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Preface

This is a textbook on electricity and magnetism, designed for an undergraduate course at
the junior or senior level. It can be covered comfortably in two semesters, maybe even
with room to spare for special topics (AC circuits, numerical methods, plasma physics,
transmission lines, antenna theory, etc.) A one-semester course could reasonably stop
after Chapter 7. Unlike quantum mechanics or thermal physics (for example), there is a
fairly general consensus with respect to the teaching of electrodynamics; the subjects to
be included, and even their order of presentation, are not particularly controversial, and
textbooks differ mainly in style and tone. My approach is perhaps less formal than most; [
think this makes difficult ideas more interesting and accessible.

For the third edition I have made a large number of small changes, in the interests of
clarity and grace. I have also modified some notation to avoid inconsistencies or ambiguities.
Thus the Cartesian unit vectors 7, J, and k have been replaced with X, y, and Z, so that all
vectors are bold, and all unit vectors inherit the letter of the corresponding coordinate.
(This also frees up k to be the propagation vector for electromagnetic waves.) It has always
bothered me to use the same letter r for the spherical coordinate (distance from the origin)
and the cylindrical coordinate (distance from the 7 axis). A common alternative for the
latter is p, but that has more important business in electrodynamics, and after an exhaustive
search I settled on the underemployed letter s; I hope this unorthodox usage will not be
confusing.

Some readers have urged me to abandon the script letter 2 (the vector from a source point
r’ to the field point r) in favor of the more explicit r — r’. But this makes many equations
distractingly cumbersome, especially when the unit vector % is involved. I know from my
own teaching experience that unwary students are tempted to read 2 as r—it certainly makes
the integrals easier! I have inserted a section in Chapter 1 explaining this notation, and I
hope that will help. If you are a student, please take note: 2 = r —r’, which is nor the same
as r. If you're a teacher, please warn your students to pay close attention to the meaning of
~. I think it’s good notation, but it does have to be handled with care.

The main structural change is that I have removed the conservation laws and potentials
from Chapter 7, creating two new short chapters (8 and 10). This should more smoothly
accommodate one-semester courses, and it gives a tighter focus to Chapter 7.

I have added some problems and examples (and removed a few that were not effective).
And I have included more references to the accessible literature (particularly the American
Journal of Physics). 1 realize, of course, that most readers will not have the time or incli-

ix



X PREFACE

nation to consult these resources, but I think it is worthwhile anyway, if only to emphasize
that electrodynamics, notwithstanding its venerable age, is very much alive, and intriguing
new discoveries are being made all the time. I hope that occasionally a problem will pique
your curiosity, and you will be inspired to look up the reference—some of them are real
gems.

As in the previous editions, I distinguish two kinds of problems. Some have a specific
pedagogical purpose, and should be worked immediately after reading the section to which
they pertain; these I have placed at the pertinent point within the chapter. (In a few cases
the solution to a problem is used later in the text; these are indicated by a bullet () in the
left margin.) Longer problems, or those of a more general nature, will be found at the end
of each chapter. When I teach the subject I assign some of these, and work a few of them
in class. Unusually challenging problems are flagged by an exclamation point (!) in the
margin. Many readers have asked that the answers to problems be provided at the back
of the book; unfortunately, just as many are strenuously opposed. 1 have compromised,
supplying answers when this seems particularly appropriate. A complete solution manual
is available (to instructors) from the publisher.

I have benefitted from the comments of many colleagues—I cannot list them all here.
But I would like to thank the following people for suggestions that contributed specifically
to the third edition: Burton Brody (Bard), Steven Grimes (Ohio), Mark Heald (Swarth-
more), Jim McTavish (Liverpool), Matthew Moelter (Puget Sound), Paul Nachman (New
Mexico State), Gigi Quartapelle (Milan), Carl A. Rotter (West Virginia), Daniel Schroeder
(Weber State), Juri Silmberg (Ryerson Polytechnic), Walther N. Spjeldvik (Weber State),
Larry Tankersley (Naval Academy), and Dudley Towne (Ambherst). Practically everything I
know about electrodynamics—certainly about teaching electrodynamics—I owe to Edward
Purcell.

David J. Griffiths
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What is electrodynamics, and how does it fit into the
general scheme of physics?

Four Realms of Mechanics

In the diagram below I have sketched out the four great realms of mechanics:

Classical Mechanics | Quantum Mechanics
(Newton) (Bohr, Heisenberg,
Schrodinger, ef al.)
Special Relativity | Quantum Field Theory
(Einstein) (Dirac, Pauli, Feynman,
Schwinger, et al.)

Newtonian mechanics was found to be inadequate in the early years of this century—it’s
all right in “everyday life,” but for objects moving at high speeds (near the speed of light)
it is incorrect, and must be replaced by special relativity (introduced by Einstein in 1905);
for objects that are extremely small (near the size of atoms) it fails for different reasons,
and is superseded by quantum mechanics (developed by Bohr, Schrodinger, Heisenberg,
and many others, in the twenties, mostly). For objects that are both very fast and very
small (as is common in modern particle physics), a mechanics that combines relativity and
quantum principles is in order: this relativistic quantum mechanics is known as quantum
field theory—it was worked out in the thirties and forties, but even today it cannot claim
to be a completely satisfactory system. In this book, save for the last chapter, we shall
work exclusively in the domain of classical mechanics, although electrodynamics extends
with unique simplicity to the other three realms. (In fact, the theory is in most respects
automatically consistent with special relativity, for which it was, historically, the main
stimulus.)

xi
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Four Kinds of Forces

Mechanics tells us how a system will behave when subjected to a given force. There are
just four basic forces known (presently) to physics: I list them in the order of decreasing
strength:

1. Strong

2. Electromagnetic
3. Weak

4. Gravitational

The brevity of this list may surprise you. Where is friction? Where is the “normal” force
that keeps you from falling through the floor? Where are the chemical forces that bind
molecules together? Where is the force of impact between two colliding billiard balls? The
answer is that all these forces are electromagnetic. Indeed, it is scarcely an exaggeration
to say that we live in an electromagnetic world—for virtually every force we experience in
everyday life, with the exception of gravity, is electromagnetic in origin.

The strong forces, which hold protons and neutrons together in the atomic nucleus,
have extremely short range, so we do not “feel” them, in spite of the fact that they are a
hundred times more powerful than electrical forces. The weak forces, which account for
certain kinds of radioactive decay, are not only of short range; they are far weaker than
electromagnetic ones to begin with. As for gravity, it is so pitifully feeble (compared to all
of the others) that it is only by virtue of huge mass concentrations (like the earth and the sun)
that we ever notice it at all. The electrical repulsion between two electrons is 1042 times
as large as their gravitational attraction, and if atoms were held together by gravitational
(instead of electrical) forces, a single hydrogen atom would be much larger than the known
universe.

Not only are electromagnetic forces overwhelmingly the dominant ones in everyday
life, they are also, at present, the only ones that are completely understood. There is, of
course, a classical theory of gravity (Newton’s law of universal gravitation) and arelativistic
one (Einstein’s general relativity), but no entirely satisfactory quantum mechanical theory
of gravity has been constructed (though many people are working on it). At the present
time there is a very successtul (if cumbersome) theory for the weak interactions, and a
strikingly attractive candidate (called chromodynamics) for the strong interactions. All
these theories draw their inspiration from electrodynamics; none can claim conclusive
experimental verification at this stage. So electrodynamics, a beautifully complete and
successful theory, has become a kind of paradigm for physicists: an ideal model that other
theories strive to emulate.

The laws of classical electrodynamics were discovered in bits and pieces by Franklin,
Coulomb, Ampere, Faraday, and others, but the person who completed the job, and packaged
it all in the compact and consistent form it has today, was James Clerk Maxwell. The theory
is now a little over a hundred years old.
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The Unification of Physical Theories

In the beginning, electricity and magnetism were entirely separate subjects. The one dealt
with glass rods and cat’s fur, pith balls, batteries, currents, electrolysis, and lightning; the
other with bar magnets, iron filings, compass needles, and the North Pole. But in 1820
Oersted noticed that an electric current could deflect a magnetic compass needle. Soon
afterward, Ampere correctly postulated that a/l magnetic phenomena are due to electric
charges in motion. Then, in 1831, Faraday discovered that a moving magnet generates an
electric current. By the time Maxwell and Lorentz put the finishing touches on the theory,
electricity and magnetism were inextricably intertwined. They could no longer be regarded
as separate subjects, but rather as two aspects of a single subject: electromagnetism.

Faraday had speculated that light, too, is electrical in nature. Maxwell’s theory provided
spectacular justification for this hypothesis, and soon optics—the study of lenses, mirrors,
prisms, interference, and diffraction—was incorporated into electromagnetism. Hertz, who
presented the decisive experimental confirmation for Maxwell’s theory in 1888, put it this
way: “The connection between light and electricity is now established ... In every flame,
in every luminous particle, we see an electrical process ... Thus, the domain of electricity
extends over the whole of nature. It even affects ourselves intimately: we perceive that we
possess . .. an electrical organ—the eye.” By 1900, then, three great branches of physics,
electricity, magnetism, and optics, had merged into a single unified theory. (And it was
soon apparent that visible light represents only a tiny “window” in the vast spectrum of
electromagnetic radiation, from radio though microwaves, infrared and ultraviolet, to x-
rays and gamma rays.)

Einstein dreamed of a further unification, which would combine gravity and electrody-
namics, in much the same way as electricity and magnetism had been combined a century
carlier. His unified field theory was not particularly successful, but in recent years the same
impulse has spawned a hierarchy of increasingly ambitious (and speculative) unification
schemes, beginning in the 1960s with the electroweak theory of Glashow, Weinberg, and
Salam (which joins the weak and electromagnetic forces), and culminating in the 1980s with
the superstring theory (which, according to its proponents, incorporates all four forces in a
single “theory of everything”). At each step in this hierarchy the mathematical difficulties
mount, and the gap between inspired conjecture and experimental test widens; nevertheless,
it is clear that the unification of forces initiated by electrodynamics has become a major
theme in the progress of physics.

The Field Formulation of Electrodynamics

The fundamental problem a theory of electromagnetism hopes to solve is this: I hold up
a bunch of electric charges here (and maybe shake them around}—what happens to some
other charge, over there? The classical solution takes the form of a field theory: We say
that the space around an electric charge is permeated by electric and magnetic fields (the
electromagnetic “odor,” as it were, of the charge). A second charge, in the presence of these
fields, experiences a force; the fields, then, transmit the influence from one charge to the
other—they mediate the interaction.
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When a charge undergoes acceleration, a portion of the field “detaches” itself, in a
sense, and travels off at the speed of light, carrying with it energy, momentum, and angular
momentum. We call this electromagnetic radiation. Its existence invites (if not compels)
us to regard the fields as independent dynamical entities in their own right, every bit as
“real” as atoms or baseballs. Our interest accordingly shifts from the study of forces
between charges to the theory of the fields themselves. But it takes a charge to produce an
electromagnetic field, and it takes another charge to detect one, so we had best begin by
reviewing the essential properties of electric charge.

Electric Charge

1. Charge comes in two varieties, which we call “plus” and “minus,” because their effects
tend to cancel (if you have +q and —q at the same point, electrically it is the same as having
no charge there at all). This may seem too obvious to warrant comment, but I encourage you
to contemplate other possibilities: what if there were 8 or 10 different species of charge?
(In chromodynamics there are, in fact, three quantities analogous to electric charge, each
of which may be positive or negative.) Or what if the two kinds did not tend to cancel?
The extraordinary fact is that plus and minus charges occur in exactly equal amounts, to
fantastic precision, in bulk matter, so that their effects are almost completely neutralized.
Were it not for this, we would be subjected to enormous forces: a potato would explode
violently if the cancellation were imperfect by as little as one part in 10!°.

2. Charge is conserved: it cannot be created or destroyed—what there is now has always
been. (A plus charge can “annihilate” an equal minus charge, but a plus charge cannot simply
disappear by itself—something must account for that electric charge.) So the total charge of
the universe is fixed for all time. This is called global conservation of charge. Actually, Ican
say something much stronger: Global conservation would allow for a charge to disappear
in New York and instantly reappear in San Francisco (that wouldn’t affect the total), and yet
we know this doesn’t happen. If the charge was in New York and it went to San Francisco,
then it must have passed along some continuous path from one to the other. This is called
local conservation of charge. Later on we'll see how to formulate a precise mathematical
law expressing local conservation of charge—it’s called the continuity equation.

3. Charge is quantized. Although nothing in classical electrodynamics requires that it be
so, the fact is that electric charge comes only in discrete lumps—integer multiples of the
basic unit of charge. If we call the charge on the proton e, then the electron carries charge
—e, the neutron charge zero, the pi mesons +e, 0, and —e, the carbon nucleus +6¢, and
so on (never 7.392¢, or even 1/2¢).! This fundamental unit of charge is extremely small,
so for practical purposes it is usually appropriate to ignore quantization altogether. Water,
too, “really” consists of discrete lumps (molecules); yet, if we are dealing with reasonably
large large quantities of it we can treat it as a continuous fluid. This is in fact much closer
to Maxwell’s own view; he knew nothing of electrons and protons—he must have pictured

! Actually, protons and neutrons are composed of three quarks, which carry fractional charges (£ % eand = % e).
However, free quarks do not appear to exist in nature, and in any event this does not alter the fact that charge is
quantized; it merely reduces the size of the basic unit.
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charge as a kind of “jelly” that could be divided up into portions of any size and smeared
out at will.

These, then, are the basic properties of charge. Before we discuss the forces between
charges, some mathematical tools are necessary; their introduction will occupy us in Chap-
ter 1.

Units

The subject of electrodynamics is plagued by competing systems of units, which sometimes
render it difficult for physicists to communicate with one another. The problem is far worse
than in mechanics, where Neanderthals still speak of pounds and feet; for in mechanics
at least all equations look the same, regardless of the units used to measure quantities.
Newton’s second law remains F = ma, whether it is feet-pounds-seconds, kilograms-
meters-seconds, or whatever. But this is not so in electromagnetism, where Coulomb’s law
may appear variously as

KLCP (Gaussian), or

1 qiq2.
_— 2
2

1 q192.
dey 22 4

(SD), P 2 (HL).

Of the systems in common use, the two most popular are Gaussian (cgs) and SI (mks). Ele-
mentary particle theorists favor yet a third system: Heaviside-Lorentz. Although Gaussian
units offer distinct theoretical advantages, most undergraduate instructors seem to prefer
SI, I suppose because they incorporate the familiar household units (volts, amperes, and
watts). In this book, therefore, I have used SI units. Appendix C provides a “dictionary”
for converting the main results irtto Gaussian units.






Chapter 1

Vector Analysis

1.1 Vector Algebra

1.1.1 Vector Operations

If you walk 4 miles due north and then 3 miles due east (Fig. 1.1), you will have gone a
total of 7 miles, but you’re not 7 miles from where you set out—you’re only 5. We need an
arithmetic to describe quantities like this, which evidently do not add in the ordinary way.
The reason they don’t, of course, is that displacements (straight line segments going from
one point to another) have direction as well as magnitude (length), and it is essential to
take both into account when you combine them. Such objects are called vectors: velocity,
acceleration, force and momentum are other examples. By contrast, quantities that have
magnitude but no direction are called scalars: examples include mass, charge, density,
and temperature. I shall use boldface (A, B, and so on) for vectors and ordinary type
for scalars. The magnitude of a vector A is written |A| or, more simply, A. In diagrams,
vectors are denoted by arrows: the length of the arrow is proportional to the magnitude of
the vector, and the arrowhead indicates its direction. Minus A (—A) is a vector with the

Figure 1.1 Figure 1.2
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same magnitude as A but of opposite direction (Fig. 1.2). Note that vectors have magnitude
and direction but not location: a displacement of 4 miles due north from Washington is
represented by the same vector as a displacement 4 miles north from Baltimore (neglecting,
of course, the curvaturé of the earth). On a Hiagram, therefore, you can slide the arrow
around at will, as long as you don’t changeé its length or direction.

We define four vector operations: addition and three kinds of multiplication.

(i) Addition of two vectors. Place the tail of B at the head of A the sum, A + B, is
the vector from the tail of A to the head of B (Fig. 1.3). (This rule generalizes the obvious
procedure for combining two displacements.) Addition is commutative:

A+B=B+A;

3 miles east followed by 4 miles north géts you to the same place as 4 miles north followed
by 3 miles east. Addition is also associative:

A+B)+C=A+B+0).
To subtract a vector (Fig. 1.4), add its opposite:

A—-B=A+(-B).

(B+A)

A (A-B)

B

Figure 1.3 Figure 1.4

(ii) Multiplication by a scalar. Multiplication of a vector by a positive scalar @ mul-
tiplies the magnitude but leaves the direction unchanged (Fig. 1.5). (If a is negative, the
direction is reversed.) Scalar multiplication is distributive:

a(A +B) =aA +aB.
(iii) Dot product of two vectors. The dot product of two vectors is defined by
A-B= ABcos9, (1.1)

where 6 is the angle they form when placed tail-to-tail (Fig. 1.6). Note that A - B is itself a
scalar (hence the alternative name scalar product). The dot product is commutative,

A-B=B-A,
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\J

B

Figure 1.5 Figure 1.6

and distributive,
A-B+C)=A-B+A-C (1.2)

Geometrically, A - B is the product of A times the projection of B along A (or the product
of B times the projection of A along B). If the two vectors are parallel, then A - B = AB.
In particular, for any vector A,

A-A=A% (1.3)

If A and B are perpendicular, then A - B = 0.

Example 1.1

Let C = A — B (Fig. 1.7), and calculate the dot product of C with itself.

Solution:
C-C=(A—-B)-A—-B)=A-A—-A-B-B-A+B-B,

or
C? = A%+ B% ~2ABcosd.

This is the law of cosines.

(iv) Cross product of two vectors. The cross product of two vectors is defined by
A xB=ABsinfn, (1.4)

where 1 is a unit vector (vector of length 1) pointing perpendicular to the plane of A and
B. (I shall use a hat (") to designate unit vectors.) Of course, there are rwo directions
perpendicular to any plane: “in” and “out.” The ambiguity is resolved by the right-hand
rule: let your fingers point in the direction of the first vector-and curl around (via the smaller
angle) toward the second; then your thumb indicates the direction of n. (In Fig. .8 A x B
points into the page; B x A points out of the page.) Note that A x B is itself a vector (hence
the alternative name vector product). The cross product is distributive,

AXx(B+C)=(AxB)+(AxC), (1.5)
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Figure 1.7 Figure 1.8

but not commutative. In fact,
(B xA)=—(A xB). (1.6)

Geometrically, |A x B| is the area of the parallelogram generated by A and B (Fig. 1.8). If
two vectors are parallel, their cross product is zero. In particular,

AxA=0

for any vector A.

Problem 1.1 Using the definitions in Eqgs. 1.1 and 1.4, and appropriate diagrams, show that
the dot product and cross product are distributive,

a) when the three vectors are coplanar;

b) in the general case.
Problem 1.2 Is the cross product associative?
(AxB)x C=A x (B x C).

If so, prove it; if not, provide a counterexample.

1.1.2 Vector Algebra: Component Form

In the previous section I defined the four vector operations (addition, scalar multiplication,
dot product, and cross product) in “abstract” form—that is, without reference to any partic-
ular coordinate system. In practice, it is often easier to set up Cartesian coordinates x, y, z
and work with vector “components.” Let X, §, and Z be unit vectors parallel to the x, y, and
7 axes, respectively (Fig. 1.9(a)). An arbitrary vector A can be expanded in terms of these
basis vectors (Fig. 1.9(b)):

A=AZ+ A+ A
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Figure 1.9

The numbers A,, A, and A, are called components of A; geometrically, they are the
projections of A along the three coordinate axes. We can now reformulate each of the four
vector operations as a rule for manipulating components:

A+B = (A X+ A,y + A.Z) + (Byx + B,§ + B.%)
= (Ax + Bx);‘ + (Ay + B,V)y + (Az + Bz)i- (1-7)

(i) Rule: To add vectors, add like components.

aA = (aA)X + (aA)F + (aA.)i. (1.8)

(ii) Rule: To multiply by a scalar, multiply each component.

Because X, ¥, and z are mutually perpendicular unit vectors,

X-X=y.y=72-2=1, X y=%-2=3y-2=0. (1.9
Accordingly,
A B = (AX+A,¥+A.Z)  (BX+ B,y + B;z)
= AyBi+A,B,+ A;B.. (1.10)

(iii) Rule: To calculate the dot product, multiply like components, and add.
In particular,
A-A=A7+ A7+ AL

A=,/A§+A§-,+A§. (1.1

(This is, if you like, the three-dimensional generalization of the Pythagorean theorem.) Note
that the dot product of A with any unir vector is the component of A along that direction
(thusA-X=A,, A-y=A,,and A -Z = A,).

SO
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Similarly,!

XXX= §x§ = zxi=0,
XXY=-yxX = 1%
yXxZ=-Zxy = R,
IXX=—-XX1Z y (1.12)
Therefore,
AxB = (AX+ A+ A.Z) x (BX+ By + B;7) (1.13)
= (AyB,— A;B,)X+ (A;By — Ay B,)¥y + (AyBy — AyB,)1.
This cumbersome expression can be written more neatly as a determinant:
X ¥V oz
AxB=| A, A, A (1.14)
B. B, B,

(iv) Rule: 7o calculate the cross product, form the determinant whose firstrowisX, ¥,z
whose second row is A (in component form), and whose third row is B.

»

Example 1.2

Find the angle between the face diagonals of a cube.

Solution: We might as well use a cube of side 1, and place it as shown in Fig. 1.10, with one
corner at the origin. The face diagonals A and B are

A=1§+0§7+12; B:Oﬁ—i—lf’-ﬁ-li.

z
0,0, 1)
B
0
A 0,1,0)
3
x11,0,0)
Figure 1.10

I These signs pertain to a right-handed coordinate system (x-axis out of the page, y-axis to the right, z-axis up,
or any rotated version thereof). In a left-handed system (z-axis down) the signs are reversed: % x ¥ = —%, and so
on. We shall use right-handed systems exclusively.
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So, in component form,
A-B=1.0+0-1+1-1=1.

On the other hand, in “abstract” form,
A-B=ABcosf =v2v2cos8 = 2cosé.

Therefore,

cosd =172, or 6 =60°
Of course, you can get the answer more easily by drawing in a diagonal across the top of the
cube, completing the equilateral triangle. But in cases where the geometry is not so simple,
this device of comparing the abstract and component forms of the dot product can be a very
efficient means of finding angles.

Problem 1.3 Find the angle between the body diagonals of a cube.

Problem 1.4 Use the cross product to find the cdmponents of the unit vector i perpendicular
to the plane shown in Fig. 1.11.

1.1.3 Triple Products

Since the cross product of two vectors is itself a vector, it can be dotted or crossed with a
third vector to form a triple product.

(i) Scalar triple product: A - (B x C). Geometrically, |A - (B x C)| is the volume
of the parallelepiped generated by A, B, and C, since |B x C] is the area of the base, and
|A cos 6] is the altitude (Fig. 1.12). Evidently,

A-BxC)=B-(CxA)=C-(AxB), (1.15)

for they all correspond to the same figure. Note that “alphabetical” order is preserved—in
view of Eq. 1.6, the “nonalphabetical” triple products,

A-(CxB)=B.-(AxC)=C-(BxA),

Figure 1.11 Figure 1.12
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have the opposite sign. In component form,

Ac A, A,
A-BxC)=| B, B, B, |. (1.16)
C. Cy C.

Note that the dot and cross can be interchanged:
A-BxC)=(AxB)-C

(this follows immediately from Eq. 1.15); however, the placement of the parentheses is
critical: (A - B) x C is a meaningless expression—you can’t make a cross product from a
scalar and a vector.

(ii) Vector triple product: A x (B x C). The vector triple product can be simplified
by the so-called BAC-CAB rule:

Ax{BxC)=BA-C)~-C(A-B). (1.17
Notice that
AxB)yxC=-Cx(AxB)y=-AB-C)+BA.C)

is an entirely different vector. Incidentally, all higher vector products can be similarly
reduced, often by repeated application of Eq. 1.17, so it is never necessary for an expression
to contain more than one cross product in any term. For instance,

AxB)-(CxD) = (A-C)(B-D)—(A-D)B-C);
AxBx(CxD) = BA - (CxD)— (A -B)CxD). (1.18)

Problem 1.5 Prove the BAC-CAB rule by writing out both sides in component form.,
Problem 1.6 Prove that
[AxBxCl+[BXx(CxA]+[CxAxB)]=0.

Under what conditions does A x (B x C) = (A x B) x C?

1.1.4 Position, Displacement, and Separation Vectors

The location of a point in three dimensions can be described by listing its Cartesian coor-
dinates (x, y, z). The vector to that point from the origin (Fig. 1.13) is called the position
vector:

r=xX+y§y+zi (1.19)
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Source point

\
field point

Figure 1.13 Figure 1.14

I'will reserve the letter r for this purpose, throughout the book. Its magnitude,

S ) (1.20)

is the distance from the origin, and

. T X+yy+212
po T _XX+yy4zz (1.21)

roVx ey
is a unit vector pointing radially outward. The infinitesimal displacement vector, from
(x,y,2)to (x +dx, y +dy,z +dz), is

dl=dxx+dyy+dzz. (1.22)

(We could call this dr, since that’s what it is, but it is useful to reserve a special letter for
infinitesimal displacements.)

Inelectrodynamics one frequently encounters problems involving fwo points—typically,
a source point, r’, where an electric charge is located, and a field point, r, at which you
are calculating the electric or magnetic field (Fig. 1.14). It pays to adopt right from the start
some short-hand notation for the separation vector from the source point to the field point.
I shall use for this purpose the script letter 2:

r2=r-—r. (1.23)

Its magnitude is
2=r—r, (1.24)

and a unit vector in the direction from r’ to r is

2=

2 r—r
S = T— (1.25)
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In Cartesian coordinates,

=@ —xX+ -y + -2z, (1.26)
’L=\/(x—x/)z+(y—y’)2+(z—z’)2, 1.27)
5= (x =X+ (y=y)¥+ (z—7)z (1.28)

VO =32+ (=) + (2 —2)?
(from which you can begjn to appreciate the advantage of the script-2 notation).

Problem 1.7 Find the separation vector 2 from the source point (2,8,7) to the field point (4,6,8).
Determine its magnitude (2), and construct the unit vector %.

1.1.5 How Vectors Transform

The definition of a vector as “a quantity with a magnitude and direction” is not altogether
satisfactory: What precisely does “directjon” mean?? This may seem a pedantic question,
but we shall shortly encounter a species of derivative that looks rather like a vector, and
we’ll want to know for sure whether it is one. You might be inclined to say that a vector
is anything that has three components that combine properly under addition. Well, how
about this; We have a barrel of fruit that contains Ny pears, N, apples, and N, bananas.
IsN = NyX 4+ Ny§ + N,7 a vector? It has three components, and when you add another
barrel with M, pears, M, apples, and M, bananas the result is (N, + M x) pears, (N, +M,)
apples, (N, + M) bananas So it does add like a vector. Yet it’s obviously not a vector, in
the physicist’s sense of the word, because it dogsn’t really have a direction. What exactly
is wrong with it?

The answer is that N does not transform properly when you change coordinates. The
coordinate frame we use to describe positions in space is of course entirely arbitrary, but
there is a specific geometrical transformation law for converting vector components from
one frame to another. Suppose, for instance, the X, 7, 7 system is rotated by angle ¢, relative
to x, y, z, about the common x = X axes. From Fig. 1.15,

Ay = Acosé, A; = Asin8,

while
Zy = Acosf = Acos(d — @) = A(cos @ cos ¢ + sin 6 sin ¢)
= Ccos¢Ay +singA,,
A; = Asinf = Asin(d — ¢) = A(sin cos ¢ — cos 0 sin ¢)

= —singAy +cosgA;.

2This section can be skipped without loss of continuity.
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y

Figure 1.15

We might express this conclusion in matrix notation:

Ay\ [ cosgp sing Ay
(ZZ)_(—sinzp cos¢>)(Az ' (1.29)
More generally, for rotation about an arbitrary axis in three dimensions, the transfor-
mation law takes the form

Ex Rxx ny RXZ AX
Ay | = Ryx Ry Ry Ay ], (1.30)
A, Ry« Rzy R, A;
or, more compactly,
3
Z,’ = ZR,’jAj, (1.31)
j=1

where the index 1 stands for x, 2 for y, and 3 for z. The elements of the matrix R can be
ascertained, for a given rotation, by the same sort of geometrical arguments as we used for
a rotation about the x axis.

Now: Do the components of N transform in this way? Of course not—it doesn’t matter
what coordinates you use to represent positions in space, there is still the same number of
apples in the barrel. You can’t convert a pear into a banana by choosing a different set of
axes, but you can turn A, into Zy. Formally, then, a vector is any set of three components
that transforms in the same manner as a displacement when you change coordinates. As
always, displacement is the model for the behavior of all vectors.

By the way, a (second-rank) tensor is a quantity with nine components, Ty, Tyy, Ty,
Tyx, ..., T;;, which transforms with rwo factors of R:

Txx = Rxx(RxxTxx + ny Txy + sz sz)
+Rxy(RexTyx + RuyTyy + RizTy;)
+ Rz (Ryx T + nysz + Ry, T, ...
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or, more compactly,
3 3
T,‘j = ZZRikleTkl. (1.32)
k=1 =1

In general, an nth-rank tensor has n indices and 3" components, and transforms with »n
factors of R. In this hierarchy, a vector is a tensor of rank 1, and a scalar is a tensor of rank
ZE10.

Problem 1.8

(a) Prove mat_the t\ﬁo—_(jjmensional rotation matrix (1.29) preserves dot products. (That is,
show that AyBy + A;B; = AyBy + A;B;.)

(b) What constraints must the elements (R; ;) of the three-dimensional rotation matrix (1.30)
satisfy in order to preserve the length of A (for all vectors A)?

Problem 1.9 Find the transformation matrix R that describes a rotation by 120° about an axis
from the origin through the point (1, 1, 1). The rotation is clockwise as you look down the
axis toward the origin.

Problem 1.10

(@) How do the components of a vector transform under a translation of coordinates (X = x,
y=y—a,7=z,Fig. 1.16a)?

(b) How do the components of a vector transform under an inversion of coordinates (¥ = —x,
¥ = -y, z7 = —z, Fig. 1.16b)?

(¢) How does the cross product (1.13) of two vectors transform under inversion? [The cross-
product of two vectors is properly called a pseudovector because of this “anomalous™ be-
havior.] Is the cross product of two pseudovectors a vector, or a pseudovector? Name two
pseudovector quantities in classical mechanics.

(d) How does the scalar triple product of three vectors transform under inversions? (Such an
object is called a pseudoscalar.)

=l

a

—~— -

o A
X

X/ X (@ ()

Figure 1.16

~|
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1.2 Differential Calculus

1.2.1 “Ordinary” Derivatives

Question: Suppose we have a function of one variable: f(x). What does the derivative,
df/dx, do for us? Answer: It tells us how rapidly the function f (x) varies when we change
the argument x by a tiny amount, dx:

df = (gi) dx. (1.33)

X

In words: If we change x by an amount dx, then f changes by an amount df; the derivative
is the proportionality factor. For example, in Fig. 1.17(a), the function varies slowly with
x, and the derivative is correspondingly small. In Fig. 1.17(b), f increases rapidly with x,
and the derivative is large, as you move away from x = 0.

Geomerrical Interpretation: The derivative df/dx is the slope of the graph of f versus x.

f f

(a) )

Figure 1.17

1.2.2 Gradient

Suppose, now, that we have a function of three variables—say, the temperature T (x, y, 7)
in a room. (Start out in one corner, and set up a system of axes; then for each point (x, v, z)
in the room, T gives the temperature at that spot.) We want to generalize the notion of
“derivative” to functions like 7, which depend not on one but on three variables.

Now a derivative is supposed to tell us how fast the function varies, if we move a little
distance. But this time the situation is more complicated, because it depends on what
direction we move: If we go straight up, then the temperature will probably increase fairly
rapidly, but if we move horizontally, it may not change much at all. In fact, the question
“How fast does T vary?” has an infinite number of answers, one for each direction we
might choose to explore.

Fortunately, the problem is not as bad as it looks. A theorem on partial derivatives states

that
oT T oT
dT = (—) dx + (8_) dy + (——) dz. (1.34)
0x ay 0z
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This tells us how T changes when we alter all three variables by the infinitesimal amounts
dx,dy,dz. Notice that we do not require an infinite number of derivatives—three will
suffice: the partial derivatives along each of the three coordinate directions.

Equation 1.34 is reminiscent of a dot product:

aT , dT,. oT,

dT = (—x+ —y+ —Z) (dxxX+dyy+dz2)
dx ay k4
= (VT). (), (1.35)
where
oT ., oT . 0T,
VI= —x+ —y+ —z (1.36)
0x dy k4

is the gradient of T. VT is a vector quantity, with three components; it is the generalized
derivative we have been looking for. Equation 1.35 is the three-dimensional version of
Eq. 1.33.

Geometrical Interpretation of the Gradient: Like any vector, the gradient has magnitude
and direction. To determine its geometrical meaning, let’s rewrite the dot product (1.35) in

abstract form:
dT = VT -dl = |VT||dl| cos8, (1.37)

where 6 is the angle between VT and dl. Now, if we fix the magnitude |d1| and search
around in various directions (that is, vary 8), the maximum change in T evidentally occurs
when 8 = O (for then cos @ = 1). That is, for a fixed distance |dl|, dT is greatest when I
move in the same direction as VT . Thus:

The gradient VT points in the direction of maximum increase of the function
T.

Moreover:

The magnitude |VT| gives the slope (rate of increase) along this maximal
direction.

Imagine you are standing on a hillside. Look all around you, and find the direction
of steepest ascent. That is the direction of the gradient. Now measure the slope in that
direction (rise over run). That is the magnitude of the gradient. (Here the function we’re
talking about is the height of the hill, and the coordinates it depends on are positions—
latitude and longitude, say. This function depends on only two variables, not three, but the
geometrical meaning of the gradient is easier to grasp in two dimensions.) Notice from
Eq. 1.37 that the direction of maximum descent is opposite to the direction of maximum
ascent, while at right angles (6 = 90°) the slope is zero (the gradient is perpendicular to
the contour lines). You can conceive of surfaces that do not have these properties, but they
always have “kinks” in them and correspond to nondifferentiable functions.

What would it mean for the gradient to vanish? If VT = 0 at (x, y, z), then dT =0
for small displacements about the point (x, y, z). This is, then, a stationary point of the
function T'(x, y, z). It could be a maximum (a summit), a minimum (a valley), a saddle
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point (a pass), or a “shoulder” This is analogous to the situation for functions of one
variable, where a vanishing derivative signals a maximum, a minimum, or an inflection. In
particular, if you want to locate the extrema of a function of three variables, set its gradient
equal to zero.

Example 1.3

Find the gradient of r = /x2 + y2 + z2 (the magnitude of the position vector).

Solution;
v ar . . ar . ar .
= —X+ — —1
r dx dy y 9z
| 2x 1 2y 1 2z “

P+

z
2 /x2+y2—l—z2

— %+ =
2Vx2 42422 2VaT 4742
xR+ yy+zi T ;

Vx4 y2 422 Cr

Does this make sense? Well, it says that the distance from the origin increases most rapidly in
the radial direction, and that its rate of increase in that direction is 1. . . just what you'd expect.

Problem 1.11 Find the gradients of the following functions:
@ fory)=x+y 24

(b) flx,y,2) = x2y374,

(©) f(x,y,2) =" sin(y) In(z).

Problem 1.12 The height of a certain hill (in feet) is given by
h(x,y) = 10Q2xy — 3x% — 4y% — 18x + 28y + 12),

where y is the distance (in miles) north, x the distance east of South Hadley.
(a) Where is the top of the hill located?
(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile east of South
Hadley? In what direction is the slope steepest, at that point?

Problem 1.13 Let 2 be the separation vector from a fixed point (x', y’, ') to the point (x, y, z),
and let 2 be its length. Show that

() V(#2) = 2.
(b) V(1/2) = —4/22.

(c) What is the general formula for V (2"*)?
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Problem 1.14 Suppose that f is a function of two variables (y and z) only. Show that the
gradient V f = (3f/3y)§ + (8f/22)Z transforms as a vector under rotations. Eq. 1.29. [Hint:
(Bf/8%) = (8f/8y)(dy/3V) + (8f/dz)(82/27), and the analogous formula for 3f/9Z. We
know that ¥ = y cos ¢ + zsin ¢ and 7 = —y sin ¢ + z cos ¢; “solve” these equations for y and
7 (as functions of y and Z), and compute the needed derivatives dy /0y, 9z/37, etc.}

1.2.3 The Operator V

The gradient has the formal appearance of a vector, V, “multiplying” a scalar T

VT = )28+A8+2i T (1.38)
= ax Yy %) '

(For once 1 write the unit vectors to the left, just so no one will think this means 9X/dx, and
so on—which would be zero, since X is constant.) The term in parentheses is called “del”:

.0

—. 1.39
ZBZ ( )

] ]
V=X—+y—
dx +y8y +

Of course, del is not a vector, in the usual sense. Indeed. it is without specific meaning until
we provide it with a function to act upon. Furthermore, it does not “multiply” T; rather, it
is an instruction to differentiate what follows. To be precise, then, we should say that V is
a vector operator that acts upon T, not a vector that multiplies T'.

With this qualification, though, V mimics the behavior of an ordinary vector in virtually
every way; almost anything that can be done with other vectors can also be done with V., if
we merely translate “multiply” by “act upon.” So by all means take the vector appearance
of V seriously: it is a marvelous piece of notational simplification, as you will appreciate if
you ever consult Maxwell’s original work on electromagnetism, written without the benefit
of V.

Now an ordinary vector A can multiply in three ways:

1. Multiply a scalar a : Aa;
2. Multiply another vector B, via the dot product: A - B;

3. Multiply another vector via the cross product: A x B.
Correspondingly, there are three ways the operator V can act:

1. On a scalar function T : VT (the gradient);
2. On a vector function v, via the dot product: V - v (the divergence);
3. On a vector function v, via the cross product: V x v (the curl).

We have already discussed the gradient. In the following sections we examine the other
two vector derivatives: divergence and curl.
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1.2.4 The Divergence

From the definition of V we construct the divergence:

P R - N A
Vv = xaﬁ-y@—{—za—z (X 4+ vy ¥ + v.2)
dv, dvy, B,
— hiy 1.40
dx dy 9z (140)

Observe that the divergence of a vector function v is itself a scalar V - v. (You can’t have
the divergence of a scalar: that’s meaningless.)

Geometrical Interpretation:  The name divergence is well chosen, for V -v is a measure
of how much the vector v spreads out (diverges) from the point in question. For example,
the vector function in Fig. 1.18a has a large (positive) divergence (if the arrows pointed in,
it would be a large negative divergence), the function in Fig. 1.18b has zero divergence, and
the function in Fig. 1.18c again has a positive divergence. (Please understand that v here is
a function—there’s a different vector associated with every point in space. In the diagrams,

(a) (b)

(©

Figure 1.18
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of course, I can only draw the arrows at a few representative locations.) Imagine standing
at the edge of a pond. Sprinkle some sawdust or pine needles on the surface. If the material
spreads out, then you dropped it at a point of positive divergence; if it collects together,
you dropped it at a point of negative divergence. (The vector function v in this model is the
velocity of the water—this is a two-dimensional example, but it helps give one a “feel” for
what the divergence means. A point of positive divergence is a source, or “faucet”; a point
of negative divergence is a sink, or “drain.”)

Example 1.4

Suppose the functions in Fig. 1.18 are v, = r = xX + y ¥ + zZ, v = Z, and Vo = zZ.
Calculate their divergences.

Solution:

b b b
VVa=—0+—+-—@=1+1+1=3
ax ay az

As anticipated, this function has a positive divergence.

3 3 3
Vvp=—0+—0+—1=0+0+0=0,
ax ay 0z

as expected.

3(0 K2
X )+3y(

3
Vove=oo 0+ -@=0+0+1=1.

Problem 1.15 Calculate the divergence of the following vector functions:
(a) Vo = x2% + 3xz2§ — 2xzi.

) vy =xyX+2yz§ +3zx2.

(©) Ve =y2 &+ Qxy + 75§+ 2yzi.

Problem 1.16 Sketch the vector function

and compute its divergence. The answer may surprise you. .. can you explain it?

Problem 1.17 In two dimensions, show that the divergence transforms as a scalar under rota-
tions. [Hint: Use Eq. 1.29 to determine Uy, and v, and the method of Prob. 1.14 to calculate
the derivatives. Your aim is to show that dvy /0y + 0v; /87 = dvy /9y + dvz/8z.]
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1.2.5 The Curl

From the definition of V we construct the curl:

X y z
Vxv = a/ox d/dy 9/0z
vy vy v,

(B (et (),
ay az 9z ox dx ay
Notice that the curl of a vector function v is, like any cross product, a vector. (You cannot
have the curl of a scalar; that’s meaningless.)

Geometrical Interpretation: The name curl is also well chosen, for V x v is a measure
of how much the vector v “curls around” the point in question. Thus the three functions in
Fig. 1.18 all have zero curl (as you can easily check for yourself), whereas the functions
in Fig. 1.19 have a substantial curl, pointing in the z-direction, as the natural right-hand
rule would suggest. Imagine (again) you are standing at the edge of a pond. Float a small
paddlewheel (a cork with toothpicks pointing out radially would do); if it starts to rotate,
then you placed it at a point of nonzero curl. A whirlpool would be a region of large curl.

b4
b4
I AN Sl iy oS
P AV //
///\:\,/ N —»-»/———»———»—»—» y
~ /r/ —_— —[— — ——
~ é
K () 7 (b)
X
Figure 1.19
Example 1.5

Suppose the function sketched in Fig. 1.19a is vz = —y% + x¥, and that in Fig. 1.19b is
v;, = x§. Calculate their curls,

Solution: . A .
b'e y z

Vxvg =1 d/dx 8/8y 9/3z | =21,
-y X 0
and ) ) .
X y Z

Vxv,= ‘ a/dx d/dy 3/3z
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Asexpected, these curls pointin the +z direction. (Incidentally, they both have zero divergence,
as you might guess from the pictures: nothing is “spreading out”. . . it just “curls around.”)

