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BACK-STEP EXTENSION OF WEIGHTED SHIFTS

MUNMUN HAZARIKA AND BIMALENDU KALITA

ABSTRACT. The necessary and sufficient conditions (NASC) for subnormal
backward extension of a l-variable weighted shift was first given by Curto [1,
Prop 8]. Later an improved version of this result was given by Curto and Yoon
[4, Prop 1.5]. In the same paper, they have also given the NASC for subnormal
backward extension of a 2-variable weighted shift [4, Prop 2.9]. However, these
results only deal with 1-step extension. In this paper we extend these results
to 2-step extension, and following a similar technique we propose NASC for
n-step backward extension of 1-variable and 2-variable weighted shifts. In the
last section we show how these results can also be derived applying Schur
product technique.

1. INTRODUCTION

Let H be a separable infinite dimensional complex Hilbert space and B(H) denote
the algebra of bounded linear operators on H. For A, B € B(H), let [A,B] :=
AB — BA. We say that an n-tuple T = (T, ...,T;,) of operators on H is (jointly)
hyponormal if the operator matrix ([T}, T;])}';=; is positive on the direct sum of n
copies of H. The n-tuple T is said to be normal if T is commuting and cach T; is
normal, and T is subnormal if T is the restriction of a normal n-tuple to a common
invariant subspace. Clearly, normal = subnormal = hyponormal.

For a = {a,}%2, , a bounded sequence of positive real numbers (called weights),
let W, : £2(Z,) — ¢*(Z.) be the associated unilateral weighted shift defined by
Waen = anent1 (¥ n > 0), where {e,}22, is the canonical orthonormal basis for
£2(Z,). The moments of o are given as

T = k(a) = {

It is casy to see that W, is never normal and that it is hyponormal if and only if
an < apy1 (Vn > 0). Berger’s theorem states that : W, is subnormal if and only
if there exists a probability measure 1 supported in [0, ||[W]|?] (called the Berger
measure of Wy), with |Wy||?> € suppn such that vi(a) := o2...a2_; = [tfdn(t)
(Vk>1).

il HE=D
fate ot DT sl

Similarly, consider double indexed positive bounded écqucnces ax, Bk € £°(Z%) .k =
(ki,k2) € Z2 := Zy x Z, and let £?(Z3) be the Hilbert Space of square summa-
ble complex sequences indexed by Z?,_. We define the 2-variable weighted shift
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== (Tlst) by
T1€(ky k) = X(ki,k2) E(k1+1, k2)
To€(ky k2) = Bk k2)€lkr, k2 +1)
Clearly,
(1.1) hlh=5E~— By +1, k)X (k1 k2) = (ks kot ) Blka, k2) 2 V (k1,ks) € Z5.
For k = (k1,k2) € 7%, the moment of (a, B) of order k is

1 ifk=0
i s ifk; > land ko =0
= e (0,0) (k1 —1,0) =
e = () B2, 0y Bora-n) ifk; =0and ks > 1

2 2 2 .
5%0,(» - B fa=1) (02 " Ok —1,k2) ifky>landks 21

Due to the commutativity condition (1.1), M can be computed using any nonde-
creasing path from (0,0) to (k1, kz). Moreover, T = (T, T2) is subnormal if and
only if there is a regular Borel probability measure [ defined on the 2-dimensional
rectangle R = [0,a1] X [0,a2), (a: = |IT:\I?) such that v = Fltrdul) =

[ [ thtkedu(ts, te) (VK E AT

Using the Berger’s theorem, Curto and Yoon have given necessary and sufficient
conditions for 1-step subnormal backward extension of the 1-variable and 2-variable
weighted shifts [1], [4]. In this paper we give the necessary and sufficient conditions
for 2-step subnormal backward extension of the {-variable and 2-variable weighted
shifts. In §5 it is shown how Schur product techniques can also be applied to es-
tablish the results proved in 84.

2. SOME PRIOR DEFINITIONS AND RESULTS

Definition 2.1. [4] Let u and v be two positive measures on R,. We say that
p<vonX =Ry if u(E) < v(E) for all Borel subset E C Ry equivalently, u < v
if and only if [ fdu < [ fdv for all f € C(X) such that f >0 on Ry.

Definition 2.2. [4] Let p be the positive measures on X xY =Ry x Ry, and
assume € L!(p). The extremal measure Legt (which is a probability measure) on

X x Y is given by diteilsyt) = L= 50(t))t—ﬂ—ﬁ—1:du(s,t).

