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ABSTRACT:

A mixed convective hydro-magnetic flow of visco-elastic fluid past an infinite vertical porous surface with
constant suction has been investigated in presence of heat and mass transfer. Visco-elastic fluid flow is
characterized by Walters liquid (Model B’) for short relaxation memories. A magnetic field of strength By is
applied along the transverse direction to the surface. To study the governing fluid motion, we have considered
the effects of induced magnetic field and magnetic dissipations of energy. Mechanism of heat transfer arises
from mixed convection along with dissipation of energy due to viscosity. Let T,, and C,, be respectively the
temperature and the molar species concentration of the fluid at the surface. To solve the governing equations of
motion, we have used multi-parameter perturbation scheme. Two non-dimensional numbers taken as
perturbation parameters are Eckert number and visco-elastic parameter. The results are discussed graphically for
the various values of elastico-viscous parameter along with other values of flow parameters involved in the
solution.

KEY WORDS:. Elastico-viscous, induced magnetic field, perturbation scheme, current density, Eckert
number.
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The concept behind the convection problem is the
1. INTRODUCTION: density difference caused by simultaneous heat and
The analysis of visco-elastic phenomenon has mass transfer characteristics. Researchers have
attracted  various researchers because of its  extensively used the mechanisms of convection
application in various engineering and blood flow  problems due to their applications in atmospheric
problems. The complex stress-strain relationships of  field, geophysics and various engineering fields etc.
visco-elastic fluid flow mechanisms are used in  An anaysis of therma convection in magneto-
geophysics, chemical engineering (absorption, hydrodynamics problem has been studied by Singh
filtration), petroleum engineering, hydrology, soil- and Cowling (1). Raptis and Kafousis (2) have
physics, bio-physics, paper and pulp technol ogy. anadysed the characteristics of  magneto-

hydrodynamics free convective flow and mass

transfer from a vertical plate in presence of heat flux.
The combined heat and mass transfer effects in a
porous medium has been investigated by Bejan and
Khair (3). Trevisian and Bejan (4) have extended the
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heat and mass transfer problem by imposing the
buoyancy effect in governing fluid flow mechanisms.

The phenomenon of magneto-hydrodynamics is
widely used in many industrial purposes such as
extrusion of plastics in the manufacture of Rayon and
Nylon, purification of crude ail, textile industry etc.
MHD is aso used to study the principles of various
engineering applications, in the fields of stellar and
planetary magnetospheres, aeronautics, chemical
engineering and also in medical science. Acharya et
al. (5) have studied the magnetic field effects on free
convection and mass transfer flow through porous
medium with constant suction and heat flux. The
behaviour of steady MHD couette flow has been
examined by Attia (6) by considering various
temperature  dependent  physical properties.
Simultaneous heat and mass transfer in a free
convection flow past a flat plate under the influence
of transverse magnetic field has been discussed by
Singh et al. (7).

The effect of induced magnetic field has been
neglected in above mentioned works. The assumption
behind the neglecting of induced magnetic field is
low conductivity of electricaly conducting fluid. But
for higher conductivity, the induced magnetic field

The constitutive equation for Waltersliquid (Model B') is

vk — ~PBik+ vk, o™ = 2n e — 2k ™

cannot be omitted. Singh and Singh (8) have studied
the MHD effects on heat and mass transfer by
considering the influence of induced magnetic field.
Ahmed (9) has analysed the mixed convection heat
and mass transfer MHD flow from an infinite vertical
porus plate in presence of induced magnetic field.
Hydromagnetic free convective flow with induced
magnetic field effects is examined by Ghosh et al.
(10). Zueco and Ahmed (11) have investigated
simultaneous heat and mass transfer in a mixed
convective MHD flow in presence of heat source and
induced magnetic field. The induced magnetic field
effect with viscous/ magnetic dissipation bounded by
a porous vertical plate in presence of radiation has
been surveyed by Ahmed (12).

