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Abstract: We extend the concepts of quasi-injective modules and their en-
domorphism rings to near-ring groups. We attempt to derive the near-ring
character of the set of endomorphism of quasi-injective N -groups under certain
conditions and this leads us to a near-ring group structure which motivates us to
study various characteristics of the structure. If E is a quasi-injective N-group
and S = End(injective hull of E) then we study the structure ES and various
properties of ES. It is proved that ES is a minimal quasi-injective exten-
sion of E and any two minimal quasi-injective extensions are equivalent. This
structure motivates to study the Jacobson radical of endomorphism near-ring
of quasi-injective N -group E. It is established that the near-ring modulo the
Jacobson radical is a regular near-ring. Some properties of quasi-injective N -
groups relating essentially closed N -subgroups and complement N -subgroups
are established.
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1. Prerequisites

All basic concepts used in this paper are available in Pilz [4].In this section we
define the basic terms and results that are needed for the sequel.

Definition 1.1. For a right near-ring (N,+, .) and a corresponding N -
group E, suppose there is an x ∈ E such that {nx|n ∈ N} = E. Then E is a
monogenic N -group and x is a generator.

Definition 1.2. An N -subgroup B of E is called fully invariant if for each
N -homomorphism f : E → E, f(B) ⊂ B.

Definition 1.3. A left ideal A of N is called small (strictly small) if
N = B for each left ideal (N -subgroup) B such that N = A+B.

Since every left ideal is a left N -subgroup, a strictly small left ideal of N is
also a small left ideal of N .

Definition 1.4. The intersection of all maximal ideals maximal as N -
subgroups of N -group E is called radical of E and is denoted by J(E).

Lemma 1.1. [3]: If the radical ideal J(N) is strictly small in N then the
following conditions are equivalent- (i) Y ∈ J(N) (ii) 1-xy is left invertble for
all x ∈ N (iii) yM = 0 for any irreducible left N-group M.

Definition 1.5. An N -subgroup (ideal) I of E is said to be a essentially
closed N-subgroup (ideal) of E if I has no proper essential extension in E.

Definition 1.6. An N -subgroup (ideal) I of E is said to be a essentially
closed N -subgroup (ideal) of E if I has no proper essential extension in E.

Theorem 1.1. An N -group E is quasi-injective if and only if E is fully
invariant N -subgroup of its injective hull.

Theorem 1.2. If E is quasi-injective then its direct summands are also
quasi-injective.

Proof of Theorem 1.1, Theorem 1.2 are given in K. R. Goodearl [6].

Theorem 1.3. [Clay]: For a near-ring (N, +, .) with identity 1, suppose
E is a monogenic unitary N-group with generator x and suppose that T = {m ∈
N/Ann(x)m ∈ Ann(x)} is a subgroup of (N , +, .). Then theN -endomorphisms
E of N -group E forms a right near-ring where (f ⊕ g) (x) = f(x) + g(x) and
(f.g)(x) = f(g(x)). Also E is an EndN E-group defined by φ : E×EndNE → E
by φ(m.f) = m.f = f(m).
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2. Endomorphism Near Ring of Quasi-Injective N-Groups

In this section we investigate various characteristics of endomorphism near-ring
of quasi-injective N -groups. We also study Jacobson radical of endomorphism
near-ring of quasi-injective N -groups. Throughout this section unless and oth-
erwise mention we assume E satisfies the condition of theorem 1.3 and N is a
dgnr.

If Ê is injective hull of E and S = EndN Ê, φ : Ê × S → Ê by φ(m, f) =
m.f = f(m), m ∈ Ê, f ∈ S, then Ê is an S-group.

For this S-group we get the following:

Proposition 2.1. ES is an N -subgroup of Ê.

Proof. Let a, b ∈ ES,

a =
∑

xifi, b =
∑

yjfj, a− b =
∑

xifi −
∑

yjfj ∈ ES.