Definition 2.3. [4] Given a measure ji on X x Y, the marginal measure pX is
given by = /1075‘(1, where mx : X x Y — X is the canonical projection on X.
Thu}s< pX(E) = p(E % Y), for every E C X. If p is a probability measure, then so
ST Tk

Lemma 2.4. [4] Let p be the Berger measure of 9 yariable weighted shift T and
let & be the Berger measure of the shift(oz(o,o),a(lﬁo),_”). Then & = uX. As a con-
sequence fff(s)du(s,t) = ff(s)dux (s) for all f € C(X):

Corollary 2.5. [4] Let p be the Berger measure of a 9_variable weighted shift
T For § > 1, let du;(s,t) = 1_¢idu(s,t). Then the Berger measure of the

Y(0.4)
.Shift(()c(oyj),a(l,j)ym) 15 & = /Lg(A
Lemina 2.6, (4] Let p andw be fao Mmedsures on X x Y, and assume that p < w-
Then ux < wX.
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3. BACK-STEP EXTENSION OF 1-VARIABLE WEIGHTED SHIFTS

In this section we propose the NASC for n-step subnormal backward extension of
a l-variable weighted shift. This will become obvious once we prove the NASC for
2-step backward extension. We begin the section by stating the 1-step subnormal
backward extension of a 1-variable weighted shift.

Theorem 3.1. (1-step backward extension) [4] Let T be a weighted shift whose
restriction Ty := T|pr to M = \/{e1, ea,...} is subnormal, with associated Berger
measure . Then T is subnormal (with associated Berger measure ) if and only
if

(i) $ € L' ()

(i) o < (131l (uary) ™"

In this case, du(t) = %duM(t) +(1- a%”%“umm)déo(t) where §y denotes Dirac
measure at 0. In particular, T is never subnormal when wup ({0}) > 0.

Theorem 3.2. (2-step backward extension) Let T be a weighted shift whose restric-
tion T|pg, to Mo :=\/{ez,es3,...} is subnormal, with associate Berger measure 1.
Then T is subnormal (with associate Berger measure n) if and only if

(i) & € L'(n2)

(%) ogod < (5 llLa )

(ii1) o = (1§l L2(n)) ™

In this case, dn(t) = (1 - ofaillF |1 do(t) + ﬁzﬁdng (t), where 0o denotes the
Dirac measure at 0. In particular, T is never subnormal if no({0}) > 0.

Proof. =) Assume that T is subnormal, so clearly T'|,s, is subnormal. The mo-
ments of 7" and 7’|, are related by the equation

Yo(Tla,) = 030 .. af,, = 71:;,2;?)
so that for all £ > 0,
3 1}
/tkd”’/Q(t) = CX%CY% /tk+2d'l7(t)
that is, dna(t) = ;%%dn(t). Let n(0) = A, (A > 0), so it follows at once that
L g
ada?
(3.1) dn(t) = A doo(t) + —5=da(t)
1
= /dn(t) :/\/déo(t) +a8ar‘{/t—2d772(t)
= 1 =X +ala? o
LY (n2)
that is ofadl i) =1 - A < 1, also % € L(n2). Also, substituting the

value of A in (3.1), we have dn(t) = (1 — adoi|| & L1(m,)) doo(t) + ﬁj%f—%dng(t).
Again, suppose 7, is the measure associated with the shift 7|5z, where My :=
\{e1,ez,...}. Then by Theorem 3.1, subnormality of T|y;, and Tz, will imply
that 1 € L*(n2), o2 < (|3 llz1(ne)) ™" and dni(t) = m1(0) ddo(t) + %—%dng(t), where
7(0) = (1 = ol llz2 (m))-

Now, suppose a2 ey ) = (D) >0
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Which is a contradiction to the initial assumption that 7" is subnormal. Therefore,

o = Wz gr)) =2
<) B8 (i), (i5)) hold and

)
(32) @) = (1 - afef) 5 )d0(t) + ==L diny (1)
L(n2)
For k=g,
1
/dn(t) = (1-a2a? i ‘ ))/d&o(t) +a§a%/—2 dna (t)
L1(ny
1 ik
= /d77(t) = (1-ada? - ) +ada? =
Ellza(m) Bl L1
= /dn(t) — TS T
For & = 1, using (3.2) we have
aga? 2 o1 2|1
/t dn(t) :/ dna(t) = af a?||- —o (Since, a?||= =l
: Li(ny) Li(ny)
SEi)L (T)

For k> 2.

/tk dn(t) = aéa%/tk‘%nz(t) = an?'kaQ(Tsz) = %(T)

Thus T is subnormal with Berger measure 7.
Also if 75(0) > 0 will imply that 7[5, is not subnormal, therefore T is not subnor-
mal. O

Theorem 3.3. (n-step backward extension) Forn > 2, let T be a weighted shift
whose restriction T|m, to M, = Ve, oy Sorhigs subnormal, with associate
Berger measure M. Then T is subnormal (with associate Berger measure 1) if and
only if
(7)) 5 & L)
(#) afof ... a2 _, < tlam s gna) 2
(i1i) a2a?, GO e (th%iup(,,,n))‘l for L<d < n= 1,

e SR 2
In this case, dy(t) = (1-a2a?.. .afl_l[]%[]Ll(,m)déo(t)—f—% dnn(t), where
do denotes the Dirac measure ot 0. In particnlar, T s wever subnormal if 7. ({0}) >
0.

Corollary 3.4, Let T be a subnormal weighted shift and for 7 > 2, let M=
Vigrea. . }. Let n; denote the Berger measure of T|n;. Then ay,as, ... NOUEy
is completely determined by m; that is, @ = (H%”Ll(nj))_l.

