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Abstract :  The two-dimensional boundary layer flow through a divergent channel of a visco-
elastic electrically conducting fluid with slip velocity in presence of transverse magnetic field 
has been investigated analytically. Similarity solutions are obtained by considering a special 
form of magnetic field and the slip velocity. Expressions for velocity and approximate skin 
friction at the wall have been obtained and numerically worked out for different values of the 
flow parameters involved in the solution. The velocity and the approximate skin friction 
coefficient have been presented graphically to observe the visco-elastic effects for various 
values of the flow parameters across the boundary layer.   
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Introduction 
The study of flow of a visco-elastic electrically conducting fluid through a divergent channel 
possesses not only a theoretical appeal but also model of many biological and engineering 
problems such as magnetohydrodynamic generators, nuclear reactors, industrial metal 
casting, plasma studies, blood flow problems, etc. The theory of such flow has many 
applications in aerospace, chemical, civil, environmental, mechanical and bio-mechanical 
engineering and also in understanding the flow of rivers and canals. 

 The divergent flow problem between two non-parallel planes has been analyzed by Jeffery 
[1]by reducing the problem to an elliptic integral equation. Srivastava [2] has extended this 
problem to an electrically conducting fluid in the presence of transverse magnetic field. He 
has found that with the application of magnetic field it is possible to have purely divergent 
flow without any secondary flow for greater angle between the two planes. The solution of 
two-dimensional incompressible laminar flow in a divergent channel with impermeable wall 
has been investigated by Rosenhead [3]. Terril[4] has studied the slow laminar flow in a 
converging or diverging channel with suction at one wall and blowing at the other wall. 
Hamel [5] has analyzed the preceding problem of calculating all three dimensional flows 
whose stream-lines are identical with those of potential flow.  

The numerical calculations of Jeffery-Hamel flows between non-parallel plane walls have 
been performed byMillsaps andPohlhausen[6]. The two-dimensional laminar boundary layer 
flow of an incompressible, viscous, non uniform stream past solid obstacles has been 
analyzed by Falkner and Skan [7]. Phukan [8] has studied the hydromagnetic divergent 
channel flow of a Newtonian electrically conducting fluid. The two-dimensional laminar 
MHD boundary layer flow past a wedge with slip velocity has been studied by Sanyal and 
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Adhikari[9]. Choudhury and Dey [10] has investigated the hydromagnetic convergent 
channel flow of a visco-elastic electrically conducting fluid with slip velocity.  

The aim of the present work is to study the two-dimensional magnetohydrodynamic boundary 
layer flow with slip velocity through a divergent channel of an electrically conducting visco-
elastic fluid characterized by Walters liquid (Model B') in presence of transverse magnetic 
field. The effects of the visco-elastic fluid across the boundary layer on the dimensionless 
velocity component and skin friction coefficient have been shown graphically with the 
combination of other flow parameters involved in the solution. 

The constitutive equation for Walters liquid (Model B') is 

௜௞ߪ ൌ െ݃݌௜௞ ൅ ଴݁௜௞ߟ2 െ 2݇଴݁ ′௜௞ 

whereߪ௜௞ is the stress tensor, p is isotropic pressure, ݃௜௞ is the metric tensor of a fixed co-
ordinate systemݔ௜, ݒ௜ is the velocity vector, the contravariant form of ݁ ′௜௞ is given by  

݁ ′௜௞ ൌ డ௘೔ೖ

డ௧
൅ ௠ݒ

,݁௠
௜௞ െ ௠,ݒ

௞ ݁௜௠ െ ௠,ݒ
௜ ݁௠௞ 

It is the convected derivative of the deformation rate tensor݁௜௞ defined by 

2݁௜௞ ൌ ௞,ݒ
௜ ൅ ௜,ݒ

௞ 

Here ߟ଴ is the limiting viscosity at the small rate of shear which is given by 

଴ߟ ൌ ׬ ܰሺ߬ሻ݀߬∞
଴ and݇଴ ൌ ׬ ߬ܰሺ߬ሻ݀߬∞

଴ , 

ܰሺ߬ሻbeing the relaxation spectrum as introduced by Walters [11-12]. This idealized model is 
a valid approximation of Walters liquid (Model B') taking very short memories into account 
so that terms involving 

න ߬௡ܰሺ߬ሻ݀߬
∞

଴
, ݊ ൒ 2 

have been neglected. 

