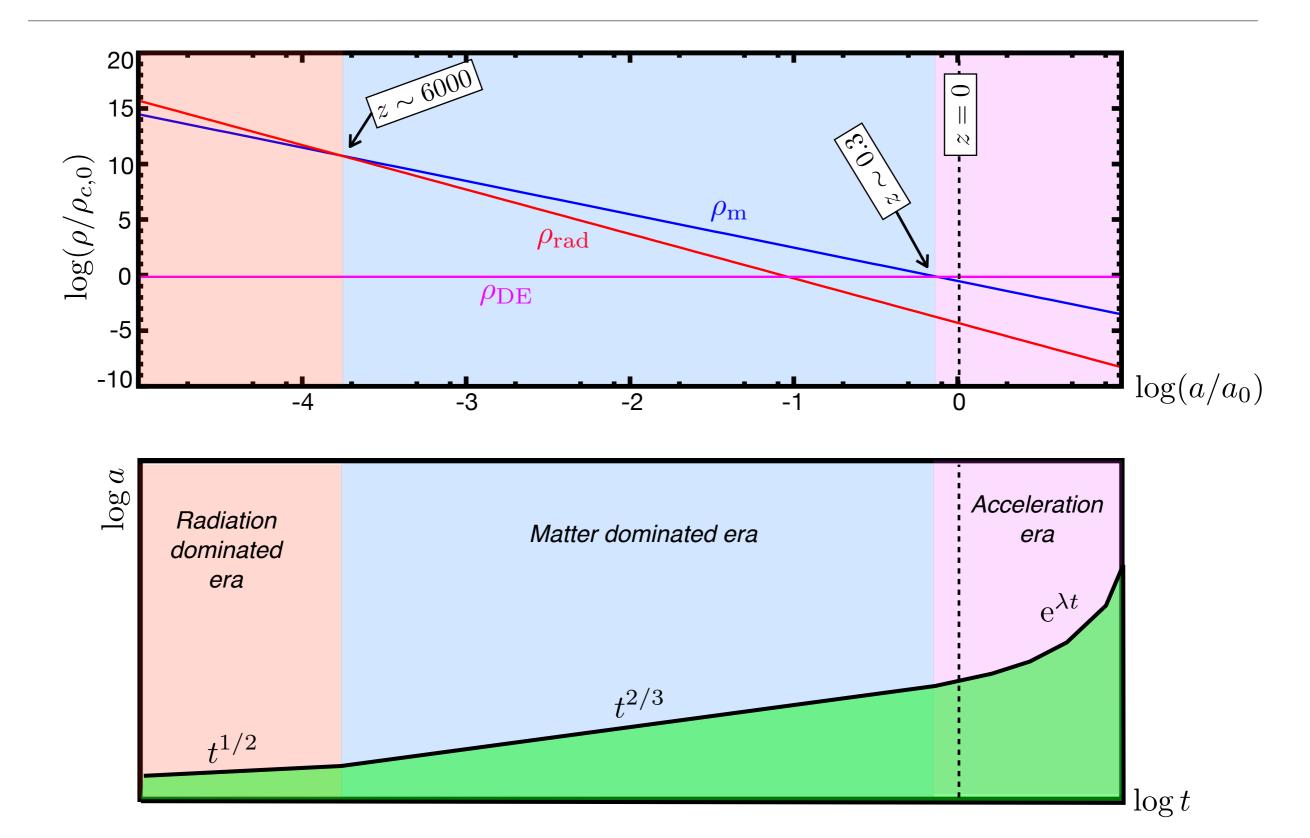
Distance measures in Cosmology

Coordinate system: origin at the observer. Comoving (coordinate) distance to a source: r_c Proper distance now: $d = a_0 r_c$, Redshift: z Light leaves source at t_c , received at t_0 Propagation from $r = r_c$ to r = 0: -a dr = c dt *i.e.* $-\int_{r}^{0} dr = c \int_{t}^{t_0} \frac{dt}{a(t)}$ Hence $r_c = c \int_z^0 \frac{1}{a} \frac{dt}{da} \frac{da}{dz} dz = \frac{c}{a_0} \int_0^z \frac{a}{\dot{a}} dz$ and $d = a_0 r_c = c \int_0^z \frac{dz}{H(z)} = c\tau$; $\tau = \text{lookback time}$ = $\int_0^z \frac{dz}{H}$ Luminosity distance d_{L} : Received Flux $F \equiv \frac{L}{4\pi d_{L}^{2}} = \frac{L}{4\pi d^{2}} \left(\frac{1}{1+z}\right) \left(\frac{1}{1+z}\right)$ Reduction of photon arrival rate $\therefore d_{L} = d(1+z) = c(1+z) \int_{0}^{z} \frac{dz}{H}$ Angular Diameter distance $d_{\rm A}$: Angular size $\Delta \theta = \frac{\Delta l}{r_c a(t_c)}$; Transverse linear size $d_{\rm A} \equiv \frac{\Delta l}{\Delta \theta} = a(t_{\rm c})r_{\rm c} = \frac{a_0r_{\rm c}}{1+z} = \frac{c}{1+z} \int_0^\infty \frac{dz}{H}$

Supernova la Hubble Diagram



Cosmological Expansion History



Thermal History of the Universe

Radiation and matter in thermal equilibrium in early universe, at a common temperature Radiation is Planckian, with blackbody spectrum and energy density $\rho_{\rm rad} \propto T^4$

In cosmological evolution $\rho_{rad} \propto a^{-4}$, thus $T \propto a^{-1}$; or T = 2.73(1 + z) K Seen today at microwave bands: *Cosmic Microwave Background Radiation*