Also, if T is subnormal then condition (iii) of Theorem 3.9 tmply that

=, <[,

R t t

> forl<i<n,

|

L(n) L (i42) L (Mit2) Ll ()
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4. BACK-STEP EXTENSION OF 2-VARIABLE WEIGHTED SHIFTS

Lemma 4.1. Let p be a positive measure on Ry x Ry such that u(E x {0}) =0
for all Borel sets E C Ry. For n > 1, let & € L'(u). Then the extremal measure
Weatyr 0n Ry x R, is given by

1 —do(t)

d/J/ ext n(S,t) = e
i 71 & 2t ()

du(s,t).

Proof. For n =1, 1 € L*(u) and we have

1 —8o(t)

- du(s,t) (by Definition 2.2)
¢l e ()

d,LL(ezt) (5’, t) ==

Suppose result is true for n i.e.,

1 — do(?)

TE N R LR
Wear B8 = o

du(s,t).

Let =it € L'(u). Then,

//% dibextyn (8,1) // t”‘glifﬁlﬂ(u) du(s, )
- || ey e

(sinceu(E x {0}) =0, VE C Ry)
TR
Iz 1z uy

it 1 1
= pe L' (1) (egtyn and H;

i
= :
i) eisyn L) H L | PAYA

Now as 1 € L!()(ext)n, S0 by Definition 2.2,

1 — do(t)
d“(ext)"*'l (37t) = m—d(ﬂ)(emt)ﬂ (S7t)
t (¢ (ext)™

1 —do(t)
{%HLI(H«)(mL)”“tlft”l/l(li)
1 —do(?)

SNt il
tﬂ+1” tn1+l “Ll(p.)

ey du(s,t)

Thus the result hold (by induction) for all n =1,2,... O

Theorem 4.2. (1-step backward extension) [4] Let T = (T1,T») be a 2-variable
weighted shift and M be the subspace of £*(Z3) associated to indices k = (ki, k)
with ko > 1. Let Ty = T|p be subnormal with associated Berger measure jipy

and let Wy := shift(ag, a1, --.) is subnormal with associated Berger measure v.
Then T is subnormal if and only if

(i) 3 € L*(um)
(“) ﬂgo = (“%”Ll(LLM))_l

(i) Boll 2122 uary (ns) 50 < v
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Moreover, if BgollElzt(ur) = 1, then (urp)X, = v. In the case when T is subnor
mal, the Berger measure p of T is given by

du(s,t) = 15020“%”L‘(Mm)d(/"M)emt(sa t) + (dv(s) — 630”%”Ll(um)d(/lm)éct(5))d50(t)

Theorem 4.3. (2-step backward extension) Let T be a 2-variable weighted shift
with the weight sequences o and B. Assume that T\, the restriction of T to
Mz = \/{eg,, ky) : k2 = 2} is subnormal with associated Berger measure uy. Let
Wo = sh’ift(a(o,o),a(l,o)w) and Wy := shift(a(o,l),a(lyl)ﬁ_“) be subnormal with
associated measures & and & respectively. Then T is subnormal with associated
Berger measure p if and only if

(1) & € L' (u2)

(i) ﬁ(QO,O)'B(QO,l)”?lf”LI(M) =1

(i) /3(20,0)5(20,1)”t%”Ll(uz)(VQ)fgzt)? <&

('L.'U) 16(2011)“%“L1(,u2) =

(v) (12)% = &

Moreover, if /3(20,0)/3(20,1)”11?”L1(u2) =1, then (ug)ézt)z = &o. In the case when T is
subnormal, the Berger measure p of T is given by,

1
£2

1
2

(MZ)(ezt)Q e (50 o /3?0,0)5?0,1)

B :ﬁ(zovo)ﬁ(%yl) d(/a‘Z)fgzty) X 0p

LY (p2) Lt (u2)

Proof. =) Let T be subnormal. Then T|ys, and T|, are also subnormal with the
corresponding Berger measures 41 and us respectively. The moments are related

as follows: 5
Vikr, k2 +1) (T) = B0y Vkr k2) (Tlazy)

V(ka, ka+2)(T) = /3(20,0)/3(20,1)’7'(k1,1c2)(T|M2)

Therefore, the subnormality of T, T|s, and T, imply that

(4.1) tdu(s,t) = Bg 0ydua(s,t)
(4.2) t2du(s,t) = ﬂ?oyo)ﬁ(zo’l)dug(s,t)
Therefore, 11(E x {0}) =0, ua(E x {0}) =0, VE C R,.
Now,
] mamtn= [[ Gt =g [ aues
52 o t>0 t? - /8(2()’0)5(20,1) t>0 ;
(4.3) S e

5005
1
00501

A

So, % € L'(us2) and 5?0,()),8(20)1)”{15”[11(”_2) < 1, which establishes (i) and (ii).

