Direct Sum of E- Injective N-Groups

Navalakhi Hazarika Department of Mathematics, Royal School of Engineering and Technology, Guwahati-781035 Email: navalakhmi@gmail.com

Helen K Saikia Department of Mathematics, Gauhati University, Guwahati- 781014 Email: hsaikia@yahoo.com

ABSTRACT

Extending the notion of relative injectivity of modules to near-ring groups, we define E-injective near-ring groups and characterize such near-ring groups. The nature of E-injective N-groups under direct sum is studied in this paper. The notion of dominance of an element of an N-group by another N-group plays an important role in establishing the fact that the direct sum of a family of E-injective N-groups is also E-injective. If near-ring group E satisfies chain conditions on its substructures, then inheritance of E-injective character of direct sum of E-injective N-groups is also established.

1. INTRODUCTION

Several researchers like Faith and Utumi [7], Page and Yousif [16], Boyle [3], Goodearl [10], Armendariz [2], Hirano [11], Fuller [9], Fuller and Anderson [1], Thoang [20] and many others have investigated different properties and relations of quasi- injective modules, relative injective modules satisfying chain conditions. Injective modules and near-ring groups have been studied by Mason et al [13], Faith et al [8], Seth and Tiwari [19], Meldrum [14], Oswald [15]. Of these Oswald and Mason have studied injective and projective near-ring modules. Mason [12] studied injective near-ring modules and defined the concepts like n-injective, loosely injective and almost injective near-ring modules. De et al [6] have shown how the ninjectivity and weakly n-injectivity character together with Beidleman's condition exhibit some interesting phenomena in case of m-simple near-ring groups. Saikia and Misra [18] have studied p-injective near-rings and weakly quasi injective nearring groups. In this paper we attempt to extend some characteristics of quasi- injectivity, relative injectivity in near-rings. The study of quasi injective modules and their endomorphism rings motivates us to extend these concepts to near-ring groups. The objective of this generalization is to investigate whether analogous results can be obtained in near-ring groups.

2. PRELIMINARIES

Throughout the paper we consider all N-groups as unitary N-groups unless otherwise specified. All basic concepts used in this paper are available in Pilz [8]**.** By a dgnr we mean a distributively generated near-ring. This section deals with some basic definitions and results which are used in the later sections.

2.1 Definition

Let E and W be N-groups. W is called E- injective or W is injective relative to E if for each N-monomorphism $f: K \to E$, every N –homomorphism from K into W can be extended to an N- homomorphism from E into W. i.e. The diagram

commutes which means $g = hf$.

2.2 Definition

An N-group A is injective if it is E-injective for every N-group E of N. So if an N-group A is injective it is E-injective for any N-group E.

2.3 Definition

If N-group W is E-injective then E is said to be a WI-N-group. If a commutative N-group W is E-injective then E is called a W_CI-N-group.

2.4 Proposition

If N is a dgnr and ${Ne}$ $_{eeE}$ is an independent family of normal N-subgroups of N-group E then E is a homomorphic image of $\oplus_{e\in E}$ Ne.

Proof: Let f_e : Ne \rightarrow E be defined by f_e (ne) = ne. Then f_e is an N-homomorphism.

If we define $f = \sum_{e \in E} f_e : \bigoplus_{e \in E} Ne \to E$ by $(\sum_{e \in E} f_e)(\sum_{e \in E} ne) = (\sum_{e \in E} f_e(ne))$, $n \in N$, it is an N-homomorphism. Obviously it is an N-monomorphism. Again for any $e_k \in E$ we get $e_k \in Ne_k \in \bigoplus_{e \in E} Ne$. So f is onto. Hence E is a homomorphic image of $\oplus_{e\in E}$ Ne.

2.5 Proposition

Let N be a dgnr, E be an N-group and F be a commutative N-group. Then the set Hom_N (E, F) = {f / f: E \rightarrow F is an Nhomomorphism} is an abelian group where addition is defined as: $(f + g)(e) = f(e) + g(e)$, for all f, $g \in Hom_N(E, F)$.