 

Mathematical Formulation 
The basic equations for steady two-dimensional boundary layer flow of Walters liquid 
(Model B') in the presence of a magnetic field B(x) are given by 
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ݕ߲ ൌ 0                                                                                     ሺ2.1ሻ 
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subject to the boundary conditions 

y ൌ 0 ׷ u ൌ U଴ሺxሻ, v ൌ 0   
ݕ                                                        ՜ ∞ ൌ׷ ܷሺݔሻ                                                                        ሺ2.3ሻ 

(1.1)

(1.2)

(1.3)

(1.4) 

(1.5)
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where x-axis coincides with the wall of the divergent channel and y-axis perpendicular to it. 
U is the velocity component outside the boundary layer, u and v are the flow velocities in the 
direction of x and y respectively,  the fluid density,  the kinematic viscosity,  the 
electrical conductivity of the fluid and k଴ the visco- elastic parameter. 

In equation (2.2), the secondary effects of magnetic induction are ignored i.e. the induced 
magnetic field is negligible as it is small in comparison to the applied magnetic field. 
Furthermore, we assume that the external electric field is zero and the electric field due to 
polarization of charges is also negligible. 

As in Sinha and Choudhury [13], the potential flow near the sources is taken to be 

ܷሺݔሻ ൌ
ଵݑ

ݔ                                                                                                              ሺ2.4ሻ 

withݑଵ ൐ 0represents two dimensional divergent flow and leads to similarity solution. 

To obtain similarity solutions, we assume 

U଴ሺxሻ ൌ cܷሺݔሻ                                                                                                    ሺ2.5ሻ 

We introduce the following change of variables (Schlichting [14]) 

,ሺxߟ yሻ ൌ yඨUሺxሻ
νx ൌ

y
x

ට
uଵ

x                                                                              ሺ2.6ሻ 

and the stream function 

߰ሺݔ, ሻݕ ൌ ඥUሺxሻνx ܨሺߟሻ ൌ ඥνݑଵܨሺߟሻ                                                         ሺ2.7ሻ 

Then, we obtain the velocity component as 

ݑ ൌ
߲߰
ݕ߲ ൌ Uሺxሻܨ′ሺߟሻ 

ݒ ൌ െ
߲߰
ݕ߲ ൌ ඥνݑଵܨ′ሺߟሻ                                                                                                              ሺ2.8ሻ 

The equation of continuity (2.1) is identically satisfied for the velocity component (2.8). 

Similarity solution exists if the magnetic field B(x) has the special form (Chiam [15]) 

ሻݔሺܤ   ൌ
ଵܤ

ݔ                                                                                                                                     ሺ2.9ሻ 

Using the equation (7.2.4) to (7.2.8), the equation (7.2.2) become 

ᇵܨ ൅ ଶ′ܨ ൅ ݇ଵൣ4ܨ′ܨᇵ െ ଶ൧″ܨ2 ൅ ሺ1ܯ െ ሻ′ܨ െ 1 ൌ 0                                                ሺ2.10ሻ 

Here prime denotes the differentiation with respect toߟ. ݇ଵ ൌ ௞బ
ఘ

and M denote the modified 
non-Newtonian and hydromagnetic parameters respectively. 