For arbitrary Borel sets £ C Ry and F C R4, we have
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1

2
BlomBom | 72

(2)(ewt)? (B % F)
L (p2)

1
= BlowyBo |z // d(p2) (et (5,t)
Li(us) J JEXF
Baofon|z|  [f @ a®) e das,t)
= ez — 0o ) :
(0,0)~(0,1) 2 L1(2) e £2 “t%HLl(Mg) 2

1
= B2 i e din (5,8

ie // dl"(sat)
Ex(F~{0})

(4.4) = p(E x (F~{0})) Sp (ExF)
and by Lemmas 2.6 and 2.4, /3(20,0)5(20,1)”t%“Ll(uz)('“ﬂézm <uX =¢&.

If 5(20’0)5(20’1)||{17||L1(“2) =1 then by (4.3) u(t > 0) =1, and so u(E x (F ~{0})) =
W(E x F). Therefore, from ( 4.4) we get (42)(eqt)2 = 1 = (M)fgmt)z =&.

e 1
= = —d'u2(s’t): /———// td,u(S,t)
“t B2 ) t Blo.0yBo.1)

S YRy Bo,0) R

Bo0fon  Poonbhy Bl

which gives 87 |13zt () = 1. proving (iv).

Again,

Since T|ps, is a 1-step subnormal extension of T|yy,, and also ,8(20 1)||%||L1(H2) —il
so by Theorem 4.2, we have &; = (u2)ZX,.

Finally from (4.2) we have t?du(s,t) = 53 ;)88 1)dpa(s,t). So if pu(s,0) = A(s)

then
62 [32
du(s,t) = dA(s) ddo(t) + %dug(s,t)
gl
= du(s,t) = dA(s) ddo(t) + /3(20,0)/3(20,1) = d(p2) (exty2 (5, 1)
L1 (u2)

1
= [[antsty= [axe) [ die)+ Bnn)| 5 > [ [ 40,0
L (p2
|| 1
duX(s) = [ dr ol e
> [0 = [0+ ooz | [

/ A(12)% s (5)
L1(ua)

1
= d€o(s) = dA(s) + 6(20,0)6(20,1)Ht_2HLl(NZ)d(HQ)ézt)"’ (s)

1
= /d&)(é‘) = /d)‘(s)+/3(20,0)ﬂ(20,1) t—2
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Therefore,

1
du(s,t) :<d€o(5) = Blo.oyBio,) 2

£ X )2 S d50
o e >) ©

1
2 2
+Bo0bon|z

d(IuQ)(eact)2 (57 t)

L1 (p2)

<=) Conditions (iv) and (v) imply that T, is subnormal with measure y; such
- that 4y (E x {0}) = 0 for all Borel sets E C R,
Given conditions (i) to (v), let

1
K(s,t) -’2/3(20,0)/3(20,1) 7z (M2) (exty2 (s, 1)
L1 (p2)
1
+ (8006) ~ BBl 2 (1) (5) ) ).
L1(p2)

If /3?0’0),3(20’1)[[%“&1(#2) = 1 then total mass of the second summand is zero, and so
Boi= ({42) (ext)?-

For j =0,

/ / st d(u)(s,1) = B2y 8%,

//Si d(ﬂ?)(ewt)2(sat)
L(pz)

2
i 1
+/3 dfo(s) "/3(20’0)/3(2011) t_z /d(ﬂ2)ézt)2(3)
. L (p2)
:/sidfo(s) (using Lemma 2.4)

= 50,0 (T)

Forgj =11,

// s d(ﬂ)(s,t) = 5(20}0)/3(20’1) ‘t—z o )// s't d(/"?)(ext)z(sa t)
Hu2
S0 o Sl ds(U)F
5 ﬁ(o,o)ﬁ(o,n ‘t 3 (u2) // " “ IILl(HQ)czt (N2)ezt(57t)‘

g, S 0= 000) Ao
= Booy [ 5F d)u(s) (using (1)

= 5(20_0)/3i déi(s) = [35‘0’0)0{?0’1) ol ‘1’(21-1,1)
= 7,1)(T)

= B{0.0)5%0.1)
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For j >,
//5 t7d(p)(s,t) = Blo.0)Blo.) t—Q 4 )//s ' d(U2) (ext)2 (5, 1)
He
1
= B%.0)5% //st (t) 5= dua(s,t)
(0,0)P(0,1) t2 L (pa) 2 ”7”L1(/u)

= /3(20,0)/3(20,1) // st "2 dpa(s, t)
= B0,0)Bt0,1)Y(0,i—2) (Tlazy) = 7,5y (T)

Hence, it follows that T is subnormal with Berger measure p.

g

Theorem 4.4. (n-step subnormal backward extension of a 2-variable weighted shift)