2.6 Proposition

Let B, M be two N-groups and C an ideal of B. For N-homomorphism

 $f : B \to M \exists$ a unique homomorphism $\overline{f} : \frac{B}{C} \to M$ such that $\overline{f}(\overline{b}) = f(b), \forall C \subseteq \text{Kerf}$.

If f is an epimorphism, then \overline{f} defined as above is also an epimorphism.

2.7 Definition

For an N-group A an element $x \in A$ is said to be dominated by N-group E if $Ann_N(x) \supset Ann_N(e)$ for some $e \in E$.

Let $\{A_{\alpha}\}_{{\alpha}\in I}$ be a family of N-groups. Let x be the element of $\Pi_{{\alpha}\in I} A_{\alpha}$ whose α - component is x_{α} .

We define $I_x = \{n \in N | nx \in \bigoplus_{\alpha \in J} A_{\alpha} \}.$

Then $x \in \Pi_{\alpha \in J}$ A_{α} is called a special element if I_xx_{α} = 0 for almost all α . In other words there exists a finite subset F of J such that $nx_\alpha = 0$ for all $n \in I_x$ and for all $\alpha \in F$.

2.8 Proposition

Let U be a commutative N-group and f: $L \rightarrow M$ be an N-homomorphism. We can define a mapping

 $f^* = Hom_N(f, U) : Hom_N(M, U) \to Hom_N(L, U)$ by $Hom_N(f, U) : \gamma \to \gamma f$ i.e. $f^* \gamma = \gamma f$

then $Hom_N(f, U)$ is an N-homomorphism.

2.9 Proposition

If U is a commutative N-group, then for every exact sequence

$$
0 \to K \stackrel{f}{\to} E \stackrel{g}{\to} L \to 0
$$

the sequence $0 \to \text{Hom}_{N}(L, U) \stackrel{g^*}{\to} \text{Hom}_{N}(E, U) \stackrel{f^*}{\to} \text{Hom}_{N}(K, U)$ is exact.

2.10 Proposition

A commutative N-group U is E-injective if and only if $Hom_N(-, U)$ is exact.

3. E-INJECTIVE N-GROUPS

In this section we discuss some properties of E-injective N-groups needed in the sequel.

3.1 Proposition

N-subgroups of a WI N-group are again WI N-groups.

Proof: Let E be a WI N-group. Thus W is E-injective.

And let E' be any N-subgroup of E.

Let h: $E' \to E$ be an N-monomorphism and K' be an N-subgroup of E' and $f: K' \to E'$ be any N-monomorphism. Then hf is also an N-monomorphism, hf: $K' \rightarrow E$.

Now W is E-injective, so for any N-subgroup K of E, the N-monomorphism i: $K \rightarrow E$ and any N-homomorphism

 $k : K \to W$, \exists an N- homomorphism $\gamma : E \to W$ such that $k = \gamma i$.

Since W is E-injective, so for N- monomorphism hf : $K' \rightarrow E$ and $p : K' \rightarrow W$ we get

 $\gamma : E \to W$ such that $\gamma(hf) = p$. That is the following diagram commutes.

Now $f: K' \to E'$ is an N-monomorphism and for any N- homomorphism $p: K' \to W$,

we get $\gamma h : E' \to W$ such that the diagram commutes.

That is $p = (\gamma h)$ f. Therefore W is E^{\prime} - injective.

3.2 Proposition

If W is E- injective then W is Ne-injective for all $e \in E$.

Proof: Since Ne is an N-subgroup of E. As W is E- injective, proposition 2.3 implies W is Ne-injective.

3.3 Proposition

Homomorphic images of a $W_C I N$ -groups are again $W_C I N$ -groups.

Proof: Given $0 \to E' \longrightarrow E \longrightarrow E'' \to 0$ is exact and commutative N-group W is E-injective.

