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In this study, antimycobacterial activity of a set of
synthesized chalcone derivatives against Myco-
bacterium tuberculosis H37Rv was investigated by
quantitative structure–activity relationship (QSAR)
analysis using density functional theory (DFT) and
molecular mechanics (MM+)-based descriptors in
both gas and solvent phases. The best molecular
descriptors identified were hardness, EHOMO, MRA-4

and MRB-4¢ that contributed to the antimycobacte-
rial activity of the chalcones as independent fac-
tors. The correlation of these four descriptors
with their antimycobacterial activity increases
with the inclusion of solvent medium, indicating
their importance in studying biological activity.
QSAR models revealed that in gas phase, lower
values of EHOMO, MRA-4 and MRB-4¢ increase the an-
timycobacterial activity of the chalcone mole-
cules. However, in solvent phase, lower values of
EHOMO and MRB-4¢ and higher values of MRA-4

increase their activity.
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Introduction

The battle between humankind and Mycobacterium tuberculosis,
the etiological agent of tuberculosis (TB), dates back to antiquity.
Although in 1950s, TB incidences were reduced by the introduction
of antimycobacterial chemotherapy and the widespread use of BCG
vaccine (1), TB still remains a major international health problem,
which is likely to become even more alarming in the coming years
due partly to TB deaths in HIV-infected patients and partly to the
emergence of multidrug resistant strains of the Mycobacterium
tuberculosis (2). TB was declared as a global emergency by the

World Health Organization (WHO) in the year 1993. The prolonged
therapy and the significant toxicity of the current TB drugs make
patient compliance to therapy very difficult, giving rise to selection
for drug-resistant TB bacteria (3). This is also responsible for the
emergence of the threats from the phenomena of multidrug resis-
tance and extensive drug resistance against the conventional first
line and second line of drugs. The rapid spread of TB worldwide
has intensified the need for more efficient antimycobacterial agents
to combat this disease.

Chalcones, or 1, 3-diaryl-2-propen-1-ones (Figure 1), are a group of
natural or synthetic compounds (4), consisting of open-chain flavo-
noids in which the two aromatic rings are joined by a three-carbon
a, b-unsaturated carbonyl system (5). Chalcones are important pre-
cursors of flavonoids and isoflavonoids (6) and, recently, have been
subjected to great interest for their valuable pharmacological activi-
ties, including antioxidant (7), antibacterial (8), antitrypanosomal (9),
antileishmanial (10), anticancer, cytotoxic (11), antidiabetic (12) and
anti-inflammatory (13) activities. The presence of a reactive a, b-
unsaturated keto function in chalcones is found to be responsible
for their antimicrobial activity, which may be altered depending on
the type and position of the substituent on the aromatic rings (8).

In silico virtual screening is fast emerging to be a potentially useful
tool in search of targets of natural products. This approach is inex-
pensive as it is effective and fast. In silico methods are being
increasingly applied in generating hypothesis relating to the possi-
ble mechanism of drug target interactions. This approach implicates
databases, quantitative structure-activity relationships (QSAR), simi-
larity searching, pharmocophores, homology models and other
molecular modeling, machine learning, data mining, network analy-
sis tools, and data analysis tools. In silico methods have been fre-
quently used in the discovery and optimization of novel molecules
with affinity toward a target, the clarification of absorption and in
studying the distribution, metabolism, excretion, and toxicity proper-
ties as well as physicochemical characterization of the potential
drug molecules (14). QSAR is fast emerging as a useful tool in
modern chemistry, biology, and drug discovery (15,16). A QSAR
model is a mathematical equation that correlates the biological,
chemical, or physical activity of a molecular system to its geometric
and chemical characteristics. The molecular descriptors are used to
define the electronic properties of a molecule owing to the pres-
ence of limitations of fundamental physical and chemical laws in
direct quantification of biological activity. The quantum chemical
descriptors computed by density functional theory (DFT) and semi-
empirical methods have found increasing use in modern QSAR
analysis (16).
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In this study, we have found that DFT-derived descriptors chemical
hardness (g), EHOMO and MM+ descriptor, namely molar refractivity
(MR), correlates with the antituberculosis activity of the chalcone
molecules remarkably in both gas and solvent phases.

