
International Journal of Mathematics Research. 
ISSN 0976-5840 Volume 6, Number 1 (2014), pp. 99-107 
© International Research Publication House 
http://www.irphouse.com 

 

 
 

Effect of Delay in Immune-Tumor Model under Drug 
Administration 

 
 

Anuradha Devi and Aditya Ghosh 
 
 
 

Abstract 
 

A mathematical Model is presented here which describes the growth of tumor 
cells with one term delay and it's intrinsic behaviour in the presence of 
immune cell. Here in this model we have also considered the effect of drug 
administered and assumed that drug kills both immune and tumor cells. The 
stability of immune cells and tumor cells with the effect of drug and delay is 
analyzed under equilibrium conditions.  
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1 INTRODUCTION 
The growth of tumor and cancer is a topic of interest in mathematical modeling. The 
complex behaviour of growth of tumor cell and it's effect on normal cell and immune 
cell already have been researched in [1], [9], [12]; between tumor and normal cells in 
[3], [6], [8]. Naturaly the growth of tumor shows delay, hence the growth needs to be 
remodeled under the effect of delay to get an appropriate and perfect mathematical 
model. The behavior of tumor with one term delay has already discussed in [5]. Again 
the behavior of tumor model under drug like chemotherapy is another important 
aspect of mathematical modeling of cancer which is extensively discussed in [2], [3], 
[6], [10], [11], [14], [15], [16], [17]. In the paper we have considered with three 
variable model with tumor (T), immune (I), under drug administration (v). The model 
also have been considered under delay in tumor growth.  
 
 
2 MODEL DESCRIPTION 
A Immune-Tumor Model with the effect of drug administration described in [4] has 
been considered and modified by introducing delay in one term for tumor growth. A 
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mathematical model of Immune-Tumor under delay in one term has been already 
introduced in [5].  
 
2. 1. Model Equation 
2. 1. 1. Immune-Tumor-Drug Model with delay in Tumor growth 
Let I (t) denote the number of immune cell at time t that kill tumor cells, T (t) denote 
the tumorcells at time t. Immune and tumor cells together behaves as a predator-pray 
model of interactingspecies [19]. Immune cells in human body have a constant source 
and also get stimulated and recruited by the presence of tumor cells. Immune cells 
shows natural death at a rate d1. Hence thegrowth of immune cells can be modelled as 

ܫ݀
ݐ݀ = ݏ +

(ݐ) ܶ(ݐ)ܫݎ
ߪ + (ݐ) ܶ − ݀ଵ2) (ݐ)ܫ. 1) 

 
where 
  .The constant immune cells present in the body= ݏ 
  .stepness coefficients=ߪ 
  recruitement rate of immune cells stimulatedby=ݎ 
 
 Furthermore, the interaction of immune cells andtumor cells can result in either 
the death of tumorcells or the deactivation of immune cells, resultingin the two 
competition terms 

ܫ݀
ݐ݀ = −ܿଵ2) (ݐ)ܶ(ݐ)ܫ. 2) 

 
and 

݀ܶ
ݐ݀ = −ܿଶ2) (ݐ)ܶ(ݐ)ܫ. 3) 

 
 The tumor cells follows a logistic growth ܽܶ (ݐ) (1−  undergo a delay. So ((ݐ)ܾܶ
the growth of tumor ismodified by 

ݐ)ܶܽ − ߬)൫1 − ݐ)ܾܶ − ߬)൯ (2. 4) 
 
 Hence, the model equation for immune-tumor cell growth with one term delay 
may be represented as 

ܫ݀
ݐ݀ = ݏ +

(ݐ) ܶ(ݐ)ܫݎ
ߪ + (ݐ) ܶ − ܿଵ(ݐ)ܶ(ݐ)ܫ −  ݀ଵ2) (ݐ)ܫ. 5) 

݀ܶ
ݐ݀ = −൫1(ݐ)ܶܽ ݐ)ܾܶ − ߬)൯ − ܿଶ2) (ݐ)ܶ(ݐ)ܫ. 6) 

 
 Here, equation (2. 6) represents equation of tumor growth with one term delay. In 
the Immune Tumor model described above, the effect of drug is added to formulate a 
new mathematical model. Let v (t) is the amount of drug administered at time t. 
Assumptions taken are 
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Drug kills both immune and tumor cells 
The kill rate of immune cells and tumor cells by drug are different. Let ߚଵbe the kill 
ratefor immune cells and ߚଶbe the kill rate for tumor cellߚଵ ≠   .ଶߚ
 The rate of drug administered at time tassume to follow exponential decay model 
([19]). ThusImmune-Tumor-Drug model equation under one term delay can be 
described as:  

