International Journal of Pure and Applied Mathematics

Volume 97 No. 2 2014, 201-210 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v97i2.8

QUASI-INJECTIVE NEAR-RING GROUPS

Navalakhi Hazarika 1 $\overset{ \text{\normalsize\relax}}{ }$, Helen K. Saikia 2

¹Department of Mathematics Royal School of Engineering and Technology Guwahati, 781035, INDIA ²Department of Mathematics Gauhati University Guwahati, 781014, INDIA

Abstract: We extend the concepts of quasi-injective modules and their endomorphism rings to near-ring groups. We attempt to derive the near-ring character of the set of endomorphism of quasi-injective N-groups under certain conditions and this leads us to a near-ring group structure which motivates us to study various characteristics of the structure. If E is a quasi-injective N-group and $S = End(injective hull of E)$ then we study the structure ES and various properties of ES . It is proved that ES is a minimal quasi-injective extension of E and any two minimal quasi-injective extensions are equivalent. This structure motivates to study the Jacobson radical of endomorphism near-ring of quasi-injective N -group E . It is established that the near-ring modulo the Jacobson radical is a regular near-ring. Some properties of quasi-injective Ngroups relating essentially closed N-subgroups and complement N-subgroups are established.

AMS Subject Classification: 16Y30

Key Words: near-ring groups, quasi-injective N-subgroups, essentially closed N-subgroups

Received: June 19, 2014 (C 2014 Academic Publications, Ltd. url: www.acadpubl.eu

§Correspondence author

1. Prerequisites

All basic concepts used in this paper are available in Pilz [4].In this section we define the basic terms and results that are needed for the sequel.

Definition 1.1. For a right near-ring $(N, +, \cdot)$ and a corresponding Ngroup E, suppose there is an $x \in E$ such that $\{nx | n \in N\} = E$. Then E is a monogenic N -group and x is a generator.

Definition 1.2. An N-subgroup B of E is called fully invariant if for each N-homomorphism $f : E \to E$, $f(B) \subset B$.

Definition 1.3. A left ideal A of N is called small (strictly small) if $N = B$ for each left ideal (N-subgroup) B such that $N = A + B$.

Since every left ideal is a left N -subgroup, a strictly small left ideal of N is also a small left ideal of N.

Definition 1.4. The intersection of all maximal ideals maximal as Nsubgroups of N-group E is called radical of E and is denoted by $J(E)$.

Lemma 1.1. *[3]: If the radical ideal J(N) is strictly small in N then the following conditions are equivalent- (i)* $Y \in J(N)$ *(ii)* 1-xy is left invertble for *all* $x \in N$ *(iii)* $yM = 0$ for any irreducible left N-group M.

Definition 1.5. An N-subgroup (ideal) I of E is said to be a essentially closed N-subgroup (ideal) of E if I has no proper essential extension in E .

Definition 1.6. An N-subgroup (ideal) I of E is said to be a essentially closed N-subgroup (ideal) of E if I has no proper essential extension in E.

Theorem 1.1. *An* N*-group* E *is quasi-injective if and only if* E *is fully invariant* N*-subgroup of its injective hull.*

Theorem 1.2. *If* E *is quasi-injective then its direct summands are also quasi-injective.*

Proof of Theorem 1.1, Theorem 1.2 are given in K. R. Goodearl [6].

Theorem 1.3. *[Clay]: For a near-ring* $(N, +, \cdot)$ *with identity 1, suppose E* is a monogenic unitary N-group with generator x and suppose that $T = \{m \in$ $N/Ann(x)m \in Ann(x)$ *is a subgroup of* $(N, +, \cdot)$ *. Then the N*-endomorphisms E of N-group E forms a right near-ring where $(f \oplus g)(x) = f(x) + g(x)$ and $(f.g)(x) = f(g(x))$. Also *E* is an *End_N E*-group defined by $\phi : E \times End_N E \to E$ *by* $\phi(m.f) = m.f = f(m)$ *.*

2. Endomorphism Near Ring of Quasi-Injective N-Groups

In this section we investigate various characteristics of endomorphism near-ring of quasi-injective N-groups. We also study Jacobson radical of endomorphism near-ring of quasi-injective N-groups. Throughout this section unless and otherwise mention we assume E satisfies the condition of theorem 1.3 and N is a dgnr.

