

Quadratic Hyponormality and Positive Quadratic Hyponormality are not Preserved under Weighted Completion and Restriction

M. Hazarika and B. Kalita

Department of Mathematical Sciences, Tezpur University, Tezpur

ABSTRACT

Let $\alpha = \{\alpha_n\}_{n=0}^{\infty}$ and $\beta = \{\beta_n\}_{n=0}^{\infty}$ be weighted sequences with positive weights, and W_{α} and W_{eta} be the weighted shifts on 12 (Z_+) with weight sequences lpha and eta respectively. If $oldsymbol{eta}$ is a subsequence of, we call a weighted extension of, or equivalently, is a weighted restriction of . In this paper we show that the properties of quadratic hyponormality and positive quadratic Typonormality are not preserved under weighted extension and weighted restriction.

Keywords: Quadratic hyponormality, Positive quadratic hyponormality, Weighted shift. AMS Subject Classification: 47B37, 47B20

NTRODUCTION

Let H be a separable infinite dimensional complex Hilbert space and B(H) denote the algebra of bounded linear operators on H. For A, $B \in B(H)$, let [A,B] := AB-BA. We say that an n-tuple $T=(T_1,...,T_n)$ of operators on H is hyponormal if the operator matrix $(T_i, T_i)_{i,j=0}^n$ is positive on the direct sum of n-copies of H. For $k \ge 1$ and $T \in B(H)$, T is khyponormal if $(1,T,...,T^k)$ is hyponormal. Again, T is weakly k- hyponormal if p(T) is hyponormal for every polynomial p of degree \leq k. It can be shown easily that **k**-hyponormality of *T* implies weak k-hyponormality of *T*.

For k = 2, weak 2-hyponormality, often referred to as quadratic hyponormality (for which we write q.h.) was first considered in detail by Curto in [1]. The definition of positive quadratically hyponormal operators (for which we write p.q.h.) was introduced by Curto-Fialkow in [2]. Subsequently, it has been shown that 2-hyponormality \Rightarrow p.q.h. \Rightarrow q.h. though the reverse is not always true.

In this paper we consider a weighted shift W_{α} with a positive weight sequence $\alpha = \{\alpha_n\}_{n=0}^{\infty}$. We prove the following results:

- 1. If W_{α} is q.h. (or p.q.h.) then it is not necessary that W_{β} is also q.h. (or p.q.h.), whenever β is a subsequence of α .
- 2. If W_{α} is not q.h. (or p.q.h.) then it is not necessary that the same is true for W_{β} , whenever β is a subsequence of α .

PRELIMINARIES AND NOTATIONS

Let $\{e_n\}_{n=0}^{\infty}$ be the canonical orthonormal basis for $\ell^2(Z_+)$ and let $\alpha = \{\alpha_n\}_{n=0}^{\infty}$ be a bounded sequence of positive numbers. Let W_{α} be a unilateral weighted shift defined by $W_{\alpha} e_n = \alpha$ e_{n+1} for $n \ge 0$. Then W_{α} is hyponormal if and only if $\alpha_n \le \alpha_{n+1} \ \forall \ n \ge 0$.

We recall here some terminologies and notations from [2]. Also we note that an operator T is quadratically hyponormal if $T + sT^2$ is hyponormal for every $s \in X$,. Let W_{α} be a hyponormal weighted shift. For $s \in X$, we let D(s): = [(W $_{\alpha}$ +s W $_{\alpha}$)*,(W $_{\alpha}$ +s W $_{\alpha}$)] and let P $_{n}$ be the projection onto $V_{i=0}^{n} \{e_i\}$. We define

