International Journal of Pure and Applied Mathematics Volume 97 No. 2 2014, 201-210

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) **url:** http://www.ijpam.eu **doi:** http://dx.doi.org/10.12732/ijpam.v97i2.8

QUASI-INJECTIVE NEAR-RING GROUPS

Navalakhi Hazarika
1 $\S,$ Helen K. Saikia²

¹Department of Mathematics Royal School of Engineering and Technology Guwahati, 781035, INDIA ²Department of Mathematics Gauhati University Guwahati, 781014, INDIA

Abstract: We extend the concepts of quasi-injective modules and their endomorphism rings to near-ring groups. We attempt to derive the near-ring character of the set of endomorphism of quasi-injective N-groups under certain conditions and this leads us to a near-ring group structure which motivates us to study various characteristics of the structure. If E is a quasi-injective N-group and S = End(injective hull of E) then we study the structure ES and various properties of ES. It is proved that ES is a minimal quasi-injective extension of E and any two minimal quasi-injective extensions are equivalent. This structure motivates to study the Jacobson radical of endomorphism near-ring modulo the Jacobson radical is a regular near-ring. Some properties of quasi-injective N-groups are established.

AMS Subject Classification: 16Y30

Key Words: near-ring groups, quasi-injective *N*-subgroups, essentially closed *N*-subgroups

Received: June 19, 2014

© 2014 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

1. Prerequisites

All basic concepts used in this paper are available in Pilz [4]. In this section we define the basic terms and results that are needed for the sequel.

Definition 1.1. For a right near-ring (N, +, .) and a corresponding N-group E, suppose there is an $x \in E$ such that $\{nx|n \in N\} = E$. Then E is a monogenic N-group and x is a generator.

Definition 1.2. An N-subgroup B of E is called fully invariant if for each N-homomorphism $f: E \to E, f(B) \subset B$.

Definition 1.3. A left ideal A of N is called small (strictly small) if N = B for each left ideal (N-subgroup) B such that N = A + B.

Since every left ideal is a left N-subgroup, a strictly small left ideal of N is also a small left ideal of N.

Definition 1.4. The intersection of all maximal ideals maximal as N-subgroups of N-group E is called radical of E and is denoted by J(E).

Lemma 1.1. [3]: If the radical ideal J(N) is strictly small in N then the following conditions are equivalent- (i) $Y \in J(N)$ (ii) 1-xy is left invertible for all $x \in N$ (iii) yM = 0 for any irreducible left N-group M.

Definition 1.5. An N-subgroup (ideal) I of E is said to be a essentially closed N-subgroup (ideal) of E if I has no proper essential extension in E.

Definition 1.6. An *N*-subgroup (ideal) I of E is said to be a essentially closed *N*-subgroup (ideal) of E if I has no proper essential extension in E.

Theorem 1.1. An N-group E is quasi-injective if and only if E is fully invariant N-subgroup of its injective hull.

Theorem 1.2. If E is quasi-injective then its direct summands are also quasi-injective.

Proof of Theorem 1.1, Theorem 1.2 are given in K. R. Goodearl [6].

Theorem 1.3. [Clay]: For a near-ring (N, +, .) with identity 1, suppose E is a monogenic unitary N-group with generator x and suppose that $T = \{m \in N/Ann(x)m \in Ann(x)\}$ is a subgroup of (N, +, .). Then the N-endomorphisms E of N-group E forms a right near-ring where $(f \oplus g)(x) = f(x) + g(x)$ and (f.g)(x) = f(g(x)). Also E is an $End_N E$ -group defined by $\phi : E \times End_N E \to E$ by $\phi(m.f) = m.f = f(m)$.

2. Endomorphism Near Ring of Quasi-Injective N-Groups

In this section we investigate various characteristics of endomorphism near-ring of quasi-injective N-groups. We also study Jacobson radical of endomorphism near-ring of quasi-injective N-groups. Throughout this section unless and otherwise mention we assume E satisfies the condition of theorem 1.3 and N is a dgnr.

If \hat{E} is injective hull of E and $S = End_N\hat{E}$, $\phi : \hat{E} \times S \to \hat{E}$ by $\phi(m, f) = m \cdot f = f(m), m \in \hat{E}, f \in S$, then \hat{E} is an S-group.

For this S-group we get the following:

Proposition 2.1. ES is an N-subgroup of \tilde{E} .