If \hat{E} is injective hull of E and $S = End_N \hat{E}$, $\phi : \hat{E} \times S \to \hat{E}$ by $\phi(m, f) =$ $m.f = f(m), m \in \hat{E}, f \in S$, then \hat{E} is an S-group.

For this S-group we get the following:

Proposition 2.1. ES *is an* N*-subgroup of* Eˆ*.*

Proof. Let $a, b \in ES$,

$$
a = \sum x_i f_i, \, b = \sum y_j f_j, \quad a - b = \sum x_i f_i - \sum y_j f_j \in ES.
$$

Let $n \in N$, $a \in ES$ to show $na \in ES$.

$$
na = n \sum x_i f_i = n \sum f_i(x_i)
$$

= $(s_1 + s_2 + s_3 + \dots + s_n) \sum f_i(x_i)$
= $s_1 \sum f_i(x_i) + s_2 \sum f_i(x_i) + s_3 \sum f_i(x_i) + \dots + s_n \sum f_i(x_i)$
= $\sum s_1 f_i(x_i) + \sum s_2 f_i(x_i) + \sum s_3 f_i(x_i) + \dots + \sum s_n f_i(x_i)$
= $\sum f_i(s_1 x_i) + \sum f_i(s_2 x_i) + \sum f_i(s_3 x_i) + \dots + \sum f_i(s_n x_i)$
= $\sum (s_1 x_i) f_i + \sum (s_2 x_i) f_i + \sum (s_3 x_i) f_i + \dots + \sum (s_n x_i) f_i \in ES$,

because $(s_i x_i) \in E$).

Proposition 2.2. *(a)* ES *is quasi-injective.*

(b) ES is the intersection of all quasi-injective N-subgroups of \hat{E} containing E*. So* ES *is the smallest* N*-subgroup of* Eˆ *containing* E*.*

(c) E *is quasi-injective if and only if* $E = ES$.

Proof. (a) Let M be an N-subgroup of ES and $f : M \rightarrow ES$. We take the inclusion map $i : ES \to \hat{E}$. Then the composite map $h = if : M \to \hat{E}$. Since \hat{E} is injective, so h can be extended by some $\lambda : \hat{E} \to \hat{E}$ such that for $x \in M$, $x.\lambda = \lambda(x) = x.h = x.(if) = (if)(x) = i(f(x)) = f(x) = x.f$ where

 \Box

 $x.f = f(x) \in ES$. Thus f is induced by $\lambda \in S$. Now let $g \in S$. Then for $y = \sum x_i g_i \in ES$, $\sum (x_i g_i) \lambda = \sum x_i (g_i \lambda) \in ES$, since $g_i \lambda \in S$.

Therefore $(ES)\lambda \subseteq ES$. λ induces $\overline{\lambda}$: $ES \to ES$. i.e. λ can be restricted by some $\bar{\lambda}$: $ES \to ES$ such that $x\bar{\lambda} = x.\lambda$ for $x \in ES. Therefore \bar{x}\bar{\lambda} = x.f$ for $x \in M$ [: $x\lambda = x.f$ for $x \in M$ and $M \subseteq ES$]. i.e. f is induced by $\bar{\lambda}: ES \to ES \Rightarrow ES$ is quasi-injective.