Problem 1.18 Calculate the curls of the vector functions in Prob. 1.15.

Problem 1.19 Construct a vector function that has zero divergence and zero curl everywhere..
(A constant will do the job, of course, but make it something a little more interesting than
that!)

1.2.6 Product Rules

The calculation of ordinary derivatives is facilitated by a number of general rules, such as
the sum rule:

d df dg
dx(f+g)_dx dx’
the rule for multiplying by a constant:
d df
Lk = k=L
dx( 1) e
the product rule:
Lty = 12 4 g
dx 8= dx Eax
and the quotient rule:
df  .dg
d (Y _fa T
dx \ g g2 '

Similar relations hold for the vector derivatives. Thus,
Vif+g=Vf+Ve, V-(A+B)=(V-A)+(V:-B),
Vx(A+B)=(VxA)+(VxB),

and
V(kf) =kV £, V - (kA) = k(V - A), V x (kA) = k(V x A),

as you can check for yourself. The product rules are not quite so simple. There are two
ways to construct a scalar as the product of two functions:

fg  (product of two scalar functions),
A -B  (dot product of two vector functions),

and two ways to make a vector:

fA  (scalar times vector),
A x B (cross product of two vectors).
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Accordingly, there are six product rules, two for gradients:

@) V(fg) = fVg+4gVf,

(ii) VA-B)=Ax (VxB)+Bx (VXxA)+(A-V)B+ (B V)A,
two for divergences:

(iii) V-(fA=fV-A)+A-(Vf),

@iv) V- (AxB)=B-(VxA)—A (VxB),
and two for curls:

W) V X (fA) = f(V x A) — A X (V]),

(vi) VXAXxB) =B -V)A—(A-V)B+A(V . .B)—B(V-A).
You will be using these product rules so frequently that I have put them on the inside front

cover for easy reference. The proofs come straight from the product rule for ordinary
derivatives. For instance,

V- (fA)

d d d
a(fo) + @(fAy) + B_Z(fAZ)

L (Yoa g A (W A (0, B4
- <8xAX+f3x>+<8yAy+f8y)+<8zAZ+f8z>

(V) A+ f(V-A).

It is also possible to formulate three quotient rules:

V([) _ 8Vf—fVsg

= 5 s

8 8
v <A> _ 8V A)-A-(Vg)
(A = - ,
8 8
VX(é) _ SO XA +AX (Ve
8 8

However, since these can be obtained quickly from the corresponding product rules, I
haven’t bothered to put them on the inside front cover.
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Problem 1.20 Prove product rules (i), (iv), and (v).

Problem 1.21

(a) If A and B are two vector functions, what does the expression (A - V)B mean? (That is,
what are its x, y, and z components in terms of the Cartesian components of A, B, and V?)

(b) Compute (f - V)F, where  is the unit vector defined in Eq. 1.21.
(c) For the functions in Prob. 1.15, evaluate (v, - V)vp,.

Problem 1.22 (For masochists only.) Prove product rules (ii) and (vi). Refer to Prob. 1.21 for
the definition of (A - V)B.

Problem 1.23 Derive the three quotient rules.

Problem 1.24
(a) Check product rule (iv) (by calculating each term separately) for the functions

A=xx+2yy+3z%Z B=3yx—2x¥.

(b) Do the same for product rule (ii).

(c¢) The same for rule (vi).

1.2.7 Second Derivatives

The gradient, the divergence, and the curl are the only first derivatives we can make with
V; by applying V twice we can construct five species of second derivatives. The gradient
VT is a vector, so we can take the divergence and curl of it:

(1) Divergence of gradient: V - (VT).
(2) Curl of gradient: V x (VT).

The divergence V - v is a scalar—all we can do is take its gradient:
(3) Gradient of divergence: V(V - v).

The curl V x v is a vector, so we can take its divergence and curl:

(4) Divergence of curl: V - (V x v).
(5) Curl of curl: V x (V x v).

This exhausts the possibilities, and in fact not all of them give anything new. Let’s

consider them one at a time:
.0 .0 .0 or, oT ., 9T,
(xa +y5 +z£) ‘ (ax+ 5y + §Z—Z>
T 3’7 9T
a2 T o

() V-(VT)

(1.42)
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This object, which we write V2T for short, is called the Laplacian of T; we shall be
studying it in great detail later on. Notice that the Laplacian of a scalar T is a scalar.
Occasionally, we shall speak of the Laplacian of a vector, V>v. By this we mean a vector
quantity whose x-component is the Laplacian of v,, and so on:*

Vv = (V)R + (V20,)¥ + (V20,)i. (1.43)

This is nothing more than a convenient extension of the meaning of V.
(2) The curl of a gradient is always zero:

V x (VT) =0. (1.44)

This is an important fact, which we shall use repeatedly; you can easily prove it from the
definition of V, Eq. 1.39. Beware: You might think Eq. 1.44 is “obviously” true—isn’t it
just (V x V)T, and isn’t the cross product of any vector (in this case, V) with itself always
zero? This reasoning is suggestive but not quite conclusive, since V is an operator and does
not “multiply” in the usual way. The proof of Eq. 1.44, in fact, hinges on the equality of

cross derjvatives:
a [oT d [oT
— = )=={1=). (1.45)
dx \ dy dy \ dx

If you think I'm being fussy, test your intuition on this one:
(VT) x (VS).

Is that always zero? (It would be, of course, if you replaced the V’s by an ordinary vector.)
(3) V(V -v) for some reason seldom occurs in physical applications, and it has not been
given any special name of its own—it’s just the gradient of the divergence. Notice that
V(V - v) is not the same as the Laplacian of a vecfor: V2v = (V - V)v # V(V .v).
(4) The divergence of a curl, like the curl of a gradient, is always zero:

V. (Vxv)=0. (1.46)

You can prove this for yourself. (Again, there is a fraudulent short-cut proof, using the
vector identity A - (B x C) = (A x B) - C))
(5) As you can check from the definition of V:

V x (Vxv)=V(V.y)— V. (1.47)

So curl-of-curl gives nothing new; the first term is just number (3) and the second is the
Laplacian (of a vector). (In fact, Eq. 1.47 is often used to define the Laplacian of a vector,
in preference to Eq. 1.43, which makes specific reference to Cartesian coordinates.)

Really, then, there are just two kinds of second derivatives: the Laplacian (which is
of fundamental importance) and the gradient-of-divergence (which we seldom encounter).

3In curvilinear coordinates, where the unit vectors themselves depend on position, they too must be differentiated
(see Sect. 1.4.1).
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We could go through a similar ritual to work out third derivatives, but fortunately second
derivatives suffice for practically all physical applications.

A final word on vector differential calculus: It a/l flows from the operator V, and from
taking seriously its vector character. Even if you remembered only the definition of V, you
should be able, in principle, to reconstruct all the rest.

Problem 1.25 Calculate the Laplacian of the following functions:
() Ty = x% + 2xy + 3z +4.

(b) Tp, = sin.x sin y sin z.

(©) T, = e¥ sin4y cos 3z.

(d)v=x2%4+3x2§ —2xz%

Problem 1.26 Prove that the divergence of a curl is always zero. Check it for function v, in
Prob. 1.15.

Problem 1.27 Prove that the curl of a gradient is always zero. Check it for function (b) in
Prob. 1.11.

.3 Integral Calculus

1.3.1 Line, Surface, and Volume Integrals

In electrodynamics we encounter several different kinds of integrals, among which the most
important are line (or path) integrals, surface integrals (or flux), and volume integrals.
(a) Line Integrals. A line integral is an expression of the form

b
/ v -dl, (1.48)
aP

where v is a vector function, d1 is the infinitesimal displacement vector (Eq. 1.22), and the
integral is to be carried out along a prescribed path P from point a to point b (Fig. 1.20). If
the path in question forms a closed loop (that is, if b = a), I shall put a circle on the integral
sign:

%V -dl. (1.49)

At each point on the path we take the dot product of v (evaluated at that point) with the
displacement 4l to the next point on the path. To a physicist, the most familiar example of
a line integral is the work done by a force F: W = [ F - dl.

Ordinarily, the value of a line integral depends critically on the particular path taken
from a to b, but there is an important special class of vector functions for which the line
integral is independent of the path, and is determined entirely by the end points. It will be
our business in due course to characterize this special class of vectors. (A force that has
this property is called conservative.)
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Figure 1.20 Figure 1.21

Example 1.6

Calculate the line integral of the function v = y2 X+ 2x(y + 1)§ from the pointa = (1, 1, 0)
to the point b = (2, 2, 0), along the paths (1) and (2) in Fig. 1.21. What is f v - dl for the loop
that goes from a to b along (1) and returns to a along (2)?

Solution: As always, dl = dxX + dy§ + dzZ. Path (1) consists of two parts. Along the
“horizontal” segment dy = dz = 0, so

()dl=dx% y=1,v-di=y>dx =dx,so [v-di= [Zdx=1.
On the “vertical” stretch dx = dz = 0, so
(i) dl=dyy, x =2, v-dl=2x(y+ 1)dy = 4(y + 1)dy, so
Jv-dl=42(y+ 1dy = 10.
By path (1), then,
/bv-dlzl—l—lO:ll.
a

Meanwhile, on path 2) x = y, dx = dy, anddz =0, so
dl=dxX+dxy, v-dl=x?dx + 2x(x + 1) dx = 3x? + 2x) dx,
S0

b 2 2
/ v-dl=/ (3x2+2x)dx=(x3+x2)1:10.
a 1

(The strategy here is to get everything in terms of one variable; I could just as well have
eliminated x in favor of y.)

For the loop that goes out (1) and back (2), then,

ffv-dl:]l——lO:l.
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(b) Surface Integrals. A surface integral is an expression of the form

/v-da, (1.50)
S

where v is again some vector function, and da is an infinitesimal patch of area, with direction
perpendicular to the surface (Fig. 1.22). There are, of course, two directions perpendicular
to any surface, so the sign of a surface integral is intrinsically ambiguous. If the surface is
closed (forming a “balloon”), in which case I shall again put a circle on the integral sign

%vda,

then tradition dictates that “outward” is positive, but for open surfaces it’s arbitrary. If v
describes the flow of a fluid (mass per unit area per unit time), then [ v - da represents the
total mass per unit time passing through the surface—hence the alternative name, “flux.”

Ordinarily, the value of a surface integral depends on the particular surface chosen, but
there is a special class of vector functions for which it is independent of the surface, and
is determined entirely by the boundary line. We shall soon be in a position to characterize
this special class.

Y i

- —>
) (v) [@) (iii)
y 2 y
X x /2
Figure 1.22 Figure 1.23

Example 1.7

Calculate the surface integral of v = 2xz X+ (x +2) ¥+ y(z2 = 3) % over five sides (excluding
the bottom) of the cubical box (side 2) in Fig. 1.23. Let “upward and outward” be the positive
direction, as indicated by the arrows.

Solution: Taking the sides one at a time:

(i)x =2, da=dydzX, v-da=2xzdydz =4zdydz, so

2 2
/v-da=4/ dy/ zdz =16.
0 0

(ii)x =0, da= —dydzX, v-da= —2xzdydz =0, so

- /v'da=0.
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(ili))y =2, da=dxdzy, v-da= (x +2)dxdz, so

2 2
/v-da:/(x+2)dx/ dz =12.
0 0

(iv)y=0, da= —dxdzy, v-da=—(x +2)dxdz, so

2 2
/v-da:—/ (x+2)dx/ dz = —12.
0 0

VYz=2,da=dxdyi, v-da=y(z2—3)dxdy=ydxdy. SO

2 2
/v-da:/ dx/ ydy =4.
0 0

/ v-da=16+0+12 - 12+ 4 = 20.
surface

Evidently the toral flux is

(c) Volume Integrals. A volume integral is an expression of the form

/ T dr, (1.51)
1%

where T is a scalar function and dt is an infinitesimal volume element. In Cartesian
coordinates,
dt =dxdydz. (1.52)

For example, if T is the density of a substance (which might vary from point to point), then
the volume integral would give the total mass. Occasionally we shall encounter volume
integrals of vector functions:

/vdr :/(vxﬁ—i—vyy—{—vzi)dr =f(/vxdr+§'/vydr +i/vzdr; (1.53)

because the unit vectors are constants, they come outside the integral.

Example 1.8

Calculate the volume integral of T = xyz2 over the prism in Fig. 1.24.

Solution: You can do the three integrals in any order. Let’s do x first: it runs from 0 to (1 — y);
then y (it goes from 0 to 1); and finally z (O to 3):

/sz=f03z2{f()ly[f()l_yxdx]dy}dz=

L3, /1 2 Loy ly_ 3
S| Z7dz | (1=y)ydy=509() =3.
2/0 . y)ydy=;0)13) =3
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Figure 1.24

Problem 1.28 Calculate the line integral of the function v = xZ & + 2yzy + y2 Z from the
origin to the point (1,1,1) by three different routes:

(@ (0,0,0) — (1,0,0) —» (1,1,0) — (1,1, 1);

(b) (0,0,0) — (0,0,1) — (0,1, 1) —> (1, 1, 1);

(c) The direct straight line.

(d) What is the line integral around the closed loop that goes ouz along path (a) and back along
path (b)?

Problem 1.29 Calculate the surface integral of the function in Ex. 1.7, over the bortom of the
box. For consistency, let “upward” be the positive direction. Does the surface integral depend
only on the boundary line for this function? What is the total flux over the closed surface of the
box (including the bottom)? [Note: For the closed surface the positive direction is “outward,”
and hence “down,” for the bottom face.]

Problem 1.30 Calculate the volume integral of the function T = z2 over the tetrahedron with
corners at (0,0,0), (1,0,0), (0,1,0), and (0,0,1).

1.3.2 The Fundamental Theorem of Calculus

Suppose f(x) is a function of one variable. The fundamental theorem of calculus states:
b
d
/ d—fdx = f(b) — f(a). (1.54)
a dx
In case this doesn’t look familiar, let’s write it another way:
b
/ F(x)ydx = f(b) — f(a),
a

where df/dx = F(x). The fundamental theorem tells you how to integrate F(x): you
think up a function f (x) whose dérivative is equal to F.
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Geometrical Interpretation: According to Eq. 1.33, df = (df/dx)dx is the infinitesi-
mal change in f when you go from (x) to (x + dx). The fundamental theorem (1.54) says
that if you chop the interval from a to b (Fig. 1.25) into many tiny pieces, dx, and add up
the increments df from each little piece, the result is (not surprisingly) equal to the total
changein f: f(b)— f(a). In other words, there are two ways to determine the total change
in the function: either subtract the values at the ends or go step-by-step, adding up all the
tiny increments as you go. You’ll get the same answer either way.

Notice the basic format of the fundamental theorem: the integral of a derivative over
an interval is given by the value of the function at the end points (boundaries). In vector
calculus there are three species of derivative (gradient, divergence, and curl), and each has
its own “fundamental theorem,” with essentially the same format. I don’t plan to prove
these theorems here; rather, I shall explain what they mean, and try to make them plausible.
Proofs are given in Appendix A.

f(®)
f(a)

Figure 1.25 Figure 1.26

1.3.3 The Fundamental Theorem for Gradients

Suppose we have a scalar function of three variables T'(x, y, z). Starting at point a, we
move a small distance dl; (Fig. 1.26). According to Eq. 1.37, the function T will change
by an amount

dT = (VT) -dl.

Now we move a little further, by an additional small displacement dl; the incremental
change in T will be (VT) - db. In this manner, proceeding by infinitesimal steps, we make
the journey to point b. At each step we compute the gradient of T (at that point) and dot it
into the displacement dL. . . this gives us the change in 7. Evidently the fotal change in T
in going from a to b along the path selected is

b
/a (VT) -dl = T(b) — T(a).
P

(1.55)
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This is called the fundamental theorem for gradients; like the “ordinary” fundamental
theorem, it says that the integral (here a line integral) of a derivative (here the gradient) is
given by the value of the function at the boundaries (a and b).

Geometrical Interpretation: Suppose you wanted to determine the height of the Eiffel
Tower. You could climb the stairs, using a ruler to measure the rise at each step, and adding
them all up (that’s the left side of Eq. 1.55), or you could place altimeters at the top and
the bottom, and subtract the two readings (that’s the right side); you should get the same
answer either way (that’s the fundamental theorem).

Incidentally, as we found in Ex. 1.6, line integrals ordinarily depend on the path taken
from a to b. But the righs side of Eq. 1.55 makes no reference to the path—only to the
end points. Evidently, gradients have the special property that their line integrals are path
independent:

Corollary 1: | ;’ (VT) - dlis independent of path taken from a to b.

Corollary 2:  §(VT) - dl = 0, since the beginning and end points
are identical, and hence T'(b) — T'(a) = 0.

Example 1.9
Let 7 = xy2, and take point a to be the origin (0, 0. 0) and b the point (2, 1, 0). Check the
fundamental theorem for gradients.

Solution: Although the integral is independent of path, we must pick a specific path in order
to evaluate it. Let’s go out along the x axis (step i) and then up (step ii) (Fig. 1.27). As always,
dl=dxR+dy§+dz2; VT = y> % + 2xy§.

B)y=0; di=dx%, VT -dl=y2dx =0,s0
/VT-dl:O.
i

(i)x =2; dl=dyy, VI -dl =2xydy =4ydy,so

1
/VT~dl:/ dydy =2y?
ii 0

1

1
=2

0

1 b

(i }(ii)
. (i) | _

1 2 X

' Figure 1.27
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Evidently the total line integral is 2. Is this consistent with the fundamental theorem? Yes:
Th)—T@=2-0=2.

Now, just to convince you that the answer is independent of path, let me calculate the same
integral along path iii (the straight line from a to b):

(i) y = %x, dy = %dx. VT -dl = y2dx +2xydy = %xz dx, so

2'3 2 1 '52
VT-dl:/ 2x°dx = gx°
»/i;i 0 4 4 0

=2

Problem 1.31 Check the fundamental theorem for gradients, using T = x2 + 4xy + 2yz°, the
pointsa = (0,0,0), b = (1, 1, 1), and the three paths in Fig. 1.28:

() (0,0,0) —» (1.0,0) —» (1.1,0) — (1, 1. 1);
(b)(0,0.0) > (0,0,1) > (0,1, 1) » (1, 1, 1);

(c) the parabolic path z = x2; y = x.

Figure 1.28

1.3.4 The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:

/(V-v)dr:%vda.

v S (1.56)

In honor, I suppose of its great importance, this theorem has at least three special names:
Gauss’s theorem, Green’s theorem, or, simply, the divergence theorem. Like the other
“fundamental theorems,” it says that the integral of a derivative (in this case the divergence)
over a region (in this case a volume) is equal to the value of the function at the boundary
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(in this case the surface that bounds the volume). Notice that the boundary term is itself
an integral (specifically, a surface integral). This is reasonable: the “boundary” of a line is
just two end points, but the boundary of a volume is a (closed) surface.

Geometrical Interpretation: If v represents the flow of an incompressible fluid, then
the flux of v (the right side of Eq. 1.56) is the total amount of fluid passing out through the
surface, per unit time. Now, the divergence measures the “spreading out” of the vectors
from a point—a place of high divergence is like a “faucet,” pouring out liquid. If we have
lots of faucets in a region filled with incompressible fluid, an equal amount of liquid will
be forced out through the boundaries of the region. In fact, there are rwo ways we could
determine how much is being produced: (a) we could count up all the faucets, recording
how much each puts out, or (b) we could go around the boundary, measuring the flow at
each point, and add it all up. You get the same answer either way:

/ (faucets within the volume) = % (flow out through the surface).

This, in essence, is what the divergence theorem says.

Example 1.10
Check the divergence theorem using the function
V=3 R+ Qry+ D) F+ 2y d

and the unit cube situated at the origin (Fig. 1.29).

Solution: In this case
Veov=2(x+y),

1 1 pl
/2(x—|—y)dr=2/ / / (x +v)dxdydz,
v 0 JO JO

1 1 1
/(X+y)dx=%+y, /(%-l—y)dy:l, f ldz =1.
0 0 0

and

21, T(") A

- ——»
) |G (i)
1 1 y
X / l
(vi)

Figure 1.29
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Evidently,

/V‘vdr:l
%

So much for the left side of the divergence theorem. To evaluate the surface integral we must
consider separately the six sides of the cube:

1 1
@) /v.da:/ / yzdydzz%,
0 JO .
1 1
(ii) /v-da:—/ / yzdydzz—%.
0 JoO
1 1
(iii) /v-da:/ /(2x+z2)dxdz:§.
0 JO )
1 1
@iv) /v-daz—/ / zzdxdzz—%.
0 Jo N
1 1
) /v-da:/ / 2ydxdy = 1.
0 Jo
1 1
(vi) /v-da:—/ / 0dxdy =0.
0 Jo

So the total flux is:

as expected.

Problem 1.32 Test the divergence theorem for the function v = (xy)% + 2y2) § + 32x) 2.
Take as your volume the cube shown in Fig. 1.30, with sides of length 2.
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y

Figure 1.30

1.3.5 The Fundamental Theorem for Curls

The fundamental theorem for curls, which goes by the special name of Stokes’ theorem,

states that
/(va)-da:%v-dl.
S

P (1.57)

As always, the integral of a derivative (here, the curl) over a region (here, a patch of surface)
is equal to the value of the function at the boundary (htre, the perimeter of the patch). As
in the case of the divergence theorem, the boundary term is itself an integral-—specifically,
a closed line integral. '

Geometrical Interpretation: Recall that the curl measures the “twist” of the vectors v; a
region of high curl is a whirlpool—if you put a tiny paddle wheel there, it will rotate. Now,
the integral of the curl over some surface (or, more precisely, the flux of the curl through
that surface) represents the “total amount of swirl,” and we can determine that swirl just as
well by going around the edge and finding how much the flow is following the boundary
(Fig. 1.31). You may find this a rather forced interpretation of Stokes’ theorem, but it’s a
helpful mnemonic, if nothing else.

You might have noticed an apparent ambiguity in Stokes’ theoreni: concerning the
boundary line integral, which way are we supposed to go around (clockwise or counter-
clockwise)? If we go the “wrorig” way we’ll pick up an overall sign error. The answer is
that it doesn’t matter which way you go as long as you are consistent, for there is a com-
pensating sign ambiguity in the surface integtal: Which way does da point? For a closed
surface (as in the divergence theorem) da points in the direction of the ourward normal; but
for an open surface, which way is “out?” Consistency in Stokes’ theorem (as in all such
matters) is given by the right-Hand rule: If your fingers point in the direction of the line
integral, then your thumb fixes the direction of da (Fig. 1.32). :

Now, there are plenty of surfaces (infinitely many) that share any given boundary line.
Twist a paper clip into a loop and dip it in soapy water. The soap film constitutes a surface,
with the wire loop as its boundary. If you blow on it, the soap film will expand, making
a larger surface, with the same boundary. Ordinarily, a flux integral depends critically on
what surface you integrate over, but evidently this is not the case with curls. For Stokes’

»
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da

NG D

dl

Figure 1.31 Figure 1.32

theorem says that {(V x v) - da is equal to the line integral of v around the boundary, and
the latter makes no reference to the specific surface you choose.

Corollary 1:  [(V x v) - da depends only on the boundary line, not
on the particular surface used.

Corollary 2:  §(V x v) - da = 0 for any closed surface, since the
boundary line, like the mouth of a balloon, shrinks
down to a point, and hence the right side of Eq. 1.57
vanishes.

These corollaries are analogous to those for the gradient theorem. We shall develop the
parallel further in due course.

Example 1.11

Suppose v = (2xz + 3 y2)§' + (4yz2)2. Check Stokes’ theorem for the square surface shown
in Fig. 1.33.

Solution: Here

VX v=(4z2-2x)%k+2z% and da=dydzx.

Figure 1.33
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(In saying that da points in the x direction, we are committing ourselves to a counterclockwise
line integral. We could as well write da = —dy dz X, but then we would be obliged to go
clockwise.) Since x = O for this surface,

1 pl
2 4
/(va)~da=/(; /(; 4z7dydz = 3.

Now, what about the line integral? We must break this up into four segments:
@) x=0 =0 v-dl=3y2dy, [v-di=[]3dy=1,
() x=0, y=1 v-dl=42dz, [v-di=[jdPdz=1%,
_ _ — 1242 — (03,2 1. _
(i) x=0, z=1, v.dl=3y“dy, f[v-dl=f]3y?dy=—1,

(iv) x=0. y=0, v-dl=0, fv-d1=flodz=0.

So
_ 4 _ 4
fv.d1_1+3—1+0_§,

It checks.

A point of strategy: notice how Ihandled step (iii). There is a temptation to write dl = —dy §
here, since the path goes to the left. You can get away with this, if you insist, by running the
integral from O — 1. Personally, I prefer to say dl = dx X + dy§ + dz % always (never any
minus signs) and let the limits of the integral take care of the direction.

Problem 1.33 Test Stokes’ theorem for the function v = (xy) X + (2y2) § + (3zx) 2, using the
triangular shaded area of Fig. 1.34.

Problem 1.34 Check Corollary I by using the same function and boundary line as in Ex. 1.11,
but integrating over the five sides of the cube in Fig. 1.35. The back of the cube is open.

?(V)

Z
L
Z
2
- ——
(iv) (iii)
. 1
@) Y
2 5/
X Y (ii)

Figure 1.34 Figure 1.35
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1.3.6 Integration by Parts

The technique known (awkwardly) as integration by parts exploits the product rule for

derivatives: p p of
_ r{ 28 45
=1 (%) re(2).

Integrating both sides, and invoking the fundamental theorem:

[FGroose=sl = [[1(3)ore [[o(5)
/abf(j_i>dx:_/abg(%>dx+fg‘:, (158)

That’s integration by parts. It pertains to the situation in which you are called upon to
integrate the product of one function ( f) and the derivative of another (g); it says you can
transfer the derivative from g to f, at the cost of a minus sign and a boundary term.

or

Example 1.12
Evaluate the integral

x0
/ xe Y dx.
0

Solution: The exponential can be expressed as a derivative:

_ d _
e X=E(—e x);

in this case, then, f(x) = x, g(x) = —e ¥, and df/dx = 1, so
x0 x0 »
/ xe tdx = / e Fdx —xe
0 0

We can exploit the product rules of vector calculus, together with the appropriate fun-
damental theorems, in exactly the same way. For example, integrating

o0
= —¢€

0

V- A(fA)=f(V-A)+A-(Vf)
over a volume, and invoking the divergence theorem, yields
/V-(fA)d‘L’ :/f(V-A)dt+/A-(Vf)dt =¢fA-da,

or

/f(v-A)drz—/A-(vf)dHffA-da. (1.59)
v v S
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Here again the integrand is the product of one function ( f) and the derivative (in this case
the divergence) of another (A), and integration by parts licenses us to transfer the derivative
from A to f (where it becomes a gradient), at the cost of a minus sign and a boundary term
(in this case a surface integral).

‘You might wonder how often one is likely to encounter an integral involving the product
of one function and the derivative of another; the answer is surprisingly often, and integration
by parts turns out to be one of the most powerful tools in vector calculus.

Problem 1.35
(a) Show that
/f(VxA)~da=/[Ax(Vf)]-da+ffA-dl. (1.60)
S S P
(b) Show that
/B-(VxA)dr:/A~(VXB)dr+y§(AxB)-da. (1.61)
1% 2% S

Curvilinear Coordinates

1.4.1 Spherical Polar Coordinates

The spherical polar coordinates (r, &, ¢) of a point P are defined in Fig. 1.36; r is the
distance from the origin (the magnitude of the position vector), § (the angle down from the
z axis) is called the polar angle, and ¢ (the angle around from the x axis) is the azimuthal
angle. Their relation to Cartesian coordinates (x, y, z) can be read from the figure:

x =rsinfcos¢, y=rsinfsing, 7=rcosb. (1.62)

Figure 1.36
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Figure 1.36 also shows three unit vectors, £, 8, $, pointing in the diiection of increase
of the corresponding coordinates. They constitute an orthogonal (mutually perpendicular)
basis set (just like X, ¥, Z), and any vector A can be expressed in terms of them in the usual
way:

A=A t+Agh+ Ay d. (1.63)

Ay, Ag, and Ay are the radial, polar, and azimuthal components of A. In terms of the
Cartesian unit vectors,

r = sinfcos¢pX+sindsingy+ coséz,
@ = cosfcospX+cosfsingy ~sinf 1z, (1.64)
¢ = —singX+cosgy,

as you can easily check for yourself (Prob. 1.37). I have put these formulas inside the back
cover, for easy reference.

But there is a poisonous snake lurking here that I’d bétter warn you about: F, 6, and 43
are associated with a particular point P, and they change direction as P moves around. For
example, F always points radially outward, but “radially outward” can be the x direction,
the y direction, or any other direction, depending on where you are. In Fig. 1.37, A = § and
B = —§, and yet both of them would be written as t in spherical cootdinates. One could
take account of this by explicitly indicating the point of reference: £(6, ¢), 6 6, ¢), $(9, ),
but this would be cumbersome, and as long as you are alert to the problem I don’t think it
will cause difficulties.* In particular, do not naively combihe the spherical components of
vectors associated with different points (in Fig. 1.37, A+ B = 0,not 2f,and A - B = —1,
not +1). Beware of differentiating a vector that is expressed in spherical coordinates, since
the unit vectors themselves are functions of position (/96 = 6, for example). And do
not take #, §, and ¢ outside an integral, as we did with X, ¥, and Z in Eq. 1.53. In general,
if you’re uncertain about the validity of an operation, reexpress the problem in Cartesian
coordinates, where this difficulty does not arise.

Figure 1.37

41 claimed on the very first page that vectors have no location, and I’ll stand by that. The vectors themselves
live “out there,” completely independertt of our choice of coordinates. But the notation we use to represent them
does depend on the point in question, in curvilinear coordinates.
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An infinitesimal displacement in the F direction is simply dr (Fig. 1.38a), just as an
infinitesimal element of length in the x direction is dx:

dl, =dr. (1.65)

On the other hand, an infinitesimal element of length in the 8 direction (Fig. 1.38b) is not
just 4@ (that’s an angle—it doesn’t even have the right units for a length), but rather r d6:

dlg =rdo. (1.66)
Similarly, an infinitesimal element of length in the 43 direction (Fig. 1.38c¢) is r sin 8 d¢:
dly =rsinfde. (1.67)
Thus, the general infinitesimal displacement dl is
dl=drt+rdo@+rsinddeé. (1.68)

This plays the role (in line integrals, for example) that dl = dx X + dy § + dz 2 played in
Cartesian coordinates.

dr rsind do
r r do 0 r
’ o B
rsin®
(a)

(b) (0)

Figure 1.38

The infinitesimal volume element dt, in spherical coordinates, is the product of the
three infinitesimal displacements:

dtv =dl, dlgdly =r2sin0drdode. (1.69)

I cannot give you a general expression for surface elements da, since these depend on the
orientation of the surface. You simply have to analyze the geometry for any given case (this
goes for Cartesian and curvilinear coordinates alike). If you are integrating over the surface
of a sphere, for instance, then r is constant, whereas 6 and ¢ change (Fig. 1.39), so

day =dlydlyt =r’sin0dodot.

On the other hand, if the surface lies in the xy plane, say, so that § is constant (to wit: 7/2)
while r and ¢ vary, then N .
da; =dl, dly8 =rdrd¢é.

\]
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Figure 1.39

Notice, finally, that r ranges from 0 to oo, ¢ from 0 to 27, and 6 from O to 7 (not
27 —that would count every point twice).”

Exaniple 1.13

Find the volume of a sphere of radius R.

R Fid 2w
Vv = /dr:/ / / r2sin0dr do dg
r=07J6=0J¢=0
R b4 2
(/ r2dr (/ sinGdG) (/ d¢
0 0 0

3
(R?) @@m) = 7R,

Solution:

(Not a big surprise.)

So far we have talked only about the geometry of spherical coordinates. Now I would
like to “translate” the vector derivatives (gradient, divergence, curl, and Laplacian) into r,
¢, ¢ notation. In principle this is entirely straightforward: in the case of the gradient,

_ar, 9T _ AT

VI = —x+ — — 1,
o Ty Y T et

for instance, we would first use the chain rule to reexpress the partials:

T  oT [or LT (96 LT (09

dx  or \ox 30 \ ox dp \0x )
5A]tematively, you couid runt ¢ from O to 7 (the “eastern hemisphere™) and cover the “western hemisphere” by
extending 6 from sr up to 27r. But this is very bad notation, since, among other things, sin 6 will then run negative,

and you’ll have to put absolute value signs around that term in volime and surface elements (area and volume
being intrinsically positive quantities).
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The terms in parentheses could he worked out from Eq. 1.62—or rather, the inverse of
those equations (Prob. 1.36). Then we’d do the same for 97 /9y and 97 /9z. Finally, we’d
substitute in the formulas for X, ¥, and Z in terms of T, 6, and ¢ (Prob. 1.37). It would take
an hour to figure out the gradient in spherical coordinates by this brute-force method. I
suppose this is how it was first done, but there is a much more efficient indirect approach,
explained in Appendix A, which has the extra advantage of treating all coordinate systems
at once. I described the “straightforward” method only to show you that there is nothing
subtle or mysterious about transforming to spherical coordinates: you’re expressing the
same quantity (gradient, divergence, or whatever) in ditferent notation, that’s all.
Here, then, are the vector derivatives in spherical coordinates:

Gradient: 9T . 19T 1 3T
7= 1905 b 1.70
VI =5t 0 5e? t Tmeae 470
Divergence:
3 vy
_19 -7, 1.71
V=25 Tt e 00 0 T ine g (70
Curl:
1 avg l 1 av, a A
v = o r|sing ap  or 0
*V rsin@ I: Ginfve) = 3¢:| i [sin@ d¢  or (rvqb):l
1 ov
+ = [—( vg) — —r]‘ﬁ (1.72)
Laplacian:
19 (,0T 19 oT Lo
grp_ L8 (20T 9 (ngT)y, 10T 173
r2 or (r Br) t Zsino 90 (Sl 89) * r2sin% 6 d¢? (173

For reference, these formulas are listed inside the front cover.

Prgblem 1.36 Find formulas for r, 0, ¢ in terms of x, y, z (the inverse, in other words, of
Eq. 1.62).

Problem 1.37 Express the unit vectors i $ terms of X, ¥, Z (that is, derive Eq. 1.64).

A

9 N A 7 A
Check your answers several ways (-t = 1 ) -9 =0, 1 X6 =4¢,...). Also work out the

inverse formulas, giving X, ¥, Z in terms of T, 0 ,¢ (and 9, ¢).

’Q>>

Problem 1.38

(a) Check the divergence theorem for the function vi = r2F, using as your volume the sphere

of radius R, centered at the origin.
b) Do the same for vo = (1/ r2)f'. (If the answer surprises you, look back at Prob. 1.16.)

v
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Figure 1.40 Figure 1.41

Problem 1.39 Compute the divergence of the function
v={(rcosd)f + (r sinG)é + (rsind cos¢)q3.

Check the divergence theorem for this function, using as your volume the inverted hemispher-
ical bowl of radius R, resting on the xy plane and centered at the origin (Fig. 1.40).

Problem 1.40 Compute the gradient and Laplacian of the function T = r(cos 8 + sin & cos ).
Check the Laplacian by converting T to Cartesian coordinates and using Eq. 1.42. Test the
gradient theorem for this function, using the path shown in Fig. 1.41, from (0, 0, 0) to (0, 0, 2).

1.4.2 Cylindrical Coordinates

The cylindrical coordinates (s, ¢, z) of a point P are defined in Fig. 1.42. Notice that ¢
has the same meaning as in spherical coordinates, and z is the same as Cartesian; s is the
distance to P from the z axis, whereas the spherical coordinate r is the distance from the
origin. The relation to Cartesian coordinates is

X =5cC08¢, y = ssin ¢, z=2z. (1.74)

The unit vectors (Prob. 1.41) are

$ cos¢pX+sing ¥,
¢ = —singX+coseg¥, (1.75)
i = 1.

The infinitesimal displacements are

diy=ds, dlg=sd¢, dl,=dz, (1.76)
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Figure 1.42
SO
dl=ds§+sdp+dz, (1.77)
and the volume element is
dt =sdsd¢dz. (1.78)

The range of s is 0 — oo, ¢ goes from 0 — 27, and z from —o0 to oo.
The vector derivatives in cylindrical coordinates are:

Gradient:
VT 8T§+18T$+8TA (1.79)
= — -— — 7 .
as s ¢ Z
Divergence:
19 1dvy v
Viv=——(@Gu)+—-———+ —. 1.80
v sas(své)_*_s ¢ + 9z ( )
Curl:
1ov; Oy \ . dvs  dvz\ - 1[0 ovg | .
= (-==_-22 oS = i -z 1.81
v Xy (s a¢ Bz>s+<az s ¢+s as(sv¢) ¢ z (1.81)
Laplacian:
yiro 190 (oT) 1 3T N 9T (18)
=-—|5s— -— +—. .
sds \ as 52392 072

These formulas are also listed inside the front cover.

Problem 1.41 Express the cylindrical unit vectors §, (}3, Z in terms of X, ¥, Z (that is, derive
Eq. 1.75). “Invert” your formulas to get X, §, Z in terms of §, ¢, Z (and ¢).

Al
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Figure 1.43 Figure 1.44

Problem 1.42

(a) Find the divergence of the function
V= s(2+sin2¢)§+ssin¢cos¢ $+3z2

(b) Test the divergence theorem for this function, using the quarter-cylinder (radius 2, height
5) shown in Fig. 1.43.

(c) Find the curl of v.

1.5 The Dirac Delta Function

1.5.1 The Divergence of /r>

Consider the vector function )
V= r. (1.83)
r

Atevery location, v is directed radially outward (Fig. 1.44); if ever there was a function that
ought to have a large positive divergence, this is it. And yet, when you actually calculate
the divergence (using Eq. 1.71), you get precisely zero:

19 1 1 9
Viv==—(r’=)==—()=0. 1.84

Y (r rz) r28r( ) (1.84)
(You will have encountered this paradox already, if you worked Prob. 1.16.) The plot
thickens if you apply the divergence theorem to this function. Suppose we integrate over a
sphere of radius R, centered at the origin (Prob. 1.38b); the surface integral is

fv.da = /(%f)-(R%inOd@dq&f')
b4 2

(/ sinOdG) (/ d¢) = 4m. (1.85)
0 0
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But the volume integral, [V - vdr, is zero, if we are really to believe Eq. 1.84. Does this
mean that the divergence theorem is false? What’s going on here?

The source of the problem is the point r = 0, where v blows up (and where, in Eq. 1.84,
we have unwittingly divided by zero). It is quite true that V - v = 0 everywhere except
the origin, but right at the origin the situation is more complicated. Notice that the surface
integral (1.85) is independent of R if the divergence theorem is right (and it is), we should
get f (V -v)dt = 4n for any sphere centered at the origin, no matter how small. Evidently
the entire contribution must be coming from the point » = 0! Thus, V - v has the bizarre
property that it vanishes everywhere except at one point, and yet its infegral (over any
volume containing that point) is 4. No ordinary function behaves like that. (On the other
hand, a physical example does come to mind: the density (mass per unit volume) of a point
particle. It’s zero except at the exact location of the particle, and yet its integral is finite—
namely, the mass of the particle.) What we have stumbled on is a mathematical object
known to physicists as the Dirac delta function. It arises in many branches of theoretical
physics. Moreover, the specific problem at hand (the divergence of the function £/ r2)is not
just some arcane curiosity—it is, in fact, central to the whole theory of electrodynamics.
So it is worthwhile to pause here and study the Dirac delta function with some care.

1.5.2 The One-Dimensional Dirac Delta Function

The one dimensional Dirac delta function, §(x), can be pictured as an infinitely high,
infinitesimally narrow “spike,” with area 1 (Fig. 1.45). That is to say:

_ 0, ifx#0
3(x) = [ o0, fr =0 } (1.86)
and ~

/ S§(x)dx = 1. (1.87)

Technically, 8(x) is not a function at all, since its value is not finite at x = 0. In the
mathematical literature it is known as a generalized function, or distribution. It is, if you

Figure 1.45
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7 2 Rl 2 b))
R 1
! T
-1/2-1/4 174 172 x -1 -1/2 172 1 x
(a) (b)
Figure 1.46

like, the limit of a sequence of functions, such as rectangles R, (x), of height n and width
1/n, or isosceles triangles 7, (x), of height n and base 2/n (Fig. 1.46).

If f(x) is some “ordinary” function (that is, not another delta function—in fact, just
to be on the safe side let’s say that f (x) is continuous), then the product f(x)8(x) is zero
everywhere except at x = 0. It follows that

Fx)d(x) = f(0)8(x). (1.88)

(This is the most important fact about the delta function, so make sure you understand why
it is true: since the product is zero anyway except at x = 0, we may as well replace f(x)
by the value it assumes at the origin.) In particular

/ F)8(x)dx = f(O)/ s(x)dx = £(0). (1.89)

Under an integral, then, the delta function “picks out” the value of f(x)atx = 0. (Here
and below, the integral need not run from —oo to o0, it is sufficient that the domain extend
across the delta function, and —e to 4-¢ would do as well.)

Of course, we can shift the spike from x = 0 to some other point, x = a (Fig. 1.47):

8(x—a)={ 0, ifx#a } with /oo S(x —a)dx = 1. (1.90)

00, ifx=a o

Equation 1.88 becomes
FX)d(x —a) = fa)s(x —a), (1.91)
and Eq. 1.89 generalizes to

/Oo FxX)8(x —a)dx = f(a). (1.92)

Example 1.14

Evaluate the integral

3
/ 238 — 2)ydx.
0
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d(x-a)

a X

Figure 1.47

Solution: The delta function picks out the value of x> at the point x = 2, so the integral is
23 = 8. Notice, however, that if the upper limit had been 1 (instead of 3) the answer would be
0, because the spike would then be outside the domain of integration.

