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Abstract

Consider the sequence of positive weights α(x, y) :
√

x,
√

y,
√

3
4 ,

√
4
5 , . . .

with a Bergman tail. If y = 2
3 then it was shown in [2] that for

0 < x ≤ y, the weighted shift operator Wα(x,y) is positively quadratically
hyponormal. In this paper we show that there exists an interval (k1, k2)
about 2

3 such that if y ∈ (k1, k2) then for 0 < x ≤ y ,Wα(x,y) is posi-
tively quadratically hyponormal. In fact, using Mathematica graphs we
show that the largest such interval is [k1, k2) where k1 = 29

46 ≈ 0.630435
and k2 = 0.737144.
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1 Introduction

Let H be a separable infinite dimensional complex Hilbert space and B(H)
denote the algebra of bounded linear operators on H . For A, B ∈ B(H), let
[A, B] := AB − BA. We say that an n-tuple T = (T1, . . . , Tn) of operators
on H is hyponormal if the operator matrix ([T ∗

j , Ti])
n
i,j=1 is positive on the

direct sum of n copies of H . For k ≥ 1 and T ∈ B(H), T is k-hyponormal
if (I, T, . . . , T k) is hyponormal. Again, T is weakly k-hyponormal if p(T ) is
hyponormal for every polynomial p of degree ≤ k. It can be shown easily that
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k-hyponormality of T implies weak k-hyponormality of T .

For k = 2, weak 2 hyponormality, often referred to as quadratic hyponormality
(for which we write q.h.) was first considered in detail by Curto in [2]. The
definition of positively quadratically hyponormal operators (for which we write
p.q.h.) was introduced by Curto-Fialkow in [3]. Subsequently, it has been
shown that 2 − hyponormality =⇒ p.q.h. =⇒ q.h. though the reverse is not
always true.

In this paper we consider the weighted shift Wα(x,y) with a positive weight

sequence α(x, y) :
√

x,
√

y,
√

3
4
,
√

4
5
, . . . having a Bergman tail. We determine

an interval (k1, k2) such that for y ∈ (k1, k2) and 0 < x ≤ y , Wα(x,y) is p.q.h.
We also show that the largest such interval is [k1, k2) where k1 = 29

46
≈ 0.630435

and k2 = 0.737144

2 Preliminaries and notation

Let {en}∞n=0 be the canonical orthonormal basis for �2(Z+) and let α : {αn}∞n=0

be a bounded sequence of positive numbers. Let Wα be a unilateral weighted
shift defined by Wαen = αnen+1 for n ≥ 0. Then Wα is hyponormal if and only
if αn ≤ αn+1 ∀n ≥ 0.
We recall here some terminologies and notations from [3]. Also we note that
an operator T is quadratically hyponormal if T + sT 2 is hyponormal for every
s ∈ C.
Let Wα be a hyponormal weighted shift. For s ∈ C, we let D(s) := [(Wα +
sW 2

α)∗, (Wα+sW 2
α)] and let Pn be projection onto

∨n
i=0{ei} and Dn := Dn(s) =

Pn[(Wα + sW 2
α)∗, (Wα + sW 2

α)]Pn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0 r̄0 0 · · 0 0
r0 q1 r̄1 · · 0 0
0 r1 q2 · · 0 0
· · · · · · ·
· · · · · · ·
0 0 0 · · qn−1 r̄n−1

0 0 0 · · rn−1 qn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where qk := uk + |s|2vk , rk := s
√

wk , uk := α2
k − α2

k−1 , vk := α2
kα

2
k+1 −

α2
k−1α

2
k−2 , wk := α2

k(α
2
k+1 − α2

k−1)
2 for k ≥ 0 and α−1 = α−2 := 0.

Clearly, Wα is q.h. if and only if Dn(s) ≥ 0 for every s ∈ C and every n ≥ 0.
Let dn(·) := det(Dn(s)). Then it follows form [3] that d0 = q0 , d1 = q0q1−|r0|2
and dn+2 = qn+2dn+1−|rn+1|2dn for n ≥ 0, and that dn is actually a polynomial
in t := |s|2 of degree n + 1, with Maclaurin expansion dn(t) :=

∑n+1
i=0 c(n, i)ti.