(b) Let P be any quasi-injective N-subgroup of E containing E. We wish to show $ES = \bigcap P$. Since by (a) ES is quasi-injective. So $\bigcap P \subseteq ES$. Now to show $ES \subseteq \bigcap P$. We will show $ES \subseteq P$, so it is sufficient to show that $P\alpha \subseteq P \quad \forall \alpha \in S$. Since if $\forall \alpha \in S, P\alpha \subseteq P$ then $PS \subseteq P$. But $E \subseteq P \Rightarrow$ $ES \subseteq PS \mid \because E \subseteq P \Rightarrow E\lambda \subseteq P\lambda \mid \Rightarrow ES \subseteq P$. To prove this we see that $Q(\alpha) = \{x \in P/x\alpha \in P\}$ is an N-subgroup of P. Let $x, y \in Q(\alpha) \Rightarrow x\alpha \in$ $P, y\alpha \in P$. $x\alpha - y\alpha \in P \Rightarrow \alpha(x) - \alpha(y) \in P \Rightarrow \alpha(x-y) \in P \Rightarrow (x-y) \in Q(\alpha)$. Next to show for $n \in N$, $x \in Q(\alpha)$, $nx \in Q(\alpha)$. $x \in Q(\alpha) \Rightarrow x \in P$ such that $x.\alpha \in P$. $\because x \in P, n \in N \Rightarrow nx \in P(\because NP \subseteq P)$. $(nx).\alpha = \alpha(nx) = n\alpha(x) =$ $n(x, \alpha) \in P(NP \subseteq P) \Rightarrow nx \in Q(\alpha)$. Therefore $Q(\alpha)$ is an N-subgroup of P. We have only to show that $Q(\alpha) = P \quad \forall \alpha \in S$, since then $y \in P \Rightarrow y \in Q(\alpha) \Rightarrow$ $y.\alpha \in P \Rightarrow P\alpha \subseteq P$. Since $q \rightarrow q\alpha, q \in Q(\alpha) = Q$ a map of Q into P and since P is quasi-injective, so there exists $\alpha_1 : P \to P$ such that $q\alpha_1 = q\alpha \quad \forall q \in Q$. Since \hat{E} is injective, $\exists \alpha' \in S$ such that $x\alpha' = x\alpha_1 \quad \forall x \in P$. Since $P\alpha' \subseteq P$. If $P(\alpha'-\alpha) = 0$ then $P\alpha' = P\alpha$. So $P\alpha \subseteq P$. So if $Q(\alpha) \neq P$ then $P(\alpha'-\alpha) \neq 0$. As we know $E \leq_e \hat{E} \Rightarrow P \leq_e \hat{E}$ (: if $A(\neq 0) \leq \hat{E} \& P \cap A = 0$ then $E \cap A = 0$ contradicts $E \leq_e \hat{E}$). Now $P(\alpha' - \alpha)$ is N-subgroup of $\hat{E}. a, b \in P(\alpha' - \alpha)$. Then let $a = p_1(\alpha' - \alpha)$, $b = p_2(\alpha' - \alpha)$ $a - b = p_1(\alpha' - \alpha) - p_2(\alpha' - \alpha) =$ $(p_1-p_2)(\alpha'-\alpha) \in P(\alpha'-\alpha) \quad (\because (\alpha'-\alpha) \in S)$. For $n \in N, x \in P(\alpha'-\alpha)$, let $x = p_1(\alpha' - \alpha)$. Now $np_1(\alpha' - \alpha) = n(\alpha' - \alpha)p_1 = n\alpha'(p_1) - n\alpha(p_1) =$ $\alpha'(np_1) - \alpha(np_1) = (\alpha' - \alpha)(np_1) = (np_1)(\alpha' - \alpha) \in P(\alpha' - \alpha)$, Therefore $P(\alpha' - \alpha)$ N-subgroup of \hat{E} . Consequently we have $P(\alpha' - \alpha) \cap P \neq 0$. But if $x, 0 \neq y \in P$ are such that $y = x(\alpha' - \alpha) \in P(\alpha' - \alpha) \cap P$. Then since $x\alpha' = x\alpha_1[\because x \in P \quad y = x(\alpha' - \alpha) = (\alpha' - \alpha)(x) = (\alpha'x - \alpha x) = x\alpha' - x\alpha]$ $x\alpha = x\alpha_1 - y \in P$. Then $x \in Q(\alpha)$ so that $x\alpha = x\alpha'$ and so $y = 0$, a contradiction. Which establishes (b).