 The corresponding boundary conditions are  

ሺ0ሻ′ܨ ൌ c, ሺ∞ሻ′ܨ ൌ 1 , ሺ∞ሻ″ܨ ൌ 0                                                                  ሺ2.11ሻ 

Method of solution 
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We first assume 

ݖ ൌ √M ߟ , ݂ሺzሻ ൌ √M ܨሺߟሻ                                                                                       ሺ3.1ሻ 

which implies  

݂ ′ሺݖሻ ൌ ,ሻߟሺ′ܨ ݂″ሺݖሻ ൌ  
1

ܯ√
,ሻߟሺ″ܨ ݂ᇵሺݖሻ ൌ  

1
M Fᇵሺߟሻ                                                             ሺ3.2ሻ 

Using the equation (3.2) in the equation (2.10), we get the following differential equation 

݂ᇵሺݖሻ ൅ ݇ଵ ቂ4݂ ′ሺݖሻ݂ᇵሺݖሻ െ 2݂″ଶሺݖሻቃ ൅ ቀ1 െ ݂ ′ሺݖሻቁ ൌ ε ൬1 െ ݂ ′ଶሺݖሻ൰                           ሺ3.3ሻ 

whereߝ ൌ ଵ
ெ

     

The corresponding boundary conditions are 

݂ ′ሺ0ሻ ൌ c,  ݂ ′ሺ∞ሻ ൌ 1 ,  ݂″ሺ∞ሻ ൌ 0                                                                        ሺ3.4ሻ 

The unknown function f(z) is expanded in terms of powers of the small parameterε  as 
follows: 

݂ሺzሻ ൌ f଴ሺzሻ ൅ εfଵሺzሻ ൅ εଶfଶሺzሻ ൅  ሺ3.5ሻ                                                                           ڮ

 substituting the equation (3.5) in the equation (3.3) and equating the like powers of ε , we get 

f଴
ᇵ ൅ ݇ଵ ቂ4 ଴݂

′
଴݂
ᇵ െ 2f଴

″మ
ቃ ൅ ൫1 െ ଴݂

′൯ ൌ 0                                                                                      ሺ3.6ሻ
  

fଵ
ᇵ ൅ 4݇ଵൣ4 ଴݂

′
ଵ݂
ᇵ ൅ ଵ݂

′
଴݂
ᇵ െ ଴݂

″
ଵ݂
″൧ െ fଵ

′ ൌ 1 െ f଴
′మ                                                                       ሺ3.7ሻ 

The relevant boundary conditions are: 

f଴
′ ሺ0ሻ ൌ c,   f଴

′ ሺ∞ሻ ൌ 1, f଴
″ሺ∞ሻ ൌ 1 

fଵ
′ ሺ0ሻ ൌ 0, fଵ

′ ሺ∞ሻ ൌ 0 , f଴
″ሺ∞ሻ ൌ 0                                                                                            ሺ3.8ሻ 

Again, in order to solve equations (3.6) and (3.7), we consider very small values of݇ଵ, so that 
f଴ and fଵ can be expressed as 

f଴ ൌ f଴଴ሺzሻ ൅ ݇ଵf଴ଵሺzሻ ൅ 0൫݇ଵ
ଶ൯   

fଵ ൌ fଵ଴ሺzሻ ൅ ݇ଵfଵଵሺzሻ ൅ 0൫݇ଵ
ଶ൯                                                                                                  ሺ3.9ሻ 

Now substituting (7.3.9) into the equations (7.3.6) and (7.3.7), we get the following sets of 
ordinary differential equations 

f଴଴
ᇵ െ f଴଴

′ ൌ െ1                                                                                                               ሺ3.10ሻ 

f଴ଵ
ᇵ െ f଴ଵ

′ ൌ െ4f଴଴
′ f଴଴

ᇵ ൅ 2f଴଴
″మ ሺ3.11ሻ 

fଵ଴
ᇵ െ fଵ଴

′ ൌ f଴଴
′మ െ 1                                                                                                                        ሺ3.12ሻ 

fଵଵ
ᇵ െ fଵଵ

′ ൌ 4ൣf଴଴
″ fଵ଴

″ െ f଴଴
′ fଵ଴

″ െ fଵ଴
′ fଵ଴

ᇵ ൧ െ 2f଴଴
′ f଴ଵ

′                                                                       ሺ3.13ሻ 

The appropriate boundary conditions are: 

f଴଴
′ ሺ0ሻ ൌ c, f଴଴

′ ሺ∞ሻ ൌ 1, f଴
″ሺ∞ሻ ൌ 0 

f଴ଵ
′ ሺ0ሻ ൌ 0, f଴ଵ

′ ሺ∞ሻ ൌ 0, f଴
″ሺ∞ሻ ൌ 0 

fଵ଴
′ ሺ0ሻ ൌ 0, fଵ଴

′ ሺ∞ሻ ൌ 0,f଴
″ሺ∞ሻ ൌ 0 
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fଵଵ
′ ሺ0ሻ ൌ 0, fଵଵ