This gives that for n ≥ 0 and 1 ≤ i ≤ n + 1,
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1. c(n, 0) = u0u1 . . . un ≥ 0
2. c(n, n + 1) = v0v1 . . . vn ≥ 0
3. c(1, 1) = u1v0 − u0v1 − w0 ≥ 0
4. c(n, i) = unc(n − 1, i) + vnc(n − 1, i − 1) − wn−1c(n − 2, i − 1) for n ≥ 2
5. c(n, 1) = unc(n − 1, 1) + (vnun−1 − wn−1u0 . . . un−1) for n ≥ 2.
Also we recall from Definition 4.2 [3] that Wα is p.q.h. if c(n, i) ≥ 0 for all
n, i ≥ 0 with 0 ≤ i ≤ n + 1.

3 Statement of problem

Problem : Consider the weighted shift Wα(x,y) with a positive weight sequence

α(x, y) :
√

x,
√

y,
√

3
4
,
√

4
5
, . . . having a Bergman tail. In [2] it was shown

that for y = 2
3

and 0 < x ≤ y, the weighted shift Wα(x,y) is p.q.h. So, does
there exist an interval (k1, k2) about 2

3
such that for y ∈ (k1, k2) and 0 < x ≤ y,

the weighted shift Wα(x,y) is p.q.h. ?

Remark 3.1. We must have x ≤ y ≤ 3
4

because Wα(x,y) cannot be p.q.h. if
it is not hyponormal in the first place.

Remark 3.2. If (k1, k2) exists then it must be contained in [δ1, δ2].

Remark 3.2 is in view of Theorem 2.2 [5] which states the following :

Let α(x) :
√

x,
√

x,
√

3
4
,
√

4
5
, . . . be a weight sequence with Bergman tail and

let QH(Wα(x)) = {x ∈ R+ : Wα(x) is q.h.}. Then QH(Wα(x)) = [δ1, δ2] where
δ1 ≈ 0.1673 and δ2 ≈ 0.7439 with errors less than .001.
Now suppose (k1, k2) exists. Then for y ∈ (k1, k2) and 0 < x ≤ y, Wα(x,y) is
p.q.h. and hence q.h. In particular Wα(y) is q.h. and so y ∈ QH(Wα(y)) =
[δ1, δ2].

Remark 3.3. If (k1, k2) exists then it must be contained in (0.625, δ2].

Remark 3.3 is in view of Theorem 3.7 [6] where it was shown that for y = 5
8

=
0.625, Wα(x,y) is not p.q.h.

In the next section we shall show that (k1, k2) exists and also determine the
biggest such interval. Before that we record a few definitions and results from
[1] which are to be used in solving our problem.

Definition 3.4. [1] Let α : α0, α1, . . . be a weight sequence.
(1) A weighted shift Wα has property B(k) if un+1vn ≥ wn, (n ≥ k)
(2) A weighted shift Wα has property C(k) if vn+1un ≥ wn, (n ≥ k)
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Corollary 3.5. [1] Let Wα be a weighted shift with property C(2). Then
Wα is p.q.h. if and only if c(n + 1, n) ≥ 0 ∀n ∈ N

Lemma 3.6. [1] If Wα has property B(n + 1) for some n ≥ 1, then Wα

has property C(n).

Theorem 3.7. [1] If Wα be a weighted shift with property B(k) for some
k ≥ 2, then Wα is p.q.h. if and only if c(n + i − 1, i) ≥ 0 for n = 1, 2, . . . , k

4 Determination of k1 and k2

In view of Remark 3.3, we shall consider y ∈ (0.625, 2
3
] for determining k1, and

we consider y ∈ [2
3
, 0.7439] for determining k2.

CASE I : Determining k1

Choose y ∈ (0.625, 2
3
], 0 < x ≤ y and denote the sequence α(x, y) as α0, α1, α2, . . . .

Then we have α0 =
√

x , α1 =
√

y and αn =
√

n+1
n+2

for n ≥ 2. Using the expres-

sions of un, vn and wn as given in section2, we see that un+1vn−wn = 1
40

(2
3
−y) ≥

0 for n = 3, and for n ≥ 4 we have un+1 = 1
(n+2)(n+3)

, vn = 4
(n+1)(n+3)

, wn =
4

(n+1)(n+2)(n+3)2
and so un+1vn = wn. Therefore, we have un+1vn − wn ≥ 0 for

n ≥ 3 and so by Definition 3.4, Wα(x,y) has property B(3).

Since Wα(x,y) has property B(3) so by Theorem 3.7, Wα(x,y) is p.q.h. if and
only if c(n + i − 1, i) ≥ 0 for n = 1, 2 and i = 1, 2, 3.