(c) Since ES is the intersection of all quasi-injective N-subgroups of E , containing E. E is quasi-injective $\Rightarrow ES \subseteq E$. And $E \subseteq ES$ is obvious by inclusion map: $ES = E$ \Box

Definition 2.1. (P, E, f) denotes a N-monomorphism $f : E \to P$ and is called an extension of E. An extension (P, E, f) of an N-group E is a minimal

quasi-injective extension in case P is quasi-injective and the following condition is satisfied:

If (A, E, g) is any quasi-injective extension of E, then there exists a monomorphism $\phi : P \to A$ such that:

commutes i.e. $q = \phi f$

Proposition 2.3. ES *is minimal quasi-injective extension of* E*. Any Two minimal quasi-injective extensions are equivalent.*

Proof. Let (A, E, g) be any quasi-injective extension of E. Let $\hat{A} = E(A)$ $\& \Omega = Hom_N(\hat{A}, \hat{A})$. Then by proposition 2.2, $A\Omega \subseteq A$. Since ES is an essential extension of E, the N-monomorphism $g : E \to \hat{A}$ can be extended to a monomorphism (also denoted by g) of ES in \AA . [Since if $f : A \xrightarrow{mono} E$, E injective, $A \leq_e B$, then f extends to $f' : B \xrightarrow{mono} E$ Since $g(ES)$ is quasiinjective. $[\because g(ES) \cong ES, \because Kerg = 0(f : A \xrightarrow{mono} B, A \cong f(A))].$

Then $(g(ES))\Omega \subseteq g(ES)$ and we conclude that $(B)\Omega \subseteq B$ where $B =$ $g(ES) \cap A \subseteq g(ES),$ so $g^{-1}(B) \subseteq (ES)$ $\lbrack \therefore AB \subseteq B, AC \subseteq C, A(B \cap C) =$ $AB \cap AC \subseteq B \cap C$.

Since $B \subseteq (B)\Omega$ is obvious. Therefore by Proposition 2.2 B is quasiinjective. It follows that $g^{-1}(B)$ is a quasi-injective extension of $E \subseteq ES$. Since ES is the smallest quasi-injective extension of E contained in E , we conclude that $g^{-1}(B) = (ES)$. So $B = g(ES) \subseteq A$. This establishes that ES is a minimal quasi-injective extension.

Next if (A, E, g) is also a minimal quasi-injective extension of E, then (A, E, g) is also equivalent to ES. ES minimal quasi-injective extension of E. (A, E, g) is also quasi-injective extension of E. By definition for $E \xrightarrow{mono} \phi$ $ES, E \xrightarrow{mono f} A$, there exists $ES \xrightarrow{mono \phi} A$ such that the diagram

commutes i.e. $q = \phi f$

Again (A, E, g) is minimal quasi-injective extension of E. ES is also quasiinjective extension of E. By definition for $E \xrightarrow{mono g} A, E \xrightarrow{mono f} ES$ there exists $A \xrightarrow{mono\omega} ES$ such that the diagram

commutes i.e. $f = \omega q$.

Now $f = \omega g \Rightarrow f = \omega \phi f$. So $I = \omega \phi$. Again $g = \phi f \Rightarrow g = \phi \omega g$. So $I = \phi \omega$. Thus ω and ϕ both are invertible which implies both ω and ϕ are isomorphic. Hence $ES \cong A$. \Box

Definition 2.2. A near-ring N is said to be a regular near-ring if for every element $x \in N$, there exists an element $y \in N$ such that $xyx = x$.