Proof. Let $a, b \in ES$,

$$a = \sum x_i f_i, \ b = \sum y_j f_j, \quad a - b = \sum x_i f_i - \sum y_j f_j \in ES.$$

Let $n \in N, a \in ES$ to show $na \in ES$.

$$na = n \sum x_i f_i = n \sum f_i(x_i)$$

= $(s_1 + s_2 + s_3 + \dots + s_n) \sum f_i(x_i)$
= $s_1 \sum f_i(x_i) + s_2 \sum f_i(x_i) + s_3 \sum f_i(x_i) + \dots + s_n \sum f_i(x_i)$
= $\sum s_1 f_i(x_i) + \sum s_2 f_i(x_i) + \sum s_3 f_i(x_i) + \dots + \sum s_n f_i(x_i)$
= $\sum f_i(s_1 x_i) + \sum f_i(s_2 x_i) + \sum f_i(s_3 x_i) + \dots + \sum f_i(s_n x_i)$
= $\sum (s_1 x_i) f_i + \sum (s_2 x_i) f_i + \sum (s_3 x_i) f_i + \dots + \sum (s_n x_i) f_i \in ES$,

because $(s_j x_i) \in E$).

Proposition 2.2. (a) ES is quasi-injective.

(b) ES is the intersection of all quasi-injective N-subgroups of \hat{E} containing E. So ES is the smallest N-subgroup of \hat{E} containing E.

(c) E is quasi-injective if and only if E = ES.

Proof. (a) Let M be an N-subgroup of ES and $f: M \to ES$. We take the inclusion map $i: ES \to \hat{E}$. Then the composite map $h = if: M \to \hat{E}$. Since \hat{E} is injective, so h can be extended by some $\lambda: \hat{E} \to \hat{E}$ such that for $x \in M, x = \lambda(x) = x = x \cdot (if) = (if)(x) = i(f(x)) = f(x) = x \cdot f$ where

 $x.f = f(x) \in ES$. Thus f is induced by $\lambda \in S$. Now let $g \in S$. Then for $y = \sum x_i g_i \in ES$, $\sum (x_i g_i) \lambda = \sum x_i (g_i \lambda) \in ES$, since $g_i \lambda \in S$.

Therefore $(ES)\lambda \subseteq ES$. λ induces $\overline{\lambda} : ES \to ES$. i.e. λ can be restricted by some $\overline{\lambda} : ES \to ES$ such that $x\overline{\lambda} = x.\lambda$ for $x \in ES.Therefore x\overline{\lambda} = x.f$ for $x \in M$ [$\therefore x\lambda = x.f$ for $x \in M$ and $M \subseteq ES$]. i.e. f is induced by $\overline{\lambda} : ES \to ES \Rightarrow ES$ is quasi-injective.

