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Abstract Injective modules and near-ring groups have been studied by several researchers
like Mason et al., Faith et al., Jara, Harada, Cheng. Of these Oswald and Mason have studied
injective and projective near-ring modules. Mason studied injective near-ring modules and
defined the concepts like n-injective, loosely injective and almost injective near-ringmodules.
In Hazarika and Saikia (Int J Math Sci 33(2), 2013) we extended the notion of relative
injectivity of modules to near-ring groups. Here E-injective N -groups with descending chain
conditions are studied. It is shown that the singular and semi-simple characters play a vital
role in characterization of E-injective N -groups with weakly descending chain conditions.

Keywords Near-ring group · E-injective N -group · Weakly Noetherian N -group · Singular
N -group · Semi-simple N -group

Mathematics Subject Classification 16Y30

1 Prerequisites

All basic concepts used in this paper are available in Pilz [4]. In this section we define the
basic terms and results that are needed in the sequel. Throughout the paper we consider N
as a zero symmetric right near-ring and E as a left N -group.

Definition 1.1 If A, B are two N -subgroups of E such that A ⊆ B then A is essential
(weakly essential) in B when any non-zero N -subgroup (ideal) C of E contained in B has a
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nonzero intersection with A. In such case B is an essential(weakly essential) extension of A
and is denoted by A ≤e B (A ≤we B).

If A is an N -subgroup (ideal) of E and A is essential in E (when B = E) then we say
that A is an essential N -subgroup (ideal) of E

Using the definition of essential N -subgroup easily we can prove the following proposition:

Proposition 1.1 If A, B, C are N-subgroups of E, with A ⊆ B ⊆ C, then A ≤e C , if and
only if A ≤e B ≤e C.

Definition 1.2 The singular subset of E , denoted by Z(E), is defined as the set
Z(E) = {x ∈ E | I x = 0 for some essential N -subgroup I of N}.
E is called a singular N -group if Z(E) = E .

E is called a non-singular N -group if Z(E) = 0.

Definition 1.3 The set (B : a) is defined as (B : a) = {n ∈ N |na ∈ B} .
It can be shown easily that if B is an essential N -subgroup of E and a ∈ E then (B : a)

is an N -subgroup of N and if B is an essential N -subgroup, (B : a) is also an essential
N -subgroup of N .

Proposition 1.2 If proper essential N-subgroups of N are distributively generated, then Z(E)
is an N-subgroup of E.

Proof Let e1, e2 ∈ Z(E). Then there exist essential N -subgroups I1, I2 of N such that
(I1 ∩ I2)(e1 − e2) = 0 as (I1 ∩ I2) is distributively generated. So e1 − e2 ∈ Z(E). Again let
e ∈ Z(E) . For a ∈ N and essential N -subgroup I of N , (I : a) is an essential N -subgroup
of N . So for z ∈ (I : a) we get (za)e = 0 ⇒ z(ae) = 0 ⇒ ae ∈ Z(E) . Thus Z(E) is an
N -subgroup of E. ��
Definition 1.4 The weak singular subset of E , denoted by Zw(E), is defined as the set

Zw(E) = {x ∈ E | I x = 0 for some essential ideal I of N}.
E is called a weak singular N -group if Zw(E) = E .

E is called a weak non-singular N -group if Zw(E) = 0.

Definition 1.5 An N -monomorphism f : A → B is said to be an essential N -
monomorphism if f (A) ≤e B.

Proposition 1.3 An N-group C is singular if there exists a short exact sequence 0 → A
f−→

B
g−→ C → 0 such that f is an essential N-monomorphism.

Proof For any b ∈ B, we have a map k : N → B defined by k(n) = nb. Then k−1( f A) ≤e

N , which gives the N -subgroup I = {n ∈ N |nb ∈ f A} is an essential N -subgroup of N .
Now I b ≤ f A = Kerg. Hence I (gb) = 0 and so gb ∈ Z(C). Since g is an N -epimorphism,
Z(C) = C . ��
Proposition 1.4 If A, B are N-groups such that B is non-singular and B/A is singular then
A ≤we B. i.e A is weakly essential in B.

Proof If B/A is singular and x(
= 0) ∈ B, then I x̄ = 0̄ for some essential N -subgroup I
of N ⇒ I x ≤ A. As B is non-singular, we have I x 
= 0 and thus Nx ∩ A 
= 0. Therefore
A ≤we B. ��
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Proposition 1.5 [12] The following are equivalent

(a) Every normal N-subgroup of E is a direct summand.
(b) E is a sum of simple normal N-subgroups.
(c) E is a direct sum of simple normal N-subgroups.

