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Abstract: We extend the concepts of quasi-injective modules and their en-
domorphism rings to near-ring groups. We attempt to derive the near-ring
character of the set of endomorphism of quasi-injective N-groups under certain
conditions and this leads us to a near-ring group structure which motivates us to
study various characteristics of the structure. If E is a quasi-injective N-group
and S = End(injective hull of E) then we study the structure £'S and various
properties of ES. It is proved that ES is a minimal quasi-injective exten-
sion of E and any two minimal quasi-injective extensions are equivalent. This
structure motivates to study the Jacobson radical of endomorphism near-ring
of quasi-injective N-group FE. It is established that the near-ring modulo the
Jacobson radical is a regular near-ring. Some properties of quasi-injective N-
groups relating essentially closed N-subgroups and complement N-subgroups
are established.
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1. Prerequisites

All basic concepts used in this paper are available in Pilz [4].In this section we
define the basic terms and results that are needed for the sequel.

Definition 1.1. For a right near-ring (N, +,.) and a corresponding N-
group F, suppose there is an « € F such that {nzjn € N} = E. Then F is a
monogenic N-group and x is a generator.

Definition 1.2. An N-subgroup B of F is called fully invariant if for each
N-homomorphism f: E — E, f(B) C B.

Definition 1.3. A left ideal A of N is called small (strictly small) if
N = B for each left ideal (N-subgroup) B such that N = A + B.

Since every left ideal is a left N-subgroup, a strictly small left ideal of NV is
also a small left ideal of V.

Definition 1.4. The intersection of all maximal ideals maximal as N-
subgroups of N-group F is called radical of E and is denoted by J(E).

Lemma 1.1. [3]: If the radical ideal J(N) is strictly small in N then the
following conditions are equivalent- (i) Y € J(N) (ii) 1-xy is left invertble for
all x € N (iii) yM = 0 for any irreducible left N-group M.

Definition 1.5. An N-subgroup (ideal) I of F is said to be a essentially
closed N-subgroup (ideal) of E if I has no proper essential extension in E.

Definition 1.6. An N-subgroup (ideal) I of F is said to be a essentially
closed N-subgroup (ideal) of E if I has no proper essential extension in E.

Theorem 1.1. An N-group E is quasi-injective if and only if I is fully
invariant N-subgroup of its injective hull.

Theorem 1.2. If F is quasi-injective then its direct summands are also
quasi-injective.

Proof of Theorem 1.1, Theorem 1.2 are given in K. R. Goodearl [6].

Theorem 1.3. [Clay]: For a near-ring (N, +, .) with identity 1, suppose
E is a monogenic unitary N-group with generator x and suppose that T' = {m €
N/Ann(x)m € Ann(x)} is a subgroup of (N, +, .). Then the N-endomorphisms
E of N-group E forms a right near-ring where (f @ g) (x) = f(x) + g(x) and
(f.g)(x) = f(g(x)). Also E is an Endy E-group defined by ¢ : E x EndyE — E
by ¢(m.f) = m.f = f(m).
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2. Endomorphism Near Ring of Quasi-Injective N-Groups

In this section we investigate various characteristics of endomorphism near-ring
of quasi-injective N-groups. We also study Jacobson radical of endomorphism
near-ring of quasi-injective N-groups. Throughout this section unless and oth-
erwise mention we assume FE satisfies the condition of theorem 1.3 and N is a
dgnr.

If E is injective hull of E and S = EndyE, ¢ : E x S — E by ¢(m, f) =
m.f = f(m), m € E, f €S, then F is an S-group.

For this S-group we get the following:

Proposition 2.1. ES is an N-subgroup of E.

Proof. Let a,b € ES,

a=Y zifib=) yifi, a-b= wfi-) yifj€ES.

Let n € N,a € ES to show na € ES.

na=nY zifi=nY_ fi(z)
=(s1+satsgt-tsn)> filzi)
=51 ) filw) +s2 > filw) +s3 Y filw) + A sa Y filw)
= sifi(zi) + Y safi(zi) + Y ssfi(mi) o+ Y snfila)
= filsim) + Y filsam) + Y filsszi) -+ > filsnxs)
= (s1z)fi + Y (s0m) fi + Y (s3) fi+ -+ Y (snwi) fi € ES,
because (s;x;) € E). O

Proposition 2.2. (a) ES is quasi-injective.