We show W is E'' -injective. Let $E' \le K \le E$ and that $E'' = E/E'$. Now we consider the canonical diagram

© RECENT SCIENCE PUBLICATIONS ARCHIVES| August 2013|\$25.00 | 27702579 |

Now applying Hom $_N($ - , W) we get the diagram

$$
\begin{array}{ccc}\n & 0 & 0 & 0 \\
 & \downarrow & & \downarrow \\
0 \to \operatorname{Hom}_N(E/E', W) \to \operatorname{Hom}_N(E, W) \to \operatorname{Hom}_N(E', W) \to 0 \\
 & 0 \to \operatorname{Hom}_N(K/E', W) \to \operatorname{Hom}_N(K, W) \to \operatorname{Hom}_N(E', W) \to 0\n\end{array}
$$

Since $\text{Hom}_N(E/E', W) \longrightarrow \text{Hom}_N(K/E', W)$ is epic, for all $\gamma \in \text{Hom}_N(K/E', W) \exists \alpha \in \text{Hom}_N(E/E', W)$ such that $\phi(\alpha) = \gamma$

 \Rightarrow of $=\gamma$, where f: K/E^{\prime} \rightarrow E/E^{\prime} is an N-monomorphism and ϕ = Hom_N(f, W). Thus W is E/E^{\prime}-injective \Rightarrow E^{$\prime\prime$} is W_cI Ngroup of E.

4. DIRECT SUM OF N-GROUPS WITH INJECTIVITY AND E-INJECTIVITY

4.1 Proposition

Let N be a dgnr. If E_{α} is a WI N-group for all $\alpha \in A$, then $E = \bigoplus_{\alpha \in A} E_{\alpha}$ is a WI N-group, where E is commutative.

Proof: Let $E = \bigoplus_{\alpha \in A} E_{\alpha}$ and E_{α} is WI N-group

 \Rightarrow W is E_{α}-injective for all $\alpha \in A$.

We consider an N-subgroup K of E and the N-homomorphism h: $K \rightarrow W$.

Let $\Omega = \{f: L \to W / K \le L \le E \text{ and } (f \mid K) = h\}.$

Let $g: A \to W$, $h: B \to W \in \Omega$. $g \leq h$ if $A \subseteq B \subseteq E$.

Then Ω is ordered set by set inclusion. Ω is clearly inductive.

Let $\overline{\mathbf{h}} : M \to W$ be a maximal element in Ω .

To get the proof it is sufficient to show that each E_{α} is contained in M.

Let $K_{\alpha} = E_{\alpha} \cap M$. Then $(\overline{h} \mid K_{\alpha}) : K_{\alpha} \to W$, so since $K_{\alpha} \le E_{\alpha}$ and W is E_{α} -injective, there is an N-homomorphism $\overline{h_{\alpha}} : E_{\alpha}$ \rightarrow W with $(\overline{\mathbf{h}_{\alpha}} \mid \mathbf{K}_{\alpha}) = (\overline{\mathbf{h}} \mid \mathbf{K}_{\alpha}).$

If $e_{\alpha} \in E_{\alpha}$ and $m \in M$ such that $e_{\alpha}+ m = 0$, then $e_{\alpha} = - m \in K_{\alpha}$ and $\overline{h_{\alpha}}$ $(e_{\alpha}) + \overline{h}$ (m)

$$
=\overline{\mathbf{h}}(-m)+\overline{\mathbf{h}}(m)=0.
$$

Thus f: $e_{\alpha} + m \rightarrow \overline{h_{\alpha}} (e_{\alpha}) + \overline{h} (m)$ is a well defined N-homomorphism f : $E_{\alpha} + M \rightarrow W$.

But (f | M) = $\overline{\mathbf{h}}$, so by maximality of $\overline{\mathbf{h}}$, $\mathbf{E}_{\alpha} \subseteq \mathbf{M}$.

4.2 Proposition

Let N be a dgnr. If W is a commutative N-group and {Ne} $_{e \in E}$ is an independent family of normal N-subgroups of N-group E, W is Ne-injective for all $e \in E$, then W is E-injective

Proof: W is Ne-injective for all $e \in E$. So by proposition 3.2, W is $\oplus_{e \in E}$ Ne-injective.

Since E is a homomorphic image of $\oplus_{e \in E}$ Ne, by proposition 2.4 and since homomorphic image of a W_CI N-group is W_CI Ngroup by proposition 3.3. So W is E-injective.

4.3 Proposition

If a finite direct sum of injective normal N-subgroups (ideals) Q_{α} of E is injective, then each Q_{α} is injective.