Let n ∈ N, a ∈ ES to show na ∈ ES.

na = n
∑

xifi = n
∑

fi(xi)

= (s1 + s2 + s3 + · · ·+ sn)
∑

fi(xi)

= s1
∑

fi(xi) + s2
∑

fi(xi) + s3
∑

fi(xi) + · · ·+ sn
∑

fi(xi)

=
∑

s1fi(xi) +
∑

s2fi(xi) +
∑

s3fi(xi) + · · · +
∑

snfi(xi)

=
∑

fi(s1xi) +
∑

fi(s2xi) +
∑

fi(s3xi) + · · · +
∑

fi(snxi)

=
∑

(s1xi)fi +
∑

(s2xi)fi +
∑

(s3xi)fi + · · ·+
∑

(snxi)fi ∈ ES,

because (sjxi) ∈ E).

Proposition 2.2. (a) ES is quasi-injective.

(b) ES is the intersection of all quasi-injective N -subgroups of Ê containing
E. So ES is the smallest N -subgroup of Ê containing E.

(c) E is quasi-injective if and only if E = ES .

Proof. (a) Let M be an N -subgroup of ES and f : M → ES. We take
the inclusion map i : ES → Ê. Then the composite map h = if : M → Ê.
Since Ê is injective , so h can be extended by some λ : Ê → Ê such that for
x ∈ M , x.λ = λ(x) = x.h = x.(if) = (if)(x) = i(f(x)) = f(x) = x.f where
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x.f = f(x) ∈ ES. Thus f is induced by λ ∈ S. Now let g ∈ S. Then for
y =

∑

xigi ∈ ES,
∑

(xigi)λ =
∑

xi(giλ) ∈ ES , since giλ ∈ S.

Therefore (ES)λ ⊆ ES. λ induces λ̄ : ES → ES. i.e. λ can be restricted
by some λ̄ : ES → ES such that xλ̄ = x.λ for x ∈ ES.Thereforexλ̄ = x.f
for x ∈ M [∵ xλ = x.f for x ∈ M and M ⊆ ES]. i.e. f is induced by
λ̄ : ES → ES ⇒ ES is quasi-injective.

(b) Let P be any quasi-injective N -subgroup of Ê containing E. We wish
to show ES = ∩P . Since by (a) ES is quasi-injective. So ∩P ⊆ ES. Now
to show ES ⊆ ∩P . We will show ES ⊆ P , so it is sufficient to show that
Pα ⊆ P ∀α ∈ S. Since if ∀α ∈ S,Pα ⊆ P then PS ⊆ P . But E ⊆ P ⇒
ES ⊆ PS [∵ E ⊆ P ⇒ Eλ ⊆ Pλ] ⇒ ES ⊆ P . To prove this we see that
Q(α) = {x ∈ P/xα ∈ P} is an N -subgroup of P . Let x, y ∈ Q(α) ⇒ xα ∈
P, yα ∈ P. xα−yα ∈ P ⇒ α(x)−α(y) ∈ P ⇒ α(x−y) ∈ P ⇒ (x−y) ∈ Q(α).
Next to show for n ∈ N, x ∈ Q(α), nx ∈ Q(α). x ∈ Q(α) ⇒ x ∈ P such that
x.α ∈ P. ∵ x ∈ P, n ∈ N ⇒ nx ∈ P (∵ NP ⊆ P ). (nx).α = α(nx) = nα(x) =
n(x.α) ∈ P (NP ⊆ P ) ⇒ nx ∈ Q(α). Therefore Q(α) is an N -subgroup of P .
We have only to show that Q(α) = P ∀α ∈ S, since then y ∈ P ⇒ y ∈ Q(α) ⇒
y.α ∈ P ⇒ Pα ⊆ P. Since q → qα, q ∈ Q(α) = Q a map of Q into P and since
P is quasi-injective, so there exists α1 : P → P such that qα1 = qα ∀q ∈ Q.
Since Ê is injective, ∃α′ ∈ S such that xα′ = xα1 ∀x ∈ P. Since Pα′ ⊆ P . If
P (α′−α) = 0 then Pα′ = Pα. So Pα ⊆ P . So if Q(α) 6= P then P (α′−α) 6= 0.
As we know E ≤e Ê ⇒ P ≤e Ê (∵ if A(6= 0) ≤ Ê&P ∩A = 0 then E∩A = 0
contradicts E ≤e Ê). Now P (α′ − α) is N -subgroup of Ê. a, b ∈ P (α′ − α).
Then let a = p1(α