Let T = (T1,T5) be a 2-variable weighted shift with double indezed weight sequences

o = {ak}re z2 and B = {Br}re zz- Forn =1, let M, be the subspace associated

to the indices k = (k1,ke) with ko > n. Assume that Ty, ts subnormal with

associated Berger measure fn. For 0 < i < n —1 let Wy := shift{oo,:),1,4),..}

be subnormal with associated Berger measures &; respectively. Then T is subnormal

if (md only if

(7') # € L (pn)
n—1

(i) H] —o B Oj)l Zl“ Bifin) = L

() TE 88 2 o e e 60

() TT;5 : Bioplle=llrr.y =1 for 1<i<n-—1

(’U) (/J‘”r)(e.rt én i fO’I" 1< b=l

Moreover, if H] ik ﬁ(o; | &Ly = 1, then (un)(m = &. In the case when T
is subnormal, the Berger measure i of T is given by,

n=—1 n—1

p= H Blo.n () (eatyn + ( H ﬁ(on

The proof being similar to that of Theorem 4.3 is omitted.

f‘n

(un)fizt)n> X 6o

L (pn) L (pn)

5. DERIVATION OF ABOVE RESULTS USING SCHUR PRODUCT TECHNIQUES

In this section we show that the above results can also be derived using Schur prod-
uct techniques. To show the results for 2-variable case, we used the techniques of
Curto-Park results as shown in paper [2] for 1-variable case.

Definition 5.1. [2] Let o := {an}%o and B := {8,}52¢. The Schur product of
and 3 is defined by af := {anBn}5%,-

Definition 5.2. [2] Given integers ¢ and £(¢ > 1) and for 0 < 7 < £ — 1, consider
the decomposition H = #(Z1) = @j2o{e;}, define H; := PjZ{eej+:} and for

the weight sequence a. define a(£ : 4) := { Hf;zlo azj+i+m}
=0
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Proposition 5.3. [2] W¢ is unitarily equivalent to @f;ol Waeiy-
Theorem 5.4. [2] Let W, be a weighted shift whose restriction Walm to M =
V{ei,ez,...} is subnormal. Then the following are equivalent

(1) W¢ is k-hyponormal.

(2) Wae0y s k-hyponormal.
Definition 5.5. [6] T' = (T1,...,Ty), where each T} acts on a Hilbert space H, is
said to be unitarily equivalent to S = (S,..., Sy), where each S; acts on a Hilbert
space K, if there exists a unitary operator &/ : H — K such that U S;u = Tj for
L=y <N,
For L = (I,m) and I = (4,5) in Z2, let H; := \/(klyb)ezi{e(i-Hkl,j»{-mkz)}
In the sequel, we choose [,m > land 0 <4< [ — L0 <4< m— 1.

Explanation:

If L=(1,1) theni=j =0 and so H; = H,0) = V(k1,k2)€23_ {ew, b} = £2(23).
IfL=(21)then0<i<1andj=0.AsHyq = V(kl.kz)621{e(2klak2)} and
H,0) = V(kl,kz)e Zi{e(1+2k1,k2)}- So, £2(23) = H.0) D Ha,0)-

Tl $5(72°5) = ED;”:_OI @i;é Hg j).

Definition 5.6. For 6 = (0(x, k,)) € £°°(Z%) define Bipn 02 — 2°(7° ) a8

2
+
-1 oo
P (6) = {Hp:o 6(i+kll+p’j+k2m)}(k1,kz)EZi and Q(r.p) : £2°(Z%) — £2(Z3) as

Qu.n(9) = {Hz:ol 5(i+k1l,j+k2m+p)}

Definition 5.7. Define Si and Sz on £°(Z2) as (S17)(k1, k2) = v(k; + 1, k3) and
(Sz’y)(lﬂl, kg) = ’y(k'l, ko + 1) for 7= (ﬁ/(klykZ)) = €°°(Zi) Note 5755 = S25].

(k1 k2)€22

Proposition 5.8. Pr.0,0)) SiS% = P(L:I) and Q(L:(0,0)) S{S% — Q(L;I)~
Proof. SiS3(8)(k1,k2) = 0(k1 + 4, ka + j) = 8(ky, ko) (say)

Then Prri0,0y) SiS3(0) (k1 ko) = Pr.0,00)0(k1, k2)

1—1.
= [[ 0(ksl + p, komn)

=~ g
e D)

I

5(1 +kl+p, j+ ]ﬂzm)

Il

p=0
Pr.ry(0)(k1, k2)
Similarly, Q(z:(0,0)) 5153 = Q.- D
Given, o = {Ot(kl’;w)} e EOO(Z_%_) and ,B = {ﬁ(klka)} (= EOO(Z?'_), let T = (Tl,Tg)
be 2-variable weighted shift with weight sequences a and 3, defined as

T1 €(ks ka) = Ak ko) E(+1, k)

i

13 Clky,ks) = [3(161,/02)6(101, ko+1)
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Let T(r.ry = ((Tiz:ny)1, (T(z:n))2) be 2-variable weighted shift with weight sequences
Py () and Q(r.y(B), defined as i

(T(L:I))l €(kq,k2) = H O‘(i+kll+p,j+kzm)} C(ky+1, ka)
p=0

m—1
(T(r:1))2 (k1 k2) = { H ﬁ(i+klz,j+kzm+p)} Clk1, ka+1)

p=0

Now, T= =8 T and T%| g = (Thla, T30 1)