If $kT > 2mc^2$ for any particle species, relativistic pairs of the species can be freely created. All relativistic particle species behave similar to radiation in the evolution of their energy density. Total $\rho_{rel}c^2 = \bar{g}a_R T^4$ where \bar{g} =total stat wt of all rel. particle species

In the Early, radiation-dominated universe $a \propto t^{1/2}$. So $t = 1 \text{ s} (kT/1 \text{MeV})^{-2} \bar{g}^{-1/2}$ [$\bar{g} \sim 100$ at kT > 1 GeV, ~10 at 1-100 MeV, ~3 at < 0.1 MeV]

Expansion \rightarrow cooling \rightarrow pair annihilation of relevant species \rightarrow energy added to radiation At $kT \lesssim 1$ GeV, nucleon-antinucleon annihilation \rightarrow small no. of baryons survived $\eta = \frac{n_{\gamma}}{n_{b}} \sim 10^{9}$: "entropy per baryon", photon-to-baryon ratio. "Baryon asymmetry" ~10⁻⁹

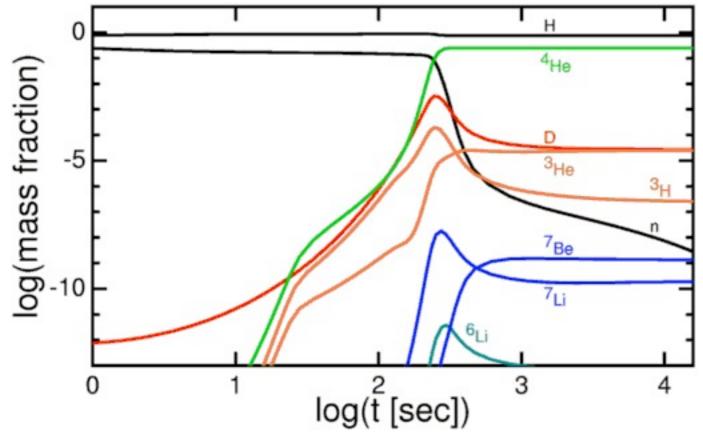
 $kT \stackrel{<}{_{\sim}} 1$ MeV: e^{\pm} annihilation $\rightarrow \sim 10^{-9}$ of the pop. left as electrons \rightarrow charge neutrality Contents at this stage: neutrons, protons, electrons, neutrinos, dark matter and photons

Primordial Nucleosynthesis

At kT > 0.5 MeV neutrons and protons are in beta equilibrium: $n_n/n_p = \exp(-1.3 \text{ MeV}/kT)$ $kT \approx 0.5$ MeV: beta reactions become inefficient, n-p freeze at $n_n/(n_n + n_p) \approx 15\%$ (no n-decay yet as $t_H \ll t_{\text{decay}}$)

Neutrons will then undergo decay with lifetime of 881 s until locked up in nuclei