Again, since Wα(x,y) has property B(3), so by Lemma 3.6, Wα(x,y) has property
C(2) and hence by Corollary 3.5, Wα(x,y) is p.q.h. if and only if c(n+1, n) ≥ 0
for all n ∈ N.

Combining the above two results we get that Wα(x,y) is p.q.h. if and only if
c(2, 1), c(3, 2) and c(4, 3) are ≥ 0. Using the expressions of c(n, i) from Section2
and simplifying we get,
c(2, 1) = 3

4
x (4

5
− y)(y − x)

c(3, 2) = 1
80

x [(5y − 4y2 − 3y3) − x(32 − 112y + 138y2 − 60y3)]
c(4, 3) = 1

2800
x [(41y − 79y2 + 37y3) − x(128 − 420y + 475y2 − 184y3)]

Clearly, for y ∈ (0.625, 2
3
] and 0 < x ≤ y we get c(2, 1) ≥ 0

Regarding c(3, 2), if we define f(y) := 5y−4y2−3y3

32−112y+138y2+60y3 then it is seen from

the Mathematica graph and also by rigorous calculation that for y ∈ (0.625, 2
3
]
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and 0 < x ≤ y, f(y) ≥ y and so c(3, 2) ≥ 0.

0.61 0.62 0.63 0.64 0.65 0.66 0.67
y

0.625

0.65

0.675

0.7

0.725

0.75

x

c�3,2��0

x�y

Figure 1

To check whether c(4, 3) ≥ 0, we define f(y) := 41y−79y2+37y3

128−420y+475y2−184y3 . Then

(i) for y ∈ (0.625, 29
46

), f(y) < y and so for f(y) < x ≤ y we have c(4, 3) < 0
(ii) for y ∈ [29

46
, 2

3
], f(y) ≥ y and so for 0 < x ≤ y we have c(4, 3) ≥ 0

0.61 0.62 0.63 0.64 0.65 0.66 0.67
y

0.58

0.62

0.64

0.66

0.68

0.7

x

.630435

c�4,3��0

x�y

Figure 2

Hence we conclude that Wα(x,y) is p.q.h. for 0 < x ≤ y if and only if y ∈ [29
46

, 2
3
].

Thus, k1 = 29
46

≈ 0.630435

CASE II : Determining k2

Choosing y ∈ [2
3
, 0.7439] and 0 < x ≤ y and proceeding as in Case-I we see

that Wα(x,y) has property B(4). So by Theorem 3.7, Wα(x,y) is p.q.h. if and
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only if c(n+ i− 1, i) ≥ 0 for n = 1, 2, 3 and i = 1, 2, 3, 4. That is, if and only if
c(1, 1), c(2, 1), c(2, 2), c(3, 1), c(3, 2), c(3, 3), c(4, 2), c(4, 3), c(4, 4), c(5, 3), c(5, 4), c(6, 4)
are all ≥ 0.

Using the expressions of c(n, i) from Section2 and simplifying we get,
c(1, 1) = 1

4
xy (3 − 4x)

c(2, 1) = 3
20

(4 − 5y)(y − x)
c(2, 2) = 2

20
xy [(3 − 5y2) − x(4 − 5y)]

c(3, 1) = 1
60

x (3 − 4y)(y − x)
c(3, 2) = 1

80
x [(−5y + 4y2 + 3y3) − x(−32 + 112y − 138y2 + 60y3)]

c(3, 3) = 1
40

xy [(−12 + 27y − 16y2) − x(−16 + 38y − 24y2)]
c(4, 2) = 1

16800
x [(75y − 86y2 − 21y3) − x(264 − 842y + 966y2 − 420y3)]

c(4, 3) = 1
2800

x [(41y − 79y2 + 37y3) − x(128 − 420y + 475y2 − 184y3)]
c(4, 4) = 1

5600
xy [(192 − 390y + 193y2) − x(256 − 608y + 454y2 − 105y3)]

c(5, 3) = 1
201600

x [(111y − 194y2 + 63y3) − 2x(132 − 397y + 417y2 − 162y3)]
c(5, 4) = 1

33600
x [(41y − 73y2 + 28y3) − x(128 − 420y + 475y2 − 174y3 − 15y4)]

c(6, 4) = 1
50803200

x [(1776y − 2942y2 + 765y3) − x(4224 − 12704y + 13344y2 −
4914y3 − 405y4)]