Walters liquid (Model B) is a type of visco-elastic
fluid which resists shear flow and strains linearly with
time under the application of an applied stress but
when the stress is removed it quickly returns to its
origina position. The viscosity of the visco-elastic
fluid enables the physics of the energy dissipated
during the flow and its elasticity analyses the energ}/
stored during the flow. As Walters liquid (Model B')
exhibits elastic properties besides having fluid
properties of Newtonian fluid.

(1.2)

where ¢ is the stress tensor, pis isotropic pressure, gj, is the metric tensor of a fixed co-ordinate system
x', wisthe velocity vector, the contravarient form of e’ is given by

2elk

e,n( — = + v‘me’ﬁn— v_li.tme:m_ v:.memk,

1.2)

It is the convected derivative of the deformation rate tensor &'*defined by

26 = vy 4 vy,

(13

Heren, isthe limiting viscosity at the small rate of shear which is given by

Ny = _{":.\I{r)dr and ky = _l": N(zidr

1.4

N(7) being the relaxation spectrum . Thisidealized model is avalid approximation of Walters liquid (Model B’)
taking very short memories into account so that termsinvolving

J,t*N(1din= 2
have been neglected.

(15)

Walters (13) reported that the mixture of polymethyl methacrylate and pyridine at 25° C containing 30.5 gm of
polymer per litre and having density 0.98 gm/ml fits very nearly to this model. For this mixture, the relaxation

spectrum as given by Waltersis

1—0o
N(A) = on.b(4) — 7
(4) ?c(:' Iz It
=q0 A3

(0= 1<)

whereo = 0.13,7), = 7.9 poises, {f = 10.18 sec and &[4 is the Dirac’s delta function (Kapur et al. [14]).
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Polymers are used in the manufacture of space crafts, aeroplanes, tyres, belt conveyers, ropes, cushions, seats,
foams, plastic, engineering equipments, contact lens etc. Walters liquid (Model B) forms the basis for the
manufacture of many such important and useful products.

2. MATHEMATICAL FORMULATION

The steady two-dimensional mixed convective flow of an electrically conducting Walters liquid (Model B') past
an infinite vertical plate has been investigated. A magnetic field of uniform strength B, is applied in the
transverse direction. The effect of induced magnetic field is also taken into account. In Magneto-
hydrodynamics, the combined effect of current and magnetic field generates Lorentz force, which disturbs the
fluid motion. The fluid velocity also changes the magnetic field by generating an induced magnetic field which
disturbs the original field. Let x' axis be taken along the plate in the vertical upward direction and ¥ axis be
taken normal to it. Velocity components along x' axis and y axis are taken as u' and v' respectively. Let b, and

by, be the magnetic induction vectors along x' axis and y" axis respectively. Let T,, and C,, be respectively the
temperature and the molar species concentration of the fluid at the plate and T,, and €, be respectively the

equilibrium temperature and equilibrium molar species concentration of the fluid. The physical configuration of
the problemisgivenin figure 1.

H
oy

Vg

y 0

5.

Figure 1: Physical configuration of the problem.

With these physical considerations and using Boussinesg approximation, the equations governing the steady
motion of an incompressible electrically conducting Walters liquid (Model B') in presence of magnetic field are:

o @1

ay

% U @2

o T oy B W)+ 5%, ) 4 g0 T+ g8 C €0 @3
- c%:%%-}-;— d—?] +%an—;§; I° (B, —u) +Vp(by —b P  24)
—ngf' D% 25)
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d'b, du'  db,
=p—2 iy 2,
0 ﬂd}’-:‘i'so :2)-"+ 1%] d)" {_ 6)

The corresponding boundary conditions of the problem are .
y=0u =0T =T,C=C,b,=08& y swiu=UT =T,.C =C.b,=by (2.7)

Integrating equation (2.1) and (2.2), subject to the boundary conditions, we get
v ==V, & by =By