Nucleosynthesis begins in earnest only after kT drops to ~0.07 MeV (decided by the rate of first stage synthesis: that of Deuterium. Most of this ²D then converts to ⁴He)



Neutron fraction drops to ~11% at this point, giving primordial mass fraction:

Synthesis does not progress beyond this stage due to expansion and cooling

The entire nucleosynthesis takes place within approx. the first three minutes after Big Bang: $z \sim 3x10^8$

http://www.astro.ucla.edu/~wright/BBNS.html

Recombination, CMB, Reionization

After nucleosynthesis the universe has ionized H and He, and electrons. Material is very optically thick due to electron scattering. Cooling continues as $T \propto a^{-1}$. There are also neutrinos, and leptonic Dark matter which do not interact with photons.

Once Dark Matter becomes non-relativistic, gravitational instability develops and selfgravitating collapsed halos start to form. Baryonic matter cannot collapse yet because of strong coupling with radiation.

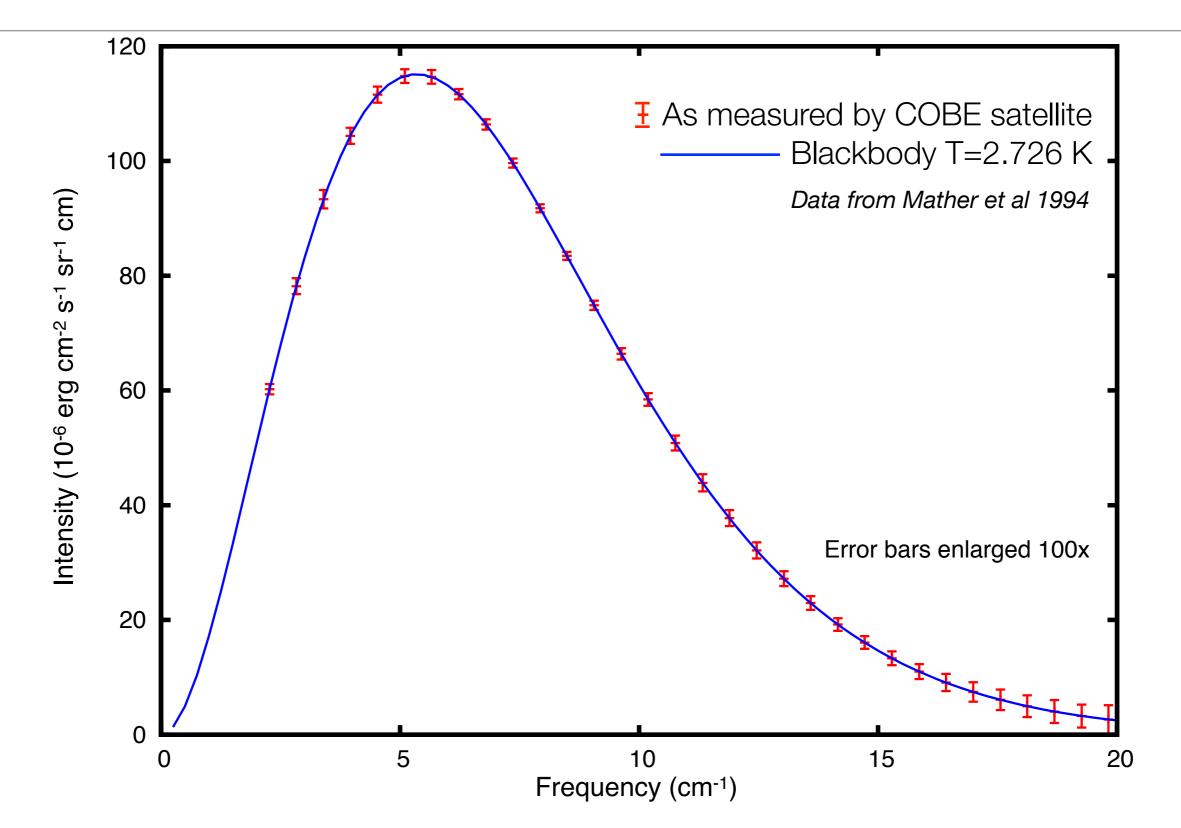
As temperature drops to $\sim 3 \times 10^3$ K, electrons and ions *recombine* to form atoms. Universe becomes transparent to the Cosmic Background radiation. The *CMB* we see today comes from this "surface of last scattering" at $z \sim 1100$. Diffuse gas is now neutral.