(b) Let P be any quasi-injective N-subgroup of \hat{E} containing E. We wish to show $ES = \cap P$. Since by (a) ES is quasi-injective. So $\cap P \subseteq ES$. Now to show $ES \subseteq \cap P$. We will show $ES \subseteq P$, so it is sufficient to show that $P\alpha \subseteq P \quad \forall \alpha \in S.$ Since if $\forall \alpha \in S, P\alpha \subseteq P$ then $PS \subseteq P$. But $E \subseteq P \Rightarrow$ $ES \subseteq PS$ [: $E \subseteq P \Rightarrow E\lambda \subseteq P\lambda$] $\Rightarrow ES \subseteq P$. To prove this we see that $Q(\alpha) = \{x \in P \mid x\alpha \in P\}$ is an N-subgroup of P. Let $x, y \in Q(\alpha) \Rightarrow x\alpha \in Q(\alpha)$ $P, y\alpha \in P$. $x\alpha - y\alpha \in P \Rightarrow \alpha(x) - \alpha(y) \in P \Rightarrow \alpha(x - y) \in P \Rightarrow (x - y) \in Q(\alpha)$. Next to show for $n \in N$, $x \in Q(\alpha)$, $nx \in Q(\alpha)$, $x \in Q(\alpha) \Rightarrow x \in P$ such that $x.\alpha \in P. \because x \in P, n \in N \Rightarrow nx \in P(\because NP \subseteq P). (nx).\alpha = \alpha(nx) = n\alpha(x) = \alpha(nx)$ $n(x,\alpha) \in P(NP \subseteq P) \Rightarrow nx \in Q(\alpha)$. Therefore $Q(\alpha)$ is an N-subgroup of P. We have only to show that $Q(\alpha) = P \quad \forall \alpha \in S$, since then $y \in P \Rightarrow y \in Q(\alpha) \Rightarrow$ $y \alpha \in P \Rightarrow P\alpha \subseteq P$. Since $q \to q\alpha, q \in Q(\alpha) = Q$ a map of Q into P and since P is quasi-injective, so there exists $\alpha_1 : P \to P$ such that $q\alpha_1 = q\alpha \quad \forall q \in Q$. Since E is injective, $\exists \alpha' \in S$ such that $x\alpha' = x\alpha_1 \quad \forall x \in P$. Since $P\alpha' \subseteq P$. If $P(\alpha' - \alpha) = 0$ then $P\alpha' = P\alpha$. So $P\alpha \subseteq P$. So if $Q(\alpha) \neq P$ then $P(\alpha' - \alpha) \neq 0$. As we know $E \leq_e \hat{E} \Rightarrow P \leq_e \hat{E}$ (: if $A \neq 0 \leq \hat{E} \& P \cap A = 0$ then $E \cap A = 0$ contradicts $E \leq_e \hat{E}$). Now $P(\alpha' - \alpha)$ is N-subgroup of $\hat{E} \cdot a, b \in P(\alpha' - \alpha)$. Then let $a = p_1(\alpha' - \alpha), b = p_2(\alpha' - \alpha)$ $a - b = p_1(\alpha' - \alpha) - p_2(\alpha' - \alpha) = a - b = p_1(\alpha' - \alpha)$ $(p_1 - p_2)(\alpha' - \alpha) \in P(\alpha' - \alpha)$ (: $(\alpha' - \alpha) \in S$). For $n \in N, x \in P(\alpha' - \alpha)$, let $x = p_1(\alpha' - \alpha)$. Now $np_1(\alpha' - \alpha) = n(\alpha' - \alpha)p_1 = n\alpha'(p_1) - n\alpha(p_1) =$ $\alpha'(np_1) - \alpha(np_1) = (\alpha' - \alpha)(np_1) = (np_1)(\alpha' - \alpha) \in P(\alpha' - \alpha)$, Therefore $P(\alpha' - \alpha)$ N-subgroup of \tilde{E} . Consequently we have $P(\alpha' - \alpha) \cap P \neq 0$. But if $x, 0 \neq y \in P$ are such that $y = x(\alpha' - \alpha) \in P(\alpha' - \alpha) \cap P$. Then since $x\alpha' = x\alpha_1[\because x \in P \quad y = x(\alpha' - \alpha) = (\alpha' - \alpha)(x) = (\alpha'x - \alpha x) = x\alpha' - x\alpha]$ $x\alpha = x\alpha_1 - y \in P$. Then $x \in Q(\alpha)$ so that $x\alpha = x\alpha'$ and so y = 0, a contradiction. Which establishes (b).

(c) Since ES is the intersection of all quasi-injective N-subgroups of E, containing E.E is quasi-injective $\Rightarrow ES \subseteq E$. And $E \subseteq ES$ is obvious by inclusion map: ES = E

Definition 2.1. (P, E, f) denotes a N-monomorphism $f : E \to P$ and is called an extension of E. An extension (P, E, f) of an N-group E is a minimal

quasi-injective extension in case P is quasi-injective and the following condition is satisfied:

If (A, E, g) is any quasi-injective extension of E, then there exists a monomorphism $\phi: P \to A$ such that:

commutes i.e. $g = \phi f$

Proposition 2.3. ES is minimal quasi-injective extension of E. Any Two minimal quasi-injective extensions are equivalent.

Proof. Let (A, E, g) be any quasi-injective extension of E. Let $\hat{A} = E(A)$ & $\Omega = Hom_N(\hat{A}, \hat{A})$. Then by proposition 2.2, $A\Omega \subseteq A$. Since ES is an essential extension of E, the N-monomorphism $g: E \to \hat{A}$ can be extended to a monomorphism (also denoted by g) of ES in \hat{A} . [Since if $f: A \xrightarrow{mono} E, E$ injective, $A \leq_e B$, then f extends to $f': B \xrightarrow{mono} E$] Since g(ES) is quasi-injective. [$\because g(ES) \cong ES, \because Kerg = 0(f: A \xrightarrow{mono} B, A \cong f(A))$].