Methods

Theoretical background
In theoretical chemistry, the chemical potential (l) is identified as
the negative of the electronegativity (v) by Iczkowski and Margrave
(17) and defined as:

v ¼ �l ¼ � @E
@N

� �
vð�rÞ

ð1Þ

The quantitative definition of hardness (g) of an N-electron system
with total energy E and external potential v(r) using DFT can be
expressed as:

g ¼ 1
2

@2E
@N2

� �
vð�rÞ
¼ 1

2
@l
@N

� �
vð�rÞ

ð2Þ

and the global electrophilicity index (x) is expressed in terms of
chemical potential and hardness as:

x ¼ l2

2g
ð3Þ

According to the finite difference approach, global hardness and
chemical potential can be approximated as:

l ¼ � IPþ EA
2

� �
ð4Þ

g ¼ IP� EA
2

ð5Þ

where IP and EA are the first vertical ionization potential and elec-
tron affinity, respectively, of the chemical system.

Further approximation using Koopmans' theorem (18), the above
parameters can be expressed by taking IP and EA as negative of
the HOMO and LUMO energies, respectively.

l ¼ E LUMO þ E HOMO

2
ð6Þ

and

g ¼ ELUMO � EHOMO

2
ð7Þ

where ELUMO is the energy of the lowest unoccupied molecular
orbital and EHOMO is the energy of the highest occupied molecular
orbital.

Computational details
Structures of all chalcone molecules are presented in Figure 2.
Full unconstrained geometry optimizations of these compounds
were carried out using DMOL

3 program (19). The most widely
used exchange-correlation functional suggested exchange potential
by Becke (20) with gradient-corrected correlation provided by Lee,
Yang and Parr (21) (BLYP) was used in combination with double
numerical with polarization (DNP) basis set to study chalcones
derivatives. DNP is the double numerical with polarization basis
set, size of which is comparable with 6-31G** basis of Hehre
et al. (22). However, it is believed to be much more accurate
than a Gaussian basis set of the same size. Optimized geome-
tries were verified by frequency calculations and characterized as
minima (no imaginary frequency) in their potential energy surface.
The reactivity descriptors electrophilicity index (x), chemical
potential (l), and global hardness (g) were calculated for all sys-
tems using eqns 3, 6 and 7, respectively. The conductor-like
screening model (COSMO) (23) as incorporated into the DMOL

3

program with dielectric constant of 78.4 was adopted to study
the solvent (water) effect. In addition, the MR, van der Waals
surface area (SA), volume (V), mass (M), and lipophilicity index
(logP) for whole molecule were calculated from the MM+ compu-
tations with Hyperchem software (a).

QSAR modeling
Quantitative structure-activity relationship (QSAR) analysis using
multiple linear regression has been attempted to relate the struc-
tural features of these chalcone molecules that may have an influ-
ence on their observed antimycobacterial activity.

The analysis was performed selecting different descriptors such
as, energy of highest occupied molecular orbital (EHOMO), energy
of lowest unoccupied molecular orbital (ELUMO), energy of the
next lowest unoccupied molecular orbital (ENL), energy difference
between LUMO and HOMO (DL-H), dipole moments, electrophilic-
ity (x), and hardness (g). Molecular mechanics (MM) parameters
such as van der Waals surface area (SA), molecular volume (V),
hydrophobicity, polarizibility, and MR were also calculated. Sub-
division of the flavonoid molecules into submolecular fragments
has been suggested (24) for a more informative approach in
QSAR modeling based on the reports that different moieties of
flavonoid scaffold being responsible for antioxidant activity and
inhibition of reactive oxygen species production in enzymatic and
whole cell system (25,26). Therefore, we also subdivided the
chalcone molecules into Ring A and Ring B to calculate the MR
of the groups at the carbon position 4 and carbon position 4¢ of
Ring A and Ring B, respectively.

Figure 1: Basic structure of chalcone.
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The antimycobacterial activity data of the chalcone molecules 1–27
against Mycobacterium tuberculosis H37Rv determined by BACTEC
method were taken from the results reported by Lin et al. (27). We
have randomly selected these 27 molecules of the reported 47 chal-
cones (27). However, we have excluded some molecules for this
study as they are ineffective with inhibitory activity value zero. The
analyses of the 27 molecules were performed in both gas phase
and solvent phase. Multi-linear regression was performed by those
descriptors which showed greater correlation to the percentage of
inhibition of M. tuberculosis H37Rv at a concentration of
12.5 lg ⁄ mL and smaller autocorrelation were selected out. Four-
parameter QSAR was performed using the least square error esti-
mation (28) to calculate and compare bioactivity of the molecules.
The quality and predictability of the QSAR models were determined
using the 'leave one out' (LOO) cross-validation method.

