Direct Sum of E- Injective N-Groups

Navalakhi Hazarika Department of Mathematics, Royal School of Engineering and Technology, Guwahati-781035 Email: navalakhmi@gmail.com Helen K Saikia Department of Mathematics, Gauhati University, Guwahati- 781014 Email: hsaikia@yahoo.com

ABSTRACT

Extending the notion of relative injectivity of modules to near-ring groups, we define E-injective near-ring groups and characterize such near-ring groups. The nature of E-injective N-groups under direct sum is studied in this paper. The notion of dominance of an element of an N-group by another N-group plays an important role in establishing the fact that the direct sum of a family of E-injective N-groups is also E-injective. If near-ring group E satisfies chain conditions on its substructures, then inheritance of E-injective character of direct sum of E-injective N-groups is also established.

1. INTRODUCTION

Several researchers like Faith and Utumi [7], Page and Yousif [16], Boyle [3], Goodearl [10], Armendariz [2], Hirano [11], Fuller [9], Fuller and Anderson [1], Thoang [20] and many others have investigated different properties and relations of quasi-injective modules, relative injective modules satisfying chain conditions. Injective modules and near-ring groups have been studied by Mason et al [13], Faith et al [8], Seth and Tiwari [19], Meldrum [14], Oswald [15]. Of these Oswald and Mason have studied injective and projective near-ring modules. Mason [12] studied injective near-ring modules and defined the concepts like n-injectivity character together with Beidleman's condition exhibit some interesting phenomena in case of m-simple near-ring groups. Saikia and Misra [18] have studied p-injective near-rings and weakly quasi injective near-rings. The study of quasi injective modules and their endomorphism rings motivates us to extend these concepts to near-ring groups. The objective of this generalization is to investigate whether analogous results can be obtained in near-ring groups.

2. PRELIMINARIES

Throughout the paper we consider all N-groups as unitary N-groups unless otherwise specified. All basic concepts used in this paper are available in Pilz [8]. By a dgnr we mean a distributively generated near-ring. This section deals with some basic definitions and results which are used in the later sections.

2.1 Definition

Let E and W be N-groups. W is called E- injective or W is injective relative to E if for each N-monomorphism $f: K \to E$, every N –homomorphism from K into W can be extended to an N- homomorphism from E into W. i.e. The diagram

commutes which means g = hf.

2.2 Definition

An N-group A is injective if it is E-injective for every N-group E of N. So if an N-group A is injective it is E-injective for any N-group E.

2.3 Definition

If N-group W is E-injective then E is said to be a WI-N-group. If a commutative N-group W is E-injective then E is called a W_{c} I-N-group.

© RECENT SCIENCE PUBLICATIONS ARCHIVES | August 2013 | \$25.00 | 27702579 |

2.4 Proposition

If N is a dgnr and {Ne} $_{e \in E}$ is an independent family of normal N-subgroups of N-group E then E is a homomorphic image of $\bigoplus_{e \in E}$ Ne.

Proof: Let $f_e: Ne \to E$ be defined by $f_e(ne) = ne$. Then f_e is an N-homomorphism.

If we define $f = \Sigma_{e \in E} f_e : \bigoplus_{e \in E} Ne \to E$ by $(\Sigma_{e \in E} f_e) (\Sigma_{e \in E} ne) = (\Sigma_{e \in E} f_e(ne))$, $n \in N$, it is an N-homomorphism. Obviously it is an N-monomorphism. Again for any $e_k \in E$ we get $e_k \in Ne_k \in \bigoplus_{e \in E} Ne$. So f is onto. Hence E is a homomorphic image of $\bigoplus_{e \in E} Ne$.

2.5 Proposition

Let N be a dgnr, E be an N-group and F be a commutative N-group. Then the set $\text{Hom}_N(E, F) = \{f / f: E \rightarrow F \text{ is an N-homomorphism}\}$ is an abelian group where addition is defined as: (f + g)(e) = f(e) + g(e), for all $f, g \in \text{Hom}_N(E, F)$.

2.6 Proposition

Let B, M be two N-groups and C an ideal of B. For N-homomorphism

 $f: B \to M \exists a \text{ unique homomorphism } \overline{f}: \frac{B}{C} \to M \text{ such that } \overline{f}(\overline{b}) = f(b), \forall C \subseteq \text{Kerf}.$

If f is an epimorphism, then $\overline{\mathbf{f}}$ defined as above is also an epimorphism.