Proposition 5.9. T is unitarily equivalent to @’-, il B s Ty

Proof. Define U : EQ(Z?,_) — Hy as U ek, ky) = €(itkil, j4kom)- LhED for e(x;, ky) €
Hy, U* ey ks) = €(razt ka=gy and so UU™ = [ = UU. Now, e (1
and TE®p = (P g 1%, )

As U Tt |, U €s 1) = {Hp_ O ieytbpy o Ry PE(Ra 1t kg) = (DD ML C Gy )
and similarly, U* T4 g, U €(ky, k) = (T(L:1))2 €(k kz)» SO by Definition 5.5, (T s T =
((Tiz:n)1, (T(:1))2)- That is, T m, = Ty

Now as
m—11-1
HI,
7=0 =0
SO
m—11-1 m—11-1
L
=D DTn = T
j=0 i=0 j=0 i=0

O

Corollary 5.10. (a) Tt is k-hyponormal if and only if T(y.1y is k-hyponormal for
el a=T=1 D<j=m-1

(b) T* is subnormal if and only if T(r.1y is subnormal for all0 < i <1-1,0<j <
m— 1.
(¢) T is subnormal = TL = (Tt TI) is subnormal
= TL|y, is subnormal for 0<i<1-1,0<j<m-1
= T(r.1) is subnormal for 0 <i<I-1,0<j<m-1L

We are now seek to identify the Berger measure pi(p.;y corresponding to Tir.ry.

i/l 43/m - i/l 45 /m
Theorem 5.11. dur.ny(s,t) = fm.ji(T) du(st/t, t1/my = ﬁ(‘T_)d/‘(L ©,00(s, t)
for0<i<l—1,0<3j<m—1 Ifu(s,t) =v(s,t)+p(s)d0(t), where v(E x {0}) =
0V E C Ry, then

i/l

((L) du(L:(i,O))(sat) = d:u’(sl/lv tl/m)

76,0 (T)
Si/l tj/m
YD)

Proof. Let (g, k) (T) and Y(k, &) (Z(2:1)) denote the moment sequences related to
T and T{r.r) respectively.

(b) For 1<j<m~—Lldurr(st)= du(s 1, g™
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Y(it+kal, j+k2m)(T)
/(L 7) T)

k i+kil ;j+kom
= 1t2duL1 .S‘t // il itk du(st)
// ( 7(1]) T)

= /L k1 45/m ks 1/l 41/m
=— S g Sl R (g 1 TR
'Y(i,j)(T) /./

YD)

g/ gilm -
Also, dur.0,0) (s, t) = du(s'/t, t1/™). So clearly Aoy (s, t) = -,(i,;J(T) dufs™? 17—

Then Yikr, ko) (L) =

(51) = dﬂ(L:I)(«S’t) dl"’(sl/lv tl/m)

Si/l $i/m

’y_(i:j)_('T_)‘d/"(Lf(OYO))(s’ t)for0<i<i-1,0<j<m~1.

If u(s,t) = v(s,t) + p(s)do(t), then from (5.1), we get
Sill
ditiananlat) = ———dp(stH 1/
H(L:i.0) ( T u( )

For 1l < j <m'—1,

i : ?
// Sk:l tkzdu(L:I)(s,t) = T// $1+kllt‘7+k2md‘u(8,t)
1d

// stklgithema, (s 1) (since j 4+ kom > 0, Vkg)
'Y(w)
gt/ ¢i/m

SRy ok dl/(sl/l, tl/m
’Y(i,j)(T) )

= d/j'(L:I)(s7t)

O

Theorem 5.12. Let T = (T1,T5) be 2-variable weighted shift with weight sequences
a and 3, and M = \/k221 (ks ka)- If Tag = T|pr is subnormal, then for L = (I,m),
with | > 1,m > 1, the following are equivalent:

(a) T is k-hyponormal.

(b) Tr:(i,0)) i k-hyponormal for 0 < i <1—1

Proof. (a) = (b) is obvious from Corollary 5.10.
(b) = (a) : Here

m—11-1
i Tir.1)-
j=0 i=0
Given that T(1.¢ 0y is k-hyponormal for 0 < ¢ < { — 1. To show Tz, is k-

hyponormal for 0 <¢<l—-land1<j<m-1.

Define &k, k3) = (ks ka+1) 20 Biky k) = Bl k1)
(Tam) (. is a 2-variable weighted shift with weight sequences

- -1

Pr.n(@ H G(itkap, +kem)} = { ] [ @tkattn, jrhamsn} = P+ (@)
p=0 p=0
and

Qu:n(B) = Qr.s,5+1)) (B)-
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Thus (TM)(L:(i,j)) = T(L:(3,5+1)) for0<i<l—-land0<j<m-1
That is, (TM)(L:(i,j—-l)) = T(r:3i,5)) for0<i<l—-land1<j<m.