Then $(g(ES))\Omega \subseteq g(ES)$ and we conclude that $(B)\Omega \subseteq B$ where $B = g(ES) \cap A \subseteq g(ES)$, so $g^{-1}(B) \subseteq (ES)$ [:: $AB \subseteq B, AC \subseteq C, A(B \cap C) = AB \cap AC \subseteq B \cap C$].

Since $B \subseteq (B)\Omega$ is obvious. Therefore by Proposition 2.2 *B* is quasiinjective. It follows that $g^{-1}(B)$ is a quasi-injective extension of $E \subseteq ES$. Since *ES* is the smallest quasi-injective extension of *E* contained in \hat{E} , we conclude that $g^{-1}(B) = (ES)$. So $B = g(ES) \subseteq A$. This establishes that *ES* is a minimal quasi-injective extension.

Next if (A, E, g) is also a minimal quasi-injective extension of E, then (A, E, g) is also equivalent to ES. ES minimal quasi-injective extension of E. (A, E, g) is also quasi-injective extension of E. By definition for $E \xrightarrow{mono \phi} ES, E \xrightarrow{mono f} A$, there exists $ES \xrightarrow{mono \phi} A$ such that the diagram

commutes i.e. $g = \phi f$

Again (A, E, g) is minimal quasi-injective extension of E. ES is also quasiinjective extension of E. By definition for $E \xrightarrow{mono g} A$, $E \xrightarrow{mono f} ES$ there exists $A \xrightarrow{mono \omega} ES$ such that the diagram

commutes i.e. $f = \omega g$.

Now $f = \omega g \Rightarrow f = \omega \phi f$. So $I = \omega \phi$. Again $g = \phi f \Rightarrow g = \phi \omega g$. So $I = \phi \omega$. Thus ω and ϕ both are invertible which implies both ω and ϕ are isomorphic. Hence $ES \cong A$.

Definition 2.2. A near-ring N is said to be a regular near-ring if for every element $x \in N$, there exists an element $y \in N$ such that xyx = x.

Theorem 2.1. Let *E* be quasi-injective *N*-group let $\Lambda = Hom(E, E)$ and let $J = J(\Lambda)$ denote the Jacobson radical of Λ and is strictly small in Λ . Then $J = \{\lambda \in \Lambda/E \text{ essential extension of } Ker\lambda\}$. If for $\gamma \in J, \lambda \in \Lambda, \gamma\lambda \in J$ then Λ/J is a regular near-ring. Where addition of two *N*-subgroups is again *N*-subgroup of *E* and *N* need not be dgnr.

Proof. Let $I = \{\lambda \in \Lambda / E \text{ essential extension of } Ker\lambda\}.$

If $\lambda \in \Lambda$, $\mu, \gamma \in I$, then $Ker(\mu + \gamma) \supseteq Ker\mu \cap Ker\gamma$. Since $x \in Ker\mu \cap Ker\gamma \Rightarrow x \in Ker\mu$ & $x \in Ker\gamma \Rightarrow \mu(x) = 0 \& \gamma(x) = 0 \Rightarrow (\mu + \gamma)(x) = 0 \Rightarrow x \in Ker(\mu + \gamma)$. Since $Ker\mu \cap Ker\gamma$ is an essential N-subgroup, therefore $Ker(\mu + \gamma)$ is an essential N-subgroup of $E \ x \in Ker\gamma \Rightarrow \gamma(x) = 0$. Now for $\mu, \lambda \in \Lambda, \gamma \in I, (\mu(\lambda + \gamma) - \mu\lambda)(x) = (\mu(\lambda + \gamma)(x) - (\mu\lambda)(x) = (\mu\lambda)(x) + 0 - (\mu\lambda)(x) = 0$, since $\gamma(x) = 0$. Therefore $x \in Ker(\mu(\lambda + \gamma) - \mu\lambda)$. And so $Ker\lambda \subseteq Ker(\mu(\lambda + \gamma) - \mu\lambda) \Rightarrow (\mu(\lambda + \gamma) - \mu\lambda) \in I$. Therefore I is left ideal of Λ .