Although § itself is not a legitimate function, integrals over § are perfectly acceptable.
In fact, it’s best to think of the delta function as something that is always intended for use
under an integral sign. In particular, two expressions involving delta functions (say, D1 (x)
and D, (x)) are considered equal if ©

o0 o0
/ F@)Di(x)dx =/ fx)Da(x)dx, (1.93)
—o0 —00
for all (“ordinary”) functions f(x).
Example 1.15
Show that
S(kx) = %a(x), (1.94)

where k is any (nonzero) constant. (In particular, §(—x) = §(x).)
Solution: For an arbitrary test function f(x), consider the integral
o0
/ Fx)skx)dx.
—0o0

Changing variables, we let y = kx, so that x = y/k, and dx = 1/kdy. If k is positive, the
integration still runs from —oo to 400, but if k is negative, then x = oo implies y = —oo, and

OThis is not as arbitrary as it may sound. The crucial point is that the integrals must be equal for any f(x).
Suppose Dy (x) and D;(x) actually differed, say, in the neighborhood of the point x = 17. Then we could pick a
function f(x) that was sharply peaked about x = 17, and the integrals would not be equal.
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vice versa, so the order of the limits is reversed. Restoring the “proper” order costs a minus
sign. Thus

o0 R dy 1 1
F)dkx)ydx =+ JOIS(y)— =% f(0) = — f(0).
—oo —oo k k Ik
(The lower signs apply when & is negative, and we account for this neatly by putting absolute
value bars around the final k, as indicated.) Under the integral sign, then, 8(kx) serves the
same purpose as (1/]k|)8(x):

oo o0 l
/_OO fx)skx)dx = /;OO f(x) l:mé(x)] dx.

According to criterion 1.93, therefore, §(kx) and (1/]k|)8(x) are equal.

Problem 1.43 Evaluate the following integrals:
(@ ff(3x% —2x = 1)8(x — 3)dx.
(b) fos cosxd(x —m)dx.

() f03 38(x + Ddx.

() [, InCx + 3)8(x +2) dx.

Problem 1.44 Evaluate the following integrals:
@ [%,(x +3)8(3x) dx.

0) 73 +3x +2)8(1 — x)dx.

© 2, 9x%8(3x + 1) dx.

(d) [, 8(x — b)dx.
Problem 1.45
(a) Show that
d
xa (6(x)) = =8(x).
[Hint: Use integration by parts.]
(b) Let 8(x) be the step function:

1, ifx >0
O(x) = . (1.95)
0, ifx <0

Show that d6 /dx = §(x).
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1.5.3 The Three-Dimensional Delta Function

It is an easy matter to generalize the delta function to three dimensions:
83(r) = 8(x) 8(») 8(2). (1.96)

(As always, r = x X+ y ¥ + z Z is the position vector, extending from the origin to the point
(x,v,2)). This three-dimensional delta function is zero everywhere except at (0, 0, 0),
where it blows up. Its volume integral is 1:

/ 83(r)dt:/ / / §(x)8(y)8(z)dxdydz = 1. (1.97)
a]l space —00 J—00J —00

And, generalizing Eq. 1.92,
/ F()8(r—a)dr = f(a). (1.98)
all space

As in the one-dimensional case, integration with § picks out the value of the function f at
the location of the spike.

We are now in a position to resolve the paradox introduced in Sect. 1.5.1. As you will
recall, we found that the divergence of /r? is zero everywhere except at the origin, and
yet its integral over any volume containing the origin is a constant (to wit: 4:7). These are
precisely the defining conditions for the Dirac delta function; evidently

V. (iz) — 478%(r). (1.99)
r
More generally,
2 3
V=) =4r8"(), (1.100)
2

where, as always, 2 is the separation vector: 4 = r — r’. Note that differentiation here is
with respect to r, while r’ is held constant. Incidentally, since

1 2

(Prob. 1.13), it follows that

L
V2= = —4783 (). (1.102)
2
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Example 1.16

Evaluate the integral

J:/(r2+2)v.(i2> d,
Vv r

where V is a sphere of radius R centered at the origin.

Solution 1: Use Eq. 1.99 to rewrite the divergence, and Eq. 1.98 to do the integral:

J= / (r* + 24783 (r)dt = 47(0 +2) = 8.
%

This one-line solution demonstrates something of the power and beauty of the delta function,
but I would like to show you a second method, which is much more cumbersome but serves to
illustrate the method of integration by parts, Sect. 1.3.6.

Solution 2: Using Eq. 1.59, we transfer the derivative from £/r? to (r2 +2)
J = —/ iz : [V(r2+2)]dr+?§(r2+2)i2 - da.
r r

The gradient is
V(r? +2) = 2rf,

so the volume integral becomes
/ %dr = / grzsin()drd()dqb =8n /err =4n R?.
r ¥ 0

Meanwhile, on the boundary of the sphere (where r = R),

da = R?sin0do do t,
so the surface integral becomes

/(RZ +2)sin6dode = 4nw(R? +2).
Putting it all together, then,
J = —47R? 4+ 4n(R> +2) = 8,

as before.
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Problem 1.46

(a) Write an expression for the electric charge density p(r) of a point charge g at r’. Make
sure that the volume integral of p equals g.

(b) What is the charge density of an electric dipole, consisting of a point charge —q at the
origin and a point charge +¢ at a?

(c) What is the charge density of a uniform, infinitesimally thin spherical shell of radius R and
total charge Q, centered at the origin? [Beware: the integral over all space must equal Q.]

Problem 1.47 Evaluate the following integrals:

(a) fall space (2 +r1-a+a®)83(r — a)dr, where a is a fixed vector and « is its magnitude.
(b) fv Ir —b|283(5r) dt, where V is a cube of side 2, centered on the origin, andb = 4§+ 37

(c) fv(r4 + r2(r -e) + c4)83(r — ¢)drt, where V is a sphere of radius 6 about the origin,
¢ =5X%+3¥ + 2%, and c is its magnitude.

(d) fv r-d- r)83(e —r)dr, whered = (1. 2,3),e = (3, 2, 1), and V is a sphere of radius
1.5 centered at (2, 2, 2).

Problem 1.48 Evaluate the integral

J=/e_r(V-%)dr
Vv r

(where V is a sphere of radius R, centered at the origin} by two different methods, as inEx. 1.16.

1.6 The Theory of Vector Fields

1.6.1 The Helmholtz Theorem

Ever since Faraday, the laws of electricity and magnetism have been expressed in terms of
electric and magnetic fields, E and B. Like many physical laws, these are most compactly
expressed as differential equations. Since E and B are vectors, the differential equations
naturally involve vector derivatives: divergence and curl. Indeed, Maxwell reduced the
engire theory to four equations, specifying respectively the divergence and the curl of E and
B.

7Strictly speaking, this is only true in the static case; in general, the divergence and curl are given in terms of
time derivatives of the fields themselves.
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Maxwell’s formulation raises an important mathematical question: To what extent is a
vector function determined by its divergence and curl? In other words, if I tell you that the
divergence of F (which stands for E or B, as the case may be) is a specified (scalar) function
D,

V- F=D,

and the curl of F is a specified (vector) function C,
VxF=C,

(for consistency, C must be divergenceless,
vV.C=0,

because the divergence of a curl is always zero), can you then determine the function F?

Well... not quite. For example, as you may have discovered in Prob. 1.19, there are
many functions whose divergence and curl are both zero everywhere—the trivial case F = 0,
of course, butalsoF = yzX+zx §+xy 2, F = sin x cosh y X —cos x sinh y §, etc. To solve
a differential equation you must also be supplied with appropriate boundary conditions.
In electrodynamlcs we typically require that the fields go to zero “at infinity” (far away
from all charges).® With that extra information the Helmholtz theorem guarantees that the
field is uniquely determined by its divergence and curl. (A proof of the Helmholtz theorem
is given in Appendix B.)

1.6.2 Potentials

If the curl of a vector field (F) vanishes (everywhere), then F can be written as the gradient
of a scalar potential (V):
VxF=0&F=-VV. (1.103)

(The minus sign is purely conventional.) That’s the essential burden of the following
theorem:

Theorem 1:  Curl-less (or “irrotational”) fields. The following con-
ditions are equivalent (that is, F satisfies one if and only
if it satisfies all the others):

(a) V x F = 0 everywhere.

() fab F - dl is independent of path, for any given end
points.

() § F - d1 = 0 for any closed loop.

(d) F is the gradient of some scalar, F = —VV.

81n some textbook problems the charge itself extends to infinity (we speak, for instance, of the electric field of
an infinite plane, or the magnetic field of an infinite wire). In such cases the normal boundary conditions do not
apply, and one must invoke symmetry arguments to determine the fields uniquely.
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The scalar potential is not unique-—any constant can be added to V with impunity, since
this will not affect its gradient.

If the divergence of a vector field (F) vanishes (everywhere), then F can be expressed
as the curl of a vector potential (A):

V.- F=0«<=F=VxA. (1.104)

That’s the main conclusion of the following theorem:

Theorem 2: Divergence-less (or “solenoidal”) fields. The following
conditions are equivalent:
(a) V - F = O everywhere.
(b) / F-daisindependent of surface, for any given bound-
ary line.
(c) § F - da = 0 for any closed surface.
(d) F is the curl of some vector, F =V x A,

The vector potential is not unique—the gradient of any scalar function can be added to A
without affecting the curl, since the curl of a gradient is zero.

You should by now be able to prove all the connections in these theorems, save for
the ones that say (a), (b), or (c) implies (d). Those are more subtle, and will come later.
Incidentally, in all cases (whatever its curl and divergence may be) a vector field F can be
written as the gradient of a scalar plus the curl of a vector:

F=-VV 4+VxA (always). (1.105)

Problem 1.49

(a) Let F; = x22and F) = x&X + y § + z 2. Calculate the divergence and curl of F; and F;.
Which one can be written as the gradient of a scalar? Find a scalar potential that does the job.
Which one can be written as the curl of a vector? Find a suitable vector potential.

(b) Show that F3 = yz X + zx § + xy Z can be written both as the gradient of a scalar and as
the curl of a vector. Find scalar and vector potentials for this function.

Problem 1.50 For Theorem 1 show that (d} = (a), (a) = (c), (¢) = (b), (b) = (c), and
() = (a).

Problem 1.51 For Theorem 2 show that (d) = (a), (a) = (¢), (c) = (b), (b) = (c), and
(¢)= ().
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Problem 1.52

(a) Which of the vectors in Problem 1.15 can be expressed as the gradient of a scalar? Find a
scalar function that does the job.

(b) Which can be expressed as the curl of a vector? Find such a vector.

More Problems on Chapter 1

Problem 1.53 Check the divergence theorem for the function
.2 5 2 ) 2 : 2
V=r"cos@r+r-cos¢pd —r-cosfsin¢¢,

using as your volume one octant of the sphere of radius R (Fig. 1.48). Make sure you include
the entire surface. [Answer: = R4 /4]

Problem 1.54 Check Stokes’ theorem using the functionv = ay R+-bx § (a and b are constants)
and the circular path of radius R, centered at the origin in the xy plane. [Answer: 7 RZ(b — a)l

Problem 1.55 Compute the line integral of
V=6%+y2§+ Gy +2)i

along the triangular path shown in Fig. 1.49. Check your answer using Stokes’ theorem.
[Answer: 8/3]

Problem 1.56 Compute the line integral of

V= (rcosze)f'— (rcos@sin0)§+3r$

around the path shown in Fig. 1.50 (the points are labeled by their Cartesian coordinates). Do
it either in cylindrical or in spherical coordinates. Check your answer, using Stokes’ theorem.
[Answer: 37 /2]

Figure 1.48 Figure 1.49 Figure 1.50
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Figure 1.51 Figure 1.52

Problem 1.57 Check Stokes’ theorem for the function v = y Z, using the triangular surface
shown in Fig. 1.51. [Answer: a?]

Problem 1.58 Check the divergence theorem for the function
— 2 ~ 2 5 2., iy
v=r°sinfr+4r-cosf 6 +r-tanf ¢,

using the volume of the “ice-cream cone” shown in Fig. 1.52 (the top surface is spherical, with
radius R and centered at the origin). [Answer: (7 R*/12)(27 +3V3)]
Problem 1.59 Here are two cute checks of the fundamental theorems:

(a) Combine Corollary 2 to the gradient theorem with Stokes’ theorem (v = VT, in this case).
Show that the result is consistent with what you already knew about second derivatives.

(b) Combine Corollary 2 to Stokes’ theorem with the divergence theorem. Show that the result
is consistent with what you already knew.

Problem 1.60 Although the gradient, divergence, and curl theorems are the fundamental in-

tegral theorems of vector calculus, it is possible to derive a number of corollaries from them.
Show that:

@ fy(VT)dr = §gTda. [Hint: Let v = cT, where ¢ is a constant, in the divergence
theorem; use the product rules.]

(b) fV(V xv)dt = — fS v x da. [Hint: Replace v by (v x ¢) in the divergence theorem.]

(©) fV[TVZU +(VT)-(VU)]dr = fS(TVU)~ da. [Hint: Let v = T VU in the divergence
theorem. |

(d) fV(TVZU —UV2T)dr = $5(TVU —UVT)- da. [Comment: This isknown as Green’s
theorem; it follows from (c), which is sometimes called Green’s identity.]

@ [sVT xda=— ﬁp T dl. [Hint: Let v = ¢T in Stokes’ theorem.]
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Problem 1.61 The integral
a= / da (1.106)
S
is sometimes called the vector area of the surface S. If § happens to be flat, then |a| is the
ordinary (scalar) area, obviously.
(a) Find the vector area of a hemispherical bowl of radius R.
(b) Show that a = 0 for any closed surface. [Hint: Use Prob. 1.60a.]
(¢) Show that a is the same for all surfaces sharing the same boundary.

(d) Show that
a= %ygrxdl, (1.107)

where the integral is around the boundary line. [Hint: One way to do it is to draw the cone
subtended by the loop at the origin. Divide the conical surface up into infinitesimal triangu-
lar wedges, each with vertex at the origin and opposite side dl, and exploit the geometrical
interpretation of the cross product (Fig. 1.8).]

(e) Show that
%(c-r)dl:axc, (1.108)

for any constant vector ¢. [Hint: let T = ¢ - r in Prob. 1.60e.]

Problem 1.62

(a) Find the divergence of the function

| =5

vV =
r

First compute it directly, as in Eq. 1.84. Test your result using the divergence theorem, as in
Eq. 1.85. Is there a delta function at the origin, as there was for £/ 29 What is the general
formula for the divergence of r*£7 [Answer: V - (r*f) = (n +2)r" 1 unless n = -2, in
which case it is 4753 (r)]

(b) Find the curl of rt. Test your conclusion using Prob. 1.60b. [Answer: V x (r"f) = 0]




Chapter 2

Electrostatics

2.1 The Electric Field

2.1.1 Introduction

The fundamental problem electromagnetic theory hopes to solve is this (Fig. 2.1): We have
some electric charges, g1, g2, g3, . . . (call them source charges); what force do they exert
on another charge, Q (call it the test charge)? The positions of the source charges are given
(as functions of time); the trajectory of the test particle is fo be calculated. In general, both
the source charges and the test charge are in motion.

The solution to this problem is facilitated by the principle of superposition, which states
that the interaction between any two charges is completely unaffected by the presence of
others. This means that to determine the force on Q, we can first compute the force Fy, due
to g1 alone (ignoring all the others); then we compute the force Fo, due to g2 alone; and so
on. Finally, we take thé vector sum of all these individual forces: F = F; +Fy + F3 4 ...
Thus, if we can find the force on Q due to a single source charge g, we are, in principle,
done (the rest is just a question of repeating the same operation over and over, and adding
it all up).!

Well, at first sight this sounds very easy: Why don’t I just write down the formula for
the force on Q due to ¢, and be done with it? 1 could, and in Chapter 10 I shall, but you
would be shocked to see it at this stage, for not only does the force on Q depend on the
separation distance » between the charges (Fig. 2.2), it also depends on both their velocities
and on the acceleration of q. Moreover, it is not the position, velocity, and acceleration
of g right now that matter: Electromagnetic “news” travels at the speed of light, so what
concerns Q is the position, velocity, and acceleration g had at some earlier time, when the
message left.

The principle of superposition may seem “obvious” to you, but it did not have to be so simple: if the electromag-
netic force were proportional to the square of the total source charge, for instance, the principle of superposition
would not hold, since (g; + q2)2 # ql2 + q% (there would be “cross terms” to consider). Superposition is not a
logical necessity, but an experimental fact.

58
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. 0
q,®
qie * ., R
. *q; 2
L
"Source" charges "Test" charge q
Figure 2.1 Figure 2.2

Therefore, in spite of the fact that the basic question (“What is the force on Q due to
q7’) is easy to state, it does not pay to confront it head on; rather, we shall go at it by
stages. In the meantime, the theory we develop will permit the solution of more subtle
electromagnetic problems that do not present themselves in quite this simple format. To
begin with, we shall consider the special case of electrostatics in which all the source
charges are stationary (though the test charge may be moving).

2.1.2 Coulomb’s Law

What is the force on a test charge Q due to a single point charge g which is at resr a distance
2 away? The answer (based on experiments) is given by Coulomb’s law:

1 n
19,

F= .
4eq 22

2.1)

The constant €q is called the permitivity of free space. In SI units, where force is in
Newtons (N), distance in meters (m), and charge in coulombs (C),

2
0 =885x 1077
N - m?
In words, the force is proportional to the product of the charges and inversely proportional
to the square of the separation distance. As always (Sect. 1.1.4), 2 is the separation vector
from r’ (the location of q) to r (the location of Q):

a=r-r’; 2.2)

2 is its magnitude, and 4 is its direction. The force points along the line from ¢ to Q: it is
repulsive if ¢ and Q have the same sign, and attractive if their signs are opposite.

Coulomb’s law and the principle of superposition constitute the physical input for
electrostatics—the rest, except for some special properties of matter, is mathematical elab-
oration of these fundamental rules.
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Problem 2.1

(a) Twelve equal charges, g, are situated at the corners of a regular 12-sided polygon (for
instance, one on each numeral of a clock face). What is the net force on a test charge Q at the
center?

(b) Suppose one of the 12 g’s is removed (the one at “6 o’clock’™™). What is the force on Q?
Explain your reasoning carefully.

(c) Now 13 equal charges, ¢, are placed at the corners of a regular 13-sided polygon. What is
the force on a test charge Q at the center?

(d) If one of the 13 ¢’s is removed, what is the force on Q? Explain your reasoning.

2.1.3 The Electric Field

If we have several point charges q1, qo, . . . , gn, at distances 21, 22, . . ., 2, from Q, the total
force on Q is evidently
1 “ o
F = Fi+F,+...= %414—%424—...
4meg 2 25
2 2 23
Teg \ 2] 25 23
or
F = OF, (2.3)
where
1 g
Er) = =%;. 2.4
(1) = > P 24)

i=1
E is called the electric field of the source charges. Notice that it is a function of position (r),

because the separation vectors 4; depend on the location of the field point P (Fig. 2.3). But
it makes no reference to the test charge Q. The electric field is a vector quantity that varies

Source point

P
.
. Field
point
r
X

Figure 2.3
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from point to point and is determined by the configuration of source charges; physically,
E(r) is the force per unit charge that would be exerted on a test charge, if you were to place
one at P.

What exactly is an electric field? I have deliberately begun with what you might call
the “minimal” interpretation of E, as an intermediate step in the calculation of electric
forces. But 1 encourage you to think of the field as a “real” physical entity, filling the
space in the neighborhood of any electric charge. Maxwell himself came to believe that
electric and magnetic fields represented actual stresses and strains in an invisible primordial
jellylike “ether.” Special relativity has forced us to abandon the notion of ether, and with it
Maxwell’s mechanical interpretation of electromagnetic fields. (It is even possible, though
cumbersome, to formulate classical electrodynamics as an “action-at-a-distance” theory,
and dispense with the field concept altogether.) I can’t tell you, then, what a field is—only
how to calculate it and what it can do for you once you’ve got it.

Problem 2.2

(a) Find the electric field (magnitude and direction) a distance z above the midpoint between
two equal charges, ¢, a distance d apart (Fig. 2.4). Check that your result is consistent with
what you’d expect when z >> d.

(b) Repeat part (a), only this time make the right-hand charge —q instead of +4.

dlr’
P (a) Continuous (b) Line charge, A
distribution p
7 da’ 2 _~oP
ar’
g d2 | dr q (c) Surface charge, ¢ (d) Volume charge, p
Figure 2.4 Figure 2.5

2.14 Continuous Charge Distributions

Our definition of the electric field (Eq. 2.4), assumes that the source of the field is a collection
of discrete point charges g;. If, instead, the charge is distributed continuously over some
region, the sum becomes an integral (Fig. 2.5a):

1.

1
E(r)= — | —4dq. 25
(r) e | 2794 (2.5)
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If the charge is spread out along a line (Fig. 2.5b), with charge-per-unit-length A, then
dg = Adl’ (where dl’ is an element of length along the line); if the charge is smeared
out over a surface (Fig. 2.5¢), with charge-per-unit-area o, then dg = o da’ (where da’
is an element of area on the surface); and if the charge fills a volume (Fig. 2.5d), with
charge-per-unit-volume p, then dg = p d7’ (where d7’ is an element of volume):

dq — rdl' ~oda ~ pdt'.

Thus the electric field of a line charge is

1 Ar) .
E(r) = / MO s ar; 2.6)
4req 22
P
for a surface charge,
1 r).
Er) = /U( )4da’; .7
47 e 22
S
and for a volume charge,
1 r').
E(r) = / PE) s ar. 2.8)
4eg 22
v

Equation 2.8 itself is often referred to as “Coulomb’s law,” because it is such a short
step from the original (2.1), and because a volume charge is in a sense the most general
and realistic case. Please note carefully the meaning of % in these formulas. Originally, in
Eq. 2.4, 4; stood for the vector from the source charge g; to the field pointr. Correspondingly,
in Egs. 2.5-2.8, 4 is the vector from dgq (therefore from dl’, da’, or d1') to the field point

r.2

Example 2.1
Find the electric field a distance z above the midpoint of a straight line segment of length 2L,
which carries a uniform line charge A (Fig. 2.6).

Solution: It is advantageous to chop the line up into symmetrically placed pairs (at £x), for
then the horizontal components of the two fields cancel, and the net field of the pair is

1 rd
dE =2 il cosOZ.
4meg \ 22

2 Warning: The unit vector 2 is not constant; its direction depends on the source point r’, and hence it cannot be
taken outside the integrals 2.5-2.8. 1n practice, you must work with Cartesian components (X, ¥, Z are constant,
and do come out), even if you use curvilinear coordinates to perform the integration.
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2
dx
-L T +L «x
Figure 2.6

Here cosf = z/2,2 = v/ z2 + x2, and x runs from 0 to L:

1 L 2X
E = / ‘ dx
dmey Jo (22 +x2)3/2
L

2Az X
47'[6() 22 /ZZ + x2
1 2AL

47T6()Z /Z2+L2,

0

and it aims in the z-direction.
For points far from the line (z 3> L), this result simplifies:
_ 1 2L
T dmeg 72
which makes sense: From far away the line “looks” like a point charge g = 2L, so the field
reduces to that of point charge g /(4megz2). In the limit L — oo, on the other hand, we obtain
the field of an infinite straight wire:
1 2%

E= :
4req z

or, more generally,
12X
- 47 €0 T ’

(2.9)

where s is the distance from the wire.

Problem 2.3 Find the electric field a distance z above one end of a straight line segment of
length L (Fig. 2.7), which carries a uniform line charge A. Check that your formula is consistent
with what you would expect for the case z > L.
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Problem 2.4 Find the electric field a distance z above the center of a square loop (side a)
carrying uniform line charge A (Fig. 2.8). [Hint: Use the result of Ex. 2.1.]

Problem 2.5 Find the electric field a distance z above the center of a circular loop of radius r
(Fig. 2.9), which carries a uniform line charge A.

Problem 2.6 Find the electric field a distance z above the center of a flat circular disk of radius
R (Fig. 2.10), which carries a uniform surface charge o. What does your formula give in the
limit R — 00? Also check the case z >> R.

Problem 2.7 Find the electric field a distance z from the center of a spherical surface of radius
R (Fig. 2.11), which carries a uniform charge density o. Treat the case z < R (inside) as well
as z > R (outside). Express your answers in terms of the total charge g on the sphere. [Hinz:
Use the law of cosines to write 2 in terms of R and 6. Be sure to take the posifive square root:

VR 4+ 72 —2Rz=(R—7)if R > z,butit’s z — R)if R < z.]

Problem 2.8 Use your result in Prob. 2.7 to find the field inside and outside a sphere of radius
R, which carries a uniform volume charge density p. Express your answers in terms of the
total charge of the sphere, g. Draw a graph of |E| as a function of the distance from the center.

Figure2.10 Figure 2.11
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2.2 Divergence and Curl of Electrostatic Fields

2.2.1 Field Lines, Flux, and Gauss’s Law

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us how to
compute the field of a charge distribution, and Eq. 2.3 tells us what the force on a charge Q
placed in this field will be. Unfortunately, as you may have discovered in working Prob. 2.7,
the integrals involved in computing E can be formidable, even for reasonably simple charge
distributions. Much of the rest of electrostatics is devoted to assembling a bag of tools and
tricks for avoiding these integrals. It all begins with the divergence and curl of E. 1 shall
calculate the divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show
you a more qualitative, and perhaps more illuminating, intuitive approach.
Let’s begin with the simplest possible case: a single point charge ¢, situated at the
origin:
1 ¢
4meq r?

E() = r. (2.10)
To get a “feel” for this field, I might sketch a few representative vectors, as in Fig. 2.12a.
Because the field falls off like 1/r2, the vectors get shorter as you go farther away from the
origin; they always point radially outward. But there is a nicer way to represent this field,
and that’s to connect up the arrows, to form field lines (Fig. 2.12b). You might think that I
have thereby thrown away information about the srrengrh of the field, which was contained
in the length of the arrows. But actually I have not. The magnitude of the field is indicated
by the density of the field lines: it’s strong near the center where the field lines are close
together, and weak farther out, where they are relatively far apart.

In truth, the field-line diagram is deceptive, when I draw it on a two-dimensional surface,
for the density of lines passing through a cjrcle of radius  is the total number divided by the
circumference (n/2mr), which goes like (1/r), not (1/7%). But if you imagine the model in
three dimensions (a pincushion with needles sticking out in all directions), then the density
of lines is the total number divided by the area of the sphere (n/47 %), which does go like

(1/r%).

v @ (b)

Figure 2.12
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Equal but opposite charges

Figure 2.13

Such diagrams are also convenient for representing more complicated fields. Of course,
the number of lines you draw depends on how energetic you are (and how sharp your pencil
is), though you ought to inciude enough to get an accurate sense of the field, and you must
be consistent: If charge g gets 8 lines, then 2g deserves 16. And you must space them
fairly—they emanate from a point charge symmetrically in all directions. Field lines begin
on positive charges and endon negative ones; they cannot simply terminate in midair, though
they may extend out to infinity. Moreover, field lines can never cross—at the intersection,
the field would have two different ditections at once! With all this in mind, it is easy to
sketch the field of any simple configuration of point charges: Begin by drawing the lines
in the neighborhood of each charge, and then connect them up or extend them to infinity
(Figs. 2.13 and 2.14).

Equal charges

Figure 2.14
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Figure 2.15

In this model the flux of E through a surface S,
<I>Est-da, 211
S

is a measure of the “number of field lines” passing through S. 1 put this in quotes because of
course we can only draw a representative sample of the field lines—the foral number would
be infinite. But for a given sampling rate the flux is proporrional to the number of lines
drawn, because the field strength, remember, is proportional to the density of field lines
(the number per unit area), and hence E - da is proportional to the number of lines passing
through the infinitesimal area da. (The dot product picks out the component of da along
the direction of E, as indicated in Fig. 2.15. Tt is only the area in the plane perpendicular
to E that we have in mind when we say that the density of field lines is the number per unit
area.)

This suggests that the flux through any closed surface is a measure of the total charge
inside. For the field lines that originate on a positive charge must either pass out through
the surface or else terminate on a negative charge inside (Fig. 2.16a). On the other hand, a
charge outside the surface will contribute nothing to the total flux, since its field lines pass
in one side and out the other (Fig. 2.16b). This is the essence of Gauss’s law. Now let’s
make it quantitative.

(b)

Figure 2.16
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In the case of a point charge g at the origin, the flux of E through a sphere of radius r is

%E-da:/ : (if)-(rzsinededaaf): L, (2.12)
4mey \r2 €0

Notice that the radius of the sphere cancels out, for while the surface area goes up as r2, the
field goes down as 1/r?, and so the product is constant. In terms of the field-line picture, this
makes good sense, since the same number of field lines passes through any sphere centered
at the origin, regardless of its size. In fact, it didn’t have to be a sphere—any closed surface,
whatever its shape, would trap the same number of field lines. Evidently the flux through
any surface enclosing the charge is q /€.

Now suppose that instead of a single charge at the origin, we have a bunch of charges
scattered about. According to the principle of superposition, the total field is the (vector)
sum of all the individual fields: .

E= Z E;.
i=1

The flux through a surface that encloses them all, then, is

frn=3(fo-m)-32(La)

For any closed surface, then,

1

%E'da: — Oenc, (2.13)
€0

S

where Qenc is the total charge enclosed within the surface. This is the quantitative state-
ment of Gauss’s law. Although it contains no information that was not already present in
Coulomb’s law and the principle of superposition, it is of almost magical power, as you will
see in Sect. 2.2.3. Notice that it all hinges on the 1/r2 character of Coulomb’s law; without
that the crucial cancellation of the r’s in Eq. 2.12 would not take place, and the total flux
of E would depend on the surface chosen, not merely on the total charge enclosed. Other
1/r2 forces (I am thinking particularly of Newton’s law of universal gravitation) will obey
“Gauss’s laws” of their own, and the applications we develop here carry over directly.

As it stands, Gauss’s law is an integral equation, but we can readily turn it into a
differential one, by applying the divergence theorem:

%E-da:/(V~E)dr.

S v

Rewriting Qenc in terms of the charge density p, we have

QenCZ/PdT-

v
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/w.mdr=/<ﬁ)da
€0
v v

And since this holds for any volume, the integrands must be equal:

So Gauss’s law becomes

1
V.E=—p. (2.14)
€0

Equation 2.14 carries the same message as Eq. 2.13; it is Gauss’s law in differential
form. The differential version is tidier, but the integral form has the advantage in that it
accommodates point, line, and surface charges more naturally.

Problem 2.9 Suppose the electric field in some region is found to be E = kr>#, in spherical
coordinates (k is some constant).

(a) Find the charge density p.

(b) Find the total charge contained in a sphere of radius R, centered at the origin. (Do it two
different ways.)

Problem 2.10 A charge g sits at the back corner of a cube, as shown in Fig. 2.17. What is the
flux of E through the shaded side?

Figure 2.17

2.2.2 The Divergence of E

Let’s go back, now, and calculate the divergence of E directly from Eq. 2.8:

A

/ %mﬂaﬁ (2.15)

all space

Er) =

dmeg

(Originally the integration was over the volume occupied by the charge, but I may as
well extend it to all space, since p = 0 in the exterior region anyway.) Noting that the
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r-dependence is contained in2 = r — r/, we have

1 2
V-E= V= Ydt'.
4]‘[60/ (@2) plr)de

This is precisely the divergence we calculated in Eq. 1.100:

V. (%) = 4183 (n).

f4n83(r —1)p)dr = %p(r), (2.16)

Thus
1

V.E=
dmr ey

which is Gauss’s law in differential form (2.14). To recover the integral form (2.13), we
run the previous argument in reverse—integrate over a volume and apply the divergence

theorem: | |
/V'EdtzﬁE'da=—/,Odf:_Qenc'
€0 €0
\%

1% S

2.2.3 Applications of Gauss’s Law

I must interrupt the theoretical development at this point to show you the extraordinary
power of Gauss’s law, in integral form. When symmetry permits, it affords by far the
quickest and easiest way of computing electric fields. I'll illustrate the method with a series
of examples.

Example 2.2
Find the field outside a uniformly charged solid sphere of radius R and total charge g.
Solution: Draw a spherical surface at radius r > R (Fig. 2.18); this is called a “Gaussian

surface” in the trade. Gauss’s law says that for this surface (as for any other)

1
fnda - Loene.
€0
S

and Qenc = ¢. At first glance this doesn’t seem to get us very far, because the quantity we
want (E) is buried inside the surface integral. Luckily, symmetry allows us to extract E from
under the integral sign: E certainly points radially outward,® as does da, so we can drop the

dot product,
/E-da:/iEIdu,
S

S

3 you doubt that E is radial, consider the alternative. Suppose, say, that it points due east, at the “equator.” But
the orientation of the equator is perfectly arbitrary—nothing is spinning here, so there is no natural “north-south”
axis—any argument purporting to show that E points east could just as well be used to show it points west, or
north, or any other direction. The only unigue direction on a sphere is radial.
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Gaussian -
surface

Figure 2.18

and the magnitude of E is constant over the Gaussian surface, so it comes outside the integral:

/lElda: |E|/ da = |E| 47 r2.
S

S
Thus
2 1
|E|4nr© = —q,
€0
or
1 ¢q.
= =T.
dreg r?

Notice a remarkable feature of this result: The field outside the sphere is exactly the same as
it would have been if all the charge had been concentrated at the center.

Gauss’s law is always true, but it is not always useful. If p had not been uniform (or, at
any rate, not spherically symmetrical), or if I had chosen some other shdpe for my Gaussian
surface, it would still have been true that the flux of E is (1/€p)q, but I would not have
been certain that E was in the same direction as da and constant in magnitude over the
surface, and without thdt I could not pull |E| out of the integral. Symmetry is crucial to this
application of Gauss’s law. As far as [ know, there are only three kinds of symmetry that
work:

1. Spherical symmetry. Make your Gaussian surface a concentric sphere.

2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder
(Fig. 2.19).

3. Plane symmetry. Use a Gaussian “pillbox,” which straddles the surface
(Fig. 2.20).

Although (2) and (3) technically require infinitely long cylinders, and planes extending to
infinity in all directions, we shall often use them to get approximate answers for “long”
cylinders or “large” plane surfaces, at points far from the edges.
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Gaussian
pillbox

Gaussian surface

Figure 2.19 Figure 2.20

Example 2.3

A long cylinder (Fig. 2.21) carries a charge density that is proportional to the distance from
the axis: p = ks, for some constant k. Find the electric field inside this cylinder.

Solution: Draw a Gaussian cylinder of length / and radius s. For this surface, Gauss’s law
states:
1
fE'da = —Qenc-
€0
S
The enclosed charge is
5
Qenc = /pdr = /(ks’)(s/ds/ahb dz) = 2nkl/ s ds' = Sukls®.
0

(Iused the volume element appropriate to cylindrical coordinates, Eq. 1.78, and integrated ¢
from 0 to 27, dz from O to /. I put a prime on the integration variable s/, to distinguish it from
the radius s of the Gaussian surface.)

Gaussian
surface

Figure 2.21
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Now, symmetry dictates that E must point radially outward, so for the curved portion of the
Gaussian cylinder we have:

/E-da=/|E|da:|Ef/da=|E|2n'sl,

while the two ends contribute nothing (here E is perpendicular to da). Thus,

12
IE| 27l = — Smkis>.
€0 3

or, finally,

Example 2.4

An infinite plane carries a uniform surface charge . Find its electric field.

Solution: Draw a “Gaussian pillbox,” extending equal distances above and below the plane
(Fig. 2.22). Apply Gauss’s law to this surface:

1
fE‘da: — Qenc-
€0

In this case, Qenc = 0’ A, where A is the area of the lid of the pillbox. By symmetry, E points
away from the plane (upward for points above, downward for points below). Thus, the top and
bottom surfaces yield

/E -da = 2A|E|,

Figure 2.22
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whereas the sides contribute nothing. Thus

1
2A|E| = —0 A,
€0
or p
E- i 2.17)
2¢€p

where i is a unit vector pointing away from the surface. In Prob. 2.6, you obtained this same
result by a much more laborious method.

It seems surprising, at first, that the field of an infinite plane is independent of how far away
you are. What about the 1/ r in Coulomb’s law? Well, the point is that as you move farther
and farther away from the plane, more and more charge comes into your “field of view” (a
cone shape extending out from your eye), and this compensates for the diminishing influence
of any particular piece. The electric field of a sphere falls off like 1/ #2; the electric field of an
infinite line falls off like 1/r; and the electric field of an infinite plane does not fall off at all.

Although the direct use of Gauss’s law to compute electric fields is limited to cases of

spherical, cylindrical, and planar symmetry, we can put together combinations of objects
possessing such symmetry, even though the arrangement as a whole is not symmetrical.
For example, invoking the principle of superposition, we could find the field in the vicinity
of two uniformly charged parallel cylinders, or a sphere near an infinite charged plane.

Example 2.5

Two infinite parallel planes carry equal but opposite uniform charge densities +o (Fig. 2.23).
Find the field in each of the three regions: (i) to the left of both, (ii) between them, (iii) to the
right of both.

Solution: The left plate produces a field (1/2€g)o which points away from it (Fig. 2.24)—to
the left in region (i) and to the right in regions (ii) and (iii). The right plate, being negatively
charged, produces a field (1/2¢p)g, which points toward it—to the right in regions (i) and
(ii) and to the left in region (iii). The two fields ¢ancel in regions (i) and (iii); they conspire
in region (ii). Conclusion: The field is (1/€y)o, and points to the right, between the planes;
elsewhere it is zero.

@ (ii) (iii)

+G -0

Figure 2.23 Figure 2.24
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Problem 2.11 Use Gauss’s law to find the electric field inside and outside a spherical shell of
radius R, which carries a uniform surface charge density o. Compare your answer to Prob. 2.7.

Problem 2.12 Use Gauss’s law to find the electric field inside a uniformly charged sphere
(charge density p). Compare your answer to Prob. 2.8.

Problem 2.13 Find the electric field a distance s from an infinitely long straight wire, which
carries a uniform line charge A. Compare Eq. 2.9.

Problem 2.14 Find the electric field inside a sphere which carries a charge density proportional
to the distance from the origin, p = kr, for some constant k. [Hint: This charge density is not
uniform, and you must integrate to get the enclosed charge.]

Problem 2.15 A hollow spherical shell carries charge density

pP= r_2
in the region a < r < b (Fig. 2.25). Find the electric field in the three regions: (i) r < a, (ii)
a <r < b, (iii) r > b. Plot |E as a function of r.

Problem 2.16 A long coaxial cable (Fig. 2.26) carries a uniform volume charge density p on
the inner cylinder (radius @), and a uniform surface charge density on the outer cylindrical
shell (radius b). This surface charge is negative and of just the right magnitude so that the
cable as a whole is electrically neutral. Find the electric field in each of the three regions: (i)
inside the inner cylinder (s < a), (i) between the cylinders (a < s < b), (iii) outside the cable
(s > b). Plot |E| as a function of s.

Problem 2.17 An infinite plane slab, of thickness 2d, carries a uniform volume charge density
p (Fig. 2.27). Find the electric field, as a function of y, where y = 0 at the center. Plot E
versus y, calling £ positive when it points in the +y direction and negative when it points in
the —y direction.

Problem 2.18 Two spheres, each of radius R and carrying uniform charge densities +p and
— p, respectively, are placed so that they partially overlap (Fig. 2.28). Call the vector from the
positive center to the negative center d. Show that the field in the region of overlap is constant,
and find its value. [Hint: Use the answer to Prob. 2.12.]

Figure 2.25 Figure 2.26
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Figure 2.27 Figure 2.28

2.2.4 The Curl of E

I’ll calculate the curl of E, as I did the divergence in Sect. 2.2.1, by studying first the simplest
possible configuration: a point charge at the origin. In this case
1 g,
= ———T.
4meg r?
Now, a glance at Fig. 2.12 should convince you that the curl of this field has to be zero, but

I suppose we ought to come up with something a little more rigorous than that. What if we
calculate the line integral of this field from some point a to some other point b (Fig. 2.29):

b
f E.dl
a

In spherical coordinates, dl = dr t +r df 6 + rsinf d¢ $, SO

1 4
E-dl=——=dr
Areor?

Therefore,

b b
1 -1
f E-dl= 9 g4y = 4
a Areg Ju 12 Ameg r

'y 1

= (1 - 1) . QI8)
ra drweg \rg p
where r, is the distance from the origin to the point a and r, is the distance to b. The
integral around a closed path is evidently zero (for then r, = rp):

?{Edl =0, (2.19)
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Figure 2.29

and hence, applying Stokes’ theorem,

220

Now, I proved Egs. 2.19 and 2.20 only for the field of a single point charge at the origin,
but these results make no reference to what is, after all, a perfectly arbitrary choice of
coordinates; they also hold no matter where the charge is located. Moreover, if we have
many charges, the principle of superposition states that the total field is a vector sum of
their individual fields:

E=E, +E +...,

80
VXE=VX(E +E+..)=(VXE)+(VxEy)+...=0.

Thus, Eqs. 2.19 and 2.20 hold for any static charge distribution whatever.

Problem 2.19 Calculate V x E directly from Eq. 2.8, by the method of Sect. 2.2.2. Refer to
Prob. 1.62 if you get stuck.

2.3 Electric Potential

2.3.1 Introduction to Potential

The electric field E is not just any old vector function; it is a very special kind of vector
function, one whose curl is always zero. E = yX, for example, could not possibly be
an electrostatic field; no set of charges, regardless of their sizes and positions, could ever
produce such a field. In this section we’re going to exploit this special property of electric
fields to reduce a vector problem (finding E) down to a much simpler scalar problem. The
first theorem in Sect. 1.6.2 asserts that any vector whose curl is zero is equal to the gradient
of some scalar. What I'm going to do now amounts to a proof of that claim, in the context
of electrostatics.
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(i)

Figure 2.30

Because V x E = 0, the line integral of E around any closed loop is zero (that follows
from Stokes’ theorem). Because § E - dl = 0, the line integral of E from point a to point
b is the same for all paths (otherwise you could go out along path (i) and return along path
(ii)—Fig. 2.30—and obtain § E - dl # 0). Because the line integral is independent of path,
we can define a function*

V() = —/rE~dl. (.21
(@)

Here O is some standard reference point on which we have agreed beforehand; V then
depends only on the point r. It is called the electric potential.
Evidently, the potential difference between two points a and b is

b a
V(b)— V() = —/ E-dl+/ E.dl
(@] (@]

b (@) b
—f E-dl—f E-dl:—f E - dl (2.22)
(@] a a

Now, the fundamental theorem for gradients states that

b
Vb) —V(a) = / (VV) - dl,

a

b b
f (VV)-dl:—f E.-dl

Since, finally, this is true for any points a and b, the integrands must be equal:

2

Equation 2.23 is the differential version of Eq. 2.21; it says that the electric field is the
gradient of a scalar potential, which is what we set out to prove.