Now

T is subnormal = Ty is subnormal
= (T )(r:1) is subnormal and hence k-hyponormal
for0<i<l—1,0<j<m— 1 (by Corollary 5.10)
= (Twm)(L:(i,j—1)) 18 k-hyponormal for 0 <i <l —-1,1<j<m
= (T)(z.1) s k -hyponormal for 0 <i<l—-1,1<j<m~1

O

Theorem 5.13. Let T = (T1,1%) be 2-variable weighted shift with weight sequences
a and B. Let My = /4,5 1, €(k1, k2) 004 Taa,, 2= T'|n,, be subnormal. For L = (I, m)
withl >1,m>1,I=(i,j) with0<i<{-1,0<j<m—1, and k > 1, then the
following are equivalent

(a) TT is k-hyponormal.

(0) Tz, 00y T(r:(i,1))» -+ » T(L:(i,n—1)) are k-hyponormal for all0 <i<1-1.

Theorem 5.14. Let T = (T1,T2) be 2-variable weighted shift with weight sequences
a and 3. Let My = \/,C2Z 1 C(ky, ko) 0nd Ty := T, be subnormal with the Berger
measure p1(s,t) = vi(s,t) + p(s) do(t) and Wy := shift(co,0), ¢, 0),...) be subnor-
mal with associated measure &. Then T™M?) is subnormal if and only if

1 =]
e ()
L' (v1)

t
(l/l)g(zt <&
Li(v1)

:
t

and /3(20’ 0)

If p(s) = 0, then T2 4s subnormal if and only if T is subnormal.

Proof. By the Theorem 5.12, if Ty, is subnormal, then 7(}2) is subnormal if and
only if T{(1,2):(0,0)) 18 subnormal. So, it suffices to check for T{(1 2):(0,0))- Again
T((1,2):(0,0)) is the 1-step back extension of (Tas, )((1,2):(0,1))-

Since Ty, is subnormal with measure 1, so by Corollary 5.10 (c) (Tar, ) ((1,2):(0,1)) 18
also subnormal with measure (£1)((1,2):(0,1))- Therefore by Theorem 4.2, T{(1,2):(0,0))
is subnormal if and only if

1 -1
(5:2) [3(20,0)/3(20,1) s (H; >
Ll((“l)((l,z);(o,n))
X
1

(5.3) 5(20’0)/3(20,1) 7 ((.U'l)((l,z):(o.m) <&

£ ((w1) (200 ezt
Now,
5.4 d L= ——t1/2 d /2
2 (1) (,21:000) D) = S0y Ty 218
and

NEAD — It a)
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(1 = 6o(2))

dm) i £ d(p1) (s:1)
((1,2):(0,1))8“ tlpa ((‘“)((1,2):(0,1))) ((1,2):(0,1))
) e
T 82 [ din (s, 0172) dva(s,t'/?) (using (5.4))
(1 —do(t))
= ——— dvi(s,t
L e oY
(5.5) - d(gl)wfslt)
: ~'d E) ]
Now, o u '8(0’ 0)13(0’1) t (#1) ((1,2):(0.1) il
1
= ﬁ?o’o)/m dVl(S,tI/Q) <1
1
= Bfo,0) / T dn(st) <1
i -1
> o < ([7],..,,)
L1(v1)
and
2 2> 1 X i}
(5:3) = /3(0,0)/3(0, -l d((ul)m.z):(o,z)) (S,t)) (/“Ll)m,z):(u,l))(s:t) < &(s)
ezxt

i X
= ,8(20)0) / t_l/a dl/l(S,tl/2) (Ul(s’t))ez:t < 50(8)

= B0 [ 150 (2(50)%, < (o)
il

: (it =%

L1 (v1)

= B, 0)

If p(s) = 0, then p(s,t) = vi(s,t). Therefore by Theorem 4.2, T(1?) is subnormal
if and only if 7" is subnormal.
&

Theorem 5.15. Let T' be a 2-variable weighted shift with the weight sequences
a and . Assume that Tpr, := T|um, the restriction of T to My := \/{e(,, ky) :
ky > 2} is subnormal with associated measure . Let Wy := shift(c o0, 1,0),...)

o

respectively. Then T is subnormal with associated measure p if and only if
(i) + € L' (u2) and 3 € L' (u2)
(1) 5(20,0)5(20,1)||21'7||L1(u2) =
(”Z) .8(20,0)/3(20,1)Hf,i?||L1(w_>)(/“2)(}§“)2 < &o
(iv) /3(20,1)||%HL1(112) =
(v) (p2)%r = &

Proof. Assume that T be subnormal. Since T, is a subnormal weighted shift

=
possessing a subnormal extension T, so g, ;) = (“%HU(M )> and (p )% =
% 2
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&, Moreover, if p; is a Berger measure of Thy,, then p; = (4455 - Since T is
subnormal so by Corollary 5.10 (¢), T{(1,2):(0,0)) is also subnormal. Again T{(1,2):(0,0))
is the 1-step extension of (T, )((1,2):(0,1))- Therefore by Theorem 4.2, T((1,2):(0,0))
is subnormal if and only if

1
(5,6) ; = Ll((/‘l‘l)((],Z)l(le)))
.
»(5.7) /3(20,0)ﬁ(20,1) 7 \ =1
Sz () )
((1,2):(0,1))
X
il
(5.8) Bo, 050, 1) ;H (0‘1)((1,2):(0,1))) <
Ll((“l)(u,z):(o,l))) iy
Now,
(5.9) d(p) (st)= —‘Lﬂ— dpa (s, /%) = dpa(s, t1/%).
(.2):00) > Yo,1) (T ) ’ )

So, (5.6) implies that & € L*(u2(s,t)) and so also € L*(ua(s,t)). Also, pq(E x
{0}) =0, p2(Ex {0}) =0VE C Ry.

