

Introduction / 1

CHAPTER 1

INTRODUCTION

1.0 Objectives
1.1 Introduction
1.2 Microsoft .NET Framework
1.3 Visual Basic .Net
 1.3.1 Example of Visual Basic .Net
 1.3.2 Hello, world
 1.3.3 Hello, windows
 1.3.4 Hello, Browser
1.4 Summary
1.5 Check Your Progress- Answers
1.6 Questions for Self – Study
1.7 Suggested Readings

1.0 OBJECTIVES

After studying this chapter you will be able to :
Describe Microsoft .Net Framework
State visual basic .Net introduction
Explain examples of visual basic .Net

1.1 INTRODUCTION

Previously the language was know as Visual Basic 6.0,then it is merged in to .Net
framework when Microsoft announce to release .Net, with its release for the .NET
platform, the Visual Basic language has undergone dramatic changes.

For example:

 The language itself is now fully object-oriented.

 Applications and components written in Visual Basic .NET have full access to

the .NET Framework, an extensive class library that provides system and
application services.

 All applications developed using Visual Basic .NET run within a managed

runtime environment, the .NET common language runtime. In this introduction,
I briefly discuss these changes and other changes before showing you three
very simple, but complete, Visual Basic .NET applications.

1.2 MICROSOFT .NET FRAMEWORK

The .NET Framework encompasses the following:
 A new way to expose operating system and other APIs. For years, the set of

Windows functionality that was available to developers and the way that
functionality was invoked were dependent on the language environment being
used. For example, the Windows operating system provides the ability to create
windows (obviously). Yet, the way this feature was invoked from a C++ program
was dramatically different from the way it was invoked from a Visual Basic
program. With .NET, the way that operating system services are invoked is
uniform across all languages (including code embedded in ASP.NET pages). This
portion of .NET is commonly referred to as the .NET Framework class library.

 A new infrastructure for managing application execution. To provide a number of
sophisticated new operating-system services—including code-level security, cross-
language class inheritance, cross-language type compatibility, and hardware and

VB .Net / 2

operating-system independence, among others—Microsoft developed a new
runtime environment known as the Common Language Runtime (CLR). The CLR
includes the Common Type System (CTS) for cross-language type compatibility
and the Common Language Specification (CLS) for ensuring that third-party
libraries can be used from all .NET-enabled languages. To support hardware and
operating-system independence, Microsoft developed the Microsoft Intermediate
Language (MSIL, or just IL). IL is a CPU-independent machine language-style
instruction set into which .NET Framework programs are compiled. IL programs
are compiled to the actual machine language on the target platform prior to
execution (known as just-in-time, or JIT, compiling). IL is never interpreted.

 A new web server paradigm. To support high-capacity web sites, Microsoft has

replaced its Active Server Pages (ASP) technology with ASP.NET. While
developers who are used to classic ASP will find ASP.NET familiar on the surface,
the underlying engine is different, and far more features are supported. One
difference, already mentioned in this chapter, is that ASP.NET web page code is
now compiled rather than interpreted, greatly increasing execution speed.

 A new focus on distributed-application architecture.Visual Studio .NET provides

top-notch tools for creating and consuming web services -- vendor-independent
software services that can be invoked over the Internet. The .NET Framework is
designed top to bottom with the Internet in mind. For example,

 ADO.NET, the next step in the evolution of Microsoft's vision of "universal data
access," assumes that applications will work with disconnected data by default. In
addition, the ADO.NET classes provide sophisticated XML capabilities, further
increasing their usefulness in a distributed environment. An understanding of the
.NET Framework is essential to developing professional Visual Basic .NET
applications. The .NET Framework is explained in detail in Chapter 3.

1.1 & 1.2 Check Your Progress

Fill in the blanks
1. The CLR includes the ……………………. for cross language type compatibility.
2. The net framework is designed …………………. with the internet.
3. Visual Basic NET has a …………………..….. complier.
4. The browser-based application requires a computer running ………………………

server.
5 CTS is the part of ………………………..

1.3 VISUAL BASIC .NET

 Visual Basic .NET is the next generation of Visual Basic, but it is also a
significant departure from previous generations. Experienced Visual Basic 6
developers will feel comfortable with Visual Basic .NET code and will recognize most
of its constructs. However, Microsoft has made some changes to make Visual Basic
.NET a better language and an equal player in the .NET world. These include such
additions as a Class keyword for defining classes and an Inherits keyword for object
inheritance, among others. Visual Basic 6 code can't be compiled by the Visual Basic
.NET compiler without significant modification. The good news is that Microsoft has
provided a migration tool to handle the task. The Visual Basic .NET language itself is
detailed in Chapter 2. Over the last several months I have spent almost all of my time
playing with .NET and writing Visual Basic .NET programs. As a user of Visual Basic
since Version 4, I can tell you that I am pleased with this new technology and with the
changes that have been made to Visual Basic. In my opinion, Microsoft has done it
right.

1.3.1 An Example Visual Basic .NET Program

 The first program to write is the same for all languages: Print the words hello, world
 It has become a tradition for programming books to begin with a hello, world
example. The idea is that entering and running a program—any program—may be the
biggest hurdle faced by experienced programmers approaching a new platform or

Introduction / 3

language. Without overcoming this hurdle, nothing else can follow. This chapter
contains three such examples: one that creates a console application, one that creates
a GUI application, and one that creates a browser-based application. Each example
stands alone and can be run as is. The console and GUI applications can both be
compiled from the command line (yes, Visual Basic .NET has a command-line
compiler!). The browser-based application requires a computer running Internet
Information Server (IIS).

1.3.2 hello, world

This is the world's favorite programming example, translated to Visual Basic .NET:
Imports System

Public Module Hello
 Public Sub Main()
 Console.WriteLine("hello, world")
 End Sub
End Module

The above version of hello, world is under console application -- it displays its output in
a Windows commandprompt window. To compile this program, enter it using any text
editor, such as Windows's Notepad, save it in a file whose name ends with .vb, such
as Hello.vb, and compile it from the Windows command line with this command:-

vbc Hello.vb

The command vbc invokes the Visual Basic .NET command-line compiler, which ships
with the .NET Framework SDK, and instructs it to compile the file named in the
command-line argument. Compiling Hello.vb generates the file Hello.exe. After
compiling, type Hello at the command line to run your program. Figure 1-1 shows the
results of compiling and running this program.

Figure 1-1. Compiling and running hello, world

 If you're accustomed to programming in Visual Basic 6, you can see even from this
little program that Visual Basic has changed dramatically. Here's a breakdown of
what's happening in this code.

The first line:
 Imports System

indicates that the program may use one or more types defined in the System
namespace. (Types are grouped into namespaces to help avoid name collisions and to
group related types together.) Specifically, the hello, world program uses the Console
class, which is defined in the System namespace. The Imports statement is merely a
convenience. It is not needed if the developer is willing to qualify type names with their
namespace names. For example, the hello, world program could have been written
this way:

Public Module Hello
 Public Sub Main()
 System.Console.WriteLine("hello, world")
 End Sub
End Module

VB .Net / 4

 it is customary to use the “Imports” statement to reduce keystrokes and visual
clutter. An important namespace for Visual Basic developers is Microsoft VisualBasic.
The types in this namespace expose members that form Visual Basic's intrinsic
functions and subroutines. For example: the Visual Basic Trim function is a member of
the Microsoft.VisualBasic.Strings class, while the MsgBox function is a member of the
Microsoft.VisualBasic.Interaction class. In addition, Visual Basic's intrinsic constants
come from enumerations within this namespace. Much of the functionality available in
this namespace, however, is also duplicated within the .NET ramework's Base Class
Library. Developers who are not familiar with Visual Basic 6 will likely choose to ignore
this namespace, favoring the functionality provided by the .NET Framework. The .NET
Framework is introduced later in this chapter and is explained in detail in Chapter 3.
Now, consider the following line:

 Public Module Hello

This line begins the declaration of a standard module named Hello. The standard-
module declaration ends with the following line:

 End Module

In VB 6, various program objects were defined by placing source code in files having
various filename extensions. For example, code that define classes was placed in .cls
files, code that defined standard module was placed in .bas files, and so on. In Visual
Basic .NET, all source files have .vb filename extensions, and program objects are
defined with explicit syntax. For example, classes are defined with the keyword-

Class

End Class construct,

and standard modules are defined with the Module…...End Module construct. Any
particular .vb file can contain as many of these declarations as desired. The purpose of
standard modules in Visual Basic 6 was to hold code that was outside of any class
definition. For example, global constants, global variables, and procedure libraries
were often placed in standard modules. Standard modules in Visual Basic .NET serve
a similar purpose and can be used in much the same way. However, in Visual Basic
.NET they define datatypes that cannot be instantiated and whose members are all
static. This will be discussed in more detail in next Chapter. The next line in the
example begins the definition of a subroutine named
Main:

 Public Sub Main()
 ‘And It ends with
 End Sub

This above syntax is similar to Visual Basic 6.Sub statement begins the definition of a
subroutine – a method that has no return value. The Main subroutine is the entry point
for the application. When the Visual Basic .NET compiler is invoked, it looks for a
subroutine named Main in one of the classes or standard modules exposed by the
application. If Main is declared in a class rather than in a standard module, the
subroutine must be declared with the Shared modifier. This modifier indicates that the
class does not need to be instantiated for the subroutine to be invoked. In either case,
the Main subroutine must be Public. An example of enclosing the Main subroutine in a
class rather than in a standard module is given at the end of this section. If no Main
subroutine is found or if more than one is found, a compiler error is generated. The
command-line compiler has a switch (/main:location) that allows you to specify which
class or standard module contains the Main subroutine that is to be used, in the case
that there is more than one. Lastly, there's the line that does the work:
Console.WriteLine("hello, world")
This code invokes the Console class's WriteLine method, which outputs the argument
to the console. The WriteLine method is defined as a shared (also known as a static)
method. Shared methods don't require an object instance in order to be invoked;
nonshared methods do. Shared methods are invoked by qualifying them with their
class name (in this case, Console). Here is a program that uses a class instead of a
standard module to house its Main subroutine. Note that Main is declared with the
Shared modifier. It is compiled and run in the same way as the standard module

Introduction / 5

example, and it produces the same output. There is no technical reason to choose one
implementation over the other.Code is as follows-

Imports System

Public Class Hello

 Public Shared Sub Main()
 Console.WriteLine("hello, world")
 End Sub
End Class

1.3.3 Hello, Windows

Here's the GUI version of hello, world:

Imports System
Imports System.Drawing
Imports System.Windows.Forms
 Public Class HelloWindows
 Inherits Form
 Private lblHelloWindows As Label
 Public Shared Sub Main()
 Application.Run(New HelloWindows())
 End Sub

 Public Sub New()
 lblHelloWindows = New Label()
 With lblHelloWindows
 .Location = New Point(37, 31)
 .Size = New Size(392, 64)
 .Font = New Font("Arial", 36)
 .Text = "Hello, Windows!"
 .TabIndex = 0
 .TextAlign = ContentAlignment.TopCenter
 End With
 Me.Text = "Programming Visual Basic .NET"
 AutoScaleBaseSize = New Size(5, 13)
 FormBorderStyle = FormBorderStyle.FixedSingle
 ClientSize = New Size(466, 127)
 Controls.Add(lblHelloWindows)
 End Sub
End Class

This is similar to the hello, world console application, but with extra stuff required since
this is a GUI application. Two additional Imports statements are needed for drawing
the application's window:

Imports System.Drawing
Imports System.Windows.Forms

The HelloWindows class has something that Visual Basic programs have never seen
before, the Inherits statement:Inherits Form The Visual Basic .NET language has class
inheritance. The HelloWindows class inherits from the Form class, which is defined in
the System.Windows.Forms namespace. The next line declares a label control that will
be used for displaying the text Hello, Windows:

Private lblHelloWindows As Label

The Label class is defined in the System.Windows.Forms namespace. As is the case
with console applications, GUI applications must have a shared subroutine called
 Main:

 Public Shared Sub Main()
 Application.Run(New HelloWindows())
 End Sub

VB .Net / 6

This Main method creates an instance of the HelloWindows class and passes it to the
Run method of the Application class (defined in the ystem.Windows.Forms
namespace). The Run method takes care of the housekeeping of setting up a
Windows message loop and hooking the HelloWindows form into it.
Next is another special method:

 Public Sub New()

Like Main, New has special meaning to the Visual Basic .NET compiler. Subroutines
named New are compiled into constructors.

A constructor is a method that has no return value (but can have arguments) and is
automatically called whenever a new object of the given type is instantiated.. The
constructor in the HelloWindows class instantiates a Label object, sets some of its
properties, sets some properties of the form, and then adds the Label object to the
form's Controls collection. The interesting thing to note is how different this is from how
Visual Basic 6 represented form design. In Visual Basic 6, form layout was
represented by data in .frm files. This data was not code, but rather a listing of the
properties and values of the various elements on the form. In Visual Basic .NET, this
approach is gone. Instead, Visual Basic .NET statements must explicitly instantiate
visual objects and set their properties. When forms are designed in Visual Studio .NET
using its drag-and-drop designer, Visual Studio .NET creates this code on your behalf.
The command line to compile the Hello, Windows program is:

 vbcHelloWindows.vb
 /reference:System.dll,System.Drawing.dll,System.Windows.Forms.dll
 /target:winexe

(Note that there is no break in the above line.)

The command line for compiling the Hello, Windows program has more stuff in it than
the one for the console-based hello, world program. In addition to specifying the name
of the .vb file, this command line uses the /references switch to specify three .dlls that
contain the implementations of library classes used in the program (Form, Label, Point,
etc.). The hello, world console application didn't require references when being
compiled because all it used was the Console class, defined in the System
namespace. The Visual Basic .NET command-line compiler includes two references
implicitly:

mscorlib.dll (which contains the System namespace) and Microsoft.VisualBasic.dll
(which contains helper classes used for implementing some of the features of Visual
Basic .NET). Besides the /references switch, the command line for compiling the Hello,
Windows program includes the /target switch. The /target switch controls what kind of
executable code file is produced. The possible values of the /target switch are: exe
Creates a console application. The generated file has an extension of .exe. This is the
default. Winexe

Creates a GUI application. The generated file has an extension of .exe. library Creates
a class library. The generated file has an extension of .dll. The output of Hello,
Windows is shown in Figure 1-2.

Figure 1-2. Hello, Windows!

Introduction / 7

1.3.1-1.3.3 Check Your Progress

TRUE OR FALSE
1. The command vbe invokes the visual basic NET command-line compiler.
2. Imports System indicates that the program may use one or more types defined in

the System namespace.
3. The Visual Basic Trim function is not member of the Microsoft. VisualBasic. Strings

class.
4. The main subroutine is the entry point for the application.
5. Console application is the only programming technic in .Net.

1.3.4 Hello, Browser

Here is a browser-based version of the hello, world application. Because the simplest
version of such an application could be accomplished with only HTML, I've added a
little spice. This web page includes three buttons that allow the end user to change the
color of the text.

 <script language="VB" runat="server">

 Sub Page_Load(Sender As Object, E As EventArgs)
 lblMsg.Text = "Hello, Browser!"
 End Sub
 Sub btnBlack_Click(Sender As Object, E As EventArgs)
 lblMsg.ForeColor = System.Drawing.Color.Black
 End Sub

 Sub btnGreen_Click(Sender As Object, E As EventArgs)
 lblMsg.ForeColor = System.Drawing.Color.Green
 End Sub
 Sub btnBlue_Click(Sender As Object, E As EventArgs)
 lblMsg.ForeColor = System.Drawing.Color.Blue
 End Sub

</script>

 <html>
 <head>
 <title>Programming Visual Basic .NET</title>
 </head>
 <body>
 <form action="HelloBrowser.aspx" method="post"
 runat="server">
 <h1><asp:label id="lblMsg" runat="server"/></h1>
 <p>
 <asp:button type="submit" id="btnBlack" text="Black"
 OnClick="btnBlack_Click" runat="server"/>
 <asp:button id="btnBlue" text="Blue"
 OnClick="btnBlue_Click" runat="server"/>
 <asp:button id="btnGreen" text="Green"
 OnClick="btnGreen_Click" runat="server"/>
 </p>
 </form>
 </body>
 </html>

To run this program, enter it using a text editor and save it in a file named
HelloBrowser.aspx. Because the application is a web page that is meant to be
delivered by a web server, it must be saved onto a machine that is running IIS and has
the .NET Framework installed. Set up a virtual folder in IIS to point to the folder
containing HelloBrowser.aspx. Finally, point a web browser to HelloBrowser.aspx. The
output of the Hello, Browser application is shown in Figure 1-3.

VB .Net / 8

Figure 1-3. Hello, Browser!

Be sure to reference the file through the web server machine name or localhost (if the
web server is on your local machine), so that the web server is invoked. For example,
if the file is in a virtual directory called Test on your local machine, point your browser
to http://localhost/Test/HelloBrowser.aspx. If you point your browser directly to the file
using a filesystem path, the web server will not be invoked. Going into detail on the
Hello, Browser code would be too much for an introduction. However, I'd like to draw
your attention to the <asp:label> and <asp:button> tags. These tags represent
serverside controls. A server-side control is a class that is instantiated on the web
server and generates appropriate output to represent itself on the browser. These
classes have rich, consistent sets of properties and methods and can be referenced in
code like controls on forms are referenced in GUI applications. ASP.NET has many
other nifty features, some of which are:
� Web pages are compiled, resulting in far better performance over classic ASP.
� Code can be pulled out of web pages entirely and placed in .vb files (called code-
behind files) that are referenced by the web pages. This separation of web page layout
from code results in pages that are easier to develop and maintain.

1.4 SUMMARY

In this chapter we studied the overview of Microsoft .net framework. General
introduction of VB .net, its similerties with old B-6.0

1.5 CHECK YOUR PROGRESS-ANSWERS

1.1 & 1.2

1. Common Type System
2. Top to Bottom
3. Command Line
4. Internet
5. CLR

1.3.1 & 1.3.3

1. True
2. True
3. False
4. True
5. False

1.6 QUESTIONS FOR SELF-STUDY

1. Explain Microsoft. NET Framework?
2. What is Visual basic. NET?

Introduction / 9

1.7 SUGGESTED READINGS

1. Programming Visual Basic .NET
by Dave Grundgeiger

 Publisher: O'Reilly

References

Programming Visual Basic .NET by Dave Grundgeiger

VB .Net / 10

NOTES

The Visual Basic .NET Language / 11

CHAPTER 2

THE VISUAL BASIC .NET LANGUAGE

2.0 Objectives
2.1 Introduction
2.2 Source Files
2.3 Indentifiers
2.4 Keywords
2.5 Literals
2.6 Types
2.7 Namespaces
2.8 Symbolic Constants
2.9 Variables
2.10 Scope
2.11 Access Modifiers
2.12 Assignment
2.13 Operators and Expressions
2.14 Statements
2.15 Classes
2.16 Interfaces
2.17 Structures
2.18 Enumerations
2.19 Exceptions
2.20 Delegates
2.21 Exents
2.22 Standers Modules
2.23 Attibutes
2.24 Conditional Compilation
2.25 Summary
2.26 Check Your Progress – Answers
2.27 Questions for Self-Study
2.28 Suggested Readings

2.0 OBJECTIVES

After you study this chapter you will be able to explain :

 Source Files,Identifiers,Keywords, Literals,
 Types,Namespaces,Symbolic Constants
 Variables, Scope, Access Modifiers
 Assignment,
 Operators and Expressions
 Statements,
 Classes,Interfaces
 Structures,Enumerations, Exceptions
 Delegates,Events,Standers Modules
 Attributes,Conditional Compilation

2.1 INTRODUCTION

This chapter discusses the syntax of the Visual Basic .NET language, including basic
concepts such as variables, operators, statements, classes, etc. Some material that
you'd expect to find in this chapter will seem to be missing. For example, mathematical
functions, file I/O, and form declarations are all very much a part of developing Visual
Basic .NET applications, yet they are not introduced in this chapter because they are
not intrinsic to the Visual Basic .NET language. They are provided by the .NET
Framework and will be discussed in subsequent chapters. Additionally, Visual Basic

VB .Net / 12

.NET functions that exist merely for backward compatibility with Visual Basic 6 are not
documented in this chapter.

2.2 SOURCE FILES

Visual Basic .NET source code is saved in files with a .vb extension. The exception to
this rule is when Visual Basic .NET code is embedded in ASP.NET web page files.
Such files have an .aspx extension. Source files are plain-text files that can be created
and edited with any text editor,like Notepad. Source code can be broken into as many
or as few files as desired. When you use Visual Studio .NET, source files are listed in
the Solution Explorer window, and all source is included from these files when the
solution is built. When you are compiling from the command line, all source files must
appear as command-line arguments to the compile command. The location of
declarations within source files is unimportant. As long as all referenced declarations
appear somewhere in a source file being compiled, they will be found. Unlike previous
versions of Visual Basic, no special file extensions are used to indicate various
language constructs (e.g., .cls for classes, .frm for forms, etc.). Syntax has been added
to the language to differentiate various constructs. In addition, the pseudolanguage for
specifying the graphical layout of forms has been removed. Form layout is specified by
setting properties of form
objects explicitly within code. Either this code can be written manually, or the
WYSIWYG form designer in Visual Studio .NET can write it.

2.3 IDENTIFIERS

Identifiers are names given to namespaces (discussed later in this chapter), types
(enumerations, structures, classes, standard modules, interfaces, and delegates), type
members (methods, constructors, events, constants, fields, and properties), and
variables. Identifiers must begin with either an alphabetic or underscore character (_),
may be of any length, and after the first character must consist of only alphanumeric
and underscore characters. Namespace declarations may be declared either with
identifiers or qualified identifiers. Qualified identifiers consist of two or more identifiers
connected with the dot character (.). Only namespace declarations may use qualified
identifiers. Consider this code fragment:

Imports System
Namespace ORelly.ProgVBNet
Public Class Hello
 Public Shared Sub SayHello()
 Console.WriteLine("hello, world")
 End Sub
End Class
End Namespace

This code fragment declares three identifiers: OReilly.ProgVBNet (a namespace
name), Hello (a class name), and SayHello (a method name). In addition to these, the
code fragment uses three identifiers declared elsewhere: System (a namespace
name), Console (a class name), and WriteLine (a method name). Although Visual
Basic .NET is not case sensitive, the case of identifiers is preserved when applications
are compiled. When using Visual Basic .NET components from case-sensitive
languages, the caller must use the appropriate case.Ordinarily, identifiers may not
match Visual Basic .NET keywords. If it is necessary to declare or use an identifier that
matches a keyword, the identifier must be enclosed in square brackets ([]). Consider
this code fragment:

Public Class [Public]
 Public Shared Sub SayHello()
 Console.WriteLine("hello, world")
 End Sub
End Class
Public Class SomeOtherClass
 Public Shared Sub SomeOtherMethod()
 [Public].SayHello()
 End Sub
End Class

The Visual Basic .NET Language / 13

This code declares a class named Public and then declares a class and method that
use the Public class. Public is a keyword in Visual Basic .NET. Escaping it with square
brackets lets it be used as an identifier, in this case the name of a class. As a matter of
style, using keywords as identifiers should be avoided, unless there is a compelling
need. This facility allows Visual Basic .NET applications to use external components
that declare identifiers matching Visual Basic .NET keywords.

2.4 KEYWORDS

Keywords are words with special meaning in a programming language. In Visual Basic
.NET, keywords are reserved word; that is, they cannot be used as tokens for such
purposes as naming variables and subroutines. The keywords in Visual Basic .NET
are shown in Table 2-1.

Table 2-1. Visual Basic .NET keywords Keyword Description

AddHandler Visual Basic .NET Statement AddressOf Visual Basic .NET Statement
Alias Used in the Declare statement And Boolean operator
AndAlso Boolean operator Ansi Used in the Declare statement
Append Used as a symbolic constant in
the FileOpen function

As Used in variable declaration (Dim,
Friend, etc.)

Assembly Assembly-level attribute
specifier

Auto Used in the Declare statement

Binary Used in the Option Compare
statement

Boolean Used in variable declaration
(intrinsic data type)

ByRef Used in argument lists Byte Used in variable declaration (intrinsic
data type)

ByVal Used in argument lists Programming Visual Basic .NET
25 Call Visual Basic .NET statement
Case Used in the Select Case construct Catch Visual Basic .NET statement
CBool Data-conversion function CByte Data-conversion function
CChar Data-conversion function CDate Data-conversion function
CDec Data-conversion function CDbl Data-conversion function
Char Used in variable declaration
(intrinsic data type)

CInt Data-conversion function

Class Visual Basic .NET statement CLng Data-conversion function
CObj Data-conversion function Compare Used in the Option Compare

statement
CShort Data-conversion function CSng Data-conversion function
CStr Data-conversion function CType Data-conversion function
Date Used in variable declaration
(intrinsic data type)

Decimal Used in variable declaration
(intrinsic data type)

Declare Visual Basic .NET statement Default Used in the Property statement
Delegate Visual Basic .NET statement Dim Variable declaration statement
Do Visual Basic .NET statement Double Used in variable declaration

(intrinsic data type)
Each Used in the For Each...Next
construct

Else Used in the If...Else...ElseIf...End If
construct

ElseIf Used in the If...Else...ElseIf...End If
construct

End Used to terminate a variety of
statements

EndIf Used in the If...Else...ElseIf...End If
construct

Enum Visual Basic .NET statement

Erase Visual Basic .NET statement Error Used in the Error and On Error
compatibility statements

Event Visual Basic .NET statement Explicit Used in the Option Explicit
statement

False Boolean literal For Used in the For...Next and For
Each...Next constructs

Finally Visual Basic .NET statement For Visual Basic .NET statement
Friend Statement and access modifier Function Visual Basic .NET statement
Get Used in the Property construct GetType Visual Basic .NET operator
GoTo Visual Basic .NET statement, used
with the On Error statement

Handles Defines an event handler in a
procedure declaration

 If Visual Basic .NET statement

VB .Net / 14

Implements Visual Basic .NET statement Imports Visual Basic .NET statement
In Used in the For Each...Next construct Inherits Visual Basic .NET statement
Input Used in the FileOpen function Integer Used in variable declaration

(intrinsic data type)
Interface Visual Basic .NET statement Is Object comparison operator
Let Reserved but unused in Visual Basic
.NET

Lib Used in the Declare statement

Like Visual Basic .NET operator Lock Function name
Long Used in variable declaration
(intrinsic data type)

Loop Used in a Do loop

Me Statement referring to the current
object instance

Mid String-manipulation statement and
function

Mod Visual Basic .NET operator Module Visual Basic .NET statement
MustInherit Used in the Class construct MustOverride Used in the Sub and

Function statements
MyBase Statement referring to an object's
base class

MyClass Statement referring to the
current object instance

Namespace Visual Basic .NET statement New Object-creation keyword, constructor
name

Next Used in the For...Next and For
Each...Next constructs

Not Visual Basic .NET operator

Nothing Used to clear an object reference NotInheritable Used in the Class
construct

NotOverridable Used in the Sub,
Property, and Function statements

Object Used in variable declaration
(intrinsic data type)

Off Used in Option statements On Used in Option statements
Option Used in Option statements Optional Used in the Declare, Function,

Property, and Sub statements
Or Boolean operator OrElse Boolean operator
Output Used in the FileOpen function Overloads Used in the Sub and Function

statements
Overridable Used in the Sub and Function
statements

Overrides Used in the Sub, Property, and
Function statements

ParamArray Used in the Declare,
Function, Property, and Sub statements

Preserve Used with the ReDim statement

Private Statement and access modifier Property Visual Basic .NET statement
Protected Statement and access modifier Public Statement and access modifier
Programming Visual Basic .NET 27
RaiseEvent Visual Basic .NET statement Random Used in the FileOpen function
Read Used in the FileOpen function ReadOnly Used in the Property statement
ReDim Visual Basic .NET statement Rem Visual Basic .NET statement
RemoveHandler Visual Basic .NET
statement

Resume Used in the On Error and
Resume statements

Return Visual Basic .NET statement Seek File-access statement and function
Select Used in the Select Case construct Set Used in the Property statement
Shadows Visual Basic .NET statement Shared Used in the Sub and Function

statements
Short Used in variable declaration
(intrinsic data type)

Single Used in variable declaration
(intrinsic data type)

Static Variable declaration statement Step Used in the For...Next construct
Stop Visual Basic .NET statement String Used in variable declaration

(intrinsic data type)
Structure Visual Basic .NET statement Sub Visual Basic .NET statement
SyncLock Visual Basic .NET statement Text Used in the Option Compare

statement
Then Used in the If...Then...Else...EndIf
construct

Throw Visual Basic .NET statement

To Used in the For...Next and Select
Case constructs

True Boolean literal

Try Visual Basic .NET statement TypeOf Used in variations of the
If...Then...EndIf construct

Unicode Used in the Declare statement Until Used in the For...Next construct
Variant Reserved but unused in Visual
Basic .NET

When Used with the Try...Catch...Finally
construct

The Visual Basic .NET Language / 15

While Used with the Do...Loop and
While...End While constructs

With Visual Basic .NET statement

WithEvents Used in variable declaration
(Dim, Public, etc.)

WriteOnly Used in the Property statement

XOr Visual Basic .NET operator

2.5 LITERALS

Literals are representations of values within the text of a program. For example, in the
following line of code, 10 is a literal, but x and y are not:

x = y * 10

Literals have data types just as variables do. The 10 in this code fragment is
interpreted by the compiler as type Integer because it is an integer that falls within the
range of the Integer type.

2.5.1 Numeric Literals
Any integer literal that is within the range of the Integer type (-2147483648 through
2147483647) is interpreted as type Integer, even if the value is small enough to be
interpreted as type Byte or Short. Integer literals that are outside the Integer range but
are within the range of the Long type (- 9223372036854775808 through
9223372036854775807) are interpreted as type Long. Integer literals outside the Long
range cause a compile-time error. Numeric literals can also be of one of the floating
point types—Single, Double, and Decimal. For example, in this line of code, 3.14 is a
literal of type Double:
 z = y * 3.14
In the absence of an explicit indication of type (discussed shortly), Visual Basic .NET
interprets floating point literals as type Double. If the literal is outside the range of the
Double type (-1.7976931348623157E308 through 1.7976931348623157E308), a
compile-time error occurs.Visual Basic .NET allows programmers to explicitly specify
the types of literals. Table 2-2 (shown later in this chapter) lists Visual Basic .NET's
intrinsic data types, along with the method for explicitly defining a literal of each type.
Note that for some intrinsic types, there is no way to write a literal.

2.5.2 String Literals

Literals of type String consist of characters enclosed within quotation-mark characters.
For example, in the following line of code, "hello, world" is a literal of type
String:Console.WriteLine("hello, world") String literals are not permitted to span
multiple source lines. In other words, this is not permitted: ' Wrong
Console.WriteLine("hello, world") To write a string literal containing quotation-mark
characters, type the character twice for each time it should appear. For example:
 Console.WriteLine("So then Dave said, ""hello, world"".")
This line produces the following output:So then Dave said, "hello, world".

2.5.3 Character Literals

Visual Basic .NET's Char type represents a single character. This is not the same as a
one-character string; Strings and Chars are distinct types. Literals of type Char consist
of a single character enclosed within quotation-mark characters, followed by the
character c. For example, in the following code, "A"c is a literal of type Char:

Dim MyChar As Char
MyChar = "A"c

To emphasize that this literal is of a different data type than a single-character string,
note that this code causes a compile-time error if Option Strict is On:
 ' Wrong.

Dim MyChar As Char
MyChar = "A"

The error is:

 Option Strict On disallows implicit conversions from 'String' to 'Char'.

VB .Net / 16

2.5.4 Date Literals
Literals of type Date are formed by enclosing a date/time string within number-sign
characters. For example:
 Dim MyDate As Date MyDate = #11/15/2001 3:00:00 PM#

Date literals in Visual Basic .NET code must be in the format m/d/yyyy, regardless of
the regional settings of the computer on which the code is written.

2.5.5 Boolean Literals
The keywords True and False are the only Boolean literals. They represent the true
and false Boolean states, respectively (of course!). For example:

Dim MyBoolean As Boolean
MyBoolean = True

2.5.6 Nothing
There is one literal that has no type: the keyword Nothing. Nothing is a special symbol
that represents an uninitialized value of any type. It can be assigned to any variable
and passed in any parameter. When used in place of a reference type, it represents a
reference that does not reference any object. When used in place of a value type, it
represents an empty value of that type. For numeric types, this is 0 or 0.0. For the
String type, this is the empty string (""). For the Boolean type, this is False. For the
Char type, this is the Unicode character that has a numeric code of 0. For
programmer-defined value types, Nothing represents an instance of the type that has
been created but has not been assigned a value.

2.5.7 Summary of Literal Formats
Table 2-2 shows all of Visual Basic .NET's intrinsic types, as well as the format for
writing literals of those types in programs.

The Visual Basic .NET Language / 17

Note the following facts about forming literals in Visual Basic .NET:

 There is no way to represent a literal of type Byte. However, this doesn't
mean that literals cannot be used in situations where type Byte is expected. For
example, the following code is fine:

 Dim MyByte As Byte = 100

 Even though the Visual Basic .NET compiler considers 100 to be of type Integer

in this example, it recognizes that the number is small enough to fit into a
variable of type Byte.

 Types not shown in Table 2-2 can't be expressed as literals.

VB .Net / 18

2.1 - 2.4 Check Your Progress
Fill in the blanks
1. Visual Basic. NET files have an ……………………..…… extension.
2. ……………..…… declarations may be declared either with identifiers or qualified

identifiers.
3. In Visual Basic. NET keywords are ……………………. which cannot be used as

tokens.
4. ……….………….….. are representations of values within the text of a program.

2.6 TYPES

Types in Visual Basic .NET are divided into two categories:

1. value types and
2. reference types.

Value types minimize memory overhead and maximize speed of access, but they lack
some features of a fully object-oriented design (such as inheritance).

Reference types give full access to object-oriented features, but they impose some
memory and speed overhead for managing and accessing objects. When a variable
holds a value type, the data itself is stored in the variable. When a variable holds a
reference type, a reference to the data (also known as a pointer) is stored in the
variable, and the data itself is stored somewhere else.

Visual Basic .NET's primitive types include both value types and reference types (see
"Fundamental Types" in this section). For extending the type system, Visual Basic
.NET provides syntax for defining both new value types and new reference types (see
"Custom Types" later in this section).

All reference types derive from the Object type. To unify the type system, value types
can be treated as reference types when needed. This means that all types can derive
from the Object type. Treating value types as reference types (a process known as
boxing) is addressed later in this chapter.

2.6.1 Fundamental Types

Visual Basic .NET has several built-in types. Each of these types is an alias for a type
supplied by the .NET architecture. Because Visual Basic .NET types are equivalent to
the corresponding underlying .NET-supplied types, there are no type-compatibility
issues when passing arguments to components developed in other languages. In
code, it makes no difference to the compiler whether types are specified using the
keyword name for the type or using the underlying .NET type name. For example, the
test in this code fragment succeeds:

Dim x As Integer
Dim y As System.Int32
 If x.GetType() Is y.GetType() Then
 Console.WriteLine("They're the same type!")
 Else
 Console.WriteLine("They're not the same type.")
 End If

The fundamental Visual Basic .NET data types are:

Boolean

The Boolean type is limited to two values: True and False. Visual Basic .NET includes
many logical operators that result in a Boolean type. For example:

 Public Shared Sub MySub(ByVal x As Integer, ByVal y As Integer)

The Visual Basic .NET Language / 19

 Dim b As Boolean = x > y

 ' other code
 End Sub ' MySub

The result of the greater-than operator (>) is of type Boolean. The variable b is
assigned the value True if the value in x is greater than the value in y and False if it is
not. The underlying .NET type is System.Boolean.

Byte

The Byte type can hold a range of integers from 0 through 255. It represents the
values that can be held in eight bits of data. The underlying .NET type is System.Byte.

Char

The Char type can hold any Unicode[1] character. The Char data type is new to Visual
Basic .NET. The underlying .NET type is System.Char. [1] Unicode is a 16-bit
character-encoding scheme that is standard across all platforms, programs, and
languages (human and machine). See http://www.unicode.org for information on
Unicode.

Date

The Date type holds values that specify dates and times. The range of values is from
midnight on January 1, 0001 (0001-01-01T00:00:00) through 1 second before midnight
on December 31, 9999 (9999-12-31T23:59:59). The Date type contains many
members for accessing, comparing, and manipulating dates and times. The underlying
.NET type is System.DateTime.

Decimal

The Decimal type holds decimal numbers with a precision of 28 significant decimal
digits. Its purpose is to represent and manipulate decimal numbers without the
rounding errors of the Single and Double types. The Decimal type replaces Visual
Basic 6's Currency type. The underlying .NET type is System.Decimal.

Double

The Double type holds a 64-bit value that conforms to IEEE standard 754 for binary
floating point arithmetic. The Double type holds floating point numbers in the range -
1.7976931348623157E308 through 1.7976931348623157E308. The smallest
nonnegative number (other than zero) that can be held in a Double is
4.94065645841247E-324. The underlying .NET type is System.Double.

Integer

The Integer type holds integers in the range -2147483648 through 2147483647. The
Visual Basic .NET Integer data type corresponds to the VB 6 Long data type. The
underlying .NET type is System.Int32.

Long

The Long type holds integers in the range -9223372036854775808 through
9223372036854775807. In Visual Basic .NET, Long is a 64-bit integer data type. The
underlying .NET type is:

 System.Int64.

Object

The Object type is the base type from which all other types are derived. The Visual
Basic .NET Object data type replaces the Variant in VB 6 as the universal data type.
The underlying .NET type is :

 System.Object.

VB .Net / 20

Short

The Short type holds integers in the range -32768 through 32767. The Short data type
corresponds to the VB 6 Integer data type. The underlying .NET type is System.Int16.
Single

The Single type holds a 32-bit value that conforms to IEEE standard 754 for binary
floating point arithmetic. The Single type holds floating point numbers in the range -
3.40282347E38 through 3.40282347E38. The smallest nonnegative number (other
than zero) that can be held in a Double is 1.401298E-45. The underlying .NET type is

 System.Single.

String

The String type holds a sequence of Unicode characters. The underlying .NET type is
System.String.Of the fundamental types, Boolean, Byte, Char, Date, Decimal, Double,
Integer, Long, Short, and Single (that is, all of them except Object and String) are
value types. Object and String are reference types.

2.6.2 Custom Types

Visual Basic .NET provides rich syntax for extending the type system. Programmers
can define both new value types and new reference types. Types declared with Visual
Basic .NET's Structure and Enum statements are value types, as are all .NET
Framework types that derive from System.ValueType. Reference types include Object,
String, all types declared with Visual Basic .NET's Class, Interface, and Delegate
statements, and all .NET Framework types that don't derive from System.ValueType.

2.6.3 Arrays

Array declarations in Visual Basic .NET are similar to those in Visual Basic 6 and other
languages. For example, here is a declaration of an Integer array that has five
elements:
 Dim a(4) As Integer
The literal 4 in this declaration specifies the upper bound of the array. All arrays in
Visual Basic .NET have a lower bound of 0, so this is a declaration of an array with five
elements, having indexes 0, 1, 2, 3, and 4. The previous declaration is of a variable
named a, which is of type "array of Integer." Array types implicitly inherit from the .NET
Framework's Array type (defined in the System namespace) and, therefore, have
access to the methods defined in that type. For example, the following code displays
the lower and upper bounds of an array by calling the Array class's GetLowerBound
and GetUpperBound methods:

Dim a(4) As Integer
 Console.WriteLine("LowerBound is"&a.GetLowerBound(0).ToString())
 Console.WriteLine("UpperBound is"&a.GetUpperBound(0).ToString())

 The output of above program is:

LowerBound is 0
UpperBound is 4

Note that the upper bound of the array is dynamic: it can be changed by methods
available in the Array type. Array elements are initialized to the default value of the
element type. A type's default value is determined as follows:

 For numeric types, the default value is 0.
 For the Boolean type, the default value is False.
 For the Char type, the default value is the character whose Unicode value is 0.
 For structure types (described later in this chapter), the default value is an

instance of the structure type with all of its fields set to their default values.
 For enumeration types (described later in this chapter), the default value is an

instance of the enumeration type with its internal representation set to 0, which
may or may not correspond to a legal value in the enumeration.

The Visual Basic .NET Language / 21

 For reference types (including String), the default value is Nothing. You can
access array elements by suffixing the array name with the index of the
desired element enclosed in parentheses, as shown here:

For i = 0 To 4
 Console.WriteLine(a(i))
Next

Arrays can be multidimensional. Commas separate the dimensions of the array when
used in declarations and when accessing elements. Here is the declaration of a three-
dimensional array,where each dimension has a different size:

Dim a(5, 10, 15) As Integer

As with single-dimensional arrays, array elements are initialized to their default values.

2.6.3.1 Initializing arrays

Arrays of primitive types can be initialized by enclosing the initial values in curly
brackets ({}). For
example:

Dim a() As String = {"First", "Second", "Third", "Fourth", "Fifth"}

Notice that when arrays are initialized in this manner, the array declaration is not
permitted to specify an explicit size. The compiler infers the size from the number of
elements in the initializer. To initialize multidimensional arrays, include the appropriate
number of commas in the array-name declaration and use nested curly brackets in the
initializer. Here is a declaration of a two-dimensional array having three rows and two
columns:

Dim a(,) As Integer = {{1, 2}, {3, 4}, {5, 6}}
This declaration produces the following array:

a(0,0)=1, a(0,1)=2,
a(1,0)=3, a(1,1)=4,
a(2,0)=5, a(2,1)=6.

When initializing multidimensional arrays, the innermost curly brackets correspond to
the rightmost dimension.

2.6.3.2 Dynamically allocating arrays

Use the New keyword to allocate arrays of any type. For example, this code creates an
array of five Integers and initializes the elements as shown:
 Dim a() As Integer
 a = New Integer(4) {1, 2, 3, 4, 5}
If the array elements won't be initialized by the allocation, it is still necessary to include
the curly brackets:

 Dim a() As Integer
 ' allocates an uninitialized array of five Integers
 a = New Integer(5)
 {
 }
Curly brackets are required so the compiler won't confuse the array syntax with
constructor syntax. Note also the meaning of this declaration by itself:

Dim a() As Integer

This is the declaration of a reference that could point to a single-dimensional array of
Integers, but doesn't yet. Its initial value is Nothing.

VB .Net / 22

2.6.4 Collections

A collection is any type that exposes the ICollection interface (defined in the
System.Collections namespace). In general, collections store multiple values and
provide a way for iterating through those values.

Specialized collection types may also provide other means for adding and reading
values. For example, the Stack type (defined in the System.Collections namespace)
provides methods, such as Push and Pop, for performing operations that are
appropriate for the stack data structure. The Visual Basic .NET runtime provides a type
called Collection (defined in the Microsoft. VisualBasic namespace) that mimics the
behavior of Visual Basic 6 collections and exposes the Icollection interface. Example
2-1 shows its use.

Example 2-1. Using the Collection type

' Create a new collection object.
 Dim col As New Collection()
' Add some items to the collection.
 col.Add("Some value")
 col.Add("Some other value")
 col.Add("A third value")
' Iterate through the collection and output the strings.
 Dim obj As Object
 For Each obj In col
 Dim str As String = CType(obj, String)
 Console.WriteLine(str)
 Next

The Collection type's Add method adds items to the collection. Although strings are
added to the collection in Example 2-2, the Add method is defined to take items of type
Object, meaning that any type can be passed to the method. After items are added to
the collection, they can be iterated using the For Each statement (discussed later in
this chapter, under Section 2.13). Because the Collection class is defined to store
items of type Object, the loop variable in the For Each statement must be of type
Object. Because the items are actually strings, the code in Example 2-1 converts the
Object references to String references using the CType function. Type conversions are
discussed later in this section. The output of the code in Example 2-1 is:

Some value
Some other value
A third value The items in a Collection object can also be iterated using a numerical
index. The Collection object has a Count property, which indicates the number of items
in the collection. Example 2-2 is precisely the same as Example 2-1, except that it
iterates through the Collection object using a numerical index and a standard For loop.

Example 2-2. Using a numerical index on a collection object

' Create a new collection object.
 Dim col As New Collection()
' Add some items to the collection.
 col.Add("Some value")
 col.Add("Some other value")
 col.Add("A third value")
' Iterate through the collection and output the strings.
 Dim i As Integer
 For i = 1 To col.Count
 Dim str As String = CType(col(i), String)
 Console.WriteLine(str)
 Next

Note that to access an item by index, the index number is placed within parentheses
following the name of the Collection reference variable, as shown again here:

col(i)

The syntax of the Add method is:

The Visual Basic .NET Language / 23

Public Sub Add(_ByValItem As Object,
 _Optional ByVal Key As String = Nothing,
 _Optional ByValBefore As Object = Nothing,
 _Optional ByVal After As Object = Nothing)

The parameters are:

 Item

The item to add to the collection.

 Key

An optional string value that can be used as an index to retrieve the associated item.
For example, the following code adds an item to a collection and then uses the key
value to retrieve the item:

Dim col As New Collection()
 col.Add("Some value", "Some key")
' ...
Dim str As String = CType(col("Some key"), String)
 Console.WriteLine(str)

The output is:Some value

Before

 The item before which the new item should be added.

After

 The item after which the new item should be added.

The .NET Framework class library provides several additional collection types.

2.6.5 Type Conversions

Visual Basic .NET provides a variety of ways for values of one type to be converted to
values of another type. There are two main categories of conversions: widening
conversions and narrowing conversions. Widening conversions are conversions in
which there is no possibility for data loss or incorrect results. For example, converting
a value of type Integer to a value of type Long is a widening conversion because the
Long type can accommodate every possible value of the Integer type.Narrowing is the
reverse operation—converting from a Long to an Integer—because some values of
type Long can't be represented as values of type Integer. Visual Basic .NET performs
widening conversions automatically whenever necessary. For example, a widening
conversion occurs in the second line of the following code. The Integer value on the
righthand side of the assignment is automatically converted to a Long value so it can
be stored in the variable b:

Dim a As Integer = 5
Dim b As Long = a

A conversion that happens automatically is called an implicit conversion. Now consider
the reverse situation:

Dim a As Long = 5
Dim b As Integer = a

The second line of code here attempts to perform an implicit narrowing conversion.
Whether the compiler permits this line of code depends on the value set for the Option
Strict compiler option. When Option Strict is On, attempts to perform an implicit
widening conversion result in a compiler error. When Option Strict is Off, the compiler
automatically adds code behind the scenes to perform the conversion. At runtime, if
the actual value being converted is out of the range that can be represented by the

VB .Net / 24

target type, a runtime exception occurs. Option Strict can be set in either of two ways.
First, it can be set in code at the top of a source file, like this:

Option Strict On
' ...

or:
Option Strict Off
' ...

The other way is to set a compiler switch, which affects all source files in the
application. If you're compiling from the command line, specify /optionstrict+ on the
command line to set Option Strict On. Specify

 /optionstrict- to set Option Strict Off.

For example:

 vbc MySource.vb /optionstrict+

To set Option Strict in Visual Studio .NET:
1. Right-click on the project name in the Solution Explorer window and choose

Properties. This brings up the Project Property Pages dialog box. (If the Solution
Explorer window is not visible, choose View Solution Explorer from the Visual
Studio .NET main menu to make it appear.)

2. Within the Project Property Pages dialog box, choose the Common Properties
folder. Within that folder, choose the Build property page. This causes the project-
build options to appear on the right side of the dialog box.

3. Set the desired value for the Option Strict option.
By default, Option Strict is Off, meaning that implicit narrowing conversions are
allowed. This matches the default setting of Visual Basic 6. However, most
experienced developers consider it
beneficial to set Option Strict On so the compiler can help detect coding errors
before they become runtime errors. Attempting to assign a Long to an Integer, for
example, is usually a sign either that something was mistyped or that there is a
problem with the design of the program. Setting Option Strict On helps the
developer discover such errors at compile time. On the other hand, there may
sometimes be a legitimate need to perform a narrowing conversion. Perhaps the
application is interfacing to another application that passes a value as a Long, but it
is guaranteed that the actual value passed will never be outside the range of the
Integer type. Option Strict could be set to Off to allow implicit narrowing
conversions, but a better alternative is to have Option Strict On (so it can protect
the majority of the program) and to specify an explicit narrowing conversion. For
example:

Dim a As Long = 5
Dim b As Integer = CInt(a)

This is known as an explicit conversion because the programmer is explicitly
requesting a conversion to Integer. If at runtime a contains a value that is outside the
Integer range, an exception is thrown.

Table 2-3 shows Visual Basic .NET's conversion functions.

The Visual Basic .NET Language / 25

Table 2-3. Conversion functions

The functions shown in Table 2-3 all take a single argument. If the argument can't be
converted to the given type, an exception is thrown. Consider the the following:

 When converting from any numeric value to Boolean, zero converts to False
and nonzero converts to True.

 When converting from Boolean to a numeric value, False converts to 0 and
True converts to -1.

 When converting from String to Boolean, the string must contain either the
word "false", which converts to False, or the word "true", which converts to
True. The case of the string is not important.

 When converting from Boolean to String, True converts to "True" and False
converts to "False".

 Anything can be converted to type Object.

It's also possible to convert between reference types. Any object-reference conversion
of a derived type to a base type is considered a widening conversion and can therefore
be done implicitly.Conversely, conversion from a base type to a derived type is a
narrowing conversion. As previously discussed, in order for narrowing conversions to
compile, either Option Strict must be Off or an explicit conversion must be performed.
Explicit conversions of reference types are done with the CType function. The CType
function takes two arguments. The first is a reference to some object, and the second
is the name of the type to which the reference will convert. At runtime, if a conversion
is possible, the return value of the function is an object reference of the appropriate
type. If no conversion is possible, an exception is thrown.

Here is an example of converting between base and derived classes:

' This is a base class.
Public Class Animal
' ...
End Class
' This is a derived class.
Public Class Cat
Inherits Animal
' ...
End Class
' This is another derived class.
Public Class Dog
Inherits Animal
' ...
End Class
' This is a test class.
Public Class AnimalTest
 Public Shared Sub SomeMethod()
 Dim myCat As New Cat()
 Dim myDog As New Dog()
 Dim myDog2 As Dog

VB .Net / 26

 Dim myAnimal As Animal = myCat ' Implicit conversion OK
 myAnimal = myDog ' Implicit conversion OK
 myDog2 = CType(myAnimal, Dog) ' Explicit conversion required
 End Sub
End Class

Object references can also be implicitly converted to any interface exposed by the
object's class.

2.7 NAMESPACES

Thousands of types are defined in the .NET Framework. In addition, programmers can
define new types for use in their programs. With so many types, name clashes are
inevitable. To prevent name clashes, types are considered to reside inside of
namespaces. Often, this fact can be ignored. For example, in Visual Basic .NET a
class may be defined like this:

Public Class SomeClass
' ...
End Class

This class definition might be in a class library used by third-party customers, or it
might be in the same file or the same project as the client code. The client code that
uses this class might look something like this:

Dim x As New SomeClass()
x.DoSomething()

Now consider what happens if the third-party customer also purchases another
vendor's class library, which also exposes a SomeClass class.

The Visual Basic .NET compiler can't know which definition of SomeClass will be used.
The client must therefore use the full name of the type, also known as its fully qualified
name .

Code that needs to use both types might look something like this:

' The namespace is "FooBarCorp.SuperFoo2100".
Dim x As New FooBarCorp.SuperFoo2100.SomeClass()
x.DoSomething()
' ...
' The namespace is "MegaBiz.ProductivityTools.WizardMaster".
Dim y As New MegaBiz.ProductivityTools.WizardMaster.SomeClass()
y.DoSomethingElse()

Note that a namespace name can itself contain periods (.). When looking at a fully
qualified type name, everything prior to the final period is the namespace name. The
name after the final period is the type name. Microsoft recommends that namespaces
be named according to the format CompanyName.TechnologyName. For example,

 "Microsoft.VisualBasic".

2.7.1 The Namespace Statement

So how does a component developer specify a type's namespace? In Visual Basic
.NET, this can be done several ways. One is to use the Namespace keyword, like this:

Namespace MegaBiz.ProductivityTools.WizardMaster
Public Class SomeClass
' ...
End Class
End Namespace

Note that it is permissible for different types in the same source file to have different
namespaces.A second way to provide a namespace is to use the

The Visual Basic .NET Language / 27

/rootnamespace switch on the Visual Basic .NET command-line compiler. For

example:

 vbc src.vb /t:library /rootnamespace:MegaBiz.ProductivityTools.WizardMaster

All types defined within the compiled file(s) then have the given namespace.If you're
compiling in the Visual Studio .NET IDE, the root namespace is specified in the Project
Property Pages dialog box, which can be reached by right-clicking the project name in
the Solution Explorer window of the IDE, then choosing Properties (see Figure 2-1 for
the resulting WizardMaster Property Pages dialog). By default, Visual Studio .NET sets
the root namespace equal to the name of the project.

 Figure 2-1. Setting the root namespace in the Visual Studio .NET IDE

Note that regardless of which compiler is used (command line or Visual Studio .NET),
if a root namespace is specified and the Namespace keyword is used, the resulting
namespace will be the concatenation of the root namespace name and the name
specified using the Namespace keyword.

2.7.2 The Imports Statement

So far, the discussion has implied that it's not necessary for the user of a type to
specify the type's full name unless there is a name clash. This isn't exactly true. The
CLR deals with types only in terms of their full names. However, because humans
don't like to deal with long names, Visual Basic .NET offers a shortcut. As an example,
the .NET Framework provides a drawing library, in which a type called Point is defined.
This type's namespace is called System.Drawing, so the type's fully qualified name is:-

System.Drawing.Point

Code that uses this type might look like this:

Dim pt As System.Drawing.Point
pt.X = 10
pt.Y = 20
' ...

Typing the full name of every type whenever it is used would be too cumbersome,
though, so Visual Basic .NET offers the Imports statement. This statement indicates to
the compiler that the types from a given namespace will appear without qualification in
the code. For example:

' At the top of the source code file:
Imports System.Drawing
' ...

VB .Net / 28

' Somewhere within the source code file:
Dim pt As Point
pt.X = 10
pt.Y = 20
' ...

To import multiple namespaces, list each one in its own Imports statement. It's okay if
multiple imported namespaces have some name clashes. For the types whose names
clash, the full name must be specified wherever the type is used. The Imports
statement is just a convenience for the developer. It does not set a reference to the
assembly in which the types are defined. See the discussion of assemblies in Chapter
3 to learn how to reference assemblies that contain the types you need. Finally, note
that namespaces, too, are just a convenience for the developer writing source code.
To the runtime, a type is not "in" a namespace—a namespace is just another part of a
type name. It Is perfectly acceptable for any given assembly to have types in different
namespaces, and more than one assembly can define types in a single namespace.

2.8 SYMBOLIC CONSTANTS

Consider this function:

Public Shared Function RemainingCarbonMass(
_ByVal InitialMass As Double, _ByVal Years As Long _) As Double

Return InitialMass * ((0.5 ^ (Years / 5730)))

End Function

What's wrong with this code? One problem is readability. What does it mean to divide
Years by 5730?
In this code, 5730 is referred to as a magic number -- one whose meaning is not
readily evident from examining the code.

The following changes correct this problem:

Public Const CarbonHalfLifeInYears As Double = 5730
Public Shared Function RemainingCarbonMass(
_ByVal InitialMass As Double, _ByVal Years As Long _) As Double

Return InitialMass * ((0.5 ^ (Years / CarbonHalfLifeInYears)))

End Function

There is now no ambiguity about the meaning of the divisor.Another problem with the
first code fragment is that a program filled with such code is hard to maintain.What if
the programmer later discovers that the half-life of carbon is closer to 5730.1 years,
and she wants to make the program more accurate? If this number is used in many
places throughout the program, it must be changed in every case. The risk is high of
missing a case or of changing a number that shouldn't be changed. With the second
code fragment, the number needs to be changed in only one place. See also the
discussion of read-only fields later in this chapter, under Section 2.14.

2.9 VARIABLES

A variable is an identifier that is declared in a method and that stands for a value within
that method.Its value is allowed to change within the method. Each variable is of a
particular type, and that type is indicated in the declaration of the variable. For
example, this line declares a variable named i whose type is Integer:

Dim i As Integer

The keyword Dim indicates a variable declaration. Dim is short for dimension and
dates back to the original days of the BASIC programming language in the late 1960s.

The Visual Basic .NET Language / 29

Variable identifiers may be suffixed with type characters that serve to indicate the
variable's type. For example, this line declares a variable of type Integer:

 Dim x%

The effect is precisely the same as for this declaration:

Dim x As Integer

The set of type characters is shown in Table 2-4; note that not all data types have a
type character.

As a matter of style, type characters should be avoided in preference to spelling out
type names and using descriptive variable names.

2.9.1 Variable Initializers

New to Visual Basic .NET is the ability to combine variable declaration and
assignment. For example, this code declares an Integer i and gives it an initial value of
10:
Dim i As Integer = 10
This is equivalent to the following code:
Dim i As Integer
i = 10

2.5 - 2.9 Check Your Progress
True or False
1. The object type is the base type from which all other types are derived.
2. Byte type can hold a range of integers from 0 through 255.
3. A collection is any type hat exposes the ICollection interface.
4. A conversion that happens automatically is called an explicit conversion.
5. The keyword Dim indicates a variable declaration.

2.10 SCOPE

Scope refers to the so-called visibility of identifiers within source code. That is, given a
particular identifier declaration, the scope of the identifier determines where it is legal
to reference that identifier in code. For example, these two functions each declare a
variable CoffeeBreaks. Each declaration is invisible to the code in the other method.
The scope of each variable is the method in which it is declared.

Public Sub MyFirstMethod()
 Dim CoffeeBreaks As Integer
' ...
End Sub
Public Sub MySecondMethod()
 Dim CoffeeBreaks As Long
' ...
End Sub

VB .Net / 30

Unlike previous versions of Visual Basic, Visual Basic .NET has block scope. Variables
declared within a set of statements ending with End, Loop, or Next are local to that
block. For example:

 Dim i As Integer
 For i = 1 To 100
 Dim j As Integer
 For j = 1 To 100
' ...
 Next
 Next
' j is not visible here

Visual Basic .NET doesn't permit the same variable name to be declared at both the
method level and the block level. Further, the life of the block-level variable is equal to
the life of the method. This means that if the block is re-entered, the variable may
contain an old value (don't count on this behavior, as it is not guaranteed and is the
kind of thing that might change in future versions of Visual Basic).

