dpy M0

dx R

(3.8)

This shows that in the presence of magnitude
field, there exists a constant pressure gradient
in y direction, where as in absénce of the
magnitude field this pressure turns out to be

a constant, i.e. p,, However, equations (3.3),

(3.5), (3.6) are independent of pressure p,
and can be solved without involving it with
the boundary conditions of the problem.

To solve equation (3.3), we assume that

Us=U oo+ ka= 10,
since ky << 1

(3.9)

Substituting (3.9) into the equation (3.3) and
equating the like powers of k2, we obtain

ne

5 au"'oo- u'o1-u'o1=20

(3.10)

1
—Upo+ O U o= - RGeRF®

> (3.11)

The solutions of equations (3.3), (3.5), (3.6),
(3.8),.(3.10) and (3.11)

Moo= 1 - Are R+ 41 P

sig; =1+ AjB'Ry'l' Ase'R“”- g o

fior P =1

W= - @, W,=0, Tg= e’

(3.12)

When &= 0, substituting (3.1) in equations
I2.4) to (2.8) and comparing the coefficients
wf identical powers of &, neglecting &%, and
with the help of the solution of the above two
Wlmensional problem, we get the following
sgeations as the coefficients of &.

Flow and heat transfer in three---Visco-elastic flow past a porous plate.
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The corresponding boundary conditions
become

=0, vy=-acosmz, wo=0,T1=0aty=10
y=1;v=0, wp=0, p;=0, T1=0aty >

(3.18)
In order to solve the differential equations (3.13)
to (3.17) subject to the boundary condition

(3.18), we assume uy, vi, wi, p; and T as
follows:

(Y z)=uncosmwz, vi(y z) =

1
upcoswz, wiy z)=- Ev’” sinrw z,