Theorem 2.1. Let E be quasi-injective N-group let $\Lambda = Hom(E, E)$ and *let* $J = J(\Lambda)$ *denote the Jacobson radical of* Λ *and is strictly small in* Λ *. Then* $J = \{\lambda \in \Lambda/E \text{ essential extension of } Ker \lambda\}.$ If for $\gamma \in J, \lambda \in \Lambda, \gamma\lambda \in J$ *then* Λ/J *is a regular near-ring. Where addition of two* N*-subgroups is again* N*-subgroup of* E *and* N *need not be dgnr.*

Proof. Let $I = \{\lambda \in \Lambda / E$ essential extension of $Ker \lambda\}$.

If $\lambda \in \Lambda$, $\mu, \gamma \in I$, then $Ker(\mu + \gamma) \supseteq Ker\mu \cap Ker\gamma$. Since $x \in Ker\mu \cap$ $Ker \gamma \Rightarrow x \in Ker \mu \& x \in Ker \gamma \Rightarrow \mu(x) = 0 \& \gamma(x) = 0 \Rightarrow (\mu + \gamma)(x) =$ $0 \Rightarrow x \in Ker(\mu + \gamma)$. Since $Ker\mu \cap Ker\gamma$ is an essential N-subgroup, therefore $Ker(\mu + \gamma)$ is an essential N-subgroup of $E x \in Ker \gamma \Rightarrow \gamma(x) = 0$. Now for $\mu, \lambda \in \Lambda, \gamma \in I, (\mu(\lambda + \gamma) - \mu\lambda)(x) = (\mu(\lambda + \gamma)(x) - (\mu\lambda)(x) = (\mu\lambda)(x) +$ $0 - (\mu\lambda)(x) = 0$, since $\gamma(x) = 0$. Therefore $x \in \text{Ker}(\mu(\lambda + \gamma) - \mu\lambda)$. And so $Ker\lambda \subseteq Ker(\mu(\lambda + \gamma) - \mu\lambda) \Rightarrow (\mu(\lambda + \gamma) - \mu\lambda) \in I$. Therefore I is left ideal of Λ.

However if $\lambda \in I$, $Ker(1+\mu\lambda) = 0$ for $Ker\lambda \cap Ker(1+\mu\lambda) = 0$. For if, $\lambda \in I$ we have E essential extension of $Ker\lambda$. $x \in Ker\lambda \cap Ker(1 + \mu\lambda) \Rightarrow \lambda(x) = 0$ and $(1 + \mu \lambda)(x) = 0 \Rightarrow x + \mu(\lambda)(x) = 0 \Rightarrow x + \mu(0) \Rightarrow x = 0$. Again $\lambda \in I \Rightarrow E$ essential extension of $Ker\lambda \Rightarrow Ker(1+\mu\lambda) = 0$.

 $(1+\mu\lambda): E \to (1+\mu\lambda)E$ is an isomorphism $\Rightarrow \exists g \in \Lambda$ such that $g(1+\mu\lambda) =$ i, so $(1 + \mu \lambda)$ has a left inverse $\forall \lambda \in I$ & $\forall \mu \in \Lambda$. So, $\lambda \in J$ [by lemma 1.1]. This establishes that $I \subseteq J$.

Next let λ be arbitrary element of Λ , let L be a complement N-subgroup of E corresponding to $K = Ker(\lambda)$ and consider the correspondence $\lambda x \to x$ $\forall x \in L$. If $\lambda x = \lambda y$ with $x, y \in L$, then $\lambda(x - y) = 0$ and then $(x - y) \in K \cap L$ = 0. Since E is quasi-injective, the map $\lambda x \to x$ of λL in L is induced by some $\theta \in \Lambda$. If $u = x + y \in L + K, x \in L, y \in K$, then

$$
(\lambda - \lambda \theta \lambda)(u) = \lambda(x) - \lambda \theta \lambda(x) = \lambda(x) - \lambda(x) = 0
$$

$$
\Rightarrow \lambda - \lambda \theta \lambda = 0
$$
 (1)

 $[\lambda \theta \lambda(x) = \lambda \theta(x) = \lambda(x) = x$, as for $x \in L\theta(x) = \lambda(x) = x$.