However if $\lambda \in I$, $Ker(1+\mu\lambda) = 0$ for $Ker\lambda \cap Ker(1+\mu\lambda) = 0$. For if, $\lambda \in I$ we have E essential extension of $Ker\lambda$. $x \in Ker\lambda \cap Ker(1+\mu\lambda) \Rightarrow \lambda(x) = 0$ and $(1+\mu\lambda)(x) = 0 \Rightarrow x + \mu(\lambda)(x) = 0 \Rightarrow x + \mu(0) \Rightarrow x = 0$. Again $\lambda \in I \Rightarrow E$ essential extension of $Ker\lambda \Rightarrow Ker(1+\mu\lambda) = 0$.

 $(1+\mu\lambda): E \to (1+\mu\lambda)E$ is an isomorphism $\Rightarrow \exists g \in \Lambda$ such that $g(1+\mu\lambda) = i$, so $(1+\mu\lambda)$ has a left inverse $\forall \lambda \in I$ & $\forall \mu \in \Lambda$. So, $\lambda \in J$ [by lemma 1.1]. This establishes that $I \subseteq J$.

QUASI-INJECTIVE NEAR-RING GROUPS

Next let λ be arbitrary element of Λ , let L be a complement N-subgroup of E corresponding to $K = Ker(\lambda)$ and consider the correspondence $\lambda x \to x$ $\forall x \in L$. If $\lambda x = \lambda y$ with $x, y \in L$, then $\lambda(x - y) = 0$ and then $(x - y) \in K \cap L$ = 0. Since E is quasi-injective, the map $\lambda x \to x$ of λL in L is induced by some $\theta \in \Lambda$. If $u = x + y \in L + K, x \in L, y \in K$, then

$$(\lambda - \lambda\theta\lambda)(u) = \lambda(x) - \lambda\theta\lambda(x) = \lambda(x) - \lambda(x) = 0$$

$$\Rightarrow \lambda - \lambda\theta\lambda = 0$$
(1)

 $[\lambda\theta\lambda(x) = \lambda\theta(x) = \lambda(x) = x$, as for $x \in L\theta(x) = \lambda(x) = x$].

Since $E \supseteq_e L + K$ as $K \subseteq L + K$ and since $Ker(\lambda - \lambda\theta\lambda) \supseteq L + K$, we conclude that $\lambda - \lambda\theta\lambda \in I$. Now to show J = I. If $\lambda \in J$ and $\theta \in \Lambda$ is chosen so that $u = (\lambda - \lambda\theta\lambda) \in I, (1 - \theta\lambda)^{-1}$ exists.(Since J is Jacobson Redical. Therefore $(1 - \theta\lambda)^{-1}(u) = (1 - \theta\lambda)^{-1}(\lambda - \lambda\theta\lambda) = (1 - \theta\lambda)^{-1}(1 - \theta\lambda)\lambda = \lambda$ and $\lambda \in I[\because I$ is a left ideal]. Thus J = I is asserted. Also I is an ideal by given condition. Thus Λ is a regular modulo I.

From (1) $\lambda \bar{\theta} \lambda = \bar{\lambda}$ in Λ/I . Therefore Λ/J is regular ring as J = I.

3. Some Properties of Quasi-Injective N-Groups

This section contains some properties of quasi-injective N-groups related to essentially closed N-subgroups and complement N-subgroups. Let M be an N-subgroup of E. We consider $F = \{P/P \ N$ -subgroup of $E, P \cap M = 0\}$. $F \neq \Phi, (0) \in F.C = \{P_i/P_i \in F\}$ is a chain in F. Let $K = \cup P_i.[x, y \in \cup P_i \Rightarrow x \in P_i, y \in P_j.If_i > J, x, y \in P_j$. Therefore $(x - y) \in P_j \Rightarrow (x - y) \in \cup P_i$. Again $n \in N, x \in \cup P_i \Rightarrow x \in P_j$ for some j, then $nx \in P_j \Rightarrow nx \in \cup P_i$. Since $P_i \cap M = 0 \forall i.(\cup_i P_i) \cap M = \cup_i (P_i \cap M) = 0 \& \cup_i P_i \leq E$. Therefore $\cup_i (P_i \in C$. So by Zorn's Lemma the N-subgroup K is maximal in the set of those N-subgroups P satisfying $P \cap N = 0$. Then K is said to be complement of M in E.

Definition 3.1. The N-subgroup K is maximal in the set of those N-subgroups P satisfying $P \cap M = 0$ is said to be complement of M in E. A complement N-subgroup(ideal) of E is an N-subgroup A which is a complement in E of some N-subgroup(ideal) B.