Now c(1, 1), c(2, 1) and c(3, 1) are obviously ≥ 0 for 0 < x ≤ y ≤ 3
4

Thus we only need to check c(2, 2), c(3, 2), c(3, 3), c(4, 2), c(4, 3), c(4, 4), c(5, 3), c(5, 4)
and c(6, 4). Of these we find that other than c(4, 2), c(4, 4), c(5, 4) and c(6, 4),
all the rest are ≥ 0 for y ∈ [2

3
, 0.7439] and 0 < x ≤ y. This is clear from the

following figure which shows that the graphs of c(2, 2), c(3, 2), c(3, 3), c(4, 3)
and c(5, 3) are all above the x = y line in the region y ∈ [2

3
, 0.7439].

0.64 0.66 0.68 0.72 0.74 0.76
y

0.6

0.7

0.8

0.9
x

.75

c�2,2��0c�3,3��0

c�3,2��0

c�5,3��0

x�y
c�4,3��0

Figure 3

To check whether c(4, 2) ≥ 0, we define f(y) := 75y−86y2−21y3

264−842y+966y2−420y3 . Then
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(i) for y ∈ (0.737144, 0.7439), f(y) < y and so for f(y) < x ≤ y we have
c(4, 2) < 0
(ii) for y ∈ [2

3
, 0.737144), f(y) ≥ y and so for 0 < x ≤ y we have c(4, 2) ≥ 0

0.66 0.68 0.72 0.74 0.76 0.78 0.8
y

0.5

1

1.5

x

.737144

c�4,2��0

x�y

Figure 4

To check whether c(5, 4) ≥ 0, we define f(y) := 41y−73y2+28y3

128−420y+475y2−174y3−15y4 . Then

(i) for y ∈ (0.742207, 0.7439], f(y) < y and so for f(y) < x ≤ y we have
c(5, 4) < 0
(ii) for y ∈ [2

3
, 0.742207], f(y) ≥ y and so for 0 < x ≤ y we have c(5, 4) ≥ 0

0.66 0.68 0.72 0.74 0.76 0.78
y

0.66

0.68

0.72

0.74

0.76

0.78

x

.742207

c�5,4��0

x�y

Figure 5

To check whether c(6, 4) ≥ 0, we define f(y) := 1776y−2942y2+765y3

4224−12704y+13344y2−4914y3−405y4 .
Then
(i) for y ∈ (0.742654, 0.7439], f(y) < y and so for f(y) < x ≤ y we have
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c(6, 4) < 0
(ii) for y ∈ [2

3
, 0.742654], f(y) ≥ y and so for 0 < x ≤ y we have c(6, 4) ≥ 0

0.66 0.68 0.72 0.74 0.76 0.78
y

0.5

0.6

0.7

0.8

0.9

1.1

x

.742654

c�6,4��0 x�y

Figure 6

To check whether c(4, 4) ≥ 0, we define f(y) := 192−390y+193y2

256−608y+454y2−105y3 . Then

(i) for y ∈ (0.742847, 0.7439], f(y) < y and so for f(y) < x ≤ y we have
c(4, 4) < 0
(ii) for y ∈ [2

3
, 0.742847], f(y) ≥ y and so for 0 < x ≤ y we have c(4, 4) ≥ 0

0.66 0.68 0.72 0.74 0.76 0.78
y

0.675

0.725

0.75

0.775

0.8

0.825

x

.742847

c�4,4��0

x�y

Figure 7

Hence we conclude that Wα(x,y) is p.q.h. for 0 < x ≤ y if and only if y ∈
[2
3
, 0.737144). Thus, k2 = 0.737144
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5 Conclusion

For 0 < x ≤ y ≤ 3
4

, let α(x, y) denote the sequence with Bergman tail given

by α(x, y) :
√

x ,
√

y ,
√

3
4
,
√

4
5
, . . . . Then,

(A) There exists an interval (k1, k2) about the point 2
3

such that for every
y ∈ (k1, k2) and 0 < x ≤ y, the weighted shift operator Wα(x,y) is p.q.h.

(B) For y ≤ 29
46

≈ 0.630435 there exists 0 < x ≤ y such that Wα(x,y) is not
p.q.h.

(C) For y > 0.737144 there exists 0 < x ≤ y such that Wα(x,y) is not p.q.h.

(D) Wα(x,y) is p.q.h. for 0 < x ≤ y if and only if y ∈ [k1, k2), where k1 = 29
46

≈
0.630435 and k2 = 0.737144
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