SO

4To avoid any possible ambiguity I should perhaps put a prime on the integration variable:
r
V(r) =~ / E(r')-dl.
@]

But this makes for cumbersome notation, and I prefer whenever possible to reserve the primes for source points.
However, when (as in Ex. 2.6) we calculate such integrals explicitly, I shall put in the primes.
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Notice the subtle but crucial role played by path independence (or, equivalently, the fact
that V x E = 0) in this argument. If the line integral of E depended on the path taken, then
the “definition” of V, Eq. 2.21, would be nonsense. It simply would not define a function,
since changing the path would alter the value of V(r). By the way, don’t let the minus sign
in Eq. 2.23 distract you; it carries over from 2.21 and is largely a matter of convention.

Problem 2.20 One of these is an impossible electrostatic field. Which one?

@E =k[xyX+2yzy+ 3xz%];
() E = k[y? & + Qxy +22) § + 2yz .

Here k is a constant with the appropriate units. For the possible one, find the potential, using
the origin as your reference point. Check your answer by computing VV. [Hint: You must
select a specific path to integrate along. It doesn’t matter what path you choose, since the
answer is path-independent, but you simply cannot integrate unless you have a particular path
in mind.]

2.3.2 Comments on Potential

(i) The name.  The word “potential” is a hideous misnomer because it inevitably
reminds you of potential energy. This is particularly confusing, because there is a connection
between “potential” and “potential energy,” as you will see in Sect. 2.4. I'm sorry that it
is impossible to escape this word. The best I can do is to insist once and for all that
“potential” and “‘potential energy” are completely different terms and should, by all rights,
have different names. Incidentally, a surface over which the potential is constant is called
an equipotential.

(ii) Advantage of the potential formulation.  If you know V, you can easily get
E—just take the gradient: E = —VV. This is quite extraordinary when you stop to think
about it, for E is a vector quantity (three components), but V is a scalar (one component).
How can one function possibly contain all the information that three independent functions
carry? The answer is that the three components of E are not really as independent as
they look; in fact, they are explicitly interrelated by the very condition we started with,
V x E = 0. In terms of components,

0E, OEy % _O0Ey 0E, 0E;

dy ax dy oz’ 9z ax

This brings us back to my observation at the beginning of Sect. 2.3.1: E is a very special
kind of vector. What the potential formulation does is to exploit this feature to maximum
advantage, reducing a vector problem down to a scalar one, in which there is no need to
fuss with components.
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(iii) The reference point O.  There is an essential ambiguity in the definition of
potential, since the choice of reference point O was arbitrary. Changing reference points
amounts to adding a constant K to the potential:

r O r
v’(r)=—/ E«dl:—/ E~dl—/E~dl=K+V(r),
’ 4 O

where K is the line integral of E from the old reference point O to the new one (. Of
course, adding a constant to V will not affect the potential difference between two points:

Vi(b) — V'(a) = V(b) — V(a),

since the K’s cancel out. (Actually, it was already clear from Eq. 2.22 that the potential
difference is independent of O, because it can be written as the line integral of E from a to
b, with no reference to O0.) Nor does the ambiguity affect the gradient of V:

VvV =VYV,

since the derivative of a constant is zero. That’s why all such V’s, differing only in their
choice of reference point, correspond to the same field E.

Evidently potential as such carries no real physical significance, for at any given point
we can adjust its value at will by a suitable relocation of . In this sense it is rather like
altitude: If I ask you how high Denver is, you will probably tell me its height above sea level,
because that 1s a convenient and traditional reference point. But we could as well agree
to measure altitude above Washington D.C., or Greenwich, or wherever. That would add
(or, rather, subtract) a fixed amount from all our sea-level readings, but it wouldn’t change
anything about the real world. The only quantity of intrinsic interest is the difference in
altitude between two points, and that is the same whatever your reference level.

Having said this, however, there is a “natural” spot to use for @ in electrostatics—
analogous to sea level for altitude—and that is a point infinitely far from the charge. Or-
dinarily, then, we “set the zero of potential at infinity.” (Since V() = 0, choosing a
reference point is equivalent to selecting a place where V is to be zero.) But I must warn
you that there is one special circumstance in which this convention fails: when the charge
distribution itself extends to infinity. The symptom of trouble, in such cases, is that the
potential blows up. For instance, the field of a uniformly charged plane is (o/2¢g)ii, as we
found in Ex. 2.4; if we naively put O = oo, then the potential at height z above the plane
becomes

t 1
V() = —f —odz=——0(z — 0).
oo 2€0 2eg
The remedy is simply to choose some other reference point (in this problem you might use
the origin). Notice that the difficulty occurs only in textbook problems; in “real life” there
is no such thing as a charge distribution that goes on forever, and we can always use infinity
as our reference point.
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(iv) Potential obeys the superposition principle. The original superposition princi-
ple of electrodynamics pertains to the force on a test charge Q. It says that the total force
on @ is the vector sum of the forces attributable to the source charges individually:

F=F1+F,+...
Dividing through by Q, we find that the electric field, too, obeys the superposition principle:
E=E;+E;+...

Integrating from the common reference point to r, it follows that the potential also satisfies
such a principle:

V=Vi+Va+...

That is, the potential at any given point is the sum of the potentials due to all the source
charges separately. Only this time it is an ordinary sum, not a vector sum, which makes it
a lot easier to work with.

(v) Units of Potential.  In our units, force is measured in newtons and charge in
coulombs, so electric fields are in newtons per coulomb. Accordingly, potential is measured
in newton-meters per coulomb or joules per coulomb. A joule per coulomb is called a volt.

Example 2.6

Find the potential inside and outside a spherical shell of radius R (Fig. 2.31), which carries a
uniform surface charge. Set the reference point at infinity.

Figure 2.31
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Solution: From Gauss’s law, the field outside is

1
4meg

E =

4;
r2 ’

where ¢ is the total charge on the sphere. The field inside is zero. For points outside the sphere
(r > R),

r -1 r I r 1
V(r):—/ E-dl= L gy = 7 = - 9
o drey Joo r'? degr' | Amey T

To find the potential inside the sphere (r < R), we must break the integral into two sections,
using in each region the field that prevails there:

R 1 q
0= —.
oo+ 47‘[60R

-1 [k 4 r 1 ¢
- L ar — | @dr' = -—4
v dreg /oo 72 /R( yar 4reg 1

Notice that the potential is nof zero inside the shell, even though the field is. V is a constant
in this region, to be sure, so that VV = 0—that’s what matters. In problems of this type you
must always work your way in from the reference point; that’s where the potential is “nailed
down.” It is tempting to suppose that you could figure out the potential inside the sphere on
the basis of the field there alone, but this is false: The potential inside the sphere is sensitive to
what’s going on outside the sphere as well. If I placed a second uniformly charged shell out at
radius R’ > R, the potential inside R would change, even though the field would still be zero.
Gauss’s law guarantees that charge exterior to a given point (that is, at larger r) produces no
net field at that point, provided it is spherically or cylindrically symmetric; but there is no such
rule for potential, when infinity is used as the reference point.

Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere whose
radius is R and whose total charge is ¢. Use infinity as your reference point. Compute the
gradient of V in each region, and check that it yields the correct field. Sketch V (r).

Problem 2.22 Find the potential a distance s from an infinitely long straight wire that carries
a uniform line charge A. Compute the gradient of your potential, and check that it yields the
correct field.

Problem 2.23 For the charge configuration of Prob. 2.15, find the potential at the center, using
infinity as your reference point.

Problem 2.24 For the configuration of Prob. 2.16, find the potential difference between a point
on the axis and a point on the outer cylinder. Note that it is not necessary to commit yourself
to a particular reference point if you use Eq. 2.22.
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2.3.3 Poisson’s Equation and Laplace’s Equation

We found in Sect. 2.3.1 that the electric field can be written as the gradient of a scalar
potential.

E=-VvV.

The question arises: What do the fundamental equations for E,

V-E= and VXE=0,

L4
€0

look like, in terms of V? Well, V-E = V- (—VV) = —V?V 50, apart from that persisting
minus sign, the divergence of E is the Laplacian of V. Gauss’s law then says that

vy = -2

. (2.24)
€0

This is known as Poisson’s equation. In regions where there is no charge, so that p = 0,
Poisson’s equation reduces to Laplace’s equation,

V2V =0. (2.25)

We’ll explore these equations more fully in Chapter 3.
So much for Gauss’s law. What about the curl law? This says that

VXE=VXx(-VV)

must equal zero. But that’s no condition on V—curl of gradient is always zero. Of course,
we used the curl law to show that E could be expressed as the gradient of a scalar, so it’s not
really surprising that this works out: V x E = 0 permits E = —VV; in return, E = —VV
guarantees V. X E = 0. It takes only one differential equation (Poisson’s) to determine V/,
because V is a scalar; for E we needed rwo, the divergence and the curl.

2.3.4 The Potential of a Localized Charge Distribution

I defined V in terms of E (Eq. 2.21). Ordinarily, though, it’s E that we’re looking for (if we
already knew E there wouldn’t be much point in calculating V). The idea is that it might be
easier to get V first, and then calculate E by taking the gradient. Typically, then, we know
where the charge is (that is, we know p), and we want to find V. Now, Poisson’s equation
relates V and p, but unfortunately it’s “the wrong way around”: it would give us p, if we
knew V, whereas we want V, knowing p. What we must do, then, is “invert” Poisson’s
equation. That’s the program for this section, although I shall do it by roundabout means,
beginning, as always, with a point charge at the origin.
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2 g, ®

° *
q;
q.* o *

q

Figure 2.32

Setting the reference point at infinity, the potential of a point charge ¢ at the origin is

r

qa ,,_ 1 qf 1 ¢

v = dreg Joo 1 dr’ = dmey r' o dmeyr’

(You see here the special virtue of using infinity for the reference point: it kills the lower
limit on the integral.) Notice the sign of V; presumably the conventional minus sign in
the definition of V (Eq. 2.21) was chosen precisely in order to make the potential of a
positive charge come out positive. It is useful to remember that regions of positive charge
are potential “hills,” regions of negative charge are potential “valleys,” and the electric field
points “downhill,” from plus toward minus.

In general, the potential of a point charge g is

4 (2.26)

V() = ,
™ dmeg 2

where 2, as always, is the distance from the charge to r (Fig. 2.32). Invoking the superpo-
sition principle, then, the potential of a collection of charges is

1 &g
V() = -, 2.27)
47'[6() i=1 i
or, for a continuous distribution,
V(r) ! / 1a’ (2.28)
r=—— | —-dg. .
4 ey 2 1
In particular, for a volume charge, it’s
1 r
vy = —— [ 29 4 (2.29)
4meg 2

This is the equation we were looking for, telling us how to compute V when we know p; it
is, if you like, the “solution” to Poisson’s equation, for a localized charge distribution.” I

5Equation 2.29 is an example of the Helmholtz theorem (Appendix B), in the context of electrostatics, where
the curl of E is zero and its divergence is p/¢g.



2.3. ELECTRIC POTENTIAL 85

invite you to compare Eq. 2.29 with the corresponding formula for the electric field interms

of p (Eq. 2.8):
L o),
adt’.
47[60/ 22 ¢

The main point to notice is that the pesky unit vector % is now missing, so there is no need
to worry about components. Incidentally, the potentials of line and surface charges are

b / MO g ang L / AL (2.30)

4meg 2 4meg 2

E(l‘) =

I should warn you that everything in this section is predicated on the assumption that
the reference point is at infinity. This is hardly apparent in Eq. 2.29, but remember that we
got that equation from the potential of a point charge at the origin, (1 /4mep)(g/r), which
is valid only when O = co. If you try to apply these formulas to one of those artificial
problems in which the charge itself extends to infinity, the integral will diverge.

Example 2.7
Find the potential of a uniformly charged spherical shell of radius R (Fig. 2.33).
Solution: This is the same problem we solved in Ex. 2.6, but this time we shall do it using

Eq. 2.30:
1
/z da’.
dreg J 2

Let’s set the point r on the z axis and use the law of cosines to express 2 in terms of the polar
angle 6:

V)=

22 = R? + zz —2Rzcosd’,

Figure 2.33
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An element of surface area on this sphere is R2sin6’ o’ d¢’, so
/ R%sing’ de’ d¢’
1oz
VR2 472 — 2Rz cos 6’
T sin g’

= ZJTRZG/ de’
0 VRZ¥ 72 _2Rzcosd’

T

4megV (2)

1
= 27R%¢ <R—\/R2 +z72 - 2chos9’)
z

0

- 2”ZRU (\/R2+z2+2Rz—\/R2+z2—2Rz)
27R
= T2 [V®+? - Viw=-27).

At this stage we must be very careful to take the positive root. For points outside the sphere, z is

greater than R, and hence v/ (R ~ z)2 = z— R; for points inside the sphere, v/ (R — 2)2 = R—z.
Thus,

2

Ro R0 .
V@i = —Il(R+2z)—(z—R)]=——, outside;
2¢p2 €02
R R
V@) = s—[(R+2—(R—2)]=—, inside.
2€0z €

In terms of the total charge on the shell, ¢ = 4x R2g, V() = (1/4m€g)(g/2) (or, in general,
V(ry = (1/4m€p){(gq/r)) for points outside the sphere, and (1/4mep)(g/R) for points inside.

Of course, in this particular case, it was easier to get V by using 2.21 than 2.30, because
Gauss’s law gave us E with so little effort. But if you compare Ex. 2.7 with Prob. 2.7, you will
appreciate the power of the potential formulation.

Problem 2.25 Using Eqgs. 2.27 and 2.30, find the potential at a distance z above the center of
the charge distributions in Fig. 2.34. In each case, compute E = —VV, and compare your
answers with Prob. 2.2a, Ex. 2.1, and Prob. 2.6, respectively. Suppose that we changed the
right-hand charge in Fig. 2.34a to —g; what then is the potential at P? What field does that
suggest? Compare your answer to Prob. 2.2b, and explain carefully any discrepancy.

1P 1P
| |
| |

z1 zl
| |
| |
I |
' i
: Al

+q d +q 2L .
(a) Two point charges (b) Uniform line charge (c) Uniform surface charge

Figure 2.34
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Problem 2.26 A conical surface (an empty ice-cream cone) carries a uniform surface charge
0. The height of the cone is 4, as is the radius of the top. Find the potential difference between
points a (the vertex) and b (the center of the top).

Problem 2.27 Find the potential on the axis of a uniformly charged solid cylinder, a distance
z from the center. The length of the cylinder is L, its radius is R, and the charge density is p.
Use your result to calcnlate the electric field at this point. (Assume that z > L/2.)

Problem 2.28 Use Eqg. 2.29 to calculate the potential inside a uniformly charged solid sphere
of radius R and total charge g. Compare your answer to Prob. 2.21.

Problem 2.29 Check that Eq. 2.29 satisfies Poisson’s equation, by applying the Laplacian and
using Eq. 1.102.

2.3.5 Summary; Electrostatic Boundary Conditions

In the typical electrostatic problem you are given a source charge distribution p, and you
want to find the electric field E it produces. Unless the symmetry of the problem admits a
solution by Gauss’s law, it is generally to your advantage to calculate the potential first, as
an intermediate step. These, then, are the three fundamental quantities of electrostatics: p,
E, and V. We have, in the course of our discussion, derived all six formulas interrelating
them. These equations are neatly summarized in Fig. 2.35. We began with just two exper-
imental observations: (1) the principle of superposition—a broad general rule applying to
all electromagnetic forces, and (2) Coulomb’s law—the fundamental law of electrostatics.
From these, all else followed.

Figure 2.35
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EJ_

Figure 2.36

You may have noticed, in studying Exs. 2.4 and 2.5, or working problems such as 2.7,
2.11, and 2.16, that the electric field always undergoes a discontinuity when you cross a
surface charge o. In fact, it is a simple matter to find the amount by which E changes at
such a boundary. Suppose we draw a wafer-thin Gaussian pillbox, extending just barely
over the edge in each direction (Fig. 2.36). Gauss’s law states that

1 1
fE~da= — Oenc = —0A,
€0 €0
S

where A is the area of the pillbox lid. (If o varies from point to point or the surface is
curved, we must pick A to be extremely small.) Now, the sides of the pillbox contribute
nothing to the flux, in the limit as the thickness € goes to zero, so we are left with

1
L 1
E - Ebelow = ZO-O’, (231)

above

1
where E e ove |

above, and Ey, . is the same, only just below the surface. For consistency, we let “upward”
be the positive direction for both. Conclusion: The normal component of E is discontinuous
by an amount o /€y at any boundary. In particular, where there is no surface charge, E Lis
continuous, as for instance at the surface of a uniformly charged solid sphere.

The tangential component of E, by contrast, is always continuous. For if we apply

Eq.2.19,
fE -dl =0,

to the thin rectangular loop of Fig. 2.37, the ends give nothing (as € — 0), and the sides
give (E|| [—E 1), so

above below

denotes the component of E that is perpendicular to the surface immediately

_g

below?’

E||

above

(2.32)



2.3. ELECTRIC POTENTIAL 89

Figure 2.37

where El stands for the components of E parallel to the surface. The boundary conditions
on E (Egs. 2.31 and 2.32) can be combined into a single formula:

g

Eabove - Ebelow = _ﬁs (233)
€0

where f is a unit vector perpendicular to the surface, pointing from “below” to “above.”®
The potential, meanwhile, is continuous across any boundary (Fig. 2.38), since

b
Vabove — Vhelow = _/ E - dl;
a
as the path length shrinks to zero, so too does the integral:

Vabove = Vhelow- 2.34)

Figure 2.38

®Notice that it doesn’t matter which side you call “above” and which “below,” since reversal would switch the
direction of fi. Incidentally, if you're only interested in the field due to the (essentially flat) local patch of surface
charge itself, the answer is (0'/2€g)i immediately above the surface, and —(0'/2¢()h immediately below. This
follows from Ex. 2.4, for if you are close enough to the patch it “looks” like an infinite plane. Evidently the entire
discontinuity in E is attributable to this local patch of charge.
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However, the gradient of V inherits the discontinuity in E; since E = —VV, Eq. 2.33

implies that
1 .,
VVavove — V Voelow = _aan, (2.35)
or, more conveniently,
0 Vabove . 3 Vielow _ —LU, (2.36)
on on €0
where -
—=VV.h 2.37)
on

denotes the normal derivative of V (that is, the rate of change in the direction perpendicular
to the surface).

Please note that these boundary conditions relate the fields and potentials just above and
Jjust below the surface. For example, the derivatives in Eq. 2.36 are the limiting values as
we approach the surface from either side.

Problem 2.30
(a) Check that the results of Exs. 2.4 and 2.5, and Prob. 2.11, are consistent with Eq. 2.33.

(b) Use Gauss’s law to find the field inside and outside a long hollow cylindrical tube, which
carries a uniform surface charge o. Check that your result is consistent with Eq. 2.33.

(c) Check that the result of Ex. 2.7 is consistent with boundary conditions 2.34 and 2.36.

2.4 Work and Energy in Electrostatics
2.4.1 The Work Done to Move a Charge

Suppose you have a stationary configuration of source charges, and you want to move a test
charge Q from point a to point b (Fig. 2.39). Question: How much work will you have to
do? At any point along the path, the electric force on Q is F = QE; the force you must
exert, in opposition to this electrical force, is —QE. (If the sign bothers you, think about
lifting a brick: Gravity exerts a force mg downward, but you exert a force mg upward. Of
course, you could apply an even greater force—then the brick would accelerate, and part

‘110.
P \)Q

.
g,* ® .qi°

Figure 2.39
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of your effort would be “wasted” generating kinetic energy. What we’re interested in here
is the minimum force you must exert to do the job.) The work is therefore

b b
W:/Fdh&@/llmszM—Wm.

Notice that the answer is independent of the path you take from a to b; in mechanics, then,
we would call the electrostatic force “conservative.” Dividing through by O, we have

V(b) - V(a) = v (2.38)
0

In words, the potential difference between points a andb is equal ro the work per unit charge
required to carry a particle from a to b. In particular, if you want to bring the charge Q in
from far away and stick it at point r, the work you must do is

W = Q0[V() — V(o)
so, if you have set the reference point at infinity,
W= QV(. (2.39)

In this sense potential is potential energy (the work it takes to create the system) per unit
charge (just as the field is the force per unit charge).

2.4.2 The Energy of a Point Charge Distribution

How much work would it take to assemble an entire collection of point charges? Imagine
bringing in the charges, one by one, from far away (Fig. 2.40). The first charge, g, takes
no work, since there is no field yet to fight against. Now bring in g». According to Eq. 2.39,
this will cost you g> V| (r2), where V; is the potential due to gy, and r, is the place we’re

putting g>:
1 q1
Wy = —
2 47[60 7 </L12 )

Figure 2.40
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{212 is the distance between g; and ¢» once they are in position). Now bring in g3; this
requires work g3V 2(r3), where V> is the potential due to charges g; and g7, namely,
(1/4me0)(q1/713 + q2/723). Thus

1 a9 )
W; = a4,y
} 4meq q3 (¢13 + 273

Similarly, the extra work to bring in g4 will be

1 1 2 3
Wy = 44 (q— + 2L B
dmeg” \214 224 234

The toral work necessary to assemble the first four charges, then, is

_ (qlqz LD D94 D9 9294 q3q4)'
dmep \ 212 213 214 223 224 234

You see the general rule: Take the product of each pair of charges, divide by their separation
distance, and add it all up:

n

1 - giq;
W= E E =27 2.40
4meg 2ij ( )

i=1 j=1
j>i

The stipulation j > i is just to remind you not to count the same pair twice. A nicer way
to accomplish the same purpose is intentionally to count each pair twice, and then divide
by 2:

! Z Z 24j .41)
8mep — — 4
i=] j=1
J#i
(we must still avoid i = j, of course). Notice that in this form the answer plainly does not
depend on the order in which you assemble the charges, since every pair occurs in the sum.
Let me next pull out the factor g;:

W =

1 n n 1 g
W=_ , - 1
2;% Z4Tf€0¢ij

j=1

J#i
The term in parentheses is the potential at point r; (the position of ¢;) due to all the other

charges—all of them, now, not just the ones that were present at some stage in the building-
up process. Thus,

1 n
W= ;q,-V(r,-). (2.42)

That’s how much work it takes to assemble a configuration of point charges; it’s also the
amount of work you’d get back out if you dismantled the system. In the meantime, it
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represents energy stored in the configuration (“potential” energy, if you like, though for
obvious reasons I prefer to avoid that word in this context).

Problem 2.31

(a) Three charges are situated at the corners of a square (side a), as shown in Fig. 2.41. How
much work does it take to bring in another charge, +¢, from far away and place it in the fourth
corner?

(b) How much work does it take to assemble the whole configuration of four charges?

-q

tq -q

Figure 2.41

2.4.3 The Energy of a Continuous Charge Distribution

For a volume charge density p, Eq. 2.42 becomes

W= % / oV dx. (2.43)

(The corresponding integrals for line and surface charges would be [ AV dl and [oVda,
respectively.) There is a lovely way to rewrite this result, in which p and V are eliminated
in favor of E. First use Gauss’s law to express p in terms of E:

p=eV-E so W:%O/(V~E)Vdr.

Now use integration by parts (Eq. 1.59) to transfer the derivative from E to V:
€0
W= E[—/E~(VV)dr+¢VE-da].

w=2 /Ezdr+?§VE-da . (2.44)

2
Vv S

But VV = —E, so
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But what volume is this we’re integrating over? Let’s go back to the formula we started
with, Eq. 2.43. From its derivation, it is clear that we should integrate over the region
where the charge is located. But actually, any larger volume would do just as well: The
“extra” territory we throw in will contribute nothing to the integral anyway, since p = 0
out there. With this in mind, let’s return to Eq. 2.44. What happens here, as we enlarge the
volume beyond the minimum necessary to trap all the charge? Well, the integral of E can
only increase (the integrand being positive); evidently the surface integral must decrease
correspondingly to leave the sum intact. In fact, at large distances from the charge, £ goes
like 1/7* and V like 1/r, while the surface area grows like 2. Roughly speaking, then,
the surface integral goes down like 1/r. Please understand that Eq. 2.44 gives you the
correct energy W, whatever volume you use (as long as it encloses all the charge), but the
contribution from the volume integral goes up, and that of the surface integral goes down,
as you take larger and larger volumes. In particular, why not integrate over all space? Then
the surface integral goes to zero, and we are left with

W=— / E’dr. (2.45)

all space

Example 2.8

Find the energy of a uniformly charged spherical shell of total charge g and radius R.
Solution 1: Use Eq. 2.43, in the version appropriate to surface charges:

1
Wz—/ana.
2

Now, the potential at the surface of this sphere is (1/47€g)q/R (a constant), so

1 g 1 4°
= = | oda = —
8meg R 8meg R
Solution 2: Use Eq. 2.45. Inside the sphere E = 0; outside,
1 ¢q. 2 112
E= —=T. S0 = —
47y r? (4meg)2rt
Therefore,
W _© / a’ (+2sin6 dr d6 d¢)
ot 2(47'[50)2 r4

outside

1 ] 1 42
‘1247t/ —dr = £
3272¢ R 12 8mep R
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Problem 2.32 Find the energy stored in a uniformly charged solid sphere of radius R and
charge g. Do it three different ways:

(a) Use Eq. 2.43. You found the potential in Prob. 2.21.
(b) Use Eq. 2.45. Don’t forget to integrate over all space.
(c) Use Eq. 2.44. Take a spherical volume of radius a. Notice what happens as a — oo.

Problem 2.33 Here is a fourth way of computing the energy of a uniformly charged sphere:
Assemble the sphere layer by layer, each time bringing in an infinitesimal charge dg from far
away and smearing it uniformly over the surface, thereby increasing the radius. How much
work dW does it take to build up the radius by an amount dr? Integrate this to find the work
necessary to create the entire sphere of radius R and total charge ¢.

2.44 Comments on Electrostatic Energy

(i) A perplexing “inconsistency.” Equation 2.45 clearly implies that the energy of a
stationary charge distribution is always positive. On the other hand, Eq. 2.42 (from which
2.45 was in fact derived), can be positive or negative. For instance, according to 2.42, the
energy of two equal but opposite charges a distance » apart would be —(1/4meg)(g? /).
What’s gone wrong? Which equation is correct?

The answer is that both equations are correct, but they pertain to slightly different
situations. Equation 2.42 does not take into account the work necessary to make the point
charges in the first place; we started with point charges and simply found the work required
to bring them together. This is wise policy, since Eq. 2.45 indicates that the energy of a
point charge is in fact infinite:

% €0 / 4 (r? sin 6 dr d6 de) ¢’ /OO L
= — — r 1 = — ar = OQ.
2(4mep)? r4 4 8mweg Jo 12

Equation 2.45 is more complete, in the sense that it tells you the total energy stored in
a charge configuration, but Eq. 2.42 is more appropriate when you’re dealing with point
charges, because we prefer (for good reason!) to leave out that portion of the total energy
that is attributable to the fabrication of the point charges themselves. In practice, after
all, the point charges (electrons, say) are given to us ready-made; all we do is move them
around. Since we did not put them together, and we cannot take them apart, it is immaterial
how much work the process would involve. (Still, the infinite energy of a point charge
is a recurring source of embartassment for electromagnetic theory, afflicting the quantum
version as well as the classical. We shall return to the problem in Chapter 11.)

Now, you may wonder where the inconsistency crept into an apparently water-tight
derivation. The “flaw” lies between Egs. 2.42 and 2.43: In the former, V (r;) represents
the potential due to all the other charges but not q;, whereas in the latter, V (r) is the full
potential. For a continuous distribution there is no distinction, since the amount of charge
right at the point 1 is vanishingly small, and its contribution to the potential is zero.
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(ii) Where is the energy stored? Equations 2.43 and 2.45 offer two different ways of
calculating the same thing. The first is an integral over the charge distribution; the second
is an integral over the field. These can involve completely different regions. For instance,
in the case of the spherical shell (Ex. 2.8) the charge is confined to the surface, whereas the
electric field is present everywhere outside this surface. Where is the energy, then? Is it
stored in the field, as Eq. 2.45 seems to suggest, or is it stored in the charge, as Eq. 2.43
implies? At the present level, this is simply an unanswerable question: I can tell you what
the total energy is, and I can provide you with several different ways to compute it, but it is
unnecessary to worry about where the energy is located. In the context of radiation theory
(Chapter 11) it is useful (and in General Relativity it is essential) to regard the energy as
being stored in the field, with a density

GZ—OE 2 — energy per unit volume. (2.46)

Butin electrostatics one could just as well say it is stored in the charge, with a density % pV.
The difference is purely a matter of bookkeeping.

(iii) The superposition principle. Because electrostatic energy is quadratic in the
fields, it does not obey a superposition principle. The energy of a compound system is not
the sum of the energies of its parts considered separately—there are also ““cross terms”:

Wt = %0 E2dr=%0/(E1+E2)2dr

€
- 50/(E12+E§+2E1.E2)dr
= W +W2+€0/E1 -EordrT. (2.47)

For example, if you double the charge everywhere, you quadruple the total energy.

Problem 2.34 Consider two concentric spherical shells, of radii a and b. Suppose the inner
one carries a charge ¢, and the outer one a charge —¢ (both of them uniformly distributed
over the surface). Calculate the energy of this configuration, (a) using Eq. 2.45, and (b) using
Eq. 2.47 and the results of Ex. 2.8.

2.5 Conductors

2.5.1 Basic Properties

In an insulator, such as glass or rubber, each electron is attached to a particular atom. In a
metallic conductor, by contrast, one or more electrons per atom are free to roam about at will
through the material. (In liquid conductors such as salt water it is ions that do the moving.)
A perfect conductor would be a material containing an unlimited supply of completely free
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charges. In real life there are no perfect conductors, but many substances come amazingly
close. From this definition the basic electrostatic properties of ideal conductors immediately
follow:

(i) E = 0 inside a conductor. Why? Because if there were any field, those free charges
would move, and it wouldn’t be electroszatics any more. Well . . . that’s hardly a satisfactory
explanation; maybe all it proves is that you can’t have electrostatics when conductors are
present. We had better examine what happens when you put a conductor into an external
electric field Eg (Fig. 2.42). Initially, this will drive any free positive charges to the right,
and negative ones to the left. (In practice it’s only the negative charges—electrons—that
do the moving, but when they depart the right side is left with a net positive charge—the
stationary nuclei—so it doesn’t really matter which charges move; the effect is the same.)
When they come to the edge of the material, the charges pile up: plus on the right side,
minus on the left. Now, these induced charges produce a field of their own, E|, which, as
you can see from the figure, is in the opposite direction to Eq. That’s the crucial point, for
it means that the field of the induced charges tends to cancel off the original field. Charge
will continue to flow until this cancellation is complete, and the resultant field inside the
conductor is precisely zero.” The whole process is practically instantaneous.

+ 4+ + + +

s

4+

E,

Figure 2.42

(ii) p = 0 inside a conductor. This follows from Gauss’slaw: V- E = p/ep. If E = 0,
so also is p. There is still charge around, but exactly as much plus charge as minus, so the
net charge density in the interior is zero.

(iii) Any net charge resides on the surface. That’s the only other place it can be.

(iv) A conductor is an equipotential. For if a and b are any two points within (or at the
surface of) a given conductor, V(b) — V(a) = — j:’ E - dl =0, and hence V(a) = V(b).

7 Qutside the conductor the field is not zero, for here Eg and E; do not cancel.
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E

Conductor
E=0

Figure 2.43

(v) E is perpendicular to the surface, just outside a conductor. Otherwise, as in (i),
charge will immediately flow around the surface uritil it kills off the tangential component
(Fig. 2.43). (Perpendicular to the surface, charge cannot flow, of course, since it is confined
to the conducting object.)

I think it is strange that the charge on a conductor flows to the surface. Because of their
mutual repulsion, the charges naturally spread out as much as possible, but for all of them
t0 go to the surface seems like a waste of the interior space. Surely we could do better, from
the point of view of making each charge as far as possible from its neighbors, to sprinkle
some of them throughout the volume. . . Well, it simply is not so. You do best to put a// the
charge on the surface, and this is true regardless of the size or shape of the conductor.’

The problem can also be phrased in terms of energy. Like any other free dynamical
system, the charge on a conductor will seek the configuration that minimizes its potential
energy. What property (iii) asserts is that the electrostatic energy of a solid object (with
specified shape and total charge) is a minimum when that charge is spread over the surface.
For instance, the energy of a sphere is (1/87¢€0)(¢?/ R) if the charge is uniformly distributed
over the surface, as we found in Ex. 2.8, but it is greater, (3/207 oso)(q2 /R), if the charge is
uniformly distributed throughout the volume (Prob. 2.32).

2.5.2 Induced Charges

If you hold a charge +¢ near an uncharged conductor (Fig. 2.44), the two will attract one
another. The reason for this is that ¢ will pull minus charges over to the near side and repel
plus charges to the far side. (Another way to think of it is that the charge moves around in
such a way as to cancel off the field of g for points inside the conductor, where the total
field must be zero.) Since the negative induced charge is closer to g, there is a net force of
attraction. (In Chapter 3 we shall calculate this force explicitly, for the case of a spherical
conductor.) ‘

8By the way, the one- and two-dimensional analogs are quite different: The charge on a conducting disk does
not all go to the perimeter (R. Friedberg, Am. J. of Phys. 61, 1084 (1993)), nor does the charge on a conducting
needle go to the ends (D. J. Griffiths and Y. Li, Am. J. of Phys. 64, 706 (1996)). See Prob. 2.52.
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Gaussian
surface

Conductor

Figure 2.44 Figure 2.45

By the way, when I speak of the field, charge, or potential “inside” a conductor, 1
mean in the “meat” of the conductor; if there is some cavity in the conductor, and within
that cavity there is some charge, then the field in the cavity will not be zero. But in a
remarkable way the cavity and its contents are electrically isolated from the outside world
by the surrounding conductor (Fig. 2.45). No external fields penetrate the conductor; they
are canceled at the outer surface by the induced charge there. Similarly, the field due to
charges within the cavity is killed off, for all exterior points, by the induced charge on the
inner surface. (However, the compensating charge left over on the outer surface of the
conductor effectively “communicates™ the presence of g to the outside world, as we shall
seein Ex. 2.9.) Incidentally, the total charge induced on the cavity wall is equal and opposite
to the charge inside, for if we surround the cavity with a Gaussian surface, all points of
which are in the conductor (Fig. 2.45), $ E - da = 0, and hence (by Gauss’s law) the net
enclosed charge must be zero. But Qene = ¢ + Ginduced » SO G induced = —4-

Example 2.9

An uncharged spherical conductor centered at the origin has a cavity of some weird shape
carved out of it (Fig. 2.46). Somewhere within the cavity is a charge g. Question: What is the
field outside the sphere?

Conductor

Figure 2.46



100 CHAPTER 2. ELECTROSTATICS

Solution: At first glance it would appear that the answer depends on the shape of the cavity
and on the placement of the charge. But that’s wrong: The answer is
1
- 94
dreq r2

regardless. The conductor conceals from us all information concerning the nature of the cavity,
revealing only the total charge it contains. How can this be? Well, the charge +¢ induces
an opposite charge —¢g on the wall of the cavity, which distributes itself in such a way that
its field cancels that of ¢, for all points exterior to the cavity. Since the conductor carries no
net charge, this leaves +¢ to distribute itself uniformly over the surface of the sphere. (It’s
uniform because the asymmetrical influence of the point charge +¢ is negated by that of the
induced charge —¢ on the inner surface.} For points outside the sphere, then, the only thing
that survives is the field of the leftover +¢, uniformly distributed over the outer surface.

It may occur to you that in one respect this argument is open to challenge: There are actually
three fields at work here, E¢, Eiyduced » and E fefiover . All we know for certain is that the sum
of the three is zero inside the conductor, yet I claimed that the first two alone cancel, while
the third is separately zero there. Moreover, even if the first two cancel within the conductor,
who is to say they still cancel for points outside? They do not, after all, cancel for points
inside the cavity. I cannot give you a completely satisfactory answer at the moment, but this
much at least is true: There exists a way of distributing ~¢ over the inner surface so as to
cancel the field of ¢ at all exterior points. For that same cavity could have been carved out of
a huge spherical conductor with a radius of 27 miles or light years or whatever. In that case
the leftover +¢ on the outer surface is simply too far away to produce a significant field, and
the other two fields would have to accomplish the cancellation by themselves. So we know
they can do it ... but are we sure they choose to? Perhaps for small spheres nature prefers
some complicated three-way cancellation. Nope: As we’ll see in the uniqueness theorems of
Chapter 3, electrostatics is very stingy with its options; there is always precisely one way—no
more—of distributing the charge on a conductor so as to make the field inside zero. Having
found a possible way, we are guaranteed that no alternative exists even in principle.

If a cavity surrounded by conducting material is itself empty of charge, then the field
within the cavity is zero. For any field line would have to begin and end on the cavity wall,
going from a plus charge to a minus charge (Fig. 2.47). Letting that field line be part of a
closed loop, the rest of which is entirely inside the conductor (where E = 0), the integral

Figure 2.47
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¢ E - dlis distinctly positive, in violation of Eq. 2.19. It follows that E = 0 within an empty
cavity, and there is in fact no charge on the surface of the cavity. (This is why you are
relatively safe inside a metal car during a thunderstorm—you may get cooked, if lightning
strikes, but you will not be electrocuted. The same principle applies to the placement of
sensitive apparatus inside a grounded Faraday cage, to shield out stray electric fields. In
practice, the enclosure doesn’t even have to be solid conductor—chicken wire will often
suffice.)

Problem 2.35 A metal sphere of radius R, carrying charge g, is surrounded by a thick concentric
metal shell (inner radius a, outer radius b, as in Fig. 2.48). The shell carries no net charge.

(a) Find the surface charge density ¢ at R, at a, and at b.
(b) Find the potential at the center, using infinity as the reference point.

(c) Now the outer surface is touched to a grounding wire, which lowers its potential to zero
(same as at infinity). How do your answers to (a) and (b) change?

Problem 2.36 Two spherical cavities, of radii @ and b, are hollowed out from the interior of a
(neutral) conducting sphere of radius R (Fig. 2.49). At the center of each cavity a point charge
is placed—call these charges g, and ¢p.

(a) Find the surface charges a4, 03, and og.
(b) What is the field outside the conductor?
(c) What is the field within each cavity?

(d) What is the force on g, and ¢p?

(e) Which of these answers would change if a third charge, ¢, were brought near the conductor?

Figure 2.48 Figure 2.49




102 CHAPTER 2. ELECTROSTATICS

2.5.3 Surface Charge and the Force on a Conductor

Because the field inside a conductor is zero, boundary condition 2.33 requires that the field
immediately outside is
o .
E= A8, (2.48)
€0
consistent with our earlier conclusion that the field is normal to the surface. In terms of

potential, Eq. 2.36 yields
av
= —eg—-. (2.49)
on
These equations enable you to calculate the surface charge on a conductor, if you can
determine E or V; we shall use them frequently in the next chapter.

In the presence of an electric field, a surface charge will, naturally, experience aforce; the
force per unit area, f, is  E. Butthere’s a problem here, for the electric field is discontinuous
at a surface charge, so which value are we supposed to use: Egpove, Ebelow, Or something in
between? The answer is that we should use the average of the two:

1
f=0E average — EO(E above + Epelow). (2.50)

Why the average? The reason is very simple, though the telling makes it sound complicated:
Let’s focus our attention on a small patch of surface surrounding the point in question
(Fig. 2.50). Make it tiny enough so it is essentially flat and the surface charge on it is
essentially constant. The fotal field consists of two parts—that attributable to the patch
itself, and that due to everything else (other regions of the surface, as well as any external
sources that may be present):

E = Epalch + Eolher .

Now, the patch cannot exert a force on itself, any more than you can lift yourself by standing
in a basket and pulling up on the handles. The force on the patch, then, is due exclusively
t0 E giher, and this suffers no discontinuity (if we removed the patch, the field in the “hole”
would be perfectly smooth). The discontinuity is due entirely to the charge on the patch,

% oleg ¥

Figure 2.50
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which puts out a field (o /2¢p) on either side, pointing away from the surface (Fig. 2.50).
Thus,

[oJN

E sbove = Eother + n,
260

[ON

Epeiow = Eother - n,
260

and hence

1
Eolher = E (E above T E below) =E average

Averaging is really just a device for removing the contribution of the patch itself.

That argument applies to any surface charge; in the particular case of a conductor, the
field is zero inside and (o /€p)n outside (Eq. 2.48), so the average is (o /2¢p)iy, and the force
per unit area is

1
f= —o’h. (2.51)
260
This amounts to an outward electrostatic pressure on the surface, tending to draw the
conductor into the field, regardless of the sign of . Expressing the pressure in terms of the
field just outside the surface,

pP= %OE? (2.52)

Problem 2.37 Two large metal plates (each of area A) are held a distance d apart. Suppose
we put a charge Q on each plate; what is the electrostatic pressure on the plates?

Problem 2.38 A metal sphere of radius R carries a totdl charge Q. What is the force of
repulsion between the “northern” hemisphere and the “southern” hemisphere?

