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fechnology to study the movement of the natural gas, oil and water through oil is given by

1

| |
- feservoirs. ik i
1 4 ae N s : .
o o . T e = el A (1.2)
: . _

The investigation of the flow streaming into a porous and permeable medium
with arbitrary but smooth plate surface was obtained by Yamamoto and Iwamura [1].
A theorctical analysis of two dimensional flow of a viscous, compressible fluid J ‘
through a porous medium bounded by a porous plate was presented by Varshney [2]. ‘ 2% = vf e+ vkl ‘ (1.3)
With suction at vertical plate, the unsteady free convective flow problems have
been studied by Nanda and Sharma [3], and Pop [4]. Nanda and Sharma [3] have

It is the convected derivative of the deformation rate tensor ¢ defined by

Here nj is the limiting viscosity at the small rate of shear which is given by
considered the suction velocity to be proportional to /2, whereas Pop [4] has T & o
assumed time-dependent oscillatory type of suction velocity. The flow past an | Mo = _‘; N(w)de and &y = .[0 (v} dugy (14)

impulsively started infinite plate in an incompressible fluid was studied by Stokes .
- [3]. Stewartson [6] has studied to Stokes problem for a semi-infinite plate by N(z) being the relaxation spectrum as introduced by Walters [12, 13]. Tm‘*‘
~analytical method, whereas Hall [7] has studied it by finite-difference method. ’
Taking into account the free convection effects, Stokes problem was solved in closed short memories into account so that terms involving ‘
- farm by Soundalgekar [8]. The plate was assumed to be isothermal and hence the e
- effects of heating or cooling of the plate on the flow were considered.

idealized model is a valid approximation of Walters liquid (Model B') taking very ',

0
J‘ t"N(t)dr, n=2
0
I view of the practical importance of the MHD flows, an unsteady (wo 1
8

il

onal hydro-magnetic free convection flow of an incompressible, viscous fluid \ have been neglected.
2h a porous medium bounded by an infinite vertical plate whose temperature is
fig with time about a constant non-zero mean value was studied by Helmy 2. Mathematical Formulation and Analysis
Ia all the above papers, viscous dissipation effect has been neglected. But _
[10] has shown that the viscous dissipative heat is important when the Consider an unsteady free convective hydro-magnetic flow of a visco
electrically conducting fluid through a porous medium bounded by an infinite
vertical plate, whose temperature oscillates with time about a constant nen-mé
mean value, The x'-axis is taken in the upward direction along the plate and ' ﬂi

I convection flow field is of extreme size or the flow is at extremely low
or in high gravity field. Neeraja and Reddy [11] have studied the MHD
fiee convection flow past a vertical porous plate with viscous dissipation,
ol this paper is to extend the problem studied by Neeraja et al, to the case

lastic fluid characterized by Walters liquid (Model B'), The constitutive

normal to it. Since the plate is of infinite length, all the physical variables are
functions of y" and " only. The applied magnetic field is considered in the direc

perpendicular to the plate. The fluid is assumed to be of slightly conducting
. h@ee the magnetic Reynolds number is much less than unity and the in
: : d 15 negligible in comparison with the transverse applied magnetic field

a [1]. we regard the porous 1

for Walters liquid (Model B) is

o = —pg' 4 2nge™ - 2kge', (L.1)

tensor, p s isotropie pressure, g i the metric tensor of a
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is gaverned by the following systein of equations:

i 00 0% 1 ' 1.2 AR 6HS e
= J== =====k =5 - _—) = | % T: ® ==} = g! 2!2

(2.3)

e
2C, ](7)7 otdy dy (7)72

o _oF k T v (nﬁ)z
= i — | =] -
y

k|ow o’ _ou 0%
7 hopC, (7172 C, :

the time, p is the reference density, B is the volumetric coefficient of thermal
expansions, 7' is the temperature of the fluid, 7_“,,\ is the temperature of the fluid far
away from the plate, g is the acceleration due to gravity, v is the kinematic viscosity,
K in the permeability of the porous medium, o is the electric conductivity of the
fluid, 71 is the magnetic field strength, & is the thermal conductivity of the fluid and

€, Is the specific heat at constant pressure and the other symbols have their usual
meanings,

The second and third terms on the right hand side of (2.3) represent the energy
dissipation. As the momentum equation (2.2) and the energy equation (2.3) are
coupled, the energy dissipation terms influence not only the temperature ficld but
also the velocity field.