ܫ݀
ݐ݀ = ݏ +

(ݐ) ܶ(ݐ)ܫݎ
ߪ + (ݐ) ܶ − ܿଵ(ݐ)ܶ(ݐ)ܫ −  ݀ଵ(ݐ)ܫ − .2) (ݐ) ݒ(ݐ)ܫ ଵߚ 7) 

݀ܶ
ݐ݀ = ൫1(ݐ)ܶܽ − ݐ)ܾܶ − ߬)൯ − ܿଶ(ݐ)ܶ(ݐ)ܫ − .2) (ݐ)ݒ(ݐ)ଶܶߚ 8) 

ݒ݀
ݐ݀

= −൫1(ݐ)ݒଷߙ .൯ (2(ݐ)ݒଷߚ 9) 

 
where 
 ܿଵ=Tumour deactivation rate of effectors.  
 ݀ଵ=Natural death rate of immune cells.  
 ܽ=intrinsic tumor growth rate 
 ଵ

௕
=tumour population carrying capacity 

 ܿଶ=death rate of tumor cell 
 ߬=delay term 
 
 
3 STABILITY ANALYSIS 
3. 1 Immune-Tumor Model with two term delay 
3. 1. 1 Equilibrium points 
Immune-Tumor-Drug under delay model is a model with delay ߬hasܶ(ݐ)as well as 
ݐ) ܶ − ߬) in  

൫1(ݐ)ܶܽ − ݐ)ܾܶ − ߬)൯ − ܿଶ(ݐ)ܶ(ݐ)ܫ − (ݐ)ݒ(ݐ)ଶܶߚ = 0 (3. 1) 
 
 Leads to equilibrium points 

(ݐ)ܶ = 0 (3. 2) 
and 

ݐ)ܶ − ߬) =
ܽ − ܿଶ(ݐ)ܫ − (ݐ) ݒଶߚ

ܾܽ  (3. 3) 

 

 Puttingܶ(ݐ) = 0 we geteither (ݐ)ݒ = 0 or (ݐ)ݒ = ଵ
ఉయ

 

When (ݐ)ݒ = 0, then (ݐ)ܫ = ௦
ௗభ

 
 And 
 For (ݐ)ݒ = ଵ

ఉయ
, then (ݐ)ܫ = ௦

ௗభା
ഁభ
ഁయ

 

 Hence here the equilibrium points are  
 Tumor free drug free equilibrium ቀ ௦

ௗభ
, 0, 0ቁ 
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 Tumor free drug equilibrium ቆ ௦

ௗభା
ഁభ
ഁయ

, 0, ଵ
ఉయ
ቇ 

 
3. 1. 2 Stability Analysis for Tumor free drug free equilibrium ቀ ࢙

૚ࢊ
,૙,૙ቁ 

Linearizing aroundቀ ௦
ௗభ

, 0, 0ቁ give a linear system of equation 

൭
̇ܫ
ܶ̇
ݒ̇
൱ =

⎝

⎜
⎛
−݀ଵ

ݏݎ
݀ଵߪ

−
ܿଵݏ
݀ଵ

−
ݏଵߚ
݀ଵ

0 ܽ൫1 − ݐ)ܾܶ − ߬)൯ −
ܿଶݏ
݀ଵ

0

0 0 −ଷ (1ߙ ⎠(ଷߚ2

⎟
⎞
൮
ܫ −

ݏ
݀ଵ
ܶ
ݒ

൲  (3. 4) 

 
With eigenvalues:  

ଵߣ = −݀ଵ (3. 5) 
ଶߣ = ܽ൫1 − ݐ)ܾܶ − ߬)൯ −

ܿଶݏ
݀ଵ

 (3. 6) 

ଷߣ = ଷ(1ߙ − .ଷ) (3ߚ2 7) 
 
 The model will be stable if  

ଵߣ < 0 (3. 8) 
ଶߣ < 0 (3. 9) 

ଷߣ  < 0 (3. 10) 
 
 Which means 

ܽ൫1 − ݐ)ܾܶ − ߬)൯ −
ܿଶݏ
݀ଵ

< 0 (3. 11) 

ଷߚ  >
1
2 (3. 12)  

 
 All the eigen values depends on the parameters. This means that if ߣଶ < 0and 
ଷߣ < 0, then the system will be stable else the system will be unstable. As ߣଵ is 
always negative so the system will be depending on  ߣଶand ߣଷ. ߣଷis negative when ଵ

ఉయ
 

is the maximum capacity of drug administrated is less than 2.  
 

