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Abstract

Consider the sequence of positive weights a(z,y) : vz, \/¥, \/g, \/%, .
with a Bergman tail. If y = 2 then it was shown in [2] that for
0 < z <y, the weighted shift operator W, .y is positively quadratically
hyponormal. In this paper we show that there exists an interval (k, k2)
about % such that if y € (k1,k2) then for 0 < z <y, Wy, is posi-
tively quadratically hyponormal. In fact, using Mathematica graphs we
show that the largest such interval is [k1, ko) where k; = % ~ 0.630435

and ko = 0.737144.
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1 Introduction

Let H be a separable infinite dimensional complex Hilbert space and B(H)
denote the algebra of bounded linear operators on H. For A, B € B(H), let
[A,B] := AB — BA. We say that an n-tuple T = (T3,...,T,) of operators
on H is hyponormal if the operator matrix ([T}, T;])}';—; is positive on the
direct sum of n copies of H. For k > 1 and T' € B(H), T is k-hyponormal
if (I, T,...,T*) is hyponormal. Again, T is weakly k-hyponormal if p(T) is
hyponormal for every polynomial p of degree < k. It can be shown easily that
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k-hyponormality of T" implies weak k-hyponormality of 7.

For k = 2, weak 2 hyponormality, often referred to as quadratic hyponormality
(for which we write q.h.) was first considered in detail by Curto in [2]. The
definition of positively quadratically hyponormal operators (for which we write
p.q.h.) was introduced by Curto-Fialkow in [3]. Subsequently, it has been
shown that 2 — hyponormality = p.q.h. = q.h. though the reverse is not
always true.

In this paper we consider the weighted shift W, ,) with a positive weight

sequence &(x,y) : /T, /Y, \/é, \/g, ... having a Bergman tail. We determine

an interval (ki, ky) such that for y € (ky, k) and 0 < 2 <y, Wyay) is p.q.h.
We also show that the largest such interval is [ky, k2) where k; = % ~ 0.630435
and ko = 0.737144

2 Preliminaries and notation

Let {e,}°, be the canonical orthonormal basis for (?(Z, ) and let o : {a, }°2,
be a bounded sequence of positive numbers. Let W, be a unilateral weighted
shift defined by W,e,, = ape,iq for n > 0. Then W, is hyponormal if and only
if o, < a1V > 0.

We recall here some terminologies and notations from [3]. Also we note that
an operator T is quadratically hyponormal if T+ s7? is hyponormal for every
s e C.

Let W, be a hyponormal weighted shift. For s € C, we let D(s) := [(W, +
sW2)*, (Wo+sW2)] and let P, be projection onto \/;_,{e;} and D,, := D, (s) =
qo f() 0 . 0 0
To 1 fl L O O
0 ™ q2 - - 0 0
Pn[(Wa+SWa2)*v(Wa+3Wa2)]Pn = oo : : )
0 0 0 - - @Gn1 Tna
0 0 0 Tn—1 qn
where qr = wgp + |s|%v, i = S\Wk, U = OF — QR_y, Uk = 0RQGL, —

2 2 0202 a2 )2 — —
V10 _q, Wi = (g —ag_q)? for k> 0and a_y = a_y:=0.

Clearly, W, is q.h. if and only if D, (s) > 0 for every s € C and every n > 0.
Let d,,(+) := det(D,(s)). Then it follows form [3] that dy = qo , d1 = qoq1 —|ro|?
and d,, 12 = Gniodni1 — |Tns1)?d, for n > 0, and that d,, is actually a polynomial
in t := |s|? of degree n + 1, with Maclaurin expansion d, (t) := 317 ¢(n, i)t'.
This gives that forn > 0and 1 <¢<n+1,
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L. ¢(n,0) = upuy ... up >0

2. ¢(n,n+1)=wvyvy...v, >0

3. ¢(1,1) = ugvg — ugvy — wo > 0

4. ¢(n,i) = upc(n — 1,4) +v,e(n — 1,0 — 1) — wp_1c(n — 2,0 — 1) for n > 2

ot

cc(n, 1) =upe(n — 1,1) + (vptty—1 — Wy_1ug - . . Uy_1) for n > 2.
Also we recall from Deﬁmtlon 4.2 [3] that W, is p.q.h. if ¢(n,i) > 0 for all
n,t >0 with0<7<n+1.

3 Statement of problem

Problem : Consider the weighted shift W, ,) with a positive weight sequence

oa(z,y) © VT, /Y, \/g, \/g, ... having a Bergman tail. In [2] it was shown
that for y = % and 0 < x < y, the weighted shift Wy, ,) is p.q.h. So, does
there exist an interval (k1, ko) about % such that for y € (k1, k) and 0 < z < y,
the weighted shift W, is p.q.h. 7

Remark 3.1. We must have x < y < % because Wy(s,) cannot be p.q.h. if
it 1s not hyponormal in the first place.

Remark 3.2. If (ky, ko) exists then it must be contained in [d1, 5.