2.7 Definition

For an N-group A an element $x \in A$ is said to be dominated by N-group E if $Ann_N(x) \supset Ann_N(e)$ for some $e \in E$.

Let $\{A_{\alpha}\}_{\alpha\in J}$ be a family of N-groups. Let x be the element of $\prod_{\alpha\in J}A_{\alpha}$ whose α - component is x_{α} .

We define $I_x = \{n \in N | nx \in \bigoplus_{\alpha \in J} A_\alpha\}.$

Then $x \in \prod_{\alpha \in J} A_{\alpha}$ is called a special element if $I_x x_{\alpha} = 0$ for almost all α . In other words there exists a finite subset F of J such that $nx_{\alpha} = 0$ for all $n \in I_x$ and for all $\alpha \in F$.

2.8 Proposition

Let U be a commutative N-group and f: $L \rightarrow M$ be an N-homomorphism. We can define a mapping

 $f^* = Hom_N(f, U) : Hom_N(M, U) \rightarrow Hom_N(L, U)$ by $Hom_N(f, U) : \gamma \rightarrow \gamma f$ i.e. $f^* \gamma = \gamma f$

then $Hom_N(f, U)$ is an N-homomorphism.

2.9 Proposition

If U is a commutative N-group, then for every exact sequence

$$0 \rightarrow K \xrightarrow{f} E \xrightarrow{g} L \rightarrow 0$$

the sequence $0 \to \operatorname{Hom}_{N}(L, U) \xrightarrow{g^{*}} \operatorname{Hom}_{N}(E, U) \xrightarrow{f^{*}} \operatorname{Hom}_{N}(K, U)$ is exact.

2.10 Proposition

A commutative N-group U is E-injective if and only if $Hom_N(-, U)$ is exact.

3. E-INJECTIVE N-GROUPS

In this section we discuss some properties of E-injective N-groups needed in the sequel.

3.1 Proposition

N-subgroups of a WI N-group are again WI N-groups.

Proof: Let E be a WI N-group. Thus W is E-injective.

© RECENT SCIENCE PUBLICATIONS ARCHIVES | August 2013 | \$25.00 | 27702579 | *This article is authorized for use only by Recent Science Journal Authors, Subscribers and Partnering Institutions* And let E' be any N-subgroup of E.

Let h: $E' \to E$ be an N-monomorphism and K' be an N-subgroup of E' and f: K' $\to E'$ be any N-monomorphism. Then hf is also an N-monomorphism, hf: K' $\to E$.

Now W is E-injective, so for any N-subgroup K of E, the N-monomorphism $i: K \rightarrow E$ and any N-homomorphism

 $k:K\to W, \ \exists \ an \ N- \ homomorphism \ \gamma:E\to W \ such \ that \ k=\gamma i.$

Since W is E-injective, so for N- monomorphism $hf: K' \to E$ and $p: K' \to W$ we get

 $\gamma: E \rightarrow W$ such that $\gamma(hf) = p$. That is the following diagram commutes.

Now $f: K' \to E'$ is an N-monomorphism and for any N- homomorphism $p: K' \to W$,

we get $\gamma h : E' \to W$ such that the diagram commutes.

That is $p = (\gamma h) f$. Therefore W is E[']- injective.

3.2 Proposition

If W is E- injective then W is Ne–injective for all $e \in E$.

Proof: Since Ne is an N-subgroup of E. As W is E- injective, proposition 2.3 implies W is Ne-injective.

3.3 Proposition

Homomorphic images of a W_CI N-groups are again W_CI N-groups.

Proof: Given $0 \to E' \xrightarrow{\mathbf{h}} E \xrightarrow{\mathbf{k}} E'' \to 0$ is exact and commutative N-group W is E-injective.