1—dp(t
and d(p1) (s,t) = oy ( o(t)) () (s,t)
((1'2):(0'1))%15 thL ((”1)((1,2):(0,1))(s’t)) ((1'2):(0'1)
1—60(t
= 0 5,37 (using (5.9)
=l ! (M(S’tuz))
1 —do(t
= ph—O(L“ dua(s, )
2l (#2(Svt)>
(5.10) = d(u2) ,,,2(5:1)
Again from (5.7), we get ﬁ(20 0)5?0 1 1 “1
5 : tlla (#2(s’t1/2))

1
= Bo.ofhon |z =1
Lt (112(s,t))
and from (5.8), we get
B 1 X -
/3(0, 0)13(0,1) = (Nz(svt))(em)z < €o(s) (using(5.9) and (5.10))
t Lt (uz (s,t1/2)>
i
= /3(20,0)/3(20,1) 2 (/1'2(371;))5;“2 < &o(s)

L (ug(s,t)) :

(«<=) Suppose all the conditions are hold. To show 7 is subnormal. From condi-
tions (i), (iv) and since Tay, is subnormal so by Theorem 4.2, T, is subnormal with
the Berger measure 4, such that pq(E x {0}) =0 for all E C Ry and p1 = (1, )ext-
So by Theorem 5.14 to check the subnormality of T, it suffices to check the subnor-
mality of 732 and by Theorem 5.12 this reduces to verifying the subnormality of
T((1,2):(0,0))- Again T{(1,2):(0,0)) 1 the 1-step extension of (T, )((1,2):(0,1)) (Which is
subnormal).
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Now, since (Tar, )((1,2):(0,1))» Tasy and Ty, are subnormal with measures B o e
p1 and pp respectively. So, we can establish as above that d(uq) ((1 2:0.0)) (8,8) =

dpa (8, t1/2) and d(ul)((lﬂ):(o,l))ezt (S, t) = d(NZ)(e“)z (5, t).

So, condition (i) implies that } € Ll((l’l’l)((l,’z):(o,l)))' From condition (ii) we will get

1
2
Blo.0B0.1) || =
Lt ((ul)m.z):(o‘l))(S‘tz))
1
= Bo,050,1 '; s1
L ((”1)((1,2):(&1))(5*”)
and condition (iii) will give, =
1
/3(20,0)[3(20,1)“1&_2 ((ﬂl)((1,2>:(u.1)>(5~t)> < &o(s)
L1 ((#-1)((1,2):(0,1))(&tz)) ext
1 X
2 :
= 5(0»0)5(20,1) o <(M1)((1.2>;(o,1))($vt)> < So(s)
Lt ((ul)((l,z);(OJ))(S»t)) ext
Thus by Theorem 4.2, T((1.2).(0.0)) is subnormal and hence T is subnormal. 0O
((1,2):(0,0))

REFERENCES

[1] R. Curto, Quadratically hyponormal weighted shifts. Integral Equations Operator Theory
13(1990), 49-66.

[2] R. Curto and S. S. Park, k-hyponormality of poweres of weighted shifts via Schur products.
Proc. Amer. Math. Soc. 181(2003), no.9, 2761-2769.

[3] R. Curto , S. H. Lee and J. Yoon , k-hyponormality of multivriable wetghted shifts. J. Func-
tional Analysis. 229(2005), 462-480.

[4] R. Curto and J. Yoon , Jointly hyponormal pairs of commuting subnormal operators need
not be jointly subnormal. Trans. Amer. Math. Soc. 358(2006), 5139-5159.

[5] R. Curto, S. H. Lee and J. Yoon, Subnormality for arbitrary powers of 2-variable weighted
shifts whose restriction to a large invariant subspace are tensor products, J. Funct. Anal.
262(2012), 569-583.

[6] N. P. Jewell and A. R. Lubin , Commuting weighted shifts and analytic function theory in
several variables. J. Operator Theory 1(1979), 207-223.

[7] J. Yoon, Schur product techniques for commuting multivariable weighted shifts. J. Math.
Anal. Appl. 333 (2007), 626-641.

DEPARTMENT OF MATHEMATICAL SCIENCES, TEzPUR UNIVERSITY. NAPAAM-784028, INDIA *
E-mail address: munmun@tezu.ernet.in, bimal_ rs08@tezu.ernet.in