2.5.4 Capacitors

Suppose we have two conductors, and we put charge +Q on one and —Q on the other
(Fig. 2.51). Since V is constant over a conductor, we can speak unambiguously of the
potential difference between them:

+)
V=V+—V_=—/ E - dl.
(-)

We don’t know how the charge distributes itself over the two conductors, and calculating
the field would be a mess, if their shapes are complicated, but this much we do know: E is
proportional to Q. For E is given by Coulomb’s law:

1 o .
E= —adrt,
47T60//L2
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Figure 2.51

so if you double p, you double E. (Wait a minute! How do we know that doubling Q (and
also — Q) simply doubles p? Maybe the charge moves around into a completely different
configuration, quadrupling p in some places and halving it in others, just so the fotal charge
on each conductor is doubled. The fact is that this concern is unwarranted—doubling Q
does double p everywhere; it doesn’t shift the charge around. The proof of this will come
in Chapter 3; for now you’ll just have to believe me.)

Since E is proportional to , so also is V. The constant of proportionality is called the
capacitance of the arrangement: A
Y
v (2.53)
Capacitance is a purely geometrical quantity, determined by the sizes, shapes, and separation
of the two conductors. In SIunits, C is measured in farads (F); a farad is a coulomb-per-volt.
Actually, this turns out to be inconveniently large;” more practical units are the microfarad
(107 F) and the picofarad (102 F).

Notice that V is, by definition, the potential of the positive canductor less that of the
negative one; likewise, Q 1s the charge of the positive conductor. Accordingly, capacitance
is an intrinsically positive quantity. (By the way, you will occasionally hear someone
speak of the capacitance of a single conductor. In this case the “second conductor,” with
the negative charge, is an imaginary spherical shell of infinite radius surrounding the one
conductor. It contributes nothing to the field, so the capacitance is given by Eq. 2.53, where
V is the potential with infinity as the reference point.)

C

1

Example 2.10

Find the capacitance of a “parallel-plate capacitor” consisting of two metal surfaces of area A
held a distance d apart (Fig. 2.52).

Figure 2.52

9In the second edition I claimed you would need a forklift to carry a 1 F capacitor. This is no longer the
case—you can now buy a 1 F capacitor that fits comfortably in a soup spoon.
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Solution: If we put +Q on the top and — Q on the bottom, they will spread out uniformly over
the two surfaces, provided the area is reasonably large and the separation distance small.l0
The surface charge density, then, is o = Q/A on the top plate, and so the field, according to
Ex. 2.5,is (1/€g) Q/A. The potential difference between the plates is therefore

V= _Q_d7
Ae€g
and hence A
€0
C=—. 2.54
y (2.54)

If, for instance, the plates are square with sides 1 cm long, and they are held 1 mm apart, then
the capacitance is 9 x 10713 F,

Example 2.11

Find the capacitance of two concentric spherical metal shells, with radii a and b.

Solution: Place charge +Q on the inner sphere, and —Q on the outer one. The field between
the spheres is
I 9

E =
dmeg r2

t,

so the potential difference between them is

a a1 1 1
v:—/ Ea=-—2 ["L, -2 (1_1)
b dweg Jp r? dmeg \a b

As promised, V is proportional to Q; the capacitance is

Q ab
v =0 —

To “charge up” a capacitor, you have to remove electrons from the positive plate and
carry them to the negative plate. In doing so you fight against the electric field, which is
pulling them back toward the positive conductor and pushing them away from the negative
one. How much work does it take, then, to charge the capacitor up to a final amount Q7
Suppose that at some intermediate stage in the process the charge on the positive plate is
g, so that the potential difference is ¢ /C. According to Eq. 2.38, the work you must do to
transport the next piece of charge, dg, is

10The exact solution is not easy—everl for the simpler case of circular plates. See G. T. Carlson and B. L. Illman,
Am. J. Phys. 62, 1099 (1994).
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The total work necessary, then, to go fromg =0to g = Q, is
Q 2
q 10
v-[ G-
/0 c/Ta¢

1
W= 5Cvz, (2.55)

or, since Q = CV,

where V is the final potential of the capacitor.

Problem 2.39 Find the capacitance per unit length of two coaxial metal cylindrical tubes, of
radii a and b (Fig. 2.53).

Figure 2.53

Problem 2.40 Suppose the plates of a parallgl-plate capacitor move closer together by an
infinitesimal distance e, as a result of their mutual attraction.

(a) Use Eq. 2.52 to express the amount of work done by electrostatic forces, in terms of the
field E, and the area of the plates, A.

(b) Use Eq. 2.46 to express the energy lost by the field in this process.

(This problem is supposed to be easy, but it contains the embryo of an alternative derivation
of Eq. 2.52, using conservation of energy.)

More Problems on Chapter 2

Problem 2.41 Find the electric field at a height z above the center of a square sheet (side a)
carrying a uniform surface charge o. Check your result for the limiting cases ¢ — oo and
> a.

[Answer: (0/2€p){(4/m)tan" 1 /1 + (a2/272) — 1}]

Problem 2.42 If the electric field in some region is given (in spherical coordinates) by the
expression
At + Bsinfcos¢ @

r

E(r) =

where A and B are constants, what is the charge density? [Answer: €g(A — Bsin¢)/ 2]
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Problem 2.43 Find the net force that the southern hemisphere of a uniformly charged sphere
exerts on the northern hemisphere. Express your answer in terms of the radius R and the total
charge Q. [Answer: (1/4meg)(30%/16R?)]

Problem 2.44 An inverted hemispherical bow! of radius R carries a uniform surface charge
density o. Find the potential difference between the “north pole” and the center. [Answer:

(Ro/2€0)(v/2 — )]

Problem 2.45 A sphere of radius R carries a charge density p(r) = kr (where k is a constant).
Find the energy of the configuration. Check your answer by calculating it in at least two
different ways. [Answer: Tk2R /7€p]

Problem 2.46 The electric potential of some configuration is given by the expression

—Ar
Vi) = AL
.

where A and 1 are constants. Find the electric field E(r), the charge density p(r), and the total
charge Q. [Answer: p = eoA(4ﬂ83(r) - Aze_”/r)]

Problem 2.47 Two infinitely long wires running parallel to the x axis carry uniform charge
densities +A and —2 (Fig. 2.54).

(2) Find the potential at any point (x, y, z), using the origin as your reference.

(b) Show that the equipotential surfaces are circular cylinders, and locate the axis and radius
of the cylinder corresponding to a given potential V.

Problem 2.48 In a vacuum diode, electrons are “boiled” off a hot cathode, at potential zero,
and accelerated across a gap to the anode, which is held at positive potential V. The cloud of
moving electrons within the gap (called space charge) quickly builds up to the point where it
reduces the field at the surface of the cathode to zero. From then on a steady current I flows
between the plates.

Suppose the plates are large relative to the separation (A >> d2 in Fig. 2.55), so that edge
effects can be neglected. Then V, p, and v (the speed of the electrons) are all functions of x

alone.
z
d—
A
Electron
a a e
Y y
X
A ‘Anode
+ Cathode (Vo)
x (V=0)

Figure 2.54 Figure 2.55
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(a) Write Poisson’s equation for the region between the plates.

(b) Assuming the electrons start from rest at the cathode, what is their speed at point x, where
the potential is V (x)?

(c) In the steady state, I is independent of x. What, then, is the relation between p and v?
(d) Use these three results to obtain a differential equation for V, by eliminating p and v.

(e) Solve this equation for V as a function of x, Vg, and d. Plot V(x), and compare it to the
potential without space-charge. Also, find p and v as functions of x.
(f) Show that

1=kv;"? (2.56)
and find the constant K. (Equation 2.56 is called the Child-Langmuir law. It holds for other
geometries as well, whenever space-charge limits the current. Notice that the space-charge
limited diode is noniinear—it does not obey Ohm’s law.)

Problem 2.49 Imagine that new and extraordinarily precise measurements have revealed an
error in Coulomb’s law. The actual force of interaction between two point charges is found to
be

1 2 A
- N (142) e,
dmeg 42 A

where 2 is a new constant of nature (it has dimensions of length, obviously, and is a huge
number—say half the radius of the known universe—so that the correction is small, which is
why no one ever noticed the discrepancy before). You are charged with the task of reformulating
electrostatics to accommodate the new discovery. Assume the principle of superposition still
holds.

(a) What is the electric field of a charge distribution p (replacing Eq. 2.8)?

(b) Does this electric field admit a scalar potential? Explain briefly how you reached your
conclusion. (No formal proof necessary—just a persuasive argument.)

(c) Find the potential of a point charge g—the analog to Eq. 2.26. (If your answer to (b) was
“no,” better go back and change it!) Use oo as your reference point.

(d) For a point charge g at the origin, show that

1 1
E-da+—/Vdr=— ,
.(é 22 Jy e

where S is the surface, V the volume, of any sphere centered at g.

(e) Show that this result generalizes:

1 1
fE~da+—'/Vdr:—QenC,
S 22 Jy €0

for any charge distribution. (This is the next best thing to Gauss’s Law, in the new “electro-
statics.”)

(f) Draw the triangle diagram (like Fig. 2.35) for this world, putting in all the appropriate
formulas. (Think of Poisson’s equation as the formula for p in terms of V, and Gauss’s law
(differential form) as an equation for p in terms of E.)
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Problem 2.50 Suppose an electric field E(x, y, z) has the form
Ey =ax, Ey=0, E,=0

where a is a constant. What is the charge density? How do you account for the fact that the
field points in a particular direction, when the charge density is uniform? [This is a more subtle
problem than it looks, and worthy of careful thought.]

Problem 2.51 All of electrostatics follows from the 1/r2 character of Coulomb’s law, together
with the principle of superposition. An analogous theory can therefore be constructed for
Newton’s law of universal gravitation. What is the gravitational energy of a sphere, of mass M
and radius R, assuming the density is uniform? Use your result to estimate the gravitational
energy of the sun (look up the relevant numbers). The sun radiates at a rate of 3.86 x 1026 W:
if all this came from stored gravitational energy, how long would the sun last? [The sun is in
fact much older than that, so evidently this is nor the source of its power.]

Problem 2.52 We know that the charge on a conductor goes to the surface, but just how it
distributes itself there is not easy to determine. One famous example in which the surface
charge density can be calculated explicitly is the ellipsoid:

i8]
i8]

2
y
+—2+

I N

=1

m|><

[

<
o

¢

-1/2
0 x2 y2 ZZ
o = 47'[abc a_4 + F + c_4 5 (257)

In this case!!

where Q is the total charge. By choosing appropriate values for a, b, and ¢, obtain (from
Eq. 2.57): (a) the net (both sides) surface charge density o () on a circular disk of radius R;
(b) the net surface charge density o (x) on an infinite conducting “ribbon” in the x y plane,
which straddles the y axis from x = —a to x = a (let A be the total charge per unit length
of ribbon); (c) the net charge per unit length A(x) on a conducting “needle”, running from
X = —ato x = a. In each case, sketch the graph of your result.

1TFor the derivation (which is a real tour de force) see W. R. Smythe, Static and Dynamic Electricity, 3rd ed.
(New York: Hemisphere, 1989), Sect. 5.02.



Chapter 3

Special Techniques

3.1 Laplace’s Equation

3.1.1 Introduction

The primary task of electrostatics is to find the electric field of a given stationary charge
distribution. In principle, this purpose is accomplished by Coulomb’s law, in the form of
Eq. 2.8:

~

Ew) = — [ % ow)dr. 3.1)
dmeg | 22

Unfortunately, integrals of this type can be difficult to calculate for any but the simplest
charge configurations. Occasionally we can get around this by exploiting symmetry and
using Gauss’s law, but ordinarily the best strategy is first to calculate the potential, V, which
is given by the somewhat more tractable Eq. 2.29:

V(r) = L / l,o(r’)dr/. (3.2)
drey J 2

Still, even rhis integral is often too tough to handle analytically. Moreover, in problems
involving conductors p itself may not be known in advance: since charge is free to move
around, the only thing we control directly is the total charge (or perhaps the potential) of
each conductor.

In such cases it is fruitful to recast the problem in differential form, using Poisson’s
equation (2.24),

1
VY =——p, (3.3)
€0
which, together with appropriate boundary conditions, is equivalent to Eq. 3.2. Very often,

in fact, we are interested in finding the potential in a region where p = 0. (If p = 0
everywhere, of course, then V = 0, and there is nothing further to say—that’s not what 1

110
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mean. There may be plenty of charge elsewhere, but we're confining our attention to places
where there is no charge.) In this case Poisson’s equation reduces to Laplace’s equation:

Vv =0, (3.4)
or, written out in Cartesian coordinates,

2 2 2
1%
PV LIV LIV (3.5)
dx2 ay? 972

This formula is so fundamental to the subject that one might almost say electrostatics is
the study of Laplace’s equation. At the same time, it is a ubiquitous equation, appearing in
such diverse branches of physics as gravitation and magnetism, the theory of heat, and the
study of soap bubbles. In mathematics it plays a major role in analytic function theory. To
get a feel for Laplace’s equation and its solutions (which are called harmonic functions),
we shall begin with the one- and two-dimensional versions, which are easier to picture
and illustrate all the essential properties of the three-dimensional case (though the one-
dimensional example lacks the richness of the other two).

3.1.2 Laplace’s Equation in One Dimension

Suppose V depends on only one variable, x. Then Laplace’s equation becomes

d’vV
dx?

The general solution is
Vix)=mx +b, (3.6)

the equation for a straight line. It contains two undetermined constants (m and b), as
is appropriate for a second-order (ordinary) differential equation. They are fixed, in any
particular case, by the boundary conditions of that problem. For instance, it might be
specified that V =4 atx = 1,and V = Oatx = 5. Inthatcasem = —l and b = 5, so
V = —x + 5 (see Fig. 3.1).

oW A

I 23 456 =

Figure 3.1
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I want to call your attention to two features of this result; they may seem silly and
obvious in one dimension, where I can write down the general solution explicitly, but the
analogs in two and three dimensions are powerful and by no means obvious:

1. V(x) is the average of V(x + a) and V(x — a), for any a:
Vx)=4iVx+a)+ Vi —a)l

Laplace’s equation is a kind of averaging instruction; it tells you to assign to the point
x the average of the values to the left and to the right of x. Solutions to Laplace’s
equation are, in this sense, as boring as they could possibly be, and yet fit the end
points properly.

2. Laplace’s equation tolerates no local maxima or minima; extreme values of V must
occur at the end points. Actually, this is a consequence of (1), for if there were a local
maximum, V at that point would be greater than on either side, and therefore could
not be the average. (Ordinarily, you expect the second derivative to be negative at
a maximum and positive at a minimum. Since Laplace’s equation requires, on the
contrary, that the second derivative be zero, it seems reasonable that solutions should
exhibit no extrema. However, this is not a proof, since there exist functions that have
maxima and minima at points where the second derivative vanishes: x?, for example,
has such a minimum at the point x = 0.)

3.1.3 Laplace’s Equation in Two Dimensions

If V depends on two variables, Laplace’s equation becomes

9*V N 2V _,
ax2  ayr

This is no longer an ordinary differential equation (that is, one involving ordinary derivatives
only); it is a partial differential equation. As a consequence, some of the simple rules you
may be familiar with do not apply. For instance, the general solution to this equation doesn’t
contain just two arbitrary constants—or, for that matter, any finite number—despite the fact
that it’s a second-order equation. Indeed, one cannot write down a “general solution” (at
least, not in a closed form like Eq. 3.6). Nevertheless, it is possible to deduce certain
properties common to all solutions.

It may help to have a pliysical example in mind. Picture a thin rubber sheet (or a soap
film) stretched over some support. For definiteness, suppose you take a cardboard box, cut
a wavy line all the way around, and remove the top part (Fig. 3.2). Now glue a tightly
stretched rubber membrane over the box, so that it fits like a drum head (it won’t be a flat
drumhead, of course, unless you chose to cut the edges off straight). Now, if you lay out
coordinates (x, y) on the bottom of the box, the height V (x, y) of the sheet above the point
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Figure 3.2

(x, y) will satisfy Laplace’s equation.! (The one-dimensional analog would be a rubber
band stretched between two points. Of course, it would form a straight line.)

Harmonic functions in two dimensions have the same properties we noted in one di-
mension:

1. The value of V at a point (x, y) is the average of those around the point. More
precisely, if you draw a circle of any radius R about the point (x, y), the average
value of V on the circle is equal to the value at the center:

1

circle

(This, incidentally, suggests the method of relaxation on which computer solutions
to Laplace’s equation are based: Starting with specified values for V at the boundary,
and reasonable guesses for V on a grid of interior points, the first pass reassigns to
each point the average of its nearest neighbors. The second pass repeats the process,
using the corrected values, and so on. After a few iterations, the numbers begin to
settle down, so that subsequent passes produce negligible changes, and a numerical
solution to Laplace’s equation, with the given boundary values, has been achieved.)?

2. V has no local maxima or minima; all extrema occur at the boundaries, (As before,
this follows from (1).) Again, Laplace’s equation picks the most featureless func-
tion possible, consistent with the boundary conditions: no hills, no valleys, just the
smoothest surface available. For instance, if you put a ping-pong ball on the stretched
rubber sheet of Fig. 3.2, it will roll over to one side and fall off—it will not find a

1Actually, the equation satisfied by a rubber sheet is

—-1/2
9 3V)+ S (VN_o un L (Y 2+ av\2]7"
_— _— _— _— = T = _— —_— M
ax \®ox ay gBy ’ cre 8 dx dy ’

it reduces (approximately) to Laplace’s equation as long as the surface does not deviate too radically from a plane.
28ee, for example, E. M. Purcell, Eleciricity and Magnetism, 2nd ed., problem 3.30 (p.- 119) (New York:
McGraw-Hill, 1985).
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“pocket” somewhere to settle into, for Laplace’s equation allows no such dents in
the surface. From a geometrical point of view, just as a straight line is the shortest
distance between two points, so a harmonic function in two dimensions minimizes
the surface area spanning the given boundary line.

3.1.4 Laplace’s Equation in Three Dimensions

In three dimensions I can neither provide you with an explicit solution (as in one dimension)
nor offer a suggestive physical example to guide your intuition (as I did in two dimensions).
Nevertheless, the same two properties remain true, and this time I will sketch a proof.

1. The value of V at point r is the average value of V over a spherical surface of radius

R centered at r: .
V)= —— Vda.
® 4m R? % “a

sphere

2. As aconsequence, V can have no local maxima or minima; the extreme values of V
must occur at the boundaries. (For if V had a local maximum at r, then by the very
nature of maximum I could draw a sphere around r over which all values of V—and
a fortiori the average—would be less than at r.)

Proof: Let’s begin by calculating the average potential over a spherical surface
of radius R due to a single point charge g located outside the sphere. We may
as well center the sphere at the origin and choose coordinates so that ¢ lies on
the z-axis (Fig. 3.3). The potential at a point on the surface is

_ 1 g
o 4JT€() 2’
where
#* =72 + R — 2zRcos b,
SO
1 q - .
Vae = o Riine /[z2 + R? —2zRcosf] Y/2R* sinf d6 d¢p
1 big
= 1 — V22 + R2 —2zRcos 0
dmeg 2ZR 0
g 1 1 g
= —~——[z+R--R)]= K
4 e ZZR[(Z +R -G )] dmeg 2

But this is precisely the potential due to g at the center of the sphere! By the
superposition principle, the same goes for any collection of charges outside the
sphere: their average potential over the sphere is equal to the net potential they
produce at the center.  qed
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Figure 3.3

Problem 3.1 Find the average potential over a spherical surface of radius R due to a point
charge g located inside (same as above, in other words, only with z < R). (In this case, of
course, Laplace’s equation does not hold within the sphere.) Show that, in general,

QC[]C
4megR’

Vave = Veenter +

where Veenter 1 the potential at the center due to all the external charges, and Qep is the total
enclosed charge.

Problem 3.2 In one sentence, justify Earnshaw’s Theorem: A charged particle cannot be
held in a stable equilibrium by electrostatic forces alone. As an example, consider the cubical
arrangement of fixed charges in Fig. 3.4. It looks, off hand, as though a positive charge at
the center would be suspended in midair, since it is repelled away from each corner. Where
is the leak in this “electrostatic bottle”? [To harness nuclear fusion as a practical energy
source it is necessary to heat a plasma (soup of charges particles) to fantastic temperatures—so
hot that contact would vaporize any ordinary pot. Earnshaw’s theorem says that electrostatic
containment is also out of the question. Fortunately, it is possible to confine a hot plasma
magnetically.]
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Figure 3.4



116 CHAPTER 3. SPECIAL TECHNIQUES

Problem 3.3 Find the general solution to Laplace’s equation in spherical coordinates, for the
case where V depends only on r. Do the same for cylindrical coordinates, assuming V depends
only on s.

3.1.5 Boundary Conditions and Uniqueness Theorems

Laplace’s equation does not by itself determine V'; in addition, a suitable set of boundary
conditions must be supplied. This raises a delicate question: What are appropriate boundary
conditions, sufficient to determine the answer and yet not so strong as to generate incon-
sistencies? The one-dimensional case is easy, for here the general solution V = mx + b
contains two arbitrary constants, and we therefore require two boundary conditions. We
might, for instance, specify the value of the function at the two ends, or we might give the
value of the function and its derivative at one end, or the value at one end and the derivative
at the other, and so on. But we cannot get away with just the value or just the derivative at
one end—this is insufficient information. Nor would it do to specify the derivatives at both
ends—this would either be redundant (if the two are equal) or inconsistent (if they are not).

In two or three dimensions we are confronted by a partial differential equation, and it
is not so easy to see what would constitute acceptable boundary conditions. Is the shape
of a taut rubber membrane, for instance, uniquely determined by the frame over which it
is stretched, or, like a canning jar lid, can it snap from one stable configuration to another?
The answer, as I think your intuition would suggest, is that V is uniquely determined by
its value at the boundary (canning jars evidently don’t obey Laplace’s equation). However,
other boundary conditions can also be used (see Prob. 3.4). The proof that a proposed set of
boundary conditions will suffice is usually presented in the form of a uniqueness theorem.
There are many such theorems for electrostatics, all sharing the same basic format-—I'1l
show you the two most useful ones.>

Firstuniqueness theorem: The solution to Laplace’s equation in some volume
V is uniquely determined if V is specified on the boundary surface S.

Proof: In Fig. 3.5 I have drawn such a region and its boundary. (There could
also be “islands” inside, so long as V is given on all their surfaces; also, the
outer boundary could be at infinity, where V is ordinarily taken to be zero.)
Suppose there were rwo solutions to Laplace’s equation:

V2V, =0 and V?V, =0,

both of which assume the specified value on the surface. I want to prove that
they must be equal. The trick is look at their difference:

Vs=V) — Vo

31 do not intend to prove the existence of solutions here—that’s a much more difficult job. In context, the
existence is generally clear on physical grounds.
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V specified
on this
surface (8)

Figure 3.5

This obeys Laplace’s equation,

Vv = V2V, — V2V, =0,
and it takes the value zero on all boundaries (since V; and V; are equal there).
But Laplace’s equation allows no local maxima or minima—all extrema oc-

cur on the boundaries. So the maximum and minimum of V5 are both zero.
Therefore V3 must be zero everywhere, and hence

Vi=V,. qed

Example 3.1

Show that the potential is constant inside an enclosure completely surrounded by conducting
material, provided there is no charge within the enclosure.

Solution: The potential on the cavity wall is some constant, Vg (that’s item (iv), in Sect. 2.5.1),
so the potential inside is a function that satisfies Laplace’s equation and has the constant value
Vo at the boundary. It doesn’t take a genius to think of one solution to this problem: V = Vo
everywhere. The uniqueness theorem guarantees that this is the only solution. (It follows that
the field inside an empty cavity is zero—the same result we found in Sect. 2.5.2 on rather
different grounds.)

The uniqueness theorem is a license to your imagination. It doesn’t matter how you
come by your solution; if (a) it satisfies Laplace’s equation and (b) it has the correct value
on the boundaries, then it’s right. You’ll see the power of this argument when we come to
the method of images.

Incidentally, it is easy to improve on the first uniqueness theorem: I assumed there was
no charge inside the region in question, so the potential obeyed Laplace’s equation, but
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we may as well throw in some charge (in which case V obeys Poisson’s equation). The
argument is the same, only this time

)
1 1
V2V =VV =V Vo= ——p+ —p =0.
€ €9
Once again the difference (V3 = V| — V») satisfies Laplace’s equation and has the value
zero on all boundaries, so V3 = 0 and hence V| = V5.

Corollary: The potential in a volume V is uniquely determined if (a) the charge
density throughout the region, and (b) the value of V on all boundaries, are
specified.

3.1.6 Conductors and the Second Uniqueness Theorem

The simplest way to set the boundary conditions for an electrostatic problem is to specify the
value of V on all surfaces surrounding the region of interest. And this situation often occurs
in practice: In the laboratory, we have conductors connected to batteries, which maintain
a given potential, or to ground, which is the experimentalist’s word for V = 0. However,
there are other circumstances in which we do not know the potential at the boundary, but
rather the charges on various conducting surfaces. Suppose I put charge Q1 on the first
conductor, (0, on the second, and so on—I’m not telling you how the charge distributes
itself over each conducting surface, because as soon as I put it on, it moves around in a way
I do not control. And for good measure, let’s say there is some specified charge density p
in the region between the conductors. Is the electric field now uniquely determined? Or
are there perhaps a number of different ways the charges could arrange themselves on their
respective conductors, each leading to a different field?

Second uniqueness theorem: In a volume V surrounded by conductors and
containing a specified charge density p, the electric field is uniquely determined
if the total charge on each conductor is given (Fig. 3.6). (The region as a whole
can be bounded by another conductor, or else unbounded.)

Proof: Suppose there are fwo fields satisfying the conditions of the problem.
Both obey Gauss’s law in differential form in the space between the conductors:
1 1
€0 €0
And both obey Gauss’s law in integral form for a Gaussian surface enclosing
each conductor:

1 1
y{ E,.da=~0: y{ E,-da=—0;.
€0 €0

ith conducting ith conducting
surface surface
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Integration surfaces

Outer boundary-
could be at infinity

Figure 3.6

Likewise, for the outer boundary (whether this is just inside an enclosing con-
ductor or at infinity),

1 1
f E; . da= —Qtot, f E; -da= — Qot-
€9 €0

outer outer
boundary boundary

As before, we examine the difference
E;s=E; - E;,
which obeys
V.- E;=0 (3.7

in the region between the conductors, and

¢E3 da=0 (3.8)

over each boundary surface.

Now there is one final piece of information we must exploit: Although
we do not know how the charge Q; distributes itself over the ith conducting
surface, we do know that each conductor is an equipotential, and hence Vj is
a constant (not necessarily the same constant) over each conducting surface.
(It need not be zero, for the potentials V; and V, may not be equal—all we
know for sure is that both are constant over any given conductor.) Next comes
a trick. Invoking product rule number (5), we find that

V- (V3E3) = V3(V - E3) + E3 - (VV3) = —(E3)2.
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Here I have used Eq. 3.7, and E3 = —V V3. Integrating this over the entire
region between the conductors, and applying the divergence theorem to the left
side:

/V -(ViE3)dt = f V3E; - da = —/(E3)2d1'.
A% S A%

The surface integral covers all boundaries of the region in question—the con-
ductors and outer boundary. Now V3 is a constant over each surface (if the
outer boundary is infinity, V3 = 0 there), so it comes outside each integral, and
what remains is zero, according to Eq. 3.8. Therefore,

/ (E3)?dr = 0.
%

But this integrand is never negative; the only way the integral can vanish is if
E3 = 0 everywhere. Consequently, E; = E;, and the theorem is proved.

This proof was not easy, and there is a real danger that the theorem itself will seem
more plausible to you than the proof. In case you think the second uniqueness theorem is
“obvious,” consider this example of Purcell’s: Figure 3.7 shows a comfortable electrostatic
configuration, consisting of four conductors with charges =, situated so that the plusses
are near the minuses. It looks very stable. Now, what happens if we join them in pairs,
by tiny wires, as indicated in Fig. 3.87 Since the positive charges are very near negative
charges (which is where they like to be) you might well guess that nothing will happen—the
configuration still looks stable.

Well, that sounds reasonable, but it’s wrong. The configuration in Fig. 3.8 is impossible.
For there are now effectively two conductors, and the total charge on each is zero. One
possible way to distribute zero charge over these conductors is to have no accumulation of
charge anywhere, and hence zero field everywhere (Fig. 3.9). By the second uniqueness
theorem, this must be the solution: The charge will flow down the tiny wires, canceling
itself off.

® O

© O

O ®

Figure 3.7 Figure 3.8
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ORO;

Figure 3.9

Problem 3.4 Prove that the field is uniquely determined when the charge density p is given
and either V or the normal derivative 3V /dn is specified on each boundary surface. Do not
assume the boundaries are conductors, or that V is constant over any given surface.

Problem 3.5 A more elegant proof of the second uniqueness theorem uses Green’s identity
(Prob. 1.60c), with T = U = V3. Supply the details.

3.2 The Method of Images

3.2.1 The Classic Image Problem

Suppose a point charge ¢ is held a distance d above an infinite grounded conducting plane
(Fig. 3.10). Question: What is the potential in the region above the plane? It’s not just
(1/47€0)q /2, for ¢ will induce a certain amount of negative charge on the nearby surface
of the conductor; the total potential is due in part to g directly, and in part to this induced
charge. But how can we possibly calculate the potential, when we don’t know how much
charge is induced or how it is distributed?

Figure 3.10
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+q

X -q

Figure 3.11

From a mathematical point of view our problem is to solve Poisson’s equation in the
region z > 0, with a single point charge g at (0, 0, d), subject to the boundary conditions:

1. V = 0 when z = 0 (since the conducting plane is grounded), and

2. V — 0 far from the charge (that is, for x> + y* + 2> d?.

The first uniqueness theorem (actually, its corollary) guarantees that there is only one
function that meets these requirements. If by trick or clever guess we can discover such a
function, it’s got to be the right answer.

Trick: Forget about the actual problem; we’re going to study a completely different
situation. This new problem consists of two point charges, +¢ at (0,0,d) and —g at
(0, 0, —d), and no conducting plane (Fig. 3.11). For this configuration I can easily write
down the potential:

Yy = o : - - - 69
dreg | /x24+ 2+ (z—d)2  J/x24+¥y24 (z+d)?

(The denominators represent the distances from (x, y, z) to the charges +¢q and —gq, respec-
tively.) It follows that

1. V=0whenz =0, and
2. V — 0forx? +y2 + 22 > d?,

and the only charge in the region z > O is the point charge +¢ at (0,0, d). But these
are precisely the conditions of the original problem! Evidently the second configuration
happens to produce exactly the same potential as the first configuration, in the “upper”
region z > 0. (The “lower” region, z < 0, is completely different, but who cares? The
upper part is all we need.) Conclusion: The potential of a point charge above an infinite
grounded conductor is given by Eq. 3.9, for z > 0.

Notice the crucial role played by the uniqueness theorem in this argument: without it,
no one would believe this solution, since it was obtained for a completely different charge
distribution. But the uniqueness theorem certifies it: If it satisfies Poisson’s equation in the
region of interest, and assumes the correct value at the boundaries, then it must be right.
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3.2.2 Induced Surface Charge

Now that we know the potential, it is a straightforward matter to compute the surface charge
o induced on the conductor. According to Eq. 2.49,

o= gy

where 0V /0n is the normal derivative of V at the surface. In this case the normal direction
is the z-direction, so

. A%
0O = —€g— .
9z =0
From Egq. 3.9,
w1 —q(z—d) q(z+4d) }
9z dmweo |2+ y2 4+ —d)PR T 2 +y2 4+ +d)?P2 )"
SO

—qd
2w (x2 4+ y2 +d2)3/2°
As expected, the induced charge is negative (assuming ¢ is positive) and greatest at x =
y=0.

While we’re at it, let’s compute the foral induced charge

Q:/ada.

This integral, over the xy plane, could be done in Cartesian coordinates, with da = dx dy,
but it’s a little easier to use polar coordinates (r, ¢), with r? = x% + y? and da = r dr de.
Then

o(x,y) = 3.10)

O'(r) = ___q‘i—
- 2 (r2 +d2)3/2°

and
oo

2 poo
—qd d
I R e S )
o Jo 2m(r24d?3? V2 4+d? g
Evidently the total charge induced on the plane is —g, as (with benefit of hindsight) you
can perhaps convince yourself it sad to be.

G.11)

3.2.3 Force and Energy

The charge ¢ is attracted toward the plane, because of the negative induced charge. Let’s
calculate the force of attraction. Since the potential in the vicinity of ¢ is the same as in
the analog problem (the one with +4 and —g but no conductor), so also is the field and,

' 2 I 2Z. (3‘12)
:ZGO ( )
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Beware: It is easy to get carried away, and assume that everything is the same in the two
problems. Energy, however, is not the same. With the two point charges and no conductor,
Eq. 2.42 gives

1 42
W= —. 3.13
47‘[60 2d ( )
But for a single charge and conducting plane the energy is half of this:
1 2
W= — 17 (3.14)
dmeg 4d

Why half? Think of the energy stored in the fields (Eq. 2.45):

W=€—O/E2dt.
2

In the first case both the upper region (z > 0) and the lower region (z < 0) contribute—and
by symmetry they contribute equally. But in the second case only the upper region contains
a nonzero field, and hence the energy is half as great.

Of course, one could also determine the energy by calculating the work required to
bring ¢ in from infinity. The force required (to oppose the electrical force in Eq. 3.12) is

(1/4neo)(q2/4z2)i, )
W= /dF~dl= ! /dﬁdz
o0 Areq Joo 472

1 PL d 2
4mey (_E>

1 ¢
0 dmeg 4d’
As I move g toward the conductor, I do work only on g. 1t is true that induced charge
is moving in over the conductor, but this costs me nothing, since the whole conductor is
at potential zero. By contrast, if I simultaneously bring in rwo point charges (with no
conductor), I do work on both of them, and the total is twice as great.

3.2.4 Other Image Problems

The method just described is not limited to a single point charge; any stationary charge
distribution near a grounded conducting plane can be treated in the same way, by introducing
its mirror image—hence the name method of images. (Remember that the image charges
have the opposite sign; this is what guarantees that the xy plane will be at potential zero.)
There are also some exotic problems that can be handled in similar fashion; the nicest of
these is the following.

Example 3.2

A point charge ¢ is situated a distance a from the center of a grounded conducting sphere of
radius R (Fig. 3.12). Find the potential outside the sphere.
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Figure 3.12 Figure 3.13

Solution: Examine the completely different configuration, consisting of the point charge q
together with another point charge

, R
9'=-—q (3.15)
placed a distance
R2
b=— (3.16)
a

to the right of the center of the sphere (Fig. 3.13). No conductor, now—just the two point
charges. The potential of this configuration is

_ ! (a4
V) = O<¢+¢/>, (3.17)

where 2 and 2’ are the distances from ¢ and 4/, respectively. Now, it happens (see Prob. 3.7)
that this potential vanishes at all points on the sphere, and therefore fits the boundary conditions
for our original problem, in the exterior region.

Conclusion: Eq. 3.17 is the potential of a point charge near a grounded conducting
sphere. (Notice that b is less than R, so the “image” charge ¢’ is safely inside the sphere—you
cannot put image charges in the region where you are calculating V; that would change p,
and you’d be solving Poisson’s equation with the wrong source.) In particular, the force of
attraction between the charge and the sphere is

1 aq’ . 1 qua
C4mey (a—b)2  4mey @2 — RHZ

(3.18)

This solution is delightfully simple, but extraordinarily lucky. There’s as much art as
science in the method of images, for you must somehow think up the right “auxiliary problem”
to look at. The first person who solved the problem this way cannot have known in advance
what image charge ¢’ to use or where to put it. Presumably, he (she?) started with an arbitrary
charge at an arbitrary point inside the sphere, calculated the potential on the sphere, and then
discovered that with ¢’ and & just right the potential on the sphere vanishes. But it is really a
miracle that any choice does the job—with a cube instead of a sphere, for example, no single
charge anywhere inside would make the potential zero on the surface.
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g
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Figure 3.14

Problem 3.6 Find the force on the charge +¢ in Fig. 3.14. (The xy plane is a grounded
conductor.)

Problem 3.7

(a) Using the law of cosines, show that Eq. 3.17 can be written as follows:

1 q q
V(r.0)= - , (3.19)
dreg l:\/r2+a2—2ra cos B \/R2+(ra/R)2—2ra cosG:l

where r and 6 are the usual spherical polar coordinates, with the z axis along the line through
¢g. In this form it is obvious that V = 0 on the sphere, r = R.

(b) Find the induced surface charge on the sphere, as a function of 8. Integrate this to get the
total induced charge. (What should it be?)

(¢) Calculate the energy of this configuration.

Problem 3.8 In Ex. 3.2 we assumed that the conducting sphere was grounded (V = 0). But
with the addition of a second image charge, the same basic model will handle the case of a
sphere at any potential Vj (relative, of course, to infinity). What charge should you use, and
where should you put it? Find the force of attraction between a point charge g and a neutral
conducting sphere.

Problem 3.9 A uniform line charge X is placed on an infinite straight wire, a distance d above
a grounded conducting plane. (Let’s say the wire runs parallel to the x-axis and directly above
it, and the conducting plane is the xy plane.)

(a) Find the potential in the region above the plane.

(b) Find the charge density o induced on the conducting plane.

Problem 3.10 Two semi-infinite grounded conducting planes meet at right angles. In the
region between them, there is a point charge g, situated as shown in Fig. 3.15. Set up the
image configuration, and calculate the potential in this region. What charges do you need, and
where should they be located? What is the force on ¢? How much work did it take to bring
¢ in from infinity? Suppose the planes met at some angle other than 90°; would you still be
able to solve the problem by the method of images? If not, for what particular angles does the
method work?
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Figure 3.15 Figure 3.16

! Problem 3.11 Two long, straight coppet pipes, each of radius R, are held a distance 2d apart.
One is at potential Vj, the other at — Vjy (Fig. 3.16). Find the potential everywhere. [Suggestion:
Exploit the result of Prob. 2.47.]

3.3 Separation of Variables

In this section we shall attack Laplace’s equation directly, using the method of separation
of vatiables, which is the physicist’s favorite tool for solving partial differential eduations.
The method is applicable in circumstances where the potential (V) or the charge density
(o) is specified on the boundaries of some region, and we are asked to find the potential
in the interior. The basic strategy is very simple: We look for solutions that are products
of functions, each of which depends on only one of the coordinates. The algebraic details,
however, can be formidable, so I'm going to develop the method through a sequence of
examples. We’ll start with Cartesian coordinates and then do spherical coordinates (I'11
leave the cylindrical case for you to tackle on your own, in Prob. 3.23).

3.3.1 Cartesian Coordinates

Example 3.3

Two infinite grounded metal plates lie parallel to the xz plane, one at y = 0, the otherat y = a
(Fig. 3.17). The left end, at x = 0, is closed off with an infinite strip insulated from the two
plates and maintained at a specific potential V;(y). Find the potential inside this “slot.”

Solution: The configuration is independent of z, so this is really a two-dimensional problem.
In mathematical terms, we must solve Laplace’s equation,

tv  8%v

m + 3)}—2 =0, (3.20)
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Figure 3.17

subject to the boundary conditions

(1) V =0wheny =0,
(1) V =0wheny =a,
(iii) V = Vy(y) when x =0,
(iv) V> 0asx — oo.

321

(The latter, although not explicitly stated in the problem, is necessary on physical grounds: as
you get farther and farther away from the “hot” strip at x = 0, the potential should drop to
zero.) Since the potential is specified on all boundaries, the answer is uniquely determined.

The first step is to look for solutions in the form of products:
Vix,y) = X(x)Y (). (3.22)

On the face of it, this is an absurd restriction—the overwhelming majority of solutions to
Laplace’s equation do not have such a form. For example, V(x,y) = (5x + 6y) satisfies
Eq. 3.20, but you can’t express it as the product of a function x times a function y. Obviously.
we’re only going to get a tiny subset of all possible sotutions by this means, and it would be a
miracle if one of them happened to fit the boundary conditions of our problem . .. But hang on,
because the solutions we do get are very special, and it turns out that by pasting them together
we can construct the general solution.

Anyway, putting Eq. 3.22 into Eq. 3.20, we obtain
dx? dy? ’
The next step is to “separate the variables” (that is, collect all the x-dependence into one term
and all the y-dependence into another). Typically, this is accomplished by dividing through
by V:
1 d2X 1d%Y
Xax2 Ty a? T
Here the first term depends only on x and the second only on y; in other words, we have an
equation of the form

0. (3.23)

fx)+g(y)=0. (3.24)
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Now, there’s only one way this could possibly be true: f and g must both be constant. For
what if f(x) changed, as you vary x—then if we held y fixed and fiddled with x, the sum
f(x) + g(x) would change, in violation of Eq. 3.24, which says it’s always zero. (That’s a
simple but somehow rather elusive argument; don’t accept it without due thought, because the
whole method rides on it.) It follows from Eq. 3.23, then, that

1d°X 1d%y ,

}W =C1 and ?chz, with C] +C2=O (325)
One of these constants is positive, the other negative (or perhaps both are zero). In general, one
must investigate all the possibilities; however, in our particular problem we need C positive
and C5 negative, for reasons that will appear in a moment. Thus

2x d’y

_ 2
i , P —k“Y. (3.26)

Notice what has happened: A partial differential equation (3.20) has been converted into two
ordinary differential equations (3.26). The advantage of this is obvious—ordinary differential
equations are a lot easier to solve. Indeed:

X(x) = Ak 4 Be™™ | ¥(y) = Csinky + Dcosky,

so that
V(x,y) = (Aek* + Be **)(Csinky + D cosky). (3.27)

This is the appropriate separable solution to Laplace’s equation; it remains to impose the
boundary conditions, and see what they tell us about the constants. To begin at the end,
condition (iv) requires that A equal zero.* Absorbing B into C and D, we are left with

V(x,y) = e X (Csinky + Dcosky).
Condition (i) now demands that D equal zero, so
V(x,y) = Ce " sinky. (3.28)

Meanwhile (ii) yields sin ka = 0, from which it follows that

niw

k=— n=123,..). (3.29
a

(At this point you can see why I chose C; positive and C; negative: If X were sinusoidal, we
could never arrange for it to go to zero at infinity, and if ¥ were exponential we could not make
it vanish at both 0 and a. Incidentally, n = 0 is po good, for in that case the potential vanishes
everywhere. And we have already excluded negative n’s.)