The boundary conditions for the velocity and temperature fields are

=0,T =T, +&(, - Tp,)e'™ at 5 =0,

=|

=0,T =T, as y — o, (2.4)

|

whete 7,, is the temperature of the plate, W is the frequency parameter. Equation

(2.1) asserts that, the suction velocity is either a constant or a function of time.
Hence the suction velocity normal to the plate is assumed in the form

7= V(1 +ede™), 2.5)

whete 4 is a real positive constant, € is small such that € << 1, eé4 <1 and ¥} isa

non-zero positive constant. The negative sign indicates that the suction velocity is
directed towards the plate.
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‘ In order o wiile the govering equations and the boundary conditions i
dimensionless form, the following non-dimensional quantities are introduced:

e 2 . r-r 5
fi%'yéﬂi.wév_g’ugigﬁé-fﬁl}é.KgKi’
¥ Vg " T, =T w2

- :
G= gﬁ( 53 Tw),N=M+%,M—GHO2V,Pr= p,E= ‘
VO i pVO k CI)(TW = i- i”‘; %

Reduced forms of equation (2.2) and (2.3) in view of (2.6) are

OLI ’ au azu 63 N 33 1
——Pr(1+ASelW’)—:G9+___k u __(1+8Axwt U\
0 2 ™)== |- Nu, @7
ot oy 6y2 o0 2 0 3 L )
20 _ iwey 00 . 629 ou 2
Pr Y Pr(l + Age )E =— EX PrE(_j
ou 0%u iy Ou 0%
— PrEky| — —(1+ EdeM) ===

where G is the Grashof number, M is the magnetic field parameter, Pr is the Prandil

. WVE -
number and £ is the Eckert number, k, = Lg— , the non-Newtonian parameter,
2v

The boundary conditions for the velocity and temperature fields in the nomn-
dimensional form are

u=0,0=1+e™ at y=0,
u=0,0—>1as y—om (2.9)

3. Solution of the Problem i

To solve the coupled non-linear equations (2.7) and (2.8) subject fo
boundary conditions (2.9), we represent the velocity and temperature of the
the neighbourhood of the plate as
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u(y, 1) = up(y) + e (y)e™ + o4,
8(y, 1) = 09(») + 0y ()€™ + -+ -, 3.1)

Substituting (3.1) in equations (2.7) and (2.8) and equating harmonic and non-

harmonic terms, neglecting the coefficient of &2, we get

uf +uh — Nug = -G — kyull', (3.2)

u +ul — (N +iw)uy = -G8, — Aufy — kol Aufl +u" ], (3.3)
2

96/ + PrO{) = —PrEu(/) = PrEkzu(/)u(/)/, 34

0 + Pro{ —iwPro = —APro}, — 2PrEufu{ — PrEky[ubui’ +ufuf + duful]. (3.5)
Here the primes denote differentiation with respect to y.
The corresponding boundary conditions become
uy =0,u; =0,00 =10, =1at y =0,
uy = 0,u; > 0,6) > 1,0, =0 as y > . (3.6)

The equations (3.2)-(3.5) are still coupled non-linear equations, whose exact

solutions are not possible. So we expand uy, w, 0y, 0; in terms of E in the

following way, as the Eckert number for the incompressible fluid is always very
small:

ug(y) = up1(y) + Eugp; uy(y) = ug1(y) + Eupp (),
80(¥) = 001(») + EBpp (»); 01(y) = 611 (y) + E615 (»). 3.7

Substituting (3.7) in equations (3.2)-(3.5), equating the coefficients of  to zero and

neglecting the terms in £ 2 and higher orders, we get

ugy + upy — Nugy = ~GOq; — kaul)], (3.8)
U(/)/z + Méz = Nqu = ‘—Geoz —_ k2H6/2/, (3())

u|//, + u(, (N +iw)uy GOy Au(/,l ksl A//(/,/l/ | ”l//l/ l, (3.10)

sy
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Wy + 2ty — (% Wiy = —GByy — Auly — kol Aully +ulll |, (3.1
041 + Projy, =0, | (3.
0(, + Prog, = —Pruéf — Pricyubul), (3.1
6y + Pro{| — iwPrd;, = —APro},, _ (3.1

07y + Pré{, — iwPrby, = —APr8}, — 2Prufuf,
— Pricy (upyafy + ufyuth + Augyug)). (3.1
The corresponding boundary conditions are
g =0, ugp = 0,411 =0, =0,00;, =1,00=0,0;;=1,0, =0 at =10
ugp = 0, upy = 0, u;; = 0,5 > 0,001 > 0,00 > 0,0, >0,0, =0
as y — oo, . (3.1

The equations (3.8) to (3.11) and (3.13), (3.15) are still coupled non lis

equations, whose exact solutions are not possible. So, again we expand ;.
w1, U2, o1, Bg2, O1, Oy interms of k, since ky << 1:

Uy = Up1o + kauor1; uop = Ugno + kotigo,

upy = upg + koupygs upp = g + ko,

802 = 0020 + k200215 B15 = 0129 + k2017 (3.1

Substituting (3.17) in equations (3.8)-(3.11) and (3.13), (3.15); cquating |

coefficient of %, to zero and neglecting the terms in /r22 and higher orders, we get

ufio + upro — Nugig = =GOy, (3.1
”(/)/11 g ”(/)11 = Nugyy = ”(/>/|/o’ (3.1
utho + uhao — Nitggg = =Gpy, (332
ubz) + uay = Nugay = =ufiags (3.2
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ufto +ul1o — (N + iw)uyyo = —GOyy — Aupyg, (3.22)
ufty +ufyy — (N + iw)uyyy = —dugy — Auglo - uilo, (3.23)
ulho + a0 — (N + iw)urpg = —GOrp — Augpo, (3.24)
ulhy +ulyy — (N + iw)uygy = —Augy; — Augho — uizo, (3.25)
0/l + Proly = —Prufeg, (3.26)
0051 + Prdjar = —2Prugiougi — Prugiotgios (3.27)
00y + Profag — iwPrByag = —APrBy0 — 2Prufoui 10, (3.28)