(b) ES is the intersection of all quasi-injective N-subgroups of E containing
E. So ES is the smallest N-subgroup of E containing E.

(c) E is quasi-injective if and only if E = ES .

Proof. (a) Let M be an N-subgroup of ES and f : M — ES. We take
the inclusion map i : ES — E. Then the composite map h = if : M — E.
Since E is injective , so h can be extended by some A : E — E such that for
x € M, zX=XNz)=zh=ua(if) = (if)(x) =i(f(z)) = f(x) = x.f where
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x.f = f(x) € ES. Thus f is induced by A € S. Now let g € S. Then for
y=> x:g; € ES, > (xigi))A = > zi(g:\) € ES , since g;\ € S.

Therefore (ES)A C ES. X induces A : ES — ES. i.e. A can be restricted
by some X\ : ES — ES such that 2\ = x.)\ for © € ES.Thereforex) = x.f
for x € M[. 2\ = z.f for x € M and M C ES]. ie. f is induced by
\: ES — ES = ES is quasi-injective.

(b) Let P be any quasi-injective N-subgroup of E containing E. We wish
to show ES = NP. Since by (a) ES is quasi-injective. So NP C ES. Now
to show S C NP. We will show ES C P, so it is sufficient to show that
Pa C P Ya e S. Since if Va € S,Po C P then PS C P. But E C P =
ESCPS [ECP= FEXNCP)N= ESCP. To prove this we see that
Q(a) = {x € P/xa € P} is an N-subgroup of P. Let z,y € Q(a) = za €
P,ya e P. za—yac P=a(zr)—aly) € P=a(z—y) € P= (z—y) € Qa).
Next to show for n € N, z € Q(«a), nx € Q(a).z € Q(a) = = € P such that
za€ P rxePneN=nreP( NPCP).(w).a=anr)=nxr)=
n(x.a) € P(INP C P) = nz € Q(«a). Therefore Q(«) is an N-subgroup of P.
We have only to show that Q(«) = P Va € S, sincetheny € P = y € Q(a) =
y.a € P = Pa C P. Since ¢ — qa, q € Q(a) = Q a map of @) into P and since
P is quasi-injective, so there exists a1 : P — P such that qa; = qa Vg € Q.
Since E is injective, 3o/ € S such that zo/ = za; Va € P. Since Poa/ C P. If
P(a’—a) = 0then Pa’ = Pa. So Pa C P. Soif Q(a) # P then P(a’ —a) # 0.
Asweknow E<,E=P<,FE (. ifA(#0)<E&PNA=0then ENA=0
contradicts £ <, E). Now P(o/ — a) is N-subgroup of E.a,b € P(d/ — o).
Then let a = pi(¢ — a),b =p2(e/ —a) a—b=pi(¢/ —a)—p(d —a) =
(p1 —p2)(@ —a) e P(/ —a) (. (¢ —a)eS). Forne N,z e Pld — ),
let @ = pi(a’ = a). Now npi(a’ — a) = n(a’ — a)p1 = na'(p1) — na(p1) =
o (np1) — a(npy) = (& — a)(np1) = (np1)(e/ — a) € P(d¢/ — ), Therefore
P(a/ — o) N-subgroup of E . Consequently we have P(a/ —a) N P # 0. But
if 2,0 # y € P are such that y = z(¢/ — a) € P(a/ — a) N P. Then since
zd =zai[sx € P y=uzd—a)=(—a)(r) = (dr—ar) =zd — za]
xa = zag —y € P. Then z € Q) so that za = za/ and so y = 0, a
contradiction. Which establishes (b).

