$$\frac{dp_0}{dx} = \frac{M^2 \alpha}{R} \tag{3.8}$$

This shows that in the presence of magnitude field, there exists a constant pressure gradient in y direction, where as in absence of the magnitude field this pressure turns out to be a constant, i.e. p_{∞} However, equations (3.3), (3.5), (3.6) are independent of pressure p_{o} and can be solved without involving it with the boundary conditions of the problem.

To solve equation (3.3), we assume that

$$u_o = u_{oo} + k_2 = u_{01}$$
 (3.9)
since $k_2 << 1$

Substituting (3.9) into the equation (3.3) and equating the like powers of k_2 , we obtain

$$\frac{1}{2} \alpha u'''_{oo} - u''_{01} - u'_{01} = 0 \qquad (3.10) \qquad \left\{ \frac{\partial^3 w_1}{\partial y^3} + \frac{\partial^3 w_1}{\partial y \partial z^2} \right\} - \frac{M^2}{R} w$$

$$\frac{1}{R}u_{oo} + \alpha u'_{oo} = -RGe^{-RP\alpha y}$$
 (3.11)

The solutions of equations (3.3), (3.5), (3.6), (3.8), (3.10) and (3.11)

$$w_{\infty} = 1 - A_2 e^{-R\alpha y} + A_1 e^{-RP\alpha y}$$

$$m_{01} = 1 + A_7 e^{-Ry} + A_5 e^{-R\alpha y} - e^{-RP\alpha y}$$

for
$$P \neq 1$$

$$w_0 = -\alpha, w_0 = 0, T_0 = e^{-RP\alpha y}$$
 (3.12)

When $\varepsilon \neq 0$, substituting (3.1) in equations (2.4) to (2.8) and comparing the coefficients of identical powers of ε , neglecting ε^2 , and with the help of the solution of the above two dimensional problem, we get the following as the coefficients of ε .

$$(3.8) \quad \frac{\partial v_1}{\partial v} + \frac{\partial w_1}{\partial z} = 0 \tag{3.13}$$

$$-\alpha \frac{\partial u_1}{\partial y} + v_1 \frac{\partial u_0}{\partial z} = RGT_0 + \frac{1}{R} \left(\frac{\partial^2 u_1}{\partial y^2} + \frac{\partial^2 u_1}{\partial z^2} \right)$$

$$+k_2\left\{\frac{1}{2}\alpha\frac{\partial}{\partial x}\left(\frac{\partial^2 u_1}{\partial y^2}+\frac{\partial^2 u_1}{\partial z^2}\right)-\frac{1}{2}\nu\frac{\partial}{\partial y}\frac{\partial^2 u_0}{\partial y^2}\right\}$$

$$+\frac{1}{2}\frac{\partial u_0}{\partial y}\left(\frac{\partial^2 v_1}{\partial y^2} + \frac{\partial^2 v_1}{\partial z^2}\right) + \frac{\partial v_1}{\partial y}\frac{\partial^2 u}{\partial y^2}$$
(3.14)

$$-\alpha \frac{\partial u}{\partial y} = -\frac{\partial p_1}{\partial y} + \frac{1}{R} \left(\frac{\partial^2 v_1}{\partial y^2} + \frac{\partial^2 v_1}{\partial z^2} \right) + \frac{1}{2} k_2 \alpha$$

$$\left\{ \frac{\partial^3 v_1}{\partial y^3} + \frac{\partial^3 v_1}{\partial y \partial z^2} \right\} - \frac{M^2}{R} v_1 \tag{3.15}$$

$$-\alpha\frac{\partial w_1}{\partial y} = -\frac{\partial p_1}{\partial y} + \frac{1}{R}\left(\frac{\partial^2 w_1}{\partial y^2} + \frac{\partial^2 w_1}{\partial z^2}\right) + \frac{1}{2}k_2\alpha$$

$$\left\{ \frac{\partial^3 w_1}{\partial y^3} + \frac{\partial^3 w_1}{\partial y \partial z^2} \right\} - \frac{M^2}{R} w \tag{3.16}$$

(3.11)
$$-\alpha \frac{\partial T_1}{\partial y} + v_1 \frac{\partial T_0}{\partial y} = \frac{1}{RP} \left(\frac{\partial^2 T_1}{\partial y^2} + \frac{\partial^2 T_1}{\partial z^2} \right)$$
(3.17)

The corresponding boundary conditions become

$$u_1 = 0$$
; $v_1 = -\alpha \cos \pi z$, $w_0 = 0$, $T_1 = 0$ at $y = 0$
 $u_1 = 1$; $v_1 = 0$, $w_0 = 0$, $p_1 = 0$, $T_1 = 0$ at $y \to \infty$

 $= 1; v_1 = 0, \quad w_0 = 0, p_1 = 0, \quad I_1 = 0 \text{ at } y \to \infty$ (3.18)

In order to solve the differential equations (3.13) to (3.17) subject to the boundary condition (3.18), we assume u_1 , v_1 , w_1 , p_1 and T_1 as follows:

$$u_1(y, z) = u_{11} \cos \pi z, v_1(y, z) =$$

$$u_{11}\cos\pi z$$
, $w_{1}(y, z) = -\frac{1}{\pi}v'_{11}\sin\pi z$,