Definition 1.6 The strict socle of E , denoted by s-SocE , is defined as the direct sum of
simple normal N -subgroups. E is called a strictly semisimple if s-Soc(E) = E . In other
words E is strictly semisimple if one of the conditions of Proposition 1.5 holds.

Definition 1.7 The socle of E , denoted by Soc(E), is defined as the sum of simple ideals of
E . Equivalently, Soc(E) = the direct sum of simple ideals of E .

E is called semisimple if Soc(E) = E

We observe that every semisimple N -group is strictly semisimple but the converse is not
true. If N is a distributively generated near ring(dgnr) then every strictly semisimple N -group
is semisimple.

The following is an example of strictly semisimple N -group which is not semisimple.

Example 1.1 We consider the near-ring N = {0, a, b, c, x, y} under the addition and multi-
plication defined in the following table:

+ 0 a b c x y

0 0 a b c x y
a a 0 y x c b
b b x 0 y a c
c c y x 0 b a
x x b c a y 0
y y c a b 0 x

. 0 a b c x y

0 0 0 0 0 0 0
a 0 a b c 0 0
b 0 a b c 0 0
c 0 a b c 0 0
x 0 0 0 0 0 0
y 0 0 0 0 0 0

Here {0, a}, {0, b}, {0, c}, {0, x, y} are simple left normal N -subgroups of N . And N =
{0, a} + {0, b} + {0, c} + {0, x, y}. So N is strictly semisimple. But N is not semisimple.
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Definition 1.8 Let E and U be N -groups. U is called E-injective or U is injective relative
to E if for each N -monomorphism ϕ : K → E , every N -homomorphism g from K into U
can be extended to an N -homomorphism h from E into U . i.e. the diagram

An N -group A is injective if it is E-injective for every N -group E of N . So if an N -group
A is injective it is E-injective for any N -group E .

Definition 1.9 E is called a V N -group if every simple N -group is E-injective.
E is called a Vc N -group if every simple abelian N -group is E-injective.
E is called a GV N -group if every simple singular N -group is E-injective.
E is called a S3 I N -group if every strictly semi-simple singular N -group is E-injective.
E is called a S2Sw I N -group if every strictly semi-simple weak singular N -group is

E-injective.

Definition 1.10 N is called a V near-ring if N N is a V N -group and a GV near-ring if N N
is a GV N -group.
N is called a Vc near-ring if N N is a Vc N -group.

Definition 1.11 E is said to be weakly Noetherian (Noetherian) if every strict ascending
chain of ideals or normal N -subgroups(N -subgroups) A1 ⊂ A2 ⊂ · · · of E terminates after
finitely many steps or equivalently for each chain A1 ⊆ A2 ⊆ · · · of E , ∃n ∈ N such that
An = An+1 = · · · .

2 Strictly semi-simple character of E-injective N-groups with weakly
descending chain conditions

Proposition 2.1 If {Ne}e∈E is an independent family of normal N-subgroups of E in a dgnr
N and direct sum of E-injective N-groups is an abelian N-group then E is Noetherian V
N-group(Vc N-group) implies every strictly semi-simple N-group is E-injective.

Proof E is Noetherian V N -group ⇒ E is Noetherian and every simple N -group is E-
injective. Again any direct sum of E-injective N -groups is E-injective as E is Noetherian
[5,Theorem 4.12]. Let K be any strictly semi simple N -group ⇒ K is direct sum of simple
normal N -subgroups. So K is E-injective. ��
Proposition 2.2 For a finitely generated N-group E every countably generated strictly semi-
simple N-group is E-injective implies E is weakly Noetherian Vc N-group.

Proof Suppose {Aα}α∈J is a family of N -groups such that for every countable subset K of
J ,

⊕
α∈K Aα is E-injective. Then by [5, Theorem 4.11]

⊕
α∈J Aα itself E-injective. Now

given that every countably generated strictly semi simple N -group is E-injective. To show E
is weakly Noetherian and every simple abelian N -group is E-injective, let U be a countably
generated strictly semi-simple N -group. Then U = ⊕

Uα , where Uα is simple normal
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N -subgroup, soUα ’s can be taken as abelian N -groups and α ∈ K , K is countable subset
of J (as U countably generated).Given U is E-injective. So we have

⊕
Uα, α ∈ J is also

E-injective [5,Theorem 4.11]. So by [5,Theorem 4.8], we get every Uα is E-injective ⇒ E
is VcN -group.