Introducing the following non-dimensional quantities

u y*e T-T, C—-C, vgB (T, —Tz) vgB*(Ty—Tx.
u=—,y="—,8= Q= Gr = —. M= ———
TR G5BT Nl UV Uz
Ut noCe v oB? b. by v 74 kol
t=—————— Fr=—— = M =—0—,b,=— H=—FMm=—, A=—, Kk = =
CoTy—T) K D pVE T by B, n U ov?

where u is dimensionless velocity, y is dimensionless displacement variable, 8 is dimensionless temperature, ¢
is dimensionless concentration, Gr is the Grashoff number for heat transfer, Gmis the Grashoff number for mass
transfer, E is Eckert number, Pr is Prandtl number, Sc is Schmidt number, M is Hartmann number, b, is
dimensionless magnetic induction along x-axis, H is the ratio of induced magnetic field to the applied magnetic
field, Pmis magnetic Prandtl number, A is the ratio of suction velocity to the free stream velocity and k is non-
dimensional visco-€elastic parameter.

Into the equations (2.3) to (2.6), we get

R A A G Gme— M+ MAH (. — 1) 2.8
dy? dy: dy u=—or me—M+1 x — L] 2.8,

d*g ds duy’ dud®u "

 $Pr — _EP (— _kEPrZECY MEPH(—w+ AHQA-b)F (&
3yt Pray = EPT Cs}_‘_} dyayt MEPA( -0+ HA-bJF  @9)
d‘¢  _ do

—+5c— =10 210
3y T gy (210
AHb,+Pmu +PmiHb, =0 211)
The dimensionless boundary conditions are
y=0u=00=1¢=1b,=0& yoxu=16=0,0=0,8,=1 (2.12)

3. METHOD OF SOLUTION:
Solving the equation (2.10) by using the boundary conditions (2.12), we get
p=g *V (3.1

Since the Eckert number is small for al incompressible fluids, so the velocity u, temperature 6 and induced
magnetic field b, in the neighbourhood of the plate are assumed to be of the form

u=1ug+Eu;, +0(E%), 8 =6, +EB, + o(E*), by = by + Eb,, +0(E?) (3.2
Substituting equations (3.2) into the equations (2.8), (2.9) and (2.11) and equating the like powers of the
perturbation parameter E, we get

Zeroth-order equations:

kug +up +ug —Mug = —Gréy — Gme™Y — M + MAH(b,, - 1) (3.3

6y +Préy — 0 (34)

AHby 4+ PmAHb,, + Pmuy =0 (3.5

First-order equations:

kug +uy +uy — Mu; = —Gréy + MAHb,, (3.6)

6; +Prd, = —Prui — kPrugug— MPr{(1 - ug) + AH(1- b, )} G2
AHby, + PmiHb, +Pmu; =0 (3.8

The modified boundary conditions are
Yy=0ug=u,; =0.6p = 1,6, =0.b,, = by =0
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yomiug=Lu =0.6=0=05b,,=Lb,, =0 (39)
Solving the equation (3.4) subject to the boundary condition (3.9), we get
Gy =7 (32.10)

Combining (3.3) and (3.5), we get

leuf 1 (U1 kPmiul 1 (L1 Pmduy | (Pm Mug= €r(8, | Pm8y) | CmSe(Pm  5c)e™% (311
Combining (3.6) and (3.8), we get

kuf + (1 + kPmul + (1 + Pm)u, + (Pm— Mu, = —Gr(8, + Pm8,) (3.12)

To solve the equations (3.11), (3.12), we use another perturbation scheme by assuming o as a perturbation
parameter.