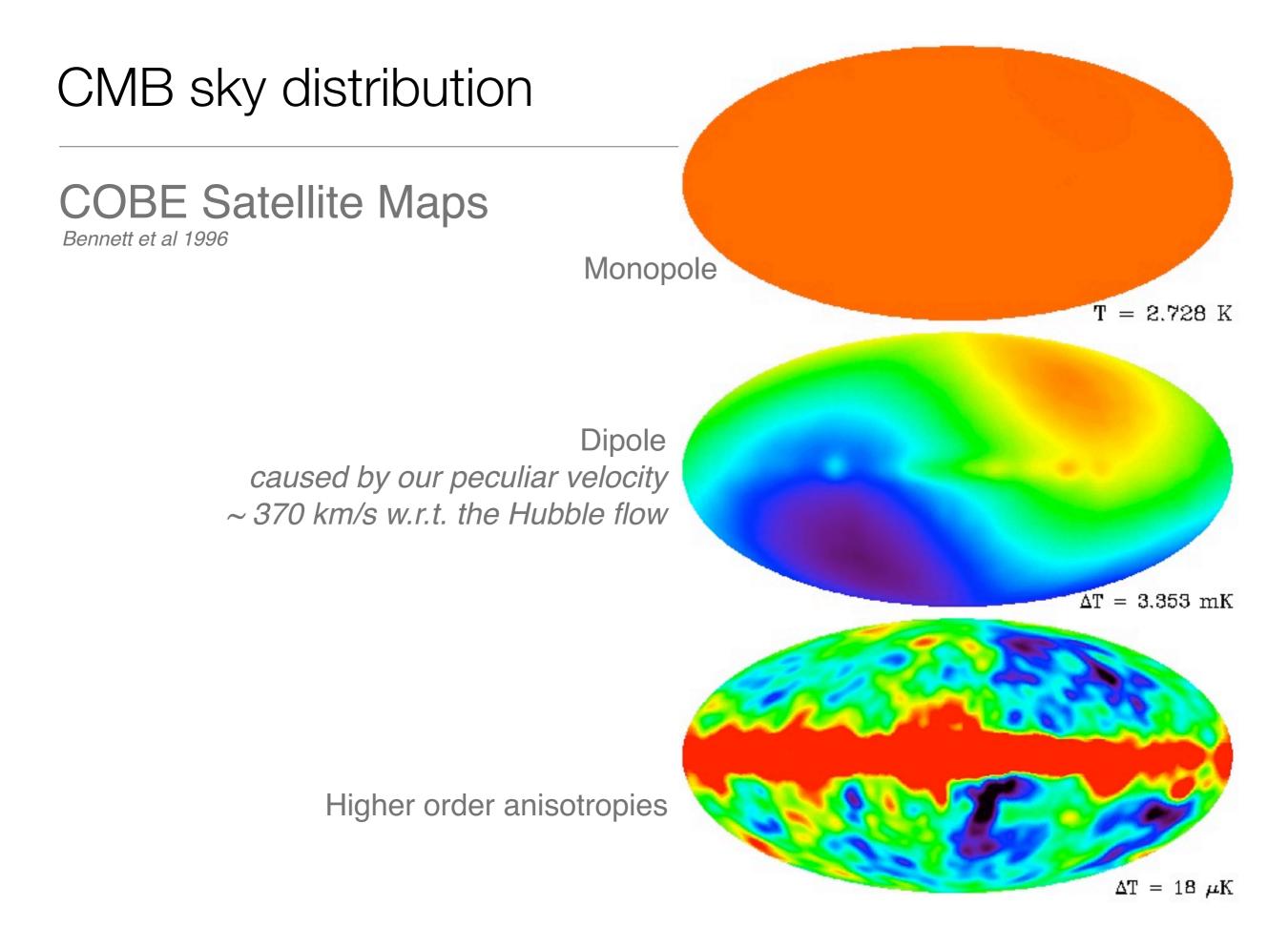
Decoupled from radiation, baryons now fall into the potential wells already created by Dark Matter, Luminous structures begin to form by $z \sim 20$.

UV radiation from the luminous structures starts ionizing diffuse gas again. These "Stromgren sphere"s grow and overlap, completely *reionizing* the diffuse intergalactic medium by $z \sim 10$.