3. 1. 3 Stability Analysis for Tumor free drug equilibrium ቆ ௦

ௗభା
ഁభ
ഁయ

, 0, ଵ
ఉయ
ቇ 

Linearizing the system around ቆ ௦

ௗభା
ഁభ
ഁయ

, 0, ଵ
ఉయ
ቇwe get 
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൭
̇ܫ
ܶ̇
ݒ̇
൱ =

⎝

⎜
⎜
⎜
⎛
−
ଵߚ
ଷߚ
− ݀ଵ

ݏݎ

ߪ ൬ߚଵߚଷ
+ ݀ଵ൰

−
ܿଵݏ

ଵߚ
ଷߚ

+ ݀ଵ
−

ݏଵߚ
ଵߚ
ଷߚ

+ ݀ଵ

0 ܽ൫1− ݐ)ܾܶ − ߬)൯ −
ܿଶݏ

ଵߚ
ଷߚ

+ ݀ଵ
0

0 0 −ଷ (1ߙ ⎠(ଷߚ2

⎟
⎟
⎟
⎞

⎝

⎜⎜
⎛
ܫ −

ݏ
ଵߚ
ଷߚ

+ ݀ଵ
ܶ

ݒ −
1
ଷߚ ⎠

⎟⎟
⎞

 (3. 13) 

 
 Leads to the eigen values 

ଵߣ = −
ଵߚ
ଷߚ
− ݀ଵ (3. 14) 

ଶߣ = ܽ൫1 − ݐ)ܾܶ − ߬)൯ −
ܿଶݏ

ଵߚ
ଷߚ

+ ݀ଵ
 (3. 15) 

ଷߣ = ଷ(1ߙ − .ଷ) (3ߚ2 16) 
 
 The model will be stable if  

ଵߣ < 0 (3. 17) 
ଶߣ < 0 (3. 18) 
ଷߣ < 0 (3. 19) 

 
 Which means 

ܽ൫1 − ݐ)ܾܶ − ߬)൯ −
ܿଶݏ

ଵߚ
ଷߚ

+ ݀ଵ
< 0 (3. 20) 

ଷߚ  >
1
2 (3. 21)  

 
 All the eigen values depends on the parameters. This means that if ߣଶ < 0and 
ଷߣ < 0, then the system will be stable else the system will be unstable. As ߣଵ is 
always negative so the system will be depending on  ߣଶand ߣଷ. ߣଷis negative when ଵ

ఉయ
 

is the maximum capacity of drug administrated is less than 2.  
 
 
4 ANALYSIS AND CONCLUSION 
Numerical solution of the mathematical model representing Immune-Tumor-Drug 
Model described by (2. 7), (2. 8), (2. 9) have been derived. The model have been 
analyzed under the condition of stability given in (3. 11), (3. 12) for tumor free drug 
free equilibrium point and in (3. 20), (3. 21) for tumor free-drug administered 
equilibrium point. The system parameters are chosen in such a way that the condition 
of stability either satisfied or not satisfied.  
 Fig-1 and Fig-2 justifies the stability condition for Immune-Tumor growth under 
tumor free drug free equilibrium point ቀ ୱ

ୢభ
, 0, 0ቁ. Fig-3 shows stable drug 

administration for both equilibrium points. Fig-4 shows instability of tumor growth 
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when the conditions of stability are violated under ቀ ୱ
ୢభ

, 0, 0ቁconsidering the 

equilibrium pointቆ ௦

ௗభା
ഁభ
ഁయ

, 0, ଵ
ఉయ
ቇ, Fig-5 and Fig-6 justifies the stable tumor and 

immune growth. The violation of stability condition leads to the unstable tumor 

growth under ቆ ௦

ௗభା
ഁభ
ഁయ

, 0, ଵ
ఉయ
ቇ shown in Fig-7. Fig-8 gives drug instability under both 

equilibrium points.  
 

 
 

 

Fig-1: Stability of Immune for ቀ ୱ
ୢభ

, 0, 0ቁ 
 

Fig-2: Stability of Tumor for ቀ ୱ
ୢభ

, 0, 0ቁ 

 
 

 

Fig-3: Stability of drug for ቀ ୱ
ୢభ

, 0, 0ቁand 

ቆ ௦

ௗభା
ഁభ
ഁయ

, 0, ଵ
ఉయ
ቇ 

Fig-4: Unstable tumor growth for 
ቀ ୱ
ୢభ

, 0, 0ቁ 
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Fig-5: Stability of Tumor for 

ቆ ௦

ௗభା
ഁభ
ഁయ

, 0, ଵ
ఉయ
ቇ 

Fig-6: Stability of Immune for 

ቆ ௦

ௗభା
ഁభ
ഁయ

, 0, ଵ
ఉయ
ቇ 

 

 
 

 

Fig-7: Unstable tumor growth for 

ቆ ௦

ௗభା
ഁభ
ഁయ

, 0, ଵ
ఉయ
ቇ 

Fig-8: Drug instability for ቀ ୱ
ୢభ

, 0, 0ቁand 

ቆ ௦

ௗభା
ഁభ
ഁయ

, 0, ଵ
ఉయ
ቇ 
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