Up = upy +hug +o(k?),  wy =uyg+kuyy +00k5) (313

Since @ < 1 due to small shear rate. Substituting (3.13) into the equations (3.11), (3.12) and (3.7) and equating
the like terms of elastic-viscous parameter o, we get

ul® + (1 + Pmugy + (Pm — Mlugy = Lye ™™ 4 L,e75% (314)

Ul + (1 +Pmlug; + (Pm — M)ug, = —uby— Pmuly (3.15)

ul® + (1 + Pmluyy+ (Pm— M)ug, = —Gr(B,, + Pm8y,) (3.18]

ul® + (1 + Pmuy, + (Pm— Mu,. = —uly — Pmull— Gr(8,, + Pm#é.,) (3.17]

Whefe, E?l = 9“: +a911

Relevant boundary conditions of the problem are
¥=0tugp = tgs T Uy =uyy & ¥y wiug = Lougy = g =uy, =0 (3.18)

The equations (3.14) to (3.17) are solved by using the boundary conditions (3.18) and the equation (3.7) is
solved by using boundary condition (3.9). The solutions and constants are not presented here for the sake of
brevity.

4. RESULTSAND DISCUSSION:
The velocity profileis given by
u = (Up + Kug, +Eclu,, +kuyy) 41)
The shearing stress at the plate is given by
= A y=0 “.2)
ST ay ey .
The co-efficient of heat transfer in terms of Nusselt number at the plate is given by

vu= (%) (+.3)
Nu=—|— .
dy/ o
The co-efficient of mass transfer in terms of Sherwood number at the plate is given by
d
Sh=— (—'p) 4.4)
‘\d}r y=n
The current density distribution in the non-dimensional form at the plate is given by
= } ] % |
" oUB, 5

~ — Gr=-7

-15

Vi
Figure 2: Velocity profileagainst y for Gm=3, Pr=10, Sc=6, Pm=2, M=0.2, H=0.5, A=0.5, E=0.01.
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v
Figure 3: Velocity profile against y for Gr=7, Gm=3, Pr=10, Sc=6, M=0.2, H=0.5, A=0.5, E=0.01.
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Figure5: Velocity profile against y for Gr=7, Gm=3, Pm=2, Pr=10, M=0.2, H=0.5, A=0.5, E=0.01.
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Figure 6: Velocity profile against y for Gr=7, Gm=3, Pm=2, Pr=10, Sc=6, H=0.5, A=0.5, E=0.01.

170



Research J. Science and Tech. 7(3): July- September, 2015, 165-175

&0

a0 -
20 -

0
S
A0 -
60 -
80 -

-1C0 -

-120 -

s . O

[}

-140
(J"

Figure 7: Shearing stress against Gr for Gin=3, Pr=10, Sc=6, Pin=2, M=0.2, H=0.5, .=0.5, E=0.01.
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Figure¥: Shearing stress against Gm for Ge—7, Pr—10, S¢—6, Pm—2, M—1.2, H-0.5, 2.

0.5, E-0.01.,

5.5

-

k=0
--——-k=0.02
— ——k=0.04

-—
—_

PT

Figure9: Shearing stress againstPr for Gr=", Gm=3, Sc=6, Pm=2,M=0.2, H=0.5, j.=0.5, E=0.01.
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Figure 10: Shearing stress against Pm for Gr=7, Pr=10, Sc=6, Gm=3, M=0.2, H=0.5, 3=0.5, E=0.01.
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Figure 11: Shearing stress against M [wr Gr=7, Pr=10, Sc=6, Gin=3. Pin=2, H=0.5, »=0.5, E=0.01.
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Figure 13: Current densily against P for Gr=7, Gin=3, Pr=10, Sc=6, M=0.2, H=0.5, 3=0.5, E=0.01.
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Figure 14: Carrent density against M for Gm=3, Pr=10, Sc=6, Pm=2, Gr="7, H=0.5, 3=0.5, E=0.01.
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Figure 15: Nusselt number against Gr for Gin=3, Pr=10, Sc=6, Pm=2, M=0.2, H=0.5, 3=0.5, E=0.01.
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Figure 16: Nusselt number against Pr for Gm=3, Gr=7, S¢=6, Pm=2, M=0.2, H=0.5,7.=0.5, E=0.01.
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Tigure 17: Nusselt numb er agamst Pm for Gm=3, Fr=10, Sc=6, G1=7, M=0.2, I1=0.5, A=0.5, E=0.01.