$$\begin{split} \mathsf{D}_n := \mathsf{D}_n \, (\mathsf{s}) = \mathsf{P}_n \, \left[(\mathsf{W}_\alpha + \mathsf{s} \, \mathsf{W}_\alpha^{\ 2})^*, (\mathsf{W}_\alpha + \mathsf{s} \, \mathsf{W}_\alpha^{\ 2}) \right] \, \mathsf{P}_n \\ &= \begin{pmatrix} q_0 & \overline{r}_0 & 0 & \dots & 0 & 0 \\ r_0 & q_1 & \overline{r}_1 & \dots & 0 & 0 \\ 0 & r_1 & q_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & q_{n-1} & \overline{r}_{n-1} \\ 0 & 0 & 0 & \dots & r_{n-1} & q_n \end{pmatrix} \end{split}$$

where $q_k := u_k + |s|^2 v_k$, $r_k := s \sqrt{w_k}$, $u_k := \alpha_k^2 - \alpha_{k-1}^2$, $v_k := \alpha_k^2 \alpha_{k+1}^2 - \alpha_{k-1}^2 \alpha_{k-2}^2$, $w_k := \alpha_k^2 \alpha_{k-1}^2 - \alpha_{k-1}^2 \alpha_{k-2}^2$ $=\alpha_k^2(\alpha_{k+1}^2-\alpha_{k-1}^2)^2$ for $k \ge 0$ and $\alpha_{-1}=\alpha_{-2}:=0$. Clearly, W_{α} is q.h. if and only if $D_n(s) \ge 0$ for every $s \in X$, and every $n \ge 0$. Let $d_n(.)$:

 $det(D_n(s))$. Then it follows from [2] that $d_0 = q_0$, $d_1 = q_0 q_1 - |r_0|^2$ and $d_{n+2} = q_{n+2} d_{n+1}$ $|r_{n+1}|^2 d_n$ for $n \ge 0$, and that d_n is actually a polynomial in $t := |s|^2$ of degree (n+1), with

Maclaurin expansion $d_n(t) := \sum_{i=0}^{n+1} c(n,i)t^i$. This gives that for $n \ge 0$ and $1 \le i \le n+1$,

- 1. $c(n, 0) = u_0 u_1 ... u_n \ge 0$.
- 2. $c(n, n+1) = v_0, v_1, ..., v_n \ge 0$.
- 3. $c(1, 1) = u_1 v_0 u_0 v_1 w_0 \ge 0$.

4.
$$c(n, i) = u_n c(n-1, i) + v_n c(n-1, i-1) - w_{n-1} c(n-2, i-1)$$
 for $n \ge 2$.

5.
$$c(n, 1) = u_n c(n-1, 1) + (v_n u_{n-1} - w_{n-1} u_0 u_1 ... u_{n-1})$$
 for $n \ge 2$.

Also we recall from Definition 4.2 [2] that W_{α} is p.q.h. if $c(n,i) \ge 0$ for all $n,i \ge 0$ with $0 \le i \le n+1$.

Again, if P_+ denotes the non-negative real numbers, then for $x_0x_1...x_n$ and s in P_+ we denote

$$\begin{aligned} \mathbf{b}_{\mathbf{x}} \mathbf{F}_{\mathbf{x}} &:= F_{\mathbf{x}}(x_0, x_1, \dots, x_n, s) \\ &= \sum_{i=0}^n q_i x_i^2 - 2 \sum_{i=0}^{n-1} r_i x_i x_{i+1} \\ &= \sum_{i=0}^n u_i x_i^2 - 2 \sum_{i=0}^{n-1} \sqrt{w_i} x_i x_{i+1} + s^2 \sum_{i=0}^n v_i x_i^2 \end{aligned}$$

And recall, for further use, the following result:

Theorem 2.1. [7]: Let W_{α} be a weighted shift with a weight sequence α . Then the following are equivalent:

- (i) W_{α} is quadratically hyponormal;
- (ii) $F_{\kappa}(x_0, x_1, ..., x_{\kappa}, s) \ge 0$ for any $x_0, x_1, ..., x_{\kappa}, s \in P_+$ $(n \ge 2)$;
- (iii) There exists a positive integer N such that $F_n(x_0,x_1,...,x_n,s) \ge 0$ for any $x_0,x_1,...,x_n,s \in P_+$ $(n \ge N)$.