That’s as far as we can go, using separable solutions, and unless V() just happens to have the
form sin(nmry/a) for some integer n we simply can’t fir the final boundary condition at x = ().
But now comes the crucial step that redeems the method: Separation of variables has given
us an infinite set of solutions (one for each #), and whereas none of them by itself satisfies

4y

m assuming k is positive, but this involves no loss of generality—negative k gives the same solution (3.27),

only with the constants shuffled (A <> B, C — —C). Occasionally (but not in this example) k = 0 must also be
included (see Prob. 3.47).
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the final boundary condition, it is possible to combine them in a way that does. Laplace’s
equation is linear, ih the sense that if V|, V;, V4, .. . satisfy it, so does any linear combination,
V=uoV) +asVa +a3V3 + ..., where o), ay, . .. are arbitrary constants. For

V2V=011V2V1+012V2V2+...=0a1+0(¥2+...=0.

Exploiting this fact, we can patch together the separable solutions (3.28) to construct a much
more general solution:

x>
V(x,y) =Y Cpe "™ /sin(nmy/a). (3.30)
n=1
This still satisfies the first three boundary conditions; the question is, can we (by astute choice
of the coefficients Cp,) fit the last boundary condition?

oo
VO,y) =) Cusin(rmy/a) = Vo(»). (3.31)

n=1

Weil, you may recognize this sum—it’s a Fourier sine series. And Dirichlet’s theorem? guaran-
tees that virtually any function Vjy(y)—it can even have a finite number of discontinuities—can
be expanded in such a series.

But how do we actually deterniine the coefficients C n, buried as they are in that infinite sum?
The device for accomplishing this is so lovely it deserves a name—I call it Fourier’s trick,
though it seems Euler had used essentially the same idea somewhat earlier. Here’s how it goes:
Multiply Eq. 3.31 by sin(n'my/a) (where n’ is a positive integer), and integrate from 0 to a:

00 a a
Z Cn/ sin(nwy/a) sin(n'my/a) dy :/ Vo(y) sin(n'my/a) dy. (3.32)
0 0
=1
You can work out the integral on the left for yourself; the answer is
; 0, ifn' £n,
/ sin(ny/a) sin(n'ny/a)dy = a (3.33)
0 3 ifn' = n.

Thus all the terms in the series drop out, save only the one where #n” = n, and the left side of
Eq. 3.32, reduces to (a/2)C,y. Conclusion:®

2 a
Cy = -/ Vo(y) sin(nry/a) dy. (3.34)
aJo
That does it: Bq. 3.30 is the solution, with coefficients given by Eq. 3.34. As a concrete

example, suppose the strip at x = 0 is a metal plate with constant potential V;y (remember, it’s
insulated from the grounded plates at y = 0 and y = @). Then

0, if # is even,
2Vy (¢ 2V,
C, = —O/ sin(nwry/aydy = —O(l —COoSnm) = 4V, (3.35
a Jo " n—o if n is odd.
T

5Boas, M., Mathematical Methods in the Physical Sciences, 2nd ed. (New York: John Wiley, 1983).
OFor aesthetic reasons I've dropped the prime; Eq. 3.34 holds for n = 1,2,3,..., and it doesn’t matter
(obviously) what letter you use for the “dummy” index.
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V/Vo
Figure 3.18
Evidently,
4V 1
Vi, y) = 9 Z —e "X gin(nry/a). (3.36)
T n=1,3,5... "

Figure 3.18 is a plot of this potential; Fig. 3.19 shows how the first few terms in the Fourier
series combine to make a better and better approximation to the constant Vy: (a)isn = 1 only,
(b) includes n up to 5, (c) is the sum of the first 10 terms, and (d) is the sum of the first 100
terms.

]'? /AN

/ d) A4
08 |[©) (
0.4 (a)
0.2
0 02 04 0.6 0.8 1
via

Figure 3.19
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Incidentally, the infinite series in Eq. 3.36 can be summed explicitly (try your hand at it, if
you like); the result is

Vo

2 -1
V(x, y) = 7 tan

sin(zy/a) ) (3.37)

sinh(mx/a)

In this form it is easy to check that Laplace’s equation is obeyed and the four boundary
conditions (3.21) are satisfied.

The success of this method hinged on two extraordinary properties of the separable
solutions (3.28): completeness and orthogonality. A set of functions f,(y) is said to be
complete if any other function f(y) can be expressed as a linear combination of them:

FO)Y =) Cafay). (3.38)

n=1

The functions sin(ny/a) are complete on the interval 0 < y < a. It was this fact,
guaranteed by Dirichlet’s theorem, that assured us Eq. 3.31 could be satisfied, given the
proper choice of the coefficients C,,. (The proof of completeness, for a particular set of
functions, is an extremely difficult business, and I’'m afraid physicists tend to assume it’s
true and leave the checking to others.) A set of functions is orthogonal if the integral of
the product of any two different members of the set is zero:

/0 Fe ) fi0)dy =0 forn' #n. (3.39)

The sine functions are orthogonal (Eq. 3.33); this is the property on which Fourier’s trick
is based, allowing us to kill off all terms but one in the infinite series and thereby solve
for the coefficients C,,. (Proof of orthogonality is generally quite simple, either by direct
integration or by analysis of the differential equation from which the functions came.)

Example 3.4

Two infinitely long grounded metal plates, again at y = O and y = a, are connected at x = +b
by metal strips maintained at a constant potential Vj, as shown in Fig. 3.20 (a thin layer
of insulation at each corner prevents them from shorting out). Find the potential inside the
resulting rectangular pipe.

Solution: Once again, the configuration is independent of z. Our problem is to solve Laplace’s
equation

subject to the boundary conditions

(i) V=0wheny =0,
(ii) V =0wheny=a,
(ili) V = Vywhenx =b,
(iv) V = Vywhenx = —b.

(3.40)
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Figure 3.20

The argument runs as before, up to Eq. 3.27:
Vix,y) = (A* + Be™)(Csin ky 4+ D cosky).

This time, however, we cannot set A = 0; the region in question does not extend to x = oo,

s0 ek is perfectly acceptable. On the other hand, the situation is symmetric with respect to x,

so V(—x,y) = V(x, y), and it follows that A = B. Using
e ek — 2cosh kx,
and absorbing 24 into C and D, we have
V(x,y) =coshkx (Csinky + Dcosky).
Boundary conditions (i) and (ii) require, as before, that D = 0 and k = nrn/a, so
V(x,y) = Ccosh(nmx/a) sin(nwy/a). (34D

Because V (x, y) is even in x, it will automatically meet condition (iv) if it fits (iii). It remains,
therefore, to construct the general linear combination,

o0
Vix,y)= Z Cy cosh(nmx /a) sin(nwy/a),

n=1
and pick the coefficients Cy, in such a way as to satisfy condition (iii):

oo
Vb, y) = Z Cy cosh(nmb/a) sin(nwy/a) = Vj.

n=1

This is the same problem in Fourier analysis that we faced before; I quote the result from
Eq. 3.35:
0, if 7 is even

Cycosh(nmb/a) =
4V, e .
—_—, if n is odd

niw
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Figure 3.21

Conclusion: The potential in this case is given by

4V Z 1 cosh(nmx/a)

Yy =-—= n cosh(nmb/a)
T nel3s.. cosh(nmb/a

sin(nmy/a). (3.42)

This function is shown in Fig. 3.21.

Example 3.5

An infinitely long rectangular metal pipe (sides a and &) is grounded, but one end, at x = 0, is
maintained at a specified potential Vg (y, z). as indicated in Fig. 3.22. Find the potential inside
the pipe.

Solution: This is a genuinely three-dimensional problem,

3%y N 92V N 92
ax2 ay? a2

<

=0. (3.43)

Voly, 2 —|= | I
b ‘.%_V x
e

Figure 3.22
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subject to the boundary conditions
(i) V=0wheny =0,
(i) V =0wheny=aq,
(iii) V =0whenz =0,

(iv) V =0whenz=h, (344)
v) V-o0ax— o0,
(vi) V =Vy(y,z) whenx =0.
As always, we look for solutions that are products:
Vix,y,2) = Xx)Y(»)Z(2). (3.45)

Putting this into Eq. 3.43, and dividing by V, we find

1d%x 1d4%vy 1d%z
- - +=——==0.
X dx2 Y dy2  Zd2

It follows that
1 d?x 1 &%y 1d%z
——— =(], = —==Cy, =—= =C3, with C{+Cy+C3=0.
Xax2  Dyar  rzgz ot veatats

Our previous experience (Ex. 3.3) suggests that C; must be positive, C and C3 negative.
Setting Cp = —k?% and Cy = —12, we have C = k2 + 12, and hence

d*x d%y d*z
3= ** + 15X, el —k2y, = —1%z. (3.46)

Once again, separation of variables has turned a partial differential equation into ordinary
differential equations. The solutions are

X(x) = AeV K x 4 Be—«/k2+lzx’
Y(y) = Csinky+ Dcosky,
Z(z) = Esinlz+ Fcoslz.
Boundary condition (v) impliés A =0, (i) gives D = 0, and (iii) yields F = 0, whereas (ii)

and (iv) require thatk = nm/a and ! = mm /b, where n and m are positive integers. Combining
the remaining constants, we are left with

Vix, y,2) = Ce N @/ +m/X 6oy 1a) sin(mrz/b). (3.47)

This solution meets all the boundary conditions except (vi). It contains two unspecified
integers (n and m), and the most general linear combination is a double sum:

[ ClNe ]
Vix,y,z2) = Z Z Cn.me ™V (n/a)*+(m/b)? x sin(nmy/a) sin(mmz/b). (3.48)
n=1m=1
‘We hope to fit the remaining boundary condition,

oo 00
V(©0,y,2) = Z Z Cn m sin(ny/a) sin(mmz/b) = Vy(y. 2), (3.49)

n=1m=1
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by appropriate choice of the coefficients C;, ,,. To determine these constants, we multiply by
sin(n'y/a) sin(m'mz/b), where n’ and m’ are arbitrary positive integers, and integrate:

55

n=1m=1 0

b
‘ sin(ny/a) sin(n'ny/a) dy/ sin(mmz/b) sin(m'wz/b) dz
0

a pb
:/ / Vo(y, 2) sin(n’wy/a) sin(m’wz/b) dy dz.
0 JO
Quoting Eq. 3.33, the left side is (ab/4)C,y . 50
4 a rb
Com = —b/ / Vo(y, 2) sin(nmry/a) sin(mmz/b)dy dz. 3.50)
a 0 JO

Equation 3.48, with the coefficients given by Eq. 3.50, is the solution to our problem.

For instance, if the end of the tube is a conductor at constant potential V;,

Vo [ . b
Com = — sin(nry/a)dy sin(mmz/b)dz
ab Jp 0
0, if n or m is even,
— (3.51)
16V,
3 0 s if n and m are odd.
mlnm
In this case
16V, ad 1 TR
Vix.y,2) = —TO Z — TNV /A Hm/BY X Gin iy Ja) sin(mmz/b). (3.52)
T m

n
n,m=1,3,5..

Notice that the successive terms decrease rapidly; a reasonable approximation would be ob-
tained by keeping only the first few.

Problem 3.12 Find the potential in the infinite slot of Ex. 3.3 if the boundary at x = 0 consists
of two metal strips: one, from y = 0 to y = a/2, is held at a constant potential V;, and the
other, from y = a/2 to y = q, is at potential —Vj).

Problem 3.13 For the infinite slot (Ex. 3.3) determine the charge density o (y) on the strip at
x = 0, assuming it is a conductor at constant potential Vj.

Problem 3.14 A rectangular pipe, running parallel to the z-axis (from — o0 to 4+00), has three
grounded metal sides, at y = 0, y = a, and x = 0. The fourth side, at x = b, is maintained at
a specified potential V(y).

(a) Develop a general formula for the potential within the pipe.

(b) Find the potential explicitly, for the case V() = Vj (a constant).
Problem 3.15 A cubical box (sides of Jength a) consists of five metal plates, which are welded

together and grounded (Fig. 3.23). The top is made of a separate sheet of metal, insulated from
the others, and held at a constant potential V{;. Find the potential inside the box.
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Figure 3.23

3.3.2 Spherical Coordinates

In the examples considered so far, Cartesian coordinates were clearly appropriate, since the
boundaries were planes. For round objects spherical coordinates are more natural. In the
spherical system, Laplace’s equation reads:

13 [,V 1 9 v 1 v
2 or <r ar)Jr +2sind 96 <Sm 39)+r2 sin? 6 a2 G>3

I shall assume the problem has azimuthal symmetry, so that V is independent of ¢;" in
that case Eq. 3.53 reduces to

0 oV 1 0 A%
—(r— )4+ — —|sinoe— ) =0. (3.54)
ar or sinf 06 00

As before, we look for solutions that are products:

V(r,0) = R(rnB(@®H). (3.59)
Putting this into Eq. 3.54, and dividing by V,

1 d [ ,dR | d /. de
— = (222 — 66— ) =0. S
Rdr (r dr>+(~)sin0d0 (Sm de) 0 (3.:56)

Since the first term depends only on r, and the second only on 6, it follows that each must
be a constant:

1d (,dR 1 d d®
(P2 =10 11 — [sing— ) = —1d +1). 35
e (r dr) C+D, Ging o (Sm d@) t+h 20

Here [(I 4 1) is just a fancy way of writing the separation constant—you’ll see in a minute
why this is convenient.

TThe general case, for ¢-dependent potentials, is treated in all the graduate texts. See, for instance, J. D.
Jackson’s Classical Electrodynamics, 3rd ed., Chapter 3 (New York: John Wiley, 1999).
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As always, separation of variables has converted a partial differential equation (3.54)
into ordinary differential equations (3.57). The radial equation,

d [ ,dR
4 il 1 .
- (r dr) I( + DR, (3.58)

has the general solution

B
RO = Ar' + . (3.59)

as you can easily check; A and B are the two arbitrary constants to be expected in the
solution of a second-order differential equation. But the angular equation,

d /. d®e .
76 (sm0%> =-I(l+1)sin6 B, (3.60)

is not so simple. The solutions are Legendre polynomials in the variable cos 6
©(6) = Pi(cosb). (3.61)

P;(x) is most conveniently defined by the Rodrigues formula:

_ 1 (4Y e 1! 3.62
Pl(x)—“z—,l—! dx " =1 (3.62)
The first few Legendre polynomials are listed in Table 3.1.
Po(x) = 1
Pi(x) = «x
P(x) = (3x*-1)/2
Pyx) = (5x*=3x)/2
Py(x) = (35x* —30x>+3)/8
Ps(x) = (63x>—70x3+15x)/8

Table 3.1 Legendre Polynomials

Notice that P;(x) is (as the name suggests) an [th-order polynomial in x; it contains only
even powers, if [ is even, and odd powers, if [ is odd. The factor in front (1/ 2 1) was chosen
in order that

P =1. (3.63)

The Rodrigues formula obviously works only for nonnegative integer values of /. More-
over, it provides us with only one solution. But Eq. 3.60 is second-order, and it should pos-
sess two independent solutions, for every value of . It turns out that these “other solutions”
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blow up at 8 = 0 and/or & = 7, and are therefore unacceptable on physical grounds.® For
instance, the second solution for ! = 0 is

@®)=In (tan g) . (3.64)

You might want to check for yourself that this satisfies Eq. 3.60.

Inthe case of azimuthal symmetry, then, the most general separable solution to Laplace’s
equation, consistent with minimal physical requirements, is

B
Vr,0) = (Arl + m) Pi(cos6).

(There was no need to include an overall constant in Eq. 3.61 because it can be absorbed into
A and B at this stage.) As before, separation of variables yields an infinite set of solutions,
one for each /. The general solution is the linear combination of separable solutions:

o0

Vo)=Y <A,r’ + %) Pi(cosb). (3.65)

=0

The following examples illustrate the power of this important result.

Example 3.6

The potential V(8) is specified on the surface of a hollow sphere, of radius R. Find the
potential inside the sphere.

Solution: In this case By = 0 for all /—otherwise the potential would blow up at the origin.
Thus,

o0
V(r,0) =" Al Pi(cos). (3.66)
1=0

Atr = R this must match the specified function Vjy(8):
o0
V(R,0) =) AR P(cos0) = Vy(0). (3.67)
1=0

Can this equation be satisfied, for an appropriate choice of coefficients A;? Yes: The Legendre
polynomials (like the sines) constitute a complete set of functions, on the interval —1 < x < 1

81n rare cases where the z axis is for some reason inaccessible, these “other solutions™ may have to be considered.
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(0 < 8 < 7). How do we determine the constants? Again, by Fourier’s trick, for the Legendre
polynomials (like the sines) are orthogonal functions:?

/11 Pi(x)Pp(x)dx = /On Py(cos 0) Py (cos 6) sind db
0, ifl #1,

= 3.68
- -

Thus, multiplying Eq. 3.67 by Py (cos ) sin 0 and integrating, we have

r_2 d :
R T = /0 Vo (6) Py (cos0) sin 6 do,
or
A= 2+1 /ﬂ Vo(8) Pi(cos8) sin6 d6. (3.69)
2R Jo

Equation 3.66 is the solution to our problem, with the coefficients given by Eq. 3.69.

In can be difficuit to evaluate integrals of the form 3.69 analytically, and in practice it is often
easier to solve Eq. 3.67 “by eyeball.”10 For instance, suppose we are told that the potential on
the sphere is

Vo(6) = k sin®(6/2), (3.70)

where k is a constant. Using the half-angle formula, we rewrite this as
k k
Vo0) = 5 (1 —cosf) = E[Po(cose) — Pi(cos9)].

Putting this into Eq. 3.67, we read off immediately that Ag = k/2, A} = —k/(2R), and all
other A;’s vanish. Evidently,

NS

1
V(r,0) = g |:r0P0(c059) - %Pl(cose)] = (1 - %cos@). 371

Example 3.7

The potential V() is again specified on the surface of a sphere of radius R, but this time we
are asked to find the potential ourside, assuming there is no charge there.

Solution: In this case it’s the A;’s that must be zero (or else V would not go to zero at 00), so

o0
B
Vo)=Y ml—lP, (cos 6). (3.72)
i=0

9M. Boas, Mathematical Methods in the Physical Sciences, 2nd ed., Section 12.7 (New York: John Wiley.
1983).

10This is certainly true whenever V() can be expressed as a polynomial in cos 6. The degree of the polynomial
tells us the highest I we require, and the leading coefficient determines the corresponding A;. Subtracting off
AlRl P;(cos 8) and repeating the process, we systematically work our way down to Ag. Notice that if Vg is an
even function of cos 8, then only even terms will occur in the sum (and likewise for odd functions).
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At the surface of the sphere we require that
o0

By
V(R.6)=)" =71 Pi(eos8) = Vo(®).
=0

Multiplying by Py (cos 6) sin 6 and integrating—exploiting, again, the orthogonality relation

3.68—we have
B2 [T @) Pcos6) sind do
1= A 0(0) P/ (cos ) sin .
or
2A+1 m
B = %R’“/ Vo (8) Pi(cos 6) sin 6 d6. (3.73)
0

Equation 3.72, with the coefficients given by Eq. 3.73, is the solution to our problem.

Example 3.8

Anuncharged metal sphere of radius R is placed in an otherwise uniform electric field E = Eyz.
[The field will push positive charge to the “northern” surface of the sphere, leaving a negative
charge on the “southern” surface (Fig. 3.24). This induced charge, in turn, distorts the field in
the neighborhood of the sphere.] Find the potential in the region outside the sphere.

Selution: The sphere is an equipotential—we may as well set it to zero. Then by symmetry
the entire xy plane is at potential zero. This time, however, V does not go to zero at large z.

In fact, far from the sphere the field is EyZ, and hence

V > —E()Z+C.

Figure 3.24



142 CHAPTER 3. SPECIAL TECHNIQUES
Since V = 0 in the equatorial plane, the constant C must be zero. Accordingly, the boundary
conditions for this problem are

(i) V=0 whenr=R,
(i) V — —Egrcosf  forr > R. (3.74)
We must fit these boundary conditions with a function of the form 3.65.
The first condition yields
AR + B 0
! RI+1 ’
or
By = —A R¥H, (3.75)
SO o
R2+1
Vo)=Y A <r’ - Py(cos 8).
=0
For r >» R, the second term in parentheses is negligible, and therefore condition (ii) requires
that
o0
Z AlrlPl (cos8) = —Egrcost.
=0
Evidently, only one term is present: / = 1. In fact, since Pj(cos8) = cos 6, we can read off
immediately
A} = —Eg, all other A;’s zero.
Conclusion:
R3
V(r,0) =—Eq{r — — ) cos6. (3.76)
r
The first term (— Egr cos ) is due to the external field: the contribution attributable to the
induced charge is evidently
R3
Ey —5 cos 6.
r
If you want to know the induced charge density, it can be calculated in the usual way:
v R?
0(0)=—eyg— =eEg|1+2— |cosb =3egEgcost. 3.7
or r=R r3
r=R
As expected, it is positive in the “northern” hemisphere (0 < 8 < /2) and negative in the
“southern” (/2 < 0 < m).
Example 3.9

A specified charge density og (6) is glued over the surface of a spherical shell of radius R. Find
the resulting potential inside and outside the sphere.

Selution: You could, of course, do this by direct integration:

1 09
= — ?da,
4mep 2
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but separation of variables is often easier. For the interior region we have

o0
Vr.0) =) Apr'Pcost) (r<R) (3.78)
=0

(no B terms—they blow up at the origin); in the exterior region
Vo)=Y mP[(cos 9 >R (3.79)
=0

(no Aj terms—they don’t go to zero at infinity). These two functions must be joined together
by the appropriate boundary conditions at the surface itself. First, the potential is continuous
atr = R (Eq. 2.34):

X0 X0 Bl
ZZ AjR' Pi(cos ) = ZZ T Pi(cos o). (3.80)
=0 =0

It follows that the coefficients of like Legendre polynomials are equal:
B, = A;RZTL, (3.81)

(To prove that formally, multiply both sides of Eq. 3.80 by Py (cosé) sin 6 and integrate from
0 to 7, using the orthogonality relation 3.68.) Second, the radial derivative of V suffers a
discontinuity at the surface (Eq. 2.36):

d Vout _ aVin
ar ar

& B ad 1
-+ 1)RT’r2P,(cos9) — > 1AR'T P(eos ) = ~—o0(®),
=0 1=0 0
or, using Eq. 3.81:

1
= —500(9). (3.82)
r=R

Thus

X0
1
> @1+ DART Pcos6) = — oy 6). (3.83)
€0
=0
From here, the coefficients can be determined using Fourier’s trick:

1 m
Ay = ZOR’——I/O og(0) P (cos ) sinf do. (3.84)

Equations 3.78 and 3.79 constitute the solution to our problem, with the coefficients given by
Eqgs. 3.81 and 3.84.

For instance, if
00(0) = kcos6 = kPj(cosh), (3.85)

for some constant k, then all the A;’s are zero except for / = 1, and

| 2. k
Ay = —/ [P1(cosO)]“sin6df = —.
2¢q Jo 3€0
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The potential inside the sphere is therefore

k
V(r,0) = —rcoséd (r <R), (3.86)
3¢p
whereas outside the sphere
kR3 1
V(r,0) = — — cos@ (r > R). (3.87)
3ep 12

In particular, if op(#) is the induced charge on a metal sphere in an external field EgZ, so
that k = 3¢gE( (Eq. 3.77), then the potential inside is Egr cosd = Egz, and the field is
— EgZz—exactly right to cancel off the external field, as of course it should be. Outside the
sphere the potential due to this surface charge is

R3
Ey —5 Cos 0,
r

consistent with our conclusion in Ex. 3.8.

Problem 3.16 Derive P3(x) from the Rodrigues formula, and check that P3(cos ) satisfies the
angular equation (3.60) for/ = 3. Check that P53 and P are orthogonal by explicit integration.

Problem 3.17

(a) Suppose the potential is a constant Vg over the surface of the sphere. Use the results of
Ex. 3.6 and Ex. 3.7 to find the potential inside and outside the sphere. (Of course, you know
the answers in advance—this is just a consistency check on the method.)

(b) Find the potential inside and outside a spherical shell that carries a uniform surface charge
00, using the results of Ex. 3.9.

Problem 3.18 The potential at the surface of a sphere (radius R) is given by
Vo = kcos 36,

where k is a constant. Find the potential inside and outside the sphere, as well as the surface
charge density o (9) on the sphere. (Assume there’s no charge inside or outside the sphere.)

Problem 3.19 Suppose the potential V5(6) at the surface of a sphere is specified, and there is
no charge inside or outside the sphere. Show that the charge density on the sphere is given by

o0
o (6) = 2% Y @+ 1€ Py(cos ), (3.88)
=0

where .
o)} =/ Vo(0) Pi(cos 0) sin6 db. (3.89)
0
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Problem 3.20 Find the potential outside a charged metal sphere (charge O, radius R) placed
in an otherwise uniform electric field Eg. Explain clearly where you are setting the zero of
potential.

Problem 3.21 In Prob. 2.25 you found the potential on the axis of a uniformly charged disk:

V(r,0) = i—(\/rz +R2—r).
0

(a) Use this, together with the fact that P;(1) = 1, to evaluate the first three terms in the
expansion (3.72) for the potential of the disk at points off the axis, assuming > R.

(b) Find the potential for » < R by the same method, using (3.66). [Note: You must break
the interior region up into two hemispheres, above and below the disk. Do not assume the
coefficients A; are the same in both hemispheres.]

Problem 3.22 A spherical shell of radius R carries a uniform surface charge oq on the “north-
ern” hemisphere and a uniform surface charge —og on the “southern” hemisphere. Find the
potential inside and outside the sphere, calculating the coefficients explicitly up to Ag and Bg.

Problem 3.23 Solve Laplace’s equation by separation of variables in cylindrical coordinates,
assuming there is no dependence on z (cylindrical symmetry). [Make sure you find a/l solutions
to the radial equation; in particular, your result must accommodate the case of an infinite line
charge, for which (of course) we already know the answer.)

Problem 3.24 Find the potential outside an infinitely long metal pipe, of radius R, placed at
right angles to an otherwise uniform electric field Eq. Find the surface charge induced on the
pipe. [Use your result from Prob. 3.23.]

Problem 3.25 Charge density
o(¢) = asin5¢

(where a is a constant) is glued over the surface of an infinite cylinder of radius R (Fig. 3.25).
Find the potential inside and outside the cylinder. [Use your result from Prob. 3.23.]

Figure 3.25
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3.4 Multipole Expansion

3.4.1 Approximate Potentials at Large Distances

If you are very far away from a localized charge distribution, it “looks” like a point charge.
and the potential is—to good approximation—(1/4mweq) Q/r, where Q is the total charge.
We have often used this as a check on formulas for V. But what if Q is zero? You might
reply that the potential is then approximately zero, and of course, you’re right, in a sense
(indeed, the potential at large r is pretty small even if Q is not zero). But we’re looking for
something a bit more informative than that.

Example 3.10

A (physical) electric dipole consists of two equal and opposite charges (£¢) separated by a
distance d. Find the approximate potential at points far from the dipole.

Solution: Let2_ be the distance from —g and 2 the distance from +¢ (Fig. 3.26). Then

1 (a4 4
V(r) = — -,
@ 4dmeg </L+ /L_>

and (from the law of cosines)
2 _ 2 2 2 d d?
25 =r°+(d/2)" Frdcosf =r" |1 F —cosb+ — |.
r 4r?

We're interested in the régime r >> d, so the third term is negligible, and the binomial expansion

yields
11 “r
_;_(1q:—cose) E—(li—cos@)
2+ r r
Thus
1 1 d
— — — = — cos9,
T4 2 r2
and hence 1 d 9
co
V) = 94 (3.90)
drey 12

Figure 3.26
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V~1/r (V~1/rH) (V~1/r3) V~1/rh
Figure 3.27

Evidently the potential of a dipole goes like 1 /r2 at large r; as we might have anticipated,
it falls off more rapidly than the potential of a point charge. Incidentally, if we put together
a pair of equal and opposite dipoles to make a quadrupole, the potential goes like 1 / #3; for
back-to-back quadrupoles (an octopole) it goes like 1/r4; and so on. Figure 3.27 summarizes
this hierarchy; for completeness I have included the electric monopole (point charge), whose
potential, of course, goes like 1/r.

Example 3.10 pertained to a very special charge configuration. I propose now to develop
a systematic expansion for the potential of an arbitrary localized charge distribution, in
powers of 1/r. Figure 3.28 defines the appropriate variables; the potential at r is given by

V) = / %p(r’)dr’. (3.91)

4deq

Using the law of cosines,

7N 2 ’
22 =12+ (") = 2rr cos ' = r? l:l + (r_) -2 (r_) cos@’:l ,
¥ ¥

r=r+/1+¢€ (3.92)

/ /
€= (r_) (i — ZCOSG’) .
r r

For points well outside the charge distribution, € is much less than 1, and this invites a
binomial expansion:

or

where

1 1 1 5
= (1+e)‘1/2=—(1——e+—62—~63+...), (3.93)
. r

Figure 3.28
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or, in terms of r, r’, and 9’:

1 1 177\ (F , 3¢\ /r , 2
- = —|l=={=)|——2cos8" |+ {— — —2cos¥
2 r 2\r r 8§\ r r

ll: ' , r\? >
= - 1+(—> (c089)+(—> (Becos 6" — 1)/2
r r r

3

Y\
+<7) (5¢c08° 0" —3cosH)/2+... .

In the last step I have collected together like powers of (r'/r); surprisingly, their coefficients
(the terms in parentheses) are Legendre polynomials! The remarkable result!! is that

1 1< /\
o= Z(;) P, (cos8), (3.94)
n=0

where 0’ is the angle between r and r’. Substituting this back into Eq. 3.91, and noting that
r is a constant, as far as the integration is concerned, I conclude that

oo

1 1
V(r) = mzrm—w / (r)" P, (cos 8 p(r) dt’, (3.95)
n=0
or, more explicitly,
1 1 / / 1 7 7 / 7
Viry = — | p(r)dt + = [ ricos®'p(r)dr
dmeg | ¥ r
1 N2 3 Y 1 ’ ’
+ =5 D) {50870 — S Jp)dr + ... (3.96)
re 2 2

This is the desired result—the multipole expansion of V in powers of 1/r. The
first term (n = 0) is the monopole contribution (it goes like 1/r); the second (n = 1)
is the dipole (it goes like 1/r?); the third is quadrupole; the fourth octopole; and so on.
As it stands, Eq. 3.95 is exact, but it is useful primarily as an approximation scheme: the
lowest nonzero term in the expansion provides the approximate potential at large r, and the
successive terms tell us how to improve the approximation if greater precision is required.

11Incidentally, this affords a second way of obtaining the Legendre polynomials (the first being Rodrigues
formula); 1/% is called the generating function for Legendre polynomials.
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Problem 3.26 A sphere of radius R, centered at the origin, carries charge density
R .
pr,6) = k—2(R —2r)sing,
r

where k is a constant, and r, 6 are the usual spherical coordinates. Find the approximate
potential for points on the z axis, far from the sphere.

3.4.2 The Monopole and Dipole Terms

Ordinarily, the multipole expansion is dominated (at large r) by the monopole term:

g, (3.97)
dmeg r

Vinon(r) =

where Q = [ pdr is the total charge of the configuration. This is just what we expected
for the approximate potential at large distances from the charge. Incidentally, for a point
charge at the origin, Vimon represents the exact potential everywhere, not merely a first
approximation at large r; in this case all the higher multipoles vanish.

If the total charge is zero, the dominant term in the potential will be the dipole (unless,
of course, it also vanishes):

V. —_ 1 1 7 9/ 7 d ’
dip(r) = —47'[60}"—2 r'cos@ p(r)dr’.

Since ¢’ is the angle between r’ and r (Fig. 3.28),

r'cos® =11,

and the dipole potential can be written more succinctly:
Viip () = Lif' ~/r’p(r’)dt’
P dmeg r? '

This integral, which does not depend on r at all, is called dipole moment of the distribution:

pzfr’p(r’)dr’, (3.98)

and the dipole contribution to the potential simplifies to

>

1 p-
dmeq 1?2

Viip(r) = (3.99)




150 CHAPTER 3. SPECIAL TECHNIQUES

The dipole moment is determined by the geometry (size, shape, and density) of the
charge distribution. Equation 3.98 translates in the usual way (Sect. 2.1.4) for point, line,
and surface charges. Thus, the dipole moment of a collection of point charges is

p=Yar. (3.100)
i=1
For the “physical” dipole (equal and opposite charges, £¢q)
p=gqr, —gr_=q@, —r)=qd, (3.101)

where d is the vector from the negative charge to the positive one (Fig. 3.29).

Is this consistent with what we got for a physical dipole, in Ex. 3.107 Yes: If you
put Eq. 3.100 into Eq. 3.99, you recover Eq. 3.90. Notice, however, that this is only
the approximate potential of the physical dipole—evidently there are higher multipole
contributions. Of course, as you go farther and farther away, Vgjp becomes a better and
better approximation, since the higher terms die off more rapidly with increasing r. By the
same token, at a fixed r the dipole approximation improves as you shrink the separation d.
To construct a “pure” dipole whose potential is given exactly by Eq. 3.99, you’d have to let d
approach zero. Unfortunately, you then lose the dipole term 00, unless you simultaneously
arrange for g to go to infinity! A physical dipole becomes a pure dipole, then, in the rather
artificial limit d — 0, ¢ — oo, with the product gd = p held fixed. (When someone uses
the word “dipole,” you can’t always tell whether they mean a physical dipole (with finite
separation between the charges) or a pure (point) dipole. If in doubt, assume that d is small
enough (compared to r) that you can safely apply Eq. 3.99.)

Dipole moments are vectors, and they add accordingly: if you have two dipoles, p; and
p2, the total dipole moment is p; + pz. For instance, with four charges at the corners of a
square, as shown in Fig. 3.30, the net dipole moment is zero. You can see this by combining
the charges in pairs (vertically, | + 1 = 0, or horizontally, — + < = 0) or by adding up
the four contributions individually, using Eq. 3.100. This is a quadrupole, as I indicated
earlier, and its potential is dominated by the quadrupole term in the multipole expansion.)

-q +q

+q -q

Figure 3.29 Figure 3.30
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z
3q
a
—2q a —2q y
X q
Figure 3.31

Problem 3.27 Four particles (one of charge g, one of charge 3¢, and two of charge —2g) are
placed as shown in Fig. 3.31, each a distance a from the origin. Find a simple approximate
formula for the potential, valid at points far from the origin. (Express your answer in spherical
coordinates.)

Problem 3.28 In Ex. 3.9 we derived the exact potential for a spherical shell of radius R, which
carries a surface charge ¢ = k cos 6.

(a) Calculate the dipole moment of this charge distribution.

(b) Find the approximate potential, at points far from the sphere, and compare the exact answer
(3.87). What can you conclude about the higher multipples?

Problem 3.29 For the dipole in Ex. 3.10, expand 1 /4. to order (d/ r)3 , and use this to determine
the quadrupole and octopole terms in the potential.

3.4.3 Origin of Coordinates in Multipole Expansions

I mentioned earlier that a point charge at the origin constitutes a “pure” monopole. If it is
not at the origin, it’s no longer a pure monopole. For instance, the charge in Fig. 3.32 has a
dipole moment p = gd¥, and a corresponding dipole term in its potential. The monopole
potential (1/4meg)q /r is not quite correct for this configuration; rather, the exact potential
is (1/4m€0)q /2. The multipole expansion is, remember, a series in inverse powers of r (the
distance to the origin), and when we expand 1/2 we get all powers, not just the first.

So moving the origin (or, what amounts to the same thing, moving the charge) can
radically alter a multipole expansion. The monopole moment Q does not change, since the
total charge is obviously independent of the coordinate system. (In Fig. 3.32 the monopole
term was unaffected when we moved ¢ away from the origin—it’s just that it was no
longer the whole story: a dipole term—and for that matter all higher poles—appeared as
well.) Ordinarily, the dipole moment does change when you shift the origin, but there is an
important exception: If the total charge is zero, then the dipole moment is independent of
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Figure 3.32 Figure 3.33

the choice of origin. For suppose we displace the origin by an amount a (Fig. 3.33). The
new dipole moment is then

b = [Fowrdr = [@-wpw)ar
= /r’p(r’)dr’ —a/p(r’)dr’ =p- Qa.
In particular, if Q = 0, then p = p. So if someone asks for the dipole moment in

Fig. 3.34(a), you can answer with confidence “gd,” but if you’re asked for the dipole
moment in Fig. 3.34(b) the appropriate response would be: “With respect to what origin?”

~q
a a
d
*~——po
—q q q 4 ¢

(a) (b)

Figure 3.34

Problem 3.30 Two point charges, 3g and —q, are separated by a distance a. For each of the
arrangements in Fig. 3.35, find (i) the monopole moment, (ii) the dipole moment, and (iii)
the approximate potential (in spherical coordinates) at large r (include both the monopole and
dipole contributions).
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Figure 3.35

3.4.4 The Electric Field of a Dipole

So far we have worked only with porentials. Now I would like to calculate the electric field
of a (pure) dipole. If we choose coordinates so that p lies at the origin and points in the z
direction (Fig. 3.36), then the potential at r, 6 is (Eq. 3.99):

r-p pcosh
Viaip(r, 0) = = . 3.102
dip(r. ) dreor?  4dmepr? ( )
To get the field, we take the negative gradient of V:
avV  2pcosé
Er = - = 7’
ar dmegr3
19V psind
EO = TS A T . A
r 80  4dmegr?
1 av
rsinf d¢
Thus
Egip(r, 0) = —L— (2 cos 6 F + sin 6 §). (3.103)
4 egr
z
8 7 |
Pl |
L7~ ! y
o T
X

Figure 3.36
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This formula makes explicit reference to a particular coordinate system (spherical) and
assumes a particular orientation for p (along z). It can be recast in a coordinate-free form,
analogous to the potential in Eq. 3.99—see Prob. 3.33.

Notice that the dipole field falls off as the inverse cube of r; the monopole field
(Q/4megr?)t goes as the inverse square, of course. Quadrupole fields go like 1/r4, oc-
topole like 1/, and so on. (This merely reflects the fact that monopole potentials fall off
like 1/, dipole like 1/r2, quadrupole like 1/r3, and so on—the gradient introduces another
factorof 1/r.)

Figure 3.37(a) shows the field lines of a “pure” dipole (Eq. 3.103). For comparison.
I have also sketched the field lines for a “physical” dipole, in Fig. 3.37(b). Notice how
similar the two pictures become if you blot out the central region; up close, however, they
are entirely different. Only for points r >> d does Eq. 3.103 represent a valid approximation
to the field of a physical dipole. As I mentioned earlier, this régime can be reached either
by going to large r or by squeezing the charges very close together.!2

(a) Field of a "pure" dipole (a) Field of a "physical" dipole

Figure 3.37

Problem 3.31 A “pure” dipole p is situated at the origin, pointing in the z direction.
(a) What is the force on a point charge g at (a, 0, 0) (Cartesian coordinates)?

(b) What is the force on ¢ at (0,0, a)?

(c) How much work does it take to move ¢ from (a, 0, 0) to (0,0, a)?

12Even in the limit, there remains an infinitesimal region at the origin where the field of a physical dipole points
in the “wrong” direction, as you can see by “walking” down the z axis in Fig. 3.35(b). If you want to explore this
subtle and important point, work Prob. 3.42.
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Figure 3.38

Problem 3.32 Three point charges are located as shown in Fig. 3.38, each a distance a from the
origin. Find the approximate electric field at points far from the origin. Express your answer
in spherical coordinates, and include the two lowest orders in the multipole expansion.

Problem 3.33 Show that the electric field of a (“pure”) dipole (Eq. 3.103) can be written in
the coordinate-free form

1 1 e
Edip(r) = m 3 [3(p-o)r —pl. (3.104)

More Problems on Chapter 3

Problem 3.34 A point charge g of mass m is released from rest at a distance d from an infinite
grounded conducting plane. How long will it take for the charge to hit the plane? [Answer:

(md/q)/2meqmd.]

Problem 3.35 Two infinite parallel grounded conducting planes are held a distance a apart.
A point charge ¢ is placed in the region between them, a distance x from one plate. Find the
force on g. Check that your answer is correct for the special cases a — oo and x = a/2.
(Obtaining the induced surface is not so easy. See B. G. Dick, Am. J. Phys. 41, 1289 (1973),
M. Zahn, Am. J. Phys. 44, 1132 (1976), J. Pleines and S. Mahajan, Am. J. Phys. 45, 868
(1977), and Prob. 3.44 below.)

Problem 3.36 Two long straight wires, carrying opposite uniform line charges 44, are situated
on either side of a long conducting cylinder (Fig. 3.39). The cylinder (which carries no net
charge) has radius R, and the wires are a distance a from the axis. Find the potential at point r.
A : (s + a? + 2sa cos q))[(sa/R)2 + R — 2sacos ¢]
n
4meg (s2 4+ a2 — 2sacos p)[(sa/R)?2 + R? + 2sa cos ¢]

|:Answer.' Vs, o) =

Problem 3.37 A conducting sphere of radius a, at potential V), is surrounded by a thin con-
centric spherical shell of radius b, over which someone has glued a surface charge

o(8) = kcosé,
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G

Figure 3.39 Figure 3.40

where k is a constant, and 6 is the usual spherical coordinate.
(a) Find the potential in each region: (i) r > b, and (ii) a < r < b.
(b) Find the induced surface charge o; (6) on the conductor.

(c) What is the total charge of this system? Check that your answer is consistent with the
behavior of V at large r.

avo/r + (b3 - a3)kcos9/3r260, r>b
Answer: V(r,0) =
aVy/r + 3 - a3)kcos9/3r260, r<b

Problem 3.38 A charge +Q is distributed uniformly along the z axis from z = —a to z = +a.
Show that the electric potential at a point r is given by

RN PR VEAS Leayt
V(r,9)_4n€0r[1+3(r) P2(c0s9)+5(r) Py(cos6) + ... |,

forr > a.

Problem 3.39 A long cylindrical shell of radius R carries a uniform surface charge og on the
upper half and an opposite charge —o( on the lower half (Fig. 3.40). Find the electric potential
inside and outside the cylinder.