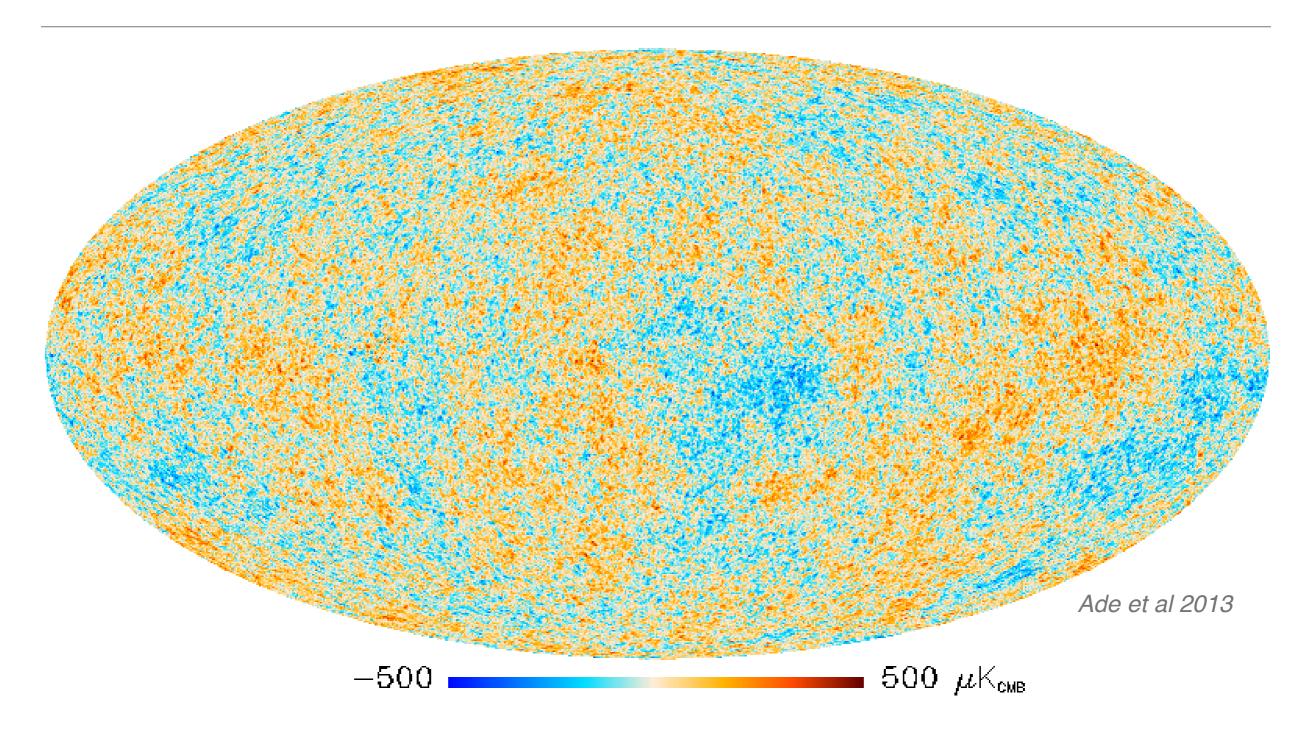
Cosmic Background radiation temperature continues to fall as 1/a, reaching 2.73 K at present epoch.

CMB spectrum





CMB sky distribution



CMB high-order anisotropy map from Planck Satellite

CMB Anisotropies

Epoch of Decoupling:

It follows from Saha equation that the universe recombines when the radiation temperature drops to ~3000 K. This corresponds to a redshift $z_{dec} \simeq 1100$ Defines the last scattering surface (LSS)

In a flat universe
$$H(z) = H_0 \left[\Omega_{rad,0} (1+z)^4 + \Omega_{m,0} (1+z)^3 + \Omega_{DE,0} \right]^{1/2} \Rightarrow H(z_{dec}) \approx 22000 H_0$$

Age of the universe at decoupling $t_{dec} \approx \frac{2}{3} \left(\frac{1}{H(z_{dec})} \right) \approx 4 \times 10^5 \text{ y}$