EXAMPLES OF QUADRATICALLY HYPONORMAL WEIGHTED SHIFTS

In this section we show that the weighted shift on $\ell^2(Z_+)$ with weight sequence α : $\sqrt{\frac{1}{2}}$, $\sqrt{\frac{43}{80}}$, $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{3}{4}}$,... having a Bergman tail, is quadratically hyponormal. This example is to be used in the next section to prove the statements 1 and 2 claimed in section 1.

Eamxple3.1. Let α be the positive weight sequence given by α : $\sqrt{\frac{1}{2}}$, $\sqrt{\frac{1}{2}}$, $\sqrt{\frac{43}{80}}$, $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{3}{4}}$,... Then the weighted shift operator W_{α} with weight sequence α is quadratically hyponormal.

Proof. Let $\{\alpha_n\}_{n=0}^{\infty}$ denote the sequence α . Then $\alpha_{n+1} = \sqrt{\frac{n}{n+1}}$, $\forall n \geq 2$ and so, in terms of the notations introduced in section 2, we have $w_n = u_{n+1}v_n$, $\forall n \geq 5$. In view of Theorem 2.1, it is sufficient to show that $F_n \geq 0$, $\forall n \geq 5$.

For $x_0, ..., x_5$, s reals, we define

$$G_5(x_0,...,x_5,s) := F_5 - v_5 t x_5^2 \text{ where } s^2 = t.$$

$$= \sum_{i=0}^4 (u_i + t v_i) x_i^2 - 2 \sum_{i=0}^4 \sqrt{w_i t} x_i x_{i+1} + u_5 x_5^2.$$

Then
$$F_6 = G_5 + (v_5 t - \frac{w_5 t}{u_6 + t v_6}) x_5^2 + (\frac{\sqrt{w_5 t}}{\sqrt{u_6 + t v_6}} x_5 - \sqrt{u_6 + t v_6} x_6)^2$$
.

Hence, $F_6(x_0,...,x_6,s) \ge 0$ for any $x_0,...,x_6,s \in P_+$

$$\Leftrightarrow G_5(x_0,...,x_5,s) + (v_5t - \frac{w_5t}{u_6 + tv_6})x_5^2 \ge 0 \text{ for any } x_0,...,x_5,s \in P_+$$

$$\Leftrightarrow G_5(x_0,...,x_5,s) + \frac{z_6 t}{1 + z_6 t} v_5 t x_5^2 \ge 0 \text{ for any } x_0,...,x_5,s \in P_+ .$$

(using
$$w_n = u_{n+1}v_n$$
, $\forall n \ge 5$ and $z_n = \frac{v_n}{u_n}$).

Similarly,

$$F_7(x_0,...,x_7,s) \ge 0$$
 for any $x_0,...,x_7,s \in P_+$

$$\Leftrightarrow G_5(x_0,...,x_5,s) + \frac{z_7 z_6 t^2}{1 + z_7 t + z_7 z_6 t^2} v_5 t x_5^2 \ge 0 \text{ for any } x_0,...,x_5,s \in P_+ .$$

So, by mathematical induction, for $n \ge 6$, we have

$$F_{n} \ge 0 \Leftrightarrow G_{5} + \frac{(z_{n}z_{n-1}...z_{6}t^{n-5})v_{5}tx_{5}^{2}}{1 + z_{n}t + z_{n}z_{n-1}t^{2} + ... + z_{n}z_{n-1}...z_{6}t^{n-5}} \ge 0$$

$$\Leftrightarrow G_{5} + \frac{1}{1 + \frac{1}{z_{6}t} + \frac{1}{z_{6}z_{7}t^{2}} + ... + \frac{1}{z_{6}z_{7}...z_{n}t^{n-5}}}v_{5}tx_{5}^{2} \ge 0$$