(¢) Since ES is the intersection of all quasi-injective N-subgroups of E,
containing F. FE is quasi-injective = ES C FE. And F C ES is obvious by
inclusion map: ES = F O

Definition 2.1. (P, E, f) denotes a N-monomorphism f : E — P and is
called an extension of E. An extension (P, F, f) of an N-group E is a minimal
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quasi-injective extension in case P is quasi-injective and the following condition
is satisfied:
If (A, E, g) is any quasi-injective extension of E, then there exists a monomor-

phism ¢ : P — A such that:
'
P — A
\ /

Proposition 2.3. ES is minimal quasi-injective extension of E. Any Two
minimal quasi-injective extensions are equivalent.

commutes i.e. g = ¢f

Proof. Let (A, E,g) be any quasi-injective extension of E. Let A = E(A)
& Q= HomN(A A) . Then by proposition 2.2, AQ C A. Since ES is an
essential extension of E, the N-monomorphism ¢ : £ — A can be extended to
a monomorphism (also denoted by g) of ES in A. [Since if f: A 2% B, E
injective, A <. B, then f extends to f' : B =% E] Since g(ES) is quasi-
injective. [ g(ES) = ES, " Kerg=0(f: A 2%% B, A= f(A))].

Then (g(ES))Q C ¢g(ES) and we conclude that (B)Q C B where B =
g(ES)N A C g(ES), so g~Y(B) C (ES) [.- AB C B,AC C C,A(BNC(C) =
ABNAC C Bn<].

Since B C (B)XQ is obvious. Therefore by Proposition 2.2 B is quasi-
injective. It follows that ¢~!(B) is a quasi-injective extension of £ C ES.
Since ES is the smallest quasi-injective extension of E contained in F, we con-
clude that g=!(B) = (ES). So B = g(ES) C A. This establishes that ES is a
minimal quasi-injective extension.

Next if (A, F,g) is also a minimal quasi-injective extension of E, then

(A,E,g) is also equivalent to ES. FES minimal quasi-injective extension of
mono ¢

E. (A E,g) is also quasi-injective extension of E. By definition for E
ES FE — monoJ A, there exists £S ——— Mm99, A such that the diagram

ES—»— A

N
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commutes i.e. g = ¢f
Again (A, E, g) is minimal quasi-injective extension of E. ES is also quasi-

injective extension of E. By definition for £ —— I, A, E M) ES there
mono w

exists A ———— FES such that the diagram

A—»—ES

commutes i.e. f = wg.

Now f = wg = f = wof. So I = wep. Again g = ¢f = g = ¢wg. So
I = ¢w. Thus w and ¢ both are invertible which implies both w and ¢ are
isomorphic. Hence ES = A. O

Definition 2.2. A near-ring N is said to be a regular near-ring if for every
element z € N, there exists an element y € N such that zyx = x.

Theorem 2.1. Let E be quasi-injective N-group let A = Hom(E, E) and
let J = J(A) denote the Jacobson radical of A and is strictly small in A. Then
J = {\ € A/FE essential extension of Ker\}. If forv € J A € A, y\ € J
then A/J is a regular near-ring. Where addition of two N-subgroups is again
N-subgroup of E and N need not be dgnr.

Proof. Let I = {\ € A/FE essential extension of Ker\}.

IfANeA, wu,yel, then Ker(u+y) 2 Kerun Kery. Since x € Kerp N
Kery =z € Keruy & z € Kery = u(z) =0&v(x) =0= (n+7)(z) =
0=z € Ker(uu+). Since Kerpn Kery is an essential N-subgroup, therefore
Ker(u + ) is an essential N-subgroup of E x € Kery = ~(x) = 0. Now for
mA € Ay e L(pA+7) —pA)(@) = (B +9)(x) = (pA)(z) = (pA)(z) +
0 — (uA)(z) = 0, since y(x) = 0. Therefore z € Ker(u(A+v) — pA). And so
Ker\ C Ker(u(A+7) — pA) = (u(A+ ) — uA) € I. Therefore I is left ideal
of A.

However if A € I, Ker(1+p\) = 0 for KerANKer(1+pA) = 0. Forif, A\ € I
we have E essential extension of Ker\. x € KerANKer(1+ pu)) = A(z) =0
and (1+pN)(z2) =0=>x4+u(N\)(x) =0=2+u(0) =2 =0. Again \e [ = F
essential extension of Ker\ = Ker(1+ uX) = 0.