Problem 3.40 A thin insulating rod, running from z = —a to 7 = +a, carries the indicated
line charges. In each case, find the leading term in the multipole expansion of the potential:
(a) A = kcos(mz/2a), (b) A = ksin(wz/a), (¢) A = kcos(wz/a), where k is a constant.

Problem 3.41 Show that the average field inside a sphere of radius R, due to all the charge
within the sphere, is
1 p

Eave = —

where p is the total dipole moment. There are several ways to prove this delightfully simple
result. Here’s one method:



3.4. MULTIPOLE EXPANSION 157

(a) Show that the average field due to a single charge ¢ at point r inside the sphere is the same
as the field at r due to a uniformly charged sphere with p = —¢q /(%nR3), namely

1 1

L
4ne0(%ﬂR3) a2 ’

where % is the vector from r to dt’.

(b) The latter can be found from Gauss’s law (see Prob. 2.12). Express the answer in terms of
the dipole moment of g.

(c) Use the superposition principle to generalize to an arbitrary charge distribution.

(d) While you’re at it, show that the average field over the sphere due to all the charges outside
1s the same as the field they produce at the center.

Problem 3.42 Using Eq. 3.103, calculate the average electric field of a dipole, over a spherical
volume of radius R, centered at the origin. Do the angular intervals first. [Note: You must
express r and 6 in terms of %, ¥, and Z (see back cover) before integrating. If you don’t
understand why, reread the discussion in Sect. 1.4.1.] Compare your answer with the general
theorem Eq. 3.105. The discrepancy here is related to the fact that the field of a dipole blows
up at r = 0. The angular integral is zero, but the radial integral is infinite, so we really don’t
know what to make of the answer. To resolve this dilemma, let’s say that Eq. 3.103 applies
outside a tiny sphere of radius e—its contribution to Eaye 1s then unambiguously zero, and the
whole answer has to come from the field inside the e-sphere.

(b) What must the field inside the e-sphere be, in order for the general theorem (3.105) to hold?
[Hint: since € is arbitrarily small, we're talking about something that is infinite at » = 0 and
whose integral over an infinitesimal volume is finite.] [Answer: —(p/3eo)53(r)]

[Evidently, the true field of a dipole is

1 - 1
Egip(r) = 775 B3P - HF = pl = 3—p&'(m). (3.106)

You may well wonder how we missed the delta-function term when we calculated the field
back in Sect. 3.4.4. The answer is that the differentiation leading to Eq. 3.103 is perfectly valid
except at r = 0, but we should have known (from our experience in Sect. 1.5.1) that the point
r = 0 is problematic. See C. P. Frahm, Am. J. Phys. 51, 826 (1983), or more recently R.
Estrada and R. P. Kanwal, Am. J. Phys. 63, 278 (1995). For further details and applications,
see D. J. Griffiths, Am. J. Phys. 50, 698 (1982).]

Problem 3.43

(@) Suppose a charge distribution p| (r) produces a potential V{ (r), and some other charge dis-
tribution p; (r) produces a potential V5 (r). [The two situations may have nothing in common,
for all I care—perhaps number 1 is a uniformly charged sphere and number 2 is a parallel-plate
capacitor. Please understand that p; and p, are not present af the same time; we are talking
about two different problems, one in which only p1 is present, and another in which only p; is
present.] Prove Green’s reciprocity theorem:

p1Vadt = / o Vidr.

all space all space
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a b
Figure 3.41
[Hint: Evaluate [ E; - Ey dt two ways, first writing E; = —V v} and using integration-by-
parts to transfer the derivative to Ej, then writing E» = —V V; and transferring the derivative

to E] ]

(b) Suppose now that you have two separated conductors (Fig. 3.41). If you charge up conductor
a by amount @ (leaving b uncharged) the resulting potential of 4 is, say, V5. On the other
hand, if you put that same charge Q on conductor & (leaving a uncharged) the potential of
a would be V,,. Use Green’s reciprocity theorem to show that V,; = Vj, (an astonishing
result, since we assumed nothing about the shapes or placement of the conductors).

Problem 3.44 Use Green’s reciprocity theorem (Prob. 3.43) to solve the following two prob-
lems. [Hinz: for distribution 1, use the actual situation; for distribution 2, remove ¢, and set
one of the conducters at potential Vj.]

(a) Both plates of a parallel-plate capacitor are grounded, and a point charge g is placed between
them at a distance x from plate 1. The plate separation is d. Find the induced charge on each
plate. [Answer: Q1 = q(x/d — 1); Q2 = —qgx/d]

(b) Two concentric spherical conducting shells (radii a and b) are grounded, and a point charge
q is placed between them (at radius ). Find the induced charge on each sphere.

Problem 3.45

(a) Show that the quadrupole term in the multipole expansion can be written

3
11 "
Vquad (1) = pr—w i;] 7 Qi

where
Qi = /[3r,-/r} — (")28;j1p()d.
Here
1 ifi=j
51']' =
0 ifi#£j

is the Kronecker delta, and Q; ; is the quadrupole moment of the charge distribution. Notice
the hierarchy:

~ 1 AA
1 > 7ipi 1 32 770

D Vgpad = ——— ———=
2 quad dreg 3

Voon = —— 2. Vg, =
mon_4neor’ dlp_4neo 7
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The monopole moment (Q) is a scalar, the dipole moment (p) is a vector, the quadrupole
moment (Q;;) is a second-rank tensor, and so on.

(b) Find all nine components of @;; for the configuration in Fig. 3.30 (assume the square has
side a and lies in the xy plane, centered at the origin).

(c) Show that the quadrupole moment is independent of origin if the monopole and dipole
moments both vanish. (This works all the way up the hierarchy—the lowest nonzero multipole
moment is always independent of origin.)

(d) How would you define the octopole moment? Express the octopole term in the multipole
expansion in terms of the octopole moment.

Problem 3.46 In Ex. 3.8 we determined the electric field outside a spherical conductor (radius
R) placed in a uniform external field Eq. Solve the problem now using the method of images,
and check that your answer agrees with Eq. 3.76. [Hint: Use Ex. 3.2, but put another charge,
—q, diametrically opposite g. Let a — oo, with (l/4neo)(2q/a2) = —E held constant.]

Problem 3.47For the infinite rectangular pipe in Ex. 3.4, suppose the potential on the bottom
(y = 0) and the two sides (x = =£b) is zero, but the potential on the top (y = a) is a nonzero
constant V. Find the potential inside the pipe. [Note: This is a rotated version of Prob. 3.14(b),
but set it up as in Ex. 3.4 using sinusoidal functions in y and hyperbolics in x. It is an unusual
case in which & = 0 must be included. Begin by finding the general solution to Eq. 3.26 when
k = 0. For further discussion see S. Hassani, Am. J. Phys. 59, 470 (1991).]

: —1)" cosh .
[Answer Vo (% + % p ] (Y nl) —b—zgzhgzg)‘ﬁ; sln(nny/a))]

Problem 3.48

(a) A long metal pipe of square cross-section (side a) is grounded on three sides, while the
fourth (which is insulated from the rest) is maintained at constant potential V. Find the net
charge per unit length on the side opposite to V. [Hint: Use your answer to Prob. 3.14 or
Prob. 3.47.]

(b) A long metal pipe of circular cross-section (radius R) is divided (lengthwise) into four
equal sections, three of them grounded and the fourth maintained at constant potential Vj.
Find the net charge per unit length on the section opposite to Vg. [Answer 1o both (a) and (b):
A= —¢VyIn2]3

Problem 3.49 An ideal electric dipole is situated at the origin, and points in the z direction,
as in Fig. 3.36. An electric charge is released from rest at a point in the xy plane. Show that
it swings back and forth in a semi-circular arc, as though it were a pendulum supported at the
origin. [This charming result is due to R. S. Jones, Am. J. Phys. 63, 1042 (1995).]

13These are special cases of the Thompson-Lampard theorem; see J. D. Jackson, Am. J. Phys. 67, 107 (1999).



Chapter 4

Electric Fields in Matter

.1 Polarization

4.1.1 Dielectrics

In this chapter we shall study electric fields in matter. Matter, of course, comes in many
varieties—solids, liquids, gases, metals, woods, glasses—and these substances do not all
respond in the same way to electrostatic fields. Nevertheless, most everyday objects belong
(at least, in good approximation) to one of two large classes: conductors and insulators (or
dielectrics). We have already talked about conductors; these are substances that contain
an “unlimited” supply of charges that are free to move about through the material. In
practice what this ordinarily means is that many of the electrons (one or two per atom in a
typical metal) are not associated with any particular nucleus, but roam around at will. In
dielectrics, by contrast, all charges are attached to specific atoms or molecules—they’re
on a tight leash, and all they can do is move a bit within the atom or molecule. Such
microscopic displacements are not as dramatic as the wholesale rearrangement of charge in
a conductor, but their cumulative effects account for the characteristic behavior of dielectric
materials. There are actually two principal mechanisms by which electric fields can distort
the charge distribution of a dielectric atom or molecule: stretching and rotating. In the next
two sections I’ll discuss these processes.

4.1.2 Induced Dipoles

What happens to a neutral atom when it is placed in an electric field E? Your first guess
might well be: “Absolutely nothing—since the atom is not charged, the field has no effect
on it” But that is incorrect. Although the atom as a whole is electrically neutral, there is a
positively charged core (the nucleus) and a negatively charged electron cloud surrounding
it. These two regions of charge within the atom are influenced by the field: the nucleus
is pushed in the direction of the field, and the electrons the opposite way. In principle, if
the field is large enough, it can pull the atom apart completely, “ionizing” it (the substance
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then becomes a conductor). With less extreme fields, however, an equilibrium is soon
established, for if the center of the electron cloud does not coincide with the nucleus, these
positive and negative charges attract one another, and this holds the atoms together. The
two opposing forces—E pulling the electrons and nucleus apart, their mutual attraction
drawing them together—reach a balance, leaving the atom polarized, with plus charge
shifted slightly one way, and minus the other. The atom now has a tiny dipole moment
p, which points in the same direction as E. Typically, this induced dipole moment is
approximately proportional to the field (as long as the latter is not too strong):

p=cE. (4.1)
The constant of proportionality « is called atomic polarizability. Its value depends on the

detailed structure of the atom in question. Table 4.1 lists some experimentally determined
atomic polarizabilities.

H He Li Be C Ne Na Ar K Cs
0.667 0205 243 560 176 0396 241 164 434 596

Table 4.1 Atomic Polarizabilities («/47 €o, in units of 10730 m3),
Source: Handbook of Chemistry and Physics, 78th ed.
(Boca Raton: CRC Press, Inc., 1997).

Example 4.1

A primitive model for an atom consists of a point nucleus (4¢) surrounded by a uniformly
charged spherical cloud (—¢g) of radius a (Fig. 4.1). Calculate the atomic polarizability of such
an atom.

Solution: In the presence of an external field E, the nucleus will be shifted slightly to the right
and the electron cloud to the left, as shown in Fig. 4.2. (Because the actual displacements

-4

Figure 4.1 Figure 4.2
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involved are extremely small, as you’ll see in Prob. 4.1, it is reasonable to assume that the
electron cloud retains its spherical shape.) Say that equilibrium occurs when the nucleus is
displaced a distance d from the center of the sbhere. At that point the external field pushing
the nucleus to the right exactly balances the internal field pulling it to the left: E = E,, where
E. is the field produced by the electron cloud. Now the field at a distance d from the center of
a uniformly charged sphere is

1
g L ad
dmey ad
(Prob. 2.12). At equilibrium, then,
1 qd 3
= —, or p=gqd=(4reya’)E.
dmey a3

The atomic polarizability is therefore
o= 47'[60(13 = 3¢qv, 4.2)

where v is the volume of the atom. Although this atomic model is extremely crude, the result
(4.2) is not too bad—it’s accurate to within a factor of four or so for many simple atoms.

For molecules the situation is not quite so simple, because frequently they polarize
more readily in some directions than others. Carbon dioxide (Fig. 4.3), for instance, has
a polarizability of 4.5 x 10740 C2.m/N when you apply the field along the axis of the
molecule, but only 2 x 1074 for fields perpendicular to this direction. When the field is
at some angle to the axis, you must resolve it into parallel and perpendicular components,
and multiply each by the pertinent polarizability:

p:aLE_;_-i-Ot”E”.

In this case the induced dipole moment may not even be in the same direction as E. And
COy is relatively simple, as molecules go, since the atoms at least arrange themselves in
a straight line; for a completely asymmetrical molecule Eq. 4.1 is replaced by the most
general linear relation between E and p:

Dx = 0 Ex + oy Ey +ayE;
Py =0y Ex +aywEy +ay E; (4.3)

Z

P = Ex + oy Ey 4o E,

Figure 4.3
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The set of nine constants «;; constitute the polarizability tensor for the molecule. Their
actual values depend on the orientation of the axes you chose, though it is always possible to
choose “principal” axes such that all the off-diagonal terms (o, oy, etc.) vanish, leaving
just three nonzero polarizabilities: oy, oyy, and o .

Problem 4.1 A hydrogen atom (with the Bohr radius of half an angstrom) is situated between
two metal plates 1 mm apart, which are connected to opposite terminals of a 500 V battery.
What fraction of the atomic radius does the separation distance d amount to, roughly? Estimate
the voltage you would need with this apparatus to ionize the atom. [Use the value of « 1n Table
4.1. Moral: The displacements we’re talking about are minute, even on an atomic scale.]

Problem 4.2 According to quantum mechanics, the electron cloud for a hydrogen atom in the
ground state has a charge density.

qg _
plr) = —=e 14,
Ta

where g is the charge of the electron and « is the Bohr radius. Find the atomic polarizability of
such an atom. [Hint: First calculate the electric field of the electron cloud, E, (#); then expand
the exponential, assuming r < a. For a more sophisticated approach, see W. A. Bowers, Am.
J. Phys. 54,347 (1986).]

Problem 4.3 According to Eq. 4.1, the induced dipole moment of an atom is proportional to
the external field. This is a “rule of thumb,” not a fundamental law, and it is easy to concoct
exceptions—in theory. Suppose, for example, the charge density of the electron cloud were
proportional to the distance from the center, out to a radius R. To what power of E would
p be proportional in that case? Find the condition on p(r) such that Eq. 4.1 will hold in the
weak-field limit.

Problem 4.4 A point charge q is situated a large distance r from a neutral atom of polarizability
«. Find the force of attraction between them.

4.1.3 Alignment of Polar Molecules

The neutral atom discussed in Sect. 4.1.2 had no dipole moment to start with—p was
induced by the applied field. Some molecules have built-in, permanent dipole moments.
In the water molecule, for example, the electrons tend to cluster around the oxygen atom
(Fig. 4.4), and since the molecule is bent at 105°, this leaves a negative charge at the vertex
and a net positive charge at the opposite end. (The dipole moment of water is unusually
large: 6.1 x 10739 C.m; in fact, this is what accounts for its effectiveness as a solvent.)
What happens when such molecules (called polar molecules) are placed in an electric field?
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Figure 4.4 Figure 4.5

If the field is uniform, the force on the positive end, F = gE, exactly cancels the force
on the negative end, F_ = —qE (Fig. 4.5). However, there will be a forque:

N = (s xFp)+ (- xF)
[(d/2) x (¢E)] + [(—d/2) x (—gE)] = qd x E.

Thus a dipole p = gd in a uniform field E experiences a torque

wo

Notice that N is in such a direction as to line p up parallel to E; a polar molecule that is
free to rotate will swing around until it points in the direction of the applied field.

If the field is nonuniform, so that F does not exactly balance F_, there will be a net
Jorce on the dipole, in addition to the torque. Of course, E must change rather abruptly
for there to be significant variation in the space of one molecule, so this is not ordinarily a
major consideration in discussing the behavior of dielectrics. Nevertheless, the formula for
the force on a dipole in a nonuniform field is of some interest:

F=F; +F_=qE; -E_)=q(AE),

where AE represents the difference between the field at the plus end and the field at the
minus end. Assuming the dipole is very short, we may use Eq. 1.35 to approximate the
small change in E,:

AE, =(VE,)-d,
with corresponding formulas for E and E,. More compactly,

AE = (d - V)E,
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and therefore!
F=(p-V)E 4.5)

For a “perfect” dipole of infinitesimal length, Eq. 4.4 gives the torque about the center of
the dipole even in a nonuniform field; about any other point N = (p x E) + (r x F).

Problem 4.5 In Fig. 4.6, p; and p; are (perfect) dipoles a distance » apart. What is the torque
on p; due to pp? What is the torque on py due to py? [In each case I want the torque on the
dipole about its own center. If it bothers you that the answers are not equal and opposite, see
Prob. 4.29.]

Figure 4.6 Figure 4.7

Problem 4.6 A (perfect) dipole p is situated a distance z above an infinite grounded conducting
plane (Fig. 4.7). The dipole makes an angle 6 with the perpendicular to the plane. Find the
torque on p. If the dipole is free to rotate, in what orientation will it come to rest?

Problem 4.7 Show that the energy of an ideal dipole p in an electric field E is given by

“o

Problem 4.8 Show that the interaction energy of two dipoles separated by a displacement r is

1 1

U= 4——3[111 -p2 — 3(p1 - B)(p2 - D). 4.7
TEY r

[Hint: use Prob. 4.7 and Eq. 3.104.]

Problem 4.9 A dipole p is a distance r from a point charge g, and oriented so that p makes an
angle 0 with the vector r from g to p.

(a) What is the force on p?
(b) What is the force on ¢g?

n the present context Eq. 4.5 could be written more conveniently as F = V(p - E). However, it is safer to
stick with (p - V)E, because we will be applying the formula to materials in which the dipole moment (per unit
volume) is itself a function of position and this second expression would imply (incorrectly) that p roo is to be
differentiated.
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4.1.4 Polarization

In the previous two sections we have considered the effect of an external electric field on an
individual atom or molecule. We are now in a position to answer (qualitatively) the original
question: What happens to a piece of dielectric material when it is placed in an electric field?
If the substance consists of neutral atoms (or nonpolar molecules), the field will induce in
each a tiny dipole moment, pointing in the same direction as the field.2 If the material is
made up of polar molecules, each permanent dipole will experience a torque, tending to
line it up along the field direction. (Random thermal motions compete with this process, so
the alignment is never complete, especially at higher temperatures, and disappears almost
at once when the field is removed.)

Notice that these two mechanisms produce the same basic result: a lot of little dipoles
pointing along the direction of the field—the material becomes polarized. A convenient
measure of this effect is

P = dipole moment per unit volume,

which is called the polarization. From now on we shall not worry much about how the
polarization got there. Actually, the two mechanisms I described are not as clear-cut as 1
tried to pretend. Even in polar molecules there will be some polarization by displacement
(though generally it is a lot easier to rotate a molecule than to stretch it, so the second
mechanism dominates). It’s even possible in some materials to “freeze in” polarization, so
that it persists after the field is removed. But let’s forget for a moment about the cause of
the polarization and study the field that a chunk of polarized material itself produces. Then.
in Sect. 4.3, we’ll put it all together: the original field, which was responsible for P, plus
the new field, which is due to P.

4.2 The Field of a Polarized Object

4.2.1 Bound Charges

Suppose we have a piece of polarized material—that is, an object containing a lot of micro-
scopic dipoles lined up. The dipole moment per unit volume P is given. Question: What
is the field produced by this object (not the field that may have caused the polarization.
but the field the polarization itself causes)? Well, we know what the field of an individual
dipole looks like, so why not chop the material up into infinitesimal dipoles and integrate
to get the total? As usual it’s easier to work with the potential. For a single dipole p we
have equation (Eq. 3.99),

V() = ' (4.8)

ZIn asymmetric molecules the induced dipole moment may not be parallel to the field, but if the molecules are
randomly oriented, the perpendicular contributions will average to zero. Within a single crystal, the orientations
are certainly nof random, and we would have to treat this case separately.
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Figure 4.8

where » is the vector from the dipole to the point at which we are evaluating the potential
(Fig. 4.8). In the present context we have a dipole moment p = Pdz’ in each volume
element d1’, so the total potential is

V(r) = 1 /”P(r)dr’.

4,
4reg 22 “9)
1%

That does it, in principle. But a little sleight-of-hand casts this integral into a much
more illuminating form. Observing that

2
=7
where (unlike Prob. 1.13) the differentiation is with respect to the source coordinates (r'),
we have
1

1
V= /P-V’(—) dt’.
dmey 2
1%

Integrating by parts, using product rule number 5, gives

] 4 P 7 1 7 7
V= Vil - dr—/—(V-P)dr ,
4meq 2 2
1% 1%

or, using the divergence theorem,

1 1 , 1 1 _, ,
=——@¢-P.da — —(V' -P)ydr'.
dreg J 2 dweg J 2
S 1%

The first term looks like the potential of a surface charge

4.10)

op,=P-n

.11
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(where #i is the normal unit vector), while the second term looks like the potential of a
volume charge
op=—V . .P. 4.12)

With these definitions, Eq. 4.10 becomes

1 1

vy = — ¢ Zaa + ——/&df/. (4.13)
dmey 2 4 eg 2

5 v

What this means is that the potential (and hence also the field) of a polarized object is
the same as that produced by a volume charge density p, = —V - P plus a surface charge
density o}, = P-fi. Instead of integrating the contributions of all the infinitesimal dipoles, as
in Eq. 4.9, we just find those bound charges, and then calculate the fields they produce, in
the same way we calculate the field of any other volume and surface charges (for example.
using Gauss’s law).

Example 4.2

Find the electric field produced by a uniformly polarized sphere of radius R.

Solution: We may as well choose the z axis to coincide with the direction of polarization
(Fig. 4.9). The volume bound charge density pj, is zero, since P is uniform, but

op =P-0n = Pcos#,

where 0 is the usual spherical coordinate. What we want, then, is the field produced by a
charge density P cos 0 plastered over the surface of a sphere. But we have already computed
the potential of such a configuration in Ex. 3.9:

P
—rcosf, forr < R,
€0
V(r,0)=
R3
— — ¢0S0, forr > R.
3¢y 2

Figure 4.9



4.2. THE FIELD OF A POLARIZED OBJECT 169

Since r cos 6 = z, the field inside the sphere is uniform,

P 1
E=-VV=——2=-—P, forr <R. 4.14)
3¢p 3eg

This remarkable result will be very useful in what follows. Qutside the sphere the potential is
identical to that of a perfect dipole at the origin,

, forr > R, (4.15)

whose dipole moment is, not surprisingly, equal to the total dipole moment of the sphere:
p = inR°P. (4.16)

The field of the uniformly polarized sphere is shown in Fig. 4.10.

Figure 4.10

Problem 4.10 A sphere of radius R carries a polarization
P(r) = kr,

where k is a constant and r is the vector from the center.
(a) Calculate the bound charges o, and py,.

(b) Find the field inside and outside the sphere.
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Problem 4.11 A short cylinder, of radius @ and length L, carries a “frozen-in” uniform polar-
ization P, parallel to its axis. Find the bound charge, and sketch the electric field (i) for L > a.
(i1) for L « a, and (iii) for L =~ a. [This device is known as a bar electret; it is the electrical
analog to a bar magnet. In practice, only very special materials—barium titanate is the most
“familiar” example—will hold a permanent electric polarization. That’s why you can’t buy
electrets at the toy store.]

Problem 4.12 Calculate the potential of a uniformly polarized sphere (Ex. 4.2) directly from
Eq. 4.9.

4.2.2 Physical Interpretation of Bound Charges

In the last section we found that the field of a polarized object is identical to the field
that would be produced by a certain distribution of “bound charges,” o and p,. But this
conclusion emerged in the course of abstract manipulations on the integral in Eq. 4.9, and
left us with no clue as to the physical meaning of these bound charges. Indeed, some
authors give you the impression that bound charges are in some sense “fictitious”—mere
bookkeeping devices used to facilitate the calculation of fields. Nothing could be farther
from the truth; pp, and o} represent perfectly genuine accumulations of charge. In this
section I’ll explain how polarization leads to such accumulations of charge.

The basic idea is very simple: Suppose we have a long string of dipoles, as shown in
Fig. 4.11. Along the line, the head of one effectively cancels the tail of its neighbor, but at
the ends there are two charges left over: plus at the right end and minus at the left. It is as
if we had peeled off an electron at one end and carried it all the way down to the other end.
though in fact no single electron made the whole trip—a lot of tiny displacements add up to
one large one. We call the net charge at the ends bound charge to remind ourselves that it
cannot be removed; in a dielectric every electron is attached to a specific atom or molecule.
But apart from that, bound charge is no different from any other kind.

00 >00>00 00000 = &

A A S e S +

Figure 4.11

To calculate the actual amount of bound charge resulting from a given polarization.
examine a “tube” of dielectric parallel to P. The dipole moment of the tiny chunk shown
inFig. 4.12 is P(Ad), where A is the cross-sectional area of the tube and d is the length of
the chunk. In terms of the charge (¢) at the end, this same dipole moment can be written
qd. The bound charge that piles up at the right end of the tube is therefore

qg = PA.
If the ends have been sliced off perpendicularly, the surface charge density is

q
gp A
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Figure 4.12 Figure 4.13

For an oblique cut (Fig. 4.13), the charge is still the same, but A = Ayg cos 8, so

= Pcosf =P ..

Op =
end
The effect of the polarization, then, is to paint a bound charge o3, = P - fi over the surface
of the material. This is exactly what we found by more rigorous means in Sect. 4.2.1. But
now we know where the bound charge comes from.

If the polarization is nonuniform we get accumulations of bound charge within the
material as well as on the surface. A glance at Fig. 4.14 suggests that a diverging P results
in a pileup of negative charge. Indeed, the net bound charge [ p5 d7 in a given volume is
equal and opposite to the amount that has been pushed out through the surface. The latter
(by the same reasoning we used before) is P - fi per unit area, so

/pbdrz—fP-daz—/(V-P)dr.
1%

1% S

Since this is true for any volume, we have
pp ==V -P,

confirming, again, the more rigorous conclusion of Sect. 4.2.1.

Figure 4.14
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Example 4.3

There is another way of analyzing the uniformly polarized sphere (Ex. 4.2), which nicely
illustrates the idea of a bound charge. What we have, really, is »wo spheres of charge: a
positive sphere and a negative sphere. Without polarization the two are superimposed and
cancel completely. But when the material is uniformly polarized, all the plus charges move
slightly upward (the z direction), and all the minus charges move slightly downward (Fig. 4.15).
The two spheres no longer overlap perfectly: atthe top there’sa “cap” of leftover positive charge
and at the bottom a cap of negative charge. This “leftover” charge is precisely the bound surface
charge op,.

Figure 4.15

In Prob. 2.18 you calculated the field in the region of overlap between two uniformly charged
spheres; the answer was

1 gd
4meg R3’

where ¢ is the total charge of the positive sphere, d is the vector from the negative center
the positive center, and R is the radius of the sphere. We can express this in terms of the
polarization of the sphere, p = gd = (%nR3)P, as

1
E=-—FP.
RIS

Meanwhile, for points outside, it is as though all the charge on each sphere were concentrated
at the respective center. We have, then, a dipole, with potential

>

1 p-

V= .
ey r?

(Remember that d is some small fraction of an atomic radius; Fig. 4.15 is grossly exaggerated. )
These answers agree, of course, with the results of EX. 4.2.
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Problem 4.13 A very long cylinder, of radius «, carries a uniform polarization P perpendicular
to its axis. Find the electric field inside the cylinder. Show that the field outside the cylinder
can be expressed in the form

a?

Ex) = 2507[2(1’ -8)s — P].

[Careful: 1 said “uniform,” not “radial”!]
Problem 4.14 When you polarize a neutral dielectric, charge moves a bit, but the foral remains

zero. This fact should be reflected in the bound charges o, and pp. Prove from Eqgs. 4.11 and
4.12 that the total bound charge vanishes.

4.2.3 The Field Inside a Dielectric

I'have been sloppy about the distinction between “pure” dipoles and “physical” dipoles. In
developing the theory of bound charges, I assumed we were working with the pure kind—
indeed, I started with Eq. 4.8, the formula for the potential of a pure dipole. And yet, an
actual polarized dielectric consists of physical dipoles, albeit extremely tiny ones. What is
more, I presumed to represent discrete molecular dipoles by a continuous density function
P. How can I justify this method? Outside the dielectric there is no real problem: here
we are far away from the molecules (z is many times greater than the separation distance
between plus and minus charges), so the dipole potential dominates overwhelmingly and
the detailed “graininess” of the source is blurred by distance. Inside the dielectric, however,
we can hardly pretend to be far from all the dipoles, and the procedure I used in Sect. 4.2.1
i8 open to serious challenge.

In fact, when you stop to think about it, the electric field inside matter must be fantas-
tically complicated, on the microscopic level. If you happen to be very near an electron,
the field is gigantic, whereas a short distance away it may be small or point in a totally
different direction. Moreover, an instant later, as the atoms move about, the field will have
altered entirely. This true microscopic field would be utterly impossible to calculate, nor
would it be of much interest if you could. Just as, for macroscopic purposes, we regard
water as a continuous fluid, ignoring its molecular structure, so also we can ignore the
microscopic bumps and wrinkles in the electric field inside matter, and concentrate on the
macroscopic field. This is defined as the average field over regions large enough to contain
many thousands of atoms (so that the uninteresting microscopic fluctuations are smoothed
over), and yet small enough to ensure that we do not wash out any significant large-scale
variations in the field. (In practice, this means we must average over regions much smaller
than the dimensions of the object itself.) Ordinarily, the macroscopic field is what people
mean when they speak of “the” field inside matter.’

3In case the introduction of the macroscopic field sounds suspicious to you, let me point out that you do exactly
the same averaging whenever you speak of the density of a material.
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Figure 4.16

It remains to show that the macroscopic field is what we actually obtain when we use
the methods of Sect. 4.2.1. The argument is subtle, so hang on. Suppose I want to calculate
the macroscopic field at some point r within a dielectric (Fig. 4.16). I know I must average
the true (microscopic) field over an appropriate volume, so let me draw a small sphere about
r, of radius, say, a thousand times the size of a molecule. The macroscopic field at r, then.
consists of two parts: the average field over the sphere due to all charges outside, plus the
average due to all charges inside:

E = Eout + Eip.

Now you proved in Prob. 3.41(d) that the average field (over a sphere), produced by
charges outside, is equal to the field they produce at the center, so E is the field at r due to
the dipoles exterior to the sphere. These are far enough away that we can safely use Eq. 4.9:

1 2 P
Viut = f Z(r) dv'. 4.17)
4 eq 2

outside

The dipoles inside the sphere are too close to treat in this fashion. But fortunately all we
need is their average field, and that, according to Eq. 3.103, is

1 p
47'[60 R3’

Ein =

regardless of the details of the charge distribution within the sphere. The only relevant
quantity is the total dipole moment, p = (37 R?) P:

1
Ep = ——FP. (4.18)
360

Now, by assumption the sphere is small enough that P does not vary significantly over
its volume, so the term left our of the integral in Eq. 4.17 corresponds to the field at the
center of a uniformly polarized sphere, to wit: —(1/3¢p)P (Eq. 4.14). But this is precisel
what E;; (Eq. 4.18) puts back in! The macroscopic field, then, is given by the potential

1 2P
V() = /" O 4, (4.19)
4 eg n
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where the integral runs over the entire volume of the dielectric. This is, of course, what
we used in Sect. 4.2.1; without realizing it, we were correctly calculating the averaged,
macroscopic field, for points inside the dielectric.

You may have to reread the last couple of paragraphs for the argument to sink in.
Notice that it all revolves around the curious fact that the average field over any sphere
(due to the charge inside) is the same as the field at the center of a uniformly polarized
sphere with the same total dipole moment. This means that no matter how crazy the actual
microscopic charge configuration, we can replace it by a nice smooth distribution of perfect
dipoles, if all we want is the macroscopic (average) field. Incidentally, while the argument
ostensibly relies on the spherical shape I chose to average over, the macroscopic field is
certainly independent of the geometry of the averaging region, and this is reflected in the
final answer, Eq. 4.19. Presumably, one could reproduce the same argument for a cube or
an ellipsoid or whatever—the calculation might be more difficult, but the conclusion would
be the same.

4.3 The Electric Displacement

4.3.1 Gauss’s Law in the Presence of Dielectrics

In Sect. 4.2 we found that the effect of polarization is to produce accumulations of bound
charge, p, = —V - P within the dielectric and 6, = P - f on the surface. The field due
to polarization of the medium is just the field of this bound charge. We are now ready to
put it all together: the field attributable to bound charge plus the field due to everything
else (which, for want of a better term, we call free charge). The free charge might consist
of electrons on a conductor or ions embedded in the dielectric material or whatever; any
charge, in other words, that is not a result of polarization. Within the dielectric, then, the
total charge density can be written:

P=pp+pf, (4.20)
and Gauss’s law reads
«©V-E=p=p,+pr=-V -P4py,

where E is now the total field, not just that portion generated by polarization.
It is convenient to combine the two divergence terms:

V - («oE+P) = py.
The expression in parentheses, designated by the Jetter D,

D =¢E +P, .21)

is known as the electric displacement. In terms of D, Gauss’s law reads

am
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or, in integral form,

?{D da= Q. (4.23)

where Q 4, denotes the total free charge enclosed in the volume. This is a particularly
useful way to express Gauss’s law, in the context of dielectrics, because it makes reference
only 1o free charges, and free charge is the stuff we control. Bound charge comes along
for the ride: when we put the free charge in place, a certain polarization automatically
ensues, by the mechanisms of Sect. 4.1, and this polarization produces the bound charge.
In a typical problem, therefore, we know p ¢, but we do not (initially) know pp; Eq. 4.23
lets us go right to work with the information at hand. In particular, whenever the requisite
symmetry is present, we can immediately calculate D by the standard Gauss’s law methods.

Example 4.4

A long straight wire, carrying uniform line charge A, is surrounded by rubber insulation out to
aradius a (Fig. 4.17). Find the electric displacement.

Figure 4.17

Solution: Drawing a cylindrical Gaussian surface, of radius s and length L, and applying
Eq. 4.23, we find

DQ2nsL) = AL.
Therefore,
A,
D = ——8. (4.24)
27

Notice that this formula holds both within the insulation and outside it. In the latter region.
P=0,s0

1 A

E=—-D= §, fors>a.
€9 2megs

Inside the rubber the electric field cannot be determined, since we do not know P.

It may have appeared to you that I left out the surface bound charge o} in deriving
Eq. 4.22, and in a sense that is true. We cannot apply Gauss’s law precisely at the surface of
a dielectric, for here pp blows up, taking the divergence of E with it. But everywhere else
the logic is sound, and in fact if we picture the edge of the dielectric as having some finite
thickness within which the polarization tapers off to zero (probably a more realistic model
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than an abrupt cut-off anyway), then there is no surface bound charge; p; varies rapidly
but smoothly within this “skin,” and Gauss’s law can be safely applied everywhere. At any
rate, the integral form (Eq. 4.23) is free from this “defect.”

Problem 4.15 A thick spherical shell (inner radius a, outer radius b) is made of dielectric
material with a “frozen-in” polarization

P(r)=-r,

N A

where & is a constant and r is the distance from the center (Fig. 4.18). (There is no free charge
in the problem.) Find the electric field in all three regions by two different methods:

(a) Locate all the bound charge, and use Gauss’s law (Eq. 2.13) to calculate the field it produces.

(b) Use Eq. 4.23 to find D, and then get E from Eq. 4.21. [Notice that the second method is
much faster, and avoids any explicit reference to the bound charges.]

Problem 4.16 Suppose the ficld inside a large piece of dielectric is Eq, so that the electric
displacement is Dy = ¢gEq + P.

(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. Find the field at
the center of the cavity in terms of Eg and P. Also find the displacement at the center of the
cavity in terms of Dy and P.

(b) Do the same for a long needle-shaped cavity running parallel to P (Fig. 4.19b).
(c) Do the same for a thin wafer-shaped cavity perpendicular to P (Fig. 4.19¢).

[Assume the cavities are small enough that P, Eq, and Dy are essentially uniform. Hint:
Carving out a cavity is the same as superimposing an object of the same shape but opposite
polarization.]

(a) Sphere  (b) Needle (c) Wafer

Figure 4.18 Figure 4.19




178 CHAPTER 4. ELECTRIC FIELDS IN MATTER

4.3.2 A Deceptive Parallel

Equation 4.22 looks just like Gauss’s law, only the roral charge density p is replaced by the
free charge density p ¢, and D is substituted for gE. For this reason, you may be tempted
to conclude that D is “just like” E (apart from the factor €p), except that its source is o,
instead of p: “To solve problems involving dielectrics, you just forget all about the bound
charge—calculate the field as you ordinarily would, only call the answer D instead of E.”
This reasoning is seductive, but the conclusion is false; in particular, there is no “Coulomb’s
law” for D:

A

1 2 "o
D(r) #Z;/;Pf(r)df-

The parallel between E and D is more subtle than that.

For the divergence alone is insufficient to determine a vector field; you need to know
the curl as well. One tends to forget this in the case of electrostatic fields because the curl
of E is always zero. But the curl of D is not always zero.

VxD=¢(VXE)+(VxP)=V xP, 4.25

and there is no reason, in general, to suppose that the curl of P vanishes. Sometimes it does.
as in Ex. 4.4 and Prob. 4.15, but more often it does not. The bar electret of Prob. 4.11 is a
case in point; here there is no free charge anywhere, so if you really believe that the only
source of D is p ¢, you will be forced to conclude that D = 0 everywhere, and hence that
E = (—1/¢g)P inside and E = 0 outside the electret, which is obviously wrong. (I leave it
for you to find the place where V x P £ ( in this problem.) Because V x D # 0, moreover.
D cannot be expressed as the gradient of a scalar—there is no “potential” for D.

Advice: When you are asked to compute the electric displacement, first look for sym-
metry. If the problem exhibits spherical, cylindrical, or plane symmetry, then you can get D
directly from Eq. 4.23 by the usual Gauss’s law methods. (Evidently in such cases V x P is
automatically zero, but since symmetry alone dictates the answer you're not really obliged
to worry about the curl.) If the requisite symmetry is absent, you’ll have to think of another
approach and, in particular, you must not assume that D is determined exclusively by the
free charge.

4.3.3 Boundary Conditions

The electrostatic boundary conditions of Sect. 2.3.5 can be recast in terms of D. Equation
4.23 tells us the discontinuity in the component perpendicular to an interface:

Diove — Ditiow = 0> (4.26)

above

while Eq. 4.25 gives the discontinuity in parallel components:

_nl _pl _pl
D below — p above Pbelow'

p!

above

4.2
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In the presence of dielectrics these are sometimes more useful than the corresponding
boundary conditions on E (Eqs. 2.31 and 2.23):

1

1 1
Eabove - Ebelow = 50’ (4.28)
and
I [
Eabove - Ebelow =0. (4.29)

You might try applying them, for example, to Probs. 4.16 and 4.17.

Problem 4.17 For the bar electret of Prob. 4.11, make three careful sketches: one of P, one of
E, and one of D. Assume L is about 2a. [Hins: E lines terminate on charges; D lines terminate
on free charges.]

4.4 Linear Dielectrics

4.4.1 Susceptibility, Permittivity, Dielectric Constant

In Sects. 4.2 and 4.3 we did not commit ourselves as to the cause of P; we dealt only with the
effects of polarization. From the qualitative discussion of Sect. 4.1, though, we know that
the polarization of a dielectric ordinarily results from an electric field, which lines up the
atomic or molecular dipoles. For many substances, in fact, the polarization is proportional
to the field, provided E is not too strong:

P = ¢oxE. (4.30)

The constant of proportionality, ., is called the electric susceptibility of the medium (a
factor of €g has been extracted to make x, dimensionless). The value of x, depends on the
microscopic structure of the substance in question (and also on external conditions such as
temperature). I shall call materials that obey Eq. 4.30 linear dielectrics.*

Note that E in Eq. 4.30 is the toral field; it may be due in part to free charges and in
part to the polarization itself. If, for instance, we put a piece of dielectric into an external
field Ey, we cannot compute P directly from Eq. 4.30; the external field will polarize the
material, and this polarization will produce its own field, which then contributes to the total
field, and this in turn modifies the polarization, which ... Breaking out of this infinite
regress is not always easy. You’ll see some examples in a moment. The simplest approach
is to begin with the displacement, at least in those cases where D can be deduced directly
from the free charge distribution.

4In modern optical applications, especially, nonlinear materials have become increasingly important. For these
there is a second term in the formula for P as a function of E—typically a cubic one. In general, Eq. 4.30 can be
regarded as the first (nonzero) term in the Taylor expansion of P in powers of E.
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In linear media we have

D = ¢E +P = ¢E + g x.E = €o(1 + x.)E, (4.31)
so D is also proportional to E:
D =¢E, (4.32)
where
€ = ol + xe). (4.33)

This new constant € is called the permittivity of the material. (In vacuum, where there is
no matter to polarize, the susceptibility is zero, and the permittivity is ep. That’s why €y
is called the permittivity of free space. I dislike the term, for it suggests that the vacuum
is just a special kind of linear dielectric, in which the permittivity happens to have the
value 8.85 x 10712 C2/N-m?2.) If you remove a factor of g, the remaining dimensionless
quantity

6 =14y =— (4.34)

€0

is called the relative permittivity, or dielectric constant, of the material. Dielectric con-
stants for some common substances are listed in Table 4.2. Of course, the permittivity
and the dielectric constant do not convey any information that was not already available in
the susceptibility, nor is there anything essentially new in Eq. 4.32; the physics of linear
dielectrics is all contained in Eq. 4.30.

Material Dielectric Constant | Material Dielectric Constant
Vacuum 1 Benzene 2.28

Helium 1.000065 Diamond 57

Neon 1.00013 Salt 5.9

Hydrogen 1.00025 Silicon 11.8

Argon 1.00052 Methanol 33.0

Air (dry) 1.00054 Water 80.1

Nitrogen 1.00055 Ice (-30° C) 99

Water vapor (100° C)  1.00587 KTaNbO3 (0° C) 34,000

Table 4.2 Dielectric Constants (unless otherwise specified, values given are for 1 atm,
20° C). Source: Handbook of Chemistry and Physics, 78th ed.
(Boca Raton: CRC Press, Inc., 1997).