$$(1)$$

Claim1: $G_5(x_0,...,x_5,s) \ge 0$ for $0 \le s \le \sqrt{0.299}$

The corresponding symmetric matrix to the quadratic form G_5 is

$$A(t) = \begin{pmatrix} u_0 + tv_0 & -\sqrt{w_0 t} & 0 & 0 & 0 & 0 \\ -\sqrt{w_0 t} & u_1 + tv_1 & -\sqrt{w_1 t} & 0 & 0 & 0 \\ 0 & -\sqrt{w_1 t} & u_2 + tv_2 & -\sqrt{w_2 t} & 0 & 0 \\ 0 & 0 & -\sqrt{w_2 t} & u_3 + tv_3 & -\sqrt{w_3 t} & 0 \\ 0 & 0 & 0 & -\sqrt{w_3 t} & u_4 + tv_4 & -\sqrt{w_4 t} \\ 0 & 0 & 0 & 0 & -\sqrt{w_4 t} & u_5 \end{pmatrix}$$

We discuss the positivity of A(t) by Nested Determinant Test. By direct computation, we

$$\begin{split} d_0 &= \frac{1}{2} + \frac{1}{4}t, d_1 = \frac{3t}{320} + \frac{43t^2}{640}, d_2 = \frac{43t^2}{12800} + \frac{559t^3}{76800}, d_3 = \frac{301t^2}{1024000} + \frac{731t^3}{1024000} + \frac{20683t^4}{12288000} \\ d_4 &= \frac{301t^2}{12288000} + \frac{301t^3}{10240000} + \frac{34529t^4}{368640000} + \frac{599807t^5}{1474560000} \\ d_5 &= \frac{301t^2}{245760000} - \frac{301t^3}{122880000} - \frac{35647t^4}{7372800000} - \frac{20683t^5}{9830400000} \end{split}$$

If $0 < t \le 0.299$ then $d_0, ..., d_4 > 0$ and $d_5 > 0$, which implies that $A(t) \ge 0$ for $0 < t \le 0.299$ and $G_5(x_0, ..., x_5, s) \ge 0$ for $0 < s \le \sqrt{0.299}$ and claim1 is established.

Hence by (1), $F_n(x_0,...,x_n,s) \ge 0$ for any $x_0,...,x_n,s \in P_+$ and $0 < s \le \sqrt{0.299}$.

As
$$z_n = \frac{v_n}{u_n} = \frac{4(n+1)}{n+2}$$
, $(n \ge 5)$, so $\{z_n\}$ is an increasing sequence and hence

$$1 + \frac{1}{z_{6}t} + \frac{1}{z_{6}z_{7}t^{2}} + \dots + \frac{1}{z_{6}z_{7}\dots z_{n}t^{n-5}} \le 1 + \frac{1}{z_{6}t} + \frac{1}{(z_{6}t)^{2}} + \dots + \frac{1}{(z_{6}t)^{n-5}} \le \frac{1}{1 - \frac{1}{z_{6}t}}$$

Hence if t > 0.299, then

$$G_5 + \frac{1}{1 + \frac{1}{z_6 t} + \frac{1}{z_6 z_7 t^2} + \dots + \frac{1}{z_6 z_7 \dots z_n t^{n-5}}} v_5 t x_5^2 \ge G_5 + \left(\frac{24t - 7}{144}\right) x_5^2 \ (\because z_6 = \frac{24}{7} \text{ and } v_5 = \frac{1}{6})$$

Now we consider the corresponding symmetric matrix B(t) to the quadratic form $G_5 + \left(\frac{24t-7}{144}\right)x_5^2$ as follows:

done in claim1, $d_i > 0$ for $t \ge 0.299$ and i = 0,1,2,3,4. Also, d_5 of B(t) is

$$\frac{301t^2}{8847360000} + \frac{301t^3}{1474560000} - \frac{1191487t^4}{265420800000} - \frac{6653089t^5}{1061683200000} + \frac{599807t^6}{8847360000} \ge 0$$
Fig. $t \ge 0.299$. This is because d_5 is an increasing graph as is seen from the following

mathematica graph of d_5 :

Fig. 1.