2.11 ACCESS MODIFIERS

Access modifiers control the accessibility of types (including enumerations, structures,
classes, standard modules, and delegates) and type members (including methods,
constructors, events, constants, fields [data members], and properties) to other
program elements. They are part of the declarations of types and type members. In the
following code fragment, for example, the keywords

Public and Private are access modifiers:
Public Class SomeClass
 Public Sub DoSomething()
 ' ...
 End Sub
 Private Sub InternalHelperSub()
 ' ...
 End Sub
End Class

The complete list of access modifiers and their meanings is shown in Table 2-5.

2.12 ASSIGNMENT

In Visual Basic .NET, assignment statements are of the form:
variable, field, or property = expression Either the type of the expression must be the
same as that of the item receiving the assignment, or there must exist an appropriate
implicit or explicit conversion from the type of the expression to the type of the item
receiving the assignment. For information on implicit and explicit conversions, see
Section 2.5.5 earlier in this chapter. When an assignment is made to a value type, the
value of the expression is copied to the target. In contrast, when an assignment is
made to a reference type, a reference to the value is stored in the target. This is an

The Visual Basic .NET Language / 31

important distinction that is worth understanding well.Consider the code in Example 2-
3.

Example 2-3. Value-type assignment versus reference-type assignment

Public Structure SomeStructure
 Public MyPublicMember As String
End Structure
Public Class SomeClass
 Public MyPublicMember As String
End Class
Public Class AssignmentTest
 Public Shared Sub TestValueAndReferenceAssignment()
 Dim a, b As SomeStructure
 Dim c, d As SomeClass
 ' Test assignment to value type.
 a.MyPublicMember = "To be copied to 'b'"
 b = a
 a.MyPublicMember = "New value for 'a'"
 Console.WriteLine("The value of b.MyPublicMember is """ _
 & b.MyPublicMember & """")
 ' Test assignment to reference type.
 c = New SomeClass()
 c.MyPublicMember = "To be copied to d'"
 d = c
 c.MyPublicMember = "New value for 'c'"
 Console.WriteLine("The value of d.MyPublicMember is """ _
 & d.MyPublicMember & """")
End Sub
End Class

The output of the TestValueAndReferenceAssignment method in Example 2-3 is:

The value of b.MyPublicMember is "To be copied to 'b'"
The value of d.MyPublicMember is "New value for 'c'"

In Example 2-3, the SomeStructure structure and the SomeClass class have identical
definitions, except that one is a structure and the other is a class. This leads to very
different behavior during assignment. When a value type is copied, the actual value is
copied. When a reference type is copied, only the reference is copied, resulting in two
references to the same value. If the value is subsequently changed through one of the
references, the new value is also seen through the other reference.This difference is
shown in the output from Example 2-3. The value type in variable a is copied to
variable b. The value of a.MyPublicMember is then modified. Subsequently, the call to
Console.WriteLine shows that this modification does not affect b.MyPublicMember. In
contrast, the assignment of c to d copies only a reference, which means that after the
assignment, both c and d reference the same object. The value of c.MyPublicMember
is then modified. The subsequent call to Console.WriteLine shows that this
modification did affect d.MyPublicMember. Indeed, d.MyPublicMember refers to the
same memory as c.MyPublicMember.

2.13 OPERATORS AND EXPRESSIONS

Operators are symbols (characters or keywords) that specify operations to be
performed on one or two operands (or arguments). Operators that take one operand
are called unary operators. Operators that take two operands are called binary
operators. Unary operators use prefix notation, meaning that the operator precedes
the operand (e.g., -5). Binary operators (except for one case) use infix notation,
meaning that the operator is between the operands (e.g., 1 + 2). The TypeOf...Is
operator is a binary operator that uses a special form that is neither prefix nor infix
notation.

2.13.1 Unary Operators

Visual Basic supports the following unary operators:
+ (unary plus)

VB .Net / 32

The unary plus operator takes any numeric operand. It's not of much practical use
because the value of the operation is equal to the value of the operand.
- (unary minus)
The unary minus operator takes any numeric operand (except as noted later). The
value of the operation is the negative of the value of the operand. In other words, the
result is calculated by subtracting the operand from zero. If the operand type is Short,
Integer, or Long, and the value of the operand is the maximum negative value for that
type, then applying the unary minus operator will cause a System.OverflowException
error, as in the following code fragment:
Dim sh As Short = -32768
Dim i As Integer = -sh
Not (logical negation)
The logical negation operator takes a Boolean operand. The result is the logical
negation of the operand. That is, if the operand is False, the result of the operation is
True, and vice versa.

AddressOf
The AddressOf operator returns a reference to a method. Two different kinds of
references can be obtained, depending on the context in which the operator is used:

 When the AddressOf operator is used within the argument list of a call to a
method, which is made available via the Declare statement, it returns a
function pointer that is suitable for such calls.

 When the AddressOf operator is used in any other context, a delegate object
is returned. See Section 2.19 later in this chapter for information.

2.13.2 Arithmetic Operators

The arithmetic operators perform the standard arithmetic operations on numeric
values. The arithmetic operators supported by Visual Basic .NET are:
* (multiplication)
The multiplication operator is defined for all numeric operands. The result is the
product of the operands.
/ (regular division)
The regular division operator is defined for all numeric operands. The result is the
value of the first operand divided by the second operand.
\ (integer division)
The integer division operator is defined for integer operands (Byte, Short, Integer, and
Long).
The result is the value of the first operand divided by the second operand, then
rounded to the integer nearest to zero.
Mod (modulo)
The modulo operator is defined for integer operands (Byte, Short, Integer, and Long).
The result is the remainder after the integer division of the operands.
^ (exponentiation)
The exponentiation operator is defined for operands of type Double. Operands of other
numeric types are converted to type Double before the result is calculated. The result
is the value of the first operand raised to the power of the second operand.+ (addition)
The addition operator is defined for all numeric operands and operands of an
enumerated type.The result is the sum of the operands. For enumerated types, the
sum is calculated on the underlying type, but the return type is the enumerated type.
See the discussion of enumerated types in the "Enumerations" section later in this
chapter for more information on the types that can underlie an enumerated type. See
also Section 2.12.4 later in this section.
- (subtraction)
The subtraction operator is defined for all numeric operands and operands of an
enumerated type. The result is the value of the first operand minus the second
operand. For enumerated types, the subtraction is calculated on the underlying type,
but the return type is the enumerated type. See the discussion of enumerated types in
Section 2.17 later in this chapter for more information on the types that can underlie an
enumerated type.

2.13.3 Relational Operators

The relational operators all perform some comparison between two operands and
return a Boolean value indicating whether the operands satisfy the comparison. The

The Visual Basic .NET Language / 33

relational operators supported by Visual Basic .NET are:= (equality) The equality
operator is defined for all primitive value types and all reference types. For primitive
value types and for the String type, the result is True if the values of the operands are
equal; False if not. For reference types other than String, the result is True if the
references refer to the same object; False if not. If the operands are of type Object and
they reference primitive value types, value comparison is performed rather than
reference comparison.
<> (inequality)
The inequality operator is defined for all primitive value types and for reference types.
For primitive value types and for the String type, the result is True if the values of the
operands are not equal; False if equal. For reference types other than String, the result
is True if the references refer to different objects; False if they refer to the same object.
If the operands are of type Object and they reference primitive value types, value
comparison is performed rather than reference comparison.
< (less than)
The less-than operator is defined for all numeric operands and operands of an
enumerated type. The result is True if the first operand is less than the second; False if
not. For enumerated types, the comparison is performed on the underlying type.
> (greater than)
The greater-than operator is defined for all numeric operands and operands that are of
an enumerated type. The result is True if the first operand is greater than the second;
False if not. For enumerated types, the comparison is performed on the underlying
type.
<= (less than or equal to)
The less-than-or-equal-to operator is defined for all numeric operands and operands of
an enumerated type. The result is True if the first operand is less than or equal to the
second operand; False if not.
>= (greater than or equal to)The greater-than-or-equal-to operator is defined for all
numeric operands and operands of an enumerated type. The result is True if the first
operand is greater than or equal to the second operand; False if not.
TypeOf...Is
The TypeOf...Is operator is defined to take a reference as its first parameter and the
name of a type as its second parameter. The result is True if the reference refers to an
object that is type-compatible with the given type-name; False if the reference is
Nothing or if it refers to an object that is not type-compatible with the given type name.
Use the TypeOf...Is operator to determine whether a given object:

 Is an instance of a given class
 Is an instance of a class that is derived from a given class
 Exposes a given interface

In any of these cases, the TypeOf expression returns True.
Is The Is operator is defined for all reference types. The result is True if the references
refer to the same object; False if not. Like The Like operator is defined only for
operands of type String. The result is True if the first operand matches the pattern
given in the second operand; False if not.The rules for matching are:

 The ? (question mark) character matches any single character.

 The * (asterisk) character matches zero or more characters.

 The # (number sign) character matches any single digit.

 A sequence of characters within [] (square brackets) matches any single

character inthe sequence. Within such a bracketed list, two characters
separated by a - (hyphen) signify a range of Unicode characters, starting with
the first character and ending with the second character. A - character itself
can be matched by placing it at the beginning or end of the bracketed
sequence. Preceding the sequence of characters with an ! (exclamation mark)
character matches any single character that does not appear in the sequence.

 The ?, *, #, and [characters can be matched by placing them within [] in the

pattern string. Consequently, they cannot be used in their wildcard sense
within [].

VB .Net / 34

 The] character does not need to be escaped to be explicitly matched.
However, it can't be used within [].

2.13.4 String-Concatenation Operators

The & (ampersand) and + (plus) characters signify string concatenation. String
concatenation is defined for operands of type String only. The result is a string that
consists of the characters from the first operand followed by the characters from the
second operand.

2.13.5 Bitwise Operators

It is sometimes necessary to manipulate the individual bits that make up a value of one
of the integer types (Byte, Short, Integer, and Long). This is the purpose of the bitwise
operators. They are defined for the four integer types and for enumerated types. When
the bitwise operators are applied to enumerated types, the operation is done on the
underlying type, but the result is of the enumerated type. The bitwise operators work
by applying the given Boolean operation to each of the corresponding bits in the two
operands. For example, consider this expression: 37 And 148 To calculate the value of
this expression, consider the binary representation of each operand. It's
helpful to write one above the other so that the bit columns line up:

00100101 (37)
10010100 (148)
Next, apply the Boolean And operation to the bits in each column:
00100101 (37)
And 10010100 (148)

00000100 (4)
37 And 148, therefore, equals 4.

The bitwise operators are:

And

Performs a Boolean And operation on the bits. (The result bit is 1 if and only if both of
the source bits are 1.) AndAlso The result is True if and only if both the operands are
True; otherwise, the result is False. AndAlso performs logical short-circuiting: if the first
operand of the expression is False, the second operand is not evaluated.

Or

Performs a Boolean Or operation on the bits. (The result bit is 1 if either or both of the
source bits are 1.)

OrElse

The result is True if either or both the operands is True; otherwise, the result is False.
OrElse performs logical short-circuiting: if the first operand of the expression is True,
the second operand is not evaluated.

Xor

Performs a Boolean exclusive or operation on the bits. (The result bit is 1 if either of
the source bits is 1, but not both.)

Not

Performs a Boolean Not operation on the bits in the operand. This is a unary operator.
(The result is 1 if the source bit is 0 and 0 if the source bit is 1.)

2.13.6 Logical Operators

Logical operators are operators that require Boolean operands. They are: And The
result is True if and only if both of the operands are True; otherwise, the result is False.

The Visual Basic .NET Language / 35

Or

The result is True if either or both of the operands is True; otherwise, the result is
False.

Xor

The result is True if one and only one of the operands is True; otherwise, the result is
False.

Not

This is a unary operator. The result is True if the operand is False; False if the operand
is True.

2.13.7 Operator Precedence

Operator precedence defines the order in which operators are evaluated. For example,
the expression 1 + 2 * 3 has the value 9 if the addition is performed first but has the
value 7 if the multiplication is performed first. To avoid such ambiguity, languages must
define the order in which operations are evaluated. Visual Basic .NET divides the
operators into groups and defines each group's precedence relative to the others.
Operators in higher-precedence groups are evaluated before operators in
lowerprecedence groups. Operators within each group have the same precedence
relative to each other.When an expression contains multiple operators from a single
group, those operators are evaluated from left to right. Table 2-6 shows Visual Basic
.NET's operators, grouped by precedence from highest to lowest order of evaluation.

Table 2-6. The precedence of Visual Basic .NET's operators Category Operator

Parentheses override the default order of evaluation. For example, in the expression 1
+ 2 * 3, the multiplication is performed before the addition, yielding a value of 7. To
perform the addition first, the expression can be rewritten as (1 + 2) * 3, yielding a
result of 9.

2.13.8 Operator Overloading

Operator overloading is a feature that some languages (C#, for example) provide to
allow developers to specify how the built-in operators (+, -, *, /, =, etc.) should behave
when applied to programmerdefined types. For example, the developer of a type
representing complex numbers could use operator overloading to specify appropriate
functionality for the built-in arithmetic operators when applied to operands of the
custom type. The .NET Framework supports operator overloading, but .NET
languages are not required to do so. The current version of Visual Basic .NET doesn't
support operator overloading, although there's no reason that Microsoft couldn't add it
in the future. Components that are written in other languages may overload operators,
but Visual Basic .NET will not be aware of the overloads. Well-designed components

VB .Net / 36

provide an alternative mechanism for accessing the functionality provided by the
overloads. For example, if a component written in C# provides a class that overloads
the + operator, it should also provide a method that takes two parameters and returns
their sum. Thus, what would be written as:

c = a + b

in a language that supports overloading would be written as:

c = MyCustomType.Add(a, b)

in Visual Basic .NET. The name of the actual method would depend on the
component's implementer.

2.10 - 2.13 Check Your Progress

Fill in the blanks
1. Scope refers to the ………….. within source code.
2. ……………. control the accessibility of types.
3. ………….. defines a types that is accessible only from within the program in Which

it is declared.
4. The ………….. operator is to test the type compatibility of two object reference

variables with various data types
5. ………………….. is operator is a binary operator that uses a special form that is

neither prefix nor infix notation.

2.14 STATEMENTS

Visual Basic .NET is a line-oriented language, in which line breaks generally indicate
the ends of statements. However, there are times when a programmer may wish to
extend a statement over several lines or have more than one statement on a single
line.To extend a statement over several lines, use the line-continuation character, an
underscore (_). It must be the last character on its line, and it must be immediately
preceded by a space character.
Lines connected in this way become a single logical line. Here is an example:

Dim strSql As String = "SELECT Customers.CompanyName," _
& " COUNT(Orders.OrderID) AS OrderCount" _
& " FROM Customers INNER JOIN Orders" _
& " ON Customers.CustomerID = Orders.CustomerID" _
& " GROUP BY Customers.CompanyName" _
& " ORDER BY OrderCount DESC"
A line break can occur only where whitespace is allowed.

To place two or more statements on a single line, use the colon (:) between the
statements, like this:

i = 5 : j = 10

The remainder of this section discusses the statements in Visual Basic .NET.

2.14.1 Option Statements

There are three Option statements, which affect the behavior of the compiler. If used,
they must appear before any declarations in the same source file. They control the
compilation of the source code in the file in which they appear. They are:
Option Compare
The Option Compare statement controls the manner in which strings are compared to
each other. The syntax is:

Option Compare [Binary | Text]

The Visual Basic .NET Language / 37

If Binary is specified, strings are compared based on their internal binary
representation (i.e., string comparisons are case-sensitive). If Text is specified, strings
are compared based on case-insensitive alphabetical order. The default is Binary.

Option Explicit

The Option Explicit statement determines whether the compiler requires all variables to
be explicitly declared. The syntax is:

Option Explicit [On | Off]

If On is specified, the compiler requires all variables to be declared. If Off is specified,
the compiler considers a variable's use to be an implicit declaration. It is considered
good programming practice to require declaration of variables. The default is On.

Option Strict

The Option Strict statement controls the implicit type conversions that the compiler will
allow. The syntax is:

Option Strict [On | Off]

If On is specified, the compiler only allows implicit widening conversions; narrowing
conversions must be explicit. If Off is specified, the compiler allows implicit narrowing
conversions as well. This could result in runtime exceptions not foreseen by the
developer. It is considered good programming practice to require strict type checking.
The default is Off. See Section 2.5.5 earlier in this chapter for the definitions of
widening and narrowing conversions.

2.14.2 Branching Statements

Visual Basic .NET supports a number of branching statements that interrupt the
sequential flow of program execution and instead allow it to jump from one portion of a
program to another. These can be either conditional statements (such as If or Select
Case) or unconditional (such as Call and Exit).

2.14.2.1 Call

The Call statement invokes a subroutine or function. For example:
Call SomeMethod()When the invoked subroutine or function finishes, execution
continues with the statement following the Call statement. If a function is invoked, the
function's return value is discarded.
The Call statement is redundant because subroutines and functions can be invoked
simply by naming them:

SomeMethod()

2.14.2.2 Exit

The Exit statement causes execution to exit the block in which the Exit statement
appears. It is generally used to prematurely break out of a loop or procedure when
some unusual condition occurs. The Exit statement should be avoided when possible
because it undermines the structure of the block in which it appears. For example, the
exit conditions of a For loop should be immediately apparent simply by looking at the
For statement. It should not be necessary to read through the entire loop to determine
if there are additional circumstances under which the loop might exit. If a given For
loop truly needs an Exit statement, investigate whether a different loop construct would
be better suited to the task. If a given procedure truly needs an Exit statement,
investigate whether the procedure is factored appropriately. The Exit statement has a
different form for each type of block in which it can be used, as listed here:

Exit Do

Exits a Do loop. Execution continues with the first statement following the Loop
statement.

VB .Net / 38

Exit For

Exits a For loop. Execution continues with the first statement following the Next
statement.

Exit Function

Exits a function. Execution continues with the first statement following the
statement that called the function.

Exit Property

Exits a property get or property set procedure. Execution continues with the first
statement following the statement that invoked the property get or property set
procedure.

Exit Sub

Exits a subroutine. Execution continues with the first statement following the
statement that called the subroutine.

Exit Try

Exits the Try clause of a Try block. If the Try block has a Finally clause, execution
continues with the first statement in the Finally clause. If the Try block does not
have a Finally clause, execution continues with the first statement following the Try
block.

2.14.2.3 Goto

The Goto statement transfers execution to the first statement following the specified
label. For example:

' ...
Goto MyLabel
' ...
MyLabel:
' ...

The label must be in the same procedure as the Goto statement.The Goto statement is
generally avoided in structured programming because it often leads to code that is
difficult to read and debug.

2.14.2.4 If

The If statement controls whether a block of code is executed based on some
condition. The simplest form of the If statement is:

If expression Then statements

End If

expression is any expression that can be interpreted as a Boolean value. If expression
is True, the statements within the If block are executed. If expression is False, those
statements are skipped. To provide an alternative set of statements to execute when
expression is False, add an Else clause, as shown here:

If expression Then
statements
Else
statements
End If

If expression is True, only the statements in the If clause are executed. If expression is
False, only the statements in the Else clause are executed. Finally, a sequence of
expressions can be evaluated by including one or more ElseIf clauses, as shown here:
 If expression Then
 statements
 ElseIf expression Then
 statements
 ElseIf expression Then

The Visual Basic .NET Language / 39

 statements
 Else
 statements
 End If

The first If or ElseIf clause whose expression evaluates to True will have its statements
executed.Statements in subsequent ElseIf clauses will not be executed, even if their
corresponding expressions are also True. If none of the expressions evaluate to True,
the statements in the Else clause will be executed. The Else clause can be omitted if
desired.

2.14.2.5 RaiseEvent

The RaiseEvent statement fires the given event. After the event has been fired to all
listeners, execution continues with the first statement following the RaiseEvent
statement. See Section 2.20
later in this chapter for more information.

2.14.2.6 Return
The Return statement exits a function and provides a return value to the caller of the
function.Execution continues with the first statement following the statement that called
the function. Here is an example:

Public Shared Function MyFactorial(ByVal value As Integer) As Integer
 Dim retval As Integer = 1
 Dim i As Integer
 For i = 2 To value
 retval *= i
 Next

 Return retval
 End Function

Another way to return a value to the caller of the function is to assign the value to the
function name and then simply drop out of the bottom of the function. This is how it
was done in Visual Basic 6 (and can still be done in Visual Basic .NET). Here is an
example:

Public Shared Function MyFactorial(ByVal value As Integer) As Integer
 Dim retval As Integer = 1
 Dim i As Integer
 For i = 2 To value
 retval *= i
 Next
MyFactorial = retval
End Function

In Visual Basic 6, the Return statement was used to return
execution to the statement following a GoSub statement. In Visual
Basic .NET, the GoSub statement no longer exists, and the Return statement is now
used as described here.

2.14.2.7 Select Case
The Select Case statement chooses a block of statements to execute based on some
value. For example:

Select Case strColor
Case "red"
' ...
Case "green"
' ...
Case "blue"
' ...
Case "yellow"
' ...
Case Else
' ...
End Select

VB .Net / 40

If strColor in this example contains "blue", only the statements in the Case "blue"
clause are executed. If none of the Case clauses matches the value in the Select Case
statement, the statements in the Case Else clause are executed. If more than one
Case clause matches the given value, only the statements in the first matching Case
clause are executed. Case statements can include multiple values to be matched
against the value given in the Select Case statement. For example:

Case "red", "green", "blue", strSomeColor

This case will be matched if the value in the Select Case statement is "red", "green",
"blue", or the value contained in strSomeColor. The To keyword can be used to match
a range of values, as shown here:

Case "apples" To "oranges"

This Case statement matches any string value that falls alphabetically within this
range.The Is keyword can be used for matching an open-ended range:

Case Is > "oranges"

Don't confuse this use of the Is keyword with the Is comparison operator.

2.14.3 Iteration Statements

Iteration statements, also known as looping statements, allow a group of statements to
be executed more than once. The group of statements is known as the body of the
loop. Three statements fall under this category in Visual Basic .NET are:
Do, For, and For Each.

2.14.3.1 Do

The Do loop executes a block of statements either until a condition becomes true or
while a condition remains true. The condition can be tested at the beginning or at the
end of each iteration. If the test is performed at the end of each iteration, the block of
statements is guaranteed to execute at least once. The Do loop can also be written
without any conditions, in which case it executes repeatedly until and unless an Exit
Do statement is executed within the body of the loop. Here are some examples of Do
loops:

Do While i < 10
' ...
Loop
Do Until i >= 10
' ...
Loop
Do
' ...
Loop While i < 10
Do
' ...
Loop Until i >= 10
Do
' ...
Loop

2.14.3.2 For

The For loop executes a block of statements a specified number of times. The number
of iterations is controlled by a loop variable, which is initialized to a certain value by the
For statement, then is incremented for each iteration of the loop. The statements in the
body of the loop are repeatedly executed until the loop variable exceeds a given upper
bound.
The syntax of the For loop is:

For variable = expression To expression [Step expression]

The Visual Basic .NET Language / 41

statements
Next [variable_list]

The loop variable can be of any numeric type. The variable is set equal to the value of
the first expression before entering the first iteration of the loop body. Prior to
executing each iteration of the loop, the loop variable is compared with the value of the
second expression. If the value of the loop variable is greater than the expression (or
less than the expression if the step expression is negative), the loop exits and
execution continues with the first statement following the Next statement. The step
expression is a numeric value that is added to the loop variable between loop
iterations. If the Step clause is omitted, the step expression is taken to be 1. The Next
statement marks the end of the loop body. The Next keyword can either appear by
itself in the statement or be followed by the name of the loop variable. If For
statements are nested, a single Next statement can terminate the bodies of multiple
loops. For example:

For i = 1 To 10
For j = 1 To 10
For k = 1 To 10
' ...
Next k, j, I
This code is equivalent to the following:
For i = 1 To 10
For j = 1 To 10
For k = 1 To 10
' ...
Next
Next
Next

I recommend the latter style, since it is considered more structured to terminate each
block explicitly.It is interesting to note that the For loop is equivalent to the following Do
loop construction (assuming that step_expression is nonnegative):

loop_variable = from_expression
Do While loop_variable <= to_expression
Statements
loop_variable += step_expression
Loop
If step_expression is negative, the For loop is equivalent to this (only the
comparison in the Do statement is different):
loop_variable = from_expression
Do While loop_variable >= to_expression
statements
loop_variable += step_expression
Loop

2.14.3.3 For Each

The For Each statement is similar to the For statement, except that the loop variable
need not be numeric, and successive iterations do not increment the loop variable.
Instead, the loop variable takes successive values from a collection of values. Here is
the syntax:

For Each variable In expression statements
Next [variable]

The loop variable can be of any type. The expression must be a reference to an object
that exposes the IEnumerable interface (interfaces are discussed later in this chapter).
Generally, types that are considered collections expose this interface. The .NET
Framework class library provides several useful collection types, which are listed in
Chapter 3. (See Section 2.5.4 earlier in this chapter for an explanation of what
constitutes a collection type.) The type of the items in the collection must be
compatible with the type of the loop variable. The statements in the body of the loop
execute once for each item in the collection. During each iteration, the loop variable is
set equal to each consecutive item in the collection. Because all Visual Basic .NET

VB .Net / 42

arrays expose the IEnumerable interface, the For Each statement can be used to
iterate through the elements of an array. For example:

Dim a() As Integer = {1, 2, 3, 4, 5}
Dim b As Integer
For Each b In a
Console.WriteLine(b)
Next
This is equivalent to the following code:
Dim a() As Integer = {1, 2, 3, 4, 5}
Dim b As Integer
Dim i As Integer
For i = a.GetLowerBound(0) To a.GetUpperBound(0)
b = a(i)
Console.WriteLine(b)
Next

Because all arrays in Visual Basic .NET implicitly derive from the Array type (in the
System namespace), the a array in this example has access to methods defined on
the Array type (specifically GetLowerBound and GetUpperBound).In case you're
interested, here is the equivalent code using a Do loop. This is essentially what the For
Each statement is doing under the covers, although the For Each construct is likely to
compile to faster code.

Dim a() As Integer = {1, 2, 3, 4, 5}
Dim b As Integer
Dim e As Object = a.GetEnumerator()
Do While CType(e.GetType().InvokeMember("MoveNext", _
Reflection.BindingFlags.InvokeMethod, Nothing, e, Nothing), Boolean)
b = CType(e.GetType().InvokeMember("Current",
_Reflection.BindingFlags.GetProperty, Nothing, e, Nothing), Integer)
Console.WriteLine(b)
Loop

2.14.4 Mathematical Functions

Mathematical functions are provided through the Math class (defined in the System
namespace). The Math class constants and methods are listed in Appendix E.

2.14.5 Input/Output

File and Internet I/O features are provided by the .NET Framework class library and
will be briefly touched on in Chapter 3. In addition, Visual Basic .NET provides its own
class library that includes functions for opening, reading, and closing files. File access
and network-protocol programming are not discussed in this book. Instead, preference
is given to the much more common tasks of database access and web-service
programming.

2.15 CLASSES

A class is one form of data type. As such, a class can be used in contexts where types
are expected— in variable declarations, for example. In object-oriented design,
classes are intended to represent the definition of real-world objects, such as
customer, order, product, etc. The class is only the definition, not an object itself. An
object would be a customer, an order, or a product. A class declaration defines the set
of members—fields, properties, methods, and events—that each object of that class
possesses. Together, these members define an object's state, as well as its
functionality. An object is also referred to as an instance of a class. Creating an object
of a certain class is called instantiating an object of the class.
Consider the class definition in Example 2-4.

Example 2-4. A class definition

Public Class Employee
Public EmployeeNumber As Integer

The Visual Basic .NET Language / 43

Public FamilyName As String
Public GivenName As String
Public DateOfBirth As Date
Public Salary As Decimal
Public Function Format() As String
Return GivenName & " " & FamilyName
End Function
End Class
The code in Example 2-4 defines a class called Employee. It has five public fields
(also known as data members) for storing state, as well as one member function.
The class could be used as shown in Example 2-5.

Example 2-5. Using a class

Dim emp As New Employee()
emp.EmployeeNumber = 10
emp.FamilyName = "Rodriguez"
emp.GivenName = "Celia"
emp.DateOfBirth = #1/28/1965#
emp.Salary = 115000
Console.WriteLine("Employee Name: " & emp.Format())
Console.WriteLine("Employee Number: " & emp.EmployeeNumber)
Console.WriteLine("Date of Birth: " & emp.DateOfBirth.ToString("D",
Nothing))

 Console.WriteLine("Salary: " & emp.Salary.ToString("C", Nothing))

 The resulting output is:

Employee Name: Celia Rodriguez
Employee Number: 10
Date of Birth: Thursday, January 28, 1965
Salary: $115,000.00

2.15.1 Object Instantiation and New

Object instantiation is done using the New keyword. The New keyword is, in effect, a
unary operator that takes a type identifier as its operand. The result of the operation is
a reference to a newly created object of the given type. Consider the following:

Imports System.Collections
' ...
Dim ht As Hashtable
ht = New Hashtable()

The Dim statement declares a variable that is capable of holding a reference to an
object of type Hashtable, but it doesn't actually create the object. The code in the line
following the Dim statement instantiates an object of type Hashtable and assigns to the
variable a reference to the newly created object. As with any other variable
declaration, the assignment can be done on the same line as the declaration, as
shown here:

Imports System.Collections
' ...

Dim ht As Hashtable = New Hashtable()
Visual Basic .NET permits a typing shortcut that produces the same result:
Imports System.Collections
' ...
Dim ht As New Hashtable()

2.15.2 Constructors

When a class is instantiated, some initialization often must be performed before the
type can be used.To provide such initialization, a class may define a constructor. A
constructor is a special kind of method. It is automatically run whenever an object of
the class is instantiated. Constructor declarations use the same syntax as regular

VB .Net / 44

method declarations, except that in place of a method name, the constructor
declaration uses the keyword New. For example:

Public Class SomeClass
Public Sub New()
' Do any necessary initialization of the object here.
End Sub
End Class

To invoke the constructor, a new object must be instantiated:

Dim obj As New SomeClass()

Note the parentheses (()) following the name of the class. Until you get used to it, this
method-style syntax following a class name may appear odd. However, the empty
parentheses indicate that the class's constructor takes no arguments. Constructors
can take arguments, if they are necessary for the initialization of the object:

Public Class SomeClass
Dim m_value As Integer
Public Sub New(ByVal InitialValue As Integer)
m_value = InitialValue
End Sub
End Class

When objects of this class are instantiated, a value must be provided for the
constructor's argument:

Dim obj As New SomeClass(27)
Constructors can be overloaded, if desired. For example:
Public Class SomeClass
Dim m_value As Integer
Public Sub New()
m_value = Date.Today.Day ' for example
End Sub
Public Sub New(ByVal InitialValue As Integer)
m_value = InitialValue
End Sub
End Class

The constructor that is called depends on the arguments that are provided when the
class is instantiated, as shown here:
Dim obj1 As New SomeClass() ' calls parameterless constructor
Dim obj2 As New SomeClass(100) ' calls parameterized constructor
Constructors are usually marked Public. However, there are times when it may be
desirable to mark a constructor as Protected or Private. Protected access prohibits the
class from being instantiated by any class other than a class derived from this class.
Private access prohibits the class from being instantiated by any code other than its
own. For example, a particular class design might require that the class itself be in
control of whether and when instances are created. Example 2-6 shows a class that
implements a crude form of object pooling.

Example 2-6. Using a private constructor

Imports System.Collections
' ...
Public Class MyPooledClass
' This shared field keeps track of instances that can be handed out.
Private Shared m_pool As New Stack()
' This shared method hands out instances.
Public Shared Function GetInstance() As MyPooledClass
If m_pool.Count > 0 Then
' We have one or more objects in the pool. Remove one from the
' pool and give it to the caller.
Return CType(m_pool.Pop(), MyPooledClass)
Else

The Visual Basic .NET Language / 45

' We don't have any objects in the pool. Create a new one.
Return New MyPooledClass()
End If
End Function
' This method must be called to signify that the client is finished
' with the object.
Public Sub ImDone()
' Put the object in the pool.
m_pool.Push(Me)
End Sub
' Declaring a private constructor means that the only way to
' instantiate this class is through the GetInstance method.
Private Sub New()
End Sub
End Class
The class in Example 2-6 would be used like this:

Dim obj As MyPooledClass = MyPooledClass.GetInstance()
' ...
obj.ImDone()

Sometimes when constructors are overloaded, it makes sense to implement one
constructor in terms of another. For example, here is a class that has a constructor
that takes a SqlConnection object as a parameter. However, it also has a
parameterless constructor that creates a SqlConnection object and passes it to the
class's parameterized constructor. Note the use of the MyClass keyword to access
members of the type:

Imports System.Data.SqlClient
' ...
Public Class SomeClass
Public Sub New()
MyClass.New(New SqlConnection())
End Sub
Public Sub New(ByVal cn As SqlConnection)
' Do something with the connection object.
End Sub
End Class

Similarly, MyBase.New can call a base-class constructor. If this is done, it must be
done as the first statement in the derived class's constructor. Note that if no explicit call
is made, the compiler creates a call to the base-class constructor's parameterless
constructor. Even if the base class exposes a parameterized constructor having the
same signature (i.e., the same number and types of parameters) as the derived class's
constructor, by default the compiler generates code that calls the base class's
parameterless constructor. If a class has shared fields that must be initialized before
access, and that initialization can't be performed by initializers in the fields'
declarations, a shared constructor may be written to initialize the fields, as shown here:

Public Class SomeClass
Public Shared SomeStaticField As Integer
Shared Sub New()
SomeStaticField = Date.Today.Day
End Sub
End Class

The shared constructor is guaranteed to run sometime before any members of the
type are referenced. If any shared fields have initializers in their declarations, the
initializers are assigned to the fields before the shared constructor is run. Shared
constructors may not be overloaded, nor may they have access modifiers (Public,
Private, etc.). Neither feature is meaningful in the context of shared constructors.

2.15.3 Fields

Fields, also known as data members, hold the internal state of an object. Their
declarations appear only within class and structure declarations. Field declarations

VB .Net / 46

include an access modifier, which determines how visible the field is from code outside
the containing class definition. Access modifiers were discussed earlier in this chapter,
under Section 2.10.The value stored in a field is specific to a particular object instance.
Two instances can have different values in their corresponding fields. For example:

Dim emp1 As New Employee()
Dim emp2 As New Employee()
emp1.EmployeeNumber = 10
emp2.EmployeeNumber = 20 ' Doesn't affect emp1.
Sometimes it is desirable to share a single value among all instances of a particular
class. Declaring a field using the Shared keyword does this, as shown here:
Public Class X
Public Shared a As Integer
End Class
Changing the field value through one instance affects what all other instances see.
For example:
Dim q As New X()
Dim r As New X()
q.a = 10
r.a = 20
Console.WriteLine(q.a)
' Writes 20, not 10.

Shared fields are also accessible through the class name:
Console.WriteLine(X.a)

2.15.3.1 Read-only fields

Fields can be declared with the ReadOnly modifier, which signifies that the field's value
can be set only in a constructor for the enclosing class. This gives the benefits of a
constant when the value of the constant isn't known at compile time or can't be
expressed in a constant initializer. Here's an example of a class that has a read-only
field initialized in the class's constructor:

Public Class MyDataTier
Public ReadOnly ActiveConnection As System.Data.SqlClient.SqlConnection
Public Sub New(ByVal ConnectionString As String)
ActiveConnection = _
New System.Data.SqlClient.SqlConnection(ConnectionString)
End Sub
End Class

The ReadOnly modifier applies only to the field itself—not to members of any object
referenced by the field. For example, given the previous declaration of the MyDataTier
class, the following code is legal:
Dim mydata As New MyDataTier(strConnection)
mydata.ActiveConnection.ConnectionString=strSomeOtherConnection

2.15.4 Handling Events

When a field is of an object type that exposes events, the field's enclosing class may
define methods for handling those events. For an explanation of events, see Section
2.20 later in this chapter. Here is an example:

Imports System.Data.SqlClient
Public Class EventHandlingTest
Private WithEvents m_cn As SqlConnection
Public Sub MySqlInfoMessageEventHandler(_ByVal sender As Object, _ByVal e
As SqlInfoMessageEventArgs _)
Handles m_cn.InfoMessage
Dim sqle As SqlError
For Each sqle In e.Errors
Debug.WriteLine(sqle.Message)
Next
End Sub
' ...

The Visual Basic .NET Language / 47

End Class

This class has a field, m_cn, that holds a database connection. The field is declared
with the WithEvents keyword, so the class is capable of receiving and handling events
raised by the Connection object. In order to handle the Connection object's
InfoMessage event, the class defines a method having the appropriate parameter list
and a Handles clause:

Public Sub MySqlInfoMessageEventHandler(_ByVal sender As Object, _ByVal e
As SqlInfoMessageEventArgs _)
Handles m_cn.InfoMessage

This declaration signifies that when the InfoMessage event is raised by the object
referenced in m_cn, the ySQLInfoMessageEventHandler method should be called to
handle it. The body of the event handler in this case simply outputs the messages
received from SQL Server.

2.15.5 Inheritance

Inheritance is one way to reuse and extend previously written code. A program's
design often requires several classes as variations of a common theme. Consider a
drawing program that deals with many shapes. Such a program would probably define
a class for each kind of shape. However, there would be much in common among
such classes, including many of their fields, methods, and events. Inheritance allows
these common features to be extracted into a base class from which the various
specific shape classes are derived. Example 2-7 shows a base class called Shape,
two utility classes used by Shape (Point and Extent), and two classes derived from
Shape (Circle and Square)
.

Example 2-7. Class inheritance

 ' This structure represents a point on a plane.
Public Structure Point
Public X As Integer
Public Y As Integer
End Structure

' This structure represents a size or offset.
Public Structure Extent
Public XExtent As Integer
Public YExtent As Integer
End Structure

' This class represents the functionality that is common for
' all shapes. This class can't itself be instantiated, because
' of the "MustInherit" modifier.
Public MustInherit Class Shape
' The upper-left corner of the shape.
Public Origin As Point
' The width and height of the shape.
Public Size As Extent
' This forces all derived classes to implement a method
' called Draw. Notice that a method marked with MustInherit
' has no body in the base class.

Public MustOverride Sub Draw()
' This subroutine moves a shape.
Public Sub Offset(ByVal Amount As Extent)
Origin.X += Amount.XExtent
Origin.Y += Amount.YExtent
End Sub
' This property allows the class user to find or set the
' center of a shape.
Public Property Center() As Point
Get
Dim retval As Point
retval.X = Origin.X + (Size.XExtent \ 2)

VB .Net / 48

retval.Y = Origin.Y + (Size.YExtent \ 2)
Return retval
End Get
Set
Dim currentCenter As Point = Center
Origin.X += Value.X - currentCenter.X
Origin.Y += Value.Y - currentCenter.Y
End Set
End Property
End Class
Public Class Circle
Inherits Shape
Public Overrides Sub Draw()
' Just a dummy statement for the example.
Console.WriteLine("Circle.Draw() was called.")
End Sub
End Class
Public Class Square
Inherits Shape
Public Overrides Sub Draw()
' Just a dummy statement for the example.
Console.WriteLine("Square.Draw() was called.")
End Sub
End Class

Note the following:

 The MustInherit modifier in the Shape class declaration indicates that this
class can't be instantiated—it can only be used as a base class in a derivation.
In object-oriented design terminology, such a class is known as an abstract
class.

 The Circle and Square classes inherit the public members declared in the
Shape class.

 Using the MustOverride modifier on the Draw method declaration in the Shape
class forces derived classes to provide an implementation for this method.

 Constructors aren't inherited. The Ellipse and Rectangle classes therefore
declare their own constructors. When no constructor is explicitly provided in a
class definition, the compiler automatically creates one. Therefore, all classes
have at least one constructor. The autogenerated constructor (also known as
the default constructor) created by the compiler is the same as if the following
code were written in the class definition:

Public Sub New()
MyBase.New()
End Sub

That is, the default constructor simply calls the base class's parameterless constructor.
If there is no parameterless constructor on the base class, the compiler generates an
error. If a class defines a parameterized constructor, the compiler does not generate a
default constructor.Therefore, if both parameterless and parameterized constructors
are needed, both must be explicitly written in the class definition. It is possible to define
a class from which it is not possible to inherit. This is done with the NotInheritable
keyword in the class declaration, as shown here:

Public NotInheritable Class SomeClass
' ...
End Class

2.15.6 Methods

Methods are members that contain code. They are either subroutines (which don't
have a return value) or functions (which do have a return value).
Subroutine definitions look like this:

[method_modifiers] Sub [attribute_list] _
method_name ([parameter_list]) [handles_or_implements]
[method_body]

The Visual Basic .NET Language / 49

End Sub
Function definitions look like this:
[method_modifiers] Function [attribute_list] _
method_name ([parameter_list]) [As type_name] _
[handles_or_implements]
[method_body]
End Function

The elements of method definitions are:

method_modifiers

Keywords that affect the accessibility or use of the method. These include the
following:

Access modifiers
Public, Protected, Friend, Protected Friend, or Private, as described in Table 2-5. If
no access-modifier keyword is given, Public is assumed.

Override modifiers
Overrides, MustOverride, Overridable, or NotOverridable. See Section 2.14.6.6.

Overloads keyword
Specifies that this method is an overload. See Section 2.14.6.7 later in this
section.Shared keyword Specifies that this method does not access object state.
That means that the method does not access any nonshared members.

Sub or Function
 keyword Specifies whether this method is a subroutine or a function.

attribute_list
An optional list of attributes to be applied to the method. See Section 2.22 later in
this chapter.

method_name
The name of the method.

parameter_list
An optional list of formal parameters for the method. See Section 2.14.6.1.

As type_name
For functions only, the data type of the value returned from this function. If Option
Strict is off, the As type_name clause is optional; otherwise, it is required. If it is
omitted, the function's return type defaults to Object. Subroutine declarations do not
have an As type_name clause.

handles_or_implements
Either the Handles keyword followed by a list of events from the enclosing class's
data members, or the Implements keyword followed by a list of methods from an
interface implemented by the enclosing class. See Section 2.20 and Section 2.15
later in this chapter.

method_body

And then End Sub or End Function keywords Indicates the end of the method
definition.

2.15.6.1 Method parameters

Methods can be defined to take arguments. As already shown, method definitions can
take an optional parameter list. A parameter list looks like this:

parameter { , parameter }

That is, a parameter list is one or more parameters separated by commas. Each
parameter in the list is of the form:

VB .Net / 50

[Optional] [ParamArray] [ByRef | ByVal] [attribute_list] _parameter_name [As
type_name] [= constant_expression]

The elements of each parameter declaration are:

Optional keyword

Specifies that an actual argument may be omitted for this parameter in a call to this
method. If Optional is specified, the = constant_expression, which defines the
default value of an omitted argument, must also be specified. Nonoptional
parameters can't follow optional parameters in a parameter list. Optional and
ParamArray parameters can't appear in the same parameter list.

ParamArray keyword

Specifies that the caller can provide a variable number of arguments. The actual
arguments are passed to the method in an array. Only the last parameter in a list
may have the ParamArray keyword attached to it. Optional and ParamArray
parameters can't appear in the same parameter list. Parameter arrays are
discussed later in this section, under Section 2.14.6.3.

ByRef or ByVal keyword

Specifies whether the actual argument will be passed to the method by reference or
by value. When an argument is passed by reference, the address of the argument
is passed to the routine; as a result, assignments to the parameter within the
method affect the argument in the calling environment. When an argument is
passed by value, a copy of the argument is passed to the routine; as a result,
assignments to the parameter within the method do not affect the argument in the
calling environment. Consider this code:

Public Shared Sub TestByRef(ByRef MyParameter As Integer)
MyParameter += 1
End Sub
Public Shared Sub TestByVal(ByVal MyParameter As Integer)
MyParameter += 1
End Sub
Public Shared Sub DoTest()
Dim x As Integer = 1
TestByRef(x)
Console.WriteLine("x = " & x)
Dim y As Integer = 1
TestByVal(y)
Console.WriteLine("y = " & y)
End Sub
The output of the DoTest method is:
x = 2
y = 1

The TestByRef and TestByVal methods both increment the values of the arguments
passed to them by one. However, because the parameter of the TestByRef method is
ByRef, the new value is written back to the argument in the caller (in this case, the
variable x in the DoTest method). In contrast, the TestByVal method's parameter is
ByVal, so the assignment to the parameter doesn't affect the caller.Be aware of the
effects of ByRef and ByVal on arguments that are reference types. ByRef means that
a reference to the reference is being passed;

ByVal means that the reference itself is being passed. That means that inside the
method, the reference could be used to modify the state of the object in the calling
environment. For example:

Public Class SomeClass
Public a As Integer
End Class
Public Class TestSomeClass
Public Shared Sub TestByRef(ByRef MyParameter As SomeClass)
MyParameter.a += 1
End Sub

The Visual Basic .NET Language / 51

Public Shared Sub TestByVal(ByVal MyParameter As SomeClass)
MyParameter.a += 1
End Sub
Public Shared Sub DoTest()
Dim x As New SomeClass()
x.a = 1
TestByRef(x)
Console.WriteLine("x.a = " & x.a)
Dim y As New SomeClass()
y.a = 1
TestByRef(y)
Console.WriteLine("y.a = " & y.a)
End Sub
End Class

The output of the DoTest method in this code is:
x.a = 2
y.a = 2

Observe that even though the variable y is passed by value to the TestByVal method,
one of its members nevertheless is updated. In this case, ByVal merely keeps the
reference in y from being overwritten by another reference.

attribute_list
 Specifies a list of custom attributes to apply to the parameter.

parameter_name
 Specifies the name of the parameter.

As type_name

Specifies the data type of the parameter. When the method is called, the type of the
actual argument must be compatible with the type of the parameter. The As
type_name element is optional if Option Strict is off; otherwise, it is required. If it is
omitted, Object is assumed.

constant_expression

Specifies a constant expression that specifies what value the parameter should
take if no actual argument is provided. This is permitted only on optional
parameters.

2.15.6.2 Passing arrays as parameters

To declare a parameter as able to receive an array, include parentheses after the
parameter name in the declaration. The caller leaves off the parentheses when naming
the actual argument. For example:

Public Shared Sub SomeMethod(ByVal x() As String)
Dim str As String
For Each str In x
Console.WriteLine(str)
Next

End Sub

Public Shared Sub TestSomeMethod()

Dim a(5) As String
a(0) = "First"
a(1) = "Second"
a(2) = "Third"
a(3) = "Fourth"
a(4) = "Fifth"
SomeMethod(a)

End Sub

In the SomeMethod method, parameter x represents an array of String objects. In the
TestSomeMethod method, a String array is allocated, its elements are assigned, and
the array as a whole is passed to the SomeMethod method, which then prints the

VB .Net / 52

array's contents. All array types are reference types. That means that when passing an
array as a parameter, only a reference to the array is passed. Because the target
method receives a reference to the array, the array elements can be changed by the
method, even if the array reference was passed by value. If the array reference is
passed by reference, the array reference itself can be changed by the method. For
example, the method could allocate a new array and return it through the ByRef
parameter, like this:

Public Shared Sub DumpArray(ByVal x() As String)
Dim str As String
For Each str In x
Console.WriteLine(str)
Next
End Sub
Public Shared Sub CreateNewArray(ByRef x() As String)
Dim newval(7) As String
newval(0) = "1st"
newval(1) = "2nd"
newval(2) = "3rd"
newval(3) = "4th"
newval(4) = "5th"
newval(5) = "6th"
newval(6) = "7th"
x = newval

End Sub

Public Shared Sub DoTest()

' Set up a five-element string array and show its contents.
Dim a(5) As String
a(0) = "First"
a(1) = "Second"
a(2) = "Third"
a(3) = "Fourth"
a(4) = "Fifth"
Console.WriteLine("a() before calling the CreateNewArray method:")
DumpArray(a)
' Now pass it to the CreateNewArray method and then show its
' new contents.
CreateNewArray(a)
Console.WriteLine()
Console.WriteLine("a() after calling the CreateNewArray method:")
DumpArray(a)

End Sub

In this code, the DoTest method creates a five-element string array and passes it to
DumpArray to show the array's contents. The DoTest method then calls
CreateNewArray, which allocates a new string array—this time with seven elements. It
would not be possible, however, to pass back an array with a different number of
dimensions, because the parameter is explicitly declared as one-dimensional. Visual
Basic .NET considers the dimensionality of an array to be part of its type, but the size
of any particular dimension is not part of the array's type.

2.15.6.3 Variable-length parameter lists

Some methods need to take a variable number of arguments. For example, a function
to compute the average of the numbers passed to it should accommodate as few or as
many numbers as needed.Visual Basic .NET provides this capability through
parameter arrays . A parameter array is a parameter that to the method looks like an
array but to the caller looks like a variable number of parameters. Here is the average-
calculation method just mentioned:

Public Shared Function Avg(ParamArray ByVal Numbers() As Integer) As
Double

Dim sum As Integer = 0
Dim count As Integer = 0
Dim n As Integer

The Visual Basic .NET Language / 53

For Each n In Numbers
sum += n
count += 1
Next
Return sum / count

 End Function

This method declares only a single parameter—an array of Integers. However, it
includes the ParamArray keyword in the declaration, which tells the compiler to allow
calls such as this:

' Compute the average of some numbers.
Dim d As Double = Avg(31, 41, 59, 26, 53, 58)

It's worth noting that an actual array can be passed through the ParamArray
parameter—something that wasn't possible in Visual Basic 6. For example:

' Compute the average of some numbers.
Dim args() As Integer = {31, 41, 59, 26, 53, 58}
Dim d As Double = Avg(args)

2.15.6.4 Main method

When an executable application is compiled, some code must be identified as the
startup routine. This portion is what is executed when the application is run. The Visual
Basic .NET compiler looks for a method named Main to fulfill this need. In .NET, all
code exists as methods within classes, even the Main method. To make it accessible
without having to instantiate a class, the Main method must be declared as shared. For
example:

Public Class App
Public Shared Sub Main()
' ...
End Sub

End Class

The name of the class is not important. At compile time, the Visual Basic .NET
compiler looks for a public shared subroutine named Main somewhere in the code. If
more than one class has such a method, the developer must specify which one to use
by setting the startup object in the Project Properties. If you're using the command-line
compiler, specify the desired startup object with the /main:<class> switch.

 A program's Main method can also appear within a Visual Basic .NET module (not to
be confused with .NET modules). Because Visual Basic .NET modules are classes
wherein everything is shared, the Shared keyword is not used in such a declaration:

Module App

Public Sub Main()
' ...
End Sub

 End Module

2.15.6.5 Implementing interface methods

Here we are taking consideration about methods use of interface,details interface will
be discussed in next section.

Classes can be declared as implementing one or more interfaces. To implement an
interface, the class must expose methods that correspond to the methods defined by
the interface. This is done by declaring the methods in the usual way, but with an
Implements clause as part of the declaration. Note the Implements keyword added to
the declaration of the CompareTo method in this example:

Public Class SomeClass
Implements IComparablePublic Function CompareTo(_ByVal obj As Object _

VB .Net / 54

) As Integer Implements IComparable.CompareTo
' ...
End Function

End Class

Note: When appearing in a method declaration, the Implements keyword must be
followed by the name of the interface and method that the given method implements.
The class's method must have the same signature and return type as the interface's
method, but they need not have the same name.

2.15.6.6 Overriding inherited methods

Now we discuss how a base class can be written such that it forces derived classes to
implement certain methods. In this case, the Shape class contains this declaration:

 Public MustOverride Sub Draw()

This declares the Draw() method, which takes no arguments. The MustOverride
keyword specifies that the base class does not provide an implementation for this
method and that derived classes must do so. It is sometimes preferable to allow the
base class to provide a default implementation, yet allow derived classes to substitute
their own implementations. Classes that don't provide their own implementations use
the base class's implementation by default. Consider the following class definitions:

Class BaseClass
Public Overridable Sub SomeMethod()
Console.WriteLine("BaseClass definition")
End Sub
End Class ' BaseClass
Class DerivedClass
Inherits BaseClass
Public Overrides Sub SomeMethod()
Console.WriteLine("DerivedClass definition")
End Sub
End Class ' DerivedClass
Class DerivedClass2
Inherits BaseClass

End Class ' DerivedClass2

The BaseClass class defines a method called SomeMethod. In addition to
providing an implementation of this method, the declaration specifies the
Overridable keyword. This signals to the compiler that it's okay to override the
method in derived classes. Without this modifier, derived classes cannot override
the method. The DerivedClass class overrides this method by defining a method
having the same name and signature and by specifying the Overrides keyword.
The Visual Basic .NET compiler requires that the Overrides keyword be present to
ensure that the developer actually meant to override a base-class method. The
DerivedClass2 class does not override the SomeMethod method. Calls to
SomeMethod through objects of type DerivedClass2 will invoke the BaseClass
definition of SomeMethod. Here is an example:

Dim b As New BaseClass()
Dim d As New DerivedClass()
Dim d2 As New DerivedClass2()
b.SomeMethod()
d.SomeMethod()
d2.SomeMethod()
This code results in the following output:
BaseClass definition
DerivedClass definition
BaseClass definition
The SomeMethod implementation in the DerivedClass class can itself be
overridden by a class deriving from DerivedClass. This can be prevented, if
desired, by specifying the NotOverridable keyword in the definition of the
SomeMethod method of the DerivedClass class, as shown here:

The Visual Basic .NET Language / 55

Class DerivedClass

Inherits BaseClass
Public NotOverridable Overrides Sub SomeMethod()
' ...
End Sub

End Class

2.15.6.7 Overloading

When two or more different methods conceptually perform the same task on
arguments of different types, it is convenient to give the methods the same name. This
technique is called overloading and is supported by Visual Basic .NET. For example,
the following code defines an overloaded SquareRoot method that can take either a
Long or a Double as a parameter:

Public Function SquareRoot(_ByVal Value As Long _) As Double
 ' ...
End Function

Public Function SquareRoot(_ByVal Value As Double _) As Double
 ' ...
End Function

When a call is made to the SquareRoot method, the version called is determined by
the type of the parameter passed to it. For example, the following code calls the
version of the method that takes a Long:

Dim result As Double = SquareRoot(10)
And this code calls the version that takes a Double:
Dim result As Double = SquareRoot(10.1)

Careful readers will note that in the first case the type of the argument is actually
Integer, not Long. The Long version of the method is invoked because it is the closest
match to the given argument. If there were also an Integer version of the method, that
version would have been invoked, because it is a better match to the given argument.
The .NET runtime always attempts to invoke the most appropriate version of an
overloaded function, given the arguments provided.

If no suitable overload is found, a compiler error occurs (if Option Strict is on) or a
runtime exception occurs (if Option Strict is off). The name of a method together with
the number and types of its arguments are called the signature of the method.

The signature uniquely identifies a specific overloaded version of a specific method.
Note that the return type is not part of the signature. Two versions of an overloaded
method are not permitted to differ only by return type.

2.15.6.8 Overloading inherited methods

A method can also overload a method in a base class. Be careful to note the
difference between overloading a base-class method and overriding a base-class
method. Overriding means that the base-class method and the derived-class method
have the same signature and that the derived-class method is replacing the base-class
method. In addition, the base-class method must be marked with the Overridable
keyword. Overloading means that they have different signatures and that both
methods exist as overloads in the derived class. When overloading a method defined
in a base class, the derived-class method declaration must include the Overloads
keyword, but the base-class method doesn't have any special keyword attached to it.
Here's an example:

Public Class BaseClass
Public Sub SomeMethod()
' ...
End Sub

 End Class

VB .Net / 56

 Public Class DerivedClass
Inherits BaseClass
Public Overloads Sub SomeMethod(ByVal i As Integer)
' ...
End Sub

 End Class

The requirement for the Overloads keyword helps to document the fact that a base-
class method is being overloaded. There is no technical reason that the compiler
requires it, but it is required nevertheless to help prevent human error.

2.15.6.9 Shadowing

The Shadows keyword allows a derived-class method to hide all base-class methods
with the same name. Consider the following code, which does not use the Shadows
keyword:

Public Class BaseClass
Public Overridable Sub SomeMethod()
' ...
End Sub

Public Overridable Sub SomeMethod(ByVal i As Integer)
' ...
End Sub

 End Class

 Public Class DerivedClass

Inherits BaseClass
Public Overloads Overrides Sub SomeMethod()
' ...
End Sub

End Class

The base class overloads the SomeMethod method, and the derived class overrides
the version of the method having no parameters. Instances of the derived class not
only possess the parameterless version defined in the derived class, but they also
inherit the parameterized version defined in the base class. In contrast, consider the
following code, which is the same except for the declaration of the SomeMethod
method in the derived class:

Public Class BaseClass
Public Overridable Sub SomeMethod()
' ...
End Sub

Public Overridable Sub SomeMethod(ByVal i As Integer)
' ...
End Sub

End Class
Public Class DerivedClass
Inherits BaseClass
Public Shadows Sub SomeMethod()
' ...
End Sub

End Class

In this version, instances of the derived class possess only the parameterless version
declared in the derived class. Neither version in the base class can be called through a
reference to the derived class.

2.15.7 Properties

Properties are members that are accessed like fields but are actually method calls.
The idea is that a class designer may wish to expose some data values but needs to
exert more control over their reading and writing than is provided by fields. Properties

The Visual Basic .NET Language / 57

are also useful for exposing values that are calculated. This is demonstrated by the
Center property in the Shape class of Example 2-7. The property can be read and
written just like the Origin and Size fields. However, there is no actual data member
called Center. When code reads the Center property, a call is generated to the Center
property's getter. When a new value is assigned to the Center property, a call is
generated to the property's setter.
Property declarations look like this:

[property modifiers] Property [attributes] Property_Name _
 ([parameter list]) [As Type_Name] [implements list]
[getter]
[setter]
End Property

The components of the declaration are:

property modifiers

Further defined as:

[Default][access modifier][override modifier] _[overload modifier] [
 shared modifier] [read/write modifier]

If the Default keyword is present, it specifies the property as the default property of the
class. Only one property in a class can be the class's default property, and only
parameterized (or indexed) properties can be default properties. So what is a default
property? A default property is just a property that can be referenced without actually
specifying the property's name. For example, if a class has a default property called
Item, takes an Integer argument, and is of type String, the following two lines are
equivalent to each other:

myObject.Item(3) = "hello, world"
myObject(3) = "hello, world"

Note: Previous versions of Visual Basic did not constrain parameterized properties as
the only possible default properties. The access modifier, override modifier, overload
modifier, and shared modifier clauses have the same meanings as discussed later in
this chapter in relation to method definitions. The read/write modifier clause is defined
as:

ReadOnly | WriteOnly

This clause determines whether the property is read/write (signified by the absence
of ReadOnly and WriteOnly), read-only (signified by ReadOnly), or write-only
(signified by WriteOnly).Property keyword Identifies this as a property definition.

attributes

Represents a comma-separated list of attributes to be stored as metadata with the
property.Attributes are discussed earlier in this chapter.