′ − α), b = p2(α
′ − α) a − b = p1(α

′ − α) − p2(α
′ − α) =

(p1 − p2)(α
′ − α) ∈ P (α′ − α) (∵ (α′ − α) ∈ S) . For n ∈ N,x ∈ P (α′ − α),

let x = p1(α
′ − α). Now np1(α

′ − α) = n(α′ − α)p1 = nα′(p1) − nα(p1) =
α′(np1) − α(np1) = (α′ − α)(np1) = (np1)(α

′ − α) ∈ P (α′ − α), Therefore
P (α′ − α)N -subgroup of Ê . Consequently we have P (α′ − α) ∩ P 6= 0. But
if x, 0 6= y ∈ P are such that y = x(α′ − α) ∈ P (α′ − α) ∩ P . Then since
xα′ = xα1[∵ x ∈ P y = x(α′ − α) = (α′ − α)(x) = (α′x − αx) = xα′ − xα]
xα = xα1 − y ∈ P. Then x ∈ Q(α) so that xα = xα′ and so y = 0, a
contradiction. Which establishes (b).

(c) Since ES is the intersection of all quasi-injective N -subgroups of Ê,
containing E.E is quasi-injective ⇒ ES ⊆ E. And E ⊆ ES is obvious by
inclusion map: ES = E

Definition 2.1. (P,E, f) denotes a N -monomorphism f : E → P and is
called an extension of E. An extension (P,E, f) of an N -group E is a minimal
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quasi-injective extension in case P is quasi-injective and the following condition
is satisfied:

If (A,E, g) is any quasi-injective extension of E, then there exists a monomor-
phism φ : P → A such that:

�
�
�✒

❅
❅

❅■
✲P

ϕ

f g

A

E

commutes i.e. g = φf

Proposition 2.3. ES is minimal quasi-injective extension of E. Any Two
minimal quasi-injective extensions are equivalent.

Proof. Let (A,E, g) be any quasi-injective extension of E. Let Â = E(A)
& Ω = HomN (Â, Â) . Then by proposition 2.2, AΩ ⊆ A. Since ES is an
essential extension of E, the N -monomorphism g : E → Â can be extended to
a monomorphism (also denoted by g) of ES in Â. [Since if f : A

mono
−−−→ E, E

injective, A ≤e B, then f extends to f ′ : B
mono
−−−→ E] Since g(ES) is quasi-

injective. [∵ g(ES) ∼= ES,∵ Kerg = 0(f : A
mono
−−−→ B,A ∼= f(A))].

Then (g(ES))Ω ⊆ g(ES) and we conclude that (B)Ω ⊆ B where B =
g(ES) ∩ A ⊆ g(ES), so g−1(B) ⊆ (ES) [∵ AB ⊆ B,AC ⊆ C,A(B ∩ C) =
AB ∩AC ⊆ B ∩ C].

Since B ⊆ (B)Ω is obvious. Therefore by Proposition 2.2 B is quasi-
injective. It follows that g−1(B) is a quasi-injective extension of E ⊆ ES.
Since ES is the smallest quasi-injective extension of E contained in Ê, we con-
clude that g−1(B) = (ES). So B = g(ES) ⊆ A. This establishes that ES is a
minimal quasi-injective extension.

Next if (A,E, g) is also a minimal quasi-injective extension of E, then
(A,E, g) is also equivalent to ES. ES minimal quasi-injective extension of

E. (A,E, g) is also quasi-injective extension of E. By definition for E
monoφ
−−−−→

ES,E
mono f
−−−−→ A, there exists ES

mono φ
−−−−→ A such that the diagram

�
�
�✒

❅
❅

❅■
✲ES

ϕ

f g

A

E
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commutes i.e. g = φf
Again (A,E, g) is minimal quasi-injective extension of E. ES is also quasi-

injective extension of E. By definition for E
mono g
−−−−→ A, E

mono f
−−−−→ ES there

exists A
monoω
−−−−→ ES such that the diagram

�
�
�✒

❅
❅

❅■
✲A

ω

g f

ES

E

commutes i.e. f = ωg.
Now f = ωg ⇒ f = ωφf . So I = ωφ. Again g = φf ⇒ g = φωg. So

I = φω. Thus ω and φ both are invertible which implies both ω and φ are
isomorphic. Hence ES ∼= A.