Proof: Let $Q = \oplus Q_{\alpha}$ be injective N- group and consider the N-monomorphism

 $f_{\alpha}: M \to Q_{\alpha}$, where M is some N- subgroup of E.

Since, Q is direct sum of Q_{α} 's, for any $\alpha = 1, 2, 3, \dots \dots \dots$, n, so there is the inclusion map $i_{\alpha} : Q_{\alpha} \to Q$ and the projection map $\Pi_{\alpha} : Q \to Q_{\alpha}$ such that $\Pi_{\alpha} i_{\alpha} = \mathbf{1}_{Q_{\alpha}}$.

Consider a diagram

with top row exact.

Since Q is injective there exists an N- homomorphism $h_{\alpha} : N' \to Q$, such that $h_{\alpha} \Phi = i_{\alpha} f_{\alpha}$.

Now we define $\Psi : N' \to Q_\alpha$ by $\Psi_\alpha = \Pi_\alpha h_\alpha$. Since $\Pi_\alpha i_\alpha = \mathbf{1}_{Q_{-\alpha}}$ it follows that $\Psi_\alpha \Phi = \Pi_\alpha h_\alpha \Phi = \Pi_\alpha i_\alpha$ $f_\alpha = f_\alpha$. So, the following diagram is commutative. Ф

Thus, each Q_{α} is injective.

4.4 Proposition

Let N be a dgnr. A finite direct sum of injective normal N-subgroups (ideals) Q_α of E is injective if each Q_α is injective.

Proof: Let $Q = \oplus Q_{\alpha}$ with each $Q_{\alpha I}$ is an injective N- group.

Now consider a diagram

where M, N' are N- subgroups of E with the top row exact.

For any $\alpha = 1, 2, 3, \ldots, m$, there is the canonical inclusion $i_{\alpha} : Q_{\alpha} \to Q$ and the projection

 $\Pi_{\alpha} : Q \to Q_{\alpha}$, so there are N-homomorphisms $\Pi_{\alpha} f : M \to Q_{\alpha}$.

Since Q_{α} is injective, there exists an N-homomophism $h_{\alpha}: N' \to Q_{\alpha}$ such that $h_{\alpha} \Phi = \Pi_{\alpha} f$.

Now we define a map h: $N' \rightarrow Q$ by the formula $h(x) = (h_1(x) + \ldots + h_n(x)) \forall x \in N'$.

© RECENT SCIENCE PUBLICATIONS ARCHIVES| August 2013|\$25.00 | 27702579 |

This article is authorized for use only by Recent Science Journal Authors, Subscribers and Partnering Institutions

Then h is an N-homomophism as N is a dgnr.

We shall show the diagram commutes. i.e. $f = h\Phi$.

Since Q is a direct sum, for any $x \in N'$,

 $h\phi(x) = (h_1\phi(x) + h_2\phi(x) + \ldots + h_n\phi(x)) = (\prod_i f(x) + \prod_i f(x) + \ldots + \prod_i f(x)) = f(x)$

So, $h \phi = f$. Thus Q is injective.

4.5 Corollary

Let N be a dgnr. A finite direct sum of injective normal N-subgroups (ideals) Q_α of E is injective if and only if each Q_α is injective.

4.6 Theorem

A finite direct sum of injective N-groups Q_{α} is injective if and only if each Q_{α} is injective.

Proof: Proof is same as theorem 4.3., except in this case we define a map $h : N' \to Q$ by $h(x) = (h_1(x), \ldots, h_n(x)) \forall x \in N'$.

4.7 Theorem

Let N be a near-ring and $\{Q_i\}_{i\in I}$ a family of E-injective N-groups. Then the product $Q = \prod_{i\in I}Q_i$ is E- injective.

Proof: Let $A \subseteq E$ be an N-subgroup of E and f: $A \rightarrow Q$ an N-homomorphism.

It is enough to show that f can be extended to E.

For i iii we denote $\pi_i: Q \to Q_i$ the projection map. Since Q_i is E-injective for any iiiiil, so the N-homomorphism $\pi_i.f: A \to Q_i$ can be extended to $f_i': E \to Q_i$.

Then we have $f: E \rightarrow Q$ by $f'(e) = (f'_i(e))_{i \in I}$.