Property_Name
 Represents the name of the property.

parameter list

Permits properties to have parameters. Parameterized properties are also called
indexed properties. See the discussion of parameter lists earlier in this chapter.

As Type_Name

Indicates the data type of the property. This clause is optional if Option Strict is off;
otherwise, it is required. If this clause is omitted, the property defaults to type
Object.

implements list
 Has the same meaning as for method definitions.

getter
 Provides the method that is executed when the property is read. Its form is:

VB .Net / 58

Get
 'line of codes
End Get

The value returned by the getter is returned as the value of the property. To return
a value from the getter, either use the Return statement with an argument or assign
a value to the property name. The value returned must be compatible with the data
type of the property. It is an error to provide a getter if the property has been
marked WriteOnly.

setter

Provides the method that is executed when the property is written. Its form is:

Set [(ByVal Value [As Type_Name])]

 'line of codes

End Set

The value assigned to the property is passed to the method through the parameter
specified in the Set statement. The type specified in the Set statement must match the
type specified in the Property statement. Alternatively, the parameter declaration can
be omitted from the Set statement. In this case, the value assigned to the property is
passed to the method through a special keyword called Value. For example, this setter
copies the passed-in value to a class data member called MyDataMember:

Set
 MyDataMember = Value
End Set

The data type of Value is the same as the data type of the property.End Property
keywords Indicates the end of the property definition.Review the property definition
from Example 2-7:

' This property allows the class user to find or set the
' center of a shape.
Public Property Center() As Point

Get
Dim retval As Point
retval.X = Origin.X + (Size.XExtent \ 2)
retval.Y = Origin.Y + (Size.YExtent \ 2)
Return retval

End Get
Set

Dim currentCenter As Point = Center
Origin.X += Value.X - currentCenter.X
Origin.Y += Value.Y - currentCenter.Y

End Set
End Property

This is a public property called Center that has a type of Point. The getter returns a
value of type Point that is calculated from some other members of the class. The setter
uses the passed-in value to set some other members of the class.

2.15.8 The Me and MyClass Keywords

There are several ways for code to access members of the class in which the code is
running. As long as the member being accessed is not hidden by a like-named
declaration in a more immediate scope, it can be referenced without qualification:

 Public Class SomeClass

 Public SomeValue As Integer
Public Sub SomeMethod()
' ...
SomeValue = 5

The Visual Basic .NET Language / 59

' ...
End Sub

End Class

If the member is hidden by a more immediate declaration, the Me keyword can be
used to qualify the reference. Unqualified references refer to the more local
declaration, as shown here:

Public Class SomeClass
Public SomeValue As Integer

Public Sub SomeMethod(ByVal SomeValue As Integer)
' ...
' Assign the passed-in value to a field.
Me.SomeValue = SomeValue
' ...
End Sub

End Class

The Me keyword is an implicit variable that holds a reference to the object instance
running the code.Related to the Me keyword, but subtly different, is the MyClass
keyword. While the Me keyword can be used in any context in which an object
reference is expected, the MyClass keyword is used only for member access; it must
always be followed by a period and the name of a member, as shown here:

Public Class SomeClass
Public SomeValue As Integer
Public Sub SomeMethod(ByVal SomeValue As Integer)
' ...
' Assign the passed-in value to a field.
MyClass.SomeValue = SomeValue
' ...
End Sub

End Class

As you can see, there is overlap in the contexts in which these two keywords can be
used, and for most circumstances they can be considered synonymous. However,
there are situations in which the two keywords differ:

 The Me keyword can't be used in shared methods because it represents a
 specific object instance of the class, yet shared methods can be executed when
 no instance exists.
 The keywords can behave differently when used in a class from which other
 classes are derived. Consider this code:

Public Class BaseClass
Public Sub Method1()
 Console.WriteLine("Invoking Me.Method2...")
 Me.Method2()
 Console.WriteLine("Invoking MyClass.Method2...")
 MyClass.Method2()
End Sub

Public Overridable Sub Method2()
Console.WriteLine("BaseClass.Method2")

End Sub
End Class

Public Class DerivedClass

Inherits BaseClass
Public Overrides Sub Method2()
Console.WriteLine("DerivedClass.Method2")

End Sub
End Class

This code defines two classes:

VB .Net / 60

BaseClass and DerivedClass.
BaseClass defines two methods:Method1 and Method2.DerivedClass inherits Method1
but provides its own implementation for Method2.

Now consider the following instantiation of DerivedClass, as well as a call through it to
the Method1 method:

Dim d As New DerivedClass()
d.Method1()

This produces the following output:

Invoking Me.Method2...
DerivedClass.Method2
Invoking MyClass.Method2...
BaseClass.Method2

The call to Method1 through the DerivedClass instance calls the Method1
implementation inherited from BaseClass. Method1 calls Method2 twice: once through
the Me keyword and once through the MyClass keyword. The Me keyword is a
reference to the actual object instance, which is of type DerivedClass. Therefore,
Me.Method2() invokes the DerivedClass class's implementation of Method2. In
contrast, the MyClass keyword is used for referencing members in the class in which
the code is defined, which in this case is the BaseClass class. Therefore,
MyClass.Method2() invokes the BaseClass class's implementation of Method2.

2.15.9 The MyBase Keyword

The MyBase keyword is used to access methods on the base class. This feature is
commonly used when an overriding method needs to call the base-class
implementation of the same method:

 Public Class BaseClass
Public Overridable Sub DoSomething()
' ...
End Sub

End Class

Public Class DerivedClass

Inherits BaseClass
Public Overrides Sub DoSomething()
' Start by calling the base-class implemenation of DoSomething.
MyBase.DoSomething()
' Then continue on with additional stuff required by DerivedClass.
' ...
End Sub

End Class

2.15.10 Nested Classes

Class definitions can be nested. The nested class is considered a member of the
enclosing class. As with other members, dot notation is used for accessing the inner
class definition. Consider this nested class definition:

Public Class OuterClass
 Public Class InnerClass
 Public Sub SomeMethod()
 Console.WriteLine("Hello from InnerClass.SomeMethod!")
 End Sub
 End Class
End Class

Instantiating an object of type InnerClass requires qualifying the name with the name
of the enclosing class:

 Dim x As New OuterClass.InnerClass()

The Visual Basic .NET Language / 61

 x.SomeMethod()

The accessibility of the inner-class declaration can be controlled with the class
declaration's access modifier. For example, in the following definition, InnerClass has
been declared with the Private modifier, making it visible only within the confines of the
OuterClass class:

Public Class OuterClass
Private Class InnerClass
' ...
End Class

End Class

Classes can be nested as deeply as desired.

2.15.11 Destructors

Just as constructors are methods that run when objects are instantiated, it is often
convenient to define methods that run when objects are destroyed (that is, when the
memory that was allocated to them is returned to the pool of free memory). Such a
method is called a destructor.

It doesn't have special syntax for declaring destructors, as it does for constructors.
Instead, Visual Basic .NET uses the specially named methods i.e.-
Finalize() and Dispose() to perform the work normally associated with destructors.

Because this mechanism is actually part of the .NET Framework rather than Visual
Basic .NET, it is explained in later in this SLM.

2.15.12 Early Versus Late Binding

Declarations permit the compiler to know the data type of the item being declared.
Here is the declaration of a variable of type String:

Dim s As String

Knowing the data type of a variable (or parameter, field, etc.) allows the compiler to
determine what operations are permitted on any object referenced by the variable. For
example, given the previous declaration of s as String, the compiler knows that the
expression s.Trim() is permitted (because it is defined in the String class), while
s.Compact() is not (because there is no such method in the String class). During
compilation, the Visual Basic .NET compiler complains if it encounters such errors.
There is, however, one case in which the developer is permitted to relax this
constraint. If Option Strict is turned off, the compiler forgoes this kind of checking on
variables of type Object. For example, the following code will compile without difficulty,
even though the Object class doesn't have a method called "Whatever":

Option Strict Off
' ...

Dim obj As Object
obj.Whatever()

With Option Strict off, the compiler compiles obj.Whatever() to code that checks to see
if the runtime type of the object referenced by obj is a type that possesses a Whatever
method. If it does, the Whatever method is called. If not, a runtime exception is raised.
Here is such a scenario: Option Strict Off Public Class WhateverClass

Public Sub Whatever()
Console.WriteLine("Whatever!")

 End Sub

Public Class TestClass

Public Shared Sub TestMethod()
Dim obj As Object
obj = New WhateverClass()
obj.Whatever()

VB .Net / 62

End Sub
End Class

Because Option Strict is off, this code compiles just fine. Because obj references an
object at runtime that is of a class that implements a Whatever method, it also runs just
fine. However, consider what happens if the Whatever method is removed from the
WhateverClass class:

Option Strict Off
 Public Class WhateverClass
End Class

Public Class TestClass

Public Shared Sub TestMethod()
Dim obj As Object
obj = New WhateverClass()
obj.Whatever()
End Sub

End Class

The code still compiles without a problem, because Option Strict is off. However, at
runtime there is a problem, as shown in Figure 2-2.

Figure 2-2. A problem

The technique of accessing members through a generic object of type Object is called
late binding. "Late" means that whether the desired member is really there is not
known until the statement is actually executed. In contrast, leaving Option Strict on and
accessing members only through variables that have been declared as the appropriate
type is known as early binding. "Early" means that whether the member access is
legitimate is known at compile time.
Late binding is less efficient than early binding because additional checks are needed
at runtime to determine whether the requested member actually exists on the runtime
object and, if it does, to access that member. The worst part of late binding is that it
can mask certain program errors (such as mistyped member names) until runtime. In
general, this is bad programming practice.

2.14 - 2.15 Check Your Progress
State whether statements are True or False
1. Visual Basic. NET is a line-oriented language.
2. The call statement invokes a subrouting or function.
3. Object instantiation is done without using new keyword.
4. Fields can be declared with the Read Only modifier.
5. Math class contains definition of math related function.

2.16 INTERFACES

It is useful to make a distinction between a class's interface and its implementation.
Conceptually, the interface of a class is the set of members that are visible to users of
the class—i.e., the class's public members. The public members are thought of as
comprising the class's interface because they are the only way that code outside of the
class can interact (i.e., interface) with objects of that class. In contrast, the
implementation is comprised of the class's code plus the set of members that are not
public. It is possible to take this interface concept further and separate interface

The Visual Basic .NET Language / 63

definition from class definition altogether. This has benefits that will be shown shortly.
To define an interface, use the Interface statement:
Public Interface ISomeInterface:

 Sub SomeSub()

Function SomeFunction() As Integer
Property SomeProperty() As String
Event SomeEvent(_ByVal sender As Object, _ByVal e As SomeEventArgs _)

End Interface

An interface declaration defines methods, properties, and events that will ultimately be
implemented by some class or structure definition. Because interfaces never include
any implementation, the declarations are headers only—never any implementation
code; End Sub, End Function, or End Property statements; or property get or set
blocks. There are no access modifiers (Public, Private, etc.) because all members of
an interface are public by definition. By convention, interface names start with the letter
"I".

To provide an implementation for a given interface, it is necessary to define a class or
structure. For example, the following class implements the interface defined earlier:

Public Class SomeClass
 ' This indicates that the class implements the methods,
 ' properties, and events of the ISomeInterface interface.
Implements ISomeInterface
 ' This method implements the SomeSub method of the
 ' ISomeInterface interface.
Private Sub SomeSub() Implements ISomeInterface.SomeSub
 ' ...
End Sub

' This method implements the SomeFunction method of the
' ISomeInterface interface.

Private Function SomeFunction() As Integer _
 Implements ISomeInterface.SomeFunction
 ' ...
End Function

' This property implements the SomeProperty property of the
' ISomeInterface interface.Private Property SomeProperty() As String _

Implements ISomeInterface.SomeProperty
 Get

' ...
End Get
Set
' ...
End Set

End Property
' This event implements the SomeEvent event of the
' ISomeInterface interface.
Private Event SomeEvent(_ByVal sender As Object, _ByVal e As
 SomeEventArgs _) Implements ISomeInterface.SomeEvent

End Class

The key elements of this class definition are:
 The class-declaration header is immediately followed by the Implements

statement, indicating that this class will expose the ISomeInterface interface:

Public Class SomeClass
' This indicates that the class implements the methods,
' properties, and events of the ISomeInterface interface.

 Implements ISomeInterface

VB .Net / 64

This information is compiled into the class. Class users can find out whether
a given class implements a given interface by attempting to assign the object
reference to a variable that has been declared of the interface type, like this:

Dim obj As Object
Dim ifce As ISomeInterface
' ...
' Get an object reference from somewhere.
obj = New SomeClass()
' ...
' Try to convert the object reference to a reference of type
' ISomeInterface. If the object implements the ISomeInterface
' interface, the conversion succeeds. If the object doesn't
' implement the ISomeInterface interface, an exception of
' type InvalidCastException (defined in the System namespace)
' is thrown.
ifce = CType(obj, ISomeInterface)

 For each method, property, and event in the interface, there is a
corresponding method, property, or event in the class that has precisely the
same signature and return value. The names don't have to match, although
they match in the example.

 The declaration header for each method, property, and event in the class that
implements a corresponding item in the interface must have an implements
clause. This is the keyword Implements followed by the qualified name of the
interface method, property, or event being implemented. Additional things to
note about implementing interfaces include:

 The access modifiers in the class-member declarations need not be Public.
Note that in the example all the members are marked as Private. This means
that the members are accessible only when accessed through the
ISomeInterface interface. This will be shown in a moment.

 The class definition can include members that are not part of the implemented
interface. These can be public if desired. This results in a class that effectively
has two interfaces: the default interface, which is the set of members defined
as Public in the class definition; and the implemented interface, which is the
set of members defined in the interface named in the Implements statement.

 Classes are permitted to implement multiple interfaces.
To access members defined by an interface, declare a variable as that interface type
and manipulate the object through that variable. For example:

Dim x As ISomeInterface = New SomeClass()
x.SomeFunction()

This code declares x as a reference to an object of type ISomeInterface. That's right:
interface definitions define new types. Declared in this way, x can take a reference to
any object that implements the ISomeInterface interface and access all the members
that IsomeInterface defines, confident that the underlying object can handle such calls.
This is a powerful feature of defining and implementing explicit interfaces. Objects that
explicitly implement an interface can be used in any context in which that interface is
expected; objects that implement multiple interfaces can be used in any context in
which any of the interfaces is expected. Interface definitions can inherit from other
interface definitions in the same way that classes can inherit from other classes. For
example:

Public Interface ISomeNewInterface
Inherits ISomeInterface
Sub SomeNewSub()
End Interface

This defines a new interface called ISomeNewInterface that has all the members of the
ISomeInterface interface plus a new member, called SomeNewSub. Any class or
structure that implements the ISomeNewInterface interface must implement all
members in both interfaces. Any such class is then considered to implement both
interfaces and could be used in any context where either ISomeInterface or
ISomeNewInterface is required.

The Visual Basic .NET Language / 65

2.17 STRUCTURES

Structures define value types. Variables of a value type store an actual value, as
opposed to a reference to a value stored elsewhere. Contrast this with classes, which
define reference types.Variables of a reference type store a reference (a pointer) to the
actual value. See the discussion of value types versus reference types in Section 2.5
earlier in this chapter. Example 2-8 shows a structure definition.

Example 2-8. A structure definition

 Public Structure Complex

 ' The IFormattable interface provides a generic mechanism for
 ' asking a value to represent itself as a string.
Implements IFormattable
 ' These private members store the value of the complex number.
Private m_RealPart As Double
Private m_ImaginaryPart As Double

' These fields provide potentially useful values, similar to the
' corresponding values in the Double type. They are initialized
' in the shared constructor. The ReadOnly modifier indicates that
' they can be set only in a constructor.

Public Shared ReadOnly MaxValue As Complex
Public Shared ReadOnly MinValue As Complex

' This is a shared constructor. It is run once by the runtime
' before any other access to the Complex type occurs. Note again
' that this is run only once in the life of the program--not once
' for each instance. Note also that there is never an access
' modifier on shared constructors.

Shared Sub New()
MaxValue = New Complex(Double.MaxValue, Double.MaxValue)
MinValue = New Complex(Double.MinValue, Double.MinValue)

End Sub
' The RealPart property gives access to the real part of the
' complex number.

Public Property RealPart() As Double
Get
 Return m_RealPart
End Get

Set(ByVal Value As Double)
m_RealPart = Value

End Set
End Property

' The ImaginaryPart property gives access to the imaginary part
' of the complex number.

Public Property ImaginaryPart() As Double
Get
 Return m_ImaginaryPart
End Get

Set(ByVal Value As Double)
 m_ImaginaryPart = Value
End Set

End Property

' This is a parameterized constructor allowing initialization of
' a complex number with its real and imaginary values.

Public Sub New(_ByVal RealPart As Double, _
ByVal ImaginaryPart As Double _)
m_RealPart = RealPart
m_ImaginaryPart = ImaginaryPart

End Sub

 ' This function computes the sum of two Complex values.

VB .Net / 66

Public Shared Function Add(_ByVal Value1 As Complex, _ByVal Value2 As
 Complex _) As Complex

Dim retval As Complex
retval.RealPart = Value1.RealPart + Value2.RealPart
retval.ImaginaryPart = Value1.ImaginaryPart + Value2.ImaginaryPart
Return retval

End Function

 ' This function computes the difference of two Complex values.
Public Shared Function Subtract(_ByVal Value1 As Complex, _ ByVal Value2 As

Complex _) As Complex
Dim retval As Complex
retval.RealPart = Value1.RealPart - Value2.RealPart
retval.ImaginaryPart = Value1.ImaginaryPart - Value2.ImaginaryPart
Return retval

End Function

' This function computes the product of two Complex values.Public Shared Function

Multiply(_ByVal Value1 As Complex, _ByVal Value2 As Complex _) As Complex

Dim retval As Complex
retval.RealPart = Value1.RealPart * Value2.RealPart _
- Value1.ImaginaryPart * Value2.ImaginaryPart
retval.ImaginaryPart = Value1.RealPart * Value2.ImaginaryPart _
+ Value1.ImaginaryPart * Value2.RealPart
Return retval
End Function

' This function computes the quotient of two Complex values.
Public Shared Function Divide(_ByVal Value1 As Complex, _ByVal Value2 As
 Complex _) As Complex

Dim retval As Complex
Dim numerator1 As Double
Dim numerator2 As Double
Dim denominator As Double
numerator1 = Value1.RealPart * Value2.RealPart _
+ Value1.ImaginaryPart * Value2.ImaginaryPart
numerator2 = Value1.ImaginaryPart * Value2.RealPart _
- Value1.RealPart * Value2.ImaginaryPart
denominator = Value2.RealPart ^ 2 + Value2.ImaginaryPart ^ 2
retval.RealPart = numerator1 / denominator
retval.ImaginaryPart = numerator2 / denominator
Return retval

End Function

' This function implements IFormattable.ToString. Because it is
' declared Private, this function is not part of the Complex
' type's default interface. Note that the function name need
' not match the name as declared in the interface, nor need
' it be in the format shown here.

Private Function IFormattable_ToString(_ByVal format As String, _ByVal
 formatProvider As IFormatProvider _) As String Implements
 IFormattable.ToString

Dim realFormatter As IFormattable = m_RealPart
Dim imaginaryFormatter As IFormattable = m_ImaginaryPart
Return realFormatter.ToString(format, formatProvider) & " + " _
& imaginaryFormatter.ToString(format, formatProvider) & "i"

End Function

' This function formats the Complex value as a string.
Public Overrides Function ToString() As String Return CType(Me,
 IFormattable).ToString(Nothing, Nothing)
End Function

End Structure ' Complex

The Visual Basic .NET Language / 67

Structure definitions can include fields, properties, methods, constructors, and more—
any member, in fact, that a class definition can have. Unlike class definitions, however,
structures are constrained in several ways:

 Structures are not permitted to inherit from any other type. (However, structures
implicitly inherit from System.ValueType, which in turn inherits from Object.)

 Structures cannot override methods implicitly inherited from System.ValueType.
 No type can inherit from a structure.
 Structures are not permitted to have parameterless constructors.
 Consider this array declaration:

 Dim a(1000000) As SomeStructure

When an array of value types is created, it is immediately filled with instances of the
value type. This behavior corresponds to what you'd expect from an array holding a
primitive type (such as Integer). If parameterless constructors were permitted for
structures, this array declaration would result in 1,000,000 calls to the constructor.
Ouch.

 Structures are not permitted to have destructors.
 Field members in structures are not permitted to be initialized in their
 declarations. This includes the special cases of using As New type in the
 declaration or specifying an initial size in an array declaration.

2.17.1 Boxing and Unboxing

Value types are optimized for size and speed. They don't carry around the same
amount of overhead as reference types. It would not be very efficient if every four-byte
integer also carried around a fourbyte reference. There are times, however, when
treating value types and reference types in a polymorphic way would be nice. Consider
this method declaration, which takes any number of arguments of any type and
processes them in some way:

Public Shared Sub Print(ParamArray ByVal objArray() As Object)
Dim obj As Object
For Each obj In objArray
' ...
Next

End Sub

Clearly, objArray is an array of reference types, and obj is a reference type. Yet it
would be nice to pass value types and reference types to the method, like this:
Print("hello, world", SomeObject, 4, True)
In fact, this is possible. When a value type is assigned to a variable of type Object or
passed in a parameter of type Object, it goes through a process known as boxing. To
box a value type means to allocate memory to hold a copy of the value, then copy the
value into that memory, and finally manipulate or store a reference to the value.
Unboxing is the opposite process: taking a reference to a value type and copying the
referenced value into an actual value type.
Boxing and unboxing are done on your behalf by the .NET runtime—there is nothing
you have to do to facilitate it. You should be aware of it, however, because the box and
unbox operations aren't free.

2.18 ENUMERATIONS

An enumeration is a type whose values are explicitly named by the creator of the type.
The .NET Framework and Visual Basic .NET define many enumerations for their and
your use. In addition,
Visual Basic .NET provides syntax for defining new enumerations. Here is an example:

Public Enum Rainbow

Red
Orange
Yellow

VB .Net / 68

Green
Blue
Indigo
Violet

End Enum

This declaration establishes a new type, called Rainbow. The identifiers listed within
the body of the declaration become constant values that may be assigned to variables
of the Rainbow type. Here is a declaration of a variable of type Rainbow and an initial
assignment to it:

 Dim myRainbow As Rainbow = Rainbow.Blue

Note that the value name is qualified by the type name.
Enumerations are value types that implicitly inherit from the .NET Framework's
System.Enum type (which in turn inherits from System.ValueType). That means that
every enumeration has access to the members defined by System.Enum. One such
member is the ToString method, which returns a string containing the name of the
value. This is handy for printing:

Dim myRainbow As Rainbow = Rainbow.Blue
Console.WriteLine("The value of myRainbow is: " & myRainbow.ToString())
This code results in the following output:

The value of myRainbow is: Blue
The values of an enumeration are considered as ordered. Thus, comparisons are
permitted between variables of the enumeration type:
Dim myRainbow As Rainbow
Dim yourRainbow As Rainbow
' ...
If myRainbow < yourRainbow Then
' ...
End If

Variables of an enumeration type can be used as indexes in For...Next statements. For
example:

For myRainbow = Rainbow.Red To Rainbow.Violet
' ...
Next

Internally, Visual Basic .NET and the .NET Framework use values of type Integer to
represent the values of the enumeration. The compiler starts with 0 and assigns
increasing Integer values to each name in the enumeration. It is sometimes useful to
override the default Integer values that are assigned to each name. This is done by
adding an initializer to each enumeration constant. For example:

Public Enum MyLegacyErrorCodes
NoError = 0
FileNotFound = -1000
OutOfMemory = -1001
InvalidEntry = -2000
End Enum
It is also possible to specify the type of the underlying value. For example:
Public Enum Rainbow As Byte
Red
Orange
Yellow
Green
Blue
Indigo
Violet

End Enum

This could be an important space-saving measure if many values of the enumeration
will be stored somewhere. The only types that can be specified for an enumeration are

The Visual Basic .NET Language / 69

Byte, Short, Integer, and Long. Sometimes enumerations are used as flags, with the
idea that multiple flags can be combined in a single value. Such an enumeration can
be defined by using the Flags attribute. (Attributes are discussed later in this chapter.)
Here is an example:

<Flags()> Public Enum Rainbow
Red = 1
Orange = 2
Yellow = 4
Green = 8
Blue = 16
Indigo = 32
Violet = 64

End Enum

Note two important things in this definition:

 The first line of the definition starts with <Flags()>. This indicates that values of
 this type can be composed of multiple items from the enumeration.
 The items in the enumeration have values that are powers of two. This ensures
 that each combination of items has a unique sum. For example, the combination
 of Yellow, Blue, and Violet has a sum of 84, which can't be attained with any
 other combination of items.

Individual values are combined using the Or operator.
The ToString method is smart enough to sort out the value names when creating a
string representation of the value. For example, given the previous assignment,
consider the following call to the ToString method:

Console.WriteLine(myRainbow.ToString())

This statement produces the following output:
Green, Blue

2.19 EXCEPTIONS

Sometimes errors or exceptional conditions prohibit a program from continuing its
current activity. A classic example is division by zero:

Dim x As Integer = 0
Dim y As Integer = 1 \ x

When the process hits the line containing the integer division, an exception occurs. An
exception is any occurrence that is not considered part of normal, expected program
flow. The runtime detects, or catches, this exception and takes appropriate action,
generally resulting in termination of the offending program. Figure 2-3 shows the
message box that is displayed when this code is run within the Visual Studio .NET
IDE.

Figure 2-3. A divide-by-zero exception

Visual Basic .NET programs can and should be written to catch exceptions
themselves. This is done by wrapping potentially dangerous code in Try...End Try
blocks. Example 2-9 shows how to
catch the divide-by-zero exception.

VB .Net / 70

Example 2-9. Catching an exception

Try

Dim x As Integer = 0
Dim y As Integer = 1 \ x

Catch e As Exception
 Console.WriteLine(e.Message)
End Try

When the program attempts the division by zero, an exception occurs, and program
execution jumps to the first statement in the Catch block. The Catch statement
declares a variable of type Exception that receives information about the exception
that occurred. This information can then be used within the Catch block to record or
report the exception, or to take corrective action. The previous code merely displays
the message associated with the exception that occurred, as shown here:Attempted to
divide by zero.

After executing the statements in the Catch block, program execution continues with
whatever follows the End Try statement. In Try blocks in which no exception occurs,
execution continues through to the last statement of the Try block and then skips the
statements in the Catch block.

The variable declared in the Catch statement of Example 2-9 is of type Exception
(defined in the System namespace). All exceptions are represented by types that
derive, either directly or indirectly, from the Exception type. The As type_name clause
of the Catch statement specifies the type of exception that the associated block of
code can handle. Exceptions of the indicated type, or of any type derived (directly or
indirectly) from the indicated type, are handled by the associated block of code.
Look again at the Catch statement from Example 2-9:
Catch e As Exception

Because all exceptions derive from the Exception type, any exception that occurs
during execution of the Try block in Example 2-9 results in execution of the Catch
block. This behavior can be modified by providing a more specific exception type in the
Catch statement. Example 2-10 is identical to Example 2-9, except that it catches only
divide by zero exceptions.

Example 2-10. Catching a specific exception

Try
Dim x As Integer = 0
Dim y As Integer = 1 \ x

 Catch e As System.DivideByZeroException

 Console.WriteLine(e.Message)
End Try

If any exception other than DivideByZeroException were to occur in the Try block of
Example 2-10,it would not be caught by the code shown. What happens in that case
depends on the rest of the code in the program. Try...End Try blocks can be nested, so
if there is a surrounding Try...End Try block with a suitable Catch statement, it will
catch the exception. Alternatively, if the calling routine couches the method call within
a Try...End Try block having a suitable Catch statement, execution jumps out of the
current method and into the associated Catch block in the calling routine. If no suitable
Catch block exists in the calling routine, the search for a suitable Catch continues up
the call chain until one is found or until all callers have been examined. If no suitable
Catch block exists anywhere in the call chain, the runtime environment catches the
exception and terminates the application. Try...End Try blocks can include multiple
Catch blocks, which allows different exceptions to be handled in different ways. For
example, the following code handles two specific exceptions, allowing all others to go
unhandled:

Try
' ...

The Visual Basic .NET Language / 71

Catch e As System.DivideByZeroException
' ...
Catch e As System.OverflowException
' ...
End Try

Because all exception types are derived from the Exception type, the properties and
methods of the Exception type are available on all exception types. In fact, most
exception types don't define any additional properties or methods. The only reason
they're defined as specific types is so that they can be specifically caught. The
properties of the Exception class are:

HelpLink

A URN or URL that links to a help-file topic that explains the error in further detail.
The type is String.

HResult

A COM HRESULT representing the exception. This is used for interoperating with
COM components (a topic that is not discussed in this book). The type is integer.

InnerException

Sometimes a method may choose to throw an exception because it has caught an
exception from some other internal method call. The outer method throws an
exception that is meaningful to it and its caller, but the exception thrown by the
inner method should also be communicated to the caller. This is the purpose of the
InnerException property. This property contains a reference to the internal
exception (if any) that led to the current exception. The type is Exception.

Message

The message associated with the exception. In general, this is a description of the
condition that led to the exception and, where possible, an explanation of how to
correct it. The type is String.

Source

The name of the application or object in which the exception occurred. The type is
String.

StackTrace

A textual representation of the program call stack at the moment the exception
occurred. The type is String.

TargetSite

A reference to an object of type MethodBase (defined in the System.Reflection
namespace) that represents the method in which the exception occurred. If the
system cannot obtain this information, this property contains Nothing.

The methods of the Exception class are:

GetBaseException

As discussed for the InnerException property, indicates that the current exception
may be the end exception in a chain of exceptions. The GetBaseException method
returns the first exception in the chain. This method takes no parameters. The
return type is Exception.

GetObjectData
 Serializes the Exception object into a SerializationInfo object . The syntax is:

Overridable Public Sub GetObjectData(_ByVal info As SerializationInfo, _ByVal
 context As StreamingContext _) Implements ISerializable.GetObjectData

ToString

Returns a text representation of the Exception. This includes the exception type,
the message, the stack trace, and similar information for any inner exceptions.
When an exception occurs, there is no facility for retrying the statement that caused
the exception. If such behavior is desired, it must be explicitly coded. Here's one
possibility:

VB .Net / 72

Dim bSuccess As Boolean = False
Do
Try

' Some code that is to be protected.
' ...
bSuccess = True

Catch e As Exception
' Some recovery action.
' ...

End Try

 Loop Until bSuccess

Sometimes you must ensure that certain code is executed regardless of whether there
is an exception. For example, if a file is opened, the file should be closed even when
an exception occurs. Try...End Try blocks can include Finally blocks for this purpose.
Code appearing in a Finally block is executed regardless of whether an exception
occurs. If no exception occurs, the statements in the Finally block are executed after
the statements in the Try block have been executed. If an exception does occur, the
statements in the Finally block are executed after the statements in the Catch block
that handles the exception are executed. If the exception is not handled, or if there are
no Catch blocks, the statements in the Finally block are executed prior to forwarding
the exception to any enclosing exception handlers. Here's an example of using a
Finally block:

Dim s As System.IO.Stream =_
System.IO.File.Open("c:\test.txt", System.IO.FileMode.CreateNew)
Try

' Do something with the open stream.
' ...

Catch e As Exception
' Handle any exceptions.
' ...
Finally

' The stream should be closed whether or not there is an error.
s.Close()

End Try

Visual Basic .NET applications can intentionally throw exceptions to indicate errors or
other unusual occurrences. For example, if a method is expecting an argument that is
within a specific range and the actual value passed to the method is outside of that
range, the method can throw an exception of type ArgumentOutOfRangeException
(defined in the System namespace). This is done with the Throw statement, as shown
in Example 2-11.

Example 2-11. Throwing an exception

Public Sub SomeMethod(ByVal MyParameter As Integer)
' Ensure that the argument is valid.
If (MyParameter < 10) Or (MyParameter > 100) Then
 Throw New ArgumentOutOfRangeException()
End If
' Remainder of method.
' ...

End Sub

The Throw statement requires an instance of some type derived from the Exception
type. When the Throw statement is reached, the runtime looks for an appropriate
Catch block in the calling code to handle the exception. If no suitable Catch block is
found, the runtime catches the exception itself and terminates the application. See
Appendix B for a list of exception types defined in the System namespace. Visual
Basic .NET applications can create their own exception types simply by declaring
types that derive from the Exception type. Example 2-12 shows how the exception
handling of Example 2-11 can be made more specific to the actual error that occurs. In
Example 2-12, a new exception type called MyParameterOutOfRangeException is

The Visual Basic .NET Language / 73

declared. Next, a method is shown that throws this exception. Lastly, a method is
shown that handles the exception.

Example 2-12. Defining and using a custom exception

' Define a custom exception class to represent a specific error condition.

Public Class MyParameterOutOfRangeException
 Inherits Exception

Public Sub New()
' The Exception type has a constructor that takes an error message
' as its argument. Because the Message property of the Exception
' type is read-only, using this constructor is the only way that
' the Message property can be set.
MyBase.New("The value passed in the MyParameter parameter" _
& " is out of range. The value must be in the range of" _& " 10 through 100.")

 End Sub
 End Class

' ...
' Define a method that may throw a custom exception.

Public Sub SomeMethod(ByVal MyParameter As Integer)

' Ensure that the argument is valid.
If (MyParameter < 10) Or (MyParameter > 100) Then
Throw New MyParameterOutOfRangeException()
End If
' Remainder of method.
' ...

End Sub
' ...
' Call the SomeMethod method, catching only the
' MyParameterOutOfRangeException exception.

 Public Sub SomeCaller()

Try
SomeMethod(500)
Catch e As MyParameterOutOfRangeException
' ...

 End Try
 End Sub

What About On Error?

Visual Basic 6 did not have exception objects and Try...Catch blocks. Instead, it used
the On Error statement to specify a line within the current procedure to which
execution should jump if an error occurred. The code at that point in the procedure
could then examine the Err intrinsic object to determine the error that had occurred.
For compatibility with previous versions, Visual Basic .NET continues to support the
On Error and related statements, but they should not be used in new development, for
the following reasons:

 Structured exception handling is more flexible.
 Structured exception handling does not use error codes. (Applicationdefined

error codes often clashed with error codes defined by other applications.)
 Structured exception handling exists at the .NET Framework level, meaning that

regardless of the language in which each component is written, exceptions
can be thrown and caught across component boundaries.

2.20 DELEGATES

A delegate is a programmer-defined type that abstracts the ability to call a method. A
delegate-type declaration includes the declaration of the signature and return type that
the delegate encapsulates. Instances of the delegate type can then wrap any method
that exposes the same signature and return type, regardless of the class on which the

VB .Net / 74

method is defined and whether the method is an instance method or shared method of
the defining class. The method thus wrapped can be invoked through the delegate
object. The delegate mechanism provides polymorphism for methods having the same
signature and return type. Delegates are often used to implement callback
mechanisms. Imagine a class that will be used by a program you are writing. This
class provides some useful functionality, including the ability to call in to a method that
you must implement within your program. Perhaps this callback mechanism is
provided to feed your program data as it becomes available in the class you are using.
One way to achieve this capability is through the use of delegates. Here's how:

1. The writer of the class you're using (call it a server class) declares a public delegate

type that defines the signature and return value of the method that you will
implement.

2. The writer of the server class exposes a method for clients of the class to pass in
an instance of the delegate type.

3. You implement a method having the appropriate signature and return value.
4. You instantiate a new object of the delegate type.
5. You connect your method to your delegate instance.
6. You call the method defined in Step 2, passing in your delegate instance.
7. The server class now has a delegate instance that wraps your method. The class

can call your method through the delegate at any time.
8. Depending on the application, it might be appropriate for the writer of the server

class to provide a method that allows the client application to disconnect its
delegate from the server to stop receiving callbacks.

Example 2-13 shows an example of this mechanism.

Example 2-13. Defining and using a delegate type to implement acallback
mechanism

 ' This class is defined in the server component.

Public Class ServerClass

‘Even though the following declaration looks similar to a ' method declaration, it is
‘actually a type declaration. It compiles to a type that ultimately derives from the
‘System.Delegate type. The purpose of the method syntax in this declaration is to
‘define the signature and return type ' of the methods that instances of this delegate
‘type are able to wrap.

Public Delegate Sub MessageDelegate(ByVal msg As String)

‘The following is a private field that will hold an instance of ' the delegate type. The
‘instance will be provided by the client by calling the RegisterForMessages
‘method. Even though this field can hold only a single delegate instance, the '
‘System.Delegate class itself is designed such that a ' delegate instance can refer
‘to multiple other delegate instances. This feature is inherited by all delegate
‘types.Therefore, the client will be able to register multiple ' delegates, if desired.
‘See the RegisterForMessages and UnregisterForMessages methods in the current
‘class to see ' how multiple delegates are saved.

Private m_delegateHolder As MessageDelegate = Nothing

' The client calls the RegisterForMessages method to give the ' server a delegate
‘instance that wraps a suitable method on the client.

Public Sub RegisterForMessages(ByVal d As MessageDelegate)

'The System.Delegate class's Combine method takes two ' delegates and returns a
‘delegate that represents them both. The return type is System.Delegate, which
‘must be explicitly converted to the appropriate delegate type.

Dim sysDelegate As System.Delegate=System.Delegate.Combine
(m_delegateHolder, d)
m_delegateHolder = CType(sysDelegate, MessageDelegate)

End Sub

The Visual Basic .NET Language / 75

' The client calls the UnregisterForMessages method to tell
' the server not to send any more messages through a
' particular delegate instance.

Public Sub UnregisterForMessages(ByVal d As MessageDelegate)

' The System.Delegate class's Remove method takes two
' delegates. The first is a delegate that represents a list
' of delegates. The second is a delegate that is to be
' removed from the list. The return type is
' System.Delegate, which must be explicitly converted to
' the appropriate delegate type.

Dim sysDelegate As System.Delegate = _
System.Delegate.Remove(m_delegateHolder, d)

m_delegateHolder = CType(sysDelegate, MessageDelegate)

End Sub
' The DoSomethingUseful method represents the normal
' processing of the server object. At some point during
' normal
' processing, the server object decides that it is time to
' send a message to the client(s).

Public Sub DoSomethingUseful()
' ...
' Some processing has led up to a decision to send a
' message. However, do so only if a delegate has been
' registered.

If Not (m_delegateHolder Is Nothing) Then
' The delegate object's Invoke method invokes the
' methods wrapped by the delegates represented by
' the given delegate.

m_delegateHolder.Invoke("This is the msg parameter.")
End If

' ...
End Sub
End Class ' ServerClass

' This class is defined in the client component.

Public Class ClientClass

' This is the callback method. It will handle messages
' received from the server class.

Public Sub HandleMessage(ByVal msg As String)
Console.WriteLine(msg)

End Sub
' This method represents the normal processing of theclient
' object. As some point during normal processing,the client
' object creates an instance of the server class and passes
' it
' a delegate wrapper to the HandleMessage method.

Public Sub DoSomethingUseful()
' ...
Dim server As New ServerClass()
' The AddressOf operator in the following initialization
' is a little misleading to read. It's not returning an
' address at all. Rather, a delegate instance is being
' created and assigned to the myDelegate variable.

Dim myDelegate As ServerClass.MessageDelegate _
= AddressOf HandleMessage
server.RegisterForMessages(myDelegate)

' ...
' This represents other calls to the server object, which

VB .Net / 76

' might somehow trigger the server object to call back
' to
' the client object.

server.DoSomethingUseful()
' ...
' At some point, the client may decide that it doesn't
' want
' any more callbacks.

server.UnregisterForMessages(myDelegate)
End Sub

End Class ' ClientClass

Delegates are central to event handling in the .NET Framework. See the next section
for more information.
Programming Visual Basic .NET
Delegates don't provide any capabilities that can't be achieved in other ways. For
example, the solution in Example 2-13 could have been achieved in at least two ways
that don't involve delegates:

 The server component could define an abstract base class defining the method to

be implemented by the client. The client would then define a class that inherits
from the server's abstract base class, providing an implementation for the class's
one method. The server would then provide methods for registering and
unregistering objects derived from the abstract base class.

 The server component could define an interface that includes the definition of the
method to be implemented by the client. The client would then define a class that
implemented this interface, and the server would provide methods for registering
and unregistering objects that expose the given interface. Any of these methods
(including delegates) could be a reasonable solution to a given problem. Choose
the one that seems to fit best. Delegates are sometimes characterized as safe
function pointers. I don't think that this characterization aids the learning process,
because delegates aren't any sort of pointer—safe or otherwise. They are objects
that encapsulate method access. Delegate objects can invoke methods without
knowing where the actual methods are implemented. In effect, this allows
individual methods to be treated in a polymorphic way

2.16- 2.20 Check Your Progress
Fill in the blanks
1. …………….definitions can include properties, fields, methods, and constructor.
2. ………….. is the process of taking a reference to a value type and copying the

referenced value into an actual value type.
3. An ………………….. is a type whose values are explicitly named by the creator of

the type.
4. A …………… is a programmer-defined type that abstracts the ability to call a

method.
5. Delegates are the comparable to ………………….. in C++.

2.21 EVENTS

An event is a callback mechanism. With it, objects can notify users that something
interesting has happened. If desired, data can be passed from the object to the client
as part of the notification.Throughout this section, I use the terms event producer,
producer class, and producer object to talk about a class (and its instances) capable of
raising events. I use the terms event consumer, consumer class, and consumer object
to talk about a class (and its instances) capable of receiving and acting on events
raised by an event producer. Here is a class that exposes an event:

Public Class EventProducer
Public Event SomeEvent()

Public Sub DoSomething()
' ...
RaiseEvent SomeEvent()
' ...
End Sub

The Visual Basic .NET Language / 77

End Class

The Event statement in this code fragment declares that this class is capable of raising
an event called SomeEvent. The empty parentheses in the declaration indicate that
the event will not pass any data. An example later in this section will show how to
define events that pass data. The RaiseEvent statement in the DoSomething method
raises the event. Any clients of the object that have registered their desire to receive
this event will receive it at this time. Receiving an event means that a method will be
called on the client to handle the event. Here is the definition of a client class that
receives and handles events from the EventProducer class:

Public Class EventConsumer
 Private WithEvents producer As EventProducer

Public Sub producer_SomeEvent() Handles producer.SomeEvent
 C onsole.WriteLine("Hey, an event happened!!")
End Sub

Public Sub New()
 producer() = New EventProducer()
End Sub

Public Sub DoSomething()

' ...
producer().DoSomething()
' ...

End Sub
End Class

The key aspects here are:

 The consumer object has a field that contains a reference to the producer

object.
 The consumer object has a method capable of handling the event. A method is

capable of handling an event if the method and event have the same signature.
The name of the method is not important.

 The handler-method declaration has a handles clause.
 The handles clause specifies the event to be handled. The identifier before the

dot indicates the field with the object to generate events. The identifier after the
dot indicates the name of the event. The handler method is called
synchronously, which means that the statement following the RaiseEvent
statement in the event producer does not execute until after the method
handler in the consumer completes. If an event has multiple consumers, each
consumer's event handler is called in succession. The order in which the
multiple consumers are called is not specified.

Here's a class that exposes an event with parameters:

Public Class EventProducer
 Public Event AnotherEvent(ByVal MyData As Integer)

Public Sub DoSomething()
 ' ...
RaiseEvent AnotherEvent(42)
 ' ...
End Sub

End Class

And here's a class that consumes it:

Public Class EventConsumer
Private WithEvents producer As EventProducer
Public Sub New()
 +producer = New EventProducer()
End Sub
Public Sub producer_AnotherEvent(ByVal MyData As Integer) _

Handles producer.AnotherEvent
Console.WriteLine("Received the 'AnotherEvent' event.")

VB .Net / 78

Programming Visual Basic .NET

Console.WriteLine("The value of MyData is {0}.", Format(MyData))
End Sub
Public Sub DoSomething()

' ...
producer().DoSomething()
' ...

End Sub
End Class

The result of calling the EventConsumer class's DoSomething method is:
Received the 'AnotherEvent' event.
The value of MyData is 42.

2.21.1 Using Events and Delegates Together

Under the covers, .NET uses delegates as part of its events architecture. Delegates
are necessary in this architecture because they enable hooking up the consumer
class's event-handler method to the event producer (recall that delegates encapsulate
method invocation). The Visual Basic .NET compiler hides the details of this
mechanism, quietly creating delegates as needed under the surface. However, the
programmer is free to make this process explicit. The following definition of the
EventProducer class is semantically equivalent to the previous one:

Public Class EventProducer
Public Delegate Sub SomeDelegate(ByVal MyData As Integer)
Public Event AnotherEvent As SomeDelegate
Public Sub DoSomething()

' ...
RaiseEvent AnotherEvent(42)
' ...

End Sub
End Class

Note here that the declaration of SomeDelegate defines a delegate capable of
wrapping any subroutine whose signature matches the signature given in the
declaration. The subsequent declaration of AnotherEvent defines an event that will use
the signature defined by SomeDelegate.Regardless of which syntax is being used,
events are actually fields whose type is some delegate type. Variations in syntax are
possible on the consumer side, too. When the WithEvents and Handles keywords are
used, Visual Basic .NET creates a delegate that wraps the given handler method and
then registers that delegate with the object and event given in the Handles clause. The
WithEvents and Handles keywords can be omitted, and the delegate declaration and
hookup can be done explicitly, as shown here:

Public Class EventConsumer
Private producer As EventProducer
Public Sub New()

producer = New EventProducer()
AddHandler producer.AnotherEvent, _

 NewEventProducer.SomeDelegate(AddressOf producer_AnotherEvent)
End Sub
Public Sub producer_AnotherEvent(ByVal MyData As Integer)

Console.WriteLine("Received the 'AnotherEvent' event.")
Console.WriteLine("The value of MyData is {0}.", Format(MyData))

End Sub
Public Sub DoSomething()

' ...
producer.DoSomething()
' ...

End Sub
End Class

The hookup of the handler method to the event producer is done with this statement in
the EventConsumer class's constructor:

The Visual Basic .NET Language / 79

AddHandler producer.AnotherEvent, _New EventProducer.SomeDelegate(AddressOf
producer_AnotherEvent)
The AddHandler statement and its companion, the RemoveHandler statement, allow
event handlers to be dynamically registered and unregistered. The RemoveHandler
statement takes exactly the same parameters as the AddHandler statement.

2.22 STANDARD MODULES

A standard module is a type declaration. It is introduced with the Module statement, as
shown here:

Public Module ModuleTest
 ' ...
End Module

Don't confuse the Visual Basic .NET term, standard module, with the .NET term,
module. They are unrelated to each other. Later we see for information about .NET
modules. Standard module definitions are similar to class definitions, with these
differences:

1. Standard module members are implicitly shared.
2. Standard modules cannot be inherited.
3. The members in a standard module can be referenced without being qualified
 with the standard module name. Standard modules are a good place to put
 global variables and procedures that aren't logically associated with any class.

2.23 ATTRIBUTES

An attribute is a program element that modifies some declaration. Here is a simple
example:

<SomeAttribute()> Public Class SomeClass
 ' ...
End Class

This example shows a fictitious SomeAttribute attribute that applies to a class
declaration.Attributes appear within angle brackets (<>) and are following by
parentheses (()), which may contain a list of arguments. To apply multiple attributes to
a single declaration, separate them with commas within a single set of angle brackets,
like this:

<SomeAttribute(), SomeOtherAttribute()> Public Class SomeClass
 ' ...
End Class

Attributes can be placed on the following kinds of declarations:

Types

This includes classes, delegates, enumerations, events, interfaces, Visual Basic
.NET standard modules, and structures. The attribute is placed at the beginning of
the first line of the type declaration:

<SomeAttribute()> Public Class SomeClass
 ' ...
End Class

Constructors
 The attribute is placed at the beginning of the first line of the constructor
 declaration:

<SomeAttribute()> Public Sub New()
 ' ...
End Sub

VB .Net / 80

Fields
 The attribute is placed at the beginning of the field declaration:

 <SomeAttribute()> Public SomeField As Integer

Methods
The attribute is placed at the beginning of the first line of the method declaration:

<SomeAttribute()> Public Sub SomeMethod()
 ' ...
End Sub

Parameters
The attribute is placed immediately prior to the parameter declaration. Each parameter
can have its own attributes:

Public Sub SomeMethod(<SomeAttribute()> ByVal SomeParameter As Integer)

Properties
An attribute that applies to a property is placed at the beginning of the first line of the
property declaration. An attribute that applies specifically to one or both of a property's
Get or Set methods is placed at the beginning of the first line of the respective method
declaration:

<SomeAttribute()> Public Property SomeProperty() As Integer
Get
' ...

End Get
<SomeOtherAttribute()> Set(ByVal Value As Integer)
' ...
End Set

End Property

Return values
The attribute is placed after the As keyword and before the type name:

Public Function SomeFunction() As <SomeAttribute()> Integer
 ' ...
End Function

Assemblies
The attribute is placed at the top of the Visual Basic .NET source file, following any
Imports statements and preceding any declarations. The attribute must be qualified
with the Assembly keyword so that the compiler knows to apply the attribute to the
assembly rather than the module. Assemblies and modules are explained later.

Imports ...
 <Assembly: SomeAttribute()>
Public Class ...

Modules
The attribute is placed at the top of the Visual Basic .NET source file, following any
Imports statements and preceding any declarations. The attribute must be qualified
with the Module keyword so that the compiler knows to apply the attribute to the
module rather than the assembly. Assemblies and modules are explained later.

Imports ...
<Module: SomeAttribute()>
Public Class ...

Some attributes are usable only on a subset of this list. The .NET Framework supplies
several standard attributes. For example, the Obsolete attribute provides an indication
that the flagged declaration should not be used in new code. This allows component
developers to leave obsolete declarations in the component for backward
compatibility,while still providing a hint to component users that certain declarations
should no longer be used. Here's an example:

The Visual Basic .NET Language / 81

<Obsolete("Use ISomeInterface2 instead.")> Public Interface ISomeInterface
 ' ...
End Interface

When this code is compiled, the Obsolete attribute and the associated message are
compiled into the application. Tools or other code can make use of this information.
For example, if the compiled application is a code library referenced by some project in
Visual Studio .NET, Visual Studio .NET warns the developer when she tries to make
use of any items that are flagged as Obsolete. Using the previous example, if the
developer declares a class that implements ISomeInterface, Visual Studio .NET
displays the following warning:Obsolete: Use ISomeInterface2 instead.

2.23.1 Creating Custom Attributes

The attribute mechanism is extensible. A new attribute is defined by declaring a class
that derives from the Attribute type (in the System namespace) and that provides an
indication of what declarations the attribute should be allowed to modify. Here's an
example:

<AttributeUsage(AttributeTargets.All)> Public Class SomeAttribute
 Inherits System.Attribute
End Class

This code defines an attribute called SomeAttribute. The SomeAttribute class itself is
modified bythe AttributeUsage attribute. The AttributeUsage attribute is a standard
.NET Framework attribute that indicates which declarations can be modified by the
new attribute. In this case, the value of AttributeTargets.All indicates that the
SomeAttribute attribute can be applied to any and all declarations. The argument of
the AttributeUsage attribute is of type AttributeTargets (defined in the System
namespace). The values in this enumeration are:

 Assembly,
 Module,
 Class,
 Struct,
 Enum,
 Constructor,
 Method,
 Property,
 Field,
 Event,
 Interface,
 Parameter,
 Delegate,
 ReturnValue, and All.

To create an attribute that takes one or more arguments, add a parameterized
constructor to the attribute class. Here's an example:

<AttributeUsage(AttributeTargets.Method)>_

PublicClass MethodDocumentationAttribute

Inherits System.Attribute

Public ReadOnly Author As String
Public ReadOnly Description As String
Public Sub New(ByVal Author As String, ByVal Description As String)

Me.Author = Author
Me.Description = Description

End Sub
End Class

This code defines an attribute that takes two parameters: Author and Description. It
could be used to modify a method declaration like this:

VB .Net / 82

<MethodDocumentation("Dave Grundgeiger", "This is my method.")> _
Public Sub SomeMethod()
 ' ...
End Sub

By convention, attribute names end with the word Attribute. Visual Basic .NET
references attributes either by their full names—for example,
MethodDocumentationAttribute—or by their names less the trailing Attribute—for
example, MethodDocumentation. Attributes whose names do not end with the word
Attribute are simply referenced by their full names.

2.23.2 Reading Attributes

Compiled applications can be programmatically examined to determine what
attributes, if any, are associated with the applications' various declarations. For
example, it is possible to write a Visual Basic .NET program that searches a compiled
component for the Obsolete attribute and produces a report. This is done by using the
.NET Framework's reflection capability. Reflection is the ability to programmatically
examine type information. The .NET Framework provides a great deal of support for
reflection in the Type class (in the System namespace) and in the types found in the
System.Reflection namespace. Reflection deserves a book of its own, but here's a
brief look to get you started:

Imports System
Imports System.Reflection
' ...
Dim typ As Type = GetType(System.Data.SqlClient.SqlConnection)
Dim objs() As Object = typ.GetCustomAttributes(False)
Dim obj As Object
For Each obj In objs
 Console.WriteLine(obj.GetType().FullName)
Next

This code fragment does the following:

 Uses the GetType function to get a Type object that represents the

SqlConnection type (defined in the System.Data.SqlClient namespace). You
can experiment with putting any type name here (including the types that you
create). I chose SqlConnection because I know that it happens to have an
attribute associated with it.

 Calls the GetCustomAttributes method of the Type object to get an array of

objects that represent the attributes associated with the type. Each object in
the array represents an attribute.

 Loops through the object array and prints the type name of each object. The

type name is the name of the attribute. The output is shown here:

System.ComponentModel.DefaultEventAttribute Reflection is not discussed further in
this book. Review the .NET documentation for the System.Reflection namespace for
more information.

2.24 CONDITIONAL COMPILATION

Conditional compilation is the ability to specify that a certain block of code will be
compiled into the application only under certain conditions. Conditional compilation
uses precompiler directives to affect which lines are included in the compilation
process. This feature is often used to wrap code used only for debugging. For
example:

#Const DEBUG = True
Public Sub SomeMethod()
#If DEBUG Then
Console.WriteLine("Entering SomeMethod()")
#End If

The Visual Basic .NET Language / 83

' ...
#If DEBUG Then
Console.WriteLine("Exiting SomeMethod()")
#End If
End Sub

The #Const directive defines a symbolic constant for the compiler. This constant is
later referenced in the #If directives. If the constant evaluates to True, the statements
within the #If block are compiled into the application. If the constant evaluates to False,
the statements within the #If block are ignored. The scope of constants defined by the
#Const directive is the source file in which the directive appears. However, if the
constant is referenced prior to the definition, its value is Nothing. It is therefore best to
define constants near the top of the file. Alternatively, compiler constants can be
defined on the command line or within the Visual Studio .NET IDE. If you're compiling
from the command line, use the /define compiler switch, like this:
vbc MySource.vb /define:DEBUG=TrueYou can set multiple constants within a single
/define switch by separating the symbol=value pairs with commas, like this:vbc
MySource.vb /define:DEBUG=True,SOMECONSTANT=42

To assign compiler constants in Visual Studio .NET:

1. Right-click on the project name in the Solution Explorer window and choose

Properties. This brings up the Project Property Pages dialog box. (If the Solution
Explorer window is not visible,choose View Solution Explorer from the Visual Studio
.NET main menu to make it appear.)

2. Within the Project Property Pages dialog box, choose the Configuration Properties

folder.
Within that folder, choose the Build property page. This causes the configuration
build options to appear on the right side of the dialog box.

3. Add values to the Custom constants text box on the right side of the dialog box.

2.21 - 2.24 Check Your Progress

Fill in the blanks.
1. An ……………….. is a callback mechanism.
2. A ……………… is a type declaration.
3. An …………….. is a program element that modifies declaration.
4. ……………… is the ability to specify that a certain block of code.

2.25 SUMMARY

This chapter provided an overview of the syntax of the Visual Basic .NET language. In
Chapter 3,
you'll learn about the .NET Framework—an integral part of developing in any .NET
language.Subsequent chapters will teach you how to accomplish specific programming
tasks in VisualBasic .NET.

2.26 CHECK YOUR PROGRESS- ANSWERS

2.1 - 2.4
1. aspx
2. Namespace
3. Reserved
4. Literals

2.5 - 2.9
1. True
2. True
3. True
4. False
5. True

VB .Net / 84

2.10 - 2.13
1. Visibility of identifiers
2. Access modifiers
3. Private
4. TypeOf
5. Unary

2.14 - 2.15
1. False
2. True
3. False
4. True
5. True

2.16 - 2.20
1. Structure
2. Unboxing
3. Enumerations
4. Delegate
5. Function Pointer

2.21 - 2.24
1. Event
2. Standard modules
3. Attribute
4. Conditional compilation

2.27 QUESTIONS FOR SELF-STUDY

1. Write short not on literals?
2. Explain branching statement?
3. Write short note on constructors & inheritance?
4. Explain Boxing & Unboxing?
5. Explain Enumerations?
6. What is the use of attributes in .Net
7. Compare delegate with function pointers of C++

2.28 SUGGESTED READINGS

1. Visual Basic .NET Black Book by Steven Holzner

References

Programming Visual Basic .NET by Dave Grundgeiger

The Visual Basic .NET Language / 85

NOTES

VB .Net / 86

NOTES

The. Net Framework / 87

CHAPTER 3

THE .NET FRAMEWORK

 3.0 Objectives
 3.1 Introduction
 3.2 Common Language Infrastructure (CLI)
 & Common Language Runtime (CLR)
 3.3 Common Type Systems (CTS)
 3.3.1 Namespaces
 3.4 Portions of the CLI
 3.5 Modules and Assemblies
 3.5.1 Global Assembly Cache (GAC)
 3.5.2 Comparison of Assemblies, Modules
 & Namespaces
 3.6 Application Domains
 3.7 Common Language Specification (CLS)
 3.8 Intermediate Language (IL) & Just In
 Time (JIT) Compilation
 3.9 Metadata
 3.10 Memory Management & Garbage Collection
 3.10.1 Finalize
 3.10.2 Dispose
 3.11 A brief tour of the . NET Framework Name
 spaces
 3.12 Configuration
 3.12.1 Configuration File Formal
 3.12.2 Configuration Section Groups
 3.12.3 The <appsettings> Section
 3.13 Summary
 3.14 Check your Progress – Answers
 3.15 Questions for Self Study
 3.16 Suggested Readings

3.0 OBJECTIVES

After you study The. NET Framework chapter you will able to :

 describe common language Infrastructure (CLI) & common language
Runtime (CLR)

 explain common type systems (CTS), CLS.
 describe Modules & Assemblies, Application domains, common

language specification (CLS) Intermediate Language & Just In Time
Compilation, Metadata

 you will learn & understand Memary management & Garbeg
collection. A bric tour of the. Net Framework Namespaces,
Configuration

 3.1 INTRODUCTION

The .NET Framework is the next iteration of Microsoft's platform for developing
component-based software. It provides fundamental advances in runtime services for
application software. It also supports development of applications that can be free of
dependencies on hardware, operating system, and language compiler. This chapter
provides an overview of the architecture of the .NET Framework and describes the
base features found in the core of its class library. The .NET Framework is a software
framework developed by Microsoft that runs primarily on Microsoft Windows. It
includes a large library and provides language interoperability (each language can use

VB .Net / 88

code written in other languages) across several programming languages. Programs
written for the .NET Framework execute in a software environment, known as the
Common Language Runtime (CLR), an application virtual machine that provides
services- such as security, memory management, and exception handling. The class
library and the CLR together constitute the .NET Framework.