(1+u) : E — (1+pM)E is an isomorphism = Jg € A such that g(1+p\) =
i, 80 (1+ pA) has a left inverse VA€ I & Vu e A. So, A € J [by lemma 1.1].
This establishes that I C J.
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Next let A be arbitrary element of A, let L be a complement N-subgroup
of E corresponding to K = Ker(\) and consider the correspondence Az — x
Vo e L. If Az = Ay with z,y € L, then A(z —y) = 0 and then (x —y) € KNL
= 0. Since F is quasi-injective, the map Az — x of AL in L is induced by some
e fu=ox+yel+K,xeL,ye K, then

(A= 2X0N)(u) =A(x) — MO (x) = A(z) — A(z) =0
=A—AA=0 (1)

[ANOA(z) = N0(x) = A(z) = x, as for z € LO(x) = A(z) = z].

Since £ D, L+ K asK C L+ K and since Ker(A — A\) O L+ K, we
conclude that A — A0\ € I. Now to show J = 1. If A € J and § € A is chosen
so that uw = (A — A9N\) € I,(1 — OA)~! exists.(Since J is Jacobson Redical.
Therefore (1 —0XA) " (u) = (1 —0X) "L (A= X0N) = (1 —OA) "1 (1 —OA)A = A and
A€ I[. I is aleft ideal]. Thus J = I is asserted. Also [ is an ideal by given
condition. Thus A is a regular modulo I.

From (1) AX = X in A/I. Therefore A/.J is regular ring as J = I. O

3. Some Properties of Quasi-Injective N-Groups

This section contains some properties of quasi-injective N-groups related to
essentially closed N-subgroups and complement N-subgroups. Let M be an
N-subgroup of E. We consider F' = {P/P N-subgroup of E, PN M = 0}.F #
®,(0) € F.C = {P;/P, € F} is a chain in F. Let K = UP,.[z,y € UP;, =
x € P,y € Ppdfi> Jx,y € Pj. Therefore (x —y) € P; = (x —y) € UB,.
Again n € N,z € UP; = « € P; for some j, then nz € P; = nx € UP]]
Since P,N M = OVi.(U;P) N M = U;(P, N M) = 0& U; P, < E. Therefore
U;(P; € C. So by Zorn’s Lemma the N-subgroup K is maximal in the set of
those N-subgroups P satisfying PN /N = 0. Then K is said to be complement
of M in E.

Definition 3.1. The N-subgroup K is maximal in the set of those N-
subgroups P satisfying P N M = 0 is said to be complement of M in F. A
complement N-subgroup(ideal) of E is an N-subgroup A which is a complement
in E of some N-subgroup(ideal) B.

If sum of two N-subgroups is again an N-subgroup of an N-group we get
the following:
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Lemma 3.1. If M is an N-subgroup of E and if K is any complement
of M in E, then there exists a complement () of K in E such that Q O M.
Furthermore any such @) is a maximal essential extension of M in E.

Proof. Let FF = {I[/INK = 0,M C I}. Since M € F,F # ®. Let
C = {C;/i € A\, Nindex,C; € F} be a chain. Q = UC;. Now (U;enC;) N K =
UZ'e)\(CiﬁK) =0 Vi [ CiNnK =0 VZ] & M CU;enC; Vi,M C C;. So
by Zorn’s Lemma () € F', maximal element exists.Thus () in the first sentence
exists.

Now to prove the second part.

Let T be any non-zero N-subgroup of () and assume that TN M = 0. Since
TNK =0 [Q <.K,T <; Q). Therefore the sum K; = T+ K is direct and K;
properly contains K. *» KyNM = 0. [If possiblelet KiNM #0. KiNM =
(T+K)NM. Lett+k=nec (T+K)NM=ke KN(M+T)CKNQ = k=
0=n=te MNT contradiction to T'N M = 0. Therefore K; N M = 0.] This
contradicts the definition of K. This proves that @) is an essential extension of
M. If P is an N-subgroup of E properly containing @ , then P N K # 0 and
(PNK)NM =Pn(KNM)=PnO0=0. Thus P is not essential extension of
M, completing the proof. O

Lemma 3.2. The essentially closed N-subgroups of an N-group E co-
incide with the complement N-subgroup of E. If M and K are complement
N-subgroups and if K is a complement of M in E then M is a complement of
K in E.