If $a \in A$, then $f(a) = f(a)$, so f' is an extension of f. Thus Q is E-injective.

4.8 Theorem

If $\oplus_{\alpha \in J} A_{\alpha}$ is E-injective then each A_{α} is E-injective and every element of $\Pi_{\alpha \in J} A_{\alpha}$ dominated by E is special.

Proof: Let $A = \bigoplus_{\alpha \in J} A_{\alpha}$ be E injective. Let N' be an N-group. Consider the N-homomorphism $f_{\alpha}: N' \to A_{\alpha}$. Since A is direct sum of N-groups A_{α} , $\alpha \in J$, so for any $\alpha \in J$, there is the inclusion map $i_{\alpha} : A_{\alpha} \to A$ and the projection $\pi_{\alpha} : A \to A_{\alpha}$ such that π_α i_{α} = $\mathbf{1}_{\mathbf{A}_-}$.

Consider a diagram, with top row exact.

Since A is E - injective, \exists a homomorphism $h_{\alpha} : E \to A$ such that $h_{\alpha} \Phi = i_{\alpha} f_{\alpha}$.

Thus A_{α} is E -injective.

 Π_{α}

Let $x \in \Pi_{\alpha} A_{\alpha}$ be dominated by E . This implies that there is an $e \in E$ such that Ann_N(x) \supset Ann_N(e).

Then it gives an N-homomorphism f: Ne $\rightarrow \Pi A_{\alpha}$ defined by $\lambda e \rightarrow \lambda x$ ($\lambda \in N$).

Let
$$
(\lambda_1 e)
$$
, $(\lambda_2 e) \in Ne$ and $f(\lambda_1 e) \neq f(\lambda_2 e) \Rightarrow (\lambda_1 x) \neq (\lambda_2 x) \Rightarrow (\lambda_1 - \lambda_2) x \neq 0$

 \Rightarrow $(\lambda_1 - \lambda_2) \notin Ann_N(x)$

 $\Rightarrow (\lambda_1 - \lambda_2) \notin Ann_N(e)$ [since Ann_N(x) $\Rightarrow Ann_N(e)] \Rightarrow (\lambda_1 - \lambda_2) e \neq 0 \Rightarrow (\lambda_1 e) \neq (\lambda_2 e)$.

Therefore, the mapping is well defined .

 $f(\lambda_1 e + \lambda_2 e) = f((\lambda_1 + \lambda_2)e) = (\lambda_1 + \lambda_2)x = (\lambda_1 x + \lambda_2 x) = f(\lambda_1 e) + f(\lambda_2 e)$

Next for
$$
n \in N
$$
, $f(n(\lambda_1 e)) = f((n\lambda_1)e) = (n\lambda_1)x = n(\lambda_1 x) = n f(\lambda_1 e)$

Thus f is an N- homomorphism.

The image of the N-subgroup I_x e by f is clearly I_x x ($\subset \bigoplus A_{\alpha}$).

Thus the restriction of f to I_xe is regarded as an N-homomorphism I_xe $\rightarrow \oplus A_{\alpha}$.

Since \oplus A_a is E-injective and so Ne-injective by proposition 3.2. So, we get N-homomorphism Ne $\to \oplus$ A_a which means that there exists a $u \in \bigoplus A_{\alpha}$ such that $\lambda x = \lambda u$ (for all $\lambda \in I_{x}$).

It follows that $I_x x_\alpha = I_x u_\alpha$ for all $\alpha \in J$.

But since $u_{\alpha} = 0$ for almost all α , it follows that $I_{x}x_{\alpha} = 0$ for almost all α too \Rightarrow x is special.

4.9 Theorem

Let N be a dgnr. If {Ne} eE is an independent family of normal N-subgroups of E, $\oplus_{\alpha \in J} A_{\alpha}$ is a commutative N-group, then each A_α is E –injective. Moreover, every element of $\Pi_{\alpha \in J} A_\alpha$ dominated by E is special implies $\oplus_{\alpha \in J} A_\alpha$ is E -injective.

Proof: Let each A_{α} is E -injective and every element of $\Pi_{\alpha \in J} A_{\alpha}$ dominated by E is special.