Since $E \supseteq_e L + K$ as $K \subseteq L + K$ and since $Ker(\lambda - \lambda \theta \lambda) \supseteq L + K$, we conclude that $\lambda - \lambda \theta \lambda \in I$. Now to show $J = I$. If $\lambda \in J$ and $\theta \in \Lambda$ is chosen so that $u = (\lambda - \lambda \theta \lambda) \in I$, $(1 - \theta \lambda)^{-1}$ exists. (Since J is Jacobson Redical. Therefore $(1 - \theta \lambda)^{-1}(u) = (1 - \theta \lambda)^{-1} (\lambda - \lambda \theta \lambda) = (1 - \theta \lambda)^{-1} (1 - \theta \lambda) \lambda = \lambda$ and $\lambda \in I$: I is a left ideal. Thus $J = I$ is asserted. Also I is an ideal by given condition. Thus Λ is a regular modulo I .

From (1) $\lambda \bar{\theta} \lambda = \bar{\lambda}$ in Λ / I . Therefore Λ / J is regular ring as $J = I$.

3. Some Properties of Quasi-Injective N-Groups

This section contains some properties of quasi-injective N-groups related to essentially closed N -subgroups and complement N -subgroups. Let M be an N-subgroup of E. We consider $F = \{P/P \mid N\text{-subgroup of }E, P \cap M = 0\}$. $F \neq$ Φ ,(0) $\in F.C = \{P_i/P_i \in F\}$ is a chain in F. Let $K = \bigcup P_i[x, y \in \bigcup P_i \Rightarrow$ $x \in P_i, y \in P_j.$ If $i > J, x, y \in P_j$. Therefore $(x - y) \in P_j \Rightarrow (x - y) \in \bigcup P_i$. Again $n \in N$, $x \in \bigcup P_i \Rightarrow x \in P_j$ for some j, then $nx \in P_j \Rightarrow nx \in \bigcup P_i$ Since $P_i \cap M = 0 \forall i. (\cup_i P_i) \cap M = \cup_i (P_i \cap M) = 0 \& \cup_i P_i \leq E$. Therefore $\bigcup_i (P_i \in C$. So by Zorn's Lemma the N-subgroup K is maximal in the set of those N-subgroups P satisfying $P \cap N = 0$. Then K is said to be complement of M in E .

Definition 3.1. The N-subgroup K is maximal in the set of those N subgroups P satisfying $P \cap M = 0$ is said to be complement of M in E. A complement N-subgroup(ideal) of E is an N-subgroup A which is a complement in E of some N -subgroup(ideal) B .

If sum of two N -subgroups is again an N -subgroup of an N -group we get the following:

 \Box

Lemma 3.1. *If* M *is an* N*-subgroup of* E *and if* K *is any complement of* M in E, then there exists a complement Q of K in E such that $Q \supseteq M$. *Furthermore any such* Q *is a maximal essential extension of M in E.*

Proof. Let $F = \{I/I \cap K = 0, M \subseteq I\}$. Since $M \in F, F \neq \Phi$. Let $C = \{C_i/i \in \lambda, \lambda index, C_i \in F\}$ be a chain. $Q = \cup C_i$. Now $(\cup_{i \in \lambda} C_i) \cap K =$ $\cup_{i\in\lambda}(C_i\cap K)=0 \quad \forall i. \quad [\because C_i\cap K=0 \quad \forall i] \quad \& \quad M\subset\cup_{i\in\lambda}C_i \quad \forall i, M\subseteq C_i.$ So by Zorn's Lemma $Q \in F$, maximal element exists. Thus Q in the first sentence exists.

Now to prove the second part.