If sum of two N-subgroups is again an N-subgroup of an N-group we get the following:

Lemma 3.1. If M is an N-subgroup of E and if K is any complement of M in E, then there exists a complement Q of K in E such that $Q \supseteq M$. Furthermore any such Q is a maximal essential extension of M in E.

Proof. Let $F = \{I/I \cap K = 0, M \subseteq I\}$. Since $M \in F, F \neq \Phi$. Let $C = \{C_i/i \in \lambda, \lambda index, C_i \in F\}$ be a chain. $Q = \cup C_i$. Now $(\cup_{i \in \lambda} C_i) \cap K = \cup_{i \in \lambda} (C_i \cap K) = 0 \quad \forall i$. $[\because C_i \cap K = 0 \quad \forall i] \& M \subset \cup_{i \in \lambda} C_i \quad \forall i, M \subseteq C_i$. So by Zorn's Lemma $Q \in F$, maximal element exists. Thus Q in the first sentence exists.

Now to prove the second part.

Let T be any non-zero N-subgroup of Q and assume that $T \cap M = 0$. Since $T \cap K = 0$ $[Q \leq_c K, T \leq_s Q]$. Therefore the sum $K_1 = T + K$ is direct and K_1 properly contains $K. \because K_1 \cap M = 0$. [If possible let $K_1 \cap M \neq 0$. $K_1 \cap M = (T+K) \cap M$. Let $t+k = n \in (T+K) \cap M \Rightarrow k \in K \cap (M+T) \subseteq K \cap Q \Rightarrow k = 0 \Rightarrow n = t \in M \cap T$ contradiction to $T \cap M = 0$. Therefore $K_1 \cap M = 0$.] This contradicts the definition of K. This proves that Q is an essential extension of M. If P is an N-subgroup of E properly containing Q, then $P \cap K \neq 0$ and $(P \cap K) \cap M = P \cap (K \cap M) = P \cap 0 = 0$. Thus P is not essential extension of M, completing the proof.

Lemma 3.2. The essentially closed N-subgroups of an N-group E coincide with the complement N-subgroup of E. If M and K are complement N-subgroups and if K is a complement of M in E then M is a complement of K in E.

Proof. Let M be a essentially closed N-subgroup and K is any complement of M. Then by lemma 3.1 there exists a complement Q of K such that $M \subseteq Q$. This Q is maximal essential extension of M in E. But M is essentially closed, so it has no proper essential extension. Therefore M = Q is a complement N-subgroup.

Next let M be complement of an N-subgroup P. Then \exists a complement K of M which contains P.

If possible let $M' \leq E$ such that $M \subseteq M'$ & $K \cap M' = 0$. Then $P \cap M' = 0$. $\therefore P \subset K$, which contradicts (1). Therefore M is also maximal such that $K \cap M = 0$. Therefore M is complement of K. Then M is essentially closed by lemma3.1. This also proves the last statement.

Theorem 3.1. Let *E* be quasi-injective and let *M* be a essentially closed *N*-subgroup, then for each *N*-subgroup *K* of *E*, *N*-homomorphism $w: K \Rightarrow M$ can be extended to *N*-homomorphism $u: E \to M$

QUASI-INJECTIVE NEAR-RING GROUPS

Proof. Let $F = \{L/w \text{ is extended to a map of } T \text{ into } M \text{ for } N\text{-subgroup } T \text{ of } E \text{ containing } L\}$ By Zorn's lemma we can assume that K is such that w cannot be extended to a map of T into M for any N-subgroup T of E which properly contains K. Since, E is quasi-injective, w is induced by a map $u: E \to E\&$ let L complement of M in E. Suppose $u(E) \subsetneq M$. Since M is essentially closed. M is a complement of L. Therefore, since $u(E) + M \supset M$, we see that $(u(E) + M) \cap L \neq 0$. Let $0 \neq x = a + b \in (u(E) + M) \cap L \Rightarrow a \in u(E), b \in M$. If $a \in M$ then $x \in M \cap L = 0$, a contradiction. Therefore $a \notin M$ and $a = x - b \in L + M$. Now $T = y \in E/u(y) \in L + M$ is an N-subgroup of E containing K. $\therefore x \in K \Rightarrow w(k) \in M \Rightarrow u(k) \in M \quad \forall k \in K$. Therefore T contains K. If $y \in E$ is such that u(y) = a then $y \in T$, but $y \notin K$ since $a \notin M$. $[\because y \in T \Rightarrow u(y) = a \in L\& y \in K \Rightarrow w(y) \in M \Rightarrow u(y) \in M \quad \forall y \in K,$ contradiction to $a \notin M$].