Let $e \in E$ and consider the N- subgroup Ne of E. Let J be an N-subgroup of N. Then Je is an N-subgroup of Ne. Let there be given an N- homomorphism h: Je $\rightarrow \oplus A_{\alpha}$. Then since $\oplus A_{\alpha} \subset \Pi A_{\alpha}$ and ΠA_{α} is E-injective (as each A_{α} is E-injective, by theorem 4.7) whence Ne- injective (by proposition 3.2), h can be extended to an N-homomorphism Ne $\rightarrow \Pi A_{\alpha}$.

Let $x \in \Pi A_{\alpha}$ and we define the N-homomorphism as $\lambda e \rightarrow \lambda x$ ($\lambda \in N$)

Therefore it follows that $Jx = h (Je) \subset \bigoplus A_{\alpha}$, whence $J \subset I_{x}$.

On the otherhand since clearly Ann_N (e) \subset Ann_N(x), x is dominated by E and thus x is special by assumption \Rightarrow I_{xx_a =0} whence $Jx_{\alpha} = 0$ for almost all α .

Let u be the element of \oplus A_{α}, whose α -component is x_{α} or 0 according as Jx_{α} \neq 0 or Jx_{α}=0.

Then it is clear that $\lambda u = \lambda x$ for all $\lambda \in J$.

Further, it is also clear that Ann_N (e) \subset Ann_N (x) \subset J and therefore the mapping gives an N-homomorphism f: Ne $\to \oplus A_{\alpha}$ which is an extension of h, because $f(\lambda e) = \lambda u = \lambda x$ for all $\lambda \in J$.

© RECENT SCIENCE PUBLICATIONS ARCHIVES| August 2013|\$25.00 | 27702579 |

This article is authorized for use only by Recent Science Journal Authors, Subscribers and Partnering Institutions

This implies that \oplus A_{α} is Ne-injective and so E–injective by proposition 3.1.

4.10 Corollary

Let N be a dgnr. If $\{Ne\}$ eE is an independent family of normal N-subgroups of N-group E, $\oplus_{\alpha\in I} A_{\alpha}$ is commutative N-group then $\oplus_{\alpha\in J} A_\alpha$ is E-injective if and only if each A_α is E-injective and every element of $\Pi_{\alpha\in J} A_\alpha$ dominated by E is special implies $\oplus_{\alpha \in J} A_{\alpha}$ is E-injective

4.11 Theorem

Suppose ${A_{\alpha}}_{\alpha\in I}$ is a family of E-injective N-groups such that for every countable subset K of J, $\oplus_{\alpha\in K}A_{\alpha}$ is E - injective. Then $\oplus_{\alpha \in J} A_{\alpha}$ is itself E - injective.

Proof: Assume that $\bigoplus_{\alpha \in J} A_{\alpha}$ is not E - injective.

Then by theorem 4.8, there exists an $x \in \Pi_{\alpha \in J}A_{\alpha}$ which is dominated by E but is not special $\Rightarrow I_{x}x_{\alpha} \neq 0$ for infinitely many $\alpha \in J$.

Let k be an infinite countable subset of the infinite set $\{\alpha \in J \mid I_x x_\alpha \neq 0\}.$

Let y be element of $\Pi_{\alpha \in k} A_{\alpha}$ whose α - component y $_{\alpha}$ is equal to x_{α} for all $\alpha \in K$.

Then clearly $I_x \subset I_y$, so that it follows that y is dominated by E and $I_y y_\alpha = I_y x_\alpha \neq 0$ for all $\alpha \in K$.

This implies again by theorem 4.8, that $\bigoplus_{\alpha \in K} A_{\alpha}$ is not E-injective (because each A_{α} is E-injective by our assumption). This is a contradiction and so the proof is complete.

4.12 Theorem

Let N be dgnr. If {Ne} eE is an independent family of normal N-subgroups of N-group E, $\oplus_{\alpha \in J} A_\alpha$ is commutative N-group then direct sum of any family $\{A_{\alpha}\}\$ of E-injective N- groups is E - injective if E is Noetherian.

Proof: Let $\{A_{\alpha}\}\$ be a family of E-injective N- group. Let x be an element of ΠA_{α} , dominated by e. Then there is an $e \in E$ such that $Ann_N(e) \subset Ann_N(x)$. Consider I_xe.