Let T be any non-zero N-subgroup of Q and assume that $T \cap M = 0$. Since $T \cap K = 0 \quad [Q \leq_{c} K, T \leq_{s} Q]$. Therefore the sum $K_1 = T + K$ is direct and K_1 properly contains $K \sim K_1 \cap M = 0$. [If possible let $K_1 \cap M \neq 0$. $K_1 \cap M =$ $(T+K)\cap M$. Let $t+k=n\in (T+K)\cap M \Rightarrow k\in K\cap (M+T)\subseteq K\cap Q \Rightarrow k=$ $0 \Rightarrow n = t \in M \cap T$ contradiction to $T \cap M = 0$. Therefore $K_1 \cap M = 0$. This contradicts the definition of K. This proves that Q is an essential extension of M. If P is an N-subgroup of E properly containing Q, then $P \cap K \neq 0$ and $(P \cap K) \cap M = P \cap (K \cap M) = P \cap 0 = 0$. Thus P is not essential extension of M, completing the proof. 口

Lemma 3.2. *The essentially closed* N*-subgroups of an* N*-group* E *coincide with the complement* N*-subgroup of* E*. If* M *and* K *are complement* N*-subgroups and if* K *is a complement of* M *in* E *then* M *is a complement of* K *in* E*.*

Proof. Let M be a essentially closed N-subgroup and K is any complement of M. Then by lemma 3.1 there exists a complement Q of K such that $M \subseteq Q$. This Q is maximal essential extension of M in E . But M is essentially closed, so it has no proper essential extension. Therefore $M = Q$ is a complement N-subgroup.

Next let M be complement of an N-subgroup P. Then \exists a complement K of M which contains P.

If possible let $M' \leq E$ such that $M \subseteq M'$ & $K \cap M' = 0$. Then $P \cap M' =$ 0. $\therefore P \subset K$, which contradicts (1). Therefore M is also maximal such that $K \cap M = 0$. Therefore M is complement of K. Then M is essentially closed by lemma3.1. This also proves the last statement.

Theorem 3.1. *Let* E *be quasi-injective and let* M *be a essentially closed* N-subgroup, then for each N-subgroup K of E, N-homomorphism $w: K \Rightarrow M$ *can be extended to* N-homomorphism $u : E \to M$

QUASI-INJECTIVE NEAR-RING GROUPS 209

Proof. Let $F = \{L/w \text{ is extended to a map of } T \text{ into } M \text{ for } N\text{-subgroup}\}$ T of E containing L By Zorn's lemma we can assume that K is such that w cannot be extended to a map of T into M for any N-subgroup T of E which properly contains K. Since, E is quasi-injective, w is induced by a map $u : E \to E\&$ let L complement of M in E. Suppose $u(E) \subsetneq M$. Since M is essentially closed. M is a complement of L. Therefore, since $u(E) + M \supset M$, we see that $(u(E) + M) \cap L \neq 0$. Let $0 \neq x = a + b \in (u(E) + M) \cap L \Rightarrow a \in$ $u(E), b \in M$. If $a \in M$ then $x \in M \cap L = 0$, a contradiction. Therefore $a \notin M$ and $a = x - b \in L + M$. Now $T = y \in E/u(y) \in L + M$ is an N-subgroup of E containing K . $\cdot : x \in K \Rightarrow w(k) \in M \Rightarrow u(k) \in M \quad \forall k \in K$. Therefore T contains K. If $y \in E$ is such that $u(y) = a$ then $y \in T$, but $y \notin K$ since $a \notin M$. $[\because y \in T \Rightarrow u(y) = a \in L\&y \in K \Rightarrow w(y) \in M \Rightarrow u(y) \in M \quad \forall y \in K$ contradiction to $a \notin M$.