Remark 3.2 is in view of Theorem 2.2 [5] which states the following :

Let a(z) : x,/x, \/é, \/g, ... be a weight sequence with Bergman tail and
let QH(Wu@)) = {z € Ry : Wy is b}, Then QH(Wyw)) = [61, 2] where
01 ~ 0.1673 and 9, ~ 0.7439 with errors less than .001.

Now suppose (ki, ka) exists. Then for y € (ki,k2) and 0 < o < y, Wy (gy) is

p.q.h. and hence q.h. In particular W, is q.h. and so y € QH(Wyy,)) =
[517 52]

Remark 3.3. If (ki, ko) exists then it must be contained in (0.625, do).

Remark 3.3 is in view of Theorem 3.7 [6] where it was shown that for y = 2 =
0.625, Wz, is not p.q.h.

In the next section we shall show that (ki, k2) exists and also determine the
biggest such interval. Before that we record a few definitions and results from
[1] which are to be used in solving our problem.

Definition 3.4. [1] Let a: ap, vy, ... be a weight sequence.
(1) A weighted shift W, has property B(k) if upi10n > Wy, (n > k)
(2) A weighted shift W, has property C(k) if vpi1t, > wy, (n > k)
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Corollary 3.5. [1] Let W, be a weighted shift with property C(2). Then
Wy, is p.q.h. if and only if c(n+1,n) >0Vn eN

Lemma 3.6. [1] If W,, has property B(n + 1) for some n > 1, then W,
has property C(n).

Theorem 3.7. [1] If W,, be a weighted shift with property B(k) for some
k> 2, then W, is p.q.h. if and only if c(n+i—1,i) >0 forn=1,2,...,k

4 Determination of k; and ks

In view of Remark 3.3, we shall consider y € (0.625, %] for determining &k, and
we consider y € [2,0.7439] for determining k.

CASE I : Determining ky

Choose y € (0.625, %], 0 < z < y and denote the sequence «o(z, y) as ag, ag, ag, . . . .

Then we have ag = /7, a1 = /y and o, = Z—i; for n > 2. Using the expres-

sions of u,,, v, and w, as given in section2, we see that u, v, —w, = 4—10(§—y) >
0 for n = 3, and for n > 4 we have u,,; = m,vn = m,wn =
m and so U, 1V, = w,. Therefore, we have w, v, —w, > 0 for
n > 3 and so by Definition 3.4, Wy, ,) has property B(3).

Since Wy (s, has property B(3) so by Theorem 3.7, Wy, is p.q.h. if and
only if¢(n+i—1,i) >0forn=1,2andi=1,2,3.

Again, since Wy, ) has property B(3), so by Lemma 3.6, Wy, ) has property
C(2) and hence by Corollary 3.5, Wz, is p.q.h. if and only if ¢(n+1,n) > 0
for all n € N.

Combining the above two results we get that W, is p.q.h. if and only if
c(2,1),¢(3,2) and ¢(4, 3) are > 0. Using the expressions of ¢(n, 7) from Section2
and simplifying we get,

o2.1) =z (d—y)(y—a)

¢(3,2) = g5 [(5y — 4y — 3y®) — (32 — 112y + 138y* — 60y°)]

¢(4,3) = 5555 ¢ [(41y — T9y* + 37y%) — (128 — 420y + 475y> — 184y3)]

Clearly, for y € (0.625, %] and 0 < x <y we get ¢(2,1) >0

Regarding ¢(3,2), if we define f(y) := 3271‘3%;131;;;%’;%3 then it is seen from

the Mathematica graph and also by rigorous calculation that for y € (0.625, 2]
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and 0 < x <y, f(y) >y and so ¢(3,2) > 0.

X
0.75
0.725} c(3,2)=
0.7
0.675}
x=y
0.65
0.625]
0.61 0.62 0.63 0.64 0.65 0.66 0.677
Figure 1
To check whether ¢(4,3) > 0, we define f(y) := 128_45’@?41’72;;37_1’;843!3. Then
(i) for y € (0.625,23), f(y) <y and so for f(y) <z <y we have ¢(4,3) <0

(i) for y € [3, 2], f(y) >y and so for 0 < 2 < y we have ¢(4,3) >0

X
0.7¢
0.68 c(4,3)=0
0.66
x=y
0.64
.630435
0.62
0.67 0.62 0.63 0.64 0.65 0.66 0.677
0.58}
Figure 2
Hence we conclude that W, is p.q.h. for 0 <2z < yif and only if y € [%, %]

Thus, k = % ~ 0.630435

CASE II : Determining ko

Choosing y € [% ,0.7439] and 0 < = < y and proceeding as in Case-I we see
that Wy (., has property B(4). So by Theorem 3.7, Wy, is p.q.h. if and
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onlyife(n+i—1,i) > 0forn=1,2,3 and i = 1,2,3,4. That is, if and only if
c(1,1),¢(2,1),¢(2,2),¢(3,1),¢(3,2),¢(3,3),c(4,2), c(4,3),c(4,4), c(5,3), ¢(5,4), c(6,4)
are all > 0.