3.2 COMMON LANGUAGE INFRASTRUCTURE (CLI) AND COMMON

LANGUAGE RUNTIME (CLR)

At the heart of the .NET Framework is a new mechanism for loading and running
programs and
managing their interactions. This mechanism is described in the Common Language
Infrastructure (CLI), a specification for a runtime environment that allows software
components to:

 Pass data between each other without regard to the programming language in
 which each component is written

 Execute on different operating systems and on different hardware platforms

without having to recompile the high-level source code (a low-level compilation
still automatically occurs on the target platform, as will be discussed in this
chapter) Although the CLI specification was created by Microsoft, it has since
been submitted to the ECMA standards organization (http://www.ecma.ch),
which now has responsibility and control over it.

The CLI is just a specification—it has to be implemented in order to be useful. An
implementation of the CLI is known as a Common Language Runtime (CLR).
Microsoft's CLR implementation on the Windows platform is not under ECMA's control,
but it is Microsoft's intention that the CLR be a fully compliant implementation of the
CLI. As of this writing, the CLI has not been implemented on non- Windows platforms,
but Microsoft and others have announced intentions to do so. The CLI specifies how
executable code is loaded, run, and managed. The portion of the CLR that performs
the tasks of loading, running, and managing .NET applications is called the virtual
execution system (VES). Code run by the VES is called managed code . The CLI
greatly expands upon concepts that exist in Microsoft's Component Object Model
(COM). As its core feature, COM specifies how object interfaces are laid out in
memory. Any component that can create and consume this layout can share data with
other components that do the same. COM was a big step forward when it was
introduced (circa 1992), but it has its shortcomings. For example, in spite of its name,
COM actually has no concept of an object—only object interfaces. Therefore, COM
can't support passing native types from one component to another.

3.3 COMMON TYPE SYSTEM (CTS)

The CLI specification defines a rich type system that far surpasses COM's capabilities.
It's called the Common Type System (CTS). The CTS defines at the runtime level how
types are declared and used. Previously, language compilers controlled the creation
and usage of types, including their layout in memory. This led to problems when a
component written in one language tried to pass data to a component written in a
different language. Anyone who has written Visual Basic 6 code to call Windows API
functions, for instance, or who has tried to pass a JavaScript array to a component
written either in Visual Basic 6 or C++, is aware of this problem. It was up to the
developer to translate the data to be understandable to the receiving component. The
CTS obliterates this problem by providing the following features:

 Primitive types (Integer, String, etc.) are defined at the runtime level.
Components can easily pass instances of primitive types between each other
because they all agree on how that data is formatted.

 Complex types (structures, classes, enumerations, etc.) are constructed in a
way that is defined at the runtime level. Components can easily pass

The. Net Framework / 89

instances of complex types between each other because they all agree on
how complex types are constructed from primitive types.

 All types carry rich type information with them, meaning that a component that

is handed an object can find out the definition of the type of which the object is
an instance. This is analogous to type libraries in COM, but the CTS is
different because the type information is much richer and is guaranteed to be
present.

3.3.1 Namespaces
Namespaces were introduced in Chapter 2 as a way to group related types. They are
mentioned
again here because they aren't just a Visual Basic .NET concept; they are also used
by the CLR and by other languages that target the .NET platform. It's important to keep
in mind that to the CLR, a namespace is just part of a fully qualified type name, and
nothing more. See Section 3.4.2 later in this chapter for more information.

3.4 PORTIONS OF THE CLI

The CLI specification recognizes that the CLR can't be implemented to the same
extent on all platforms. For example, the version of the CLR implemented on a cell
phone won't be as versatile as the one implemented on Windows 2000 or Windows
XP. To address this issue, the CLI defines a set of libraries. Each library contains a set
of classes that implement a certain portion of the CLI's functionality. Further, the CLI
defines profiles. A profile is a set of libraries that must be implemented on a given
platform. The libraries defined by the CLI are:

Runtime Infrastructure Library

This library provides the core services that are needed to compile and run an
application that targets the CLI.

Base Class Library

This library provides the runtime services that are needed by most modern
programming languages. Among other things, the primitive data types are defined
in this library.

Network Library

This library provides simple networking services.

Reflection Library

This library provides the ability to examine type information at runtime and to invoke
members of types by supplying the member name at runtime, rather than at
compile time.

XML Library

This library provides a simple XML parser.

Floating Point Library

This library provides support for floating point types and operations.

Extended Array Library

This library provides support for multidimensional arrays. The profiles defined by
the CLI at this time are:

Kernel Profile

This profile defines the minimal functionality of any system claimed as an
implementation of the CLI. CLRs that conform to the Kernel Profile must implement
the Base Class Library and the Runtime Infrastructure Library.

Compact Profile

This profile includes the functionality of the Kernel Profile, plus the Network Library,
the Reflection Library, and the XML Library. It is intended that an implementation of
the Compact Profile can be lightweight, yet provide enough functionality to be
useful. Additional profiles will be defined in future versions of the CLI specification.
Any given implementation of the CLI is free to implement more than the
functionality specified by these minimal profiles. For example, a given

VB .Net / 90

implementation could support the Compact Profile but also support the Floating
Point Library. The .NET Framework on Windows 2000 supports all the CLI libraries,
plus additional libraries not defined by the CLI. Note that the CLI does not include
such major class libraries as Windows Forms, ASP.NET, and ADO.NET. These are
Microsoft-specific class libraries for developing applications on Windows platforms.
Applications that depend on these libraries will not be portable to other
implementations of the CLI unless Microsoft makes those class libraries available
on those other implementations.

3.1 - 3.4 Check Your Progress

Fill in the blanks
1. An implementation of the CLI is known as a …………………………
2. ……………….……….. defines at the runtime level how types are declared and

used.
3. …..………………… library provides the core service that are needed to compile and

run an application that targets the CLI.
4. JIT compiler is do compilation at ……………………..
5. CLR gets the ………………………… code to be run.

3.5 MODULES AND ASSEMBLIES

A module is an .exe or .dll file. An assembly is a set of one or more modules that
together make up an application. If the application is fully contained in an .exe file,
fine—that's a one-module assembly. If the .exe is always deployed with two .dll files
and one thinks of all three files as comprising an inseparable unit, then the three
modules together form an assembly, but none of them does so by itself. If the product
is a class library that exists in a .dll file, then that single .dll file is an assembly. To put it
in Microsoft's terms, the assembly is the unit of deployment in .NET.
An assembly is more than just an abstract way to think about sets of modules. When
an assembly is deployed, one (and only one) of the modules in the assembly must
contain the assembly manifest, which contains information about the assembly as a
whole, including the list of modules contained in the assembly, the version of the
assembly, its culture, etc. The command-line compiler and the Visual Studio .NET
compiler create single-module assemblies by default. Multiple-module assemblies are
not used in this book. Assembly boundaries affect type resolution. When a source file
is compiled, the compiler must resolve type names used in the file to the types'
definitions. For types that are defined in the same source project, the compiler gets the
definitions from the code it is compiling. For types that are defined elsewhere, the
compiler must be told where to find the definitions. This is done by referencing the
assemblies that contain the compiled type definitions. When the command-line
compiler is used, the /reference switch identifies assemblies containing types used in
the project being compiled. An assembly has the same name as the module that
contains the assembly manifest, except for the file extension. In some cases, however,
an assembly is specified by giving the full name of the module that contains the
assembly manifest. For example, to compile an application that uses the
system.Drawing.Point class, you could use the following command line:
vbc MySource.vb /reference:System.Drawing.dll
The documentation for the command-line compiler states that the argument to the
reference switch is an assembly. This is not quite accurate. The argument is the name
of the module that contains the assembly manifest for an assembly. If more than one
assembly needs to be referenced, you can list them all in the same /reference switch,
separated by commas, like this:

 vbcMySource.vb /reference:System.Drawing.dll,System.Windows.Forms.dll

The Visual Basic .NET command-line compiler automatically references two
assemblies:
mscorlib.dll, which contains most of the types found in the System namespace;
Microsoft.VisualBasic.dll which contains the types found in the Microsoft.VisualBasic
namespace.
When you're working within the Visual Studio .NET IDE, external assemblies are
referenced by doing the following:

The. Net Framework / 91

1. In the Solution Explorer window, right-click on References, then click on Add

Reference. The Add Reference dialog box appears, as shown in Figure 3-1.

2. Scroll down to find the desired assembly.

3. Double-click or highlight the assembly name, and press the Select button. The

assembly name appears in the Selected Components frame of the dialog box.

4. Select additional assemblies, or click OK.

Figure 3-1. The Add Reference dialog box

3.5.1 Global Assembly Cache (GAC)

By default, assemblies are not shared. When one assembly is dependent on another,
the two assemblies are typically deployed into a single application directory. This
makes it easy to install and remove an application. To install an application, simply
create the application directory and copy the files into it. To delete the application, just
delete the application directory. The Windows Registry is not used at all.If an assembly
must be shared among more than one program, either it can be copied into each
appropriate application directory or it can be installed into the global assembly cache
(GAC). The GAC is an area on disk (typically, it's the assembly subdirectory of the
Windows directory) that holds assemblies to be shared among all applications. All of
the .NET Framework assemblies reside in the GAC. (See Figure 3-2 for a partial view
of the assemblies in a typical GAC.) Placing an assembly into the GAC should be
avoided if possible: it makes application installation and removal more difficult. This is
because the Windows Installer or gacutil.exe must be used to manipulate the GAC—
you can no longer simply copy or remove the application directory. Installing
assemblies into the GAC is not covered in this book. For information, point your
browser to http://msdn.microsoft.com and perform a search for "Deploying Shared
Components.

" Figure 3-2. Partial view of a typical GAC

VB .Net / 92

3.5.2 Comparison of Assemblies, Modules, and Namespaces

It's easy to confuse the three concepts of namespace, module, and assembly. Here is
a recap:

Namespace

A portion of a type name. Specifically, it is the portion that precedes the final period
in a fully qualified type name.

Module
 A file that contains executable code (.exe or .dll).

Assembly

A set of one or more modules that are deployed as a unit. The assembly name is
the same as the name of the module that contains the assembly manifest, minus
the filename extension.Depending on how things are named, it can seem like these
three terms are interchangeable. For example, System.Drawing.dll is the name of a
module that is deployed as part of the .NET Framework.

As it happens, this module is part of a single-module assembly. Because assemblies
are named after the module that contains the assembly manifest, the assembly is
called System.Drawing. A compiler will reference this assembly as System.Drawing.dll.
Many (but not all) of the types in this assembly have a namespace of System.Drawing.
(Other types in the System.Drawing assembly have namespaces of
System.Drawing.Design, System.Drawing.Drawing2D, System.Drawing.Imaging,
System.Drawing.Printing, and System.Drawing.Text.) Note that even though the
namespace, module, and assembly are similarly named in this case, they are distinct
concepts. Note in particular that importing a namespace and referencing an assembly
are different operations with different purposes. The statement:
Imports System.Drawing allows the developer to avoid typing the fully qualified names
of the types in the System.Drawing namespace. It does not reference the assembly in
which those types are defined. To use the types, the System.Drawing assembly
(contained in the System.Drawing.dll module) must be referenced as described earlier
in this section. The Imports statement was introduced in Chapter 2. In other cases,
namespace and assembly names don't correspond. One example is the System
namespace. Some types with this namespace are found in the mscorlib assembly, and
others are found in the System assembly. In addition, each of those assemblies has
types with other namespaces. For example, the System assembly contains types with
the Microsoft. VisualBasic namespace, even though most of the types with that
namespace are found in the Microsoft.VisualBasic assembly. (The reason for this
apparent inconsistency is actually quite sound. Namespaces group types according to
functionality, while assemblies tend to group types according to which types are most
likely to be used together. This improves performance because it minimizes the
number of assemblies that have to be loaded at runtime.)

The. Net Framework / 93

When thinking about namespaces, just remember that types can have any namespace
at all, regardless of where they're defined—the namespace is just part of the type
name.

3.6 APPLICATION DOMAINS

Application domains are to the CLR what processes are to an operating system. It may
be surprising to note that the CLR can run multiple .NET applications within a single
process, without any contention or security difficulties. Because the CLR has complete
control over loading and executing programs, and because of the presence of type
information, the CLR guarantees that .NET applications cannot read or write each
other's memory, even when running in the same process. Because there is less
performance overhead in switching between application domains than in switching
between processes, this provides a performance gain. This is especially beneficial to
web applications running in Internet Information Services (IIS), where scalability is an
issue.

3.7 COMMON LANGUAGE SPECIFICATION (CLS)

The CLI defines a runtime that is capable of supporting most, if not all, of the features
found in modern programming languages. It is not intended that all languages that
target the CLR will support all CLR features. This could cause problems when
components written in different languages attempt to interoperate. The CLI therefore
defines a subset of features that are considered compatible across language
boundaries. This subset is called the Common Language Specification (CLS). Vendors
creating components for use by others need to ensure that all externally visible
constructs (e.g., public types, public and protected methods, parameters on public and
protected methods, etc.) are CLS-compliant. This ensures that their components will
be usable within a broad array of languages, including Visual Basic .NET. Developers
authoring components in Visual Basic .NET have an easy job because all Visual Basic
.NET code is CLS-compliant (unless the developer explicitly exposes a public or
protected type member or method parameter that is of a non-CLS-compliant
type).Because Visual Basic .NET automatically generates CLS-compliant components,
this book does not describe the CLS rules. However, to give you a sense of the kind of
thing that the CLS specifies, consider that some languages support a feature called
operator overloading . This allows the developer to specify actions that should be
taken if the standard operator symbols (+, -, *, /, =, etc.) are used on user-defined
classes. Because it is not reasonable to expect that all languages should implement
such a feature, the CLS has a rule about it. The rule states that if a CLS-compliant
component has public types that provide overloaded operators, those types must
provide access to that functionality in another way as well (usually by providing a
public method that performs the same operation).

3.8 INTERMEDIATE LANGUAGE (IL) AND JUST-IN-TIME (JIT)
COMPILATION

All compilers that target the CLR compile source code to Intermediate Language (IL),
also known as Common Intermediate Language (CIL). IL is a machine language that is
not tied to any specific machine. Microsoft designed it from scratch to support the CLI's
programming concepts. The CLI specifies that all CLR implementations can compile or
interpret IL on the machine on which the CLR is running. If the IL is compiled (versus
interpreted), compilation can occur at either of two times:
�Immediately prior to a method in the application being executed
�At deployment time In the first case, each method is compiled only when it is actually
needed. After the method is compiled, subsequent calls bypass the compilation
mechanism and call the compiled code directly. The compiled code is not saved to
disk, so if the application is stopped and restarted, the compilation must occur again.
This is known as just-in-time (JIT) compilation and is the most common scenario. In
the second case, the application is compiled in its entirety at deployment time. IL is
saved to .exe and .dll files. When such a file containing IL is executed, the CLR knows
how to invoke the JIT compiler and execute the resulting code. Note that on the
Microsoft Windows platforms, IL is always compiled—never interpreted.

VB .Net / 94

3.5 - 3.8 Check Your Progress

Fill in the blanks
1. An …………………… is a set of one or more modules that together up an

application.
2. The …………………… is an area on disk that holds assemblies to be shared

among applications.
3. ……………………… are to the CLR what processes are to an operating system.
4. The CLI defines a subset of features known as ……………………..
5. …………………… is a machine language that is not tied to any specific machine.

3.9 METADATA

Source code consists of some constructs that are procedural in nature and others that
are declarative in nature. An example of a procedural construct is:

someObject.SomeMember = 5

This is procedural because it compiles into executable code that performs an action at
runtime. Namely, it assigns the value 5 to the SomeMember member of the
someObject object.In contrast, here is a declarative construct:

Dim someObject As SomeClass

This is declarative because it doesn't perform an action. It states that the symbol
someObject is a variable that holds a reference to an object of type SomeClass. In the
past, declarative nformation typically was used only by the compiler and did not
compile directly into the executable. In the CLR, however, declarative information is
everything! The CLR uses type and signature information to ensure that memory is
always referenced in a safe way. The JIT compiler uses type and signature information
to resolve method calls to the appropriate target code at JIT compile time. The only
way for this to work is for this declarative information to be included alongside its
associated procedural information. Compilers that target the CLR therefore store both
procedural and declarative information in the resulting .exe or .dll file. The procedural
information is stored as IL, and the declarative information is stored as metadata.
Metadata is just the CLI's name for declarative information. The CLI has a mechanism
that allows programmers to include arbitrary metadata in compiled applications. This
mechanism is known as custom attributes and is available in Visual Basic .NET.
Custom attributes were discussed in detail in Chapter 2.

3.10 MEMORY MANAGEMENT AND GARBAGE COLLECTION

In any object-oriented programming environment, there arises the need to instantiate
and destroy objects. Instantiated objects occupy memory. When objects are no longer
in use, the memory they occupy should be reclaimed for use by other objects.
Recognizing when objects are no longer being used is called lifetime management,
which is not a trivial problem. The solution the CLR uses has implications for the
design and use of the components you write, so it is worth understanding. In the COM
world, the client of an object notified the object whenever a new object reference was
passed to another client. Conversely, when any client of an object was finished with it,
the client notified the object of that fact. The object kept track of how many clients had
references to it. When that count dropped to zero, the object was free to delete itself
(that is, give its memory back to the memory heap). This method of lifetime
management is known as reference counting. Visual Basic programmers were not
necessarily aware of this mechanism because the Visual Basic compiler automatically
generated the low-level code to perform this housekeeping. C++ developers had no
such luxury. Reference counting has some drawbacks:

 A method call is required every time an object reference is copied from one
variable to another and every time an object reference is overwritten.

The. Net Framework / 95

 Difficult-to-track bugs can be introduced if the reference-counting rules are not
precisely followed.

 Care must be taken to ensure that circular references are specially treated
(because circular references can result in objects that never go away).

The CLR mechanism for lifetime management is quite different. Reference counting is
not used. Instead, the memory manager keeps a pointer to the address at which free
memory (known as the heap) starts. To satisfy a memory request, it just hands back a
copy of the pointer and then increments the pointer by the size of the request, leaving
it in a position to satisfy the next memory request. This makes memory allocation very
fast. No action is taken at all when an object is no longer being used. As long as the
heap doesn't run out, memory is not reclaimed until the application exits. If the heap is
large enough to satisfy all memory requests during program execution, this method of
memory allocation is as fast as is theoretically possible, because the only overhead is
incrementing the heap pointer on memory allocations. If the heap runs out of memory,
there is more work to do. To satisfy a memory request when the heap is exhausted,
the memory manager looks for any previously allocated memory that can be
reclaimed. It does this by examining the application variables that hold object
references. The objects that these variables reference (and therefore the associated
memory) are considered in use because they can be reached through the program's
variables. Furthermore, because the runtime has complete access to the application's
type information, the memory manager knows whether the objects contain members of
the memory that is in use. During this process, it consolidates the contents of all this
memory into one contiguous block at the start of the heap, leaving the remainder of the
heap free to satisfy new memory requests. This process of freeing up memory is
known as garbage collection (GC), a term that also applies to this overall method of
lifetime management. The portion of the memory manager that performs garbage
collection is called the garbage collector. The benefits of garbage collection are:

 No overhead is incurred unless the heap becomes exhausted.
 It is impossible for applications to cause memory leaks.
 The application need not be careful with circular references.

Although the process of garbage collection is expensive (on the order of a fraction of a
second when it occurs), Microsoft claims that the total overhead of garbage collection
is on average much less than the total overhead of reference counting (as shown by
their benchmarks). This, of course, is highly dependent on the exact pattern of object
allocation and deallocation that occurs in any given program.

3.10.1 Finalize

Many objects require some sort of cleanup (i.e., finalization) when they are destroyed.
An example might be a business object that maintains a connection to a database.
When the object is no longer in use, its database connection should be released. The
.NET Framework provides a way for objects to be notified when they are about to be
released, thus permitting them to release nonmemory resources. (Memory resources
held by the object can be ignored because they will be handled automatically by the
garbage collector.) Here's how it works: the Object class (defined in the System
namespace) has a method called Finalize that can be overridden. Its default
implementation does nothing. If it is overridden in a derived class, however, the
garbage collector automatically calls it on an instance of that class when that instance
is about to be reclaimed. Here's an example of overriding the Finalize method:

Public Class SomeClass
Protected Overrides Sub Finalize()
' Release nonmanaged resources here.
MyBase.Finalize()
 ' Important
End Sub

End Class

The Finalize method should release any nonmanaged resources that the object has
allocated.Nonmanaged resources are any resources other than memory (for example,
database connections, file handles, or other OS handles). In contrast, managed
resources are object references. As already mentioned, it is not necessary to release
managed resources in a Finalize method—the garbage collector will handle it. After

VB .Net / 96

releasing resources allocated by the class, the Finalize method must always call the
base class's Finalize implementation so that it can release any resources allocated by
base-class code. If the class is derived directly from the Object class, technically this
could be omitted (because the Object class's Finalize method doesn't do nything).
However, calling it doesn't hurt anything, and it's a good habit to get into. An object's
Finalize method should not be called by application code. The Finalize method has
special meaning to the CLR and is intended to be called only by the garbage collector.
If you're familiar with destructors in C++, you'll recognize that the Finalize method is
the identical concept. The only difference between the Finalize method and C++
destructors is that C++ destructors automatically call their base class destructors,
whereas in Visual Basic .NET, the programmer must remember to put in the call to the
base class's Finalize method. It is interesting to note that C#—another language on the
.NET platform—actually has destructors (as C++ does), but they are automatically
compiled into Finalize methods that work as described here.

3.10.2 Dispose

The downside of garbage collection and the Finalize method is the loss of deterministic
finalization . With reference counting, finalization occurs as soon as the last reference
to an object is released (this is deterministic because object finalization is controlled by
program flow). In contrast, an object in a garbage-collected system is not destroyed
until garbage collection occurs or until the application exits. This is nondeterministic
because the program has no control over when it happens. This is a problem because
an object that holds scarce resources (such as a database connection) should free
those resources as soon as the object is no longer needed. If this is not done, the
program may run out of such resources long before it runs out of
memory.Unfortunately, no one has discovered an elegant solution to this problem.
Microsoft does have a recommendation, however. Objects that hold nonmanaged
resources should implement the IDisposable interface (defined in the System
namespace). The IDisposable interface exposes a single method, called Dispose,
which takes no parameters and returns no result. Calling it tells the object that it is no
longer needed. The object should respond by releasing all the resources it holds, both
managed and nonmanaged, and should call the Dispose method on any subordinate
objects that also expose the IDisposable interface. In this way, scarce resources are
released as soon as they are no longer needed. This solution requires that the user of
an object keep track of when it is done with the object. This is often trivial, but if there
are multiple users of an object, it may be difficult to know which user should call
Dispose. At the time of this writing, it is simply up to the programmer to work this out.
In a sense, the Dispose method is an alternate destructor to address the issue of
nondeterministic finalization when nonmanaged resources are involved. However, the
CLR itself never calls the Dispose method. It is up to the client of the object to call the
Dispose method at the appropriate time, based on the client's knowledge of when it is
done using the object. This implies responsibilities for both the class author and client
author. The class author must document the presence of the Dispose method so that
the client author knows that it's necessary to call it. The client author must make an
effort to determine whether any given class has a Dispose method and, if so, to call it
at the appropriate time. Even when a class exposes the IDisposable interface, it
should still override the Finalize method, just in case the client neglects to call the
Dispose method. This ensures that nonmanaged resources are eventually released,
even if the client forgets to do it. A simple (but incomplete) technique would be to place
a call to the object's Dispose method in its Finalize method, like this:

' Incomplete solution. Don't do this.
Public Sub Dispose() Implements IDisposable.Dispose
 ' Release resources here.
End Sub
Protected Overrides Sub Finalize()

Dispose()
MyBase.Finalize()

End Sub

In this way, if the client of the object neglects to call the Dispose method, the object
itself will do so when the garbage collector destroys it. Microsoft recommends that the
Dispose method be written so it is not an error to call it more than once. This way,
even if the client calls it at the correct time, it's OK for it to be called again in the
Finalize method. If the object holds references to other objects that implement the

The. Net Framework / 97

IDisposable interface, the code just shown may cause a problem. This is because the
order of object destruction is not guaranteed. Specifically, if the Finalize method is
executing, it means that garbage collection is occurring. If the object holds references
to other objects, the garbage collector may have already reclaimed those other
objects. If the object attempts to call the Dispose method on a reclaimed object, an
error will occur. This situation exists only during the call to Finalize—if the client calls
the Dispose method, subordinate objects will still be there. (They can't have been
reclaimed by the garbage collector because they are reachable from the application's
code.) To resolve this race condition, it is necessary to take slightly different action
when finalizing than when disposing. Here is the modified code:

Public Sub Dispose() Implements IDisposable.Dispose
DisposeManagedResources()
DisposeUnmanagedResources()

End Sub

Protected Overrides Sub Finalize()

DisposeUnmanagedResources()
MyBase.Finalize()

End Sub

Private Sub DisposeManagedResources()
 ' Call subordinate objects' Dispose methods.
End Sub

Private Sub DisposeUnmanagedResources()
 ' Release unmanaged resources, such as database connections.
End Sub

Here, the Finalize method only releases unmanaged resources. It doesn't worry about
calling the Dispose method on any subordinate objects, assuming that if the
subordinate objects are also unreachable, they will be reclaimed by the garbage
collector and their finalizers (and hence their Dispose methods) will run. An
optimization can be made to the Dispose method. When the Dispose method is called
by the client, there is no longer any reason for the Finalize method to be called when
the object is destroyed. Keeping track of and calling objects' Finalize methods imposes
overhead on the garbage collector. To remove this overhead for an object with its
Dispose method called, the Dispose method should call the SuppressFinalize shared
method of the GC class, like this: Public Sub Dispose() Implements
IDisposable.Dispose

DisposeManagedResources()
DisposeUnmanagedResources()
GC.SuppressFinalize(Me)
End Sub

The type designer must decide what will occur if the client attempts to use an object
after calling its Dispose method. If possible, the object should automatically reacquire
its resources. If this is not possible, the object should throw an exception. Example 3-1
shows the latter.

Example 3-1. A complete Finalize/Dispose example

Public Class SomeClass

Implements IDisposable
' This member keeps track of whether the object has been disposed.
Private disposed As Boolean = False
' The Dispose method releases the resources held by the object.
' It must be called by the client when the client no longer needs
' the object.
Public Sub Dispose() Implements IDisposable.Dispose

If Not disposed Then
DisposeManagedResources()
DisposeUnmanagedResources()
GC.SuppressFinalize(Me)
disposed = True

VB .Net / 98

End If
End Sub
' The Finalize method releases nonmanaged resources in the case
' that the client neglected to call Dispose. Because of the
' SuppressFinalize call in the Dispose method, the Finalize method
' will be called only if the Dispose method is not called.

Protected Overrides Sub Finalize()

DisposeUnmanagedResources()
MyBase.Finalize()

End Sub

Private Sub DisposeManagedResources()
 ' Call subordinate objects' Dispose methods.
End Sub

Private Sub DisposeUnmanagedResources()
 ' Release unmanaged resources, such as database connections.
End Sub

Private Sub DoSomething()

' Call the EnsureNotDisposed method at the top of every method that
' needs to access the resources held by the object.
EnsureNotDisposed()
' ...

End Sub

Private Sub EnsureNotDisposed()
' Make sure that the object hasn't been disposed.
' Instead of throwing an exception, this method could be written
' to reacquire the resources that are needed by the object.

If disposed Then
 Throw New ObjectDisposedException(Me.GetType().Name)
End If

End Sub
End

Class
3.11 A BRIEF TOUR OF THE .NET FRAMEWORK NAMESPACES

The .NET Framework provides a huge class library—something on the order of 6,000
types. To help developers navigate though the huge hierarchy of types, Microsoft has
divided them into namespaces. However, even the number of namespaces can be
daunting. Here are the most common namespaces and an overview of what they
contain:

Microsoft.VisualBasic

Runtime support for applications written in Visual Basic .NET. This namespace
contains the functions and procedures included in the Visual Basic .NET language.

Microsoft.Win32

Types that access the Windows Registry and provide access to system events
(such as low memory, changed display settings, and user logout).

System

Core system types, including:
 Implementations for Visual Basic .NET's fundamental types (see "Types" in

Chapter 2 for a list of fundamental types and the .NET classes that implement
them).

 Common custom attributes used throughout the .NET Framework class library
(see Appendix A), as well as the Attribute class, which is the base class for
most (although not all) custom attributes in .NET applications.

 Common exceptions used throughout the .NET Framework class l ibrary (see
 Appendix B), as well as the Exception class, which is the base class for all

exceptions in .NET applications. The Array class, which is the base class from
which all Visual Basic .NET arrays implicitly inherit.

The. Net Framework / 99

 The Convert class, which contains methods for converting values between
various types.

 The Enum class, from which all enumerations implicitly derive.
 The Delegate class, from which all delegates implicitly derive.
 The Math class, which has many shared methods for performing common

mathematical functions (e.g., Abs, Min, Max, Sin, and Cos). This class also
defines two constant fields, E and PI, that give the values of the numbers e and
pi, respectively, within the precision of the Double data type.

 The Random class, for generating pseudorandom numbers.
 . The Version class, which encapsulates version information for .NET

assemblies.

System.CodeDom
Types for automatically generating source code (used by tools such as the wizards
in Visual Studio .NET and by the ASP.NET page compiler).

System.Collections

Types for managing collections, including:

ArrayList

Indexed like a single-dimensional array and iterated like an array, but much more
flexible than an array. With an ArrayList, it is possible to add elements without
having to worry about the size of the list (the list grows automatically as needed),
insert and remove elements anywhere in the list, find an element's index given its
value, and sort the elements in the list.

BitArray

Represents an array of bits. Each element can have a value of True or False. The
BitArray class defines a number of bitwise operators that operate on the entire
array at once.

Hashtable

Represents a collection of key/value pairs. Both the key and value can be any
object.

Queue

Represents a queue, which is a first-in-first-out (FIFO) list.

SortedList

Like a Hashtable, represents a collection of key/value pairs. When enumerated,
however, the items are returned in sorted key order. In addition, items can be
retrieved by index, which the Hashtable cannot do. Not surprisingly, SortedList
operations can be slower than comparable Hashtable operations because of the
increased work that must be done to keep the structure in sorted order.

Stack

Represents a stack, which is a last-in-first-out (LIFO) list.
Be aware that in addition to these types, there is also the Array type, defined in the
System namespace, and the Collection type, defined in the Microsoft.VisualBasic
namespace. The latter is a collection type that mimics the behavior of Visual Basic
6 collection objects.

System.ComponentModel

Support for building components that can be added to Windows Forms and Web
Forms.

System.Configuration

Support for reading and writing program configuration.

System.Data

Support for data access. The types in this namespace constitute ADO.NET.

System.Diagnostics

Support for debugging and tracing.

VB .Net / 100

System.Drawing
Graphics-drawing support.

System.EnterpriseServices

Transaction-processing support.

System.Globalization

Internationalization support.

System.IO

Support for reading and writing streams and files.

System.Net

Support for communicating over networks, including the Internet.

System.Reflection

Support for runtime type discovery.

System.Resources

Support for reading and writing program resources.

System.Security

Support for accessing and manipulating security information.

System.ServiceProcess

Types for implementing system services.

System.Text

Types for manipulating text and strings.

Note : Particular to the StringBuilder type. When strings are built from smaller parts,
the methods on the StringBuilder class are more efficient than similar methods on the
String class.This is because the instances of the String class can't be modified in
place; every time a change is made to a String object, a new String object is actually
created to hold the new value. In contrast, the methods in StringBuilder that modify the
string actually modify the string in place.System.Threading Support for multithreaded
programming.

System.Timers

Provides the Timer class, which can generate an event at predetermined intervals.
This addresses one of the limitations of the Visual Basic 6 Timer control: it had to
be hosted in a container and therefore could be used only in an application with a
user interface.

System.Web

Support for building web applications. The types in this namespace constitute Web
Forms and
ASP.NET.

System.Windows.Forms

Support for building GUI (fat client) applications. The types in this namespace
constitute Windows Forms.

System.Xml

Support for parsing, generating, transmitting, and receiving XML.

3.12 CONFIGURATION

System and application configuration is managed by XML files with a .config
extension. Configuration files exist at both the machine and application level. There is
a single machine-level configuration file, located at
runtime_install_path\CONFIG\machine.config. For example,

C:\WINNT\Microsoft.NET\Framework\v1.0.2914\CONFIG\machine.config.

The. Net Framework / 101

Application-configuration files are optional. When they exist, they reside in the
application's root folder and are named application_file_name.config. For example,
myApplication.exe.config. Web applicationconfiguration files are always named
web.config. They can exist in the web application's root folder and in subfolders of the
application. Settings in subfolders' configuration files apply only to pages retrieved
from the same folder and its child folders and override settings from configuration files
in higher-level folders. Configuration files should be used for all application-
configuration information; the Windows Registry should no longer be used for
application settings.

3.12.1 Configuration File Format

Configuration files are XML documents, where the root element is <configuration>.
For example:
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<!-- More stuff goes in here. -->
</configuration>

To be as flexible as possible, .NET configuration files use a scheme in which the
application developer can decide on the names of the subelements within the
<configuration> element. This is done using the <configSections>, <section>, and
<sectionGroup> elements. Example 3-2 shows how this is done using the
<configSections> and <section> elements; the <sectionGroup>
element is discussed later in this section.

Example 3-2. Defining a section in a configuration file

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

 <configSections>
 <section name="mySectionName"

type="System.Configuration.SingleTagSectionHandler" />
 </configSections>
 <mySectionName

 someSetting="SomeValue"
 anotherSetting="AnotherValue" />

</configuration>

The name attribute of the <section> element specifies the name of an element that will
(or could) appear later in the file. The type attribute specifies the name of a
configuration section handler, which is a class that knows how to read an XML section
that's formatted in a particular way. The .NET Framework provides stock configuration
section handlers (notably the SingleTagSectionHandler and the
NameValueSectionHandler classes, both of which will be discussed later in this
section), which are sufficient for the majority of cases. Although it's beyond the scope
of this book, a custom configuration section handler can be created by writing a class
that implements the IConfigurationSectionHandler interface. The
SingleTagSectionHandler configuration section handler reads XML sections that are of
the form:

<sectionName key1Name="Value1" key2Name="Value2" etc... />

The element can contain any number of key/value pairs. The configuration section
handler class is not used directly in code. To read information from an application's
configuration file, use the GetConfig method in the ConfigurationSettings class
(defined in the System.Configuration namespace). The syntax of the GetConfig
method is:

Public Shared Function GetConfig(ByVal sectionName As String) As Object
Here's how the mechanism works (an example will follow):

1. The application calls the GetConfig method, passing it the name of the

configuration section that is to be read.

VB .Net / 102

2. Internally, the GetConfig method instantiates the configuration section handler class
that is appropriate for reading that section. (Recall that it is the values found in the
 <configSections> portion of the configuration file that identify the appropriate
configuration section handler class to use.)

3. The Create method of the configuration section handler is called and is passed the
XML from the requested configuration section.

4. The configuration section handler's Create method returns an object containing the
values read from the configuration section.

5. The object returned from the Create method is passed back to the caller of the
GetConfig method. The type of object returned from GetConfig is determined by the
specific configuration section handler that handles the given configuration section.
The caller of the GetConfig method must have enough information about the
configuration section handler to know how to use the object that is returned. Two
stock configuration section handlers—and the objects they create—will be
discussed in this section. Example 3-3 shows how to read the configuration file
shown in Example 3-2. To run this example, do the following:

 1. Create a new directory for the application.
 2. Save the code from Example 3-3 into a file named ConfigurationTest.vb.

 3. Compile the code with this command line:
 vbc ConfigurationTest.vb /reference:System.dll

The reference to the System assembly is required because the System
assembly contains the definition of the ConfigurationSettings class.The compiler
creates an executable file named ConfigurationTest.exe.

 4. Save the configuration file from Example 3-2 into a file named
ConfigurationTest.exe.config.

Run the executable from the command prompt. The application prints the configuration
values to the command window.

 Example 3-3. Reading the configuration file shown in Example 3-2

Imports System
Imports System.Collections
Imports System.Configuration

Public Module SomeModule

Public Sub Main()
Dim cfg As Hashtable
Dim strSomeSetting As String
Dim strAnotherSetting As String
cfg = CType(ConfigurationSettings.GetConfig("mySectionName"),
 _Hashtable)
If Not (cfg Is Nothing) Then

strSomeSetting = CType(cfg("someSetting"), String)
strAnotherSetting = CType(cfg("anotherSetting"), String)

End If
Console.WriteLine(strSomeSetting)
Console.WriteLine(strAnotherSetting)

End Sub

End Module

To read the configuration settings, the code in Example 3-3 calls the GetConfig
method of the ConfigurationSettings class. The SingleTagSectionHandler configuration
section handler creates a Hashtable object (defined in the System.Collections
namespace) to hold the key/value pairs found in the configuration file. That is why the
code in Example 3-3 calls the CType function to convert the reference returned by the
GetConfig method to a Hashtable reference. After that is done, the code can do
anything appropriate for a Hashtable object, including retrieving specific values by key
(as shown in Example 3-3) or iterating through the Hashtable object's items. Also note
that because Hashtable objects store values of type Object, the object references
retrieved from the Hashtable have to be converted to the appropriate reference type,
which in this case is String. The Visual Basic CStr function could have been used here,
although in this case the Visual Basic CType function is called instead. The application
does not specify the name of the configuration file in which to look for the configuration
information. The system automatically looks in the application_file_name.config file

The. Net Framework / 103

found in the application's directory. If the requested section is not found in that file, the
system automatically looks for it in the machine-configuration file. Another stock
configuration section handler is the NameValueSectionHandler class. This handler
also reads key/value pairs, but in a different format. Example 3-4 is the same as
Example 3-2, but rewritten to use NameValueSectionHandler.

Example 3-4. Using the NameValueSectionHandler configuration section Handler

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<configSections>
<section
name="mySectionName"
type="System.Configuration.NameValueSectionHandler" />
</configSections>
<mySectionName>
<add key="someSetting" value="SomeValue" />
<add key="anotherSetting" value="AnotherValue" />
</mySectionName>
</configuration>

Example 3-5 shows the code that reads this configuration section.

Example 3-5. Reading the configuration file shown in Example 3-4

Imports System
Imports System.Collections.Specialized
Imports System.Configuration
Public Module SomeModule

Public Sub Main()
Dim cfg As NameValueCollection
Dim strSomeSetting As String
Dim strAnotherSetting As String
cfg = CType(ConfigurationSettings.GetConfig("mySectionName"),
 _NameValueCollection)

If Not (cfg Is Nothing) Then
 strSomeSetting = CType(cfg("someSetting"), String)
strAnotherSetting = CType(cfg("anotherSetting"), String)

End If
Console.WriteLine(strSomeSetting)
Console.WriteLine(strAnotherSetting)

End Sub
End Module

The main difference to note in Example 3-5 is that the NameValueSectionHandler
creates an object of type NameValueCollection (defined in the
System.Collections.Specialized namespace).

3.12.2 Configuration Section Groups

If application-configuration information is to be stored in the machine-configuration file,
it is a good idea to introduce configuration section groups into the picture. (Recall that
if the runtime doesn't find the requested section in the application-configuration file, it
automatically looks for it in the machineconfiguration file.) This simply groups an
application's settings into an enclosing group element in the configuration file, so that
the contained elements won't potentially conflict with like-named elements for other
applications. Example 3-6 shows how to introduce a section group. It is identical to the
configuration file shown in Example 3-2, except that a section group is defined.

Example 3-6. Creating a section group

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

<configSections>
<sectionGroup name="myGroupName">

<section
name="mySectionName"
type="System.Configuration.SingleTagSectionHandler" />

VB .Net / 104

</sectionGroup>
</configSections>

<myGroupName>
<mySectionName
someSetting="SomeValue"
anotherSetting="AnotherValue" />

</myGroupName>
</configuration>

Example 3-7 shows how to read this configuration file in code.

Example 3-7. Reading the configuration file shown in Example 3-6

Imports System
Imports System.Collections
Imports System.Configuration
Public Module SomeModule
Public Sub Main()

Dim cfg As Hashtable
Dim strSomeSetting As String
Dim strAnotherSetting As String
cfg = CType(_

ConfigurationSettings.GetConfig("myGroupName/mySectionName"), _Hashtable)
If Not (cfg Is Nothing) Then

strSomeSetting = CType(cfg("someSetting"), String)
strAnotherSetting = CType(cfg("anotherSetting"), String)

End If
Console.WriteLine(strSomeSetting)
Console.WriteLine(strAnotherSetting)

End Sub
End Module

The only difference between Example 3-7 and Example 3-3 is the path-style syntax in
Example 3-7 used to specify the section name: "myGroupName/mySectionName".
Group definitions can be nested, if desired.

3.12.3 The <appSettings> Section

Most applications just need a simple way to store key/value pairs. To support this, the
machine.config file contains a predefined section definition called <appSettings>. It is
always legal to include an <appSettings> section in any configuration file. The
configuration section handler for the <appSettings> section is the
NameValueSectionHandler class, so the section should be in this form:

<appSettings>
<add key="setting1" value="value1" />
<add key="setting2" value="value2" />
<add key="setting3" value="value3" />
</appSettings>

Although the <appSettings> section can be read using the GetConfig method just like
any other section, the ConfigurationSettings class has a property that is specifically
intended to assist with reading the <appSettings> section. The read-only AppSettings
property of the ConfigurationSettings class returns a NameValueCollection object that
contains the key/value pairs found in the <appSettings> section. Example 3-8 shows
how to read the settings shown in the previous code listing.

Example 3-8. Reading the <appSettings> section

Imports System
Imports System.Collections.Specialized
Imports System.Configuration
Public Module SomeModule
 Public Sub Main()

Dim cfg As NameValueCollection
Dim strSetting1 As String

The. Net Framework / 105

Dim strSetting2 As String
Dim strSetting3 As String

cfg = CType(ConfigurationSettings.AppSettings,
NameValueCollection)

If Not (cfg Is Nothing) Then
strSetting1 = CType(cfg("setting1"), String)
strSetting2 = CType(cfg("setting2"), String)
strSetting3 = CType(cfg("setting3"), String)

End If
Console.WriteLine(strSetting1)
Console.WriteLine(strSetting2)
Console.WriteLine(strSetting3)

 End Sub
End Module

The name/value pairs in the <appSettings> section are developer-defined. The CLR
doesn't
attribute any intrinsic meaning to any particular name/value pair.

3.9 -3.12 Check Your Progress

1. In NET framework, the declarative information is stored as ……………………..
2. Recognizing when objects are no longer being used is called ……………………..
3. The process of freeing up memory is known as ……………………..
4. The ……………………. method is an alternate destructor address.
5. …………………… represents a collection of key / value pairs.

3.13 SUMMARY

The .NET Framework is a broad and deep new foundation for application
development. At its core is a runtime that provides services that were previously found
in compiler libraries. This runtime eliminates the application's need to possess
knowledge of the underlying operating system and hardware, while providing
performance on par with natively compiled code.

3.14 CHECK YOUR PROGRESS-ANSWERS

3.1- 3.3
1. Common Language Runtime
2. CTS
3. Runtime Infrastrucure
4. Run Time
5. Managed Code

3.4 - 3.7
1. Assembly
2. Global Assembly Cache
3. Application domains
4. Common Language Specification
5. Intermediate Language.

3.8- 3.11
1. Meta-data
2. Life management
3. Garbage collection
4. Dispose
5. Hash Table

VB .Net / 106

3.15 QUESTIONS FOR SELF-STUDY

1. Describe GAC in detail.
2. What is assembly , differentiate between global and private assembly?
3. Compare GC of .Net with Garbage collector of JAVA.
4. Describe namespace and differeintiate that with Assembly.
5. How can we make a private assembly global, state all the steps.

3.16 SUGGESTED READINGS

1. Visual Basic .NET Black Book by Steven Holzner

References

Programming Visual Basic .NET by Dave Grundgeiger

Windows Forms I : Developing Desktop Applications / 107

NOTES

VB .Net / 108

NOTES

Windows Forms I : Developing Desktop Applications / 109

CHAPTER 4
WINDOWS FORMS I: DEVELOPING

DESKTOP APPLICATIONS

4.0 Objectives
4.1 Introduction
4.2 Creating a Form
 4.2.1 Creating a Form using
 Visual Studio . NET
 4.2.2 Creating a Form incode
4.3 Relationships between forms
4.4 MDI Applications
 4.4.1 Parent & Child Forms
 4.4.2 Creating a window Menu
 4.4.3 Merging menus
 4.4.4 Detecting MDI child window
 activation
4.5 Component atlributes
4.6 2-D Graphics programming with GDI+
 4.6.1 The Graphics class
 4.6.2 The Pen class
 4.6.3 The Brush class
 4.6.4 The colors structures
 4.6.5 Alpha blending
 4.6.6 Anti-aliasing
4.7 Printing
 4.7.1 hello printer
 4.7.2 The print page EventARGS class
 4.7.3 The Onbeginprint and OnEndPrint
 Methods
 4.7.4 Choosing a Printer
 4.7.5 The PageSettings Class
 4.7.6 The Printer Settings Class
 4.7.7 Page Setup Dialog Box
 4.7.8 Print Preview
 4.7.9 Summary of Printing
4.8 Files In VB.Net
4.9 Summary
4.10 Check Your Progress – Answers
4.11 Questions for Self Study
4.12 Suggested Readings

4.0 OBJECTIVES

 After you study The. NET Framework chapter you will be able to:-

 Create Forms
 Handle Form Events
 State relationships between Forms
 Create MDI Applications
 State Components Attributes
 Design 2-D Graphics Programming with GDI+
 Code printing in application

 4.1 INTRODUCTION

Windows Forms is a set of classes that encapsulates the creation of the graphical user
interface (GUI) portion of a typical desktop application. Previously, each programming
language had its own way of creating windows, text boxes, buttons, etc. This
functionality has all been moved into the .NET Framework class library—into the types
located in the System.Windows.Forms namespace. Closely related is the
System.Drawing namespace, which contains several types used in the creation of GUI
applications. The capabilities provided by the types in the System.Drawing namespace

VB .Net / 110

are commonly referred to as GDI+ (discussed more fully later in this chapter). In this
chapter, we'll examine the form (or window) as the central component in a classic
desktop application. We'll look at how forms are programmatically created and how
they're hooked to events. We'll also examine how multiple forms in a single application
relate to one another and how you handle forms in an application that has one or more
child forms. Finally, we'll discuss two topics, printing and 2-D graphics, that are
relevant to desktop application development.

4.2 CREATING A FORM

The easiest way to design a form is to use the Windows Forms Designer in Visual
Studio .NET. The developer can use visual tools to lay out the form, with the designer
translating the layout into Visual Basic .NET source code. If you don't have Visual
Studio .NET, you can write the Visual Basic .NETcode directly and not use the
designer at all. This section will demonstrate both methods. Programmatically, a form
is defined by deriving a class from the Form class (defined in
System.Windows.Forms). The Form class contains the know-how for displaying an
empty form, including its title bar and other amenities that we expect from a Windows
form. Adding members to the new class and overriding members inherited from the
Form class add visual elements and behavior to the new form.

4.2.1 Creating a Form Using Visual Studio .NET

To create a GUI application in Visual Studio .NET:

1. Select File New Project. The New Project dialog box appears, as shown in
Figure 4-1.

Figure 4-1. The New Project dialog box

2. Select Visual Basic Projects in the Project Types pane on the left side of the dialog

box.

3. Select Windows Application in the Templates pane on the right side of the dialog

box.

4. Enter a name in the Name text box.

5. Click OK. Visual Studio .NET creates a project with a form in it and displays the

form in a designer, as shown in Figure 4-2.

Windows Forms I : Developing Desktop Applications / 111

Figure 4-2. The Windows Forms Designer

To see the code created by the form Windows Forms Designer, right-click on the form,
then select View Code. Doing this for the blank form shown in Figure 4-2 reveals the
code shown here:
Public Class Form1 Inherits System.Windows.Forms.Form Windows Form Designer
generated code End Class This shows the definition of a class named Form1 that
inherits from the Form class. The Windows Forms Designer also creates a lot of
boilerplate code that should not be modified by the developer. By default, it hides this
code from view. To see the code, click on the "+" symbol that appears to the left of the
line that says "Windows Form Designer generated code." Doing so reveals the code
shown in Example 4-1.

Example 4-1. The Windows Forms Designer-generated code for a blank form

Public Class Form1

Inherits System.Windows.Forms.Form
 #Region " Windows Form Designer generated code "

Public Sub New()
MyBase.New()
'This call is required by the Windows Form Designer.
InitializeComponent()
'Add any initialization after the InitializeComponent() call

End Sub
'Form overrides dispose to clean up the component list.
Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing Then If Not (components Is Nothing) Then
 components.Dispose()

 End If
End If
 MyBase.Dispose(disposing)
End Sub

'Required by the Windows Form Designer Private components As
System.ComponentModel.Container 'NOTE: The following procedure is required
by the Windows Form Designer. It can be modified using the Windows Form
Designer.

VB .Net / 112

'Do not modify it using the code editor.

<System.Diagnostics.DebuggerStepThrough()> Private Sub
InitializeComponent()
components = New System.ComponentModel.Container()

Me.Text = "Form1"
End Sub
#End Region

End Class

The Windows Forms Designer autogenerates the code for four class members:

New method (the class constructor)

The constructor calls the base class's constructor and then invokes the
InitializeComponent method. Developer-supplied initialization code should follow the
call to InitializeComponent.After the constructor is generated, the designer doesn't
touch it again.

Dispose method
The Dispose method is where the object gets rid of any expensive resources. In this
case, it calls the base class's Dispose method to give it a chance to release any
expensive resources that it may hold, then it calls the components field's Dispose
method. (For more on the components field, see the next item.) This in turn calls the
Dispose methods on each individual component in the collection. If the derived class
uses any expensive resources, the developer should add code here to release them.
When a form is no longer needed, all code that uses the form should call the form's
Dispose method. After the Dispose method is generated, the designer doesn't touch it
again.

Components field
The components field is an object of type IContainer (defined in the
System.ComponentModel namespace). The designer-generated code uses the
components field to manage finalization of components that may be added to a form
(for example, the Timer component).

InitializeComponent method
The code in this method should not be modified or added to by the developer in any
way. The Windows Forms Designer automatically updates it as needed. When controls
are added to the form using the designer, code is added to this method to instantiate
the controls at runtime and set their initial properties.

Note also in Example 4-1 that properties of the form itself (such as Text and Name)
are initialized in this method. One thing missing from this class definition is a Main
method. Recall from previous chapter that .NET applications must expose a public,
shared Main method. This method is called by the CLR when an application is started.
So why doesn't the designer-generated form include a Main method? It's because the
Visual Basic .NET compiler in Visual Studio .NET automatically creates one as it
compiles the code. In other words, the compiled code has a Main method in it even
though the source code does not. The Main method in the compiled code is a member
of the Form1 class and is equivalent to this:

<System.STAThreadAttribute()> Public Shared Sub Main()
System.Threading.Thread.CurrentThread.ApartmentState = _
System.Threading.ApartmentState.STA
System.Windows.Forms.Application.Run(New Form1())

End Sub

Note that the Visual Basic .NET command-line compiler doesn't automatically generate
the Main method. This method must appear in the source code if the command-line
compiler is to be used.

The next steps in designing the form are to name the code file something meaningful
and to set some properties on the form, such as the title-bar text. To change the name
of the form's code file, right-click on the filename in the Solution Explorer window and
select Rename. If you're following along with this example, enter HelloWindows.vb as

Windows Forms I : Developing Desktop Applications / 113

the name of the file.Changing the name of the file doesn't change the name of the
class. To change the name of the class, right-click the form in the designer and choose
Properties. In the Properties window, change the value of the Name property. For this
example, change the name to "HelloWindows".

To change the form's caption, set the form's Text property to a new value. Set the Text
property in this example to "Programming Visual Basic .NET". Next, controls can be
added to the form from the Visual Studio .NET toolbox. To display the toolbox, select
View Toolbox from the Visual Studio .NET main menu.

For this example, double-click on the Label control in the toolbox to add a Label control
on the form. Use the Properties window to change the label's Text property to "Hello,
Windows!" and its Font property to Arial 24pt.

Next, double-click on the Button control in the toolbox to add a Button control to the
form. Use the Properties window to change the button's Name property to "OkButton"
and its Text property to "OK". Finally,

position the controls as desired, size the Label control and the form to be appealing,
and set the form's FormBorderStyle property to "FixedToolWindow". The resulting form
should look something like the one shown in Figure 4-3.

Figure 4-3. A form with controls

Press the F5 key to build and run the program. The result should look something like
Figure 4-4.

Figure 4-4. Hello, Windows!, as created by the Windows Forms Designer

The code generated by the designer is shown in Example 4-2.

Example 4-2. Hello, Windows! code, as generated by the Windows Forms
Designer

Public Class HelloWindows
Inherits System.Windows.Forms.Form
#Region " Windows Form Designer generated code "
Public Sub New()

VB .Net / 114

MyBase.New()
'This call is required by the Windows Form Designer.
InitializeComponent()
'Add any initialization after the InitializeComponent() call

End Sub
'Form overrides dispose to clean up the component list.

Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

If disposing Then
If Not (components Is Nothing) Then
components.Dispose()
End If
End If
MyBase.Dispose(disposing)

 End Sub

Friend WithEvents Label1 As System.Windows.Forms.Label
Friend WithEvents OkButton As System.Windows.Forms.Button

'Required by the Windows Form Designer
Private components As System.ComponentModel.Container
'NOTE: The following procedure is required by the Windows Form Designer
'It can be modified using the Windows Form Designer.
'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()

Me.Label1 = New System.Windows.Forms.Label()
Me.OkButton = New System.Windows.Forms.Button()

Me.SuspendLayout()
'
'Label1
'

Me.Label1.Font = New System.Drawing.Font("Arial", 24!, _
System.Drawing.FontStyle.Regular, _
System.Drawing.GraphicsUnit.Point, CType(0, Byte))
Me.Label1.Location = New System.Drawing.Point(8, 8)
Me.Label1.Name = "Label1"
Me.Label1.Size = New System.Drawing.Size(264, 48)
Me.Label1.TabIndex = 0
Me.Label1.Text = "Hello, Windows!"
'
'OkButton
'
Me.OkButton.Location = New System.Drawing.Point(280, 16)
Me.OkButton.Name = "OkButton"
Me.OkButton.TabIndex = 1
Me.OkButton.Text = "OK"
'
'HelloWindows
'
Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
Me.ClientSize = New System.Drawing.Size(362, 58)
Me.Controls.AddRange(New System.Windows.Forms.Control() _
{Me.OkButton, Me.Label1})
Me.FormBorderStyle = _
System.Windows.Forms.FormBorderStyle.FixedToolWindow
Me.Name = "HelloWindows"
Me.Text = "Programming Visual Basic .NET"
Me.ResumeLayout(False)

End Sub
#End Region
End Class

Note that the designer made the following modifications to the code:

 Two Friend fields were added to the class, one for each of the controls that
were added to the form:

Windows Forms I : Developing Desktop Applications / 115

 Friend WithEvents Label1 As System.Windows.Forms.Label Friend
WithEvents OkButton As System.Windows.Forms.Button The Friend keyword
makes the members visible to other code within the project, but it hides them
from code running in other assemblies. The WithEvents keyword allows the
HelloWindows class to handle events generated by the controls. In the code
shown, no event handlers have been added yet, but you'll see how to do that
later in this section. Note that the field names match the control names as
shown in the Properties window.

 Code was added to the InitializeComponent method to instantiate the two
controls and assign their references to the member fields:

 Me.Label1 = New System.Windows.Forms.Label() Me.OkButton = New
System.Windows.Forms.Button()

 Code was added to the InitializeComponent method to set various properties
of the label, button, and form. Some of these assignments directly correspond
to the settings made in the Properties window, while others are the implicit
result of other actions taken in the designer (such as sizing the form).

4.2.1.1 Adding event handlers

The Hello, Windows! application built thus far has an OK button, but the application
doesn't yet respond to button clicks. To add a Click event handler for the OK button,
double-click on the button in the Windows Forms Designer. The designer responds by
switching to the form's code view and inserting a subroutine that handles the Click
event (i.e., it will be called when the user of the running application clicks the OK
button). The subroutine the designer creates looks like this (note that I added the line-
continuation character for printing in this book):

Private Sub OkButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles OkButton.Click
End Sub

The body of the subroutine can then be added. This would be a likely implementation
for this event handler:

Private Sub OkButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles OkButton.Click
Me.Close()
Me.Dispose()

End Sub

An alternative way to add an event handler is to use the drop-down lists at the top of
the form's codeview window. In the lefthand drop-down list, choose the object for
which you would like to add an event handler. Then, in the righthand drop-down list,
choose the desired event. See Figure 4-5.

Figure 4-5. Adding an event handler using the code view's drop-down
Lists

VB .Net / 116

Event handlers can be typed directly into the form's code if you know the correct
signature for the handler. Event-handler signatures are documented in the Microsoft
Developer Network (MSDN) Library.