The purpose of the present study is to bring out the
effects of elastico-viscous parameter on mixed
convective MHD flow of a visco-elastic fluid past an
infinite vertical porous surface by imposing the effect
of induced magnetic field in the governing fluid flow
system. The elastico-viscous effect is exhibited
through the non-dimensional parameter k. The non
zero values of the parameter k characterize the visco-
elagtic fluid and k=0 represents the Newtonian fluid
flow phenomenon. We have computed the result for
Gr < 0 corresponds to an externally heated plate and
Gr > 0 corresponds to an externaly cooled plate. The
species concentration of the visco-elastic fluid is
assumed to be of smaller order. M <l1characterizes

weak magneto-hydrodynamic flow system. Figures 2
to 6 represent the pattern of velocity profile u against
the distance y for various values of other flow
parameters. The graphs show that the velocity profile
boosts up considerably in the neighbourhood of the
plate and then it starts to converge to free stream
velocity for both Newtonian and visco-elastic fluid
but when the fluid flow is experienced through an
externally heated plate, a download ‘hill” is observed
for visco-elastic fluids (Figure 2). The elasticity factor
of Walters liquid (Model B') diminishes the speed of
the fluid in comparison with a Newtonian fluid.
Grashoff number studies the behaviour of free
convection and it is defined as the ratio of buoyancy
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force to viscous force. It plays an important role in
both heat and mass transfer mechanisms. Gr
characterizes the free convection parameter for heat
transfer and Gm characterizes the free convection
parameter for mass transfer. Figure 1 represent the
nature of velocity profile for cooled plate (Gr=7) and
heated plate (Gr=-7). The impact of elasticity factor
present in the Walters liquid is seen more during the
flow past a heated plate in comparison with the flow
past a cooled plate. The Newtonian fluid will enhance
its speed when it passes through a heated plate but the
visco-elastic fluids (k=0.02, 0.04) experience a
downward trend in speed. The magnetic Prandtl
number (Pm) signifies the relative importance of
momentum diffusion and magnetic diffusion as it is
defined as the ratio of momentum diffusivity to
magnetic diffusivity. In our study, Pm is considered
to be greater than 1. The effects of Pm on Newtonian
and non-Newtonian fluids are shown in figure 3. It
shows that the rising value of Pm accelerates the fluid
flow but due to the presence of elagticity, the visco-
elastic fluid flow experiences a declined trend during
the enhancement of magnetic Prandtl number. Prandtl
number (Pr) plays an important role in heat transfer
problems as it studies the simultaneous behaviour of
momentum diffusion and thermal diffusion. The
consequences of Pr are shown in figure 4. The
increasing value of Prandtl number enlarges the
viscosity of the non-Newtonian fluid and the fluid
will experience a diminishing behaviour in the speed
but the visco-elastic fluids experience an opposite
trend in the speed due to the presence of the elasticity
factor. Prandtl number is analogous to the Schmidt
number in convection mass transfer. Schmidt number
signifies the ratio of momentum diffusivity to
concentration diffusivity. The role of Schmidt number
on the velocity profile is illustrated in figure 5.
Increasing value of Schmidt number increases the
velocity of the Newtonian fluid but the velocity of the
visco-elastic fluid subdues with the enhancement of
Schmidt number. The effect of Hartmann number is
analysed on figure 6. In a weak magneto-
hydrodynamic flow, the Lorentz force which is
produced due to the applied magnetic field will not
act as drag force, rather it will behave like a body
force of both visco-elastic fluid and Newtonian fluid
systems. Thus it will accelerate the fluid flows of
both systems. The maximum effect of applied
magnetic field of visco-elastic fluid and Newtonian
fluid is seen in the neighbourhood of the plate.