Results and Discussion

We analyzed all the calculated DFT-based parameters such as x,
ENL, ELUMO for the derivation of the QSAR models and found that
the equations derived by considering the percentage of inhibition
at 12.5 lg ⁄ mL as a dependent variable and hardness (g), energy
of the HOMO orbital (EHOMO), MR of the group at position 4 of
Ring A (MRA-4), and MR of the position 4¢ of Ring B (MRB-4¢) as
independent variables gave the best correlation in the gas phase
and the solvent phase. The gas-phase and solvent-phase models
are presented as eqns 8 and 9. The descriptors used to build the
QSAR model for both gas and solvent phases are presented in
Table 1.

Gas phase:

Activity ¼� 321:01ð�64:301Þ þ 181:42ð�69:929Þg
� 31:07ð�18:748ÞEHOMO � 1:104ð�1:429ÞMRA�4

� 3:94ð�0:937ÞMRB�40

ð8Þ

n = 27, r2 = 0.73, F = 14.86, p < 0.05, r 2
cv = 0.56

Solvent phase:

Activity ¼� 416:87ð�61:492Þ � 7:03ð�21:689Þg
� 89:47ð�13:624ÞEHOMO þ 0:21ð�0:931ÞMRA�4

� 3:02ð�0:778ÞMRB�40

ð9Þ

n = 27, r2 = 0.81, F = 22.73, p < 0.05, r 2
cv = 0.50

In the QSAR equations, n is the number of data points, r2 is square
of the correlation coefficient and represents the goodness of fit, r 2

cv
is the LOO cross-validated r2 (a measure of the quality of the QSAR
model). F is the overall F-statistics for the addition of each succes-
sive term, and p is the p values using the F statistics. We have
found that the gas-phase r2 value (0.73) increases (0.81) when cal-
culated in the solvent phase; however, the r 2

cv value is 0.56 in the
gas phase and decreases to 0.50 in the solvent phase. The errors
of regression coefficients are also found to be less in solvent phase
than that of gas phase.

These regression models are significant as depicted by the p value
<0.05 using the F statistics (29). The QSAR models had to be

Figure 2: Sketch of the chalcones used to build quantitative structure–activity relationship model.
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further improved as general statistical standards requires r2 > 0.80
(30) and r 2

cv > 0.60 (31) for a regression model to be acceptable.
Therefore, to improve the overall quality of the regression models,
we applied the scheme suggested by Dietrich et al. (32) and Cor-
nish-Bowden and Wang (33) as we have applied in our recent
paper (34,35). In this scheme, a compound is considered as an out-
lier if its corresponding r2, called jackknife r2 (r 2

cv) value obtained
from the regression analysis after deleting the compound, is com-
paratively higher than the other r 2

cv values. Table 1 presents the r 2
cv

values calculated in gas phase and solvent phase. Although the
independent variables are same in both gas and solvent phases,
the r 2

cv values differed in case of each molecule. In gas phase, it
was observed that molecules 4, 11, 24, and 25 possessed higher
r 2

cv values (0.751, 0.749, 0.750, and 0.769, respectively), whereas in
solvent phase, molecules 4, 9, 24, and 25 exhibited high r 2

cv values
(0.822, 0.827, 0.826, and 0.823, respectively). These molecules were
considered as outliers, and it was observed that deleting these mol-
ecules from the data set lead to the improvement of the statistical
parameters in the QSAR models.

The QSAR equations after deleting these outliers (4, 11, 24, and 25
in gas phase) and (4, 9, 24, and 25 in solvent phase) are as
follows:

Gas phase:

Activity ¼� 323:24ð�54:0887Þ þ 131:53ð�56:246Þg
� 42:08ð�15:610ÞEHOMO � 0:63ð�1:127ÞMRA�4

� 4:46ð�0:752ÞMRB�40

ð10Þ

n = 23, r2 = 0.84, F = 23.46, p < 0.05, r 2
cv = 0.70

Solvent phase:

Activity ¼� 391:63ð�50:827Þ � 8:85ð�16:737Þg
� 85:38ð�11:055ÞEHOMO þ 0:31ð�0:788ÞMRA�4