Proof. Let M be a essentially closed N-subgroup and K is any complement
of M. Then by lemma 3.1 there exists a complement @ of K such that M C Q.
This @ is maximal essential extension of M in E. But M is essentially closed,
so it has no proper essential extension. Therefore M = (@) is a complement
N-subgroup.

Next let M be complement of an N-subgroup P. Then 3 a complement K
of M which contains P.

If possible let M/ < E such that M C M/ & KNM/ =0.Then PNM/ =
0. - P C K, which contradicts (1). Therefore M is also maximal such that
KN M = 0. Therefore M is complement of K. Then M is essentially closed
by lemmad.1. This also proves the last statement.

Theorem 3.1. Let E be quasi-injective and let M be a essentially closed
N-subgroup, then for each N-subgroup K of ., N-homomorphism w : K = M
can be extended to N-homomorphism v : E — M
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Proof. Let F = {L/w is extended to a map of T" into M for N-subgroup
T of E containing L} By Zorn’s lemma we can assume that K is such that
w cannot be extended to a map of T into M for any N-subgroup T of E
which properly contains K. Since, E is quasi-injective, w is induced by a map
u: F — E& let L complement of M in E. Suppose u(F) & M. Since M is
essentially closed. M is a complement of L. Therefore, since w(E) + M D M,
we see that (w(E) + M)NL#0. Let0#x=a+be (w(E)+M)NL=ac
u(E),be M.If a € M then x € M NL =0, a contradiction. Therefore a ¢ M
anda=xz—-be L+ M. NowT =y € FE/u(y) € L+ M is an N-subgroup of
E containing K. -z € K = w(k) € M = u(k) € M Vk € K. Therefore
T contains K. If y € E is such that u(y) = a then y € T, but y ¢ K since
a¢ M. [ryeT=uly)=acl&yece K=wly) e M =uly) e M VyeK,
contradiction to a ¢ M].

Let 7 denote the projection of L+M on M. Then wu is a map of T'in M and
mu(y) =u(ly) =w(ly) VyeK.[ ye K=w(ly) € M=uly) e M VyeK].
Thus 7u is a proper extension of w, a contradiction. Therefore u(E) C M, so
u is the desired extension.

Corollary 3.1. For quasi-injective N-group E.

(1) If M is essentially closed N-subgroup of E, then M is a direct summand
of ¥ and M is quasi-injective. Also M has a complement in F.

(2) If P is any N-subgroup of E, then there exists a quasi-injective essential
extension of P contained in E.

(3) Each minimal quasi-injective extension of an N-group K is an essential
extension of K.

Proof. (1) If e : E — M is the extension given by theorem 3.1 of the

C e m, meM
injection map M — M then E = M @ Ker(e) where e(m) = { 0, méM
So that M is a direct summand of E. Therefore M is quasi-injective by theorem

1.2 Moreover Ker(e) is complement of M. Since
M N Ker(e) = (0) (2)

M essentially closed = M complement of some N-subgroup K = K is com-
plement of M, i.e.

max max

MK =0 (3)
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(2) & (3)= Ker(e) C K. Let (0 #)x € K =2 ¢ M = e(x) =0 [by definition
of e] = z € Ker(e).

Therefore K C Ker(e). Therefore K = Ker(e) = Ker(e) complement of
M.

(2) Let F={I/PCI,P<.I}.P € F. Therefore F' # ¢.

Let {C;/C; € F} be a chain in F. M = U,C;,P C C; VI = P C
U;C;, P <. C; VI= P <,UC; [PﬂAZ #0 Vi, A; < C;. Since PN (UZAZ) =
Ui (PN A;) #0.UA; <UC ]

If possible M = U,;C; <. K. Therefore P <. M <. K = P <. K,
contradicts maximality of M. So by Zorn’s Lemma P is contained in essentially
closed N-subgroup M which is essential extension of P and M is quasi-injective

by (1).

(3) Let A be any minimal quasi-injective extension of an N-group K. Let
K is contained in quasi-injective essential extension B by (2). i.e.B essentially
closed. So as B is essential extension of K, A is also essential extension of K.
Thus every minimal quasi-injective extension of an N-group K is an essential
extension of K. O
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