4.2.2 Creating a Form in Code

Although form designers are convenient, it is certainly possible to code a form directly.
To do so, follow these steps:
1. Define a class that is derived from the Form class (defined in the

System.Windows.Forms namespace).
2. If the form is to be the startup form for an application, include a public, shared Main

method. For example:
3. Imports System.Windows.Forms
4. Public Class HelloWindows
5. Inherits Form
6. ' Include this method only if this is the application's startup form.
7. ' Alternatively, place this method in a separate module in the
8. ' application. If it is placed in a separate module, remove the
9. ' Shared keyword.
10. <System.STAThreadAttribute()> Public Shared Sub Main()
11. System.Threading.Thread.CurrentThread.ApartmentState = _
12. System.Threading.ApartmentState.STA
13. Application.Run(New HelloWindows())
14. End Sub ' Main
15. End Class
16. Declare a data member for each control that is to appear on the form. If you want

to handle events from the control, use the WithEvents keyword in the declaration.
For example:

17. Imports System.Windows.Forms
18. Public Class HelloWindows
19. Inherits Form
20. Private lblHelloWindows As Label
21. Private WithEvents btnOK As Button.
22. <System.STAThreadAttribute()> Public Shared Sub Main()
23. System.Threading.Thread.CurrentThread.ApartmentState = _
24. System.Threading.ApartmentState.STA
25. Application.Run(New HelloWindows())
26. End Sub ' Main
27. End Class

 The visibility (Private, Friend, Protected, or Public) of these data members is a
design issue that depends on the project and on the developer's preferences. My
own preference is to make all data members private. If code external to the class
needs to modify the data held by these members, specific accessor methods can
be added for the purpose. This prevents internal design changes from affecting
external users of the class.

28. Declare a constructor. Perform the following operations in the constructor:
 a. Instantiate each control.
 b. Set properties for each control and for the form.
 c. Add all controls to the form's Controls collection.
 For example:

Imports System.Drawing
Imports System.Windows.Forms
Public Class HelloWindows
Inherits Form
Private lblHelloWindows As Label
Private WithEvents btnOK As Button

Public Sub New

' Instantiate a label control and set its
properties.
lblHelloWindows = New Label()
With lblHelloWindows

.Font = New Font("Arial", 24)

.Location = New Point(16, 8)

Windows Forms I : Developing Desktop Applications / 117

.Size = New Size(248, 40)

.TabIndex = 0

.Text = "Hello, Windows!"
End With

' Instantiate a button control and set its
properties.
btnOK = New Button()
With btnOK

.Location = New Point(320, 16)

.TabIndex = 1

.Text = "OK"
End With

' Set properties on the form.
FormBorderStyle = FormBorderStyle.FixedToolWindow
ClientSize = New Size(405, 61)
Text = "Programming Visual Basic .NET"
' Add the controls to the form's Controls collection.
Controls.Add(lblHelloWindows
Controls.Add(btnOK)

End Sub
<System.STAThreadAttribute()> Public Shared Sub Main()
System.Threading.Thread.CurrentThread.ApartmentState = _
System.Threading.ApartmentState.STA
Application.Run(New HelloWindows())

End Sub ' Main
End Class

An Imports statement was added to give access to types in the System.Drawing
namespace, such as Point and Size.

4.2.2.1 Adding event handlers

Define event handlers directly in code for any events that you wish to handle. For
example:

Private Sub btnOK_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnOK.Click
Close()
Dispose()

End Sub

The complete code for a standalone Windows Forms application is shown in Example
4-3. Compile it from the command line with this command:

vbc HelloWindows.vb
/r:System.dll,System.Drawing.dll,System.Windows.Forms.dll /t:winexe

(Note that the command should be typed on a single line.)

Example 4-3. Hello, Windows! code generated outside of Visual Studio

Imports System.Drawing
Imports System.Windows.Forms
Public Class HelloWindows
 Inherits Form
Private lblHelloWindows As Label
Private WithEvents btnOK As Button
Private Sub btnOK_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnOK.Click
 Close()
 Dispose()
End Sub
Public Sub New
 ' Instantiate a label control and set its properties.

lblHelloWindows = New Label ()

VB .Net / 118

With lblHelloWindows
.Font = New Font("Arial", 24)
.Location = New Point(16, 8)
.Size = New Size(248, 40)
.TabIndex = 0
.Text = "Hello, Windows!"

End With
' Instantiate a button control and set its properties.
btnOK = New Button()
With btnOK

.Location = New Point(320, 16)

.TabIndex = 1

.Text = "OK"
End With
' Set properties on the form.
FormBorderStyle = FormBorderStyle.FixedToolWindow
ClientSize = New Size(405, 61)
Text = "Programming Visual Basic .NET"
' Add the controls to the form's Controls collection.
Controls.Add(lblHelloWindows)
Controls.Add(btnOK)
End Sub
<System.STAThreadAttribute()> Public Shared Sub Main()
System.Threading.Thread.CurrentThread.ApartmentState = _
System.Threading.ApartmentState.STA
Application.Run(New HelloWindows())
End Sub ' Main
End Class

4.2.2.2 Handling Form Events

The base Form class may at times raise events. These events can be handled by the
derived Form class. One way to do this is to define a handler subroutine that uses the
MyBase keyword in the Handles clause, like this:

' This is not the preferred technique.
Private Sub Form_Closing(_
ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs _
) Handles MyBase.Closing
' ...
End Sub

However, a better technique is to override the protected methods, which are provided
by the Form class for this purpose. For example, the following method could be placed
in the derived class's definition, providing a way to respond to the form's imminent
closing:

' Assumes Imports System.ComponentModel

Protected Overrides Sub OnClosing(_ByVal e As CancelEventArgs _)
' ...
MyBase.OnClosing(e) ' Important
End Sub

Note that the implementation of the OnClosing method includes a call to the base
class's implementation. This is important. If this is not done, the Closing event won't be
raised, which will affect the behavior of any other code that has registered for the
event.Following is the list of events the Form class defines, including a brief
description of each event and the syntax for overriding the protected method that
corresponds to each event. Note also that the Form class indirectly derives from the
Control class and that the Control class also exposes events and overridable methods
that aren't shown here.

Activated
Fired when the form is activated. Its syntax is:

Windows Forms I : Developing Desktop Applications / 119

Protected Overrides Sub OnActivated(ByVal e As System.EventArgs)

Closed

Fired when the form has been closed. Its syntax is:
Protected Overrides Sub OnClosed(ByVal e As System.EventArgs)

Closing

Fired when the form is about to close. Its syntax is:

Protected Overrides Sub OnClosing(_ByVal e As
 System.ComponentModel.CancelEventArgs)

The CancelEventArgs.Cancel property can be set to True to prevent the form from
closing; its default value is False.

Deactivate

Fired when the form is deactivated. Its syntax is:
Protected Overrides Sub OnDeactivate(ByVal e As System.EventArgs)

InputLanguageChanged

Fired when the form's input language has been changed. Its syntax is:

Protected Overrides Sub OnInputLanguageChanged(_ByVal e As
System.Windows.Forms.InputLanguageChangedEventArgs)

The InputLanguageChangedEventArgs class has three properties that identify the new
language: CharSet, which defines the character set associated with the new input
language;Culture, which contains the culture code (see Appendix C) of the new input
language; and InputLanguage, which contains a value indicating the new language.
InputLanguageChanging Fired when the form's input language is about to be changed.
Its syntax is:

Protected Overrides Sub OnInputLanguageChanging(_ByVal e As
System.Windows.Forms.InputLanguageChangingEventArgs)

The InputLanguageChangingEventArgs class has a Culture property that identifies the
proposed new language and locale. It also has a Cancel property that can be set to
True within the event handler to cancel the change of input language; the default value
of the Cancel property is False.

Load

Fired when the form is loaded. Its syntax is:
Protected Overrides Sub OnLoad(ByVal e As System.EventArgs)

MaximizedBoundsChanged

Fired when the value of the form's MaximizedBounds property (which determines
the size of the maximized form) is changed. Its syntax is:
Protected Overrides Sub OnMaximizedBoundsChanged(_ByVal e As
System.EventArgs)

MaximumSizeChanged

Fired when the value of the form's MaximumSize property (which defines the
maximum size to which the form can be resized) is changed. Its syntax is:
Protected Overrides Sub OnMaximumSizeChanged(ByVal e As
System.EventArgs)

MdiChildActivate

Fired when an MDI child window is activated. Its syntax is:
Protected Overrides Sub OnMdiChildActivate(ByVal e As System.EventArgs)

MenuComplete

Fired when menu selection is finished. Its syntax is:
Protected Overrides Sub OnMenuComplete(ByVal e As System.EventArgs)

MenuStart

Fired when a menu is displayed. Its syntax is:

VB .Net / 120

Protected Overrides Sub OnMenuStart(ByVal e As System.EventArgs)

MinimumSizeChanged
Fired when the value of the form's MinimumSize property (which defines the minimum
size to which the form can be resized) is changed. Its syntax is:
Protected Overrides Sub OnMinimumSizeChanged(ByVal e As System.EventArgs)

4.3 RELATIONSHIPS BETWEEN FORMS

The Form class has two properties that control a form's relationship to other forms: the
Parent property (inherited from the Control class) and the Owner property. Setting the
Parent property causes the constrained form to appear only within the bounds of the
parent—and always to appear on top of the parent. This gives an effect similar to MDI
applications (which have other features as well and are discussed later in this chapter).
When a form has a parent, it can be docked to the parent's edges, just like any other
control. The code in Example 4-4 demonstrates this. It can be compiled from the
command line with this command:

Vbcfilename.vb /r:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/t:winexe

The result is displayed in Figure 4-6.

Figure 4-6. A form with a parent

Example 4-4. Creating a form with a parent
Imports System.Drawing
Imports System.Windows.Forms
Module modMain

<System.STAThreadAttribute()> Public Sub Main()
System.Threading.Thread.CurrentThread.ApartmentState = _
System.Threading.ApartmentState.STA
System.Windows.Forms.Application.Run(New MyParentForm())
End Sub
End Module
Public Class MyParentForm
Inherits Form
Public Sub New()

' Set my size.
Me.ClientSize = New System.Drawing.Size(600, 400)
' Create and show a child form.
Dim frm As New MyChildForm(Me)
frm.Show()

End Sub
End Class

Public Class MyChildForm
 Inherits Form
Public Sub New(ByVal Parent As Control)

Windows Forms I : Developing Desktop Applications / 121

' TopLevel must be False for me to have a parent.
Me.TopLevel = False
' Set my parent.
Me.Parent = Parent
' Dock to my parent's left edge.
Me.Dock = DockStyle.Left

 End Sub
End Class
If the child form is maximized, it expands to fill the parent form. If the child form is
minimized, it shrinks to a small rectangle at the bottom of the parent window. Because
the child form in this example has a title bar and a sizable border, it can be moved and
sized even though it has been docked. This behavior can be changed by modifying the
form's FormBorderStyle property.

Setting the Owner property of a form causes another form to own the first. An owned
form is not constrained to appear within the bounds of its owner, but when it does
overlay its owner, it is always on top. Furthermore, the owned form is always
minimized, restored, or destroyed when its owner is minimized, restored, or destroyed.
Owned forms are good for floating-tool windows or Find/Replacetype dialog boxes.
The code in Example 4-5 creates an owner/owned relationship. Compile it with this
command:
Vbcfilename.vb /r:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/t:winexe

Example 4-5. Creating a form with an owner

Imports System.Drawing
Imports System.Windows.Forms
Module modMain

<System.STAThreadAttribute()> Public Sub Main()
System.Threading.Thread.CurrentThread.ApartmentState = _
System.Threading.ApartmentState.STA
System.Windows.Forms.Application.Run(New MyOwnerForm())

End Sub
End Module
Public Class MyOwnerForm
 Inherits Form
Public Sub New()

' Set my size.
Me.ClientSize = New System.Drawing.Size(600, 450)
' Create and show an owned form.
Dim frm As New MyOwnedForm(Me)
frm.Show()

End Sub
End Class
Public Class MyOwnedForm
 Inherits Form
Public Sub New(ByVal Owner As Form)

' Set my owner.
Me.Owner = Owner

End Sub
End Class

4.1 - 4.3 Check Your Progress

State whether the following statements are TRUE OR FALSE
1. .NET command line complier does not automatically generate the main method
2. The form class has three properties that control form’s relationship to other forms
3. Printer dialog box is under windows common dialg boxes.
4. Child form is the property of Parent MDI form.

4.4 MDI APPLICATIONS

Multiple document interface (MDI) applications permit more than one document to be
open at a time. This is in contrast to single document interface (SDI) applications,

VB .Net / 122

which can manipulate only one document at a time. Visual Studio .NET is an example
of an MDI application—many source files and design views can be open at once. In
contrast, Notepad is an example of an SDI application—opening a document closes
any previously opened document. There is more to MDI applications than their ability
to have multiple files open at once. The Microsoft Windows platform SDK specifies
several UI behaviors that MDI applications should implement. The Windows operating
system provides support for these behaviors, and this support is exposed through
Windows Forms as well.

4.4.1 Parent and Child Forms

MDI applications consist of a main form, which does not itself display any data, and
one or more child forms, which appear only within the main form and are used for
displaying documents. The main form is called the MDI parent, and the child forms are
called the MDI children.
The Form class has two properties that control whether a given form is an MDI parent,
MDI child, or neither. The Boolean IsMdiContainer property determines whether a form
behaves as an MDI parent. The MdiParent property (which is of type Form) controls
whether a form behaves as an MDI child. Setting the MdiParent property of a form to
reference the application's MDI parent form makes the form an MDI child form.
Example 4-6 shows the minimum amount of code required to display an MDI parent
form containing a single MDI child form.

Example 4-6. A minimal MDI application

Imports System
Imports System.Windows.Forms
Public Module AppModule

Public Sub Main()
 Application.Run(New MainForm())
End Sub

End Module

Public Class MainForm
 Inherits Form

Public Sub New()
' Set the main window caption.
Text = "My MDI Application"
' Set this to be an MDI parent form.
IsMdiContainer = True
' Create a child form.
Dim myChild As New DocumentForm("My Document", Me)
myChild.Show

End Sub
End Class

Public Class DocumentForm

Inherits Form
Public Sub New(ByVal name As String, ByVal parent As Form)

' Set the document window caption.
Text = name
' Set this to be an MDI child form.
MdiParent = parent

End Sub
End Class

Assuming that the code in Example 4-6 is saved in a file named MyApp.vb, it can be
compiled from
the command line with this command:
vbc MyApp.vb /r:System.dll,System.Windows.Forms.dll
Running the resulting executable produces the display shown in Figure 4-7.

Windows Forms I : Developing Desktop Applications / 123

Figure 4-7. A minimal MDI application (the output of the code in
Example 4-6)

The Form class has two read-only properties related to MDI behavior. The IsMdiChild
property returns a Boolean value that indicates whether the form is an MDI child. The
MdiChildren property of a parentform contains a collection of references to the form's
child forms. The IsMdiChild and MdiChildren properties are both automatically
maintained in response to setting the child forms' MdiParent properties.

4.4.2 Creating a Window Menu
MDI applications usually have a main-menu item called Window. On this menu appear
standard items for cascading, tiling, and activating child windows and arranging the
icons of minimized child windows. Figure 4-8 shows a typical example.

Figure 4-8. A typical Window menu

Such a menu is easy to create using the support in Windows Forms. Assuming that
you were to do it programmatically, Example 4-7 shows a revised version of Example
4-6 that has been modified to include a Window menu; the added code is shown in
boldface. For details on how to work with menus from the Visual Studio IDE, as well as
programmatically, see Section 5.5 in Chapter 5.

Example 4-7. An MDI application with a Window menu

Imports System
Imports System.Windows.Forms
Public Module AppModule
Public Sub Main()
 Application.Run(New MainForm())
End Sub
End Module
Public Class MainForm

Inherits Form
' Declare MainForm's main menu
Private myMainMenu As MainMenu
' Declare Windows menu
Protected WithEvents mnuWindow As MenuItem

VB .Net / 124

Protected WithEvents mnuTileHoriz As MenuItem
Protected WithEvents mnuCascade As MenuItem
Protected WithEvents mnuTileVert As MenuItem
Protected WithEvents mnuArrangeAll As MenuItem

Public Sub New()
' Set the main window caption.
Text = "My MDI Application"
' Set this to be an MDI parent form.
IsMdiContainer = True
' Create main menu
MyMainMenu = New MainMenu()
' Define menu items
mnuWindow = New MenuItem()
mnuTileHoriz = New MenuItem()
mnuTileVert = New MenuItem()
mnuCascade = New MenuItem()
mnuArrangeAll = New MenuItem()
' Set menu properties
mnuWindow.Text = "&Window"
mnuWindow.MdiList = True
mnuTileHoriz.Text = "Tile Horizontally"
mnuTileVert.Text = "Tile Vertically"
mnuCascade.Text = "Cascade"
mnuArrangeAll.Text = "Arrange Icons"
' Add items to menu
MyMainMenu.MenuItems.Add(mnuWindow)
mnuWindow.MenuItems.Add(mnuCascade)
mnuWindow.MenuItems.Add(mnuTileHoriz)
mnuWindow.MenuItems.Add(mnuTileVert)
mnuWindow.MenuItems.Add(mnuArrangeAll)
' Assign menu to form
Me.Menu = MyMainMenu
' Create a child form.
Dim myChild As New DocumentForm("My Document", Me)
myChild.Show

End Sub
Public Sub mnuCascade_Click(o As Object, e As EventArgs) _

Handles mnuCascade.Click
LayoutMdi(MdiLayout.Cascade)

End Sub
Public Sub mnuTileHoriz_Click(o As Object, e As EventArgs) _

Handles mnuTileHoriz.Click
LayoutMdi(MdiLayout.TileHorizontal)

End Sub
Public Sub mnuTileVert_Click(o As Object, e As EventArgs) _

Handles mnuTileVert.Click
Programming Visual Basic .NET

LayoutMdi(MdiLayout.TileVertical)

End Sub
Public Sub mnuArrangeAll_Click(o As Object, e As EventArgs) _

Handles mnuArrangeAll.Click
LayoutMdi(MdiLayout.ArrangeIcons)

End Sub
End Class
Public Class DocumentForm

Inherits Form
Public Sub New(ByVal name As String, ByVal parent As Form)
' Set the document window caption.
Text = name
' Set this to be an MDI child form.
MdiParent = parent

End Sub
End Class

Windows Forms I : Developing Desktop Applications / 125

To add a Window menu to the parent form of an MDI application, perform the following
steps. First, add a menu item to the MDI parent form's main menu, setting its Text
property to anything desired (usually Window) and its MdiList property to True. It is the
MdiList property that makes the Window menu a Window menu. Setting the MdiList
property to True causes the Windows Forms framework to add and delete menu items
to and from this menu item as necessary. This in turn will always display the current
list of MDI child windows in the menu.Next, add menu items for Cascade, Tile
Horizontally, Tile Vertically, and Arrange Icons. In the Click event handler for each of
these menu items, call the Form class's LayoutMdi method, passing the appropriate
parameter value for the desired action. The syntax of the LayoutMdi method is:
Public Sub LayoutMdi(ByVal value As MdiLayout)
The method's single argument must be a value from the MdiLayout enumeration
(defined in the System.Windows.Forms namespace). The values in this enumeration
are:ArrangeIcons Indicates that the icons for the minimized MDI child windows should
be neatly arranged.
Cascade Indicates that the MDI child windows should be cascaded (displayed
overlapping each other).
TileHorizontal Indicates that the MDI child windows should be tiled (displayed without
overlapping), with each child window filling the width of the MDI parent.
TileVertical
Indicates that the MDI child windows should be tiled, with each child window filling the
height of the MDI parent.

4.4.3 Merging Menus

Often, the items that should appear on an MDI application's main menu are dependent
on the type of document being displayed or on whether any document is displayed at
all. Of course, this effect could be achieved in code by dynamically adding and
removing menu items each time a child window is activated. However, the Windows
Forms framework provides an easier way.If an MDI child form has a main menu of its
own, it and the MDI parent form's main menu are merged to produce the menu that is
shown to the user when the child form is displayed. Two properties of the MenuItem
class affect how the menu items are merged. First, the MergeOrder property
determines the order in which the menu items are displayed. This property can be set
to any Integer value, and the values don't have to be contiguous. The menu items from
the two menus are sorted on this value to determine the order in which the menu items
are displayed on screen. For example, consider an MDI parent form that has a main
menu with three menu items representing File, Window, and Help menus. Further, say
that the MergeOrder properties of these menu items are 10, 20, and 30, respectively.
Now, if an MDI child form is displayed and its main menu has, for example, an Edit
item with a MergeOrder property value of 15, the menu displayed to the user will have
four items: File, Edit, Window, and Help, in that order. Example 4-8 shows a revised
version of Example 4-6 that contains the code necessary to create such a menu; lines
shown in boldface have been added to define the main menu and its menu items.

Example 4-8. An MDI application with merged menus

Imports System
Imports System.Windows.Forms
Public Module AppModule
Public Sub Main()

Application.Run(New MainForm())
End Sub
End Module

Public Class MainForm
Inherits Form
' Declare MainForm's main menu.
Private myMainMenu As MainMenu
' Declare the Window menu.
Protected WithEvents mnuFile As MenuItem
Protected WithEvents mnuWindow As MenuItem
Protected WithEvents mnuHelp As MenuItem

 Public Sub New()

' Set the main window caption.

VB .Net / 126

Text = "My MDI Application"
' Set this to be an MDI parent form.
IsMdiContainer = True
' Create main menu
MyMainMenu = New MainMenu()
' Define menu items
mnuFile = New MenuItem()
mnuWindow = New MenuItem()
mnuHelp = New MenuItem()
' Set menu properties
mnuFile.Text = "&File"
mnuFile.MergeOrder = 10
mnuWindow.Text = "&Window"
mnuWindow.MergeOrder = 20
mnuWindow.MdiList = True
mnuHelp.Text = "&Help"
mnuHelp.MergeOrder = 30
' Add items to menu
MyMainMenu.MenuItems.Add(mnuFile)
MyMainMenu.MenuItems.Add(mnuWindow)
MyMainMenu.MenuItems.Add(mnuHelp)
' Assign menu to form
Me.Menu = MyMainMenu
' Create a child form.
Dim myChild As New DocumentForm("My Document", Me)
myChild.Show

End Sub

End Class

Public Class DocumentForm
Inherits Form

' Declare menu Private mdiMenu As New MainMenu
' Declare menu items Protected WithEvents mnuEdit As MenuItem
Public Sub New(ByVal name As String, ByVal parent As Form)

' Set the document window caption.
Text = name
' Set this to be an MDI child form.
MdiParent = parent
' Instantiate menu and menu items mdiMenu = New MainMenu() mnuEdit = New
MenuItem()
' Set menu properties mnuEdit.Text = "&Edit" mnuEdit.MergeOrder = 15
' Add item to main menu mdiMenu.MenuItems.Add(mnuEdit)
' Add menu to child window Me.Menu = mdiMenu

End Sub

End Class

If a menu item in the MDI child form menu has the same MergeOrder value as a menu
item in the MDI parent form menu, a second property comes into play. The MergeType
property of both MenuItem objects is examined, and the behavior is determined by the
combination of their values. The MergeType property is of type MenuMerge (an
enumeration defined in the System.Windows.Forms namespace) and can have one of
the following values:

Add

The menu item appears as a separate item in the target menu, regardless of the
setting of the other menu item's MergeType property.
MergeItems If the other menu item's MergeType property is also set to MergeItems,
the two menu items are merged into a single item in the target menu. Merging is then
recursively applied to the subitems of the source menus, using their MergeOrder and
MergeType properties.
If the other menu item's MergeType property is set to Add, both menu items appear in
the target menu (just as though both had specified Add). If the other menu item's
MergeType property is set to Remove, only this menu item appears in the target menu

Windows Forms I : Developing Desktop Applications / 127

(again, the same as specifying Add for this menu item). If the other menu item's
MergeType property is set to Replace, only the child form's menu item is displayed,
regardless of which one is set to MergeItems and which one is set to Replace. (This
seems like inconsistent behavior and may be a bug.)
Remove
The menu item isn't shown in the target menu, regardless of the setting of the other
menu item's MergeType property.
Replace
If the other menu item's MergeType property is set to Add, both menu items appear in
the target menu (just as though both had specified Add). If the other menu item's
MergeType property is set to MergeItems or Replace, only the child form's menu item
is shown. (This seems like inconsistent behavior and may be a bug.) If the other menu
item's MergeType property is also set to Replace, only the child form's menu item is
shown.

4.4.4 Detecting MDI Child Window Activation
Code in the MDI parent form class can be notified when an MDI child form becomes
active inside an MDI parent form. ("Active" means that the child form receives the input
focus after another MDI child form or the MDI parent form had the input focus.) To
receive such notification, the MDI parent form must override the OnMdiChildActivate
method (defined in the Form class). For example:

' Place this within the class definition of the MDI parent form.

Protected Overrides Sub OnMdiChildActivate(ByVal e As EventArgs)
MyBase.OnMdiChildActivate(e) ' Important
' ...
End Sub

It is important to call the base-class implementation of OnMdiChildActivate within the
overriding function, so that any necessary base-class processing (including raising of
the MdiChildActivate event) can occur. The e parameter carries no information. To find
out which MDI child form became active, read the ActiveMdiChild property of the MDI
parent form. This property is of type Form. Convert it to the MDI child form's type to
gain access to any public members that are specific to that type. For example:

 Protected Overrides Sub OnMdiChildActivate(ByVal e As EventArgs)

MyBase.OnMdiChildActivate(e)
' Assumes that SomeFormType is defined elsewhere and inherits
' from Form. Also assumes that the MDI child forms in the
' application are always of this type.
 Dim childForm As SomeFormType = _
 CType(ActiveMdiChild, SomeFormType)
' Do something with childForm here.
' ...

End Sub

To have code outside of the MDI parent form class notified when an MDI child form
becomes active, write a handler for the MDI parent form's MdiChildActivate event. This
event is defined in the Form class as:

Public Event MdiChildActivate(_ByVal sender As Object, _ByVal e As EventArgs
 _)

The sender parameter is the MDI parent form, not the MDI child form that has been
activated. The e parameter does not contain any additional information about the
event. As when overriding the OnMdiChildActivate method, read the MDI parent form's
ActiveMdiChild property to discover which MDI child form has been activated.

4.5 COMPONENT ATTRIBUTES

As explained in Chapter 2, attributes can be added to code elements to provide
additional information about those elements. The System.ComponentModel
namespace defines several attributes for use in component, control, and form
declarations. These attributes don't affect component behavior. Rather, they provide
information that is used or displayed by the Visual Studio .NET IDE. The following is a
description of each attribute:

VB .Net / 128

AmbientValueAttribute
For ambient properties, specifies the property value that will mean "get this property's
actual value from wherever ambient values come from for this property." Ambient
properties are properties able to get their values from another source. For example,
the BackColor property of a Label control can be set either to a specific Color value or
to the special value Color.Empty, which causes the Label's background color to be the
same as the background color of the form on which it is placed. Putting this attribute
on a property definition isn't what causes the property to behave as an ambient
property: the control itself must be written such that when the special value is written to
the property, the control gets the actual value from the appropriate location. This
attribute simply provides the Windows Forms Designer with a way to discover what the
special value is. When specifying this attribute, pass the special value to the attribute's
constructor. For example, <AmbientValue(0)>.

BindableAttribute
Indicates whether a property is typically usable for data binding. Specify
<Bindable(True)> to indicate that the property can be used for data binding or
<Bindable(False)> to indicate that the property typically is not used for data binding.
This attribute affects how a property is displayed in the IDE, but does not affect
whether a property can be bound at runtime. By default, properties are considered not
bindable.

BrowsableAttribute
Indicates whether a property should be viewable in the IDE's Properties window.
Specify
<Browsable(True)> to indicate that the property should appear in the Properties
window or
<Browsable(False)> to indicate that it should not. By default, properties are considered
browsable.
CategoryAttribute
Indicates the category to which a property or event belongs ("Appearance," "Behavior,"
etc.).
The IDE uses this attribute to sort the properties and events in the Properties window.
Specify
the category name as a string argument to the attribute. For example,
<Category("Appearance")>. The argument can be any string. If it is not one of the
standard strings, the Properties window will add a new group for it. The standard
strings are:

Action
Used for events that indicate a user action, such as the Click event.

Appearance
Used for properties that affect the appearance of a component, such as the BackColor
property.
Behavior Used for properties that affect the behavior of a component, such as the
AllowDrop property.
Data.Used for properties that relate to data, such as the DecimalPlaces property of the
NumericUpDown control.
Design. Used for properties that relate to the design-time appearance or behavior of a
component.

DragDrop
Used for properties and events that relate to drag and drop. No Windows Forms
components have any properties or events marked with this category.

Focus
Used for properties and events that relate to input focus, such as the CanFocus
property and the GotFocus event.

Format
Used for properties and events that relate to formats. No Windows Forms components
have any properties or events marked with this category.

Windows Forms I : Developing Desktop Applications / 129

Key
Used for events that relate to keyboard input, such as the KeyPress event.

Layout
Used for properties and events that relate to the visual layout of a component, such as
the Height property and the Resize event.

Mouse
Programming Visual Basic .NET
Used for events that relate to mouse input, such as the MouseMove event.

WindowStyle
Used for properties and events that relate to the window style of top-level forms. No
Windows Forms components have any properties or events marked with this category.
If no CategoryAttribute is specified, the property is considered to have a category of
Misc.

DefaultEventAttribute
Indicates the name of the event that is to be considered the default event of a
component. For example, <DefaultEvent("Click")>. When a component is double-
clicked in the Windows Forms Designer, the designer switches to code view and
displays the event handler for the default event. This attribute can be used only on
class declarations.
DefaultPropertyAttribute Indicates the name of the property that is to be considered the
default property of a component. For example, <DefaultProperty("Text")>. This
attribute can be used only on class declarations. The default property is the property
that the Windows Forms Designer highlights in the Properties window when a
component is clicked in design view. Don't confuse this usage of the term default
property with the usage associated with the Default modifier of a property declaration.
The two concepts are unrelated. Refer to Chapter 2 for details on the Default modifier.
DefaultValueAttribute Indicates the default value of a property. For example,
<DefaultValue(0)>. If the IDE is used to set a property value to something other than
the default value, the code generator will generate the appropriate assignment
statement in code. However, if the IDE is used to set a property to the default value, no
assignment statement is generated.DescriptionAttribute Provides a description for the
code element. For example, <Description("The text contained in the control.")>. The
IDE uses this description in tool tips and IntelliSense.DesignerAttribute Identifies the
class that acts as the designer for a component. For example,
<Designer("MyNamespace.MyClass")>. The designer class must implement the
IDesigner interface. This attribute can be used only on class declarations and is
needed only if the built-in designer isn't sufficient. Creating custom designers is not
discussed in this book.
DesignerCategoryAttribute
Used with custom designers to specify the category to which the class designer
belongs.

DesignerSerializationVisibilityAttribute
Used with custom designers to specify how a property on a component is saved by the
designer.

DesignOnlyAttribute
Indicates when a property can be set. Specify <DesignOnly(True)> to indicate that the
property can be set at design time only or <DesignOnly(False)> to indicate that the
property can be set at both design time and runtime (the default).

EditorAttribute
Identifies the "editor" to use in the IDE to allow the user to set the values of properties
that have the type on which the EditorAttribute attribute appears. In this way, a
component can declare new types and can declare properties having those types, yet
still allow the user
to set the values of the properties at design time. Creating custom type editors is not
discussed in this book.

EditorBrowsableAttribute
Indicates whether a property is viewable in an editor. The argument to the attribute's
constructor must be one of the values defined by the EditorBrowsableState

VB .Net / 130

enumeration (defined in the System.ComponentModel namespace). The values of this
enumeration are: Advanced Only advanced users should see the property. It is up to
the editor to determine when it's appropriate to display advanced properties.

Always
The property should always be visible within the editor.

Never
The property should never be shown within the editor.
ImmutableObjectAttribute
Indicates whether a type declaration defines a state that can change after an object of
that type is constructed. Specify <ImmutableObject(True)> to indicate that an object of
the given type is immutable. Specify <ImmutableObject(False)> to indicate that an
object of the given type is not immutable. The IDE uses this information to determine
whether to render a property as read-only.

InheritanceAttribute
Used to document an inheritance hierarchy that can be read using the
IInheritanceService interface. This facility is not discussed in this book.
InstallerTypeAttribute
Used on type declarations to specify the installer for the type. Installers are not
discussed in this book.

LicenseProviderAttribute
Indicates the license provider for a component.
ListBindableAttribute
Indicates whether a property can be used as a data source. (A data source is any
object that exposes the IList interface.) Specify <ListBindable(True)> to indicate that
the property can be used as a data source. Specify <ListBindable(False)> to indicate
that the
property can't be used as a data source.

LocalizableAttribute
Indicates whether a property's value should be localized when the application is
localized.
Specify <Localizable(True)> to indicate that the property's value should be localized.
Specify <Localizable(False)> or omit the LocalizableAttribute attribute to indicate that
the property's value should not be localized. The values of properties declared with
<Localizable(True)> are stored in a resource file, which can be localized.

MergablePropertyAttribute
Indicates where property attributes can be merged. By default, when two or more
components are selected in the Windows Forms Designer, the Properties window
typically shows the properties that are common to all of the selected components. If
the user changes a value in the Properties window, the value is changed for that
property in all of the selected components.
Placing <MergableProperty(False)> on a property declaration changes this behavior.
Any property declared in this way is omitted from the Properties window when two or
more components are selected. Specifying <MergableProperty(True)> is the same as
omitting the attribute altogether.

NotifyParentPropertyAttribute
Indicates whether the display of a property's parent property should be refreshed when
the given property changes its value.

ParenthesizePropertyNameAttribute
Indicates whether the property name should be parenthesized in the Properties
window.
Specify <ParenthesizePropertyName(True)> to indicate that the property name should
appear within parentheses. Specify <ParenthesizePropertyName(False)> to indicate
that the property name should not appear within parentheses. Omitting the attribute is
the same as specifying <ParenthesizePropertyName(False)>.The only benefit to
parenthesizing property names in the property window is that they are sorted to the top
of the list. Microsoft has no specific recommendations for when to parenthesize a
property name.

Windows Forms I : Developing Desktop Applications / 131

PropertyTabAttribute
Specifies a type that implements a custom property tab (or tabs) for a component. This
facility is not discussed in this book.

ProvidePropertyAttribute
Used with extender providers—i.e., classes that provide properties for other objects.
Extender providers are not discussed in this book.

ReadOnlyAttribute
Indicates whether a property is read-only at design time. Specify <ReadOnly(True)> to
indicate that the property is read-only at design time. Specify <ReadOnly(False)> to
indicate that the property's ability to be modified at design time is determined by
whether a Set method is defined for the property. Omitting the attribute is the same as
specifying <ReadOnly(False)>.

RecommendedAsConfigurableAttribute
Indicates whether a property is configurable. Configurable properties aren't discussed
in this book.
RefreshPropertiesAttribute
Determines how the Properties window is refreshed when the value of the given
property changes.

RunInstallerAttribute
Indicates whether an installer should be invoked during installation of the assembly
that contains the associated class. This attribute can be used only on class
declarations, and the associated class must inherit from the Installer class (defined in
the System.Configuration.Install namespace). Installers are not discussed in this book.

ToolboxItemAttribute
Specifies a type that implements a toolbox item related to the declaration on which the
attribute is placed. This facility is not discussed in this book.

ToolboxItemFilterAttribute
Specifies a filter string for a toolbox-item filter. This facility is not discussed in this
book.

TypeConverterAttribute
Indicates the type converter to be used with the associated item. Type converters are
not discussed in this book.

4.6 2-D GRAPHICS PROGRAMMING WITH GDI+

The Windows operating system has always included support for drawing two-
dimensional graphics. This support is known as the Graphics Device Interface (GDI)
library. The GDI library is now easier to use and provides additional features. The new
capabilities are known collectively as GDI+. GDI+ features are exposed in the .NET
Framework through classes in the System.Drawing,
System.Drawing.Drawing2D,System.Drawing.Imaging, and System.Drawing.Text
namespaces. This section discusses some of those capabilities.

4.6.1 The Graphics Class

Objects of type Graphics (defined in the System.Drawing namespace) represent two-
dimensional surfaces on which to draw. A Graphics object must be obtained before
any drawing can be done. A common way to obtain a Graphics object is to override the
OnPaint method of a form or user control, as shown in the following code fragment:

Public Class MyControl
Inherits UserControl
Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
e.Graphics.FillEllipse(New SolidBrush(Me.ForeColor), _
Me.ClientRectangle)
End Sub
Public Sub New()
Me.ResizeRedraw = True

VB .Net / 132

End Sub
End Class

The single argument passed to the OnPaint method, e, is of type PaintEventArgs. This
class has a property called Graphics, which holds a reference to the Graphics object to
be used for drawing on the user control or form. The PaintEventArgs class is defined in
the System.Windows.Forms namespace. It has two properties:

ClipRectangle
Defines the area that needs to be drawn. Drawing done outside the limits of the clip
rectangle will not be displayed. The coordinates of the rectangle are relative to the
client rectangle of the user control or form. The syntax of the ClipRectangle property is:

Public ReadOnly Property ClipRectangle() As System.Drawing.Rectangle

Graphics
Defines the graphics surface on which to draw. The syntax of the Graphics property is:
Public ReadOnly Property Graphics() As System.Drawing.Graphics
The following list shows some of the Graphics class's many methods that are available
for drawing various lines and shapes, and Example 5-7 in Chapter 5 gives an example
of drawing a filled ellipse. This list is just to get you started; it is beyond the scope of
this book to document the syntax of each of these methods.

DrawArc
Draws an arc (that is, a portion of an ellipse).
DrawBezier
Draws a Bezier curve.
DrawBeziers
Draws a series of Bezier curves.
DrawClosedCurve

Is the same as the DrawCurve method (see the next item in this list), except that the
last point in the curve is connected back to the first point.

DrawCurve
Draws a smooth, curved figure that passes through a given array of points.

DrawEllipse
Draws an ellipse.

DrawIcon
Draws an icon. Icons are represented by objects of type Icon (defined in the
System.Drawing namespace). The Icon class defines various methods for loading
icons.

DrawIconUnstretched
Is the same as the DrawIcon method, but does not stretch the icon to fit the clipping
rectangle.

DrawImage
Draws an image. Images are represented by objects of type Image (defined in the
System.Drawing namespace). The Image class defines various methods for loading
images in standard formats, such as bitmaps and JPEGs.

DrawImageUnscaled
Is the same as DrawImage, except that the DrawImageUnscaled method ignores any
width and height parameters passed to it.

DrawLine
Draws a line.

DrawLines
Draws a series of lines.

DrawPath

Windows Forms I : Developing Desktop Applications / 133

Draws a series of lines and curves that are defined by a GraphicsPath object. The
GraphicsPath class is beyond the scope of this book.

DrawPie
Draws a pie section.

DrawPolygon
Draws lines to connect a series of points.

DrawRectangle
Draws a rectangle.

DrawRectangles
Draws a series of rectangles.

DrawString
Draws text.

FillClosedCurve
Draws a filled, closed curve.

FillEllipse
Draws a filled ellipse.

FillPath
Draws a filled figure whose shape is given by a GraphicsPath object. The
GraphicsPath class is beyond the scope of this book.

FillPie
Draws a filled pie section.

FillPolygon
Draws a filled polygon (see the DrawPolygon method earlier in this list).

FillRectangle
Draws a filled rectangle.

FillRectangles
Draws a series of filled rectangles.

FillRegion
Draws a filled figure whose shape is given by a Region object.

4.6.2 The Pen Class

Pen objects hold the settings used when drawing lines. All of the Graphics class's
Draw...methods (DrawArc, DrawBezier, etc.) require that the caller supply a Pen
object. The supplied Pen object determines the properties of the line used for drawing
(for example, its color, width, etc.). Example 4-9 shows an OnPaint method that can be
used to draw an ellipse on a user control or a form. It is similar to the code in Example
5-6 in Chapter 5, but displays the ellipse a little smaller, and with only a border. The
resulting display is shown in Figure 4-9.

Example 4-9. Drawing an ellipse on a form

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
Dim pn As New Pen(Me.ForeColor)
Dim rect As Rectangle
 rect.X = Me.ClientRectangle.X + (Me.ClientRectangle.Width \ 4)

rect.Y = Me.ClientRectangle.Y + (Me.ClientRectangle.Height \ 4)
rect.Width = Me.ClientRectangle.Width \ 2
rect.Height = Me.ClientRectangle.Height \ 2
e.Graphics.DrawEllipse(pn, rect)
pn.Dispose()

End Sub

VB .Net / 134

Figure 4-9. The ellipse drawn by the code in Example 4-9

In Example 4-9, the Graphics class's DrawEllipse method is passed a Pen object,
which determines the appearance of the line used for drawing the ellipse, and a
rectangle, which defines the shape of the ellipse. The Pen class has four constructors.
The constructor used in Example 4-9 takes a parameter of type Color (defined in
System.Drawing). The color passed to the Pen class constructor in Example 4-9 is the
foreground color of the form (Me.ForeColor). This is a nice touch ensuring that the
ellipse will be drawn using whatever color is set as the foreground color of the form on
which the ellipse is drawn. See Section 4.6.4 later in this chapter for information on
choosing and manipulating colors. Finally, note this line in Example 4-9:

pn.Dispose() By convention, objects that allocate scarce resources expose a Dispose
method to allow the object client to tell the object to release its resources. When using
any object that exposes a Dispose method (as the Pen object does), the Dispose
method must be called when the client code is finished using the object. If the Dispose
method isn't called (or if it isn't implemented), resources will be held longer than
necessary, which may in turn result in resources being unavailable for other code that
needs them. The .NET Framework provides a number of predefined pens through the
properties of the Pens and SystemPens classes (defined in the System.Drawing
namespace). For example, the Blue property of the Pens class returns a Pen object
whose color is set to Color.Blue. Thus, the following line of code draws a blue ellipse:
e.Graphics.DrawEllipse(Pens.Blue, rect) Similarly, the SystemPens class's
WindowText property returns a Pen object whose color is set to the system's window
text color. Using the standard pens provided by the Pens and SystemPens classes
can be more efficient than instantiating new Pen objects. However, their properties
(such as line width) cannot be altered. See Table 4-1, later in this chapter, for the list of
Pen objects available through the Pens class. See Section 4.6.4.1 in Section 4.6.4
later in this chapter for the list of Pen objects available through the SystemPens class.
When working with a user-instantiated pen, you can modify the line that is drawn by
setting properties of the Pen object. The code in Example 4-10 sets the Pen object's
Width property to widen the outline of the ellipse. The lines of code that differ from
Example 4-9 are shown in bold. The resulting display is shown in Figure 4-10.

Example 4-10. Setting Pen properties

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
Dim pn As New Pen(Me.ForeColor)

pn.Width = 10
pn.DashStyle = Drawing.Drawing2D.DashStyle.Dash
Dim rect As Rectangle
rect.X = Me.ClientRectangle.X + (Me.ClientRectangle.Width \ 4)
rect.Y = Me.ClientRectangle.Y + (Me.ClientRectangle.Height \ 4)
rect.Width = Me.ClientRectangle.Width \ 2
rect.Height = Me.ClientRectangle.Height \ 2
e.Graphics.DrawEllipse(pn, rect)
pn.Dispose()

End Sub

Windows Forms I : Developing Desktop Applications / 135

Figure 4-10. The ellipse drawn by the code in Example 4-10

Example 4-10 sets the Pen object's Width and DashStyle properties to attain the effect
shown in Figure 4-10.

The Width property is a value of type Single that determines the width of lines drawn
with this pen. The default is 1. The unit of measurement is determined by the PageUnit
property of the Graphics object in which the lines are drawn. The PageUnit property is
of the enumeration type GraphicsUnit (defined in the System.Drawing namespace).
The values of GraphicsUnit that are appropriate for assignment to the PageUnit
property are:

Display
Units are specified in 1/75 of an inch.

Document
Units are specified in 1/300 of an inch.

Inch
Units are specified in inches.

Millimeter
Units are specified in millimeters.

Pixel
Units are specified in pixels.

Point
Units are specified in points (1/72 of an inch).

The DashStyle property of the Pen object determines the whether the line is solid or
dashed, as well as the style of the dash. The DashStyle property is of the enumeration
type DashStyle (defined in the System.Drawing.Drawing2D namespace), which
defines the following values:

Custom
Specifies a programmer-defined dash style. If this value is used, other properties of the
Pen object control the exact appearance of the dashes in the line. Creating custom
dash styles is not discussed in this book.

Dash
Specifies a dashed line.

DashDot
Specifies a line consisting of alternating dashes and dots.

DashDotDot
Specifies a line consisting of alternating dashes and two dots.

VB .Net / 136

Dot
Specifies a dotted line.

Solid
Specifies a solid line.

The standard dash styles are shown in Figure 4-11.

Figure 4-11. The standard DashStyle values

4.6.3 The Brush Class

Brush objects hold the settings used when filling graphics areas. All of the Graphics
class's
Fill...methods (FillClosedCurve, FillEllipse, etc.) require that the caller supply a Brush
object. The
supplied Brush object determines how the interior of the figure will be painted.
Example 4-11 shows an OnPaint method that can be used to draw an ellipse on a user
control or a form. It is similar to Example 4-9, but draws a filled ellipse rather than an
outline. The lines that differ from Example 4-9 are shown in bold. The resulting display
is shown in Figure 4-12.

Example 4-11. Drawing a filled ellipse on a form

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

Dim br As New SolidBrush(Me.ForeColor)
Dim rect As Rectangle
rect.X = Me.ClientRectangle.X + (Me.ClientRectangle.Width \ 4)
rect.Y = Me.ClientRectangle.Y + (Me.ClientRectangle.Height \ 4)
rect.Width = Me.ClientRectangle.Width \ 2
rect.Height = Me.ClientRectangle.Height \ 2
e.Graphics.FillEllipse(br, rect)

 br.Dispose()
End Sub

Figure 4-12. The ellipse drawn by the code in Example 4-11

Note that Example 4-11 is not entirely parallel to Example 4-9. Specifically,
Example 4-9
instantiated a Pen object directly, but Example 4-11 instantiates an object from a class
that derives from the Brush class rather than directly from the Brush class. Objects

Windows Forms I : Developing Desktop Applications / 137

can't be directly instantiated from the Brush class. The classes that derive from Brush
are:

HatchBrush
Fills an area with a hatch pattern. Hatch patterns are patterns of lines and spaces. The
HatchBrush class's HatchStyle property determines the exact pattern of the hatch. It is
defined in the System.Drawing.Drawing2D namespace.

LinearGradientBrush
Fills an area with a gradient blend of two or more colors. It is defined in the
System.Drawing.Drawing2D namespace.

PathGradientBrush
Fills the internal area of a GraphicsPath object with a gradient blend of two or more
colors. It is defined in the System.Drawing.Drawing2D namespace.

SolidBrush
Fills an area with a solid color. It is defined in the System.Drawing namespace.

TextureBrush
Fills an area with an image. It is defined in the System.Drawing namespace.

The .NET Framework provides a number of predefined brushes through the properties
of the Brushes and SystemBrushes classes (defined in the System.Drawing
namespace). For example, the Blue property of the Brushes class returns a Brush
object that fills areas with solid blue. Thus, the following line of code draws a solid blue
ellipse:

e.Graphics.FillEllipse(Brushes.Blue, rect)

Similarly, the SystemBrushes class's Window property returns a Brush object whose
color is set to the background color of the system's window client area. Using the
standard brushes provided by the Brushes and SystemBrushes classes can be more
efficient than instantiating new Brush objects However, their properties cannot be
altered.

4.6.4 The Color Structure

Colors are represented by values of type Color. The Color structure defines 141
named colors and exposes them as shared read-only properties whose values are of
type Color. They serve the purpose of color constants. For example, the following code
fragment sets the background color of the form frm to white:
frm.BackColor = Color.White
The color properties exposed by the Color structure have the same names as the pen
properties exposed by the Pens class and the brush properties exposed by the
Brushes class. The list is lengthy, so it is printed here only once, in Table 4-1.

VB .Net / 138

Table 4-1. Properties common to the Color, Pens, and Brushes
classes

4.6.4.1 System colors
It is useful to discover the colors that Windows uses to draw specific window elements,
such as the active window's title bar. If the color itself is required, it can be obtained
from the SystemColors class. If a pen or brush of the appropriate color is needed, the
pen or brush can be obtained from the corresponding property of the Pens or Brushes
class, respectively. The property names exposed by these three classes overlap and,
therefore, are presented here in a single list:

ActiveBorder
The color of the filled area of the border of the active window. (Not available on the
Pens class.)

ActiveCaption
The background color of the title bar of the active window. (Not available on the Pens
class.)

ActiveCaptionText
The text color in the title bar of the active window.

AppWorkspace
The background color of MDI parent windows. (Not available on the Pens class.)

Control
The background color of controls.

Windows Forms I : Developing Desktop Applications / 139

ControlDark
The shadow color of controls (for 3-D effects).

ControlDarkDark
The very dark shadow color of controls (for 3-D effects).

ControlLight
The highlight color of controls (for 3-D effects).

ControlLightLight
The very light highlight color of controls (for 3-D effects).

ControlText
The color of text on controls.

Desktop
The color of the Windows desktop. (Not available on the Pens class.)

GrayText
The text color of disabled controls or other disabled visual elements. (Not available on
the Brushes class.)

Highlight
The background color of highlighted (selected) text.

HighlightText
The text color of highlighted (selected) text.

HotTrack
The background color of a hot tracked item. Hot tracking is highlighting an item as the
mouse moves over it. Windows menus use hot tracking. (Not available on the Pens
class.)

InactiveBorder
The color of the filled areas of the borders of inactive windows. (Not available on the
Pens class.)

InactiveCaption
The background color of the title bars of inactive windows. (Not available on the Pens
class.)

InactiveCaptionText
The text color in the title bars of inactive windows. (Not available on the Brushes
class.)

Info
The background color of tool tips. (Not available on the Pens class.)

InfoText
The text color of tool tips. (Not available on the Brushes class.)

Menu
The background color of menus. (Not available on the Pens class.)

MenuText
The text color of menus. (Not available on the Brushes class.)

ScrollBar
The color of scroll bars in the area not occupied by the scroll box (or thumb). (Not
available on the Pens class.)

Window
The background color of the client areas of windows. (Not available on the Pens
class.)

VB .Net / 140

WindowFrame
The color of the frames surrounding windows. (Not available on the Brushes class.)

WindowText
The color of the text in the client areas of windows.
Note that some of these properties aren't available on either the Pens class or the
Brushes class. In such cases, it is still possible to get a Pen or Brush object of the
appropriate color by instantiating a new Pen or Brush object, passing to its constructor
the desired color value, like this:

 Dim br As New SolidBrush(SystemColors.InfoText)

4.6.5 Alpha Blending

Alpha blending is a process that allows a Graphics object to appear transparent,
causing Graphics objects beneath it to be seen through the object. The degree of
transparency can be controlled in steps from completely transparent (invisible) to
completely opaque (obscuring any objects beneath it). To draw a transparent object,
instantiate Pen and Brush objects having colors whose alpha component is less than
the maximum value of 255. A color's alpha component is given by the A property of the
Color structure. This property is a Byte, so it can take values from 0 (invisible) to 255
(completely opaque). Example 4-12 shows an OnPaint method that draws text and
then draws two overlapping, transparent ellipses in the same space as the text.
Normally, the ellipses would obscure the text, and the second ellipse would obscure
the first. In this case, however, the text can be seen through the ellipses because the
ellipses are transparent, and the first ellipse can be seen through the second.
The result is shown in Figure 4-13.

Example 4-12. Drawing transparent figures

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 ' Determine the text to display and its font.

Dim str As String = "Here is some text to display in a form."
Dim fnt As New Font("Arial", 10, FontStyle.Regular,
GraphicsUnit.Point)

' Determine the X and Y coordinates at which to draw the text so
' that it is centered in the window.

Dim szf As SizeF = e.Graphics.MeasureString(str, fnt)
Dim xText As Single = (Me.DisplayRectangle.Width - szf.Width) / 2
Dim yText As Single = (Me.DisplayRectangle.Height - szf.Height) / 2

' Draw the text.
e.Graphics.DrawString(str, fnt, Brushes.Black, xText, yText)

' Create a blue brush that is mostly transparent.

Dim br As New SolidBrush(Color.FromArgb(160, Color.Blue))

' Determine the bounding rectangle for the first ellipse.

Dim rect As Rectangle
rect.X = Me.DisplayRectangle.X + (Me.DisplayRectangle.Width \ 8)
rect.Y = Me.DisplayRectangle.Y + (Me.DisplayRectangle.Height \ 8)
rect.Width = Me.DisplayRectangle.Width \ 2
rect.Height = Me.DisplayRectangle.Height \ 2

' Draw the first ellipse.

e.Graphics.FillEllipse(br, rect)

' Release the brush.

br.Dispose()

Windows Forms I : Developing Desktop Applications / 141

' Create a red brush that is mostly transparent.
br = New SolidBrush(Color.FromArgb(160, Color.Red))

' Determine the bounding rectangle for the second ellipse.
rect.X += (Me.DisplayRectangle.Width \ 4)
rect.Y += (Me.DisplayRectangle.Height \ 4)

' Draw the second ellipse.
e.Graphics.FillEllipse(br, rect)

' Release the brush.
br.Dispose()

End Sub

Figure 4-13. The display drawn by the code in Example 4-12

4.6.6 Antialiasing

Antialiasing is a technique for making the edges of graphics figures appear less
jagged. To turn on antialiasing, set the Graphics object's SmoothingMode property to
SmoothingMode.AntiAlias.
(SmoothingMode is an enumeration defined in the System.Drawing.Drawing2D
namespace.) Compare the arcs shown in Figure 4-14. Both arcs were drawn by calling
the DrawArc method of the Graphics class, but the arc on the left was drawn with the
SmoothingMode property set to
SmoothingMode.None (the default), and the arc on the right was drawn with the
SmoothingMode
property set to SmoothingMode.AntiAlias. Figure 4-15 shows a close-up comparison
view of
the upper portion of both arcs.

Figure 4-14. Nonantialiased versus antialiased arcs

Figure 4-15. Close-up view of nonantialiased and antialiased arcs

As Figure 4-15 shows, antialiasing appears to improve pixel resolution by using
gradient shades of the color being rendered and of the background color (in this case,
black and white, respectively). The downside to antialiasing is that it takes more time
to render.

VB .Net / 142

4.7 PRINTING

Most Visual Basic .NET programs will never need to use the .NET Framework's native
printing capabilities. Reporting tools such as Crystal Reports, as well as RAD tools for
laying out reports, provide most of the printing facilities that typical Visual Basic .NET
programs need. However, for the cases in which a reporting tool is not flexible enough,
this section describes the .NET Framework's support for outputting text and graphics
directly to a printer.

4.7.1 Hello, Printer!

Example 4-13 shows a minimal printing example.

Example 4-13. Hello, Printer!

Imports System.Drawing
Imports System.Drawing.Drawing2D
Imports System.Drawing.Printing
' ...
' These two lines initiate printing. Place this code in an
' appropriate place in the application.
Dim pd As New HelloPrintDocument()
pd.Print()
' ...
' This class manages the printing process.

Public Class HelloPrintDocument

Inherits PrintDocument

 Protected Overrides Sub OnPrintPage(ByVal e As PrintPageEventArgs)

MyBase.OnPrintPage(e)
' Draw text to the printer graphics device.
Dim fnt As New Font("Arial", 10, FontStyle.Regular, _
GraphicsUnit.Point)
e.Graphics.DrawString("Hello, Printer!", fnt, Brushes.Black, 0, 0)
fnt.Dispose()
' Indicate that there are no more pages.
e.HasMorePages = False

End Sub

End Class

Printing is managed by defining a class that inherits from the PrintDocument class
(defined in the
System.Drawing.Printing namespace). Printing is initiated by instantiating the derived
class and calling its Print method (inherited from the PrintDocument class). The Print
method repeatedly calls the OnPrintPage method, until the HasMorePages property of
the PrintPageEventArgs parameter is set to False. It is the job of the OnPrintPage
method to generate each page of output that is sent to the printer. Take a closer look
at the OnPrintPage method in Example 4-13, starting with the first line:
MyBase.OnPrintPage(e)
This line of code calls the OnPrintPage method implemented by the base
PrintDocument class,
passing it the same argument that was passed into the derived class's OnPrintPage
method. This call is important because the PrintDocument class's OnPrintPage
method is responsible for firing the PrintDocument object's PrintPage event. If this is
not done, any code that has registered for this event will not receive it. This is not an
issue in this small example, but it's nevertheless good programming practice. The next
three lines of code are responsible for handling the printing:

' Draw text to the printer graphics device.

Dim fnt As New Font("Arial", 10, FontStyle.Regular, _
GraphicsUnit.Point)
e.Graphics.DrawString("Hello, Printer!", fnt, Brushes.Black, 0, 0)
fnt.Dispose()

Windows Forms I : Developing Desktop Applications / 143

This code draws some text to the Graphics object provided through the
PrintPageEventArgs parameter. Everything you learned in the previous section about
the Graphics object is applicable here.Finally, since we're printing just one page in our
example program, PrintPageEventArgs.HasMorePages is set to False:
' Indicate that there are no more pages.
e.HasMorePages = False
This line indicates to the Print method that the end of the document has been reached.
If more pages need to be printed, the OnPrintPage method should set the
HasMorePages property to True.

4.7.2 The PrintPageEventArgs Class

The PrintPageEventArgs class is declared in the System.Drawing.Printing namespace
as:

Public Class PrintPageEventArgs
Inherits System.EventArgs
Its properties are:

Cancel
An indication of whether the print job is being canceled. This property is set to True by
the printing system if the user cancels the print job. Code in the OnPrintPage method
can read this value and take any appropriate action. However, programmatically
setting this property
back to False does not resume the print job. On the other hand, programmatically
setting it to True does cancel the print job, even if the user has not clicked the Cancel
button. The syntaxof the Cancel property is:

Public Property Cancel() As Boolean

Graphics
The Graphics object that represents the page surface. The syntax of the Graphics
property is:

Public ReadOnly Property Graphics() As System.Drawing.Graphics

HasMorePages
The mechanism for the OnPrintPage method to indicate to the printing system whether
there are more pages to be printed after the current page. The OnPrintPage method
should set this property to True when there are more pages to print and to False when
there are no more pages to print. The syntax of the HasMorePages property is:

Public Property HasMorePages() As Boolean

MarginBounds
A rectangle that specifies the area of the page that is within the document margins
(i.e., the area of the page on which rendering should occur). The syntax of the
MarginBounds property is:

Public ReadOnly Property MarginBounds() As System.Drawing.Rectangle

PageBounds
A rectangle that specifies the full area of the page, including the area outside the
margins. The syntax of the PageBounds property is:

Public ReadOnly Property PageBounds() As System.Drawing.Rectangle

PageSettings
The page settings that apply to the page currently being printed. The syntax of the
PageSettings property is:

Public ReadOnly Property PageSettings() As _
System.Drawing.Printing.PageSettings
The PageSettings class is described later in this section.

VB .Net / 144

4.7.3 The OnBeginPrint and OnEndPrint Methods

The PrintDocument class provides the OnBeginPrint and OnEndPrint methods for
managing the start and finish of print jobs. The OnBeginPrint method is called prior to
the first call to OnPrintPage, and the OnEndPrint method is called after the final call to
OnPrintPage. The OnBeginPrint method is a good place to set up objects that will be
used throughout the life of the print job—pens, brushes, and fonts, for example. The
HelloPrintDocument class in Example 4-13 instantiates a Font object during the
OnPrintPage method. This is acceptable here because only one page is being printed.
However, in practice documents may contain many pages, so it is better to move this
code to the OnBeginPrint method. Example 4-14 shows how the helloPrintDocument
looks when modified in this way.