We show W is E''-injective. Let $E' \le K \le E$ and that E'' = E/E'. Now we consider the canonical diagram

© RECENT SCIENCE PUBLICATIONS ARCHIVES | August 2013 | \$25.00 | 27702579 |

Now applying $Hom_N(-, W)$ we get the diagram

Since $\operatorname{Hom}_{N}(E/E', W) \xrightarrow{\phi} \operatorname{Hom}_{N}(K/E', W)$ is epic, for all $\gamma \in \operatorname{Hom}_{N}(K/E', W) \exists \alpha \in \operatorname{Hom}_{N}(E/E', W)$ such that $\phi(\alpha) = \gamma$

 $\Rightarrow \alpha f = \gamma$, where $f: K/E' \rightarrow E/E'$ is an N-monomorphism and $\phi = Hom_N(f, W)$. Thus W is E/E'-injective $\Rightarrow E''$ is $W_cI N$ -group of E.

4. DIRECT SUM OF N-GROUPS WITH INJECTIVITY AND E-INJECTIVITY

4.1 Proposition

Let N be a dgnr. If E_{α} is a WI N-group for all $\alpha \in A$, then $E = \bigoplus_{\alpha \in A} E_{\alpha}$ is a WI N-group, where E is commutative.

Proof: Let $E = \bigoplus_{\alpha \in A} E_{\alpha}$ and E_{α} is WI N-group

 \Rightarrow W is E_{α}-injective for all $\alpha \in A$.

We consider an N-subgroup K of E and the N-homomorphism h: $K \rightarrow W$.

Let $\Omega = \{f: L \rightarrow W / K \le L \le E \text{ and } (f \mid K) = h\}.$

Let g: $A \rightarrow W$, h : $B \rightarrow W \in \Omega$. g \leq h if $A \subseteq B \subseteq E$.

Then Ω is ordered set by set inclusion. Ω is clearly inductive.

Let $\overline{\mathbf{h}} : \mathbf{M} \to \mathbf{W}$ be a maximal element in Ω .

To get the proof it is sufficient to show that each E_{α} is contained in M.

Let $K_{\alpha} = E_{\alpha} \cap M$. Then $(\overline{\mathbf{h}} \mid K_{\alpha}) : K_{\alpha} \to W$, so since $K_{\alpha} \le E_{\alpha}$ and W is E_{α} - injective, there is an N-homomorphism $\overline{\mathbf{h}_{\alpha}} : E_{\alpha} \to W$ with $(\overline{\mathbf{h}_{\alpha}} \mid K_{\alpha}) = (\overline{\mathbf{h}} \mid K_{\alpha})$.

If $e_{\alpha} \in E_{\alpha}$ and $m \in M$ such that $e_{\alpha} + m = 0$, then $e_{\alpha} = -m \in K_{\alpha}$ and $\overline{h_{\alpha}}(e_{\alpha}) + \overline{h}(m)$

$$=\overline{\mathbf{h}}(-\mathbf{m})+\overline{\mathbf{h}}(\mathbf{m})=0.$$

Thus f: $e_{\alpha} + m \rightarrow \overline{h_{\alpha}}(e_{\alpha}) + \overline{h}(m)$ is a well defined N-homomorphism f : $E_{\alpha} + M \rightarrow W$.

But $(f \mid M) = \overline{\mathbf{h}}$, so by maximality of $\overline{\mathbf{h}}$, $E_{\alpha} \subseteq M$.

4.2 Proposition

Let N be a dgnr. If W is a commutative N-group and $\{Ne\}_{e \in E}$ is an independent family of normal N-subgroups of N-group E, W is Ne-injective for all $e \in E$, then W is E-injective

Proof: W is Ne-injective for all $e \in E$. So by proposition 3.2, W is $\bigoplus_{e \in E} Ne$ -injective.

© RECENT SCIENCE PUBLICATIONS ARCHIVES | August 2013 | \$25.00 | 27702579 |

Since E is a homomorphic image of $\bigoplus_{e \in E}$ Ne, by proposition 2.4 and since homomorphic image of a W_CI N-group is W_CI N-group by proposition 3.3. So W is E-injective.

4.3 Proposition

If a finite direct sum of injective normal N-subgroups (ideals) Q_{α} of E is injective, then each Q_{α} is injective.

Proof: Let $Q = \bigoplus Q_{\alpha}$ be injective N- group and consider the N-monomorphism

 $f_\alpha: M \to Q_\alpha,$ where M is some N- subgroup of E.

Since, Q is direct sum of Q_{α} 's, for any $\alpha = 1, 2, 3, ..., n$, so there is the inclusion map $i_{\alpha} : Q_{\alpha} \to Q$ and the projection map $\Pi_{\alpha} : Q \to Q_{\alpha}$ such that $\Pi_{\alpha} i_{\alpha} = \mathbf{1}_{Q_{\alpha}}$.