0fa1 + Pro{y; — iwPréyy; = —APrégy — 2Pr(ugiouf1 + ugiui1o)
— Pr(ugioufto + urouro + Augigutre).  (3.29)
The corresponding boundary conditions are
up1o = 0, ugyy = 0, ugpe = 0, ugpy = 0,
Ui = 0, w11 =0, uppg = 0, 4191 = 0,
8020 = 0, 821 =0, 8159 =0, 015y =0 at y =0,
ugro = 0, ug11 — 0, ugyg — 0, ugy; — 0,
uio = 0, uyyp = 0, upp9 = 0, 2191 = 0,
0020 = 0, 6g21 — 0, 9120 — 0,081 > 0 at y > . (3.30)

Solving the equations (3.18) to (3.29) subject to boundary conditions (3.30), we get
the solutions for velocity and temperature. The solutions and the constants of the
differential equations are obtained but not presented here for the sake of brevity.

The skin friction at the plate in the non-dimensional form is given by

fou 1, [(0(0u it (’?u’)l" y 3
l’-m E‘k‘zl(ﬁ(ﬂ‘,j (I Fedc )‘)\‘ l ) “. ( Ve I)
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The rate of heat transfer coefficient at the plate, which in the non-dimensional fs

in terms of Nusselt number is given by

1 (69) 1 (8@0 i Belj
Nu=—|— =—|—==+c¢ge" — . (3.3
Pr\ oy =0 Pri oy Oy ]

The purpose of this study is to bring out the effects of visco-clastic paraiietes ¢
the MHD free convective flow past a porous plate with energy dissipation as
effects of other parameters have been discussed by Neeraja and Reddy, The vise
elastic effect is exhibited through the parameter k,. The corresponding resulis §

Newtonian fluid are obtained by setting k5 = 0 and it is worth mentioning that the

results coincide with Neeraja and Reddy.

Figures 1-12 represent the profiles of velocity, temperature and skin frictic
coefficient for various values of the visco-elastic parameter k, with the combinatic
of other flow parameters. The convection velocity is upwards in the case of canlis
of the boundary, i.e., G > 0 (Figures 1 and 2) while it is downwards whesn i
boundary is heated, i.e., G <0 (Figures 3 and 4) in both Newtonian anid i
Newtonian cases. It is also noted that the convection velocity » which atiai
maximum in the vicinity of the boundary plate, rapidly lies down in the transver
direction to the boundary at a distance y greater than 0.25, also the maximui of | &
is attained in the case of cooling (G > 0) as well as heating (G < ) at about 0 25
both Newtonian and non-Newtonian cases with Prandtl number 77 9, the magiel
field parameter M = 2, Eckert number £ =0.001, the thermal conductivity & =1
=01, A4=05and wt =7 or wt = n/2. Figures 5-8 depict the profiles of
non-dimensional temperature in the flow field. It is noticed that, in both the cases
cooling and heating of the boundary, the temperature profiles increase i i
Newtonian cases in comparison with Newtonian fluid for fixed values of other fa
parameters Pr, M, [, ¢, K, A and wt = or wt = /2. The profiles of the sk
friction are depicted in Figures 9-12, From Figures 9-12, it is noticed that for wi =
or n/2, the skin friction profiles decrease in non-Newtonian cases in comparise
with Newtonian fluid for & = 0 but the reverse pattern 18 observed for G = 0 Wh

the other flow parameters are kept fixed
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Figure 1. Variation of » against y for G =2.0, Pr=9, M =2, I/~ 0.001, £ =01
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Figure 2, Varlation of w agalnst y for G =20, Pr=9, M =2, F=0001, &=01
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Figure 3. Variation of u against y for G = 2.0, Pr=9, M=2, E=0.001, €= 0.1,
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Figure 4. Variation of u against y for G =-2.0, Pr=9, M =2, E=0.001, e= 0.1,

K =15 A=05, ot=m1/2.

Figure 5. Variation of T against y for
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Figure 6. Variation of T against

K =15 A=05 of="/2

y for G = 2.0, Pr=9, M=2, £ = 0,001
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Figure 11. Variation of 1, against y for G = 20, Pr=9, M=2, E= 0.001,
e=01 K=15 4=05 ot=m
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Figure 12. Variation of t,, against y for G = 20, Pr=9 M=2 E= 0.001,
e=01 K=15 4=05 oft= /2.