Example 4-14. Using OnBeginPrint and OnEndPrint to set up and tear down
objects used during printing

Public Class HelloPrintDocument
Inherits PrintDocument
' Private member to hold the font that will be used for printing.

Private m_fnt As Font

Protected Overrides Sub OnBeginPrint(ByVal e As PrintEventArgs)
MyBase.OnBeginPrint(e)
' Create the font that will be used for printing.
m_fnt = New Font("Arial", 10, FontStyle.Regular, _
GraphicsUnit.Point)
End Sub
Protected Overrides Sub OnEndPrint(ByVal e As PrintEventArgs)
MyBase.OnEndPrint(e)
' Release the font.
m_fnt.Dispose()

End Sub

Protected Overrides Sub OnPrintPage(ByVal e As PrintPageEventArgs)

MyBase.OnPrintPage(e)
' Draw text to the printer graphics device.
Dim rect As Rectangle = e.MarginBounds
e.Graphics.DrawString("Hello, Printer!", m_fnt, Brushes.Black, 0, 0)
' Indicate that there are no more pages.
e.HasMorePages = False

End Sub
End Class

4.7.4 Choosing a Printer

The code given in Examples Example 4-13 and Example 4-14 merely prints to the
default printer.To allow the user to select a specific printer and set other printer
options, pass the PrintDocument object to a PrintDialog object and call the PrintDialog
object's ShowDialog method. The ShowDialog method displays a PrintDialog dialog
box (shown in Figure 5-19 in Chapter 5). When the user clicks OK in the PrintDialog
dialog box, the ShowDialog method sets the appropriate values in the given
PrintDocument object. The PrintDocument object's Print method can then be called to
print the document to the selected printer. Here is the code:

' Create the PrintDocument object and the dialog box object.
Dim pd As New HelloPrintDocument()
Dim dlg As New PrintDialog()

' Pass the PrintDocument object to the dialog box object.
dlg.Document = pd

' Show the dialog box. Be sure to test the result so that printing
' occurs only if the user clicks OK.

If dlg.ShowDialog = DialogResult.OK Then

' Print the document.

Windows Forms I : Developing Desktop Applications / 145

pd.Print()
End If

This code assumes the presence of the HelloPrintDocument class defined in Example
4-13 or Example 4-14. Note that the HelloPrintDocument class itself does not need to
be modified to support choosing a printer.

4.7.5 The PageSettings Class

As mentioned earlier, the PrintPageEventArgs object passed to the OnPrintPage
method has a
PageSettings property that holds a PageSettings object. This object holds the settings
applicable to printing a single page. The properties of the PageSettings class are:

Bounds
Represents a rectangle that specifies the full area of the page, including the area
outside the margins. This is the same value found in the PageBounds property of the
PrintPageEventArgs class. The syntax of the Bounds property is:

Public ReadOnly Property Bounds() As System.Drawing.Rectangle

Color
Indicates whether the page should be printed in color. The syntax of the Color property
is:

Public Property Color() As Boolean

Landscape
Indicates whether the page is being printed in landscape orientation. The syntax of the
Landscape property is:

Public Property Landscape() As Boolean

Margins
Indicates the size of the margins. The syntax of the Margins property is:
Public Property Margins() As System.Drawing.Printing.Margins
The Margins class has four properties, Left, Top, Right, and Bottom, each of which is
an Integer expressing the size of the respective margin.

PaperSize
Indicates the size of the paper. The syntax of the PaperSize property is:
Public Property PaperSize() As System.Drawing.Printing.PaperSize
The PaperSize class has four properties:

Width
An Integer expressing the width of the paper. This is the same value found in the
Width member of the Bounds property of the PageSettings object.

Height
An Integer expressing the height of the paper. This is the same value found in the
Height member of the Bounds property of the PageSettings object.

Kind
An enumeration of type PaperKind expressing the size of the paper in terms of
standard named sizes, such as Letter and Legal.
PaperName
A string giving the name of the paper size, such as "Letter" and "Legal".

PaperName
A string giving the name of the paper size, such as "Letter" and "Legal".

PaperSource
Indicates the paper tray from which the page will be printed. The syntax of the
PaperSource property is:
Public Property PaperSource() As System.Drawing.Printing.PaperSource
The PaperSource class has two properties:

VB .Net / 146

Kind
An enumeration of type PaperSourceKind expressing the paper source in terms of
standard names, such as Lower and Upper.
SourceName
A string giving the name of the paper source, such as "Lower" and "Upper".

PrinterResolution
Indicates the resolution capability of the printer. The syntax of the PrinterResolution
property is:
Public Property PrinterResolution() As _System.Drawing.Printing.PrinterResolution
The PrinterResolution class has three properties:

 X

An Integer expressing the horizontal resolution of the printer in dots per inch.

Y
An Integer expressing the vertical resolution of the printer in dots per inch.

Kind
An enumeration of type PrinterResolutionKind expressing the resolution mode. The
values of this enumeration are Draft, Low, Medium, High, and Custom.

PrinterSettings
Indicates the settings applicable to the printer being used. The syntax of the
PrinterSettings property is:

Public Property PrinterSettings() As _
System.Drawing.Printing.PrinterSettings

The PrinterSettings class is described in the next section.

4.7.6 The PrinterSettings Class

The PrinterSettings class holds values that describe the capabilities and settings of a
specific printer. It exposes these properties:

CanDuplex
Indicates whether the printer can print on both sides of the paper. The syntax of the
CanDuplex property is:

Public ReadOnly Property CanDuplex() As Boolean

Collate
Indicates whether the document being printed will be collated. The syntax of the
Collate property is:

Public Property Collate() As Boolean

Copies
Indicates the number of copies to print. The syntax of the Copies property is:

Public Property Copies() As Short

DefaultPageSettings
Indicates the default page settings for this printer. The syntax of the
DefaultPageSettings property is:

Public ReadOnly Property DefaultPageSettings() As _
System.Drawing.Printing.PageSettings

The PageSettings class was described in the previous section.

Duplex
Indicates whether the print job is to print on both sides of the paper. The syntax of the
Duplex property is:

Windows Forms I : Developing Desktop Applications / 147

Public Property Duplex() As System.Drawing.Printing.Duplex
The Duplex type is an enumeration with the following values:

Simplex
The document will print only on one side of each page.

Horizontal
The document will print using both sides of each page.

Vertical
The document will print using both sides of each page, and the second side will be
inverted to work with vertical binding.

Default
The document will print using the printer's default duplex mode.

FromPage
Specifies the first page to print if the PrintRange property is set to SomePages. The
syntax of the FromPage property is:

Public Property FromPage() As Integer

InstalledPrinters
Indicates the names of the printers installed on the computer. This list includes only
the printers physically connected to the machine (if any), not necessarily all printers set
up in the Control Panel. The syntax of the InstalledPrinters property is:

Public Shared ReadOnly Property InstalledPrinters() As _
System.Drawing.Printing.PrinterSettings.StringCollection

The StringCollection class is a collection of strings. It can be iterated using code such
as this:

' Assume pts is of type PrinterSettings.

Dim str As String
For Each str In pts.InstalledPrinters
 Console.WriteLine(str)
Next

IsDefaultPrinter
Indicates whether this printer is the user's default printer. The syntax of the
IsDefaultPrinter property is:

 Public ReadOnly Property IsDefaultPrinter() As Boolean

If the PrinterName property is explicitly set to anything other than Nothing, this
property always returns False.

IsPlotter
Indicates whether this printer is a plotter. The syntax of the IsPlotter property is:

 Public ReadOnly Property IsPlotter() As Boolean

IsValid
Indicates whether the PrinterName property designates a valid printer. The syntax of
the IsValid property is:

 Public ReadOnly Property IsValid() As Boolean

This property is useful if the PrinterName property is being set explicitly. If the
PrinterName is set as a result of allowing the user to select a printer through the
PrintDialog dialog box, this property will always be True.

LandscapeAngle
Indicates the angle (in degrees) by which portrait orientation is rotated to produce
landscape orientation. The syntax of the LandscapeAngle property is:

VB .Net / 148

Public ReadOnly Property LandscapeAngle() As Integer
This value can only be 90 or 270. If landscape orientation is not supported, this value
can only be 0.

MaximumCopies
Indicates the maximum number of copies that the printer can print at one time. The
syntax of the MaximumCopies property is:

Public ReadOnly Property MaximumCopies() As Integer

MaximumPage
Indicates the highest page number that can be entered in a PrintDialog dialog box. The
syntax of the MaximumPage property is:

Public Property MaximumPage() As Integer

Set this value prior to calling the PrintDialog object's ShowDialog method to prohibit
the user from entering a page number that is too high.

MinimumPage
Indicates the lowest page number that can be entered in a PrintDialog dialog box. The
syntax of the MinimumPage property is:

Public Property MinimumPage() As Integer

Set this value prior to calling the PrintDialog object's ShowDialog method to prohibit
the user from entering a page number that is too low.

PaperSizes
Indicates the paper sizes that are supported by this printer. The syntax of the
PaperSizes property is:

Public ReadOnly Property PaperSizes() As _
System.Drawing.Printing.PrinterSettings+PaperSizeCollection

The PaperSizeCollection is a collection of objects of type PaperSize. The PaperSize
type was described in the previous section, under the description for the PaperSize
property of the PageSettings class. The PaperSizeCollection can be iterated using the
following code:

' Assume pts is of type PrinterSettings.
 Dim pprSize As PaperSize

For Each pprSize In pts.PaperSizes
 Console.WriteLine(pprSize.PaperName)
Next

PaperSources
Indicates the paper sources that are available on the printer. The syntax of the
PaperSources property is:

Public ReadOnly Property PaperSources() As _
System.Drawing.Printing.PrinterSettings+PaperSourceCollection

The PaperSourceCollection is a collection of objects of type PaperSource. The
PaperSource type was described in the previous section, under the description for the
PaperSource property of the PageSettings class. The PaperSourceCollection can be
iterated using the following code:

' Assume pts is of type PrinterSettings.
Dim pprSource As PaperSource

 ForEach pprSource In pts.PaperSources
 Console.WriteLine(pprSource.SourceName

Next

Windows Forms I : Developing Desktop Applications / 149

PrinterName
Indicates the name of the printer. The syntax of the PrinterName property is:
Public Property PrinterName() As String Unless a string has been explicitly assigned
to the property, its value is Null.
PrinterResolutions

Indicates the resolution supported by this printer. The syntax of the PrinterResolutions
property is:

Public ReadOnly Property PrinterResolutions() As _
System.Drawing.Printing.PrinterSettings.PrinterResolutionCollection

The PrinterResolutionCollection is a collection of objects of type PrinterResolution. The
PrinterResolution type was described in the previous section, under the description for
the PrinterResolution property of the PageSettings class. The
PrinterResolutionCollection can be iterated using the following code:

' Assume pts is of type PrinterSettings.
Dim ptrResolution As PrinterResolution

For Each ptrResolution In pts.PrinterResolutions
Console.WriteLine(ptrResolution.Kind.ToString())

Next

PrintRange
Indicates the range of pages that are to be printed. The syntax of the PrintRange
property is:

Public Property PrintRange() As System.Drawing.Printing.PrintRange

The PrintRange type is an enumeration having the following values:

AllPages
Prints the entire document.Selection
Prints only the selected portion of the document.
SomePages Prints the pages starting at the page specified in the FromPage property
and ending at the page specified in the ToPage property.

SupportsColor
Indicates whether the printer supports color printing. The syntax of the SupportsColor
property is:

Public ReadOnly Property SupportsColor() As Boolean

ToPage Specifies the final page to print if the PrintRange property is set to
SomePages. The syntax of the ToPage property is:

Public Property ToPage() As Integer

The methods of the PrinterSettings class are:

Clone
Creates a copy of the PrinterSettings object. The syntax of the Clone method is:

Public NotOverridable Function Clone() As Object_Implements
System.ICloneable.Clone

GetHdevmode
Returns a handle to a Windows DEVMODE (device mode) structure corresponding to
this PrinterSettings object. The GetHdevmode method has two forms:

Public Overloads Function GetHdevmode() As System.IntPtr

and:

Public Overloads Function GetHdevmode(_ ByVal pageSettings As
System.Drawing.Printing.PageSettings_) As System.IntPtr

VB .Net / 150

GetHdevnames
Returns a handle to a Windows DEVNAMES structure corresponding to this
PrinterSettings object. The syntax of the GetHdevnames method is:

Public Function GetHdevnames() As System.IntPtr

SetHdevmode
Sets properties of this PrinterSettings object based on values in the given DEVMODE
structure.The syntax of the SetHdevmode method is:

Public Sub SetHdevmode(ByVal hdevmode As System.IntPtr)

SetHdevnames
Sets properties of this PrinterSettings object based on values in the given DEVNAMES
structure. The syntax of the SetHdevnames method is:

Public Sub SetHdevnames(ByVal hdevnames As System.IntPtr)

4.7.7 Page Setup Dialog Box

Windows Forms provides a common dialog box for page setup Settings entered by the
user in this dialog box are saved to a PageSettings object. This PageSettings object
can be saved by the application and passed to the PrintDocument object prior to
calling the PrintDocument object's Print method. The PrintDocument object will then
use the given settings for printing. Here's the code that displays the dialog box:

Private Sub ShowPageSetup()

' Display the page settings dialog box. This assumes that there is
' a class-level variable of type PageSettings called m_pgSettings.

Dim pgSetupDlg As New PageSetupDialog()
pgSetupDlg.PageSettings = m_pgSettings
pgSetupDlg.ShowDialog()

End Sub’

This code depends on the existence of a class-level variable of type PageSettings
called m_pgSettings. Here is a suitable definition for this variable:

' Private member to hold the application's page settings.
' This could be placed in an application's main form or in another
' class that is accessible to the code that will need to print.
Private m_pgSettings As New PageSettings()

Note the use of the New keyword to ensure that the PageSettings object is instantiated
as soon as the enclosing class is instantiated. All that remains is to hand the
PageSettings object to the PrintDocument object when it's time to print. Here is the
code:

Private Sub PrintTheDocument()
' Create the PrintDocument object.
 Dim pd As New HelloPrintDocument()

' Hand it the PageSettings object.
 pd.DefaultPageSettings = m_pgSettings

' Create the dialog box object.
 Dim dlg As New PrintDialog()

' Pass the PrintDocument object to the dialog box object.
 dlg.Document = pd

' Show the dialog box. Be sure to test the result so that printing
' occurs only if the user clicks OK.

Windows Forms I : Developing Desktop Applications / 151

If dlg.ShowDialog = DialogResult().OK Then
' Print the document.
pd.Print()

End If

End Sub

4.7.8 Print Preview

Generating a print preview is trivial. An instance of the PrintDocument object is created
and passed to a PrintPreviewDialog object, whose ShowDialog method is then called
to show the print preview. Here is the code:

Private Sub ShowPrintPreview()

' Create the PrintDocument object.
 Dim pd As New HelloPrintDocument()

' Hand it the PageSettings object.
 pd.DefaultPageSettings = m_pgSettings

' Create the print preview dialog box object.
 Dim dlg As New PrintPreviewDialog()

' Pass the PrintDocument object to the dialog box object.
 dlg.Document = pd

' Show the dialog box.
 dlg.ShowDialog()

End Sub

The result is shown in Figure 4-16.

Figure 4-16. Hello, Printer! in a print preview window

4.7.9 Summary of Printing

The .NET Framework hides the mechanics of printing. Applications don't have to know
how to find printers, they don't have to know what a given printer's capabilities are, and
they don't have to know how to issue commands that are meaningful to a given brand
of printer. The Framework abstracts all of this away. However, the Framework doesn't
know anything about a given application's documents. It is up to the application
developer to know how to paginate the application's documents and render each page
in response to each call to the PrintDocument class's OnPrintPage method.

VB .Net / 152

4.4, 4.5, 4.6, 4.7 Check Your Progress
Fill in the Blanks
1. ……………………..…. application permits more than one document to be open at a

time.
2. ……….…………… indicates the default value of a property.
3. …………………. objects hold the settings used when drawing lines.
4. ……………………….. is technique for making the edges of graphics figures.
5. MDI stands for ………………………………….

4.8 FILES IN VB.NET

We'll also take a look at general Visual Basic file handling in this chapter. In Visual

Basic .NET, file handling is largely based on the System.IO namespace, which
encloses a class library that supports string, character, and file manipulation. These
classes include properties, methods, and events for creating, copying, moving, and
deleting files. The most commonly used classes are FileStream, BinaryReader,
BinaryWriter, StreamReader, and StreamWriter, and we'll take a look at all of these
classes in this chapter.

4.8.1 FileStream Class

Yyou can use the FileStream class to open or create files, and then use other classes,
like BinaryWriter and BinaryReader, to work with the data in the file. Here's the
hierarchy of the FileStream class:

Object
 MarshalByRefObject
 Stream
 FileStream

You can find the more notable public properties of FileStream objects in Table 13.7
and the more notable public methods in Table given below-

Table: Noteworthy public properties of FileStream objects.
Property Means
CanRead Determines if the stream supports reading.
CanSeek Determines if the stream supports seeking.
CanWrite Determines if the stream supports writing.
Handle Gets the operating system file handle for the stream's file.
IsAsync Determines if the stream was opened asynchronously or

synchronously.
Length Gets the length of the stream in bytes.
Name Gets the name of the file stream passed to the constructor.
Position Gets/sets the position in this stream.

Table: Noteworthy public methods of FileStream objects.
Method Means
BeginRead Starts an asynchronous read operation.
BeginWrite Starts an asynchronous write operation.
Close Closes a file, making it available in Windows to any other

program.
EndRead Waits for an asynchronous read operation to finish.

Windows Forms I : Developing Desktop Applications / 153

Table: Noteworthy public methods of FileStream objects.
Method Means
EndWrite Ends an asynchronous write operation, waiting until the operation

has finished.
Flush Flushes all buffers for this stream, writing any buffered data out

to its target (such as a disk file).
Lock Withholds any access to the file to other processes.
Read Reads a block of bytes.
ReadByte Reads a byte from the file.
Seek Sets the current read/write position.
SetLength Sets the length of the stream.
Unlock Gives access to other processes to a file that had been locked.
Write Writes a block of bytes to this stream.
WriteByte Writes a byte to the current read/write position.

4.8.2 FileMode

When you open a file with the FileStream class, you specify the file mode you want to
use—for example, if you want to create a new file, you use the file mode
FileMode.Create. The various possible file modes are part of the FileMode
enumeration; you can find the members of this enumeration in Table given below-

Table: Members of the FileMode enumeration.
Member Means
Append Opens a file and moves to the end of the file (or creates a new

file if the specified file doesn't exist). Note that you can only
use FileMode.Append with FileAccess.Write.

Create Creates a new file; if the file already exists, it is overwritten.
CreateNew Creates a new file; if the file already exists, an IOException

is thrown.
Open Opens an existing file.
OpenOrCreate Open a file if it exists; or create a new file.
Truncate Open an existing file, and truncate it to zero length so you can

write over its data.

4.8.3 FileAccess

When you open files with the FileStream class, you can specify the file mode (see the
previous topic) and access. The access indicates the way you're going to use the file-
to read from, to write to, or both. To indicate the type of file access you want, you use
members of the FileAccess enumeration. You can find the members of the
FileAccess enumeration in Table given below-

Table: Members of the FileAccess enumeration.
Member Means
Read Gives read access to the file, which means you can read data from

the file.
ReadWrite Gives both read and write access to the file, which means you can

both read and write to and from a file.

VB .Net / 154

Table: Members of the FileAccess enumeration.
Member Means
Write Gives write access to the file, which means you can write to the

file.

4.8.4 Opening or Creating a File with the FileStream Class

When you want to open or create a file, you use the FileStream class, which has
many constructors, allowing you to specify the file mode (for example,
FileMode.Create), file access (such as FileAccess.Write), and/or the file-sharing
mode (such as FileShare.None), like this (these are only a few of the FileStream
constructors):

Dim fs As New System.IO.FileStream(String, FileMode)
Dim fs As New System.IO.FileStream(String, FileMode, FileAccess)
Dim fs As New System.IO.FileStream(String, FileMode, FileAccess, FileShare)

The StreamWriterReader example on the CD-ROM shows how this works—in that
example, I'm creating a file named file.txt and opening it for writing with a FileStream
object; note that I'm setting the file mode to Create to create this new file, and explicitly
setting the file access to Write so we can write to the file:

Imports System
Imports System.IO

Public Class Form1

 Inherits System.Windows.Forms.Form
 'Windows Form Designer generated code

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim fs As New System.IO.FileStream("file.txt", FileMode.Create, _
 FileAccess.Write)

4.8.5 Writing Text with the StreamWriter Class

You can use the StreamWriter class to write text to a file. In the topic "Opening or
Creating a File with the FileStream Class" in this chapter, I used a FileStream object
to create a file for writing in the StreamWriterReader example on the CD-ROM. In this
topic, I can continue that example by using that FileStream object to create a
StreamWriter object and use StreamWriter methods to write sample text to the file.
Here's how this looks (note that I've discussed these methods in the In Depth section
of this chapter; for example, Write just writes text, while WriteLine follows the text it
writes with a carriage-return/linefeed pair):

Imports System
Imports System.IO

Public Class Form1

 Inherits System.Windows.Forms.Form

 'Windows Form Designer generated code

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim fs As New System.IO.FileStream("file.txt", FileMode.Create, _
 FileAccess.Write)

 Dim w As New StreamWriter(fs)
 w.BaseStream.Seek(0, SeekOrigin.End)
 w.WriteLine("Here is the file's text.")

Windows Forms I : Developing Desktop Applications / 155

 w.Write("Here is more file text." & ControlChars.CrLf)
 w.WriteLine("And that's about it.")
 w.Flush()
 w.Close()

 End Sub

End Class

4.8.6 Reading Text with the StreamReader Class

In the topic "Writing Text with the StreamWriter Class" in this chapter, I used the
StreamWriter class to write text to a file in the StreamWriterReader example on the
CD-ROM. You also can use the StreamReader class to read that text back in, and I
do that in the StreamWriterReader example like this, as discussed in the In Depth
section of this chapter:

Imports System
Imports System.IO

Public Class Form1

 Inherits System.Windows.Forms.Form

 'Windows Form Designer generated code

 Private Sub Button1_Click(ByVal sender As System.Object, _ByVal e As
 System.EventArgs) Handles Button1.Click

 Dim fs As New System.IO.FileStream("file.txt", FileMode.Create, _
 FileAccess.Write)

 Dim w As New StreamWriter(fs)

 w.BaseStream.Seek(0, SeekOrigin.End)
 w.WriteLine("Here is the file's text.")
 w.Write("Here is more file text." & ControlChars.CrLf)
 w.WriteLine("And that's about it.")
 w.Flush()
 w.Close()

 fs = New System.IO.FileStream("file.txt", FileMode.Open, _
 FileAccess.Read)

 Dim r As New StreamReader(fs)
 r.BaseStream.Seek(0, SeekOrigin.Begin)

 While r.Peek() > -1
 TextBox1.Text &= r.ReadLine() & ControlChars.CrLf
 End While

 r.Close()

 End Sub

End Class

4.8.7 Binary Class

Table: Noteworthy public properties of BinaryWriter objects.
Property Means
BaseStream Gets the underlying stream, giving you access to that stream's

properties and methods.

Table: Noteworthy public methods of BinaryWriter objects.
Method Means
Close Closes the binary writer as well as the underlying stream.

VB .Net / 156

Table: Noteworthy public methods of BinaryWriter objects.
Method Means
Flush Flushes the buffer of the binary writer and writes out any buffered

data.
Seek Sets the read/write position in the stream.
Write Writes data to the stream.

4.8.8 Writing Binary Data with the BinaryWriter Class

Once you have a FileStream object, you can use the BinaryWriter class to write
binary data to a file. The BinaryWriterReader example on the CD-ROM shows how to
do this, and this topic is also discussed in the In Depth section of this chapter. That
example uses the BinaryWriter class's Write method to write 20 Int32 values to a file,
data.dat:

Imports System.IO

Public Class Form1
 Inherits System.Windows.Forms.Form

 'Windows Form Designer generated code

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim fs As FileStream = New FileStream("data.dat", _
 FileMode.OpenOrCreate)

 Dim w As BinaryWriter = New BinaryWriter(fs)

 Dim LoopIndex As Int32
 For LoopIndex = 0 To 19
 w.Write(LoopIndex)
 Next

 End Sub

End Class

4.8.9 Binary Reader Class

Table: Noteworthy public properties of BinaryReader objects.
Property Means
BaseStream Holds the underlying stream of the binary reader, giving you

access to that stream's properties and methods.

Table: Noteworthy public methods of BinaryReader objects.
Method Means
Close Closes the binary reader as well as the underlying stream.
PeekChar Peeks ahead and returns the next available character (but does

not advance the read/write position).
Read Reads characters from the underlying stream and advances the

current position of the stream.
ReadBoolean Reads a Boolean from the stream.
ReadByte Reads the next byte from the stream.

Windows Forms I : Developing Desktop Applications / 157

Table: Noteworthy public methods of BinaryReader objects.
Method Means
ReadBytes Reads a number of bytes from the stream into a byte array.
ReadChar Reads the next character from the stream.
ReadChars Reads a number of characters from the stream.
ReadDecimal Reads a decimal value from the stream.
ReadDouble Reads an 8-byte floating-point value from the stream.
ReadInt16 Reads a 2-byte signed integer from the stream.
ReadInt32 Reads a 4-byte signed integer from the stream.
ReadInt64 Reads an 8-byte signed integer from the stream.
ReadSByte Reads a signed byte from the stream.
ReadSingle Reads a 4-byte floating-point value from the stream.
ReadString Reads a string from the current stream.
ReadUInt16 Reads a 2-byte unsigned integer from the stream.
ReadUInt32 Reads a 4-byte unsigned integer from the stream.
ReadUInt64 Reads an 8-byte unsigned integer from the stream.

4.8.10 Reading Binary Data with the BinaryReader Class

If you have a FileStream object, you can use the BinaryReader class to read binary
data from files. In the BinaryWriterReader example on the CD-ROM, I first write 20
Int32 values to a file and then read them back with a BinaryReader object like this,
using the ReadInt32 method, and display them in a text box:

Imports System.IO

Public Class Form1

 Inherits System.Windows.Forms.Form

 'Windows Form Designer generated code

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Dim fs As FileStream = New FileStream("data.dat", _
 FileMode.OpenOrCreate)

 Dim w As BinaryWriter = New BinaryWriter(fs)
 Dim LoopIndex As Int32

 For LoopIndex = 0 To 19
 w.Write(LoopIndex)
 Next

 w.Seek(0, SeekOrigin.Begin)
 Dim r As BinaryReader = New BinaryReader(fs)

 For LoopIndex = 0 To 19
 TextBox1.Text &= r.ReadInt32() & ControlChars.CrLf
 Next
 End Sub

End Class

VB .Net / 158

4.9 SUMMARY

 In this chapter, you've seen how to work with Windows forms in creating a desktop
application. A Windows form, however, is simply a container for the application's user
interface components. In the next chapter, you'll round out your examination of
desktop application development by looking at controls, common dialogs, and menus.

4.10 CHECK YOUR PROGRESS-ANSWERS

4.1 & 4.2 & 4.3
1. False
2. False
3. True
4. True

4.4 & 4.5 & 4.6 & 4.7
1. MDI
2. Default ValueAttribute
3. Pen
4. Antialiasing
5. Multiple Document Interface

4.11 QUESTIONS FOR SELF-STUDY

1. Explain Handling form Events?
2. Explain MDI Applications?
3. Write short note on graphic class?
4. Explain OnBeginPrint & OnEndPrint Methods?
5. Explain PageSetting Class?

4.12 SUGGESTED READINGS

1. Visual Basic .NET Black Book by Steven Holzner

References

Programming Visual Basic .NET by Dave Grundgeiger

Windows Forms I : Developing Desktop Applications / 159

NOTES

VB .Net / 160

NOTES

Windows Forms II:Controls, Common Dialog Boxes & Menus /161

CHAPTER 5

WINDOWS FORMS II: CONTROLS, COMMON
DIALOG BOXES AND MENUS

 5.0 Objectives
 5.1 Introduction
 5.2 Common Controls & Components
 5.3 Control Events
 5.4 Form and Control Layout
 5.5 Common Dialog Boxes
 5.6 Menus
 5.7 Creating a Control
 5.8 COM Interoperability
 5.9 Summary
 5.10 Check your Progress-Answers
 5.11 Questions for Self-Study
 5.12 Suggested Readings

5.0 OBJECTIVES

After studying The. NET Framework chapter you will able to :
 Describe common controls and components
 State control events,form and control Layout
 Code for Common Dialog Boxes, Menus, Creating a Control in your aplication

5.1 INTRODUCTION

By themselves, one or more forms provide very little functionality to most desktop
applications. For the most part, forms are valuable insofar as they serve as containers
for controls. In this chapter, we'll complete our discussion of building desktop
applications by focusing on the objects that forms contain—in particular, controls and
components, common dialogs, and menus.

5.2 COMMON CONTROLS AND COMPONENTS

This section contains a summary of the controls and components defined in the
System.Windows.Forms namespace. Components are classes derived from the
Component class (defined in the System.ComponentModel namespace). They may or
may not provide a visual interface. They are often used as elements of forms but don't
have to be. Controls are classes derived from the Control class (defined in the
System.Windows.Forms namespace). Controls generally are used to build the visual
appearance of a form. The Control class itself is derived from the Component class, so
controls are also components.

5.2.1 The Button Class

This class represents a button control, which is one of the most commonly used
controls in Windows applications. The Button class's Click event, which it inherits from
Control, is its most commonly used event.The Button class inherits two important
properties from ButtonBase: FlatStyle and Image. The first determines the appearance
of the button and can take any value of the FlatStyle enumeration: Flat, Popup,
Standard (the default), and System. Buttons with these four settings are shown in
Figure 5-1. Assigning FlatStyle.System as the value of the FlatStyle property makes
the appearance of the button dependent on the operating system.

VB .Net / 162

Figure 5-1. Various appearances of the Button control

The Image property allows you to embed an image into a button. The following code
shows how to programmatically set the Image property of Button:
Button1.Image = New System.Drawing.Bitmap(filepath)

5.2.2 The CheckBox Class

The CheckBox class represents a checkbox control. Its appearance is determined by
its Appearance property, which can take either value of the Appearance enumeration:
Button or Normal (the default). The Button value is rarely used because this setting
makes the checkbox look like a Button control.
The CheckBox class's Checked property can be set to True to make the checkbox
checked or False to uncheck it.

5.2.3 The ComboBox Class

Both the ComboBox and ListBox classes derive from the ListControl class; therefore,
the ComboBox class is very similar to the ListBox class and has properties and
methods similar to those of the ListBox class. Refer to Section 5.1.9 for information on
these common properties and methods.The following properties are specific to the
ComboBox class:

DropDownStyle

Defines the drop-down style of the ComboBox. It can take any value of the
ComboBoxStyle enumeration: DropDown (the default value), DropDownList,
and Simple. Both DropDown and DropDownList require the user to click the
arrow button to display the drop-down portion of the ComboBox; however,
DropDown allows the user to edit the text portion of the ComboBox. Simple
makes a ComboBox's text portion editable and its drop-down portion always
visible.

DroppedDown

 Specifies whether the drop-down portion of a ComboBox is visible.

5.2.4 The DateTimePicker Class

The DateTimePicker class represents a control that allows users to select a date in the
calendar, just like the MonthCalendar control. Unlike MonthCalendar, however, the
DateTimePicker control only displays a box, which looks like a combo box, containing
the selected date. When the user clicks the arrow, the control displays a drop-down
calendar similar to the MonthCalendar control, from which the user can select a date.
This drop-down portion closes as soon as the user selects a date. The user can also
click on the day, date, month, or year portion of the control for editing. The
DateTimePicker class has MinDate and MaxDate properties that are similar to the
ones in the MonthCalendar class. To set the current date or to obtain the selected
date, use the Value property of the DateTimePicker class. The selected date is readily
available as a DateTime data type.

5.2.5 The GroupBox Class

As the name implies, a GroupBox control is used for grouping other controls, such as
radio buttons orcheckboxes; it corresponds to the Frame control in Visual Basic 6.0. A
GroupBox grouping two radio buttons is shown in Figure 5-2.

Windows Forms II:Controls, Common Dialog Boxes & Menus /163

Figure 5-2. A GroupBox grouping two radio buttons

The Controls property of GroupBox represents a Control.ControlCollection class. It has
methods such as Add, AddRange, Clear, GetEnumerator, and Remove, which behave
exactly as do the same methods in Form.ControlCollection. For example, you can add
several controls at once to a GroupBox using its AddRange method, as demonstrated
by the following code that adds two radio buttons to a GroupBox named groupBox1:
groupBox1.Controls.AddRange(New Control() {radioButton1, radioButton2})

5.2.6 The ImageList Class

The ImageList class allows you to manage a collection of images. The most important
property of this class is Images, which returns an ImageList.ImageCollection object.
The ImageList.ImageCollection class has methods to add and remove images from the
collection.

The Add method of the ImageList.ImageCollection class adds a bitmap image or an
icon to the ImageList's image collection. The Add method has three overloads, whose
signatures are given as follows:

Overloads Public Sub Add(ByVal value As System.Drawing.Icon)
Overloads Public Sub Add(ByVal value As System.Drawing.Image)
Overloads Public Sub Add(ByVal value As System.Drawing.Image, _
 ByVal transparentColor as System.Drawing.Color)

The first overload allows you to add an icon, and the second overload is used to add
an object of type System.Drawing.Image. The third overload is used to add an image
and make a color of that image transparent. For example, if you have an image with a
blue background color, you can make the added image transparent by passing a blue
color as the second argument to the third overload of the Add method.The RemoveAt
method of the ImageList.ImageCollection class allows you to remove an image.Once
you instantiate an ImageList object, you can start adding images or icons. The
following code,for example, adds three images and icons using three different
overloads of the Add method:

Imports System.Drawing
Dim imageList1 As ImageList1 = New ImageList()

ImageList1.Images.Add(New Icon("C:\Palm.ico"))
ImageList1.Images.Add(New Bitmap("C:\TV.bmp"))
ImageList1.Images.Add(New Bitmap("C:\Dog.bmp"), Color.White)

Important properties of the ImageList class include ColorDepth and ImageSize. The
ColorDepth property determines the number of colors available for the ImageList.
For example, a value of 4 means that 2^4 = 16 colors are available.

The ImageSize property determines the sizes of all images in the list. By default,
the value is System.Drawing.Size(16, 16).

You can assign an ImageList object to the ImageList property of controls such as
Label, Button, and ListView. You can then select an image from the ImageList to be
displayed on the control using the control's ImageIndex property.

For example, the following code uses an ImageList for a button and selects the first
image as the background image for the button:

button1.ImageList = imageList1
button1.ImageIndex = 0

VB .Net / 164

5.2.7 The Label Class

This class represents a Label control. Its appearance is determined by two properties:
BorderStyle and FlatStyle. The BorderStyle property defines the appearance of the
control's border and takes any of the three members of the BorderStyle enumeration:
None (the default), FixedSingle, and Fixed3D. Figure 5-3 shows three labels with three
different values of BorderStyle.

Figure 5-3. Three labels with different BorderStyle values

The FlatStyle property defines the appearance of the control and can take as its value
any member of the FlatStyle enumeration: Flat, Popup, Standard, and System.
However, if the value of the BorderStyle property is set to None, the label's FlatStyle
property can take no other value than FlatStyle.Standard. For more information on the
FlatStyle property,.You normally assign a String to the label's Text property. However,
you can also assign an image to its Image property. For example, the following code
programmatically sets the Image property of a label:

Label1.Image = New System.Drawing.Bitmap(filepath)

Another important property is TextAlign, which determines how the label's text is
aligned. This property can take any member of the ContentAlignment enumeration,
including BottomCenter, BottomLeft,BottomRight, MiddleCenter, MiddleLeft,
MiddleRight, TopCenter, TopLeft (the default value), and TopRight. The UseMnemonic
property can be set to True so that the label accepts an ampersand character in the
Text property as an access-key prefix character.

5.2.8 The LinkLabel Class

The LinkLabel class represents a label that can function as a hyperlink, which is a URL
to a web site. Its two most important properties are Text and Links. The Text property
is a String that defines the label of the LinkLabel object. You can specify that some or
all of the Text property value is a hyperlink. For example, if the Text property has the
value "Click here for more details", you can make the whole text a hyperlink, or you
can make part of it (e.g., the word "here") a hyperlink. How to do this will become clear
after the second property is explained. For a LinkLabel to be useful, it must contain at
least one hyperlink. The Links property represents a LinkLabel.LinkCollection class of
the LinkLabel object. You use the Add method of the LinkLabel.LinkCollection class to
add a LinkLabel.Link object. The Add method has two overloads; the one that will be
used here has the following signature:

Overloads Public Function Add(_ByVal start As Integer, _ByVal length As Integer, _
 ByVal linkData As Object _) As Link

The start argument is the first character of the Text property's substring that you will
turn into a hyperlink. The length argument denotes the length of the substring. The
linkData argument is normally a String containing a URL, such as "www.oreilly.com".
For example, if your Text property contains "Go to our web site", and you want "web
site" to be the hyperlink, here is how you would use the Add method:

linkLabel1.Links.Add(10, 8, "www.oreilly.com")

10 is the position of the character w in the Text property, and 8 is the length of the
substring "web site". The LinkLabel class has a LinkClicked event that you can capture
so that you can run code when a LinkLabel object is clicked. The following example
creates a LinkLabel object that is linked to the URL and starts and directs the default
browser to that URL when the LinkLabel is clicked:

Windows Forms II:Controls, Common Dialog Boxes & Menus /165

Dim WithEvents linkLabel1 As LinkLabel = new LinkLabel()
linkLabel1.Text = "Go to our web site"
linkLabel1.Links.Add(10, 8, "www.oreilly.com")
linkLabel1.Location = New System.Drawing.Point(64, 176)
linkLabel1.Name = "LinkLabel1"
linkLabel1.Size = New System.Drawing.Size(120, 16)
' Add to a form.
Me.Controls.Add(linkLabel1)

Private Sub LinkLabel1_LinkClicked(_ByVal sender As Object, _
 ByVal e As LinkLabelLinkClickedEventArgs)_Handles linkLabel1.LinkClicked
 'Start the default browser and direct it to "Typed URL".
 System.Diagnostics.Process.Start(e.Link.LinkData.ToString())
End Sub

The LinkLabel class has a number of properties that are related to the appearance of a
LinkLabelobject:

ActiveLinkColor

Represents the color of the LinkLabel when it is being clicked (i.e., when you press
your mouse button but before you release it).
By default, the value of ActiveLinkColor is
System.Drawing.Color.Red.

DisabledLinkColor

Represents the color of the LinkLabel when it is disabled.

LinkColor

Represents the color of the LinkLabel in its normal condition. By default, the
value is

 System.Drawing.Color.Blue.

VisitedLinkColor

Represents the color of a LinkLabel that has been visited. By default, this
property value is System.Drawing.Color.Purple. The LinkLabel does not
automatically display in its VisitedLinkColor after it is clicked. You must change
its LinkVisited property to True. Normally, you do this inside the LinkClicked
event handler of the LinkLabel object. Therefore, in the previous example, if you
want the LinkLabel to change color after it is clicked, you can modify its
LinkClicked event handler with the following:

Private Sub LinkLabel1_LinkClicked(_ByVal sender As Object, _

 ByVal e As LinkLabelLinkClickedEventArgs)_Handles
 linkLabel1.LinkClicked
LinkLabel1.LinkVisited = True
' Start the default browser and direct it to "www.oreilly.com".

System.Diagnostics.Process.Start(e.Link.LinkData.ToString())

End Sub

LinkBehavior

Determines how the LinkLabel is displayed. This property can take any member
of the LinkBehavior enumeration: AlwaysUnderline, HoverUnderline,
NeverUnderline, and SystemDefault (the default value).

5.2.9 The ListBox Class

The ListBox class represents a box that contains a list of items. The following are its
more important properties:

VB .Net / 166

MultiColumn
This is a Boolean that indicates whether the listbox has more than one column.
Its default value is False.

ColumnWidth
In a multicolumn listbox, this property represents the width of each column in
pixels. By default, the value of this property is zero, which makes each column
have a default width.

Items
This is the most important property of the ListBox class. It returns the
ListBox.ObjectCollection class, which is basically the Items collection in the
ListBox. You can programmatically add an item using the Add method or add a
range of items using the AddRange method of the ListBox.ObjectCollection
class. For example, the following code adds the names of vegetables and fruits
to a ListBox object named listBox1:

listBox1.Items.AddRange(New Object()
{
"apple", "avocado", "banana", "carrot", "mandarin", "orange"
}

)

For more information about the ListBox.ObjectCollection class, This property
determines whether multi-item selection is possible in a ListBox object. It can be
assigned any member of the SelectionMode enumeration:

None, One (the default value),

MultiSimple, and MultiExtended. Both MultiSimple and MultiExtended allow the
user to select more than one item. However, MultiExtended allows the use of
the Shift, Ctrl, and arrow keys to make a selection.

SelectedIndex

This is the index of the selected item. The index is zero-based. If more than one
item is selected, this property represents the lowest index. If no item is selected,
the property returns -1.

SelectedIndices

This read-only property returns the indices to all items selected in a ListBox
object in the form of a ListBox.SelectedIndexCollection object. The
ListBox.SelectedIndexCollection class has a Count property that returns the
number of selected indices and an Item property that returns the index number.
For example, the following code returns the index number of all selected items
in a ListBox control named listBox1:

Dim selectedIndices As ListBox.SelectedIndexCollection
' Obtain the selected indices.
selectedIndices = listBox1.SelectedIndices

' Get the number of indices.

Dim count As Integer = selectedIndices.Count

Dim i As Integer

For i = 0 To count - 1
 Console.WriteLine(selectedIndices(i))
Next

SelectedItem

This read-only property returns the selected item as an object of type Object.
You must cast the returned value to an appropriate type, which is normally
String. If more than one item is selected, the property returns the item with the
lowest index.

Windows Forms II:Controls, Common Dialog Boxes & Menus /167

SelectedItems

This read-only property returns all items selected in a ListBox object in the form
of a ListBox.SelectedObjectCollection object. The
ListBox.SelectedObjectCollection class has a Count property that returns the
number of items in the collection and an Item property that you can use to
obtain the selected item. For example, the following code displays all the
selected items of a ListBox control called listBox1:

Dim selectedItems As ListBox.SelectedObjectCollection
 selectedItems = listBox1.SelectedItems

Dim count As Integer = selectedItems.Count
Dim i As Integer

For i = 0 To count - 1
 Console.WriteLine(selectedItems(i))
Next

Sorted

A value of True means that the items are sorted. Otherwise, the items are not
sorted. By default, the value of this property is False.

Text

 This is the currently selected item's text.

TopIndex

This is the index of the first visible item in the ListBox. The value changes as the
user scrolls through the items.

5.2.10 The ListBox.ObjectCollection Class

This class represents all the items in a ListBox object. It has a Count property that
returns the number of items in the ListBox and an Item property that returns the item
object in a certain index position. The following sample code reiterates all the items in
a ListBox control named listBox1:

Dim items As ListBox.ObjectCollection
 items = ListBox1.Items
Dim count As Integer = items.Count
Dim i As Integer
 For i = 0 To count - 1
 Console.WriteLine(items(i))
 Next

In addition, the ListBox.ObjectCollection class has the following methods:

Add
Adds an item to the ListBox object. Its syntax is:

 ListBox.ObjectCollection.Add(item)

where item is data of type Object that is to be added to the collection. The method
returns the zero-based index of the new item in the collection.

AddRange
Adds one or more items to the ListBox object. Its most common syntax is:

 ListBox.ObjectCollection.AddRange(items())

where items is an array of objects containing the data to be added to the ListBox.

VB .Net / 168

Clear
Clears the ListBox, removing all the items. Its syntax is:

ListBox.ObjectCollection.Clear()

Contains
Checks whether an item can be found in the list of items. Its syntax is:

ListBox.ObjectCollection.Contains(value)

where value is an Object containing the value to locate in the ListBox. The method
returns True if value is found; otherwise, it returns False.

CopyTo
Copies all items to an object array. Its syntax is:

 ListBox.ObjectCollection.CopyTo(dest(), arrayIndex)

where dest is the Object array to which the ListBox items are to be copied, and
arrayIndex is the starting position within dest at which copying is to begin.

IndexOf
Returns the index of a particular item. Its syntax is:

ListBox.ObjectCollection.IndexOf(value)

where value is an Object representing the item to locate in the collection. The
method returns the item's index. If the item cannot be found, the method returns -1.

Insert
Inserts an item into the ListBox at the specified index position. Its syntax is:

ListBox.ObjectCollection.Insert(index, item)

where index is the zero-based ordinal position at which the item is to be inserted,
and item is an Object containing the data to be inserted into the collection.

Remove
Removes the item that is passed as an argument to this method from the ListBox.
Its syntax is:

ListBox.ObjectCollection.Remove(value)

where value is an Object representing the item to remove from the collection.

RemoveAt
Removes an item at the specified index position. Its syntax is:

ListBox.ObjectCollection.RemoveAt(index)

where index is the zero-based ordinal position in the collection of the item to be
removed.

5.2.11 The ListView Class

A ListView is a container control that can hold a collection of items. Each item in a
ListView can have descriptive text and an image, and the items can be viewed in four
modes. The righthand pane of Windows Explorer is a ListView control. An item in a
ListView is represented by an object of type ListViewItem. The various constructors of
the ListViewItem class permit a ListViewItem to be constructed with a String or with a
String and an index number. If an index number is used, it represents the index of the
item's image in the ImageList referenced by the ListView. The following code
constructs two ListViewItem objects. The first has the text "Item1" and uses the first
image in the ImageList. The second has the text "Item2" and uses the second image of
the ImageList:

Windows Forms II:Controls, Common Dialog Boxes & Menus /169

Dim listViewItem1 As ListViewItem = New ListViewItem("Item1", 0)
Dim listViewItem2 As ListViewItem = New ListViewItem("Item2", 1)

Once you have references to one or more ListViewItem objects, you can add the items
to your ListView object. To add an item or a group of items, you first need to reference
the ListView.ListViewItemCollection collection of the ListView object. This collection
can easily be referenced using the Items property of the ListView class. The
ListView.ListViewItemCollection has Add and AddRange methods that you can use to
add one item or a group of items. For instance, the following code uses the AddRange
method to add two ListViewItem objects to a ListView object:

listView1.Items.AddRange(New ListViewItem() _{listViewItem1, listViewItem2})

The Add method of the ListView.ListViewItemCollection has three overloads, two of
which allow you add to a ListViewItem without first creating a ListViewItem object. To
add a ListViewItem object to the collection, you can use the following overload of the
Add method:

Overridable Overloads Public Function Add _(ByVal value As ListViewItem) _As
 ListViewItem

Or,to add a String and convert it into a ListViewItem object, use the following overload:

Overridable Overloads Public Function Add _(ByVal text As String) _
 As ListViewItem

Alternatively, you can pass a String and an image index to the third
overload:Overridable Overloads Public Function Add _(ByVal text As String, _ByVal
imageIndex As Integer) _As ListViewItem The following code demonstrates how to add
two ListViewItem objects to a ListView. The ListView is linked to an ImageList that has
two images in its collection. When the code is run, it produces something similar to
Figure 5-4.

Figure 5-4. A ListView control with two ListViewItem objects

' Declare and instantiate an ImageList called imageList1.
Dim imageList1 As ImageList = New ImageList()
' Set the ColorDepth and ImageSize properties of imageList1

imageList1.ColorDepth = ColorDepth.Depth8Bit
imageList1.ImageSize = New System.Drawing.Size(48, 48)

' Add two images to imageList1.
imageList1.Images.Add(New Icon("c:\Spotty.ico"))

imageList1.Images.Add(New Bitmap("c:\StopSign.bmp"))

' Declare and instantiate two ListViewItem objects named
' listViewItem1 and listViewItem2.
' The text for listItem1 is "Item1", and the image is the first

VB .Net / 170

' image in the imageList1. ' The text for listItem1 is "Item2", and the image is the
second ' image in the imageList1.
Dim listViewItem1 As ListViewItem = New ListViewItem("Item1", 0)
Dim listViewItem2 As ListViewItem = New ListViewItem("Item2", 1)
' Declare and instantiate a ListView called listView1.
Dim listView1 As ListView = New ListView()
' Set its properties.
listView1.View = View.LargeIcon
listView1.LargeImageList = imageList1
listView1.Location = New System.Drawing.Point(16, 16)
listView1.Name = "ListView1"
listView1.Size = New System.Drawing.Size(264, 224)
listView1.SmallImageList = Me.ImageList1
' Add listViewItem1 and listViewItem2.
listView1.Items.AddRange(New ListViewItem() _
{listViewItem1, listViewItem2})
' Add listView1 to the form.

 Me.Controls.AddRange(New Control() {listView1})

Two properties of the ListView class tell you which item(s) are selected:
SelectedIndices and SelectedItems. The first returns a
ListView.SelectedIndexCollection object, and the second returns a
ListView.SelectedListViewItemCollectionobject.
The ListView.SelectedIndexCollection class has a Count property that tells you how
many items are selected and an Item property that returns the index of the designated
item. For example, you can retrieve the index of the first selected item by passing 0 to
the Item property, as follows:Index = ListView1.SelectedIndices.Item(0)
The ListView.SelectedListViewItemCollection class is very similar to
listView.SelectedIndexCollection.Its Count property indicates how many items are
selected. However, its Item property returns the item itself, not an index number.

5.2.12 The MonthCalendar Class

The MonthCalendar class represents a control that displays days of a month. A
MonthCalendar control is shown in Figure 5-5. By default, when first displayed, the
control displays the current month on the user's computer system. Users can select a
day by clicking on it or select a range of dates by holding the Shift key while clicking
the date at the end of the desired range. Users can also scroll backward and forward
to previous or upcoming months, or they can click on the month part and more quickly
select one of the 12 months. To change the year, users can click on the year part and
click the scrollbar that appears.

Figure 5-5. A MonthCalendar control

Two properties determine the date range that users can select:

MinDate and MaxDate. The MinDate property is a DateTime value representing the
minimum date permitted; its default is January 1, 1753.

The MaxDate property determines the maximum date allowed. By default, the value of
MaxDate is December 31, 9998.

If you want your MonthCalendar to display a certain range of dates, you need to
change these two properties. For instance,

Windows Forms II:Controls, Common Dialog Boxes & Menus /171

the following code allows the user to select a date between January 1, 1980 and
December 14, 2010:

MonthCalendar1.MinDate = New DateTime(1980, 1, 1)
MonthCalendar1.MaxDate = New DateTime(2010, 12, 14)

The MonthCalendar class has a TodayDate property that represents today's date. The
user selecting a new date does not automatically change the value of TodayDate. If
you want the date selected by the user to be reflected as today's date, you can use the
Date_Changed event handler to change its value explicitly, as shown in the following
code:

Private Sub MonthCalendar1_DateChanged(_
ByVal sender As System.Object, _
ByVal e As DateRangeEventArgs) _
Handles MonthCalendar1.DateChanged
MonthCalendar1.TodayDate = e.Start

End Sub

A DateRangeEventArgs object is passed as an argument to the DateChanged event
handler. Its members include a Start property, which represents the beginning of the
range of selected dates, and an End property, which represents the end of the range
of selected dates. The previous code simply assigns the value of the Start property to
TodayDate. Later, if you need to know the value of the userselected date, you can
query the TodayDate property. Note that the MonthCalendar control has a fixed size. It
will ignore any attempt to change its Size property. If you need more flexibility in terms
of the space it occupies, use a DateTimePicker control.

5.2.13 The Panel Class

A panel is a container that can hold other controls. Panels are typically used to group
related controls in a form. Like the PictureBox class, the Panel class has a BorderStyle
property that defines the panel's border and can take as its value any member of the
BorderStyle enumeration: None (the default value), FixedSingle, and Fixed3D. You
can add controls to a Panel object using the Add method or the AddRange method of
the Control.ControlCollection class. The following code adds a button and a text box to
a Panel control called panel1:

Dim panel1 As Panel = New Panel()
Dim textBox1 As TextBox = New TextBox()
Dim WithEvents button1 As Button
button1 = New Button()
' button1
button1.Location = New System.Drawing.Point(104, 72)
button1.Name = "button1"
button1.Size = New System.Drawing.Size(64, 48)
button1.TabIndex = 0
button1.Text = "Button1"
' textBox1
textBox1.Location = New System.Drawing.Point(128, 48)
textBox1.Name = "textBox1"
textBox1.TabIndex = 1
panel1.Controls.AddRange(New Control() {textBox1, button1})
panel1.Location = New System.Drawing.Point(24, 24)
panel1.Name = "Panel1"
panel1.Size = New System.Drawing.Size(336, 216)
Me.Controls.Add(panel1)

5.2.14 The PictureBox Class

The PictureBox class represents a control to display an image. Loading an image into
this control is achieved by assigning a System.Drawing.Bitmap object to its Image
property, as the following code does:

Dim pictureBox1 As PictureBox = New PictureBox()
pictureBox1.Image = New System.Drawing.Bitmap("c:\tv.bmp")

VB .Net / 172

pictureBox1.Location = New System.Drawing.Point(72, 64)
pictureBox1.Size = New System.Drawing.Size(144, 128)
Me.Controls.Add(pictureBox1)

In addition, the PictureBox class has the BorderStyle and SizeMode properties. The
BorderStyle property determines the PictureBox object's border and can take as its
value any member of the BorderStyle enumeration: None (the default value),
FixedSingle, and Fixed3D.The SizeMode property determines how the image assigned
to the Image property is displayed. The SizeMode property can take any of the
members of the PictureBoxSizeMode enumeration: AutoSize,
CenterImage, Normal (the default value), and StretchImage.

5.2.15 The RadioButton Class

The RadioButton class represents a radio button. When you add more than one radio
button to a form, those radio buttons automatically become one group, and you can
select only one button at a time. If you want to have multiple groups of radio buttons on
a form, you need to use a GroupBox or Panel control to add radio buttons in the same
group to a single GroupBox or Panel.
The following code shows how you can add two radio buttons to a GroupBox and then
add the GroupBox to a form. Notice that you don't need to add each individual radio
button to a form:

' Declare and instantiate a GroupBox and two radio buttons.
Dim groupBox1 As GroupBox = New GroupBox()
Dim radioButton1 As RadioButton = new RadioButton()
Dim radioButton2 As RadioButton = new RadioButton()
' Set the Size and Location of each control.
groupBox1.Size = New System.Drawing.Size(248, 88)
groupBox1.Location = New System.Drawing.Point(112, 168)
radioButton1.Location = New System.Drawing.Point(16, 10)
radioButton1.Size = New System.Drawing.Size(104, 20)
radioButton2.Location = New System.Drawing.Point(16, 50)
radioButton2.Size = New System.Drawing.Size(104, 20)
' Add radioButton1 and radioButton2 to the GroupBox.
groupBox1.Controls.AddRange(New Control() {radioButton1, radioButton2})
' Add the GroupBox to the form.
Me.Controls.Add(groupBox1)

Like a checkbox, the appearance of a radio button is determined by its Appearance
property, which can take one of two members of the Appearance enumeration: Normal
(the default) and Button. You don't normally use Appearance.Button because it will
make your radio button look like a button. The CheckAlign property determines the text
alignment of the radio button. Its value is one of the members of the ContentAlignment
enumeration: BottomCenter, BottomLeft, BottomRight, MiddleCenter, MiddleLeft (the
default), MiddleRight, TopCenter, TopLeft, and TopRight. The Checked property takes
a Boolean. Setting this property to True selects the radio button (and deselects others
in the group); setting it to False unselects it.

5.2.16 The TextBox Class

This class represents a text-box control, a control that can accept text as user input. Its
majorproperties are:

Multiline
This property can be set to True (indicating that multiple lines are permitted) or False
(single-line mode). By default, the value for this property is False.

AcceptsReturn
If True (its default value), and if the Multiline property is also True, pressing the Enter
key will move to the next line in the text box. Otherwise, pressing Enter will have the
same effect as clicking the form's default button.

CharacterCasing
This property determines how characters that are input by the user appear in the text
box. It can take any member of the CharacterCasing enumeration: Normal (the

Windows Forms II:Controls, Common Dialog Boxes & Menus /173

default), Upper, and Lower. Setting this property to CharacterCasing.Upper translates
all input characters to uppercase. Assigning CharacterCasing.Lower to this property
converts all input to lowercase. CharacterCasing.Normal means that no conversion is
performed on the input.

PasswordChar
This property defines a mask character to be displayed in place of each character
input by the user, thereby turning the text box into a password box. This property
applies only to a singleline text box (i.e., a text box whose Multiline property is False).
It affects the display, but not the value of the Text property.

ScrollBars
In a multiline text box, this property determines whether scrollbars are shown on the
control. The property can take any member of the ScrollBars enumeration: None (the
default),Horizontal, Vertical, and Both.

TextAlign
This property determines how text is aligned in the text box. It can take any member of
the HorizontalAlignment enumeration: Center, Left, and Right.

5.2.17 The Timer Class

The Timer class represents a timer that can trigger an event at a specified interval. At
each interval, a Timer object raises its Tick event. You can write code in the Tick event
handler that runs regularly. The Timer will raise its Tick event only after you call its
Start method. To stop the timer, call its Stop method. The interval for the Timer is set
by assigning a value to its Interval property. It accepts a number representing the
interval in milliseconds. The following code, which prints an incremented integer from 1
to 20 to the console, shows how to use a timer:

Dim i As Integer
Friend WithEvents timer1 As Timer
timer1 = New Timer()
timer1.Interval = 1000
timer1.Start()

' The event handler for Tick.
Private Sub Timer1_Tick(_
ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Timer1.Tick
If i < 20 Then

i = i + 1
Console.WriteLine(i)

Else
 timer1.Stop()
End If

End Sub

5.2.18 Other Controls and Components

In addition to the controls we've discussed in some detail in the preceding sections, the
.NET Framework includes a number of other controls and components for Windows
application development. These include:

AxHost
Wraps ActiveX controls to let them be used within Windows Forms.

CheckedListBox
The same as the ListBox control, except that checkboxes are displayed to the left
of each item.The CheckedListBox control derives from the ListBox control.