Since clearly Ann_N(x) $\subset I_x$, whence Ann_N(e) $\subset I_x$, it follows that $I_x/\text{Ann}_N(e) \cong I_xe$

On the other hand I_x e is a N-subgroup of Ne, so N-subgroup of Noetherian N-group E.

Hence, $I_x/\text{Ann}_N(e)$ is finitely generated \Rightarrow there exists a finite number of elements $\lambda_1, \lambda_2, \dots, \dots, \lambda_n$ of I_x such that $I_x =$ $N\lambda_1 + N \lambda_2 + \dots + N\lambda_n + Ann_N(e)$

It follows therefore $I_xX_{\alpha}= N\lambda_1 X_{\alpha}+ N \lambda_2 X_{\alpha}+ \ldots \ldots + N\lambda_n X_{\alpha}$ for all components X_{α} .

Since however for each i, $\lambda_i x_\alpha = 0$, for almost all α , it follows that $I_x x_\alpha = 0$ for almost all $\alpha \Rightarrow x$ is special. Thus $\oplus A_\alpha$ is Einjective by theorem 4.9.

REFERENCES

- [1] F.W Anderson and K. R Fuller: Rings and Categories of modules, Springer Verlag, New York, (1974).
- [2] E.P Armendariz: Rings with dcc on essential left ideals, Communications in Algebra, 8(3), (1980), 299-308.
- [3] A. K. Boyle and K. R. Goodearl: Rings over which certain modules are injective, Pacific J. of Mathematics, 58 (1), (1975), 43-53.
- [4] S. U. Chase: Direct products of modules, Transactions of the American Mathematical Society, 97 (3), (1960), 457– 473.
- [5] B. De (Deb): On E-Injective N-Groups, Assam University J. of Science & Technology: Physical Sciences and Technology, 5 (II), (2010), 99-102.
- [6] B. De, K. C. Chowdhury and H. K. Saikia,: A note on near-ring groups with irreducible substructures, Far East J. Math Sci. 6(3), (2002), 255-274.
- [7] C.Faith and Y. Utumi: Quasi- injective-injective modules and their endomorphism rings, Arch Math.XV,1963, 166-174.

- [8] C. Faith and A.Walker: Albert, direct sum representations of injective modules, J. of Algebra, 5 (2), (1967), 203- 221.
- [9] K. R Fuller.: Relative Projectivity and injectivity classes determined by simple modules, J. of London Mathematical society, 2 (5), (1972), 423-431.
- [10] K. R. Goodearl: Ring theory, Nonsingular rings and modules, Marcel Dekker, 1976.
- [11] Y. Hirano: Regular modules and P-modules, Hiroshima Mathematical Journal, 11, (1981), 125-142.
- [12] G. Mason: Injective and projective near-ring modules, Compositio Mathematica, Vol. 33, Fasc 1, (1976), 43-54.
- [13] G. Mason and A. Oswald: Injective and projective near-ring modules, Tesside Polytechnic Mathematical Reports, (1981).
- [14] John D. P. Meldrum:Injective Near-Ring Modules over Z_n , Proceedings of the American Mathematical Society, Vol. 68, (1),(1978),16-18
- [15] A. Oswald: A note on injective modules over a d.g. near-ring, Canad. Math. Bull.Vol. 20 (2), (1977), 267-269
- [16] S.S Page and M.F. Yousif: Relative injectivity and chain conditions, Communications in Algebra, 17(4), 1989, 899 924.
- [17] G. Pilz: Near-rings, North Holland publishing Company, Amsterdam, 1983.
- [18] H K Saikia and K.Misra: On p-injective strictly FGD near-ring, journal of Rajasthan Academy of Physical Sciences, vol 6, (4), (2007), 361-370.
- [19] V. Seth and K. Tiwari: On injective near-ring modules, Canad Math. Bull. 17(1), (1974), 137-141.
- [20] L. Thoang and L. Thuyet: On generalizations of injectivity, Acta Math. Univ. Comenianae, LXXV (2), (2006), 199– 208.

RECENT SCIENCE