Consider a diagram

with top row exact.

Since Q is injective there exists an N- homomorphism $h_{\alpha}: N' \to Q$, such that $h_{\alpha} \Phi = i_{\alpha} f_{\alpha}$.

Now we define $\Psi : N' \to Q_{\alpha}$ by $\Psi_{\alpha} = \Pi_{\alpha}h_{\alpha}$. Since $\Pi_{\alpha} i_{\alpha} = \mathbf{1}_{Q_{\alpha}}$, it follows that $\Psi_{\alpha}\Phi = \Pi_{\alpha}h_{\alpha}\Phi = \Pi_{\alpha}i_{\alpha}f_{\alpha} = f_{\alpha}$. So, the following diagram is commutative.

Thus, each Q_{α} is injective.

4.4 Proposition

Let N be a dgnr. A finite direct sum of injective normal N-subgroups (ideals) Q_{α} of E is injective if each Q_{α} is injective.

Proof: Let $Q = \bigoplus Q_{\alpha}$ with each $Q_{\alpha I}$ is an injective N- group.

Now consider a diagram

where M, N' are N- subgroups of E with the top row exact.

For any $\alpha = 1, 2, 3, ..., n$, there is the canonical inclusion $i_{\alpha} : Q_{\alpha} \rightarrow Q$ and the projection

 $\Pi_{\alpha}\colon Q \to Q_{\alpha}$, so there are N-homomorphisms $\ \Pi_{\alpha} f \colon M \to Q_{\alpha}$.

Since Q_{α} is injective, there exists an N-homomophism $h_{\alpha} \colon N' \to Q_{\alpha}$ such that $h_{\alpha} \Phi = \Pi_{\alpha} f$.

Now we define a map h: $N' \rightarrow Q$ by the formula $h(x) = (h_1(x) + \dots + h_n(x)) \quad \forall x \in N'$.

© RECENT SCIENCE PUBLICATIONS ARCHIVES | August 2013 | \$25.00 | 27702579 |

Then h is an N-homomophism as N is a dgnr.

We shall show the diagram commutes. i.e. $f = h\Phi$.

Since Q is a direct sum, for any $x \in N'$,

 $h\phi(x) = (h_1\phi(x) + h_2\phi(x) + \dots + h_n\phi(x)) = (\Pi_1 f(x) + \Pi_2 f(x) + \dots + \Pi_n f(x)) = f(x)$

So, $h \phi = f$. Thus Q is injective.

4.5 Corollary

Let N be a dgnr. A finite direct sum of injective normal N-subgroups (ideals) Q_{α} of E is injective if and only if each Q_{α} is injective.

4.6 Theorem

A finite direct sum of injective N-groups Q_{α} is injective if and only if each Q_{α} is injective.

Proof: Proof is same as theorem 4.3., except in this case we define a map $h: N' \to Q$ by $h(x) = (h_1(x), \dots, h_n(x)) \forall x \in N'$.

4.7 Theorem

Let N be a near-ring and $\{Q_i\}_{i \in I}$ a family of E-injective N-groups. Then the product $Q = \prod_{i \in I} Q_i$ is E- injective.

Proof: Let $A \subseteq E$ be an N-subgroup of E and f: $A \rightarrow Q$ an N-homomorphism.

It is enough to show that f can be extended to E.

For $i \in I$ we denote $\pi_i: Q \to Q_i$ the projection map. Since Q_i is E-injective for any $i \in I$, so the N-homomorphism $\pi_i.f: A \to Q_i$ can be extended to $f_i^{\prime}: E \to Q_i$.

Then we have $f: E \rightarrow Q$ by $f'(e) = (f'_i(e))_{i \in I}$.

If $a \in A$, then f (a) = f(a), so f' is an extension of f. Thus Q is E-injective.

4.8 Theorem

If $\bigoplus_{\alpha \in J} A_{\alpha}$ is E -injective then each A_{α} is E –injective and every element of $\prod_{\alpha \in J} A_{\alpha}$ dominated by E is special.