Figures 7 to 11, depict the nature of viscous drag
formed by the fluids at the plate. The elasticity factor
present in the visco-elastic fluid subdues the shearing
stress at the plate in comparison with Newtonian
fluid. It isaso noticed that the shearing stress formed
by the visco-elastic fluid flow is negative, which
interprets that the viscous drag experiences a reverse
direction. Figure 7 & 8, characterize the variations of
shearing stress against Gr and Gm. The increasing

values of Gr interpret the degree of coolness of the
plate from externaly. The increasing values of free
convection parameter for both heat and mass transfer
lessen the shearing stress formed by visco-elastic
fluid along with the increasing values of visco-elastic
parameter but it shows reverse effect during the
Newtonian fluid flow mechanism. The effects of
Prandtl number (Pr) and magnetic Prandtl number
(Pm) are analyzed in figures 9 and 10 respectively.
The positive values of Prandtl number signify the
dominant effect of viscosity. The growth Pr
enhances the viscous drag formed by visco-elastic
fluid at the plate but a decreasing pattern is noticed
during Newtonian fluid. An opposite behaviour is
experienced during the growing behaviour of
magnetic Prandtl number (Pm). The intensity of
transverse magnetic field is shown in figure 11.
Hartmann number subdues the shearing stress of
visco-€elastic fluid in comparison with the Newtonian
fluid.

Current density measures the density of flow of
conserved charge. Figures 12 to 14 illustrate the
variations of current density for various values of
flow parameters of both Newtonian fluid and visco-
elastic fluid. Figure 12 discusses the behaviour of
Grashof number on current density for various fluid
flow mechanisms. The rising nature of free
convection from an externally heated plate enhances
the current density of Newtonian as well as visco-
elastic fluid and aso it is notified that the elasticity
factor present in the visco-elastic fluid flow
mechanism diminishes the current density in
comparison with ssmple Newtonian fluid. Effect of
magnetic Prandtl number on the current density is
analysed on figure 13. Higher values of Pm indicate
that the viscosity is dominant over magnetic
diffusivity. Enlargement of Pm declines the current
density in case of Newtonian fluid but a reverse
nature is occurred during the complex visco-elastic
fluid flow system. The effect of Hartmann number on
the current density is observed in figure 14. A steep
declination is experienced in weak hydromagnetic
flow for various values of visco-elastic parameter but
when the M increases, the current density decreases
steadily.

Nusselt number studies the rate of heat transfer
through the fluid system. Here we have investigated
the nature of Nusselt number on the flat plate. The
graphical presentations of rate of heat transfer are
given in figures 15 to 17. Visco-eladticity factor
present in the complex fluid flow system grows the
rate of heat transfer in comparison with the
Newtonian fluid flow system. Diminishing impacts of
free convection parameter on the Nusselt number are
glimpsed on visco-elastic fluid flow and Newtonian
flud flow concepts (Figure 15). Figure 16
characterizes the pattern of rate of heat transfer
against Pr. It shows that increasing values of Pr
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modify the rate of heat transfer of Newtonian as well
as visco-elastic fluids. A reverse nature is witnessed
during the rising concept of magnetic Prandtl number
(Pm) in figure 17.

The rate of mass transfer is not significantly affected
by visco-€elastic parameter.

5. CONCLUSIONS:
The steady two dimensional hydro-magnetic mixed
convective flow of an electrically conducting Walters
liquid (Model Bf) past an infinite vertica plate in
presence of induced magnetic field has been
investigated. The effect of simultaneous heat and
mass transfer are also studied in this paper. Some of
the important points are enlisted as below:
The velocity profile shows an enhancement trend
in the neighbourhood of the plate.
A downward hill is noticed in the velocity profile
of visco-elastic fluid for the flow past a heated
plate.
The visco-elaticity factor decelerates the speed
of fluid flow in comparison with the Newtonian
fluid.
A back flow is noticed in visco-elastic fluid flow
system during the rise of magnetic Prandtl
number.
The shearing stress formed a the plate is
subdued with the growing trend of visco-elastic
parameter.
The increasing values of Gr and Gm lessen the
shearing stress formed by visco-elastic fluid.
Current density distribution declines with the
increase of visco-elastic parameter.
The rate of mass transfer is not significantly
affected by visco-elastic parameter.
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