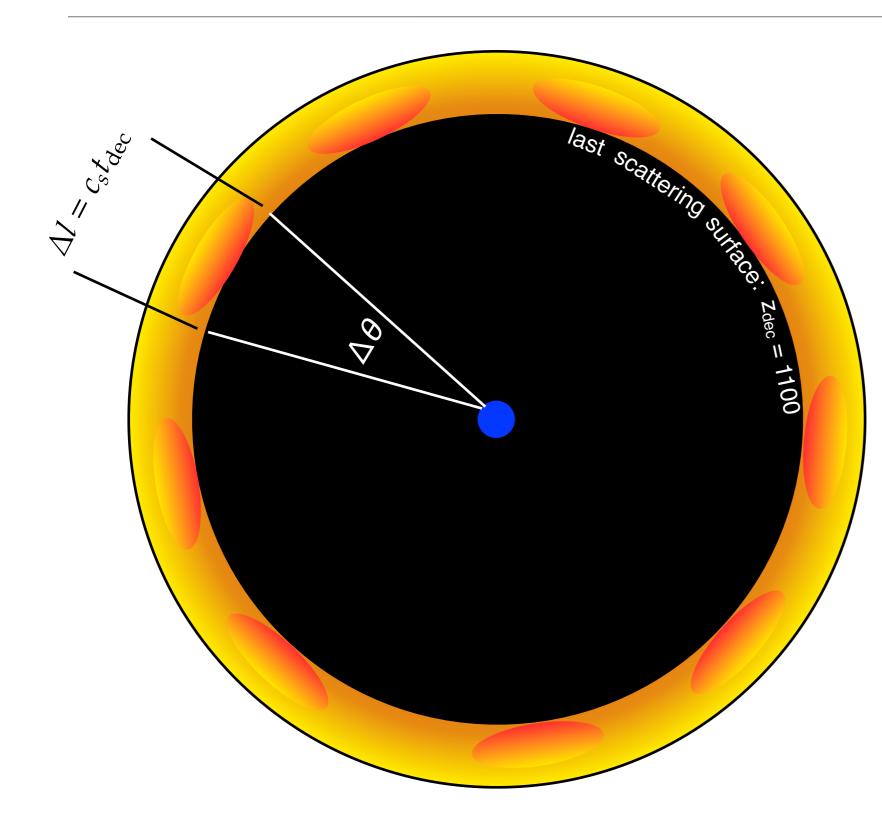
CMB anisotropies developed until t_{dec} : *Primary Anisotropy*. Later: Secondary Anisotropy

Sources of Primary Anisotropy:

- Intrinsic, from primordial perturbations
- Gravitational Redshift from fluctuating potential at LSS (Sachs-Wolfe effect)
- Doppler shifts due to scattering from moving gas
- Acoustic oscillations of the photon-baryon fluid Modified by:
- Finite width of LSS
- Photon Diffusion (Silk Damping)

Secondary Anisotropies from: Integrated Sachs-Wolfe effect, Sunyaev-Zeldovich effect, Gravitational Lensing etc