Using the expressions of ¢(n, i) from Section2 and simplifying we get,

= Tay (3 —4x)

(4= 5y)ly — )

35 2y [(3 = 5y") — 2(4 = by)]

w2 (3 —4y)(y— )

= 2 [(=5y + 4y® + 3y°®) — x(—32 + 112y — 138y> + 60y°)]

52y [(—12 + 2Ty — 16y?) — x(—16 + 38y — 24y?)]

oo ¢ [(75y — 86y* — 21y%) — (264 — 842y + 966y> — 420y°)]

530 @ [(41y — T9y* + 37y?) — 2(128 — 420y + 475y* — 184y°)]

= oy [(192 — 390y + 193y?) — z(256 — 608y + 454y — 105¢°)]

= sorems © [(111y — 194y® 4 63y°) — 22(132 — 397y + 417y* — 162y°)]
s3000 & [(41y — 73y* + 28y®) — (128 — 420y + 475y — 174y> — 15y*)]
1776y — 2942y2 + 765y%) — 1(4224 — 12704y + 13344y?* —

o
—~
—_
—_
~—
|

AAAAA/QAAAAA

O O UL e W W W

= W W N WD~ N

e N N N N S N
I

508013200 z [(
4914y% — 405y")]

Now ¢(1,1),¢(2,1) and ¢(3, 1) are obviously > 0 for 0 < z <y <

SN

Thus we only need to check ¢(2,2), ¢(3,2), ¢(3, 3), ¢(4, 2), c(4, 3), ¢(4,4), ¢(5,3), c(5,4)
and ¢(6,4). Of these we find that other than ¢(4,2),¢(4,4), ¢(5,4) and ¢(6,4),

all the rest are > 0 for y € [£,0.7439] and 0 < = < y. This is clear from the
following figure which shows that the graphs of ¢(2,2),¢(3,2),¢(3,3),c(4,3)

and ¢(5,3) are all above the 2 = y line in the region y € [3,0.7439).

0.64 0.66 0.68 0.72 0.74 0.767
Figure 3
L 75y—86y% —21y°
To check whether ¢(4,2) > 0, we define f(y) := 6T 81%y 106657 13057 Lhen
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(i) for y € (0.737144,0.7439), f(y) < y and so for f(y) < x < y we have
c(4,2) <0
(i) for y € [3,0.737144), f(y) > y and so for 0 < z <y we have ¢(4,2) > 0

. 737144

74 0.76 0.78 0.8

0.66 0.68 0.72 o{
Figure 4
To check whether ¢(5,4) > 0, we define f(y) := 5= 423;izzgzsz§£3_l5y4. Then

(i) for y € (0.742207,0.7439], f(y) < y and so for f(y) < = < y we have
c(5,4) < 0
(i) for y € [2,0.742207], f(y) > y and so for 0 < z <y we have ¢(5,4) > 0

X
0.78}
X=
0.76} Y
7742207
0.74}
//////rﬁ;; c(5,4)=0
0.66, 0.68 0.72 0.74 0.76 N0.787
0.68}
0.66}
Figure 5
L 1776y—2942y2 + 76513
To check whether ¢(6,4) > 0, we define f(y) := T ToT08y 5341 910572055

Then
(i) for y € (0.742654,0.7439], f(y) < y and so for f(y) < x < y we have
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c(6,4) < 0
(i) for y € [2,0.742654], f(y) > y and so for 0 < 2 < y we have ¢(6,4) > 0

X

1.1 \
0.66 0.68 0.72 0.74 |\0.76 o0.787
0.9]
0.8/ ¢(6,4)=0 xX=y
. -
::::::Z::ZE:; 742654
0.6]
0.5f
Figure 6
L 192—390y+193y>
To check whether ¢(4,4) > 0, we define f(y) := 256608, 451y7 10555 L hen

(i) for y € (0.742847,0.7439], f(y) < y and so for f(y) < = < y we have
c(4,4) <0
(i) for y € [2,0.742847], f(y) > y and so for 0 < z <y we have ¢(4,4) > 0

.825]

0.8} c(4,4)=0
0.775}
0.75} 7742847

0.725F x=Y

0.675¢

Figure 7

Hence we conclude that Wy, is p.q.h. for 0 < z < y if and only if y €
2,0.737144). Thus, ky = 0.737144
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5 Conclusion

For0 <z <y < , let a(x,y) denote the sequence with Bergman tail given
by a(x,y) : \/_ \/;,\/;,.... Then,

(A) There exists an interval (ki,ks) about the point 2 such that for every
y € (k1,k2) and 0 < & < y, the weighted shift operator Wy, ) is p.q.h.

(B) For y < 23 ~ 0.630435 there exists 0 < z < y such that Wy, is not
p.q.h.

(C) For y > 0.737144 there exists 0 < x < y such that Wy, is not p.q.h.

(D) Wa(a,y) is p.q.h. for 0 < o <y if and only if y € [k, ky), where ky = ig R~
0.630435 and ke = 0.737144
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