Definition 2.2. A near-ring N is said to be a regular near-ring if for every
element x ∈ N , there exists an element y ∈ N such that xyx = x.

Theorem 2.1. Let E be quasi-injective N-group let Λ = Hom(E,E) and
let J = J(Λ) denote the Jacobson radical of Λ and is strictly small in Λ. Then
J = {λ ∈ Λ/E essential extension of Kerλ}. If for γ ∈ J, λ ∈ Λ, γλ ∈ J
then Λ/J is a regular near-ring. Where addition of two N -subgroups is again
N -subgroup of E and N need not be dgnr.

Proof. Let I = {λ ∈ Λ/E essential extension ofKerλ}.
If λ ∈ Λ, µ, γ ∈ I, then Ker(µ + γ) ⊇ Kerµ ∩Kerγ. Since x ∈ Kerµ ∩

Kerγ ⇒ x ∈ Kerµ & x ∈ Kerγ ⇒ µ(x) = 0& γ(x) = 0 ⇒ (µ + γ)(x) =
0 ⇒ x ∈ Ker(µ+ γ). Since Kerµ∩Kerγ is an essential N -subgroup, therefore
Ker(µ + γ) is an essential N -subgroup of E x ∈ Kerγ ⇒ γ(x) = 0. Now for
µ, λ ∈ Λ, γ ∈ I, (µ(λ + γ) − µλ)(x) = (µ(λ + γ)(x) − (µλ)(x) = (µλ)(x) +
0 − (µλ)(x) = 0, since γ(x) = 0. Therefore x ∈ Ker(µ(λ + γ) − µλ). And so
Kerλ ⊆ Ker(µ(λ + γ) − µλ) ⇒ (µ(λ + γ) − µλ) ∈ I. Therefore I is left ideal
of Λ.

However if λ ∈ I,Ker(1+µλ) = 0 for Kerλ∩Ker(1+µλ) = 0. For if, λ ∈ I
we have E essential extension of Kerλ. x ∈ Kerλ∩Ker(1 + µλ) ⇒ λ(x) = 0
and (1+µλ)(x) = 0 ⇒ x +µ(λ)(x) = 0 ⇒ x+µ(0) ⇒ x = 0. Again λ ∈ I ⇒ E
essential extension of Kerλ ⇒ Ker(1 + µλ) = 0.

(1+µλ) : E → (1+µλ)E is an isomorphism⇒ ∃g ∈ Λ such that g(1+µλ) =
i, so (1 + µλ) has a left inverse ∀λ ∈ I & ∀µ ∈ Λ. So, λ ∈ J [by lemma 1.1].
This establishes that I ⊆ J .
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Next let λ be arbitrary element of Λ, let L be a complement N-subgroup
of E corresponding to K = Ker(λ) and consider the correspondence λx → x
∀x ∈ L. If λx = λy with x, y ∈ L, then λ(x− y) = 0 and then (x− y) ∈ K ∩L
= 0. Since E is quasi-injective, the map λx → x of λL in L is induced by some
θ ∈ Λ. If u = x+ y ∈ L+K,x ∈ L, y ∈ K, then

(λ− λθλ)(u) =λ(x)− λθλ(x) = λ(x)− λ(x) = 0

⇒λ− λθλ = 0 (1)

[λθλ(x) = λθ(x) = λ(x) = x, as for x ∈ Lθ(x) = λ(x) = x].

Since E ⊇e L + K asK ⊆ L + K and since Ker(λ − λθλ) ⊇ L + K, we
conclude that λ− λθλ ∈ I. Now to show J = I. If λ ∈ J and θ ∈ Λ is chosen
so that u = (λ − λθλ) ∈ I, (1 − θλ)−1 exists.(Since J is Jacobson Redical.
Therefore (1− θλ)−1(u) = (1− θλ)−1(λ− λθλ) = (1− θλ)−1(1− θλ)λ = λ and
λ ∈ I[∵ I is a left ideal]. Thus J = I is asserted. Also I is an ideal by given
condition. Thus Λ is a regular modulo I.

From (1) ¯λθλ = λ̄ in Λ/I. Therefore Λ/J is regular ring as J = I.