Next to show E is weakly Noetherian. Given E is finitely generated and W countably
generated semi-simple N -group and W is E-injective.

Let N1 ⊂ N2 ⊂ N3 ⊂ . . . be an ascending chain of distinct ideals of E . Let fK :
NK → W (k = 1, 2, 3, . . .). As W is E-injective, for inclusion map iK : NK → E, ∃ a map
γK : E → W such that fK = γK iK . Let N / = ∑∞

(k=1) Nk . Define the map f : N / → W
by f (x) = ∑∞

(k=1) fk(x) = ∑∞
(k=1) γK iK (x) . f is well defined. ∵ W is E-injective, ∃ a

map g : E → W extending f . But E is finitely generated and g(E) ⊂ W, w countably
generated. So g can be defined as g(x) = ∑m

(k=1) γK iK (x) for some positive integer m,
which gives chain of ideals must be finite. ��
Corollary 2.1 For a finitely generated N-group E, every strictly semi-simple N-group is
E-injective implies E is weakly Noetherian Vc N-group.

Proposition 2.3 For dgnr N, if E is a finitely generated S3 I N-group, then E/(Soc(E)) is a
weakly Noetherian Vc N-group.

Proof From the above Corollary 2.1, it is enough to show that every strictly semi-simple
N -group is E/(Soc(E))-injective. Let L be a strictly semi-simple N -group. So as N
dgnr, L is a semi-simple N -group. Let M be an ideal of E such that M/(Soc(E)) is an
ideal of E/(Soc(E)) and f : M/(Soc(E)) → L be a non-zero N -homomorphism. Let
K/(Soc(E)) = Ker f . We claim K is essential ideal in M . For if K ∩ I = 0 for some non-
zero ideal I of M then I ∼= (I + K )/K and since the latter is isomorphic to an ideal of L , it
follows that for some ideal I1 
= 0 and contained in I that I1 ⊂ L , hence I1 ⊆ Soc(E) ⊆ K ,
a contradiction. Now M/K singular, we may take L singular, since f (M/K ) ⊆ Z(L). Let
η : M → M/SocE denote the quotient map and consider the map f.η : M → L . ∵ L
is E-injective f.η extends to a map of E into L . ∵ Soc(E) ⊆ K . This yields a map of
E/(Soc(E)) into L by [5, Proposition2.6]. ��

3 Semi-simple and singular character of E-injective N-groups with
weakly descending chain conditions

Proposition 3.1 Let N be a dgnr. If E is an N-group satisfying the following conditions

1. {Ne}e∈E is an independent family of normal N-subgroups of E,
2. the direct sum of E-injective N-groups is an abelian N-group
3. no non-zero homomorphic image of Nx,∀x(
= 0) ∈ Soc(E), is semi-simple, singular
4. E/(Soc(E)) is a Noetherian V N-group, then E is an S3 I N-group.

Proof Let L be a strictly semi-simple singular N -group. Let M be an N -subgroup of E . f :
M → L a non-zero map with ker f = K . Then by given condition Soc(E)∩ M is contained
in K . [ For x ∈ Soc(E)∩ M ⇒ x ∈ Soc(E), x ∈ M ⇒ Nx ⊆ Soc(E), Nx ⊆ M ⇒ Nx ∈
Soc(E)∩M]. Soby [5, Proposition2.6],∃ an N -homomorphism f / : M/(Soc(E)∩M) → L .

SinceM/(Soc(E)∩M) ∼= (Soc(E)+M)/(Soc(E)), so f / : (Soc(E)+M)/(Soc(E) → L .

As E/(Soc(E)) is Noetherian VN-group and L semi-simple singular by Proposition 2.1, L
is E/(Soc(E))-injective, that is f / is extended to g/ : E/(Soc(E)) → L . If we define
g : E → L by g(e) = g/(ē + Soc(E)). g is extension of f . ��
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Definition 3.1 N-group E is called almost weakly Noetherian if E/SocE is weakly Noethe-
rian.

Proposition 3.2 If E is non-singular and every singular homomorphic image of E is weakly
Noetherian then E is almost weakly Noetherian.

Proof Let M be an essential ideal of E and E is non-singular. Then E/M is singular. Again
E/M is homomorphic image of E , by given condition E/M is weakly Noetherian. ��
Proposition 3.3 If E is non-singular and almost weakly Noetherian and in E every weakly
essential N-subgroup is essential then every singular homomorphic image of E is weakly
Noetherian.