ContainerControl
A container for other controls. The emphasis of this control is on managing the
focus state of contained controls. For example, it has a method that can be called
to force activation of a given contained control (ActivateControl) and an overridable

VB .Net / 174

method that is invoked when the user tabs between contained controls
(ProcessTabKey). The ContainerControl control provides automatic support for
scrolling because it derives from ScrollableControl. When contained controls are
anchored or docked, they anchor or dock to the edges of the containing control.

ContextMenu
Provides a method for displaying a context menu (also known as a pop-up menu).
Context menus are usually displayed in response to the user right-clicking the
mouse. See Section 5.5 later in this chapter for details.

DataGrid
A grid control for displaying ADO.NET data. See Chapter 8 for examples.

DomainUpDown
A Windows up-down control (also known as a spin button) that allows the user to
select from a list of text values by clicking the control's up and down arrows. See
also NumericUpDown, later in this list.

HScrollBar
A standard Windows horizontal scrollbar.

MainMenu
Provides a method for displaying an application's main menu. See Section 5.5 later
in this chapter for details.

MenuItem
Represents a menu item within a menu. See Section 5.5 later in this chapter for
details.

NotifyIcon
Provides a way to put an icon into the Windows System Tray.

NumericUpDown
A Windows up-down control (also known as a spin button) that allows the user to
select from a list of numeric values by clicking the control's up and down arrows.
See also DomainUpDown, earlier in this list.

PrintPreviewControl
Displays a preview image of a document to be printed. The PrintPreviewControl is
not usually used directly. It is found on the PrintPreviewDialog.

ProgressBar
A standard Windows progress bar.

PropertyGrid
A user interface for viewing and setting the properties of any object.

RichTextBox
A standard Windows rich text box (also known as a rich edit control). The
RichTextBox control can manipulate text in Rich Text Format (RTF).

ScrollableControl
Not used directly. The ScrollableControl control serves as the base class for
controls that need to provide automatic support for scrolling. The ContainerControl
control and the Panel control are both derived from ScrollableControl.

Splitter
Provides the user with a way to resize docked controls using the mouse.

StatusBar
A standard Windows status bar.

TabControl
A container that provides pages to contain other controls and tabs to click to move
between the pages. The pages are instances of the TabPage control, which is
derived from the Panel control.

Windows Forms II:Controls, Common Dialog Boxes & Menus /175

ToolBar
A standard Windows toolbar.

TrackBar
A standard Windows trackbar (also known as a slider)

TreeView
A standard Windows tree view.

UserControl
Not used directly. UserControl serves as the base class for developer-created
container controls.
.
VScrollBar
A standard Windows vertical scrollbar.

5.3 CONTROL EVENTS

Controls on a form are represented in code as fields—one field for each control. For
example, when the Visual Studio .NET Windows Forms Designer is used to add a text
box to a form, the following declaration is added to the form class:

Private WithEvents TextBox1 As System.Windows.Forms.TextBox

This declaration doesn't instantiate the control; it only defines a field that can hold a
reference to a control of type TextBox. The control is instantiated in the
InitializeComponent subroutine, which is called in the Form class's constructor. The
code that instantiates the control looks like this:

Me.TextBox1 = New System.Windows.Forms.TextBox()

When a field declaration includes the WithEvents keyword, the parent class can
handle events that the referenced object raises. To do so, the parent class must define
a handler method having the appropriate signature, and the definition of the method
must include a Handles clause to link the method to the appropriate event on the
appropriate object. For example, here is the definition of a handler method for the Click
event of TextBox1:

Private Sub TextBox1_Click(_ByVal sender As Object, _
ByVal e As System.EventArgs _) Handles TextBox1.Click
' ...

End Sub

The event-handler method can be given any name, but it is a common convention to
use a name of the form FieldName_EventName. The event-handler method's
signature must correspond to The signature of the event being handled. By
convention, event signatures have two parameters:

Sender and e.

The sender parameter is always of type Object and holds a reference to the object that
raised the event. The e parameter is of type EventArgs—or of a type that inherits from
EventArgs—and holds a reference to an object that provides any extra information
needed for the event. Events that pass a generic EventArgs argument have no event
information to pass. Events that pass an argument of an EventArgs-derived type pass
additional information within the fields of the passed object. The correct signature for
handling a specific event can be determined either by referring to the control's
documentation or by using Visual Studio .NET's built-in object browser. In addition, the
Visual Studio .NET Windows Forms Designer can automatically generate a handler-
method declaration for any event exposed by any control on a given form.

VB .Net / 176

5.4 FORM AND CONTROL LAYOUT

Windows Forms allows developers to lay out sophisticated user interfaces that are
capable of intelligently resizing without writing a line of code. Previously, developers
writing desktop applications for Windows typically spent a good deal of time writing
resizing code to handle the placement of controls on the form when the user resized
the form. The .NET platform, however, allows you to define a control's layout and size
by setting a few properties.

5.4.1 The Anchor Property

The Anchor property lets a control anchor to any or all sides of its container. Each
anchored side of the control is kept within a constant distance from the corresponding
side of its container. When the container is resized, its anchored controls are
repositioned and resized as necessary to enforce this rule. The Anchor property is
defined by the Control class (in the System.Windows.Forms namespace) and so is
inherited by all controls and forms. Its syntax is:

 Public Overridable Property Anchor() As System.Windows.Forms.AnchorStyles

The AnchorStyles type is an enumeration that defines the values Left, Top, Right,
Bottom, and None. To anchor a control on more than one edge, combine the values
with the Or operator, as shown here:

' Assumes Imports System.Windows.Forms
SomeControl.Anchor = AnchorStyles.Top Or AnchorStyles.Right

By default, controls are anchored on the top and left sides. This means that if a form is
resized, its controls maintain a constant distance from the top and left edges of the
form. This behavior matches the behavior of Visual Basic 6 forms. For example, Figure
5-6 shows a common button configuration, where the OK and Cancel buttons should
track the right edge of the form as the form is resized. In previous versions of Visual
Basic, it was necessary to add code to the form's Resize event handler to reposition
the buttons as the form was resized. In Visual Basic .NET, however, it is necessary
only to set the button's Anchor property appropriately. This can be done either in
Visual Studio .NET's Properties window or in code (in the form's constructor).

Figure 5-6. A sizable form with controls that should be anchored on the top and

right edges

The code to anchor a button on the top and right edges looks like this:

' Assumes Imports System.Windows.Forms
btnOk.Anchor = AnchorStyles.Top Or AnchorStyles.Right

Sometimes a control should stretch as the form is resized. This is accomplished by
anchoring the control to two opposite sides of the form. For example, the text box in
Figure 5-7 should always fill the space between the left edge of the form and the OK
button on the right side of the form.

Windows Forms II:Controls, Common Dialog Boxes & Menus /177

Figure 5-7. In this form, the text box should expand and shrink to fill the
available space

To accomplish this, lay out the form as shown, anchor the buttons on the top and right
edges as already discussed, then anchor the text box on the top, left, and right edges.
By default, the label in the form is already anchored on the top and left edges. The
code looks like this:

' Assumes Imports System.Windows.Forms ' Anchor the OK and Cancel buttons on
the top and right edges.

btnOk.Anchor = AnchorStyles.Top Or AnchorStyles.Right
btnCancel.Anchor = AnchorStyles.Top Or AnchorStyles.Right
' Anchor the Filename text box on the top, left, and right edges.
' This causes the text box to resize itself as needed.

txtFilename.Anchor = AnchorStyles.Top Or AnchorStyles.Left _
Or AnchorStyles.Right

5.4.2 The Dock Property

The Dock property lets a control be docked to any one side of its container or lets it fill
the container. Docking a control to one side of a container resembles laying out the
control with three of its edges adjacent and anchored to the three corresponding edges
of its container. Figure 5-8 shows a text box control docked to the left side of its form.

Figure 5-8. A TreeView docked to the left side of a form

The Dock property is defined by the Control class (in the System.Windows.Forms
namespace) and so is inherited by all controls and forms. Its syntax is:

Public Overridable Property Dock() As System.Windows.Forms.DockStyle

The DockStyle type is an enumeration that defines the values Left, Top, Right, Bottom,
Fill, and None. Only one value can be used at a time. For example, a control can't be
docked to both the left and right edges of its container. Setting the Dock property to
DockStyle.Fill causes the control to expand to fill the space available in its container. If
the control is the only docked control in the container, it expands to fill the container. If
there are other docked controls in the container, the control expands to fill the space
not occupied by the other docked controls. For example, in Figure 5-9, the Dock
property of textBox1 is set to DockStyle.Left, and the Dock property of textBox2 is set
to DockStyle.Fill.

VB .Net / 178

Figure 5-9. A left-docked control and a fill-docked control

5.4.2.1 Controlling dock order

Controls have an intrinsic order within their container. This is known as their z-order
(pronounced "zee order"). The z-order of each control is unique within a given
container. When two controls overlap in the same container, the control with the higher
z-order eclipses the control with the lower z-order. Docking behavior is affected by z-
order. When two or more controls are docked to the same side of a form, they are
docked side by side. For example, the two text-box controls shown in Figure 5-10 are
both docked left.

Figure 5-10. Docking two controls to the same side of a form

In such a situation, the relative position of each docked control is determined by its z-
order. The control with the lowest z-order is positioned closest to the edge of the form.
The control with the next higher z-order is placed next to that, and so on. In Figure 5-
10, textBox1 has the lower z-order, and textBox2 has the higher z-order. So how is z-
order determined? In code, z-order is determined by the order in which controls are
added to their container's Controls collection. The first control added through the
collection's Add method has the highest z-order; the last control added has the lowest
z-order. For example, to produce the display shown in Figure 5-10, textBox2 must be
added to the Controls collection first, as shown here:

Me.Controls.Add(Me.textBox2)
Me.Controls.Add(Me.textBox1)

This results in textBox1 having the lower z-order and therefore getting docked directly
to the edge of the form. If the Controls collection's AddRange method is used to add
an array of controls to a container, the first control in the array has the highest z-order
and the last control in the array has the lowest z-order. For example, textBox1 and
textBox2 in Figure 5-10 could have been added to their container using this code:

' Assumes Imports System.Windows.Forms
Me.Controls.AddRange(New Control() {Me.textBox2, Me.textBox1})

After controls have been added to their container's Controls collection, you can change
their z-order by calling the Control class's SendToBack or BringToFront methods. The
SendToBack method gives the control the lowest z-order within its container (causing
it to dock closest to the edge of the form). The BringToFront method gives the control
the highest z-order within its container (causing it to dock furthest from the edge of the
form). For example, the following code forces the controls to dock as shown in Figure
5-10, regardless of the order in which they were added to the form's Controls
collection:

Windows Forms II:Controls, Common Dialog Boxes & Menus /179

Me.textBox2.BringToFront()
The order in which the controls are instantiated in code and the order in which their
respective Dock properties are set do not affect the controls' z-orders. When you
design forms using Visual Studio .NET's Windows Forms Designer, the controls added
most recently have the highest z-orders and therefore dock furthest from the edges of
their containers. The z-orders of the controls can be changed within the designer by
right-clicking on a control and choosing "Bring to Front" or "Send to Back." When one
of the controls in a container is fill-docked, that control should be last in the dock order
(i.e., it should have the highest z-order), so that it uses only the space that is not used
by the other docked controls. Dock order also comes into play when controls are
docked to adjacent sides of a container, as shown in Figure 5-11.

Figure 5-11. Docking two controls to adjacent sides of a form

The control with the lowest z-order is docked first. In Figure 5-11, textBox1 has the
lowest z-order and so is docked fully to the left side of the form. textBox2 is then
docked to what remains of the top of the form. If the z-order is reversed, the
appearance is changed, as shown in Figure 5-12.

Figure 5-12. Reversing the dock order

In Figure 5-12, textBox2 has the lowest z-order and so is docked first, taking up the full
length of the side to which it is docked (the top). Then textBox1 is docked to what
remains of the left side of the form. This behavior can be exploited to provide complex
docking arrangements, such as the one shown in Figure 5-13.

Figure 5-13. Complex docking arrangements are easily created

The text boxes in Figure 5-13 are in ascending z-order (textBox1 is lowest; textBox6 is
highest). The Dock properties of the controls are set like this:

textBox1.Dock = DockStyle.Left
textBox2.Dock = DockStyle.Top

VB .Net / 180

textBox3.Dock = DockStyle.Right
textBox4.Dock = DockStyle.Bottom
textBox5.Dock = DockStyle.Left
textBox6.Dock = DockStyle.Fill

5.4.2.2 The Splitter control
By default, the internal edges of docked controls aren't draggable. To make the edge
of a given docked control draggable, add a Splitter control to the form. The Splitter
control must appear in the dock order immediately after the control whose edge is to
be draggable, so the Splitter control's zorder must be just above that control's z-order.
Further, the Splitter control must be docked to the same edge of the form as the
control whose edge is to be draggable. The Splitter control provides a vertical splitter if
docked left or right and a horizontal splitter if docked top or bottom. Consider again
Figure 5-9. To make the edge between the two text-box controls draggable, a Splitter
control must be added to the form (call it splitter1), and the z-order must be textBox2
(highest), then splitter1, and then textBox1 (lowest). This can be accomplished in the
Visual Studio .NET Windows Forms Designer by adding the controls to the form in
dock order (textBox1, splitter1, textBox2). As previously mentioned, if the controls
have already been added to the form, their z-order can be rearranged by right-clicking
the controls one-by-one in dock order and choosing "Bring To Front". The z-order can
also be controlled in code, as previously discussed. It is possible to automate the task
of Splitter creation. The subroutine in Example 5-1 takes as a parameter a reference to
a docked control and instantiates a Splitter control that makes the given control's
inside edge draggable.

Example 5-1. Dynamically creating a Splitter control

Shared Sub AddSplitter(ByVal ctl As Control)

' Create a Splitter control.
Dim split As New Splitter()

' Get the Controls collection of the given control's container

Dim controls As System.Windows.Forms.Control.ControlCollection _
 = ctl.Parent.Controls

' Add the Splitter to the same container as the given control.
controls.Add(split)
' Move the Splitter control to be immediately prior to the given
' control in the Controls collection. This causes the Splitter
' control's z-order to be just above the given control's z-order,
' which in turn means that the Splitter control will be docked
' immediately following the given control.controls.SetChildIndex(split,
controls.GetChildIndex(ctl))
' Dock the Splitter control to the same edge as the given control.
split.Dock = ctl.Dock

End Sub

5.1 - 5.4 Check Your Progress
Fill in the blanks
1. ………………………… are the classes derived from the component class defined in

the System CompoentModel namespace
2. …….……… property allows you to manage a collection of images.
3. The …………………………... property lets a control anchor to any or all sides of its

container.
4. Controls have an intrinsic order within their container known as

……………………………….

5.5 COMMON DIALOG BOXES

There are several classes that implement common dialog boxes, such as color
selection and print setup. These classes all derive from the CommonDialog class and,
therefore, all inherit the ShowDialog method. The syntax of the ShowDialog method is:

Windows Forms II:Controls, Common Dialog Boxes & Menus /181

Public Function Show Dialog() As System.Windows.Forms.DialogResult Calling the
ShowDialog method causes the dialog box to be displayed modally, meaning that
other windows in the application can't receive input focus until the dialog box is
dismissed. The call is asynchronous, meaning that code following the call to the
ShowDialog method isn't executed until the dialog box is dismissed. The return value
of the ShowDialog method is of type DialogResult (defined in the
System.Windows.Forms namespace). DialogResult is an enumeration that defines
several values that a dialog box could return. The common dialog boxes, however,
return only OK or Cancel, indicating whether the user selected the OK or Cancel
button, respectively. In Visual Studio .NET's Windows Forms Designer, common dialog
boxes are added to forms in much the same way that controls and nonvisual
components are. Just select the desired dialog box from the Windows Forms tab of the
Toolbox. As with nonvisual components, a representation of the dialog box appears
within a separate pane rather than directly on the form that is being designed. The
properties of the component can then be set in Visual Studio .NET's Properties
window. The Windows Forms Designer creates code that declares and instantiates the
dialog box, but you must add code to show the dialog box and use the values found in
its properties. Alternatively, common dialog-box components can be instantiated and
initialized directly in code, bypassing the Windows Forms Designer. For example, this
method instantiates and shows a ColorDialog component:

' Assumes Imports System.Windows.Forms
Public Class SomeClass

Public Sub SomeMethod()
Dim clrDlg As New ColorDialog()
If clrDlg.ShowDialog = DialogResult.OK Then
' Do something with the value found in clrDlg.Color.
End If
End Sub

 End Class

The remainder of this section briefly describes each of the common dialog-box
components.

5.5.1 ColorDialog

The ColorDialog component displays a dialog box that allows the user to choose a
color. After the user clicks OK, the chosen color is available in the ColorDialog object's
Color property. The Color property can also be set prior to showing the dialog box.
This causes the dialog box to initially display the given color. Figure 5-14 shows an
example of the ColorDialog dialog box.

Figure 5-14. The ColorDialog dialog box

5.5.2 FontDialog

The FontDialog component displays a dialog box that allows the user to choose a font.
After the user clicks OK, the chosen font is available in the FontDialog object's Font
property. The Font property can also be set prior to showing the dialog box. This
causes the dialog box to initially display the given font. Figure 5-15 shows an example
of the FontDialog dialog box.

VB .Net / 182

Figure 5-15. The FontDialog dialog box

5.5.3 OpenFileDialog

The OpenFileDialog component displays a dialog box that allows the user to choose a
file to open. After the user clicks OK, the name of the file (including the path) is
available in the OpenFileDialog object's FileName property. The FileName property
can be set prior to showing the dialog box. This causes the dialog box to initially
display the given filename. Figure 5-16 shows an example of the OpenFileDialog
dialog box.

Figure 5-16. The OpenFileDialog dialog box

In most cases, your applications should set the InitialDirectory, Filter, and FilterIndex
properties prior to calling ShowDialog. This is not necessary for proper functioning of
the dialog box, but it will give your application a more professional look and feel. The
InitialDirectory property determines which directory is shown when the dialog box first
appears. The default is an empty string, which causes the dialog box to display the
user's My Documents directory. The Filter property holds a String value that controls
the choices in the "Files of type" drop-down list. The purpose of this drop-down list is to
let the user limit the files shown in the dialog box based on filename extension. A
typical example is shown in Figure 5-17.

Windows Forms II:Controls, Common Dialog Boxes & Menus /183

Figure 5-17. A typical "Files of type" drop-down list

Even though the "Files of type" list can include many items and each item can
represent many filename extensions, a single String property represents the whole
thing. Here's how it works:

Each item in the drop-down list is represented by a substring having two parts
separated by the vertical bar character (|).

 1. The first part is the description that appears in the drop-down list (e.g., "All Files
 (*.*)").

 2. The second part is the corresponding filter (e.g., "*.*"). Taking them together and

adding the vertical bar character, the first item in the list in Figure 5-17 is
represented by the substring:

 "All Files (*.*)|*.*"

1. If a given item has multiple filters, the filters are separated by semicolons (;). The
second item in the list in Figure 5-17 is therefore represented by:

"Executable Files (*.exe; *.dll)|*.exe;*.dll"

2. The value to assign to the Filter property is the concatenation of all the
substrings thus attained, again separated by the vertical bar character.
Therefore, the Filter property value that produced the drop-down list in Figure
5-17 is:

"All Files (*.*)|*.*|Executable Files (*.exe; *.dll)|*.exe;*.dll"
The default value of the Filter property is an empty string, which results in an empty
"Files of type" drop-down list.The FilterIndex property determines which filter is in force
when the dialog box is initially shown. This is a 1-based index that refers to the Filter
string. For example, referring again to Figure 5-17, if the FilterIndex property is set to
1, the "All Files" item will be selected when the dialog box is shown. If the FilterIndex is
set to 2, the "Executable Files" item will be shown. The default value is 1.

5.5.4 PageSetupDialog

The PageSetupDialog component displays a dialog box that allows the user to choose
page settings for a document. Certain properties in the PageSetupDialog object must
be set prior to showing the dialog box. After the user clicks OK, new settings can be
read from the object Figure 5-18 shows an example of the PageSetupDialog dialog
box.

VB .Net / 184

Figure 5-18. The PageSetupDialog dialog box

5.5.5 PrintDialog

The PrintDialog component displays a dialog box that allows the user to choose printer
settings for a document. Certain properties in the PrintDialog object must be set prior
to showing the dialog box. After the user clicks OK, new settings can be read from the
object. See "Printing" in Chapter 4 for details. Figure 5-19 shows an example of the
PrintDialog dialog box.

Figure 5-19. The PrintDialog dialog box

5.5.6 PrintPreviewDialog

The PrintPreviewDialog component displays a dialog box that allows the user to view a
document before printing it. Prior to showing the dialog box, the PrintPreviewDialog
object must be loaded with information about the document to be printed. See
"Printing" in Chapter 4 for details. The dialog box itself displays a preview of the
printed version of the document, allowing the user to navigate through it. Figure 5-20
shows an example of the PrintPreviewDialog dialog box, although this example doesn't
have a document loaded.

Windows Forms II:Controls, Common Dialog Boxes & Menus /185

Figure 5-20. The PrintPreviewDialog dialog box

5.5.7 SaveFileDialog

The SaveFileDialog component displays a dialog box that allows the user to specify a
filename to be used for saving. After the user clicks OK, the name of the file (including
the path) is available in the SaveFileDialog object's FileName property (which can be
set prior to showing the dialog box). This causes the dialog box to initially display the
given filename. Figure 5-21 shows an example of the SaveFileDialog dialog box.

Figure 5-21. The SaveFileDialog dialog box

As with the OpenFileDialog component, most applications should set the
InitialDirectory, Filter, and FilterIndex properties prior to calling ShowDialog. Their
usage with the SaveFileDialog component is precisely the same as with
OpenFileDialog.

5.6 MENUS

The Windows Forms library provides three components for creating and managing
menus:

1. The MainMenu class manages the display of a menu across the top of a form.
2. The ContextMenu class manages the display of a context menu (also known as a

pop-up menu).
3. Menu or context menu.

Menus can be created either in the Visual Studio .NET Windows Forms Designer or
programmatically.

VB .Net / 186

5.6.1 Adding Menus in the Visual Studio .NET Windows Forms Designer

Visual Studio .NET includes an in-place WYSIWYG menu editor that is a dramatic
improvement over the menu editor in Visual Basic 6. To create an application menu in
the Windows Forms Designer, add a MainMenu component to the form. This causes a
representation of the component to appear in the lower pane of the form's design view.
When the component is selected, Visual Studio .NET adds a WYSIWYG editor to the
top of the form, as shown in Figure 5-22.

Figure 5-22. In-place editing of a main menu

To create a menu item, type a value into the "Type Here" box. The menu editor
automatically adds "Type Here" boxes to the right and beneath the box in which you
are typing. As was the case in previous Windows development environments, typing
an ampersand (&) within the menu name causes the character following the
ampersand to be an accelerator key. Typing a single hyphen (-) within a "Type Here"
box creates a menu-separator bar. Figure 5-23 shows a menu containing several
items.

Figure 5-23. A menu containing several items

After a menu item has been added, its properties can be set in the Properties window.
The Properties window of the Edit Paste item shown in Figure :

Windows Forms II:Controls, Common Dialog Boxes & Menus /187

Figure 5-24. The Properties window display for the Edit Paste menu

item shown in Figure 5-23

The properties shown in Figure 5-24 are:

Checked
Indicates whether a checkmark appears next to the menu item. The type is
Boolean. The default is False.

DefaultItem

Indicates whether the menu item is the default item in its menu or submenu.
Default menu items are displayed in bold. The type is Boolean. The default is
False.

Enabled

Indicates whether the menu item is enabled. If this is False, the menu item is
grayed and can't be selected. The type is Boolean. The default is True.

MdiList

In MDI applications, indicates whether the menu item should have subitems for
each of the open MDI child forms. This property should be set to True for the
Windows menu item. The type is Boolean. The default is False.

MergeOrder

In applications where two menus might be merged (such as an MDI application
where a child form menu might be merged with its parent form menu), sorts the
merged menu items based on this property. The type is Integer. The default is 0.
See "MDI Applications" for more information.

MergeType

Indicates how two menu items having the same MergeOrder value should be
merged. The value is of type MenuMerge (defined in the
System.Windows.Forms namespace). The default is MenuMerge.Add. See
"MDI Applications" in Chapter 4 for more information.

 Modifiers

Specifies the declaration modifiers that are placed on the menu-item field
declaration within the generated code. This is not actually a property of the
MenuItem class. Rather, it becomes part of the field declaration in source code.
The default is Private.

VB .Net / 188

OwnerDraw
Indicates whether the menu item requires custom drawing. If you set this
property to True, you must handle the menu item's DrawItem event. The type is
Boolean. The default is False.

RadioCheck

If the Checked property is True, indicates whether to display the checkmark as a
radio button instead. The type is Boolean. The default is False.

Shortcut

Specifies the shortcut key combination that invokes this menu item. The value is
of type Shortcut (defined in the System.Windows.Forms namespace). The
Shortcut enumeration defines a unique value for each potential shortcut key
combination. The values of the Shortcut enumeration are shown in Table 5-1.
The default is Shortcut.None. Table 5-1. Values defined by the
System.Windows.Forms.Shortcut

Enumeration

ShowShortcut

If a shortcut key combination is defined for the menu item, indicates whether the
key combination should be shown on the menu. The type is Boolean. The default is
True.

Text

Represents the text shown on the menu item. The type is String. The default is an
empty string.

Windows Forms II:Controls, Common Dialog Boxes & Menus /189

Visible

Indicates whether the menu item should be visible. The type is Boolean. The
default is True. The Windows Forms Designer creates code that declares a field for
the MainMenu object, as well as fields for the MenuItem objects that represent
each menu item in the menu. The designer also creates code that instantiates the
objects at runtime and sets their properties according to the values set in the IDE's
Properties window. In addition, the top-level MenuItem objects are added to the
MenuItems collection of the MainMenu object, and the lower-level MenuItem
objects are added to the MenuItems collection of the menu of which they are
submenus. Finally, the MainMenu object is assigned to the form's Menu property.
To create a context menu in the Windows Forms Designer, add a ContextMenu
component to the form. This causes a representation of the component to appear in
the lower pane of the form's design view.

When the component is selected, Visual Studio .NET adds a WYSIWYG editor to the
top of the form. Clicking on the editor drops down a "Type Here" box, as shown in
Figure 5-25.

Figure 5-25. In-place editing of a context menu

Adding menu items and setting their properties work the same with context menus as
with main menus. For a context menu to be displayed, it must be associated with some
control on the form or with the form itself. When the user right-clicks on that control or
form, the context menu is displayed. To make this association, perform these steps:
1. In the Windows Forms Designer, right-click the control or form that is to be

associated with the context menu, and choose Properties.
2. In the Properties window, find the ContextMenu property, and click the arrow of the

drop-down list associated with it.
3. The drop-down list displays the ContextMenu objects that are defined on the

current form.
Choose the desired one. The same effect can be achieved in code by assigning the
ContextMenu object to the ContextMenu property of a control or form, like this:
' Somewhere within the definition of a Form class.
Me.Button1.ContextMenu = Me.ContextMenu1

5.6.2 Programmatically Creating Menus

Main menus and context menus can be instantiated and populated directly in code.
Example 5-2 shows how to create a simple main menu having File and Edit items, with
the File item having an Exit item. Compile it from the command line with this
command:

vbc filename.vb /r:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/t:winexe

The code in Example 5-2 is similar to the code that would be created by the Windows
Forms Designer if its visual menu editor were used to create this menu. The essential
steps are:

1. Declare a MainMenu object to represent the menu.
2. Declare a MenuItem object for each menu item.
3. Instantiate the MainMenu object and all the MenuItem objects.

VB .Net / 190

4. Set the properties of the MenuItem objects (such as the Text property) as desired.
5. Add the top-level MenuItem objects to the MenuItems collection of the MainMenu

object, then add the lower-level MenuItem objects to the MenuItems collection of
the MenuItem object under which they should appear.

Example 5-2. Creating a main menu in code

Imports System.Drawing
Imports System.Windows.Forms

Module modMain
<System.STAThreadAttribute()> Public Sub Main()
System.Threading.Thread.CurrentThread.ApartmentState = _
System.Threading.ApartmentState.STA
System.Windows.Forms.Application.Run(New Form1())

End Sub
End Module

Public Class Form1

Inherits Form
' Declare the main menu component.
Private myMenu As MainMenu
' Declare the menu items that will be in the menu. Use the
' WithEvents keyword so that event handlers can be added later
Private WithEvents mnuFile As MenuItem
Private WithEvents mnuFileExit As MenuItem
Private WithEvents mnuEdit As MenuItem

Public Sub New()

' Instantiate the menu objects.
Programming Visual Basic .NET

myMenu = New MainMenu()
mnuFile = New MenuItem()
mnuFileExit = New MenuItem()
mnuEdit = New MenuItem()
' Set the properties of the menu items.
mnuFile.Text = "&File"
mnuFileExit.Text = "E&xit"
mnuEdit.Text = "&Edit"
' Connect the menu items to each other and to the main menu.
mnuFile.MenuItems.Add(mnuFileExit)
myMenu.MenuItems.Add(mnuFile)
myMenu.MenuItems.Add(mnuEdit)
' Connect the main menu to the form.
Me.Menu = myMenu

 End Sub
End Class

5.6.3 Handling Menu Events

User interaction with a menu causes menu events to be fired. The most common
menu event is the Click event of the MenuItem class, which fires when a user clicks a
menu item. Here is an example of a Click event handler (this code could be added to
the Form1 class of Example 5-2):

Private Sub mnuFileExit_Click(_ByVal sender As Object, _
ByVal e As EventArgs _) Handles mnuFileExit.Click
 Me.Close()
End Sub

The events of the MenuItem class are:

Windows Forms II:Controls, Common Dialog Boxes & Menus /191

Click
Fired when the menu item is chosen either by clicking it with the mouse or by
pressing a shortcut key combination defined for the menu item. The syntax of the
Click event is:

Public Event Click As System.EventHandler

This is equivalent to:

Public Event Click(ByVal sender As Object, ByVal e As System.EventArgs)

Disposed
Fired when the MenuItem object's Dispose method is called. The syntax of the
Disposed
event is:

Public Event Disposed As System.EventHandler

This is equivalent to:

Public Event Disposed(ByVal
sender As Object, ByVal
e As System.EventArgs)

The event is inherited from the Component class.

DrawItem
Fired when the menu item needs to be drawn, when the MenuItem object's
OwnerDraw
property is True. The syntax of the DrawItem event is:

Public Event DrawItem As System.Windows.Forms.DrawItemEventHandler

This is equivalent to:
Public Event DrawItem(_ByVal sender As Object, _
ByVal e As System.Windows.Forms.DrawItemEventArgs_)

The e parameter, of type DrawItemEventArgs, provides additional information that
is needed for drawing the menu item. The properties of the DrawItemEventArgs
class are:

BackColor

The background color that should be used when drawing the item. The type is
Color (defined in the System.Drawing namespace).

Bounds

The bounding rectangle of the menu item. The type is Rectangle (defined in the
System.Drawing namespace).

Font

The font that should be used when drawing the item. The type is Font (defined
in the System.Drawing namespace).

ForeColor

The foreground color that should be used when drawing the item. The type is
Color (defined in the System.Drawing namespace).

Graphics

The graphics surface on which to draw the item. The type is Graphics (defined
in the System.Drawing namespace).
Index The index of the menu item within its parent menu. The type is Integer.

State

The state of the menu item. The type is DrawItemState (defined in the
System.Windows.Forms namespace). DrawItemState is an enumeration that
defines the values None, Selected, Grayed, Disabled, Checked, Focus, Default,
HotLight, Inactive, NoAccelerator, NoFocusRect, and ComboBoxEdit.

VB .Net / 192

MeasureItem
Fired prior to firing the DrawItem event when the MenuItem object's OwnerDraw
property is True. The MeasureItem event allows the client to specify the size of
the item to be drawn.The syntax of the MeasureItem event is:

Public Event MeasureItem As
System.Windows.Forms.MeasureItemEventHandler

This is equivalent to:

Public Event MeasureItem(_
ByVal sender As Object, _
ByVal e As System.Windows.Forms.MeasureItemEventArgs _)

The e parameter, of type MeasureItemEventArgs, provides additional
information needed by the event handler and provides fields that the event
handler can set to communicate the item size to the MenuItem object. The
properties of the MeasureItemEventArgs are:

Graphics

The graphics device upon which the menu item will be drawn. This is needed so
the client can determine the scale of the device upon which the menu item will
be rendered. The type is Graphics (defined in the System.Drawing namespace).

Index

The index of the menu item within its parent menu. The type is Integer.

ItemHeight

The height of the menu item. The type is Integer.

ItemWidth

The width of the menu item. The type is Integer.

Popup
Fired when the submenu is about to be displayed, when a menu item has
subitems associated with it. This provides the client with an opportunity to set
the menu states (checked, enabled, etc.) of the submenu items to match the
current program state. The syntax of the Popup event is:

Public Event Popup As System.EventHandler

This is equivalent to:

Public Event Popup(ByVal sender As Object, ByVal e As System.EventArgs)

Select

Fired when the user places the mouse over the menu item or when the user
highlights the menu item by navigating to it with the keyboard arrow keys. The
syntax of the Select event is: Public Event Select As System.EventHandler This
is equivalent to:

Public Event Select(ByVal sender As Object, ByVal e As System.EventArgs)

The ContextMenu class also exposes a Popup event, which is fired just before
the context menu is displayed. The syntax of the Popup event is:

Public Event Popup As System.EventHandler

This is equivalent to:

Public Event Popup(ByVal sender As Object, ByVal e As System.EventArgs)

Windows Forms II:Controls, Common Dialog Boxes & Menus /193

5.6.4 Cloning Menus

Sometimes menu items and their submenus need to appear on more than one menu.
A common example is an application that has context menus containing some of the
same functionality as the application's main menu. However, MenuItem objects don't
work correctly if they are assigned to more than one menu. To provide an easy
solution for developers who need to duplicate functionality on multiple menus, the
MenuItem class provides the CloneMenu method. This method returns a new
MenuItem object whose properties are set the same as those of the MenuItem object
on which the CloneMenu method is called. If the original MenuItem object has
submenus, the submenu MenuItem objects are cloned as well. Example 5-3 shows the
complete code for a program that has both a main menu and a context menu. It can be
compiled from the command line with this command:

vbc filename.vb /r:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/t:winexe

The code in Example 5-3 sets up a menu item labeled Format that has four options
beneath it: Font, ForeColor, BackColor, and Reset. After this menu structure is set up,
it is added to the MainMenu object, which is then attached to the form, as shown here:
MainMenu1.MenuItems.Add(mnuFormat)
Menu = MainMenu1
An identical menu structure is then created and assigned to the ContextMenu object,
which is then attached to the Label1 control, as shown here:

ContextMenu1.MenuItems.Add(mnuFormat.CloneMenu())
Label1.ContextMenu = ContextMenu1

The CloneMenu method even detects the event handlers that are defined for the
MenuItems being cloned and automatically registers those handlers with the
corresponding events on the newly created MenuItem objects. This means that the
event handlers shown in Example 5-3 handle the events both from the main menu and
from the context menu. Figure 5-26 shows the running application with the context
menu displayed (the Label control was right-clicked).

Figure 5-26. The display produced by Example 5-3

Example 5-3. Cloning menus

Imports System
Imports System.Drawing
Imports System.Windows.Forms

Module modMain
<STAThreadAttribute()> Public Sub Main()
System.Threading.Thread.CurrentThread.ApartmentState = _
System.Threading.ApartmentState.STA

 Application.Run(New Form1())
End Sub
End Module
Public Class Form1

Inherits Form
' This member references the label used for displaying text.
Private WithEvents Label1 As New Label()
' These members store original font and color properties of the
' Label1 control.
Private origFont As Font
Private origForeColor As Color
Private origBackColor As Color
' These members hold the MainMenu and ContextMenu objects.
Private WithEvents MainMenu1 As New MainMenu()

VB .Net / 194

Private WithEvents ContextMenu1 As New ContextMenu()
' These members hold the MenuItem objects.
Private WithEvents mnuFormat As New MenuItem()
Private WithEvents mnuFormatFont As New MenuItem()
Private WithEvents mnuFormatForeColor As New MenuItem()
Private WithEvents mnuFormatBackColor As New MenuItem()
Private mnuSeparator As New MenuItem()
Private WithEvents mnuFormatReset As New MenuItem()
Public Sub New()
MyBase.New()
' Set up the Format menu.
mnuFormat.Text = "F&ormat"
mnuFormatFont.Text = "&Font..."
mnuFormatForeColor.Text = "F&oreColor..."
mnuFormatBackColor.Text = "&BackColor..."
mnuSeparator.Text = "-"
mnuFormatReset.Text = "&Reset"
mnuFormat.MenuItems.AddRange(New MenuItem() {mnuFormatFont, _
mnuFormatForeColor, mnuFormatBackColor, mnuSeparator, _
mnuFormatReset})

' Attach the Format menu to the main menu and attach the main
' menu to the form.
MainMenu1.MenuItems.Add(mnuFormat)
Menu = MainMenu1
' Clone the Format menu, attach the clone to the context menu, and
' attach the context menu to the Label control.
ContextMenu1.MenuItems.Add(mnuFormat.CloneMenu())
Label1.ContextMenu = ContextMenu1
' Set up non-menu-related properties of the form and the label.
AutoScaleBaseSize = New Size(5, 13)
ClientSize = New Size(312, 81)
Controls.Add(Label1)
Menu = MainMenu1
Name = "Form1"
Text = "Menu Cloning Test"
Label1.Text = "Some Display Text"
Label1.AutoSize = True

' Save the original font and color properties of the Label1 control.
 origFont = Label1.Font

origForeColor = Label1.ForeColor
origBackColor = Label1.BackColor

End Sub
' Font Click event handler
Private Sub mnuFormatFont_Click(_ByVal sender As Object, _ByVal e As EventArgs
_) Handles mnuFormatFont.Click

Dim dlg As New FontDialog()
dlg.Font = Label1.Font
If dlg.ShowDialog = DialogResult.OK Then
Label1.Font = dlg.Font
End If
dlg.Dispose()

End Sub
' ForeColor Click event handler
Private Sub mnuFormatForeColor_Click(_ByVal sender As Object, _
ByVal e As EventArgs _) Handles mnuFormatForeColor.Click

Dim dlg As New ColorDialog()
dlg.Color = Label1.ForeColor
If dlg.ShowDialog = DialogResult.OK Then
Label1.ForeColor = dlg.Color
End If
dlg.Dispose()

End Sub
' BackColor Click event handler

Windows Forms II:Controls, Common Dialog Boxes & Menus /195

Private Sub mnuFormatBackColor_Click(_ByVal sender As Object, _
ByVal e As EventArgs _) Handles mnuFormatBackColor.Click

Dim dlg As New ColorDialog()
dlg.Color = Label1.BackColor

If dlg.ShowDialog = DialogResult.OK Then
 Label1.BackColor = dlg.Color
End If

dlg.Dispose()
End Sub
' Resent Click event handler
Private Sub mnuFormatReset_Click(_ByVal sender As Object, _
ByVal e As EventArgs _) Handles mnuFormatReset.Click

Label1.Font = origFont
Label1.ForeColor = origForeColor
Label1.BackColor = origBackColor

End Sub
End Class

5.7 CREATING A CONTROL

A control is a component with a visual representation. The Windows Forms class
library provides the base functionality for controls through the Control class (defined in
the System.Windows.Forms namespace). All controls derive directly or indirectly from
the Control class. In addition, Windows Forms provides a class called UserControl for
the purpose of making it easy to write custom control classes. The derivation of the
UserControl class is shown in Figure 5-27.

Figure 5-27. The derivation hierarchy of the UserControl class

5.7.1 Building Controls from Other Controls

The easiest way to create a new control is to aggregate and modify the functionality of
one or more existing controls. To do this in Visual Studio .NET's Windows Forms
Designer, perform the following steps:

1. Choose Project Add User Control from the main menu.

2. Type the name of the .vb file that will hold the code for the control, and click OK.

The designer displays a blank user control in design mode, as shown in Figure 5-
28.

VB .Net / 196

Figure 5-28. A blank user control in Visual Studio .NET's Windows

Forms Designer

3. Add controls from the Toolbox window just as you would when laying out a form.

Controls that are made part of another control are called constituent controls .
Figure 5-29 shows a user control that has two constituent controls: a Label and a
TextBox.

Figure 5-29. A user control with two constituent controls

The user control shown in Figure 5-29 is a good start on a captioned text-box control—
a text box that carries around its own caption. These additional steps would also be
helpful:

a. Set the Label control's AutoSize property to True so the label expands to the
size needed for displaying its text.

b. Dock the Label control to the left side of the user control. This allows the
TextBox control to be docked to the Label control. The benefit of docking the
TextBox control to the Label control is that the TextBox control will move
whenever the Label control resizes itself.

c. Dock the TextBox control to fill the remainder of the space.

4. Add any appropriate properties to the user control. This could involve overriding

properties inherited from base classes or creating new properties. For the
captioned text-box user control, do the following:

a. Override the Text property. The purpose of this property is to allow the client
environment to set and read the text displayed in the constituent TextBox
control.

 Here is the code:
b. Public Overrides Property Text() As String
c. Get
d. Return txtText.Text
e. End Get
f. Set(ByVal Value As String)
g. txtText.Text = Value
h. End Set
End Property
As can be seen from the code, the user control's Text property is simply mapped to
the TextBox control's Text property.
i. Create a new property for setting the caption text. Here is the code:
j. Public Property Caption() As String
k. Get
l. Return lblCaption().Text
m. End Get
n. Set(ByVal Value As String)
o. lblCaption().Text = Value
p. End Set

Windows Forms II:Controls, Common Dialog Boxes & Menus /197

End Property

In this case, the Caption property is mapped to the Label control's Text property.

5. Add any appropriate events to the user control. This could involve invoking base-
class events or creating and invoking new events. For the captioned text-box user
control, do the following:
a. Add a handler for the constituent TextBox control's TextChanged property.

Within the handler, invoke the base class's TextChanged event. Here is the
code:

b. Private Sub txtText_TextChanged(_
c. ByVal sender As Object, _
d. ByVal e As EventArgs _
e.) Handles txtText.TextChanged
f. Me.OnTextChanged(e)
 End Sub
 Notice that this code calls the OnTextChanged method, which is declared in

the Control class. The purpose of this method is to fire the TextChanged
event, which is also declared in the Control class (Visual Basic .NET doesn't
provide a way to fire a base-class event directly.) There are OnEventName
methods for each of the events defined in the Control class.The
OnTextChanged method is overridable. If you override it in your derived class,
be sure that your overriding method calls MyBase.OnTextChanged. If you
don't, the TextChanged event won't be fired.

g. Declare a new event to notify the client when the user control's Caption
property is changed. Name the event CaptionChanged. Add a handler for the
Label control's TextChanged event and raise the CaptionChanged event from
there. Here's the code:

h. Event CaptionChanged As EventHandler
i.
j. Private Sub lblCaption_TextChanged(_
k. ByVal sender As Object, _
l. ByVal e As EventArgs _
m.) Handles lblCaption.TextChanged
n. RaiseEvent CaptionChanged(Me, EventArgs.Empty)
 End Sub
 Note the arguments to the CaptionChanged event. The value Me is passed as

the sender of the event, and EventArgs.Empty is passed as the event
arguments. The Empty field of the EventArgs class returns a new, empty
EventArgs object.

6. Add any appropriate attributes to the syntax elements of the class. For example, the

Caption property will benefit from having a Category attribute and a Description
attribute, as shown in bold here:

8. <Category("Appearance"), _
9. Description("The text appearing next to the textbox.")> _
10. Public Property _
11. Caption() As String
12. Get
13. Return lblCaption().Text
14. End Get
15. Set(ByVal Value As String)
16. lblCaption().Text = Value
17. End Set
End Property
These attributes are compiled into the code and are picked up by the Visual Studio
.NET IDE.
The Category attribute determines in which category the property will appear in the
Properties window. The Description attribute determines the help text that will be
displayed in the Properties window when the user clicks on that property. See
"Component Attributes" in Chapter 4 for a list of attributes defined in the
System.ComponentModel namespace.
This is all very similar to creating forms. As with forms, custom controls can be defined
directly in code. Example 5-4 shows a complete class definition for the captioned text-
box control, created without the aid of the Windows Forms Designer. It can be
compiled from the command line with this command:

VB .Net / 198

vbc filename.vb /r:System.dll,System.Drawing.dll,System.Windows.Forms.dll
/t:library
(Note the /t:library switch for creating a .dll rather than an .exe file.)

Example 5-4. A custom Control class

Imports System
Imports System.ComponentModel
Imports System.Drawing
Imports System.Windows.Forms
Public Class MyControl
Inherits UserControl
Private WithEvents lblCaption As Label
Private WithEvents txtText As TextBox
Event CaptionChanged As EventHandler
Public Sub New()
MyBase.New()
' Instantiate a Label object and set its properties.
lblCaption = New Label()
With lblCaption

.AutoSize = True

.Dock = DockStyle.Left

.Size = New Size(53, 13)

.TabIndex = 0

.Text = "lblCaption"
End With
' Instantiate a TextBox object and set its properties.
txtText = New TextBox()
With txtText

.Dock = DockStyle.Fill

.Location = New Point(53, 0)

.Size = New Size(142, 20)

.TabIndex = 1

.Text = "txtText"
End With
' Add the label and text box to the form's Controls collection.
Me.Controls.AddRange(New Control() {txtText, lblCaption})
' Set the size of the form.
Me.Size = New Size(195, 19)
End Sub
' Override the Control class's Text property. Map it to the
' constituent TextBox control's Text property.
<Category("Appearance"), _
Description("The text contained in the textbox.")> _Public Overrides Property Text(
) As String
Get
Return txtText.Text
End Get
Set(ByVal Value As String)
txtText.Text = Value
End Set
End Property
' Add a Caption property. Map it to the constituent Label
' control's Text property.
<Category("Appearance"), _
Description("The text appearing next to the textbox.")> _
Public Property _
Caption() As String
Get
Return lblCaption.Text
End Get
Set(ByVal Value As String)
lblCaption.Text = Value
End Set
End Property
' When the constituent TextBox control's TextChanged event is

Windows Forms II:Controls, Common Dialog Boxes & Menus /199

' received, fire the user control's TextChanged event.

Private Sub txtText_TextChanged(_ByVal sender As Object, _
ByVal e As EventArgs _) Handles txtText.TextChanged
Me.OnTextChanged(e)
End Sub

' When the constituent Label control's TextChanged event is
' received, fire the user control's CaptionChanged event.

Private Sub lblCaption_TextChanged(_ByVal sender As Object, _
ByVal e As EventArgs _) Handles lblCaption.TextChanged
 RaiseEvent CaptionChanged(Me, EventArgs.Empty)
End Sub

End Class

After compiling the code in Example 5-4, either the custom control can be added to the
Visual Studio .NET toolbox and added to forms just like other controls, or it can be
referenced and instantiated from an application compiled at the command line.
To add the custom control to the Visual Studio .NET toolbox:

1. Deploy the custom control's .dll file into the client application's bin directory. (The

bin directory is a directory created by Visual Studio .NET when the client application
is created.)

2. From the Visual Studio .NET menu, select Tools Customize Toolbox.
The Customize Toolbox dialog box appears, as shown in Figure 5-30.

Figure 5-30. The Customize Toolbox dialog box

3. Click the .NET Framework Components tab, then click the Browse button.

4. Browse for and select the .dll file compiled from the code in Example 5-4.

5. The controls in the .dll file are added to the Customize Toolbox dialog box, as

shown in Figure 5-31. (In this case there is only one control in the .dll file—the
MyControl control.)

VB .Net / 200

Figure 5-31. Adding a control to the Customize Toolbox dialog box

6. Ensure that a checkmark appears next to the control name, and click OK. The

control should now appear on the General tab of the Toolbox window, as shown in
Figure 5-32.

Figure 5-32. The Toolbox window, showing the custom control from

Example 5-4

After you add the custom control to the Toolbox, the control can be added to a form
just like any other control. To use the custom control from a non-Visual Studio .NET
application, these steps are required:

1. Deploy the custom control's .dll file into the same directory as the client .vb file.
 the same way
2. Declare, instantiate, and use the control in client application code, in that has been

done throughout this chapter for standard controls.
3. Reference the control's assembly in the compilation command.

The code in Example 5-5 shows how to use the control. It can be compiled with this
command:

 vbc MyApp.vb
/r:System.dll,System.Drawing.dll,System.Windows.Forms.dll,MyControl.dll

 /t:winexe
 (Note that the command should be typed on a single line.)

Example 5-5. Using a custom control

Imports System.Drawing
Imports System.Windows.Forms

Module modMain
<System.STAThreadAttribute()> Public Sub Main()

Windows Forms II:Controls, Common Dialog Boxes & Menus /201

System.Threading.Thread.CurrentThread.ApartmentState = _
System.Threading.ApartmentState.STA
System.Windows.Forms.Application.Run(New Form1())

End Sub
End Module
Public Class Form1
Inherits System.Windows.Forms.Form
Private ctrl As New MyControl()

Public Sub New()
ctrl.Caption = "This is the caption."
ctrl.Text = "This is the text."
Controls.Add(ctrl)

End Sub
End Class
The resulting display is shown in Figure 5-33.

Figure 5-33. Using a custom control

5.7.2 Building Controls That Draw Themselves

Adding constituent controls to a user control is just one way to make a custom control.
Another way is to draw the user interface of the control directly onto the control's
surface. Example 5-6 shows the definition of a control that draws its own (albeit
simple) user interface. Figure 5-34 shows the control after it has been placed on a
form in design mode in the Windows Forms Designer.

 Example 5-6. A control that renders itself

Public Class MyControl
Inherits UserControl

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

e.Graphics.FillEllipse(New SolidBrush(Me.ForeColor), _
Me.ClientRectangle)
End Sub

Public Sub New()
 Me.ResizeRedraw = True
End Sub

End Class

Figure 5-34. The MyControl control as it appears on a form in the

Windows Forms Designer

The control in this example overrides the OnPaint method declared in the Control
class. Windows invokes the OnPaint method whenever the control needs repainting.
The PaintEventArgs object passed to the OnPaint method provides information useful

VB .Net / 202

within the OnPaint method. The PaintEventArgs type was discussed in detail in
Chapter 4 under Section 4.6. The OnPaint method in Example 5-6 draws an ellipse
sized to fill the client area of the control.Setting the control's ResizeRedraw property to
True causes the OnPaint method to be called whenever the control is resized.
Because the appearance of the control in Example 5-6 depends on the size of the
control, the control's constructor sets the ResizeRedraw property to True. When
ResizeRedraw is False (the default), resizing the control does not cause the OnPaint
method to be called. Although the code in Example 5-6 was built by hand, the OnPaint
method can also be added (by hand) to the code built by the Windows Forms
Designer. In addition, the techniques of using constituent controls and drawing directly
on the user control can both be used within the same user control.

5.7.3 Building Nonrectangular Controls

User controls are rectangular by default, but controls having other shapes can be
made by setting the control's Region property. The Region property accepts a value of
type Region (defined in the
System.Drawing namespace). Objects of type Region define complex areas and are
commonly used for window clipping. Consider again Example 5-6 and Figure 5-34.
Notice in Figure 5-34 that the grid dots on the form do not show through the
background of the control. Example 5-7 shows how to clip the area of the control to
match the ellipse being drawn in the OnPaint method. It is based on Example 5-6, with
new code shown in bold.

Example 5-7. Clipping the area of a control

' Assumes Imports System.Drawing.Drawing2D
Public Class MyControl
Inherits UserControl

Private Function CreateRegion() As Region
Dim gp As New GraphicsPath()
gp.AddEllipse(Me.ClientRectangle)
Dim rgn As New Region(gp)
Return rgn
End Function
Protected Overrides Sub OnResize(ByVal e As EventArgs)
Me.Region = Me.CreateRegion()

End Sub
Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
e.Graphics.FillEllipse(New SolidBrush(Me.ForeColor), _
Me.ClientRectangle)

End Sub

 Public Sub New()

Me.ResizeRedraw = True
End Sub

End Class
The CreateRegion method in Example 5-7 creates a region in the shape of an ellipse
sized to fill the client area of the control. To create nonrectangular regions, you must
instantiate a GraphicsPath object, use the drawing methods of the GraphicsPath class
to define a complex shape within the GraphicsPath object, and then instantiate a
Region object, initializing it from the GraphicsPath object. Example 5-7 calls the
GraphicsPath class's AddEllipse method to create an ellipse within the GraphicsPath
object. Additional methods could be called to add more shapes (including line-drawn
shapes) to the GraphicsPath object. The OnResize method in Example 5-7 ensures
that the control's Region property is reset every time the control is resized. Figure 5-35
shows the control after it has been placed on a form in design mode in the Windows
Forms Designer. Note that the grid dots now show through the corners of the control.
This clipped area is no longer considered part of the control. If the user clicks on this
area, the click passes through to the object underneath the control (in this case, the
form).

Windows Forms II:Controls, Common Dialog Boxes & Menus /203

Figure 5-35. A control with its Region property set to clip everything outside of
the ellipse

5.8 COM INTEROPERABILITY

5.8.1 Interoperability

The Component Object Model (COM) allows an object to expose its functionality to
other components and to host applications. While COM objects have been
fundamental to Windows programming for many years, applications designed for the
common language runtime (CLR) used by the .NET Platform offer many advantages.

.NET Platform applications will eventually replace those developed with COM. Until
then, you may need to use or create COM objects with Visual Studio .NET.
Interoperability with COM, or COM interop, enables you to use existing COM objects
while transitioning to the .NET Platform at your own pace.

5.8.1.1 Managed Code and Data

Code developed for the .NET Platform is referred to as managed code, and contains
metadata that is used by the common language runtime (CLR). Data used by .NET
applications is called managed data because the .NET runtime manages data-related
tasks such as allocating and reclaiming memory, and type checking. By default, Visual
Basic .NET uses managed code and data, but you can access the unmanaged code
and data of COM objects using interop assemblies.

5.8.1.2 Assemblies

An assembly is the primary building block of a .NET Framework application. It is a
collection of functionality that is built, versioned, and deployed as a single
implementation unit containing one or more files. Each assembly contains an
assembly manifest.

5.8.1.3 Type Libraries and Assembly Manifests

Type libraries describe characteristics of COM objects, such as member names and
data types. Assembly manifests perform the same function for .NET applications. They
include information about:

 Assembly identity, version, culture, and digital signature
 Files that make up the assembly implementation
 Types and resources that make up the assembly, including those that are

exported from it
 Compile-time dependencies on other assemblies
 Permissions required for the assembly to run properly

VB .Net / 204

5.8.1.4 Importing and Exporting Type Libraries

Visual Studio .NET contains a utility, Tlbimp, that lets you import information from a
type library into a .NET application. You can generate type libraries from assemblies
by using the Tlbexp utility.

For information on Tlbimp and Tlbexp, see Type Library Importer
(Tlbimp.exe) and Type Library Exporter (Tlbexp.exe).

5.8.1.5 Interop Assemblies

Interop assemblies are .NET assemblies that act as a bridge between managed and
unmanaged code, mapping COM object members to equivalent .NET managed
members. Interop assemblies created by Visual Basic .NET handle many of the details
of working with COM objects, such as interoperability marshaling.

5.8.1.6 Interoperability Marshaling

All .NET applications share a set of common types that allow interoperability of
objects, regardless of the programming language used. The parameters and return
values of COM objects sometimes use data types that are different than those used in
managed code. Interoperability marshaling is the process of packaging parameters
and return values into equivalent data types as they move to and from COM objects.
For more information.

5.8.2 COM in .Net

In Visual Basic .NET, adding references to COM objects that have type libraries is
similar to doing so in previous versions of Visual Basic. However, Visual Basic .NET
adds the creation of an interop assembly to the procedure. References to the
members of the COM object are routed to the interop assembly and then forwarded to
the actual COM object. Responses from the COM object are routed to the interop
assembly and forwarded to your .NET application.

5.8.3 To add references to COM objects

1. On the Project menu, select Add Reference and then click the COM tab.
2. Select the component you want to use from the list of COM objects.
3. To simplify access to the interop assembly, add an Imports statement to the

top of the class or module in which you will use the COM object.

5.5- 5.8 Check Your Progress
Fill in the blanks
1. The ………………. Component displays a dialog box that allows the user to choose

a Colour.
2. The ……………… provides three components for creating and
 managing menus.
3. COM means ……………………………. Model.
4. Before using any pre written code we have to add reference of

…………………………….. in our assembly.

5.9 SUMMARY

The Windows Forms architecture is broad and deep. This chapter has presented
everything you need to know to get started developing GUI desktop applications, but
there is more power waiting for you after you assimilate what's here. Once you master
the material in this chapter, you can write complex GUI applications. You'll also be able
to tackle and understand additional types and functionality documented in the online
.NET reference material.

Windows Forms II:Controls, Common Dialog Boxes & Menus /205

 5.10 CHECK YOUR PROGRESS - ANSWERS

5.1 - 5.4
1. Components 2. ImageList 3. Anchor 4. z-order.

5.5 - 5.7
1. ColorDialog 2. Windows Forms library 3. Component Object Model
4. DLL

5.11 QUESTIONS FOR SELF-STUDY

1. Explain ListBox. ObjectCollection Class?
2. Write short note on Splitter control?
3. Write short note on common dialog box?
4. Explain Cloning Menu?
5. describe steps to add reference of COM in your program.

5.12 SUGGESTED READINGS

1. Visual Basic .NET Black Book by Steven Holzner

References

Programming Visual Basic .NET by Dave Grundgeiger

VB .Net / 206

NOTES

ADO.NET:Developing Database Applications / 207

CHAPTER 6

ADO.NET:DEVELOPING DATABASE
APPLICATIONS

6.0 Objectives
6.1 Introduction
6.2 A brief History of universal Data Access
6.3 Managed Providers
6.4 Connecting to a SQL Server Data-base
6.5 Connecting to an OLE DB DataSource
6.6 Reading Data into a Datacell.

 6.6.1 The Dataset class
 6.6.2 Finding Tables
 6.6.3 Finding Rows
 6.6.4 Finding column values
 6.6.5 Finding column Definition
 6.6.6 Changing Adding & Deleting rows
 6.6.7 Writhing updates back to the Data source

6.7 Relations between Data tables in a Data Set.
6.8 The Datasets XML Capabilities
6.9 Binding a Data Set to a Windowsforms Data Grid.
6.10 Binding a Data Set to a Web-Forms Data Grid.
6.11 Reading Data using a Data-Reader
6.12 Executing Store Procedures through a SQL
 Command Object.
6.13 Summary.
6.14 Check Your Progress - Answer
6.15 Questions for Self-Study
6.16 Suggested Readings

6.0 OBJECTIVES

After studying The. NET Framework chapter you will able to :
 Describe universal Data Access
 State managed Providers for database connectivity
 Write code for connecting to a SQL Server Database with

 authentication
 Connecting to an OLE DB DataSource
 Write code for reading Data into a Dataset in your application
 State relations between Data tables in a Data Set.
 Describe the Dataset’s XML capabilities
 Explain binding a Dataset to a windows forms Data Grid.
 State binding a Dataset to a Web Forms Data Grid,typed

datasets,Reading Data using a data-reader
 Execute store procedures through a sqlCommand object.