� 3:35ð�0:666ÞMRB�40

ð11Þ

n = 23, r2 = 0.88, F = 33.0, p < 0.05, r 2
cv = 0.67

We have observed that the r2 value increased from 0.73 to 0.84
and 0.81 to 0.88 in gas phase and solvent phase, respectively. The
r 2

cv value increased from 0.56 to 0.70 in the gas phase and 0.50 to
0.67 in the solvent phase; however, the r 2

cv value remained lower in
solvent phase as compared to the gas phase. We have found that
the error of regression coefficient decreases for both gas- and

Table 1: Parameters used to build the quantitative structure–activity relationship models with the jackknife results for gas and solvent
phases against M. tuberculosis

Compounds

Gas phase Solvent phase

Percentage of
inhibition at
12.5 mg ⁄ mL g EHOMO MRA-4 MRB-4¢ r2

j g EHOMO MRA-4 MRB-4¢ r2
j

1 61 1.255 )5.665 0.89 0.89 0.7459 1.203 )5.593 0.89 0.89 0.8116
2 32 1.22 )5.205 7.32 7.32 0.7264 1.161 )5.25 7.32 7.32 0.8043
3 63 1.3 )5.635 7.32 0.8 0.7424 1.258 )5.569 7.32 0.8 0.8084
4 89 1.249 )5.782 0.89 5.39 0.7508 1.226 )5.676 0.89 5.39 0.8222

5 67 1.231 )5.746 5.39 0.89 0.7285 1.187 )5.599 5.39 0.89 0.8112
6 57 1.278 )5.648 7.32 5.39 0.7297 1.236 )5.572 7.32 5.39 0.8051
7 70 1.224 )5.754 8.21 0.89 0.7267 1.202 )5.588 8.21 0.89 0.8033
8 57 1.252 )5.799 0.89 8.21 0.7306 1.219 )5.644 0.89 8.21 0.8053
9 25 1.275 )5.655 7.32 8.21 0.7449 1.242 )5.545 7.32 8.21 0.8271

10 21 1.227 )5.752 0.89 12.99 0.7194 1.178 )5.558 0.89 12.99 0.807
11 68 1.128 )5.422 0.89 0.89 0.7488 1.085 )5.366 0.89 0.89 0.8147
12 6 0.905 )4.842 0.89 0.89 0.7309 0.817 )4.754 0.89 0.89 0.7834
13 67 1.192 )5.705 0.89 0.89 0.7275 1.161 )5.582 0.89 0.89 0.8046
14 68 1.18 )5.693 0.89 0.89 0.7274 1.165 )5.546 0.89 0.89 0.8031
15 51 1.142 )5.614 0.89 0.89 0.7312 1.106 )5.437 0.89 0.89 0.8086
16 11 1.074 )5.189 0.89 0.89 0.7267 0.978 )5.078 0.89 0.89 0.8039
17 90 1.222 )5.762 0.89 0.89 0.7231 1.192 )5.631 0.89 0.89 0.8024
18 92 1.225 )5.771 0.89 0.89 0.723 1.207 )5.652 0.89 0.89 0.8013
19 75 1.282 )5.365 7.32 0.89 0.7278 1.201 )5.415 7.32 0.89 0.8169
20 66 1.291 )5.642 7.32 0.89 0.7344 1.252 )5.630 7.32 0.89 0.8102
21 5 1.141 )4.948 0.89 4.22 0.7208 0.990 )4.868 0.89 4.22 0.7819
22 82 1.271 )5.487 7.32 0.89 0.7291 1.267 )5.639 7.32 0.89 0.7981
23 79 1.255 )5.824 0.89 0.89 0.7219 1.245 )5.745 0.89 0.89 0.8013
24 40 1.222 )5.081 7.32 7.32 0.7499 1.154 )5.210 7.32 7.32 0.8258

25 8 1.103 )5.402 0.89 0.89 0.7692 1.027 )5.144 0.89 0.89 0.8225

26 83 1.234 )5.645 0.89 0.89 0.7225 1.195 )5.626 0.89 0.89 0.7994
27 12 1.11 )5.383 0.89 8.21 0.705 1.038 )5.147 0.89 8.21 0.787

MR, molar refractivity.
The bold values in Table were selected and subjected to the LOO method with an intention to increase the correlation coefficient.
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solvent-phase model calculated using jackknife scheme. However,
the error of regression coefficient significantly decreases for inde-
pendent variable, EHOMO, in solvent phase. We have also calculated
the t- and p-values for all the regression coefficients for all the
equations and provided in Table 2. Although both the QSAR models
are significant, we found solvent phase to be better than the gas
phase–derived model based on the r2 values. The correlation plots
between the experimental and calculated bioactivity values of the
chalcones molecules derived from the two QSAR models are shown
in Figure 3. The plots indicate that these descriptors can be effec-
tively used in the prediction of the bioactivity of the chalcone mole-
cules.