3. Some Properties of Quasi-Injective N-Groups

This section contains some properties of quasi-injective N -groups related to
essentially closed N -subgroups and complement N -subgroups. Let M be an
N -subgroup of E. We consider F = {P/P N -subgroup ofE,P ∩M = 0}.F 6=
Φ, (0) ∈ F.C = {Pi/Pi ∈ F} is a chain in F . Let K = ∪Pi.[x, y ∈ ∪Pi ⇒
x ∈ Pi, y ∈ Pj .If i > J, x, y ∈ Pj . Therefore (x − y) ∈ Pj ⇒ (x − y) ∈ ∪Pi.
Again n ∈ N,x ∈ ∪Pi ⇒ x ∈ Pj for some j, then nx ∈ Pj ⇒ nx ∈ ∪Pi]
Since Pi ∩ M = 0∀i.(∪iPi) ∩ M = ∪i(Pi ∩ M) = 0& ∪i Pi ≤ E. Therefore
∪i(Pi ∈ C. So by Zorn’s Lemma the N -subgroup K is maximal in the set of
those N -subgroups P satisfying P ∩N = 0. Then K is said to be complement
of M in E.

Definition 3.1. The N -subgroup K is maximal in the set of those N -
subgroups P satisfying P ∩ M = 0 is said to be complement of M in E. A
complement N -subgroup(ideal) of E is an N -subgroup A which is a complement
in E of some N -subgroup(ideal) B.

If sum of two N -subgroups is again an N -subgroup of an N -group we get
the following:
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Lemma 3.1. If M is an N -subgroup of E and if K is any complement
of M in E, then there exists a complement Q of K in E such that Q ⊇ M .
Furthermore any such Q is a maximal essential extension of M in E.

Proof. Let F = {I/I ∩ K = 0,M ⊆ I}. Since M ∈ F,F 6= Φ. Let
C = {Ci/i ∈ λ, λindex,Ci ∈ F} be a chain. Q = ∪Ci. Now (∪i∈λCi) ∩ K =
∪i∈λ(Ci∩K) = 0 ∀i. [∵ Ci∩K = 0 ∀i] & M ⊂ ∪i∈λCi ∀i,M ⊆ Ci. So
by Zorn’s Lemma Q ∈ F , maximal element exists.Thus Q in the first sentence
exists.

Now to prove the second part.

Let T be any non-zero N -subgroup of Q and assume that T ∩M = 0. Since
T ∩K = 0 [Q ≤c K,T ≤s Q]. Therefore the sum K1 = T +K is direct and K1

properly contains K. ∵ K1∩M = 0. [ If possible let K1∩M 6= 0. K1∩M =
(T +K)∩M . Let t+k = n ∈ (T +K)∩M ⇒ k ∈ K∩ (M +T ) ⊆ K∩Q ⇒ k =
0 ⇒ n = t ∈ M ∩ T contradiction to T ∩M = 0. Therefore K1 ∩M = 0.] This
contradicts the definition of K. This proves that Q is an essential extension of
M . If P is an N -subgroup of E properly containing Q , then P ∩K 6= 0 and
(P ∩K)∩M = P ∩ (K ∩M) = P ∩ 0 = 0. Thus P is not essential extension of
M , completing the proof.

Lemma 3.2. The essentially closed N -subgroups of an N -group E co-
incide with the complement N -subgroup of E. If M and K are complement
N -subgroups and if K is a complement of M in E then M is a complement of
K in E.

Proof. Let M be a essentially closed N -subgroup and K is any complement
of M . Then by lemma 3.1 there exists a complement Q of K such that M ⊆ Q.
This Q is maximal essential extension of M in E. But M is essentially closed,
so it has no proper essential extension. Therefore M = Q is a complement
N -subgroup.

Next let M be complement of an N -subgroup P . Then ∃ a complement K
of M which contains P .

If possible letM/ ≤ E such thatM ⊆ M/ & K∩M/ = 0. Then P∩M/ =
0. ∵ P ⊂ K, which contradicts (1). Therefore M is also maximal such that
K ∩M = 0. Therefore M is complement of K. Then M is essentially closed
by lemma3.1. This also proves the last statement.