JAs long as we are engaged in this orgy of unnecessary terminology and notation, I might as well mention that
formulas for D in terms of E (Eq. 4.32, in the case of linear dielectrics) are called constitutive relations.
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Figure 4.20

Example 4.5

A metal sphere of radius a carries a charge Q (Fig. 4.20). It is surrounded, out to radius b, by
linear dielectric material of permittivity €. Find the potential at the center (relative to infinity).

Solution: To compute V, we need to know E: to find E, we might first try to locate the bound
charge; we could get the bound charge from P, but we can’t calculate P unless we already
know E (Eq. 4.30). We seem to be in a bind. What we do know is the free charge Q, and
fortunately the arrangement is spherically symmetric, so let’s begin by calculating D, using
Eq. 4.23:

D= Lf', for all points r > a.
4mr?

(Inside the metal sphere, of course, E = P = D = 0.) Once we know D, it is a trivial matter
to obtain E, using Eq. 4.32:

0 r, fora <r <b,
4rer?
E =
0 forr > b.
dmepr?

The potential at the center is therefore

0 b a 0
_ o Y _ o _
V = /OOE dl = /Oo <4ne0r2) dr /b (471”2) dr /a ) dr

o/ 1
T 4 <60b+ea eb)'

As it turns out, it was not necessary for us to compute the polarization or the bound charge
explicitly, though this can easily be done:

GOXle,

P =¢pxeE = R
0Xe 4yrer?
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in the dielectric, and hence
,Ob =-V.P= 07

while 0
€
0Xe 5 at the outer surface,
. 4rmeb
—€
L‘ZZQ. at the inner surface.
dmea

Notice that the surface bound charge at a is negative (0 points outward with respect to the
dielectric, which is +F at b but —F at a). This is natural, since the charge on the metal
sphere attracts its opposite in all the dielectric molecules. It is this layer of negative charge
that reduces the field, within the dielectric, from 1/47ep(Q/ r2)f to 1/4me(Q/r?)E. In this
respect a dielectric is rather like an imperfect conductor: on a conducting shell the induced
surface charge would be such as to cancel the field of Q completely in the region a < r < b:
the dielectric does the best it can, but the cancellation is only partial.

You might suppose that linear dielectrics would escape the defect in the parallel between
E and D. Since P and D are now proportional to E, does it not follow that their curls, like
E’s, must vanish? Unfortunately, it does nos, for the line integral of P around a closed path
that straddles the boundary between one type of material and another need not be zero, even
though the integral of E around the same loop must be. The reason is that the proportionality
factor €q x. is different on the two sides. For instance, at the interface between a polarized
dielectric and the vacuum (Fig. 4.21), P is zero on one side but not on the other. Around this
loop ¢ P - dl # 0, and hence, by Stokes’ theorem, the curl of P cannot vanish everywhere
within the loop (in fact, it is infinite at the boundary).

P=0
Vacuum -
Dielectric -
P=0
Figure 4.21

Of course, if the space is entirely filled with a homogeneous® linear dielectric, then this
objection is void; in this rather special circumstance

V-D=p; and VD=0,
so D can be found from the free charge just as though the diclectric were not there:
D = ¢Ey,

where Ey, is the field the same free charge distribution would produce in the absence of
any dielectric. According to Eqgs. 4.32 and 4.34, therefore,

| 1

E=-D=—E,. (4.35)
€ €

r

6A homogeneous medium is one whose properties (in this case the susceptibility) do not vary with position.
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Conclusion: When all space is filled with a homogeneous linear dielectric, the field every-
where is simply reduced by a factor of one over the dielectric constant. (Actually, it is not
necessary for the dielectric to fill all space: in regions where the field is zero anyway, it can
hardly matter whether the dielectric is present or not, since there’s no pqlarization in any
event.)

For example, if a free charge ¢ is embedded in a large dielectric, the field it produces is

1
E=_— 9% (4.36)

4me r?
(that’s €, not €p), and the force it exerts on nearby charges is reduced accordingly. But it’s
not that there is anything wrong with Coulomb’s law; rather, the polarization of the medium

partially “shields” the charge, by surrounding it with bound charge of the opposite sign
(Fig. 4.22).7

+
+\ /+
+ ~de :— +
+/ \+
+
Figure 4.22

Example 4.6

A parallel-plate capacitor (Fig. 4.23) is filled with insulating material of dielectric constant ¢;.
What effect does this have on its capacitance?

Solution: Since the field is confined to the space between the plates, the dielectric will reduce
E, and hence also the potential difference V, by a factor 1/¢,. Accordingly, the capacitance
C = Q/V isincreased by a factor of the dielectric constant,

C=¢ Cvac. (437)

This is, in fact, a common way to beef up a capacitor.

"In quantum electrodynamics the vacuum itself can be polarized, and this means that the effective (or “renor-
malized”) charge of the electron, as you might measure it in the laboratory, is not its true (“bare”) value, and in
fact depends slightly on how far away you are!
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-+— Dielectric

Figure 4.23

By the way, a crystal is generally easier to polarize in some directions than in others,?
and in this case Eq. 4.30 is replaced by the general linear relation

Py = €0(Xe, Ex + Xex)-Ey + Xer E2)
Py = €0(Xe, Ex + Xey Ey + Xe,. E2) ¢, (4.38)
P, = GO(Xezx E, + Xezy Ey + Xe,, E;)

justas Eq. 4.1 was superseded by Eq. 4.3 for asymmetrical molecules. The nine coefficients.
Xexys Xewy» - - - » COnstitute the susceptibility tensor.

Problem 4.18 The space between the plates of a parallel-plate capacitor (Fig. 4.24) is filled
with two slabs of linear dielectric material. Each slab has thickness a, so the total distance
between the plates is 2a. Slab 1 has a dielectric constant of 2, and slab 2 has a dielectric
constant of 1.5. The free charge density on the top plate is o and on the bottom plate —o.

(a) Find the electric displacement D in each slab.

(b) Find the electric field E in each slab.

(c) Find the polarization P in each slab.

(d) Find the potential difference between the plates.
(e) Find the location and amount of all bound charge.

(f) Now that you know all the charge (free and bound), recalculate the field in each slab, and
confirm your answer to (b).

8 A medium is said to be isotropic if its properties (such as susceptibility) are the same in all directions. Thus
Eq. 4.30 is the special case of Eq. 4.38 that holds for isotropic media. Physicists tend to be sloppy with their
language, and unless otherwise indicated the term “linear dielectric™ certainly means “isotropic linear dielectric.”
and probably means “homogeneous isotropic linear dielectric.”
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+G

-<«+— Slab 1

-<+— Slab?2

Figure 4.24

Problem 4.19 Suppose you have enough linear dielectric material, of dielectric constant ¢,
to half-fill a parallel-plate capacitor (Fig. 4.25). By what fraction is the capacitance increased
when you distribute the material as in Fig. 4.25(a)? How about Fig. 4.25(b)? For a given
potential difference V between the plates, find E, D, and P, in each region, and the free and
bound charge on all surfaces, for both cases.

(b)

Figure 4.25

Problem 4.20 A sphere of linear dielectric material has embedded in it a uniform free charge
density p. Find the potential at the center of the sphere (relative to infinity), if its radius is R
and its dielectric constant is €.

Problem 4.21 A certain coaxial cable consists of a copper wire, radius a, surrounded by a
concentric copper tube of inner radius ¢ (Fig. 4.26). The space between is partially filled (from
b out to c) with material of dielectric constant ¢,, as shown. Find the capacitance per unit
length of this cable.
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Figure 4.26

4.4.2 Boundary Value Problems with Linear Dielectrics

In a homogeneous linear dielectric the bound charge density () is proportional to the free
charge density (p f):9

Xe Xe
=—-V.P=-V-{e2D) = — . 4.39
Pe (60 p ) (1 +xe>pf @3

In particular, unless free charge is actually embedded in the material, p = 0, and any
net charge must reside at the surface. Within such a dielectric, then, the potential obeys
Laplace’s equation, and all the machinery of Chapter 3 carries over. It is convenient.
however, to rewrite the boundary conditions in a way that makes reference only to the free
charge. Equation 4.26 says

€above E:l_)ove — €below Ed_elow =of, (4.40)
or (in terms of the potential),

d Vabove d Vbelow

éaboveT - GbelowT = —oy, (4.41)

whereas the potential itself is, of course, continuous (Eq. 2.34):

Vabove = Vielow- (4.42)

Example 4.7

A sphere of homogeneous linear dielectric material is placed in an otherwise uniform electric
field Eg (Fig. 4.27). Find the electric field inside the sphere.

9This does not apply to the surface charge (05), because x, is not independent of position (obviously) at the
boundary.
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i

Figure 4.27

[

Solution: This is reminiscent of Ex. 3.8, in which an uncharged conducting sphere was
introduced into a uniform field. In that case the field of the induced charge completely canceled
Eq within the sphere; in a dielectric, the cancellation (from the bound charge) is only partial.

Our problem is to solve Laplace’s equation, for Vi, (r, 8) when r < R, and Vot (v, 8) when
r > R, subject to the boundary conditions

6] Vin = Vout, atr = R,

A% aV
gy eDin _ o ou R (4.43)
ar ar
(iii) Vout — —Egrcos9, forr > R.
(The second of these follows from Eq. 4.41, since there is no free charge at the surface.) Inside
the sphere Eq. 3.65 says

oC
Vin(r,0) = > A;r! P(cos 0); (4.44)
=0

outside the sphere, in view of (iii), we have

Vout (r, §) = — Egr cosf + ) 57 Pi(cos 9). (4.45)
r
=0
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Boundary condition (i) requires that

ZAI R Pj(cos8) = —EgRcos0 + Z WP[(COS@),
=0 1=0
So10
AR = —— forl #1,
R+ (4.46)

B)
AR =—-EgR + p

Meanwhile, condition (ii) yields

- o~ ( + 1B
€ ZlA[Rl_lPl(cos 0) = —Epcosf — Z ———— Pj(cos 9),
=0

+2
=0 R
SO 1
-1 _ _{+DB
€lAIR = ——Rl+2 , forl#1,
4.47)
2By
ErAl = —E() — F
It follows that
A;= B} =0, forl £1,
(4.48)
r—1
A _e,3+2E0 B) = £ R3E
Evidently
Eg 3Ey
in(r, 0) = — 0 =— ,
Vin(r, 6) €r+2rcos 6r+2z
and hence the field inside the sphere is (surprisingly) uniform:
E-— FE (4.49)
= o 12 0- K

Example 4.8

Suppose the entire region below the plane z = 0 in Fig. 4.28 is filled with uniform linear
dielectric material of susceptibility .. Calculate the force on a point charge g situated a
distance d above the origin.

Solution: The surface bound charge on the xy plane is of opposite sign to ¢, so the force will
be attractive. (In view of Eq. 4.39, there is no volume bound charge.) Let us first calculate op.
using Eqgs. 4.11 and 4.30.

op =P-fi=P; =e€oxE;,

10Remember, Py (cos8) = cos 8, and the coefficients must be equal for each /, as you could prove by multiplying
by Py (cos§) sin 8, integrating from O to 77, and invoking the orthogonality of the Legendre polynomials (Eq. 3.68).
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~N

Figure 4.28

where E is the z-component of the total field just inside the dielectric, at z = 0. This field
is due in part to ¢ and in part to the bound charge itself. From Coulomb’s law, the former

contribution is
1 q 1 qd

8 1 - =T L —
dmeo P2+ d2) ey (2 4+ d2)32°

where r = +/x2 + y2 is the distance from the origin. The z component of the field of the
bound charge, meanwhile, is —op/2¢q (see footnote 6, p. 89). Thus

1 qd op :|

=€ - v
% Oxe[ dmey (r2 +d?)32  2e0

which we can solve for op:

1 Xe qd
= - — . 4.
%= T on (xe +2> (2 + d2)3/? *:30)

Apart from the factor x./(x. +2), this is exactly the same as the induced charge on an infinite
conducting plane under similar circumstances (Eq. 3.10).1! Evidently the fotal bound charge

is
Xe
=— . 4.51
qb (Xe+2>q 4.51)

We could, of course, obtain the field of o}, by direct integration

1 )
E=— — Jopda.
4reg 22

1 For some purposes a conductor can be regarded as the limiting case of a linear dielectric, with x, — oo. This
is often a useful check—try applying it to Exs. 4.5, 4.6, and 4.7.
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But as in the case of the conducting plane, there is a nicer solution by the method of images.
Indeed, if we replace the dielectric by a single point charge g;, at the image position (0, 0, —d),
we have

1 q 9»
V= + . (4.52)
4o [wﬂ +32+G@=d? Va4 4 (2 +d)?
in the region z > 0. Meanwhile, a charge (g + gp) at (0, 0, d) yields the potential
1
V= q+qp , (4.53)
dreq \/x2+y2+(z—d)2

for the region z < 0. Taken together, Egs. 4.52 and 4.53 constitute a function which satisfies
Poisson’s equation with a point charge g at (0, 0, d), which goes to zero at infinity, which
is continuous at the boundary z = 0, and whose normal derivative exhibits the discontinuity
appropriate to a surface charge o at z = O:

o( % )= () et
O\ oz =0- 2t \xe+2) G2+ y2 +d2)37

Accordingly, this is the correct potential for our problem. In particular, the force on g is:

1 1 2
F= 99b 5 — ( Xe ) 4_; (4.54)
dren (2d)? dmey \ Xe +2/) 4d?

av
=0t 92

I do not claim to have provided a compelling motivation for Eqs. 4.52 and 4.53—like all
image solutions, this one owes its justification to the fact that it works: it solves Poisson’s
equation, and it meets the boundary conditions. Still, discovering an image solution is not
entirely a matter of guesswork. There are at least two “rules of the game”: (1) You must never
put an image charge into the region where you’re computing the potential. (Thus Eq. 4.52
gives the potential for z > 0, but this image charge g, is at z = —d; when we turn to the region
z < 0 (Eq. 4.53), the image charge (¢ + ¢q») is at z = +d.) (2) The image charges must add
up to the correct total in each region. (That’s how I knew to use g to account for the charge
in the region z < 0, and (g + g) to cover the region z > 0.)

Problem 4.22 A very long cylinder of linear dielectric material is placed in an otherwise
uniform electric field Eq. Find the resulting field within the cylinder. (The radius is a, the
susceptibility x., and the axis is perpendicular to E.)

Problem 4.23 Find the field inside a sphere of linear dielectric material in an otherwise uniform
electric field E( (Ex. 4.7) by the following method of successive approximations: First pretend
the field inside is just Eq, and use Eq. 4.30 to write down the resulting polarization Py. This
polarization generates a field of its own, E; (Ex. 4.2), which in turn modifies the polarization
by an amount Py, which further changes the field by an amount E,, and so on. The resulting
field is Eg + Ej + Ey + - - .. Sum the series, and compare your answer with Eq. 4.49.

Problem 4.24 An uncharged conducting sphere of radius a is coated with a thick insulating
shell (dielectric constant €, ) out to radius b. This object is now placed in an otherwise uniform
electric field Eq. Find the electric field in the insulator.
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Problem 4.25 Suppose the region above the xy plane in Ex. 4.8 is also filled with linear
dielectric but of a different susceptibility x,. Find the potential everywhere.

4.4.3 Energy in Dielectric Systems

It takes work to charge up a capacitor (Eq. 2.55):
_1lp,y2
W=s35CV-.

If the capacitor is filled with linear dielectric, its capacitance exceeds the vacuum value by
a factor of the dielectric constant,
C = € Cyac,

as we found in Ex. 4.6. Evidently the work necessary to charge a dielectric-filled capacitor
is increased by the same factor. The reason is pretty clear: you have to pump on more (free)
charge to achieve a given potential, because part of the field is canceled off by the bound
charges.

In Chapter 2, I derived a general formula for the energy stored in any electrostatic system
(Eq. 2.45):

W= %" / E2d. (4.55)

The case of the dielectric-filled capacitor suggests that this should be changed to
1
W= G—O/ErE2dr = —/D-Edr,
2 2

in the presence of linear dielectrics. To prove it, suppose the dielectric material is fixed
in position, and we bring in the free charge, a bit at a time. As py is increased by an
amount Apy, the polarization will change and with it the bound charge distribution; but
we’re interested only in the work done on the incremental free charge:

AW = /(Apf)Vdr. (4.56)
Since V- D = pr, Aps =V - (AD), where AD is the resulting change in D, so
AW = /[V - (AD)]V dr.

Now
V- -[(AD)V]=[V - (AD)]V + AD - (VV),

and hence (integrating by parts):

AW=/V~[(AD)V]dr+/(AD)~Edr.
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The divergence theorem turns the first term into a surface integral, which vanishes if we
integrate over all of space. Therefore, the work done is equal to

AW = / (AD) -Edr. (4.57)

So far, this applies to any material. Now, if the medium is a linear dielectric, then
D =¢E,so
JAMD E) = 1A(cE?) = ¢(AE)-E = (AD) - E

(for infinitesimal increments). Thus

AW=A<%/D-Edr>.

The total work done, then, as we build the free charge up from zero to the final configuration.
is

W:%/D-Edr, (458
as anticipated.!?

It may puzzle you that Eq. 4.55, which we derived quite generally in Chapter 2, does not
seem to apply in the presence of dielectrics, where it is replaced by Eq. 4.58. The point is
not that one or the other of these equations is wrong, but rather that they speak to somewhat
different questions. The distinction is subtle, so let’s go right back to the beginning: What
do we mean by “the energy of a system”? Answer: It is the work required to assemble the
system. Very well—but when dielectrics are involved there are two quite different ways
one might construe this process: (1) We bring in all the charges (free and bound), one by
one, with tweezers, and glue each one down in its proper final location. If this is what you
mean by “assemble the system,” the Eq. 4.55 is your formula for the energy stored. Notice.
however, that this will not include the work involved in stretching and twisting the dielectric
molecules (if we picture the positive and negative charges as held together by tiny springs. it
does not include the spring energy, %kx2, associated with polarizing each molecule).!3 (2)
With the unpolarized dielectric in place, we bring in the free charges, one by one, allowing
the dielectric to respond as it sees fit. If this is what you mean by “assemble the system™
(and ordinarily it is, since free charge is what we actually push around), then Eq. 4.58 is the
formula you want. In this case the “spring” energy is included, albeit indirectly, because the
force you must apply to the free charge depends on the disposition of the bound charge; as
you move the free charge you are automatically stretching those “springs.” To put it another

121y case you are wondering why I did not do this more simply by the method of Sect. 2.4.3, starting with
W= % fr £V dt, the reason is that his formula is untrue, in general. Study the derivation of Eq. 2.42 and you
will see that it applies only to the toral charge. For linear dielectrics it happens to hold for the free charge alone.
but this is scarcely obvious a priori and, in fact, is most easily confirmed by working backward from Eq. 4.58.

3The “spring” itself may be electrical in nature, but it is still not included in Eq. 4.55, if E is taken to be the
macroscopic field.
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way, in method (2) the total energy of the system consists of three parts: the electrostatic
energy of the free charge, the electrostatic energy of the bound charge, and the *“spring”
energy:

Wiot = Wree + Whound + Wspring~

The last two are equal and opposite (in procedure (2) the bound charges are always in
equilibrium, and hence the ner work done on them is zero); thus method (2), in calculating
Wiree, actually delivers Wi, whereas method (1), by calculating Wiree+ Wpound, leaves out
Wspring~

Incidentally, it is sometimes alleged that Eq. 4.58 represents the energy even for nonlinear
dielectrics, but this is false: To proceed beyond Eq. 4.57 one must assume linearity. In fact,
for dissipative systems the whole notion of “stored energy” loses its meaning, because the
work done depends not only on the final configuration but on how it got there. If the molec-
ular “springs” are allowed to have some friction, for instance, then Wy, can be made
as large as you like, by assembling the charges in such a way that the spring is obliged
to expand and contract many times before reaching its final state. In particular, you get
nonsensical results if you try to apply Eq. 4.58 to electrets, with frozen-in polarization (see
Prob. 4.27).

Problem 4.26 A spherical conductor, of radius a, carries acharge Q (Fig.4.29). Itis surrounded
by linear dielectric material of susceptibility x., out to radius b. Find the energy of this
configuration (Eq. 4.58).

Figure 4.29

Problem 4.27 Calculate W, using both Eq. 4.55 and Eq. 4.58, for a sphere of radius R with
frozen-in uniform polarization P (Ex. 4.2). Comment on the discrepancy. Which (if either) is
the “true” energy of the system?

4.4.4 Forces on Dielectrics

Just as a conductor is attracted into an electric field (Eq. 2.51), so too is a dielectric—and
for essentially the same reason: the bound charge tends to accumulate near the free charge
of the opposite sign. But the calculation of forces on dielectrics can be surprisingly tricky.
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Dielectric

Figure 4.30

Consider, for example, the case of a slab of linear dielectric material, partially inserted
between the plates of d parallel-plate capacitor (Fig. 4.30). We have always pretended that
the field is uniform inside a parallel-plate capacitor, and zero outside. If this were literally
true, there would be no net force on the dielectric at all, since the field everywhere would be
perpendicular to the plates. However, there is in reality a fringing field around the edges.
which for most purposes can be ignored but in this case is responsible for the whole effect.
(Indeed, the field could not terminate abruptly at the edge of the capacitor, for if it did the
line integral of E around the closed loop shown in Fig. 4.31 would not be zero.) It is this
nonuniform fringing field that pulls the dielectric into the capacitor.

Fringing fields are notoriously difficult to calculate; luckily, we can avoid this altogether.
by the following ingenious method. Let W be the energy of the system—it depends, of
course, on the amount of overlap. If I pull the dielectric out an infinitesimal distance dx.
the energy is changed by an amount equal to the work done:

dW = Fyedx, (4.59)
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YA

Figure 4.31

where Fpe is the force I must exert, to counteract the electrical force F on the dielectric:

Fpe = —F. Thus the electrical force on the slab is
dw
F=——-. (4.60)
dx
Now, the energy stored in the capacitor is
W=3icv3 (4.61)
and the capacitance in this case is
€W
C= T(Grl — XeX), (4.62)

where [ is the length of the plates (Fig. 4.30). Let’s assume that the total charge on the
plates (@ = CV) is held constant, as the dielectric moves. In terms of @,

W= %%2 4.63)
SO 5
F:—%:%%i—f:%vzj—f. (4.64)
But
dc €0 XeW
dx = d
and hence
F= 0%y (4.65)

2d
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(The minus sign indicates that the force is in the negative x direction; the dielectric is pulled
into the capacitor.)

It is a common error to use Eq. 4.61 (with V constant), rather than Eq. 4.63 (with Q
constant), in computing the force. One then obtains

1 ,dC
F=—-vi—,
2 dx

which is off by a sign. It is, of course, possible to maintain the capacitor at a fixed potential,
by connecting it up to a battery. But in that case the bastery also does work as the dielectric
moves; instead of Eq. 4.59, we now have

dW = Fpedx +V dQ, (4.66)
where V d Q is the work done by the battery. It follows that

dW  dQ 1 ,dC _,dC 1_,dC
_z7 Mo A v 7 £ i 4.67
dx +de 2V dx dx 2V dx’ ( )

F =
the same as before (Eq. 4.64), with the correct sign. (Please understand, the force on the
dielectric cannot possibly depend on whether you plan to hold Q constant or V constant—it
is determined entirely by the distribution of charge, free and bound. It’s simpler to calculate
the force assuming constant Q, because then you don’t have to worry about work done by
the battery; but if you insist, it can be done correctly either way.)

Notice that we were able to determine the force without knowing anything about the
fringing fields that are ultimately responsible for it/ Of course, it’s built into the whole
structure of electrostatics that V. x E = 0, and hence that the fringing fields must be
present; we’re not really getting something for nothing here—just cleverly exploiting the
internal consistency of the theory. The energy stored in the fringing fields themselves
(which was not accounted for in this derivation) stays constant, as the slab moves; what
does change is the energy well inside the capacitor, where the field is nice and uniform.

Problem 4.28 Two long coaxial cylindrical metal tubes (inner radius a, outer radius &) stand
vertically in a tank of dielectric oil (susceptibility x., mass density p). The inner one is
maintained at potential V, and the outer one is grounded (Fig. 4.32). To what height (4) does
the oil rise in the space between the tubes?
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More Problems on Chapter 4

Problem 4.29

197

(a) For the configuration in Prob. 4.5, calculate the force on p; due to p;, and the force on p;

due to pp. Are the answers consistent with Newton’s third law?

(b) Find the total torque on p, with respect to the center of py, and compare it with the torque
on p; about that same point. [Hint: combine your answer to (a) with the result of Prob. 4.5.]

Problem 4.30 An electric dipole p, pointing in the y direction, is placed midway between two
large conducting plates, as shown in Fig. 4.33. Each plate makes a small angle 6 with respect
to the x axis, and they are maintained at potentials +V. What is the direction of the net force

on p? (There’s nothing to calculate, here, but do explain your answer qualitatively.)

+V

<D
=Y

Figure 4.33
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Problem 4.31 A dielectric cube of side a, centered at the origin, carries a “frozen-in” polar-
ization P = kr, where & is a constant. Find all the bound charges, and check that they add up
to zero.

Problem 4.32 A point charge ¢ is imbedded at the center of a sphere of linear dielectric material
(with susceptibility x. and radius R). Find the electric field, the polarization, and the bound
charge densities, p, and 0. What is the total bound charge on the surface? Where is the
compensating negative bound charge located?

Problem 4.33 At the interface between one linear dielectric and another the electric field lines
bend (see Fig. 4.34). Show that

tanfy/tan ) = €3 /€y, (4.68)

assuming there is no free charge at the boundary. [Comment: Eq. 4.68 is reminiscent of Snell’s
law in optics. Would a convex “lens” of dielectric material tend to “focus,” or “defocus,” the
electric field?]

8 K,
€
€

E,
9,
Figure 4.34

Problem 4.34 A point dipole p is imbedded at the center of a sphere of linear dielectric material
(with radius R and dielectric constant ¢, ). Find the electric potential inside and outside the
sphere.

0 3 (e —1 0 3
Answer : peos 1+ 2r_ (€r ) , (r <R); pcos <—~—) , r=R)
Amer? R3 (¢; +2) dregr? \ e +2

Problem 4.35 Prove the following uniqueness theorem: A volume V contains a specified free
charge distribution, and various pieces of linear dielectric material, with the susceptibility of
each one given. If the potential is specified on the boundaries S of V (V = 0 at infinity
would be suitable) then the potential throughout V is uniquely determined. [Hint: integrate
V - (V3D3) over V.]
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Figure 4.35

Problem 4.36 A conducting sphere at potential V is half embedded in linear dielectric material
of susceptibility x., which occupies the region z < 0 (Fig. 4.35). Claim: the potential
everywhere is exactly the same as it would have beeil in the absence of the dielectric! Check
this claim, as follows:

(a) Write down the formula for the proposed potential V (r), in terms of V, R, and r. Use it
to determine the field, the polarization, the bound charge, and the free charge distribution on
the sphere.

(b) Show that the total charge configuration would indeed produce the potential V (r).
(c) Appeal to the uniqueness theorem in Prob. 4.35 to complete the argument.

(d) Could you solve the configurations in Fig. 4.36 with the same potential? If not, explain
why.

(2) ~~(b)

Figure 4.36

Problem 4.37 According to Eq. 4.5, the force on a single dipole is (p - V)E, so the ret force
on a dielectric object is

F = /(P - V)Eext dt. (4.69)

[Here Eex; is the field of everything except the dielectric. You might assume that it wouldn’t
matter if you used the rotal field; after all, the dielectric can’t exert a force on itself. However,
because the field of the dielectric is discontinuous at the location of any bound surface charge,
the derivative introduces a spurious delta function, and you must either add a compensating
surface term, or (better) stick with Eex;, which suffers no such discontinuity.] Use Eq. 4.69
to determine the force on a tiny sphere of radius R, composed of linear dielectric material
of susceptibility x., which is situated a distance s from a fine wire carrying a uniform line
charge A.
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Problem 4.38 In a linear dielectric, the polarization is proportional to the field: P = ¢( x.E.
If the material consists of atoms (or nonpolar molecules), the induced dipole moment of each
one is likewise proportional to the field p = o«E. Question: What is the relation between the
atomic polarizability & and the susceptibility x?

Since P (the dipole moment per unit volume) is p (the dipole moment per atom) times N
(the number of atoms per unit volume), P = Np = N«E, one’s first jnclination is to say that

Na
Xe = —. (4.70)

€0
And in fact this is not far off, if the density is low. But closer inspection reveals a subtle problem,
for the field E in Eq. 4.30 is the total macroscopic field in the medium, whereas the field in
Eq. 4.1 is due to everything except the particular atom under consideration (polarizability was
defined for an isolated atom subject to a specified external field); call this field Eqjge. Imagine
that the space allotted to each atom is a sphere of radius R, and show that

N
E= (1 . —a) Eolse. @.71)
3¢
Use this to conclude that
_ Na/g
Xe =12 Naj3ey’
or 3 )
€y [ €r —
== . 4.72
* N (ér + 2) ( )

Equation 4.72 is known as the Clausius-Mossotti formula, or, in its application to optics, the
Lorentz-Lorenz equation.

Problem 4.39 Check the Clausius-Mossotti relation (Eq. 4.72) for the gases listed in Table 4.1.
(Dielectric constants are given in Table 4.2.) (The densities here are so small that Egs. 4.70 and
4.72 are indistinguishable. For experimental data that confirm the Clausius-Mossotti correction
term see, for instance, the first edition of Purcell’s Electricity and Magnetism, Problem 9.28 )14

Problem 4.40 The Clausius-Mossotti equation (Prob. 4.38) tells you how to calculate the
susceptibility of a nonpolar substance, in terms of the atomic polarizability «. The Langevin
equation tells you how to calculate the susceptibility of a polar substance, in terms of the
permanent molecular dipole moment p. Here’s how it goes:

(a) The energy of a dipole in an external field E is u = —p - E (Eq. 4.6); it ranges from
—pE to +pE, depending on the orientation. Statistical mechanics says that for a material in
equilibrium at absolute temperature 7', the probability of a given molecule having energy u is
proportional to the Boltzmann factor,

exp(—u/kT).

The average energy of the dipoles is therefore

/ ue—@/kT) gy

fe—(u/kT) du

<u> =

14p M. Purcell, Electricity and Magnetism (Berkeley Physics Course, Vol. 2), (New York: McGraw-Hill, 1963).
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where the integrals run from — p E to + p E. Use this to show that the polarization of a substance
containing N molecules per utit volume is

P = Nplcoth(pE/kT) — (kT /pE)]. 4.73)

That’s the Langevin formula. Sketch P/Np as a function of pE /kT.

(b) Notice that for large fields/low temperatures, virtually all the molecules are lined up, and
the material is nonlinear. Ordinarily, however, kT is much greater than pE. Show that in
this régime the material is linear, and calculate its susceptibility, in terms of N, p, T, and k.
Compute the susceptibility of water at 20° C, and compare the experimental value in Table
4.2. (The dipole moment of water is 6.1 x 1030 C-m.) This is rather far off, because we have
again neglected the distinction between E and Egjq.. The agreement is better in low-density
gases, for which the difference between E and Ej is negligible. Try it for water vapor at
100° and 1 atm.




Chapter 5

Magnetostatics

5.1 The Lorentz Force Law

5.1.1 Magnetic Fields

Remember the basic problem of classical electrodynamics: We have a collection of charges
q1» 42, g3, -.. (the “source” charges), and we want to calculate the force they exert on
some other charge Q (the “test” charge). (See Fig. 5.1.) According to the principle of
superposition, it is sufficient to find the force of a single source charge—the total is then
the vector sum of all the individual forces. Up to now we have confined our attention to the
simplest case, electrostatics, in which the source charge is af rest (though the test charge
need not be). The time has come to consider the forces between charges in motion.

u .0
* L)
q, *
. .43
Source charges Test charge
Figure 5.1

To give you some sense of what is in store, imagine that I set up the following demon-
stration: Twao wires hang from the ceiling, a few centimeters apart; when I turn on a current.
so that it passes up one wire and back down the other, the wires jump apart—they evidently
repel one anpother (Fig. 5.2(a)). How do you explain this? Well, you might suppose that
the battery (or whatever drives the current) is actually charging up the wire, and that the
force is simply due to the electrical repulsion of like charges. But this explanation is in-
correct. I could hold up a test charge near these wires and there would be no force on it.

202
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(a) Currents in opposite (b) Currents in same

directions repel. directions attract.

Figure 5.2

for the wires are in fact electrically neutral. (It’s true that electrons are flowing down the
line—that’s what a current is—but there are just as many stationary plus charges as moving
minus charges on any given segment.) Moreover, I could hook up my demonstration so as
to make the current flow up both wires (Fig. 5.2(b)); in this case they are found to atrract!

Whatever force accounts for the attraction of parallel currents and the repulsion of
antiparallel ones is nor electrostatic in nature. It is our first encounter with a magnetic
force. Whereas a stationary charge produces only an electric field E in the space around it,
a moving charge generates, in addition, a magnetic field B. In fact, magnetic fields are a lot
casier to detect, in practice—all you need is a Boy Scout compass. How these devices work
18 irrelevant at the moment; it is enough to know that the needle points in the direction of
the local magnetic field. Ordinarily, this means north, in response to the earth’s magnetic
field, but in the laboratory, where typical fields may be hundreds of times stronger than that,
the compass indicates the direction of whatever magnetic field is present.

Now, if you hold up a tiny compass in the vicinity of a current-carrying wire, you
quickly discover a very peculiar thing: The field does not point toward the wire, nor away
from it, but rather it circles around the wire. In fact, if you grab the wire with your right
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Current

1 1
v
F A
Wire 1 Wire 2
Figure 5.3 Figure 5.4

hand—thumb in the direction of the current—your fingers curl around in the direction of
the magnetic field (Fig. 5.3). How can such a field lead to a force of attraction on a nearby
parallel current? At the second wire the magnetic field points into the page (Fig. 5.4), the
velocity of the charges is upward, and yet the resulting force is to the left. It’s going to take a
strange law to account for these directions! I’ll introduce this law in the next section. Later
on, in Sect. 5.2, we’ll return to what is logically the prior question: How do you calculate
the magnetic field of the first wire?

5.1.2 Magnetic Forces

It may have occurred to you that the combination of directions in Fig. 5.4 is just right for
a cross product. In fact, the magnetic force in a charge @, moving with velocity v in a
magnetic field B, is!

Fiag = Q(v x B). A.h

This is known as the Lorentz force law. In the presence of both electric and magnetic
fields, the net force on @ would be

F = Q[E + (v x B)]. (5.2)

I do not pretend to have derived Eq. 5.1, of course; it is a fundamental axiom of the theory.
whose justification is to be found in experiments such as the one I described in Sect. 5.1.1.
Our main job from now on is to calculate the magnetic field B (and for that matter the
electric field E as well, for the rules are more complicated when the source charges are in
motion). But before we proceed, it is worthwhile to take a closer look at the Lorentz force
law itself; it is a peculiar law, and it leads to some truly bizarre particle trajectories.

ISince F and v are vectors, B is actually a pseudovector.
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Example 5.1

Cyclotron motion

The archetypical motion of a charged particle in a magnetic field is circular, with the magnetic
force providing the centripetal acceleration. In Fig. 5.5, a uniform magnetic field points into
the page; if the charge Q moves counterclockwise, with speed v, around a circle of radius R,
the magnetic force (5.1) points inward, and has a fixed magnitude QvB—just right to sustain

uniform circular motion: )

QvB = m%, or p=QBR. (5.3)

where m is the particle’s mass and p = muv is its momentum. Equation 5.3 is known as the
cyclotron formula because it describes the motion of a particle in a cyclotron—the first of the
modern particle accelerators. It also suggests a simple experimental technique for finding the
momentum of a particle: send it through a region of known magnetic field, and measure the
radius of its circular trajectory. This is in fact the standard means for determining the momenta
of elementary particles.

Incidentally, I assumed that the charge moves in a plane perpendicular to B. If it starts out
with some additional speed vy, parallel to B, this component of the motion is unaffected by the
magnetic field, and the particle moves in a helix (Fig. 5.6). The radius is still given by Eq. 5.3,
but the velocity in question is now the component perpendicularto B, v .

Figure 5.5 Figure 5.6

Example 5.2

Cycloid Motion

A more exotic trajectory occurs if we include a uniform electric field, at right angles to the
magnetic one. Suppose, for instance, that B points in the x-direction, and E in the z-direction,
as shown in Fig. 5.7. A particle at rest is released from the origin; what path will it follow?

Solution: Let’s think it through qualitatively, first. Initially, the particle is at rest, so the
magnetic force is zero, and the electric field accelerates the charge in the z-direction. As it
picks up speed, a magnetic force develops which, according to Eq. 5.1, pulls the charge around
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Figure 5.7

to the right. The faster it goes, the stronger Fpag becomes; eventually, it curves the particle
back around towards the y axis. At this point the charge is moving against the electrical force.
so it begins to slow down—the magnetic force then decreases, and the electrical force takes
over, bringing the charge to rest at point a, in Fig. 5.7. There the entire process commences
anew, carrying the particle over to point b, and so on.

Now let’s do it quantitatively. There being no force in the x-direction, the position of the
particle at any time ¢ can be described by the vector (0, y(1), z(1)); the velocity is therefore

v=(0,%2),

where dots indicate time derivatives. Thus

vxB=

O e
O = >
O M- N>
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and hence, applying Newton’s second law,
F=0QE+vxB)=QE2+Biy—Byi) =ma=m(Gy+72).
Or, treating the § and Z components separately,
QB:=m¥, QFE — QBy=ms3.

For convenience, let

OB
ot

(This is the cyclotron frequency, at which the particle would revolve in the absence of any

electric field.) Then the equations of motion take the form

. . E . 55
=wi, I=wl=--7]. .
y Z, < B y

B4

Their general solution? is

¥(@)
z(1)

5.6)

Cicoswt + Cpsinwt + (E/B)t + Csz,
Cyrcoswt — Cy sinwt + Cyg.

2 As coupled differential equations, they are easily solved by differentiating the first and using the second to
eliminate Z.
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But the particle started from rest (3(0) = 2(0) = 0), at the origin (y(0) = z(0) = 0); these
four conditions determine the constants Cy, C», C3, and Cy:

E E
¥(1) = —(wt —sinwt), z(t) = — (1 ~ coswt). 5.7)
wB wB
In this form the answer is not terribly enlightening, but if we let
E
= 5.8
B (5.8)

and eliminate the sines and cosines by exploiting the trigonometric identity sin? wf +cos? wt =
1, we find that

(v — Rot)® + (z — R)? = R (5.9)
This is the formula for a circle, of radius R, whose center (0, Rwt, R) travels in the y-direction
at a constant speed,

E .
= wR = —. 5.10
V=w B (5.10)

The particle moves as though it were a spot on the rim of a wheel, rolling down the y axis at
speed v. The curve generated in this way is called a cycloid. Notice that the overall motion is
not in the direction of E, as you might suppose, but perpendicular to it.

One feature of the magnetic force law (Eq. 5.1) warrants special attention:

Magnetic forces do no work. ‘

For if Q moves an amount dl = v dt, the work done is
dWnag = Fryag - dl = Q(v x B) - vdr = 0. (5.11)

This follows because (v x B) is perpendicular to v, so (v x B) - v = 0. Magnetic forces may
alter the direction in which a particle moves, but they cannot speed it up or slow it down.
The fact that magnetic forces do no work is an elementary and direct consequence of the
Lorentz force law, but there are many situations in which it appears so manifestly false that
one’s confidence is bound to waver. When a magnetic crane lifts the carcass of a junked
car, for instance, something is obviously doing work, and it seems perverse to deny that the
magnetic force is responsible. Well, perverse or not, deny it we must, and it can be a very
subtle matter to figure out what agency does deserve the credit in such circumstances. 1l
show you several examples as we go along.

Problem 5.1 A particle of charge g enters a region of uniform magnetic field B (pointing into
the page). The field deflects the particle a distance d above the original line of flight, as shown
in Fig. 5.8. Is the charge positive or negative? In terms of a, d, B and g, find the momentum
of the particle.

Problem 5.2 Find and sketch the trajectory of the particle in Ex. 5.2, if it starts at the origin
with velocity

(@) v(0) = (E/B)§,

(b) ¥v(0) = (E/2B)Y,

(©) v(0) = (E/B)(¥ + 7).
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Field region

Figure 5.8

Problem 5.3 In 1897 J. J. Thomson “discovered” the electron by measuring the charge-to-mass
ratio of “cathode rays” (actually, streams of electrons, with charge ¢ and mass m) as follows:

(a) First he passed the beam through uniform crossed electric and magnetic fields E and B
(mutually perpendicular, and both of them perpendicular to the beam), and adjusted the electric
field until he got zero deflection. What, then, was the speed of the particles (in terms of E and
B)?

(b) Then he turned off the electric field, and measured the radius of curvature, R, of the beam.
as deflected by the magnetic field alone. In terms of E, B, and R, what is the charge-to-mass
ratio (g/m) of the particles?

5.1.3 Currents

The current in a wire is the charge per unit time passing a given point. By definition.
negative charges moving to the left count the same as positive ones to the right. This
conveniently reflects the physical fact that almost all phenomena involving moving charges
depend on the product of charge and velocity—if you change the sign of g and v, you
get the same answer, so it doesn’t really matter which you have. (The Lorentz force law
is a case in point; the Hall effect (Prob. 5.39) is a notorious exception.) In practice, it is
ordinarily the negatively charged electrons that do the moving—in the direction opposite
the electric current. To avoid the petty complications this entails, I shall often pretend it's
the positive charges that move, as in fact everyone assumed they did for a century or so
after Benjamin Franklin established his unfortunate convention.> Current is measured in
coulombs-per-second, or amperes (A):

IA=1C/s. (5.12
A line charge A traveling down a wire at speed v (Fig. 5.9) constitutes a current
I = v, (5.13)

because a segment of length vAr, carrying charge AvAt, passes point P in a time interval
At. Current is actually a vector:
I=Av; 5.1

31f we called the electron plus and the proton minus, the problem would never arise. In the context of Franklin'~
experiments with cat’s fur and glass rods, the choice was completely arbitrary.
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