′ ሺ∞ሻ ൌ 0, f଴
″ሺ∞ሻ ൌ 0                                                                                               ሺ3.14ሻ 

The solution of equations (3.10) to (3.13) satisfying the respective boundary conditions (3.14) 
are obtained but not presented here for the sake of brevity. 

Results and Discussion 
The approximate skin friction coefficient is given by 

߬ ൌ ݂″ሺ0ሻ ൌ ଴݂
″ሺ0ሻ
൅ ߝ ଵ݂

″ሺ0ሻ                                                                                                               ሺ4.1ሻ 

where ଴݂
″ሺ0ሻ ൌ 1 െ ଵ

ଷ
݇ଵ   and  ଵ݂

″ሺ0ሻ ൌ ଶ
ଷ

൅ ଶଷଶ
ଵହ

ଵ
ଷ

݇ଵ 

The effects of visco-elastic parameter on the two-dimensional laminar MHD boundary layer 
flow in a divergent channel have been analyzed in this study The visco-elastic effect is 
exhibited through the non-dimensionalparameter݇ଵ. The corresponding results for Newtonian 
fluid are obtained by setting ݇ଵ ൌ 0. 

The Fig1-4 demonstrate the variations of dimensionless velocity ܨ′ሺߟሻ against the variable ߟ 
across the boundary layer for different flow parameters. The figuresdepict that the velocity 
increases with the increasing values of the visco-elastic parameter in comparison with the 
Newtonian fluid for fixed magnetic parameter M and c.  

It is observed from the Fig1 and 2 that an increase in the magnetic parameter does not bring 
any significant change in the flow pattern. Fig 1 and 3 shows that the velocity increases with 
the increasing values of c.When both M and c increases, Fig 1 and 4 shows that the velocity 
increases with the increasing values of the visco-elastic parameter ݇ଵ . 

Figure 5 depicts the variation of the shearing stress ߬ at the wall of the divergent channel 
against the magnetic parameter M. It shows that the shearing stress decreases with the 
increasing values of visco-elastic parameter ݇ଵ (=0, 0.02, 0.04) with the fixed value of c 
(=0.5). Also it shows the shearing stress decreases with the increasing values of the magnetic 
parameter M in both Newtonian and non-Newtonian cases. Figure 6 displays the shearing 
stress ߬ at the wall of the divergent channel against various values of c. It is observed that the 
shearing stress߬ decreases with the increasing values of c but it increases gradually with the 
increasing values of visco-elastic parameter ݇ଵin both Newtonian and non-Newtonian fluids. 

Conclusion 
The steady of two-dimensional MHD boundary layer flow of a visco-elastic fluid through a 
divergent channel with slip velocity has been investigated for different values of non-
Newtonian parameter. In the analysis, the following conclusions are made: 

 The speed of both Newtonian and non-Newtonian fluids through divergent channel 
enhances with the increasing values of visco-elastic parameter. 

 The growth of magnetic parameter does not bring any significant change in the flow 
pattern of the viscoelastic fluid. 

 Shearing stress at the wall of the divergent channel diminishes with the increasing 
values of visco-elastic parameter. 

 Increasing value of slip velocity parameter reduces the shearing stress at the wall of 
the divergent channel. 
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Fig 1: Velocity distribution against ߟfor M=10 and c=0.5. 

 
Fig 2: Velocity distribution against ߟfor M=12 and c=0.5.

Fig 3: Velocity distribution against ߟfor M=10 and c=0.75. Fig 4: Velocity distribution against ߟfor M=12 and 
c=0.75. 

 

Fig 5: Skin friction co-efficient for various values M 
and c=0.5. 

Fig 6: Skin friction co-efficient for various values c and 
M=10. 
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