Theorem 3.1. Let E be quasi-injective and let M be a essentially closed
N -subgroup, then for each N -subgroup K of E, N -homomorphism w : K ⇒ M
can be extended to N -homomorphism u : E → M
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Proof. Let F = {L/w is extended to a map of T into M for N -subgroup
T of E containing L} By Zorn’s lemma we can assume that K is such that
w cannot be extended to a map of T into M for any N -subgroup T of E
which properly contains K. Since, E is quasi-injective, w is induced by a map
u : E → E& let L complement of M in E. Suppose u(E)  M . Since M is
essentially closed. M is a complement of L. Therefore, since u(E) +M ⊃ M,
we see that (u(E) +M) ∩ L 6= 0. Let 0 6= x = a+ b ∈ (u(E) +M) ∩ L ⇒ a ∈
u(E), b ∈ M. If a ∈ M then x ∈ M ∩ L = 0, a contradiction. Therefore a /∈ M
and a = x − b ∈ L +M . Now T = y ∈ E/u(y) ∈ L+M is an N -subgroup of
E containing K. ∵ x ∈ K ⇒ w(k) ∈ M ⇒ u(k) ∈ M ∀k ∈ K. Therefore
T contains K. If y ∈ E is such that u(y) = a then y ∈ T , but y /∈ K since
a /∈ M . [∵ y ∈ T ⇒ u(y) = a ∈ L&y ∈ K ⇒ w(y) ∈ M ⇒ u(y) ∈ M ∀y ∈ K,
contradiction to a /∈ M ].

Let π denote the projection of L+M onM . Then πu is a map of T inM and
πu(y) = u(y) = w(y) ∀y ∈ K. [∵ y ∈ K ⇒ w(y) ∈ M ⇒ u(y) ∈ M ∀y ∈ K].
Thus πu is a proper extension of w, a contradiction. Therefore u(E) ⊆ M, so
u is the desired extension.

Corollary 3.1. For quasi-injective N -group E.

(1) If M is essentially closed N -subgroup of E, then M is a direct summand
of E and M is quasi-injective. Also M has a complement in E.

(2) If P is any N -subgroup of E, then there exists a quasi-injective essential
extension of P contained in E.

(3) Each minimal quasi-injective extension of an N -group K is an essential
extension of K.

Proof. (1) If e : E → M is the extension given by theorem 3.1 of the

injection map M → M then E = M
⊕

Ker(e) where e(m) =

{

m, m ∈ M
0, m /∈ M

So that M is a direct summand of E. ThereforeM is quasi-injective by theorem
1.2 Moreover Ker(e) is complement of M . Since

M ∩Ker(e) = (0) (2)

M essentially closed ⇒ M complement of some N -subgroup K ⇒ K is com-
plement of M , i.e.

max
M

⋂max
K = (0) (3)
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(2) & (3)⇒ Ker(e) ⊂ K. Let (0 6=)x ∈ K ⇒ x /∈ M ⇒ e(x) = 0 [by definition
of e] ⇒ x ∈ Ker(e).

Therefore K ⊂ Ker(e). Therefore K = Ker(e) ⇒ Ker(e) complement of
M .

(2) Let F = {I/P ⊆ I, P ≤e I}.P ∈ F . Therefore F 6= φ.
Let {Ci/Ci ∈ F} be a chain in F . M = ∪iCi, P ⊆ Ci ∀I ⇒ P ⊆

∪iCi, P ≤e Ci ∀I ⇒ P ≤e ∪iCi [P ∩Ai 6= 0 ∀i, Ai ≤ Ci. Since P ∩ (∪iAi) =
∪i(P ∩Ai) 6= 0. ∪Ai ≤ ∪Ci ]

If possible M = ∪iCi ≤e K. Therefore P ≤e M ≤e K ⇒ P ≤e K,
contradicts maximality of M . So by Zorn’s Lemma P is contained in essentially
closed N -subgroup M which is essential extension of P and M is quasi-injective
by (1).

(3) Let A be any minimal quasi-injective extension of an N -group K. Let
K is contained in quasi-injective essential extension B by (2). i.e.B essentially
closed. So as B is essential extension of K, A is also essential extension of K.
Thus every minimal quasi-injective extension of an N -group K is an essential
extension of K.
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