Proof: Let $A = \bigoplus_{\alpha \in J} A_{\alpha}$ be E injective. Let N' be an N-group. Consider the N-homomorphism $f_{\alpha}: N' \to A_{\alpha}$. Since A is direct sum of N-groups $A_{\alpha}, \alpha \in J$, so for any $\alpha \in J$, there is the inclusion map $i_{\alpha}: A_{\alpha} \to A$ and the projection $\pi_{\alpha}: A \to A_{\alpha}$ such that $\pi_{\alpha} i_{\alpha} = \mathbf{1}_{A_{\alpha}}$.

Consider a diagram, with top row exact.

Since A is E - injective, \exists a homomorphism $h_{\alpha}: E \rightarrow A$ such that $h_{\alpha}\Phi = i_{\alpha} f_{\alpha}$.

© RECENT SCIENCE PUBLICATIONS ARCHIVES | August 2013 | \$25.00 | 27702579 |

Now define Ψ_{α} : $E \to A_{\alpha}$ by $\Psi_{\alpha} = \pi_{\alpha}h_{\alpha}$. Since $\pi_{\alpha}i_{\alpha} = \mathbf{1}_{A_{\alpha}}$, it follows that $\Psi_{\alpha}\Phi = \pi_{\alpha}h_{\alpha}\Phi = \pi_{\alpha}i_{\alpha}$ $f_{\alpha} = f_{\alpha}$ So the diagram O

Thus A_{α} is E -injective.

 Π_{α}

Let $x \in \Pi_{\alpha}A_{\alpha}$ be dominated by E. This implies that there is an $e \in E$ such that $Ann_N(x) \supset Ann_N(e)$.

Then it gives an N-homomorphism f: Ne $\rightarrow \Pi A_{\alpha}$ defined by $\lambda e \rightarrow \lambda x$ ($\lambda \in N$).

 $Let \ (\lambda_1 e), \ (\lambda_2 e) \in Ne \ and \ f \ (\lambda_1 e) \neq f \ (\lambda_2 e) \ \Longrightarrow \ (\lambda_1 x) \neq (\lambda_2 x) \Longrightarrow \ (\lambda_1 - \lambda_2) \ x \neq 0$

 $\Rightarrow (\lambda_1 - \lambda_2) \notin Ann_N(x)$

 $\Rightarrow (\lambda_1 - \lambda_2) \notin Ann_N(e) \ [since Ann_N(x) \supset Ann_N(e)] \Rightarrow (\lambda_1 - \lambda_2) e \neq 0 \Rightarrow (\lambda_1 e) \neq (\lambda_2 e).$

Therefore, the mapping is well defined.

 $f(\lambda_1 e + \lambda_2 e) = f((\lambda_1 + \lambda_2)e) = (\lambda_1 + \lambda_2)x = (\lambda_1 x + \lambda_2 x) = f(\lambda_1 e) + f(\lambda_2 e)$

Next for
$$n \in N$$
, $f(n(\lambda_1 e)) = f((n\lambda_1)e) = (n\lambda_1)x = n(\lambda_1 x) = n f(\lambda_1 e)$

Thus f is an N- homomorphism.

The image of the N-subgroup $I_x e$ by f is clearly $I_x x$ ($\subset \oplus A_\alpha$).

Thus the restriction of f to $I_x e$ is regarded as an N-homomorphism $I_x e \rightarrow \bigoplus A_{\alpha}$.

Since $\oplus A_{\alpha}$ is E-injective and so Ne-injective by proposition 3.2. So, we get N-homomorphism Ne $\rightarrow \oplus A_{\alpha}$ which means that there exists a $u \in \oplus A_{\alpha}$ such that $\lambda x = \lambda u$ (for all $\lambda \in I_x$).

It follows that $I_x x_{\alpha} = I_x u_{\alpha}$ for all $\alpha \in J$.

But since $u_{\alpha} = 0$ for almost all α , it follows that $I_x x_{\alpha} = 0$ for almost all α too \Rightarrow x is special.

4.9 Theorem

Let N be a dgnr. If {Ne} $_{e\in E}$ is an independent family of normal N-subgroups of E, $\bigoplus_{\alpha\in J} A_{\alpha}$ is a commutative N-group, then each A_{α} is E –injective. Moreover, every element of $\prod_{\alpha\in J} A_{\alpha}$ dominated by E is special implies $\bigoplus_{\alpha\in J} A_{\alpha}$ is E -injective.