Acoustic Horizon Anisotropy Scale



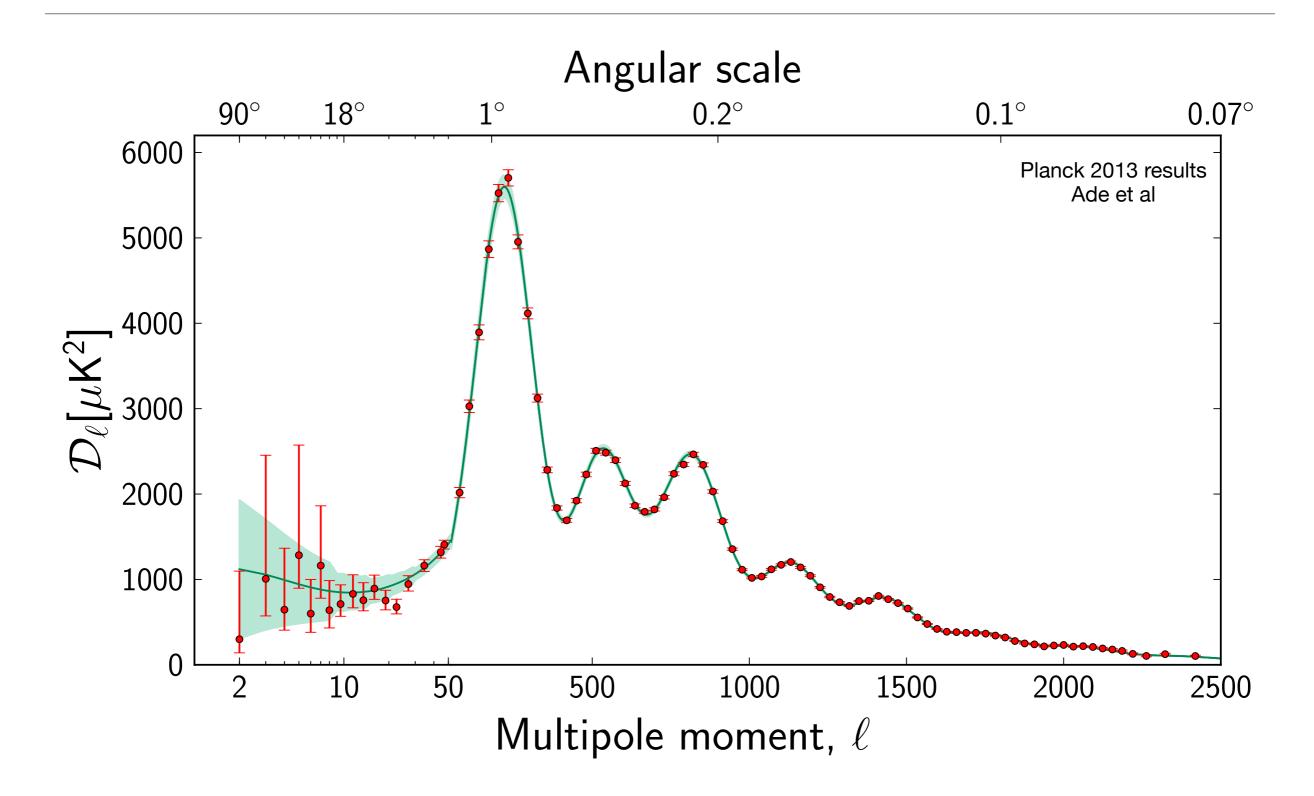
$$\Delta l = c_s t_{\rm dec} = \frac{c}{\sqrt{3}} t_{\rm dec}$$

$$d_{\rm A} = \frac{ct_{\rm look-back}(z_{\rm dec})}{1 + z_{\rm dec}}$$
$$\approx \frac{ct_0}{1 + z_{\rm dec}}$$

 $\Delta\theta = \Delta l/d_{\rm A}$

$$\therefore \Delta \theta = \frac{1 + z_{\text{dec}}}{\sqrt{3}} \left(\frac{t_{\text{dec}}}{t_0} \right)$$
$$\approx 1^{\circ}$$

Anisotropy spectrum of the CMB



Formation of Structures

Gravitational Instability leads to growth of density perturbations of Dark Matter.

- overdense $[\rho = (1 + \delta)\rho_{bg}]$ regions expand less slowly than Hubble flow, eventually stop expanding, turn around and collapse to form halos.
- "critical overdensity" $\delta_c \approx 1.68$
- Halo mass distribution at a redshift z: fraction of bound objects with mass > M:

$$f(>M,z) = \operatorname{erfc}\left[\frac{\delta_c(1+z)}{\sqrt{2}\sigma_0(M)}\right]$$
 (Press-Schechter Formula)

where $\sigma_0(M)$ is the *linearly extrapolated* rms δ at mass scale M at present epoch Typical density contrast today at scale 8 (100/ H_0) Mpc is $\sigma_8 \approx (0.5 - 0.8)$

Initial density perturbations result from quantum fluctuations.

- However perturbations seen today would require scales much larger than horizon size in the early universe.
- Made possible by accelerated (exponential) growth of a(t) for a brief period: *inflation*
- Energy provided by a decaying quantum field, which also generates fluctuations

References

- An Introduction to Cosmology : J.V. Narlikar
- An Invitation to Astrophysics : T. Padmanabhan
- Theoretical Astrophysics vol. 3 : T. Padmanabhan
- Cosmological Physics : J.A. Peacock
- The First Three Minutes : S. Weinberg
- C.L. Bennett et al 1996 ApJ 464, L1
- *P.A.R. Ade et al* arXiv 1303.5602 (2013)