Therefore in view of (1), $F_n(x_0,...,x_n,s) \ge 0$ for $n \ge 5$ and $s \ge \sqrt{0.299}$. Thus for all $t \ge 0$. $F_n \ge 0 (n \ge 5)$. So by theorem 2.1, W_α is quadratically hyponormal.

Eamxple 3.2. Let α be the positive weight sequence given by $\alpha: \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}, \sqrt{\frac{47}{80}}, \sqrt{\frac{3}{4}}$ Then the weighted shift operator W_{α} with weight sequence α is quadratically in the sequence α is quadratically sequence.

This can be shown by a method similar to that used in Example 3.1.

MAIN RESULTS

hyponormal.

Definition 4.1. Let α and β be two sequences of positive weights, and W_{α} and W_{β} be corresponding weighted shift operators on $\ell^2(Z_+)$. If β be a subsequence of α we define W_{α} as a weighted extension of W_{β} , or equivalently, W_{β} is a weighted restriction of W_{α} .

As earlier stated in section1, here we will show that the properties of quadratic hyponormality appositive quadratic hyponormality are not preserved under weighted extension and weight restriction.

Theorem 4.1. Let $\alpha = \{\alpha_n\}_{n=0}^{\infty}$ be a sequence of positive real numbers and λ be any positive real number. Also let λ α denote the sequence $\{\lambda \alpha_n\}_{n=0}^{\infty}$. Then W_{α} is quadratically hyponormal if and only if $W_{\lambda\alpha}$ is quadratically hyponormal. Moreover the result is also true we replace quadratic hyponormality by positive quadratic hyponormality.

634 Challenges and Application of Mathematics in Science and Technology

Proof. We have $\alpha = \{\alpha_n\}_{n=0}^{\infty}$ and $\lambda \alpha = \{\lambda \alpha_n\}_{n=0}^{\infty}$ and in terms of the notations defined in get $\tilde{d}_k = \lambda^{2k+2} d_k$ for $k \ge 0$, where $\tilde{d}_k := \det(\tilde{D}_n(s))$ and

 $= P_{\lambda\alpha} + sW_{\lambda\alpha}^2)^*, (W_{\lambda\alpha} + sW_{\lambda\alpha}^2)]P_n . \text{ This shows that } W_{\alpha} \text{ is q.h. if and only if } W_{\lambda\alpha}$

easy calculation we get the relations

$$= \lambda^{2k+2}c(k,0), \ c(k,1) = \lambda^{2k+4}c(k,1), \dots, \ c(k,k) = \lambda^{4k+2}c(k,k),$$

$$(k+1) = \lambda^{4k+4}c(k,k+1)$$

for $k \ge 0$ and $0 < i \le k+1$, $c(k,i) \ge 0$ if and only if $c(k,i) \ge 0$. Hence W_{α} is p.q.h. if and only if $W_{\lambda\alpha}$ is p.q.h.

Question1: Is q.h. (or, p.q.h.) preserved under weighted restriction? That is, if β is any subsequence of a sequence α of positive numbers, then does q.h. (or, p.q.h.) of W_{α} necessarily imply q.h. (or, p.q.h.) of W_{β} ?

This question is answered in the negative as is seen from the following examples:

Example 4.1. If α denotes the weight sequence $\alpha: \sqrt{\frac{1}{2}}, \sqrt{\frac{1}{2}}, \sqrt{\frac{43}{80}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \dots$, then

is q.h. as shown in Example 3.1. But if β : $\sqrt{\frac{1}{2}}$, $\sqrt{\frac{1}{2}}$, $\sqrt{\frac{3}{4}}$,...then β is a subsequence and W_B is not q.h.(Example 3.10. [3])

The 4.2. If α denote the weight sequence $\alpha: \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{3}{4}}, \sqrt{\frac{4}{5}}, \dots$, then W_{α} is p.q.h.

7.[1]). But if β : $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{2}{5}}$, $\sqrt{\frac{6}{7}}$, $\sqrt{\frac{8}{9}}$,...,then β is a subsequence of α , and since c(4,3)<0.