Proof: Let each A_{α} is E -injective and every element of $\prod_{\alpha \in J} A_{\alpha}$ dominated by E is special.

Let $e \in E$ and consider the N- subgroup Ne of E. Let J be an N-subgroup of N. Then Je is an N-subgroup of Ne. Let there be given an N- homomorphism h: Je $\rightarrow \oplus A_{\alpha}$. Then since $\oplus A_{\alpha} \subset \Pi A_{\alpha}$ and ΠA_{α} is E-injective (as each A_{α} is E-injective, by theorem 4.7) whence Ne- injective (by proposition 3.2), h can be extended to an N-homomorphism Ne $\rightarrow \Pi A_{\alpha}$.

Let $x \in \Pi A_{\alpha}$ and we define the N-homomorphism as $\lambda e \rightarrow \lambda x$ ($\lambda \in N$)

Therefore it follows that $Jx = h(Je) \subset \bigoplus A_{\alpha}$, whence $J \subset I_x$.

On the other hand since clearly Ann_N (e) \subset Ann_N(x), x is dominated by E and thus x is special by assumption \Rightarrow I_xx_{α} =0 whence Jx_{α} =0 for almost all α .

Let u be the element of $\oplus A_{\alpha}$, whose α -component is x_{α} or 0 according as $Jx_{\alpha} \neq 0$ or $Jx_{\alpha}=0$.

Then it is clear that $\lambda u = \lambda x$ for all $\lambda \in J$.

Further, it is also clear that Ann_N (e) \subset Ann_N (x) \subset J and therefore the mapping gives an N-homomorphism f: Ne $\rightarrow \oplus A_{\alpha}$ which is an extension of h, because f (λe) = λu = λx for all $\lambda \in J$.

© RECENT SCIENCE PUBLICATIONS ARCHIVES | August 2013 | \$25.00 | 27702579 |

This implies that $\oplus A_{\alpha}$ is Ne-injective and so E–injective by proposition 3.1.

4.10 Corollary

Let N be a dgnr. If {Ne} $_{e \in E}$ is an independent family of normal N-subgroups of N-group E, $\bigoplus_{\alpha \in J} A_{\alpha}$ is commutative N-group then $\bigoplus_{\alpha \in J} A_{\alpha}$ is E -injective if and only if each A_{α} is E-injective and every element of $\prod_{\alpha \in J} A_{\alpha}$ dominated by E is special implies $\bigoplus_{\alpha \in J} A_{\alpha}$ is E-injective

4.11 Theorem

Suppose $\{A_{\alpha}\}_{\alpha\in J}$ is a family of E-injective N-groups such that for every countable subset K of J, $\bigoplus_{\alpha\in K}A_{\alpha}$ is E - injective. Then $\bigoplus_{\alpha\in J}A_{\alpha}$ is itself E - injective.

Proof: Assume that $\bigoplus_{\alpha \in J} A_{\alpha}$ is not E - injective.

Then by theorem 4.8, there exists an $x \in \prod_{\alpha \in J} A_{\alpha}$ which is dominated by E but is not special $\Rightarrow I_x x_{\alpha} \neq 0$ for infinitely many $\alpha \in J$.

Let k be an infinite countable subset of the infinite set $\{\alpha \in J \mid I_x x_\alpha \neq 0\}$.

Let y be element of $\prod_{\alpha \in k} A_{\alpha}$, whose α - component y $_{\alpha}$ is equal to x_{α} for all $\alpha \in K$.

Then clearly $I_x \subset I_y$, so that it follows that y is dominated by E and $I_y y_\alpha = I_y x_\alpha \neq 0$ for all $\alpha \in K$.

This implies again by theorem 4.8, that $\bigoplus_{\alpha \in K} A_{\alpha}$ is not E -injective (because each A_{α} is E - injective by our assumption). This is a contradiction and so the proof is complete.

4.12 Theorem

Let N be dgnr. If $\{Ne\}_{e \in E}$ is an independent family of normal N-subgroups of N-group E, $\bigoplus_{\alpha \in J} A_{\alpha}$ is commutative N-group then direct sum of any family $\{A_{\alpha}\}$ of E-injective N- groups is E - injective if E is Noetherian.