The QSAR models predict that in both gas phase and solvent
phase, lower values of EHOMO and MRB-4¢ relate to greater inhibi-
tion of M. tuberculosis. However, difference was observed in the
dependence of antimycobacterial activity of the chalcone mole-
cules on hardness and MRA-4 when calculated in gas and solvent
phases. In gas phase, the antimycobacterial activity increased with
the higher values of hardness and lower values of MRA-4 of the
molecules as shown by the eqs 8 and 10. The eqs 9 and 11
depicting the antimycobacterial activity of the chalcone molecules
in solvent phase, however, predict that decrease in the hardness
and increase in MRA-4 of these molecules increase their antimyco-
bacterial activity.

The frontier orbital theory states that the energy of the HOMO and
LUMO is the important factors that determine the reactivity of a
molecule. The QSAR models generated in both gas and solvent
phase predict that decrease in the energy of HOMO increased the
inhibition activity of the chalcone molecules. It was observed that
the presence of a halogen in one of the two rings, irrespective of
the position, increased the antimycobacterial activity of the chal-
cones. This could be attributed to the electronegativity of the halo-
gens which decrease the energy of HOMO by removing the electron
density from the r space of the benzene rings (36). The very low
values of antimycobacterial inhibitions can be similarly explained by
the presence of an electron donating group such as an amino
group(-NH2). The lone pair of electrons of nitrogen atom delocalize
into the p space of the benzene ring and increase the EHOMO of the
molecule (35). Table 1 shows that in both gas and solvent phases,
the presence of the amino group in the B ring of the chalcone mol-
ecules increases the EHOMO more as compared to the presence of
the amino group in Ring A. However, no such discrete increase in
EHOMO was observed owing to the presence of halogens in Ring A
or Ring B. Sivakumar et al. (37) reported the QSAR study of 33

chalcones using robust statistical technique such as genetic func-
tion approximation. Their analysis also indicates the importance of
hydrogen bond donor and HOMO in the determination of antituber-
culosis activity of chalcones.

The correlation plots between experimental and calculated activity
values in gas and solvent media presented in Figure 3 indicated
that the selected parameters can predict the antimycobacterial
activity of the set chalcone molecules with greater predictability in
the solvent phase. Thus, designing new chalcone molecules with
electron withdrawing substituent on the ring may increase the anti-
mycobacterial activity.

Table 2: Statistical t- and p-values for all the regression coefficients for all the equations

n Phase

g EHOMO MRA-4 MRB-4¢

t-Value p-Value t-Value p-Value t-Value p-Value t-Value p-Value

27 Gas phase 2.5943 0.0166 )1.6574 0.11164 )0.7729 0.4478 )4.2062 0.0004
27 Solvent phase )0.3242 0.7489 )6.5668 1.32E)06 0.2236 0.8251 )3.8779 0.0008
23 Gas phase 2.3386 0.0311 )2.6958 0.01478 )0.5618 0.5812 )5.9341 1.00E)05
23 Solvent phase )0.5285 0.6036 )7.7234 4E)07 0.4053 0.6900 )5.0311 9.00E)05

MR, molar refractivity.

Figure 3: Plot of experimental versus calculated values of bioac-
tivity for the two models.
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Conclusions

The QSAR equations developed with the four parameters hardness
(g), EHOMO, MRA-4 and MRB-4¢ provide regression models to predict
the activity of the set of chalcone molecules against Mycobacterium
tuberculosis H37Rv. The statistical quality of the regression models
in both gas and solvent phases was improved by applying the jack-
knife test. Increase in correlation coefficient (r2 = 0.88) by the inclu-
sion of solvent medium depicts the importance of the solvent effect
and the selected parameters. These regression models reveal that
in gas phase, higher values of hardness and lower values of EHOMO,
MRA-4 and MRB-4¢ of chalcones increase their inhibitory activities
against M. tuberculosis H37Rv. In solvent phase, lower values of
hardness, EHOMO and MRB-4¢ and higher value of MRA-4 increase
the antimycobacterial activity of the chalcones. The QSAR models
also show that the descriptors derived from DFT and MM+ methods
can successfully be utilized to predict the antimycobacterial activity
of the chalcone molecules.
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