Is q.h. (or, p.q.h.) preserved under weighted extension? That is, if β is any sequence α of positive reals, then does q.h. (or, p.q.h.) of W_{β} imply q.h. (or,

swered in the negative as is seen from the following examples:

Example 3.8 [3] if $\alpha = \{\alpha_n\}$ is sequence of positive weights such that $0 < \alpha_1 < \alpha_2 < \alpha_3 < \alpha_4 < \alpha_5 < \ldots$, then W_{α} is not q.h. Thus if we choose α as the sequence

 $\alpha:\sqrt{\frac{1}{2}},\sqrt{\frac{1}{2}},\sqrt{\frac{1}{2}},\sqrt{\frac{1}{2}},\sqrt{\frac{1}{2}},\sqrt{\frac{2}{3}},\sqrt{\frac{3}{4}},..., \ \ then\ W_{\alpha}\ \ is\ not\ q.h.\ \ Let\ \beta\ \ be\ the\ subsequence\ of\ \alpha$ given by $\beta:\sqrt{\frac{1}{2}},\sqrt{\frac{2}{3}},\sqrt{\frac{3}{4}},...\ \ Then\ W_{\beta}\ \ is\ q.h.\ \ (proposition 7.\ [1]).$

Example 4.4. Let α be the sequence $\alpha:\sqrt{\frac{1}{2}}$, $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{3}{4}}$,... Then W_{α} is not q.h. (Example 3.10.[2]) and hence not p.q.h.. If β is a subsequence of α given by $\beta:\sqrt{\frac{1}{2}}$, $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{3}{4}}$,...,then W_{β} is p.q.h. (Proposition 7. [1]).

CONCLUSION AND OPEN PROBLEM

For a positive real number z, let $\alpha(z)$ denote the sequence $\alpha(z)$: $\sqrt{\frac{1}{2}}$, $\sqrt{\frac{2}{3}}$, $\sqrt{\frac{3}{4}}$,...

In examples 3.1. and 3.2. we have shown that $W_{\alpha(z)}$ is q.h. if $z = \frac{43}{80}$ in view of the questions answered in section 4, one should be able to determine all the values of z such that $W_{\alpha(z)}$ is q.h. We have reasons to believe that it is q.h. for all z such that $\sqrt{\frac{43}{80}} \le z \le \frac{47}{80}$. However, this has to be validated by rigorous proof.

ACKNOWLEDGEMENTS

The first author is supported by DST (Ref No. SR/FTP/MS-13/2008 dated 20.02.2009). The second author is funded by UGC (Ref No. F.4-1/2006(BSR)/11-1/2008(BSR) dated 20.01.2009).

REFERENCES

- Curto R. E. (1990), Quadratically hyponormal weighted shifts, Integral Equations Operator Theory, vol. 13, pp 49-66.
- 2. Curto R. E. and Fialkow L. (1994), Recursively generated weighted shifts and the subnormal completion problem II, *Integral Equations Operator Theory*, vol.18, pp 369-426.
- 3. Curto R. E. and Jung I. B. (2000), Quadratically hyponormal weighted shifts with two equal weights, *Integral Equations Operator Theory*, vol. 37, pp 208-231.
- 4. Exner G., Jung I. B, and Park S. S. (2006), Weakly n-hyponormal weighted shifts and their examples, *Integral Equations Operator Theory*, vol. 54, pp 215-233.
- 5. Exner G., Jung I. B, and Park D. (2008), Some quadratically hyponormal weighted shifts, Integral Equations Operator Theory, vol. 60, pp 13-36.
- 6. Hazarika M. and Kalita B. (2009), On positively quadratically hyponormal weighted shifts, Int. J. Contemp. Math. Sciences, vol. 4, no.35, pp 1709-1718.
- 7. Jung I. B. and Park S. S. (2000), Quadratically hyponormal weighted shifts and their examples, *Integral Equations Operator Theory*, vol. 36, no.4, pp 480-498.
- 6. Wolfram Research, Inc. Mathematica, version 5.1, Wolfram Research, Inc. Champaign, IL,(1996).