Let π denote the projection of $L+M$ on M. Then πu is a map of T in M and $\pi u(y) = u(y) = w(y) \quad \forall y \in K.$ $[\because y \in K \Rightarrow w(y) \in M \Rightarrow u(y) \in M \quad \forall y \in K].$ Thus πu is a proper extension of w, a contradiction. Therefore $u(E) \subseteq M$, so u is the desired extension.

Corollary 3.1. *For quasi-injective* N*-group* E*.*

(1) If M *is essentially closed* N*-subgroup of* E*, then* M *is a direct summand of* E *and* M *is quasi-injective. Also* M *has a complement in* E*.*

(2) If P *is any* N*-subgroup of E, then there exists a quasi-injective essential extension of* P *contained in* E*.*

(3) Each minimal quasi-injective extension of an N*-group* K *is an essential extension of* K*.*

Proof. (1) If $e: E \to M$ is the extension given by theorem 3.1 of the injection map $M \to M$ then $E = M \bigoplus Ker(e)$ where $e(m) = \begin{cases} m, & m \in M \\ 0, & m \notin M \end{cases}$ 0, $m \notin M$ So that M is a direct summand of E . Therefore M is quasi-injective by theorem 1.2 Moreover $Ker(e)$ is complement of M. Since

$$
M \cap Ker(e) = (0)
$$
 (2)

M essentially closed $\Rightarrow M$ complement of some N-subgroup $K \Rightarrow K$ is complement of M, i.e.

$$
\stackrel{max}{M} \bigcap \stackrel{max}{K} = (0) \tag{3}
$$

(2) & (3) \Rightarrow Ker(e) \subset K. Let $(0 \neq)x \in K \Rightarrow x \notin M \Rightarrow e(x) = 0$ [by definition of $e \Rightarrow x \in Ker(e)$.

Therefore $K \subset Ker(e)$. Therefore $K = Ker(e) \Rightarrow Ker(e)$ complement of M .

(2) Let $F = \{I/P \subseteq I, P \leq_e I\}$. Therefore $F \neq \phi$.

Let $\{C_i/C_i \in F\}$ be a chain in F. $M = \cup_i C_i, P \subseteq C_i \quad \forall I \Rightarrow P \subseteq$ $\cup_i C_i, P \leq_e C_i \quad \forall I \Rightarrow P \leq_e \cup_i C_i$ $[P \cap A_i \neq 0 \quad \forall i, A_i \leq C_i$. Since $P \cap (\cup_i A_i) =$ $\cup_i (P \cap A_i) \neq 0. \cup A_i \leq \cup C_i$

If possible $M = \bigcup_i C_i \leq_e K$. Therefore $P \leq_e M \leq_e K \Rightarrow P \leq_e K$, contradicts maximality of M . So by Zorn's Lemma P is contained in essentially closed N-subgroup M which is essential extension of P and M is quasi-injective by (1) .

(3) Let A be any minimal quasi-injective extension of an N -group K. Let K is contained in quasi-injective essential extension B by (2). i.e. B essentially closed. So as B is essential extension of K, A is also essential extension of K. Thus every minimal quasi-injective extension of an N -group K is an essential extension of K. 囗

References

- [1] Faith Carl and Utumi Y., Quasi-injective modules and their endomorphism rings, Arch Math., $\mathbf{x}v(1)$, (1963), 166-174.
- [2] Han Chang, Woo. and Choi, Su-Jeong., Generalizations of the Quasiinjective module, Comm. Korean Math. Soc., 10 (4), (1995), 811-813.
- [3] Saikia Helen K. and Misra Kalpana, On p-injective strictly FGD near- ring, Journal of Rajasthan Academy of Physical Sciences, 6(4),(2007), 361-370.
- [4] Pilz, G., Near-rings, North Holland publishing Company, Amsterdam (1977).
- [5] Goodearl K. R., Ring theory, Nonsingular rings and modules, Maecel Dekker, INC. New York and Basel(1994).
- [6] Clay, J.R., Near-rings: Geneses and Applications, Oxford Univ. Press, Oxford(1992).