Let π denote the projection of L+M on M. Then πu is a map of T in M and $\pi u(y) = u(y) = w(y) \quad \forall y \in K. [\because y \in K \Rightarrow w(y) \in M \Rightarrow u(y) \in M \quad \forall y \in K].$ Thus πu is a proper extension of w, a contradiction. Therefore $u(E) \subseteq M$, so u is the desired extension.

Corollary 3.1. For quasi-injective N-group E.

(1) If M is essentially closed N-subgroup of E, then M is a direct summand of E and M is quasi-injective. Also M has a complement in E.

(2) If P is any N-subgroup of E, then there exists a quasi-injective essential extension of P contained in E.

(3) Each minimal quasi-injective extension of an N-group K is an essential extension of K.

Proof. (1) If $e : E \to M$ is the extension given by theorem 3.1 of the injection map $M \to M$ then $E = M \bigoplus Ker(e)$ where $e(m) = \begin{cases} m, & m \in M \\ 0, & m \notin M \end{cases}$ So that M is a direct summand of E. Therefore M is quasi-injective by theorem 1.2 Moreover Ker(e) is complement of M. Since

$$M \cap Ker(e) = (0) \tag{2}$$

M essentially closed $\Rightarrow M$ complement of some N-subgroup $K \Rightarrow K$ is complement of M, i.e.

$$\stackrel{max}{M}\bigcap \stackrel{max}{K} = (0) \tag{3}$$

(2) & (3) $\Rightarrow Ker(e) \subset K$. Let $(0 \neq)x \in K \Rightarrow x \notin M \Rightarrow e(x) = 0$ [by definition of e] $\Rightarrow x \in Ker(e)$.

Therefore $K \subset Ker(e)$. Therefore $K = Ker(e) \Rightarrow Ker(e)$ complement of M.

(2) Let $F = \{I/P \subseteq I, P \leq_e I\}$. $P \in F$. Therefore $F \neq \phi$.

Let $\{C_i/C_i \in F\}$ be a chain in F. $M = \bigcup_i C_i, P \subseteq C_i \quad \forall I \Rightarrow P \subseteq \bigcup_i C_i, P \leq_e C_i \quad \forall I \Rightarrow P \leq_e \bigcup_i C_i [P \cap A_i \neq 0 \quad \forall i, A_i \leq C_i.$ Since $P \cap (\bigcup_i A_i) = \bigcup_i (P \cap A_i) \neq 0$. $\bigcup A_i \leq \bigcup C_i$]

If possible $M = \bigcup_i C_i \leq_e K$. Therefore $P \leq_e M \leq_e K \Rightarrow P \leq_e K$, contradicts maximality of M. So by Zorn's Lemma P is contained in essentially closed N-subgroup M which is essential extension of P and M is quasi-injective by (1).

(3) Let A be any minimal quasi-injective extension of an N-group K. Let K is contained in quasi-injective essential extension B by (2). i.e. B essentially closed. So as B is essential extension of K, A is also essential extension of K. Thus every minimal quasi-injective extension of an N-group K is an essential extension of K. \Box

References

- Faith Carl and Utumi Y., Quasi-injective modules and their endomorphism rings, Arch Math., xv(1),(1963), 166-174.
- [2] Han Chang, Woo. and Choi, Su-Jeong., Generalizations of the Quasiinjective module, Comm. Korean Math. Soc., 10 (4), (1995), 811-813.
- [3] Saikia Helen K. and Misra Kalpana, On p-injective strictly FGD near-ring, Journal of Rajasthan Academy of Physical Sciences, 6(4),(2007), 361-370.
- [4] Pilz, G., *Near-rings*, North Holland publishing Company, Amsterdam (1977).
- [5] Goodearl K. R., *Ring theory, Nonsingular rings and modules*, Maecel Dekker, INC. New York and Basel(1994).
- [6] Clay, J.R., Near-rings: Geneses and Applications, Oxford Univ. Press, Oxford (1992).