 6.1 INTRODUCTION

Many software applications benefit from storing their data in database management
systems. A database management system is a software component that performs the
task of storing and retrieving large amounts of data. Examples of database
management systems are Microsoft SQL Server and Oracle Corporation's Oracle.
Microsoft SQL Server and Microsoft Access both include a sample database called
Northwind. The Northwind database is used in the examples throughout this chapter.
All examples in this chapter assume that the following declaration appears in the same
file as the code:
Imports System.Data
Examples that use SQL Server also assume this declaration:
Imports System.Data.SqlClient

VB .Net / 208

and examples that use Access assume this declaration:
Imports System.Data.OleDb

6.2 A BRIEF HISTORY OF UNIVERSAL DATA ACCESS

Database management systems provide APIs that allow application programmers to
create and access databases. The set of APIs that each manufacturer's system
supplies is unique to that manufacturer. Microsoft has long recognized that it is
inefficient and error prone for an applications programmer to attempt to master and
use all the APIs for the various available database management systems. What's
more, if a new database management system is released, an existing application can't
make use of it without being rewritten to understand the new APIs. What is needed is a
common database API. Microsoft's previous steps in this direction included Open
Database Connectivity (ODBC), OLE DB, and ADO (not to be confused with
ADO.NET). Microsoft has made improvements with each new technology. With .NET,
Microsoft has released a new mechanism for accessing data: ADO.NET. The name is
a carryover from Microsoft's ADO (ActiveX Data Objects) technology, but it no longer
stands for ActiveX

Data Objects—it's just ADO.NET. To avoid confusion, I will refer to ADO.NET as
ADO.NET and to ADO as classic ADO. If you're familiar with classic ADO, be careful—
ADO.NET is not a descendant, it's a new technology. In order to support the Internet
evolution, ADO.NET is highly focused on disconnected data and on the ability for
anything to be a source of data. While you will find many concepts in ADO.NET to be
similar to concepts in classic ADO, it is not the same.

6.3 MANAGED PROVIDERS

When speaking of data access, it's useful to distinguish between providers of data and
consumers of data. A data provider encapsulates data and provides access to it in a
generic way. The data itself can be in any form or location. For example, the data may
be in a typical database management system such as SQL Server, or it may be
distributed around the world and accessed via web services. The data provider shields
the data consumer from having to know how to reach the data. In ADO.NET, data
providers are referred to as managed providers.
A data consumer is an application that uses the services of a data provider for the
purposes of storing, retrieving, and manipulating data. A customer-service application
that manipulates a customer database is a typical example of a data consumer. To
consume data, the application must know how to access one or more data providers.
ADO.NET is comprised of many classes, but five take center stage:

Connection
Represents a connection to a data source.

Command
Represents a query or a command that is to be executed by a data source.

DataSet
Represents data. The DataSet can be filled either from a data source (using a
DataAdapter object) or dynamically.

DataAdapter
Used for filling a DataSet from a data source.

DataReader
Used for fast, efficient, forward-only reading of a data source.
With the exception of DataSet, these five names are not the actual classes used for
accessing data sources. Each managed provider exposes classes specific to that
provider. For example, the SQL Server managed provider exposes the SqlConnection,
SqlCommand, SqlDataAdapter, and SqlDataReader classes. The DataSet class is
used with all managed providers. Any data-source vendor can write a managed
provider to make that data source available to ADO.NET data consumers. Microsoft
has supplied two managed providers in the .NET Framework:

ADO.NET:Developing Database Applications / 209

SQL Server and OLE DB. The examples in this chapter are coded against the SQL
Server managed provider, for two reasons. The first is that I believe that most
programmers writing data access code in Visual Basic .NET will be doing so against a
SQL Server database. Second, the information about the SQL Server managed
provider is easily transferable to any other managed provider.

6.4 CONNECTING TO A SQL SERVER DATABASE

To read and write information to and from a SQL Server database, it is necessary first
to establish a connection to the database. This is done with the SqlConnection object,
found in the System.Data.SqlClient namespace. Here's an example:

' Open a database connection.
Dim strConnection As String = _
"Data Source=localhost;Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()

This code fragment instantiates an object of type SqlConnection, passing its
constructor a connection string. Calling the SqlConnection object's Open method
opens the connection. A connection must be open for data to be read or written, or for
commands to be executed. When you're finished accessing the database, use the
Close method to close the connection:

'Close the database connection.
cn.Close()

The connection string argument to the SqlConnection class's constructor provides
information that allows the SqlConnection object to find the SQL Server database. The
connection string shown in the earlier code fragment indicates that the database is
located on the same machine that is running the code snippet (Data
Source=localhost), that the database name is Northwind (Initial Catalog=Northwind),
and that the user ID that should be used for logging in to SQL Server is the current
Windows login account (Integrated Security=True). Table 6-1 shows the valid SQL
Server connection string settings.

VB .Net / 210

Table 6-1. SQL Server connection string settingsSetting Default Value
Description

ADO.NET:Developing Database Applications / 211

SQL Server Authentication

Before a process can access data that is located in a SQL Server database, it must log
in to SQL Server. The SqlConnection object communicates with SQL Server and
performs this login based on information provided in the connection string. Logging in
requires authentication. Authentication means proving to SQL Server that the process
is acting on behalf of a user who is
authorized to access SQL Server data. SQL Server recognizes two methods of
authentication:

 SQL Server Authentication, which requires the process to supply a username
and password that have been set up in SQL Server by an administrator.
Beginning with SQL Server 2000, this method of authentication is no longer
recommended (and is disabled by default).

 Integrated Windows Authentication, in which no username and password are
provided. Instead, the Windows NT or Windows 2000 system on which the
process is running communicates the user's Windows login name to SQL
Server. The Windows user must be set up in SQL Server by an administrator
in order for this to work.

VB .Net / 212

To use SQL Server Authentication:

1. (SQL Server 2000 only) Enable SQL Server Authentication. In Enterprise Manager,

right-click on the desired server, click Properties, and then click the Security tab.
Select "SQL Server and Windows" and click OK.

2. The network administrator sets up a login account using Enterprise Manager,
specifying that the account will use SQL Server Authentication and supplying a
password. Programming books (including this one) typically assume the presence
of a user named "sa" with an empty password, because this is the default system
administrator account set up on every SQL Server installation (good administrators
change the password, however).

3. The network administrator assigns rights to this login account as appropriate.
4. The data access code specifies the account and password in the connection string

passed to the SqlConnection object. For example, the following connection string
specifies the "sa" account with a blank password:

 "Data Source=SomeMachine; Initial Catalog=Northwind; User ID=sa; Password="

 To use Integrated Windows Authentication:

1. The network administrator sets up the login account using Enterprise Manager,

specifying that the account will use Windows Authentication and supplying the
Windows user or group that is to be given access.

2. The network administrator assigns rights to this login account as appropriate.
3. The data access code indicates in the connection string that Integrated Windows

Security should be used, as shown here:

"Data Source= SomeMachine; Initial Catalog=Northwind; Integrated Security=True"
When using Integrated Windows Authentication, it is necessary to know what Windows
login account a process will run under and to set up appropriate rights for that login
account in SQL Server Enterprise Manager. A program running on a local machine
generally runs under the login account of the user that started the program. A
component running in Microsoft Transaction Server (MTS) or COM+ runs under a login
account specified in the MTS or COM+ Explorer. Code that is embedded in an
ASP.NET web page runs under a login account specified in Internet Information Server
(IIS). Consult the documentation for these products for information on specifying the
login account under which components run. Consult the SQL Server Books Online for
information on setting up SQL Server login accounts and on specifying account
privileges.

6.5 CONNECTING TO AN OLE DB DATA SOURCE

OLE DB is a specification for wrapping data sources in a COM-based API so that data
sources can be accessed in a polymorphic way. The concept is the same as
ADO.NET's concept of managed providers. OLE DB predates ADO.NET and will
eventually be superseded by it. However, over the years, OLE DB providers have
been written for many data sources, including Oracle, Microsoft Access, Microsoft
Exchange, and others, whereas currently only one product—SQL Server—is natively
supported by an ADO.NET managed provider. To provide immediate support in
ADO.NET for a wide range of data sources, Microsoft has supplied an ADO.NET
managed provider for OLE DB. That means that ADO.NET can work with any data
source for which there is an OLE DB data provider. Furthermore, because there is an
OLE DB provider that wraps ODBC (an even older data-access technology), ADO.NET
can work with virtually all legacy data, regardless of the source. Connecting to an OLE
DB data source is similar to connecting to SQL Server, with a few differences: the
OleDbConnection class (from the System.Data.OleDb namespace) is used instead of
the SqlConnection class, and the connection string is slightly different. When using the
OleDbConnection class, the connection string must specify the OLE DB provider that
is to be used as well as additional information that tells the OLE DB provider where the
actual data is. For example, the following code opens a connection to the Northwind
sample database in Microsoft Access:

'Open a connection to the database.
Dim strConnection As String =
"Provider=Microsoft.Jet.OLEDB.4.0;DataSource="_&"C:\Program Files\Microsoft
Office\Office\Samples\Northwind.mdb"

ADO.NET:Developing Database Applications / 213

Dim cn As OleDbConnection = New OleDbConnection(strConnection)
cn.Open()
Similarly, this code opens a connection to an Oracle database:
' Open a connection to the database.
Dim strConnection As String=_"Provider=MSDAORA.1;User
ID=MyID;Password=MyPassword;"_&"DataSource=MyDatabaseService.MyDomain
.com"
Dim cn As OleDbConnection = New OleDbConnection(strConnection)
cn.Open()

The values of each setting in the connection string, and even the set of settings that
are allowed in the connection string, are dependent on the specific OLE DB provider
being used. Refer to the documentation for the specific OLE DB provider for more
information.
Table 6-2 shows the provider names for several of the most common OLE DB
providers.

Table 6-2. Common OLE DB provider names Data source OLE DB provider name

6.1 - 6.5 Check Your Progress

1. A …………..…….. is an application that uses the services of a data provider for the

purpose of storing retrieving and manipulating data.
2. The ………………………… object communicates with SQL Server.
3. The ……………………….…… class encapsulates a set of tables and the relations

between those tables.

6.6 READING DATA INTO A DATASET

The DataSet class is ADO.NET's highly flexible, general-purpose mechanism for
reading and updating data. Example 6-1 shows how to issue a SQL SELECT
statement against the SQL Server Northwind sample database to retrieve and display
the names of companies located in London. The resulting display is shown in Figure 6-1.

Figure 6-1. The output generated by the code in Example 6-1

Example 6-1. Retrieving data from SQL Server using a SQL SELECT

Statement

' Open a connection to the database.
Dim strConnection As String = _
"Data Source=localhost; Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
' Set up a data set command object.
Dim strSelect As String = "SELECT * FROM Customers WHERE City = 'London'"

VB .Net / 214

Dim dscmd As New SqlDataAdapter(strSelect, cn)
' Load a data set.
Dim ds As New DataSet()
dscmd.Fill(ds, "LondonCustomers")
' Close the connection.
cn.Close()
' Do something with the data set.
Dim dt As DataTable = ds.Tables.Item("LondonCustomers")
Dim rowCustomer As DataRow
For Each rowCustomer In dt.Rows
Console.WriteLine(rowCustomer.Item("CompanyName"))
Next

The code in Example 6-1 performs the following steps to obtain data from the
database:
1. Opens a connection to the database using a SqlConnection object.
2. Instantiates an object of type SqlDataAdapter in preparation for filling a DataSet

object. In Example 6-1, a SQL SELECT command string and a Connection object
are passed to the SqlDataAdapter object's constructor.

3. Instantiates an object of type DataSet and fills it by calling the SqlDataAdapter
object's Fill method.

6.6.1 The DataSet Class

The DataSet class encapsulates a set of tables and the relations between those
tables. Figure 6-2 shows a class model diagram containing the DataSet and related
classes. The DataSet is always completely disconnected from any data source. In fact,
the DataSet has no knowledge of the source of its tables and relations. They may be
dynamically created using methods on the DataSet, or they may be loaded from a data
source. In the case of the SQL Server managed provider, a DataSet can be loaded
from a SQL Server database using an SqlDataAdapter object. This is what was done
in Example 6-1.

Figure 6-2. A class model diagram for the DataSet and related classes

ADO.NET:Developing Database Applications / 215

After a DataSet is loaded, its data can be changed, added to, or deleted, all without
affecting the data source. Indeed, a database connection does not need to be
maintained during these updates. When ready, the updates can be written back to the
database by establishing a new connection and calling the SqlDataAdapter object's
Update method. Examples of writing updates to a database are shown later in this
chapter.Navigating the DataSet In this section you'll learn how to find specific data in a
DataSet object, how to make changes to that data, and how to write those changes
back to a database.

6.6.2 Finding Tables

The DataSet object's Tables property holds a TablesCollection object that contains the
DataTable objects in the DataSet. The following code loops through all the tables in
the DataSet and displays their names:

' Iterate through the tables in the DataSet ds.
Dim dt As DataTable

For Each dt In ds.Tables
 Console.WriteLine(dt.TableName)
Next

This code does the same thing, using a numeric index on the TablesCollection
object:

' Iterate through the tables in the DataSet ds.
Dim n As Integer

For n = 0 To ds.Tables.Count - 1
 Console.WriteLine(ds.Tables(n).TableName)
Next

The TablesCollection object can also be indexed by table name. For example, if the
DataSet ds
contains a table named "Categories", this code gets a reference to it:
Dim dt As DataTable = ds.Tables("Categories")

6.6.3 Finding Rows

The DataTable object's Rows property holds a DataRowCollection object that in turn
holds the table's DataRow objects. Each DataRow object holds the data for that
particular row. The following code loops through all the rows in the DataTable and
displays the value of the first column (column 0) in the row:

' Iterate through the rows.
Dim row As DataRow

For Each row In dt.Rows
 Console.WriteLine(row(0))
Next

This code does the same thing, using a numeric index on the RowsCollection
object:

' Iterate through the rows.
Dim n As Integer

For n = 0 To dt.Rows.Count - 1
 Console.WriteLine(dt.Rows(n)(0))
Next

To assist with locating specific rows within a table, the DataTable class provides a
method called Select. The Select method returns an array containing all the rows in
the table that match the given criteria. The syntax of the Select method is: Public
Overloads Function Select(_
ByVal filterExpression As String, _ByVal sort As String, _ByVal recordStates As
System.Data.DataViewRowState_)As System.Data.DataRow()

The parameters of the Select method are:

VB .Net / 216

filterExpression
This parameter gives the criteria for selecting rows. It is a string that is in the same
format as the WHERE clause in an SQL statement.

sort
This parameter specifies how the returned rows are to be sorted. It is a string that is in
the same format as the ORDER BY clause in an SQL statement.

recordStates
This parameter specifies the versions of the records that are to be retrieved. Record
versions are discussed in Section 6.5.6. The value passed in this parameter must be
one of the values given by the System.Data.DataViewRowState enumeration. Its
values are:

CurrentRows
Returns the current version of each row, regardless of whether it is unchanged, new,
or modified.

Deleted
Returns only rows that have been deleted.

ModifiedCurrent
Returns only rows that have been modified. The values in the returned rows are the
current values of the rows.

ModifiedOriginal
Returns only rows that have been modified. The values in the returned rows are the
original values of the rows.

New
Returns only new rows.

None
Returns no rows.

OriginalRows
Returns only rows that were in the table prior to any modifications. The values in the
returned rows are the original values.

Unchanged
Returns only unchanged rows.
These values can be combined using the And operator to achieve combined results.
For example, to retrieve both modified and new rows, pass this value:
DataViewRowState.ModifiedCurrent And DataViewRowState.New
The return value of the Select method is an array of DataRow objects.
The Select method is overloaded. It has a two-parameter version that is the same as
the full version, except that it does not take a recordStates parameter:

Public Overloads Function Select(_ByVal filterExpression As String, _ByVal sort As
String _) As System.Data.DataRow()
Calling this version of the Select method is the same as calling the full version with a

recordStates
value of DataViewRowState.CurrentRows.
Similarly, there is a one-parameter version that takes only a filterExpression:

Public Overloads Function Select(_ByVal filterExpression As String _) As
System.Data.DataRow()

This is the same as calling the three-parameter version with sort equal to "" (the empty
string) and recordStates equal to DataViewRowState.CurrentRows.Lastly, there is the
parameterless version of Select:

Public Overloads Function Select() As System.Data.DataRow()
This is the same as calling the three-parameter version with filterExpression and sort
equal to "" (the empty string) and recordStates equal to

ADO.NET:Developing Database Applications / 217

DataViewRowState.CurrentRows. As an example of using the Select method, this line
of code returns all rows whose Country column contains the value "Mexico":

Dim rows() As DataRow = dt.Select("Country = 'Mexico'")

Because the sort and recordStates parameters were not specified, they default to ""
(the empty string) and DataViewRowState.CurrentRows, respectively.

6.6.3.1 The Select method versus the SQL SELECT statement

If an application is communicating with a database over a fast, persistent connection, it
is more efficient to issue SQL SELECT statements that load the DataSet with only the
desired records, rather than to load the DataSet with a large amount of data and then
pare it down with the DataTable's Select method. The Select method is useful for
distributed applications that might not have a fast connection to the database. Such an
application might load a large amount of data from the database into a DataSet object,
then use several calls to the DataTable's Select method to locally view and process
the data in a variety of ways. This is more efficient in this case because the data is
moved across the slow connection only once, rather than once for each query.

6.6.4 Finding Column Values

The DataRow class has an Item property that provides access to the value in each
column of a row. For example, this code iterates through all the columns of a row,
displaying the value from each column (assume that row holds a reference to a
DataRow object):

' Iterate through the column values.

Dim n As Integer
 For n = 0 To row.Table.Columns.Count - 1

Console.WriteLine(row(n))
 Next

Note the expression used to find the number of columns: row.Table.Columns.Count.
The DataRow object's Table property holds a reference to the DataTable object of
which the row is a part. As will be discussed shortly, the Table object's Columns
property maintains a collection of column definitions for the table. The Count property
of this collection gives the number of columns in the table and therefore in each
row.The DataRow object's Item property is overloaded to allow a specific column value
to be accessed by column name. The following code assumes that the DataRow row
contains a column named "Description". The code displays the value of this column in
this row:Console.WriteLine(row("Description"))

6.6.5 Finding Column Definitions

The DataTable object's Columns property holds a ColumnsCollection object that in
turn holds the definitions for the columns in the table. The following code iterates
through the columns in the table and displays their names:

' Iterate through the columns.

Dim column As DataColumn
For Each column In dt.Columns
 Console.WriteLine(column.ColumnName)
Next

This code does the same thing, using a numeric index on the ColumnsCollection
object:

' Iterate through the columns.
Dim n As Integer

For n = 0 To dt.Columns.Count - 1
 Console.WriteLine(dt.Columns(n).ColumnName)
Next

VB .Net / 218

The ColumnsCollection object can also be indexed by column name. For example, if
DataTable dt contains a column named "Description", this code gets a reference to the
associated DataColumn
object:

Dim column As DataColumn = dt.Columns("Description")

6.6.6 Changing, Adding, and Deleting Rows

To change data in a DataSet, first navigate to a row of interest and then assign new
values to one or more of its columns. For example, the following line of code assumes
that row is a DataRow object that contains a column named "Description". The code
sets the value of the column in this row to be "Milk and cheese":

row("Description") = "Milk and cheese"

Adding a new row to a table in a DataSet is a three-step process:
1. Use the DataTable class's NewRow method to create a new DataRow. The method
takes no parameters.
2. Set the values of the columns in the row.
3. Add the new row to the table.

For example, assuming that dt is a DataTable object, and that the table has columns
named
"CategoryName" and "Description", this code adds a new row to the table:

' Add a row.
Dim row As DataRow = dt.NewRow()

row("CategoryName") = "Software"
row("Description") = "Fine code and binaries"
dt.Rows.Add(row)

The DataRow object referenced by row in this code can be indexed by the names
"CategoryName" and "Description" because the DataRow object was created by the
DataTable object's NewRow method and so has the same schema as the table. Note
that the NewRow method does not add the row to the table. Adding the new row to the
table must be done explicitly by calling the DataRowCollection class's Add method
through the DataTable class's Rows property. Deleting a row from a table is a one-
liner. Assuming that row is a reference to a DataRow, this line deletes the row from its
table:

row.Delete()

When changes are made to a row, the DataRow object keeps track of more than just
the new column values. It also keeps track of the row's original column values and the
fact that the row has been changed. The Item property of the DataRow object is
overloaded to allow you to specify the desired version of the data that you wish to
retrieve. The syntax of this overload is:

Public Overloads ReadOnly Property Item(_ByVal columnName As String, _ByVal
version As System.Data.DataRowVersion _) As Object

The parameters are:

columnName
The name of the column whose value is to be retrieved.

version
The version of the data to retrieve. This value must be a member of the
System.Data.DataRowVersion enumeration. Its values are:
Current Retrieve the current (changed) version.

Default
Retrieve the current version if the data has been changed, the original version if not.
Original Retrieve the original (unchanged) version.

ADO.NET:Developing Database Applications / 219

Proposed
Retrieve the proposed change. Proposed changes are changes that are made after a
call to a DataRow object's BeginEdit method but before a call to its EndEdit or
CancelEdit methods.For more information. For example, after making some changes
in DataRow row, the following line displays the original version of the row's Description
column:

Console.WriteLine(row("Description", DataRowVersion.Original))
The current value of the row would be displayed using any of the following lines:

Console.WriteLine(row("Description", DataRowVersion.Current))
Console.WriteLine(row("Description", DataRowVersion.Default))
Console.WriteLine(row("Description"))

Calling the DataSet object's AcceptChanges method commits outstanding changes.
Calling the DataSet object's RejectChanges method rolls records back to their original
versions. The code shown in this section affects only the DataSet object, not the data
source. To propagate these changes, additions, and deletions back to the data source,
use the Update method of the SqlDataAdapter class, as described in Section 6.5.7. If
there are relations defined between the DataTables in the DataSet, it may be
necessary to call the DataRow object's BeginEdit method before making changes. For
more information, see Section 6.6 later in this chapter.

6.6.7 Writing Updates Back to the Data Source

Because DataSets are always disconnected from their data sources, making changes
in a DataSet never has any effect on the data source. To propagate changes,
additions, and deletions back to a data source, call the SqlDataAdapter class's Update
method, passing the DataSet and the name of the table that is to be updated. For
example, the following call to Update writes changes from the DataTable named
Categories back to the SQL Server table of the same name:
da.Update(ds, "Categories") Before using the Update method, however, you should
understand how an SqlDataAdapter object performs updates. To change, add, or
delete records, an SqlDataAdapter object must send SQL UPDATE, INSERT, or
DELETE statements, respectively, to SQL Server. The forms of these statements
either can be inferred from the SELECT statement that was provided to the
SqlDataAdapter object or can be explicitly provided to the sqlDataAdapter object.
Example 6-2 shows an example of allowing an SqlDataAdapter object to infer the SQL
UPDATE, INSERT, and DELETE statements required for applying updates to a
database.

Example 6-2. Allowing an SqlDataAdapter object to infer SQL UPDATE,
INSERT, and DELETE statements from a SELECT statement

' Open a database connection.
Dim strConnection As String = _"Data Source=localhost;Initial Catalog=Northwind;"
_& "Integrated Security=True"

Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
 ' Create a data adapter object and set its SELECT command.

Dim strSelect As String = _"SELECT * FROM Categories"
Dim da As SqlDataAdapter = New SqlDataAdapter(strSelect, cn)
' Set the data adapter object's UPDATE, INSERT, and DELETE
' commands. Use the SqlCommandBuilder class's ability to auto-
' generate these commands from the SELECT command.

Dim autogen As New SqlCommandBuilder(da)
 ' Load a data set.
Dim ds As DataSet = New DataSet()

da.Fill(ds, "Categories")
' Get a reference to the "Categories" DataTable.

Dim dt As DataTable = ds.Tables("Categories")
 ' Modify one of the records.
Dim row As DataRow = dt.Select("CategoryName = 'Dairy Products'")(0)
row("Description") = "Milk and stuff"
 ' Add a record.

VB .Net / 220

row = dt.NewRow()
row("CategoryName") = "Software"
row("Description") = "Fine code and binaries"
dt.Rows.Add(row)
' Delete a record.
row = dt.Select("CategoryName = 'MyCategory'")(0)
row.Delete()
' Update the database.
da.Update(ds, "Categories")
' Close the database connection.
cn.Close()

Note the following in Example 6-2:
1. A SqlDataAdapter object is constructed with an argument of "SELECT * FROM

Categories". This initializes the value of the SqlDataAdapter object's
SelectCommand property.

2. A SqlCommandBuilder object is constructed with the SqlDataAdapter object passed
as an argument to its constructor. This step hooks the SqlDataAdapter object to the
SqlCommandBuilder object so that later, when the SqlDataAdapter object's Update
method is called, the SqlDataAdapter object can obtain SQL UPDATE, INSERT,
and DELETE commands from the SqlCommandBuilder object.

3. The SqlDataAdapter object is used to fill a DataSet object. This results in the
DataSet object containing a DataTable object, named "Categories", that contains all
the rows from the Northwind database's Categories table.

4. One record each in the table is modified, added, or deleted.
5. The SqlDataAdapter object's Update method is called to propagate the changes

back to the database. Step 5 forces the SqlCommandBuilder object to generate
SQL statements for performing the database update, insert, and delete
operations.When the Update method is called, the SqlDataAdapter object notes
that no values have been set for its UpdateCommand, InsertCommand, and
DeleteCommand properties, and therefore queries the SqlCommandBuilder object
for these commands. If any of these properties had been set on the
SqlDataAdapter object, those values would have been used instead. The
SqlCommandBuildObject can be examined to see what commands were created.
To see the commands that are generated in Example 6-2, add the following lines
anywhere after the declaration and assignment of the autogen variable:

Console.WriteLine("UpdateCommand:" &autogen.GetUpdateCommand.CommandText)
Console.WriteLine("InsertCommand: " &
 autogen.GetInsertCommand.CommandText)

Console.WriteLine("DeleteCommand:" &
 autogen.GetDeleteCommand.CommandText)

The auto-generated UPDATE command contains the following text
(note that line breaks have been added for clarity in the book):

UPDATE Categories
SET CategoryName = @p1 , Description = @p2 , Picture = @p3
WHERE ((CategoryID = @p4) AND ((CategoryName IS NULL AND @p5 IS
NULL) OR (CategoryName = @p6)))

Similarly, the INSERT command is:

INSERT INTO Categories(CategoryName , Description , Picture)
VALUES (@p1 , @p2 , @p3)

And the DELETE command is:

DELETE FROM Categories
WHERE (
(CategoryID = @p1)
AND

((CategoryName IS NULL AND @p2 IS NULL) OR (CategoryName = @p3)))

ADO.NET:Developing Database Applications / 221

Note the use of formal parameters (@p0, @p1, etc.) in each of these statements. For
each row that is to be changed, added, or deleted, the parameters are replaced with
values from the row, and the resulting SQL statement is issued to the database. The
choice of which value from the row to use for which parameter is controlled by the
SqlCommand object's Parameters property. This property contains an
SqlParameterCollection object that in turn contains one SqlParameter object for each
formal parameter. The SqlParameter object's ParameterName property matches the
name of the formal parameter (including the "@"), the SourceColumn property
contains the name of the column from which the value is to come, and the
SourceVersion property specifies the version of the value that is to be used. Row
versions were discussed in Section 6.5.6.
If desired, a DataSet object's UpdateCommand, InsertCommand, and
DeleteCommand properties can be set directly. Example 6-3 sets the value of
UpdateCommand and then performs an update using this command.

Example 6-3. Setting a DataSet object's UpdateCommand property

' Open a database connection.
Dim strConnection As String = _
"Data Source=localhost;Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
' Set up a data adapter object.Dim da As SqlDataAdapter = New
SqlDataAdapter("SELECT * FROM Categories",cn)

' Create an UPDATE command.
' This is the command text.
' Note the parameter names: @Description and @CategoryID.

Dim strUpdateCommand As String = _"UPDATE Categories" _
& " SET Description = @Description" _& " WHERE CategoryID = @CategoryID"

'Create a SqlCommand object and assign it to the UpdateCommand
property.da.UpdateCommand=New
SqlCommand(strUpdateCommand, cn)

' Set up parameters in the SqlCommand object.
Dim param As SqlParameter
'
' @CategoryID
param = da.UpdateCommand.Parameters.Add(_
New SqlParameter("@CategoryID", SqlDbType.Int))
param.SourceColumn = "CategoryID"
param.SourceVersion = DataRowVersion.Original
'
' @Description

param = da.UpdateCommand.Parameters.Add(_
New SqlParameter("@Description", SqlDbType.NChar, 16))
param.SourceColumn = "Description"
param.SourceVersion = DataRowVersion.Current

' Load a data set.

Dim ds As DataSet = New DataSet()
da.Fill(ds, "Categories")
' Get the table.

Dim dt As DataTable = ds.Tables("Categories")

'Get a row.
Dim row As DataRow = dt.Select("CategoryName = 'Dairy Products'")(0)
' Change the value in the Description column.

row("Description") = "Milk and stuff"

VB .Net / 222

' Perform the update.
da.Update(ds, "Categories")
' Close the database connection.
cn.Close()

6.7 RELATIONS BETWEEN DATATABLES IN A DATASET

The DataSet class provides a mechanism for specifying relations between tables in a
DataSet. The DataSet class's Relations property contains a RelationsCollection object,
which maintains a collection of DataRelation objects. Each DataRelation object
represents a parent/child relationship between two tables in the DataSet. For example,
there is conceptually a parent/child relationship between a Customers table and an
Orders table, because each order must belong to some customer. Modeling this
relationship in the DataSet has these benefits:
�The DataSet can enforce relational integrity.
�The DataSet can propagate key updates and row deletions.
�Data-bound controls can provide a visual representation of the relation.
Example 6-4 loads a Customers table and an Orders table from the Northwind
database and then creates a relation between them. The statement that actually
creates the relation is shown in bold.

Example 6-4. Creating a DataRelation between DataTables in a DataSet

' Open a database connection.
Dim strConnection As String = _"Data Source=localhost;Initial Catalog=Northwind;" _&
"Integrated Security=True"

Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
' Set up a data adapter object.

Dim strSql As String = "SELECT * FROM Customers" _& " WHERE City = 'Buenos
Aires' AND Country = 'Argentina'"

Dim da As SqlDataAdapter = New SqlDataAdapter(strSql, cn)
' Load a data set.

Dim ds As DataSet = New DataSet()
da.Fill(ds, "Customers")

' Set up a new data adapter object.
strSql = "SELECT Orders.*" _& " FROM Customers, Orders" _& " WHERE
(Customers.CustomerID = Orders.CustomerID)" _& " AND (Customers.City = 'Buenos
Aires')" _& " AND (Customers.Country = 'Argentina')"

da = New SqlDataAdapter(strSql, cn)
' Load the data set.
da.Fill(ds, "Orders")
' Close the database connection.
cn.Close()

' Create a relation.
ds.Relations.Add("CustomerOrders", _
ds.Tables("Customers").Columns("CustomerID"), _
ds.Tables("Orders").Columns("CustomerID"))

As shown in Example 6-4, the DataRelationCollection object's Add method creates a
new relation between two tables in the DataSet. The Add method is overloaded. The
syntax used in Example 6-4 is:

Public Overloads Overridable Function Add(_ByVal name As String, _ByVal
parentColumn As System.Data.DataColumn, _ByVal
 childColumn As System.Data.DataColumn _) As System.Data.DataRelation

ADO.NET:Developing Database Applications / 223

The parameters are:

name
The name to give to the new relation. This name can be used later as an index to the
RelationsCollection object.

parentColumn
The DataColumn object representing the parent column.

childColumn
The DataColumn object representing the child column.
The return value is the newly created DataRelation object. Example 6-4 ignores the
return value.

6.8 THE DATASET'S XML CAPABILITIES

The DataSet class has several methods for reading and writing data as XML,
including:

GetXml
Returns a string containing an XML representation of the data in the DataSet object.

GetXmlSchema
Returns a string containing the XSD schema for the XML returned by the GetXml
method.

WriteXml
Writes the XML representation of the data in the DataSet object to a Stream object, a
file, a TextWriter object, or an XmlWriter object. This XML can either include or omit
the corresponding XSD schema.

WriteXmlSchema
Writes the XSD schema for the DataSet to a Stream object, a file, a TextWriter object,
or an XmlWriter object.

ReadXml
Reads the XML written by the WriteXml method.

ReadXmlSchema
Reads the XSD schema written by the WriteXmlSchema method.
Example 6-5 shows how to write a DataSet to a file as XML using the WriteXml
method.

Example 6-5. Saving a DataSet to a file as XML

' Open a database connection.
Dim strConnection As String = _
"Data Source=localhost;Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
' Set up a data adapter object.
Dim strSql As String = "SELECT * FROM Customers" _
& " WHERE CustomerID = 'GROSR'"
Dim da As SqlDataAdapter = New SqlDataAdapter(strSql, cn)
' Load a data set.
Dim ds As DataSet = New DataSet("MyDataSetName")
da.Fill(ds, "Customers")
' Set up a new data adapter object.
strSql = "SELECT Orders.*" _
& " FROM Customers, Orders" _
& " WHERE (Customers.CustomerID = Orders.CustomerID)" _
& " AND (Customers.CustomerID = 'GROSR')"
da = New SqlDataAdapter(strSql, cn)
' Load the data set.
da.Fill(ds, "Orders")

VB .Net / 224

' Close the database connection.
cn.Close()
' Create a relation.
ds.Relations.Add("CustomerOrders", _
ds.Tables("Customers").Columns("CustomerID"), _
ds.Tables("Orders").Columns("CustomerID"))
' Save as XML.
ds.WriteXml("c:\temp.xml")

The majority of the code in Example 6-5 simply loads the DataSet with data. Actually
writing the XML is done with the DataSet's WriteXml method at the end of Example 6-
5. The contents of the file thus created are shown in Example 6-6. Some lines in
Example 6-6 have been wrapped for printing in this book.

Example 6-6. The file produced by the code in Example 6-5

<?xml version="1.0" standalone="yes"?>
<MyDataSetName>
<Customers>
<CustomerID>GROSR</CustomerID>
<CompanyName>GROSELLA-Restaurante</CompanyName>
<ContactName>Manuel Pereira</ContactName>
<ContactTitle>Owner</ContactTitle>
<Address>5th Ave. Los Palos Grandes</Address>
<City>Caracas</City>
<Region>DF</Region>
<PostalCode>1081</PostalCode>
<Country>Venezuela</Country>
<Phone>(2) 283-2951</Phone>
<Fax>(2) 283-3397</Fax>
</Customers>
<Orders>
<OrderID>10268</OrderID>
<CustomerID>GROSR</CustomerID>
<EmployeeID>8</EmployeeID>
<OrderDate>1996-07-30T00:00:00.0000000-05:00</OrderDate>
<RequiredDate>1996-08-27T00:00:00.0000000-05:00</RequiredDate>
<ShippedDate>1996-08-02T00:00:00.0000000-05:00</ShippedDate>
<ShipVia>3</ShipVia>
<Freight>66.29</Freight>
<ShipName>GROSELLA-Restaurante</ShipName>
<ShipAddress>5th Ave. Los Palos Grandes</ShipAddress>
<ShipCity>Caracas</ShipCity>
<ShipRegion>DF</ShipRegion>
<ShipPostalCode>1081</ShipPostalCode>
<ShipCountry>Venezuela</ShipCountry>
</Orders>
<Orders>
<OrderID>10785</OrderID>
<CustomerID>GROSR</CustomerID>
<EmployeeID>1</EmployeeID>
<OrderDate>1997-12-18T00:00:00.0000000-06:00</OrderDate>
<RequiredDate>1998-01-15T00:00:00.0000000-06:00</RequiredDate>
<ShippedDate>1997-12-24T00:00:00.0000000-06:00</ShippedDate>
<ShipVia>3</ShipVia>
<Freight>1.51</Freight>
<ShipName>GROSELLA-Restaurante</ShipName>
<ShipAddress>5th Ave. Los Palos Grandes</ShipAddress>
<ShipCity>Caracas</ShipCity>
<ShipRegion>DF</ShipRegion>
<ShipPostalCode>1081</ShipPostalCode>
<ShipCountry>Venezuela</ShipCountry>
</Orders>
</MyDataSetName>

The syntax of this overloaded version of the WriteXml function is:

ADO.NET:Developing Database Applications / 225

Public Overloads Sub WriteXml(ByVal fileName As String)
The fileName parameter specifies the full path of a file into which to write the XML..The
XML document written by the DataSet class's WriteXml method can be read back into
a DataSet object using the ReadXml method. Example 6-7 reads back the file written

Example 6-7. Recreating a DataSet object from XML

Dim ds As New DataSet()
ds.ReadXml("c:\temp.xml")

The XML created by the WriteXml method contains only data—no schema information.
The ReadXml method is able to infer the schema from the data. To explicitly write the
schema information, use the WriteXmlSchema method. To read the schema back in,
use the ReadXmlSchema method. The GetXml and GetXmlSchema methods work the
same as the WriteXml and WriteXmlSchema methods, except that each returns its
result as a string rather than writing it to a file.

6.9 BINDING A DATASET TO A WINDOWS FORMS DATAGRID

DataSet and DataTable objects can be bound to Windows Forms DataGrid objects to
provide an easy way to view data. This is done by calling a DataGrid object's
SetDataBinding method, passing the object that is to be bound to the grid. The syntax
of the SetDataBinding method is:

Public Sub SetDataBinding(_ByVal dataSource As Object, _ByVal dataMember As
String _)

The parameters are:

dataSource
The source of the data to show in the grid. This can be any object that exposes the
System.Collections.IList or System.Data.IListSource interfaces, which includes the
DataTable and DataSet classes discussed in this chapter.

dataMember
If the object passed in the dataSource parameter contains multiple tables, as a
DataSet object does, the dataMember parameter identifies the table to display in the
DataGrid. If a DataTable is passed in the dataSource parameter, the dataMember
parameter should contain either Nothing or an empty string. Example 6-8 shows how
to bind a DataSource object to a DataGrid.

The DataSource object contains a Customers table and an Orders table, and a relation
between them. The call to the DataGrid object's SetDataBinding method specifies that
the Customers table should be shown in the grid.Figure 6-3 shows the resulting
DataGrid display.

Example 6-8. Creating a DataSet and binding it to a Windows Forms DataGrid

' Open a database connection.
Dim strConnection As String = _
"Data Source=localhost;Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
' Set up a data adapter object.
Dim strSql As String = _
"SELECT CustomerID, CompanyName, ContactName, Phone FROM Customers" _
& " WHERE City = 'Buenos Aires' AND Country = 'Argentina'"
Dim da As SqlDataAdapter = New SqlDataAdapter(strSql, cn)
' Load a data set.
Dim ds As DataSet = New DataSet()
da.Fill(ds, "Customers")
' Set up a new data adapter object.
strSql = _
"SELECT Orders.OrderID, Orders.CustomerID, Orders.OrderDate," _
& " Orders.ShippedDate" _

VB .Net / 226

& " FROM Customers, Orders" _
& " WHERE (Customers.CustomerID = Orders.CustomerID)" _
& " AND (Customers.City = 'Buenos Aires')" _
& " AND (Customers.Country = 'Argentina')"
da = New SqlDataAdapter(strSql, cn)
' Load the data set.
da.Fill(ds, "Orders")
' Close the database connection.
cn.Close()
' Create a relation.
ds.Relations.Add("CustomerOrders", _
ds.Tables("Customers").Columns("CustomerID"), _
ds.Tables("Orders").Columns("CustomerID"))
' Bind the data set to a grid.
' Assumes that grid contains a reference to a
' System.WinForms.DataGrid object.
grd.SetDataBinding(ds, "Customers")

Figure 6-3. The display generated by the code in Example 6-8

Note in Figure 6-3 that each row in this DataGrid has a "+" icon. The reason is that the
DataGrid object has detected the relation between the Customers table and the Orders
table. Clicking on the "+" reveals all of the relations for which the Customers table is
the parent. In this case, there is only one, as shown in Figure 6-4.

Figure 6-4. Clicking the "+" reveals relations

The name of the relation in the display is a link. Clicking on this link loads the grid with
the child table in the relation, as shown in Figure 6-5.

ADO.NET:Developing Database Applications / 227

Figure 6-5. The Orders table

While the child table is displayed, the corresponding row from the parent table is
displayed in a header (shown in Figure 6-5). To return to the parent table, click the left-
pointing triangle in the upper-right corner of the grid.

6.10 BINDING A DATASET TO A WEB FORMS DATAGRID

Example 6-9 shows how to bind a DataTable object to a Web Forms DataGrid object.
Figure 6-6 shows the resulting display in a web browser.

6.6 - 6.9 Check your Progress

1. Each DataRelation object represents a …………...………………….. relationship

between two tables in the DataSet.
2. Data set is …………………………. table in your program.
3. Data grid has to be bind with ………………..…….. before displaying information.

Example 6-9. Creating a DataTable and binding it to a Web Forms
DataGrid

<%@ Page Explicit="True" Strict="True" %>
<script language="VB" runat="server">

Protected Sub Page_Load(ByVal Sender As System.Object, _
ByVal e As System.EventArgs)
If Not IsPostback Then ' True the first time the browser hits the
page.
' Bind the grid to the data.
grdCustomers.DataSource = GetDataSource()
grdCustomers.DataBind()
End If

End Sub ' Page_Load

Protected Function GetDataSource() As System.Collections.ICollection

' Open a database connection.
Dim strConnection As String = _
"Data Source=localhost;Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As New System.Data.SqlClient.SqlConnection(strConnection)
cn.Open()
' Set up a data adapter object.
Dim strSql As String = _
"SELECT CustomerID, CompanyName, ContactName, Phone" _
& " FROM Customers" _
& " WHERE City = 'Buenos Aires' AND Country = 'Argentina'"

VB .Net / 228

Dim da As New System.Data.SqlClient.SqlDataAdapter(strSql, cn)
' Load a data set.
Dim ds As New System.Data.DataSet()
da.Fill(ds, "Customers")
' Close the database connection.
cn.Close()
' Wrap the Customers DataTable in a DataView object.
Dim dv As New System.Data.DataView(ds.Tables("Customers"))
Return dv

End Function ' GetDataSource
</script>
<html>

<body>
<asp:DataGrid id=grdCustomers runat="server" ForeColor="Black">

<AlternatingItemStyle BackColor="Gainsboro" />
<FooterStyle ForeColor="White" BackColor="Silver" />
<ItemStyle BackColor="White" />
<HeaderStyle Font-Bold="True" ForeColor="White"
BackColor="Navy" />

</asp:DataGrid>
</body>

</html>

Figure 6-6. The display generated by the code in Example 6-9

Note the following:

�Unlike the Windows Forms DataGrid class, the Web Forms DataGrid class has no
SetDataBinding method. Instead, set the Web Forms DataGrid's DataSource property
and then call the DataGrid's DataBind method.
� Unlike the Windows Forms DataGrid class, the Web Forms DataGrid class's
DataSource property can't directly consume a DataTable or DataSet. Instead, the data
must be wrapped in a DataView or DataSetView object. The properties and methods
of the DataView and DataSetView classes provide additional control over how data is
viewed in a bound DataGrid.DataView and DataSetView objects can be used by either
Windows Forms or Web Forms
DataGrids, but they are mandatory with Web Forms DataGrids.
�The DataGrid's DataSource property can consume any object that exposes the
System.Collections.ICollection interface.

Typed DataSets

There is nothing syntactically wrong with this line of code:
Dim dt As System.Data.DataTable = ds.Tables("Custumers")
However, "Custumers" is misspelled. If it were the name of a variable, property, or
method, it would cause a compile-time error (assuming the declaration were not
similarly misspelled). However, because the compiler has no way of knowing that the
DataSet ds will not hold a table called Custumers, this typographical error will go
unnoticed until runtime. If this code path is not common, the error may go unnoticed for
a long time, perhaps until after the software is delivered and running on thousands of
client machines. It would be better to catch such errors at compile time. Microsoft has

ADO.NET:Developing Database Applications / 229

provided a tool for creating customized DataSet-derived classes. Such classes expose
additional properties based on the specific schema of the data that an object of this
class is expected to hold. Data access is done through these additional properties
rather than through the generic Item properties. Because the additional properties are
declared and typed, the Visual Basic .NET compiler can perform compile-time
checking to ensure that they are used correctly. Because the class is derived from the
DataSet class, an object of this class can do everything that a regular DataSet object
can do, and it can be used in any context in which a DataSet object is expected.
Consider again Example 6-1, shown earlier in this chapter. This fragment of code
displays the names of the customers in the Northwind database that are located in
London. Compare this to Example 6-10, which does the same thing but uses a
DataSet-derived class that is specifically designed for this purpose.

Example 6-10. Using a typed DataSet

' Open a database connection.
Dim strConnection As String = _
"Data Source=localhost;Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
' Set up a data adapter object.
Dim strSelect As String = "SELECT * FROM Customers WHERE City = 'London'"
Dim da As New SqlDataAdapter(strSelect, cn)
' Load a data set.
Dim ds As New LondonCustomersDataSet()
da.Fill(ds, "LondonCustomers")
' Close the database connection.
cn.Close()
' Do something with the data set.
Dim i As Integer
For i = 0 To ds.LondonCustomers.Count - 1
Console.WriteLine(ds.LondonCustomers(i).CompanyName)

Next Note that in Example 6-10, ds is declared as type LondonCustomersDataSet, and
this class has properties that relate specifically to the structure of the data that is to be
loaded into the DataSet.
However, before the code in Example 6-10 can be written, it is necessary to generate
the LondonCustomersDataSet and related classes. First, create an XML schema file
that defines the desired schema of the DataSet. The easiest way to do this is to write
code that loads a generic DataSet object with data having the right schema and then
writes that schema using the DataSet class's WriteXmlSchema method. Example 6-11
shows how this was done with the LondonCustomers DataSet.

Example 6-11. Using the WriteXmlSchema method to generate an XML schema

' This code is needed only once. Its purpose is to create
' an .xsd file that will be fed to the xsd.exe tool.
' Open a database connection.
Dim strConnection As String = _
"Data Source=localhost;Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
' Set up a data adapter object.
Dim strSelect As String = "SELECT * FROM Customers WHERE City = 'London'"
Dim da As New SqlDataAdapter(strSelect, cn)
' Load a data set.
Dim ds As New DataSet("LondonCustomersDataSet")
da.Fill(ds, "LondonCustomers")
' Close the database connection.
cn.Close()
' Save as XSD.

ds.WriteXmlSchema("c:\LondonCustomersDataSet.xsd")
Next, run Microsoft's XML Schema Definition Tool (xsd.exe) against the XML schema
file you just

VB .Net / 230

generated. Here is the command line used for the LondonCustomers DataSet:

xsd /d /l:VB LondonCustomersDataSet.xsd
The /d option indicates that a custom DataSet and related classes should be created.
The :VB
option specifies that the generated source code should be written in Visual Basic .NET
(the tool is also able to generate C# source code). With this command line, the tool
generates a file named LondonCustomersDataSet.vb, which contains the source code.
Finally, add the generated .vb file to a project and make use of its classes.

6.11 READING DATA USING A DATAREADER

As you have seen, the DataSet class provides a flexible way to read and write data in
any data source. There are times, however, when such flexibility is not needed and
when it might be better to optimize data-access speed as much as possible. For
example, an application might store the text for all of its drop-down lists in a database
table and read them out when the application is started. Clearly, all that is needed here
is to read once through a result set as fast as possible. For needs such as this,
ADO.NET has DataReader classes. Unlike the DataSet class, DataReader classes are
connected to their data sources. Consequently, there is no generic DataReader class.
Rather, each managed provider exposes its own DataReader class, which implements
the System.Data.IDataReader interface. The SQL Server managed provider exposes
the SqlDataReader class (in the System.Data.SqlClient namespace). DataReader
classes provide sequential, forward-only, read-only access to data. Because they are
optimized for this task, they are faster than the DataSet class. Example 6-12 shows
how to read through a result set using an SqlDataReader object.

Example 6-12. Using a SqlDataReader object

' Open a database connection.
Dim strConnection As String = _
"Data Source=localhost;Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
' Set up a command object.
Dim strSql As String = "SELECT * FROM Customers" _
& " WHERE Country = 'Germany'"
Dim cmd As New SqlCommand(strSql, cn)
' Set up a data reader.
Dim rdr As SqlDataReader
rdr = cmd.ExecuteReader()
' Use the data.
Do While rdr.Read
Console.WriteLine(rdr("CompanyName"))
Loop
' Close the database connection.
cn.Close()

Opening a connection to the database is done the same as when using a DataSet
object. However, with a DataReader object, the connection must remain open while
the data is read. Instead of an SqlDataAdapter object, an SqlCommand object is used
to hold the command that will be executed to select data from the database. The
SqlCommand class's ExecuteReader method is called to execute the command and to
return an SqlDataReader object. The SqlDataReader object is then used to read
through the result set. Note the Do While loop in Example 6-12, repeated here:
Do While rdr.Read
Console.WriteLine(rdr("CompanyName"))
Loop Developers who are used to coding against classic ADO will note that this loop
appears to lack a "move to the next row" statement. However, it is there. The
SqlDataReader class's Read method performs the function of positioning the
SqlDataReader object onto the next row to be read. In classic ADO, a RecordSet
object was initially positioned on the first row of the result set. After reading each
record, the RecordSet object's MoveNext method had to be called to position the
RecordSet onto the next row in the result set. Forgetting to call MoveNext was a
common cause of infinite loops. Microsoft removed this thorn as follows:

ADO.NET:Developing Database Applications / 231

� The DataReader object is initially positioned just prior to the first row of the result
set (and therefore has to be repositioned before reading any data).
� The Read method repositions the DataReader to the next row, returning True if the
DataReader is positioned onto a valid row and False if the DataReader is positioned
past the last row in the result set. These changes result in tight, easy-to-write loops
such as the one in Example 6-12. The DataReader provides an Item property for
reading column values from the current row. The Item property is overloaded to take
either an integer that specifies the column number, which is zero-based, or a string
that specifies the column name. The Item property is the default property of the
SqlDataReader class, so it can be omitted. For example, this line:
Console.WriteLine(rdr("CompanyName"))
is equivalent to this line:
Console.WriteLine(rdr.Item("CompanyName"))

6.12 Executing Stored ProceduresThrough a SqlCommand Object

To execute a stored procedure, set an SqlCommand object's CommandText property
to the name of the stored procedure to be executed, and set the CommandType
property to the constant CommandType.StoredProcedure (defined in the System.Data
namespace). Then call the ExecuteNonQuery method. Example 6-13 does just that.

6.10 - 6.12 Check Your Progress
1. ……………………... classes provide sequential forward-only read-only access to

data.
2. Stored procedure are pre written ……………………… in SQL.
3. Data reader is …………………………….. type of object.

Example 6-13. Executing a parameterless stored procedure

' Open a database connection.
Dim strConnection As String = _
"Data Source=localhost;Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
' Set up a command object. (Assumes that the database contains a
' stored procedure called "PurgeOutdatedOrders".)
Dim cmd As New SqlCommand("PurgeOutdatedOrders", cn)
cmd.CommandType = CommandType.StoredProcedure
' Execute the command.
cmd.ExecuteNonQuery()
' Close the database connection.
cn.Close()

Example 6-13 assumes for the sake of demonstration that the database contains a
stored procedure called "PurgeOutdatedOrders". If you would like to have a simple
stored procedure that works with Example 6-13, use this one:

CREATE PROCEDURE PurgeOutdatedOrders AS
DELETE FROM Orders
WHERE OrderDate < '04-Jul-1990'
AND ShippedDate IS NOT NULL

See your SQL Server documentation for information on how to create stored
procedures.
Some stored procedures have parameters, and some have a return value. For these
stored procedures, the SqlCommand class provides the Parameters property. The
Parameters property contains a reference to an SqlParameterCollection object. To
pass parameters to a stored procedure and/or to read the return value of a stored
procedure, add SqlParameter objects to this collection. Example 6-14 calls a stored
procedure that takes a single argument.

Example 6-14. Executing a parameterized stored procedure

' Open a database connection.
Dim strConnection As String = _

VB .Net / 232

"Data Source=localhost;Initial Catalog=Northwind;" _
& "Integrated Security=True"
Dim cn As SqlConnection = New SqlConnection(strConnection)
cn.Open()
' Set up a command object. (Assumes that the database contains a
' stored procedure called "PurgeOutdatedOrders2".)
Dim cmd As New SqlCommand("PurgeOutdatedOrders2", cn)
cmd.CommandType = CommandType.StoredProcedure
' Set up the @BeforeDate parameter for the stored procedure.
Dim param As New SqlParameter("@BeforeDate", SqlDBType.DateTime)
param.Direction = ParameterDirection.Input
param.Value = #7/4/1990#
cmd.Parameters.Add(param)
' Execute the command.
cmd.ExecuteNonQuery()
' Close the database connection.
cn.Close()

Example 6-14 assumes for the sake of demonstration that the database contains a
stored procedure called "PurgeOutdatedOrders2". If you would like to have a simple
stored procedure that works with Example 6-14, use this one:

CREATE PROCEDURE PurgeOutdatedOrders2
@BeforeDate datetime
AS
DELETE FROM Orders
WHERE OrderDate < @BeforeDate
AND ShippedDate IS NOT NULL

See your SQL Server documentation for information on how to create stored
procedures.
The steps taken in Example 6-14 are:
1. Open a connection to the database.
2. Instantiate an SqlCommand object using this constructor:
3. Public Overloads Sub New(_
4. ByVal cmdText As String, _
5. ByVal connection As System.Data.SqlClient.SqlConnection _)

The cmdText parameter specifies the name of the stored procedure, and the
connection

 parameter specifies the database connection to use.

6. Set the SqlCommand object's CommandType property to

 CommandType.StoredProcedure to indicate that the cmdText parameter passed
to the constructor is the name of a stored procedure.

7. Create an SqlParameter object to pass a value in the PurgeOutdatedOrders2
stored procedure's @BeforeDate parameter. This is done as follows:

 a. Instantiate an SqlParameter object using this constructor:
 b. Public Overloads Sub New(_
 c. ByVal parameterName As String, _
 d. ByVal dbType As System.Data.SqlClient.SqlDbType _)

The parameterName parameter specifies the name of the stored procedure parameter
and should match the name as given in the stored procedure. The dbType parameter
specifies the SQL Server data type of the parameter. This parameter can take any
value from the SqlDbType enumeration.
 e. Set the SqlParameter object's Direction property to
 ParameterDirection.Input. This indicates that a value will be passed from the

application to the stored procedure.
 f. Set the Value property of the SqlParameter object.
 g. Add the SqlParameter object to the SqlCommand object's
 Parameters collection by calling the SqlParameterCollection
 object's Add method.
6. Execute the stored procedure.

ADO.NET:Developing Database Applications / 233

Note the SqlParameter class's Direction property. Setting this property to the
appropriate value from the ParameterDirection enumeration (declared in the
System.Data namespace), can make a SqlParameter object an input parameter, an
output parameter, an in/out parameter, or the stored procedure's return value. The
values in the ParameterDirection enumeration are:

Input
The parameter provides a value to the stored procedure.

InputOutput
The parameter provides a value to the stored procedure and receives a new value
back from the stored procedure.
Output
The parameter receives a value back from the stored procedure.

ReturnValue
The parameter receives the stored procedure's return value.

6.13 SUMMARY

In this chapter, you learned about Microsoft's data-access technology, ADO.NET. You
learned how to connect to a database, how to read data with either a DataSet object or
a DataReader object, how to navigate and change data in a DataSet, how to use the
DataSet's XML capabilities, how to generate typed DataSets, and how to execute
stored procedures using an SqlCommand object.

6.14 CHECK YOUR PROGRESS-ANSWERS

6.1- 6.5
 1. Data consumer
 2. SqlConnection
 3. DataSet

6.6 - 6.9

1. Parent / child
2. Temprary Table
3. Dataset

6.10 - 6.12

1. DataReader
2. Procedure
3. Forward Only stream

6.15 QUESTIONS FOR SELF-STUDY

1. Write steps of connecting to a SQL Server Database?
2. Explain Binding a Dataset to a Web Forms Data Grid?
3. Describe dataset and its working in details.
4. Describe ADO.Net architecture with it’s working

6.16 SUGGESTED READINGS

1. Programming Visual Basic .NET by Dave Grundgeiger Publisher: O'Reilly

VB .Net / 234

NOTES

ADO.NET:Developing Database Applications / 235

Math Functions In .Net

Math functions are provided by the members of the Math class (defined in the System
namespace). All members of the Math class are shared, so it is not necessary to
instantiate the class before accessing its members. Members are simply accessed
through the class name. For example, the following line computes the cosine of 45:
Dim result As Double = Math.Cos(45)
The Math class exposes two constants:

E
The base of natural logarithms.

PI
The ratio of the circumference of a circle to its diameter.

The methods of the Math class are as follows. Note that the trigonometric functions
consider all angle values to be in radians.

Abs
Computes the absolute value of a number.

Acos
Computes the angle whose cosine is the given number.

Asin
Computes the angle whose sine is the given number.

Atan
Computes the angle whose tangent is the given number.

Atan2
Computes the angle whose tangent is equal to the quotient of the two given numbers.

Ceiling
Computes the smallest whole number greater than or equal to the given number.

Cos
Computes the cosine of a number.

Cosh
Computers the hyperbolic cosine of a number.

Exp
Computes e raised to a given power.

Floor
Computes the largest whole number less than or equal to a given number.

IEEERemainder
Calculates the remainder in the division of two numbers.

Log
Calculates the logarithm of a number (either the natural logarithm or in a given base).

Log10
Calculates the base 10 logarithm of a number.

Max
Returns the larger of two numbers.

Min
Returns the smaller of two numbers.

Pow
Raises a given number to a given power.

VB .Net / 236

Round
Rounds a number to either a whole number or a specified decimal place.

Sign
Returns -1, 0, or 1 to indicate whether the argument is negative, zero, or positive,
respectively.

Sin
Calculates the sine of a number.

Sinh
Calculates the hyperbolic sine of a number.

Sqrt
Calculates the square root of a number.

Tan
Calculates the tangent of a number.

Tanh
Calculates the hyperbolic tangent of a number.