Proof: Let $\{A_{\alpha}\}$ be a family of E-injective N- group. Let x be an element of ΠA_{α} , dominated by e. Then there is an $e \in E$ such that $Ann_{N}(e) \subset Ann_{N}(x)$. Consider $I_{x}e$.

Since clearly $Ann_N(x) \subset I_x$, whence $Ann_N(e) \subset I_x$, it follows that $I_x / Ann_N(e) \cong I_x e$

On the other hand I_xe is a N-subgroup of Ne so N-subgroup of Noetherian N-group E.

Hence, $I_x / Ann_N(e)$ is finitely generated \Rightarrow there exists a finite number of elements $\lambda_1, \lambda_2, \dots, \lambda_n$ of I_x such that $I_x = N\lambda_1 + N \lambda_2 + \dots + N\lambda_n + Ann_N(e)$

It follows therefore $I_x x_{\alpha} = N\lambda_1 x_{\alpha} + N \lambda_2 x_{\alpha} + \dots + N\lambda_n x_{\alpha}$ for all components x_{α} .

Since however for each i, $\lambda_i x_{\alpha} = 0$, for almost all α , it follows that $I_x x_{\alpha} = 0$ for almost all $\alpha \Rightarrow x$ is special. Thus $\oplus A_{\alpha}$ is E-injective by theorem 4.9.

REFERENCES

- [1] F.W Anderson and K. R Fuller: Rings and Categories of modules, Springer Verlag, New York, (1974).
- [2] E.P Armendariz: Rings with dcc on essential left ideals, Communications in Algebra, 8(3), (1980), 299-308.
- [3] A. K. Boyle and K. R. Goodearl: Rings over which certain modules are injective, Pacific J. of Mathematics, 58 (1), (1975), 43-53.
- [4] S. U. Chase: Direct products of modules, Transactions of the American Mathematical Society, 97 (3), (1960), 457–473.
- [5] B. De (Deb): On E-Injective N-Groups, Assam University J. of Science & Technology: Physical Sciences and Technology, 5 (II), (2010), 99-102.
- [6] B. De, K. C. Chowdhury and H. K. Saikia,: A note on near-ring groups with irreducible substructures, Far East J. Math Sci. 6(3), (2002), 255-274.
- [7] C.Faith and Y. Utumi: Quasi- injective-injective modules and their endomorphism rings, Arch Math.XV, 1963, 166-174.

© RECENT SCIENCE PUBLICATIONS ARCHIVES | August 2013 | \$25.00 | 27702579 |

- [8] C. Faith and A.Walker: Albert, direct sum representations of injective modules, J. of Algebra, 5 (2), (1967), 203-221.
- [9] K. R Fuller.: Relative Projectivity and injectivity classes determined by simple modules, J. of London Mathematical society, 2 (5), (1972), 423-431.
- [10] K. R. Goodearl: Ring theory, Nonsingular rings and modules, Marcel Dekker, 1976.
- [11] Y. Hirano: Regular modules and P-modules, Hiroshima Mathematical Journal, 11, (1981), 125-142.
- [12] G. Mason: Injective and projective near-ring modules, Compositio Mathematica, Vol. 33, Fasc 1, (1976), 43-54.
- [13] G. Mason and A. Oswald: Injective and projective near-ring modules, Tesside Polytechnic Mathematical Reports, (1981).
- [14] John D. P. Meldrum:Injective Near-Ring Modules over Z_n, Proceedings of the American Mathematical Society, Vol. 68, (1),(1978),16-18
- [15] A. Oswald: A note on injective modules over a d.g. near-ring, Canad. Math. Bull.Vol. 20 (2), (1977), 267-269
- [16] S.S Page and M.F. Yousif: Relative injectivity and chain conditions, Communications in Algebra, 17(4), 1989, 899 924.
- [17] G. Pilz: Near-rings, North Holland publishing Company, Amsterdam, 1983.
- [18] H K Saikia and K.Misra: On p-injective strictly FGD near-ring, journal of Rajasthan Academy of Physical Sciences, vol 6, (4), (2007), 361-370.
- [19] V. Seth and K. Tiwari: On injective near-ring modules, Canad Math. Bull. 17(1), (1974), 137-141.
- [20] L. Thoang and L. Thuyet: On generalizations of injectivity, Acta Math. Univ. Comenianae, LXXV (2), (2006), 199– 208.