Proof Let f : E → L be an N -epimorphism and L is singular. Now E is non-singular and
ker f ⊆ E, L ∼= E/ker f singular, so ker f ≤we E by Proposition 1.4. Then Soc(E) ⊆ ker f.
So by [5, Proposition2.6] we get L ∼= E/(Soc(E)). As E is almost weakly Noetherian, L is
weakly Noetherian. ��
Definition 3.2 An N -subgroupU of an N -group E is called pure in E if IU = U ∩ I E for
each ideal I of N .

Definition 3.3 E is an injective hull of its N -subgroup (ideal) K if E is injective and K ⊆
L ⊆ E , where L is injective N -subgroup (ideal) ⇒ L = E . Equivalently, E is an injective
hull of its N -subgroup (ideal) K if E is injective and E is an essential extension of K .

Proposition 3.4 If N is non-singular, SocN is pure and every injective right N-group is injec-
tive as an N/K-group for ideal K of N then the direct sum of (countably many) injective hulls
of simple weak singular left N-groups is injective implies N is an almost weakly Noetherian
near-ring.

Proof Let {Si }i∈I be a family of simple weak singular N/Soc(N )-groups. Since a simple
N -group is weak singular if and only if it is annihilated by Soc(N ). For let E is simple
and weak singular. So Zw(E) = x ∈ E | I x = 0, I ≤ei N = E . So x ∈ E ⇒ I ≤ei N
such that I x = 0 ⇒ Soc(N )x = 0. Thus E is annihilated by Soc(N ). Again let E be
annihilated by Soc(N ), we get Soc(N )E = 0 ⇒ Soc(N ) ⊆ Ann(E). Now we show
Ann(E) = {x ∈ N | x E = 0} is essential ideal in N . If possible Ann(E) is not essential
ideal in N . Then Ann(E)∩ J = 0 for some non-zero ideal J of N . If ∀x ∈ E, f : J → J x,
defined by f ( j) = j x , it is a well defined N -homomorphism. f ( j1) 
= f ( j2) ⇒ ( j1x) 
=
( j2x) ⇒ ( j1 − j2)x 
= 0 ⇒ ( j1 − j2) 
= 0 ⇒ j1 
= j2. So f is well-defined. Next
let j1 
= j2 ⇒ ( j1 − j2) 
= 0 ⇒ ( j1 − j2)x 
= 0 ⇒ ( j1x) 
= ( j2x) ⇒ f ( j1) 
=
f ( j2). So f is one-one. Again for every j x ∈ J x, ∃ j ∈ J such that f ( j) = j x . So
f is onto. f ( j1 + j2) = ( j1 + j2)x = ( j1x + j2x) = f ( j1) + f ( j2) & f (nj) =
(nj)x = n( j x) = n f ( j). So f is N -isomorphism ⇒ ∀x ∈ E, J ∼= J x . Again Z(N ) =
0 ⇒ Z(J ) = 0 ⇒ Z(J x) = 0 ⇒ ∀I ≤ei N , I (J x) 
= 0 ⇒ SocN .(J x) 
= 0. But
J x ⊆ E and SocN .E = 0 ⇒ SocN .(J x) = 0, a contradiction. So Ann(E) is essential
ideal of N , so E is weak singular. It follows that each N Si is weak singular as an N -
group. Since SocN is pure we get Soc(N N ).E(N Si ) ∩ N Si = SocN .Si , ∀i ∈ I. As
each (N Si ) is annihilated by Soc(N ), SocN .Si = 0. So Soc(N N ).E(N Si ) ∩ N Si = 0. i.e.
∀x ∈ E(N Si ), Soc(N N ).x ∩ (N Si ) = 0. E(N Si ) is an essential extension of N Si , and
since Soc(N N ).x is N -subgroup of E(N Si ) we get ∀x ∈ E(N Si ), Soc(N N ).x = 0. Thus
E(N Si ) is annihilated by Soc(N ), ∀i ∈ I.We claim that ∀i ∈ I, E(N Si ) is weak singular
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as N -group. For x ∈ E(N Si ) with x /∈ ZwE(N Si ) then ∀I ≤ie N , I x 
= 0 ⇒ AnnN (x) is
not essential in N . So AnnN (x)∩ J = 0 for some non-zero ideal J of N . Since J ∼= J x and
Z(N ) = 0,we infer that Z(J x) = 0,whence J x∩Si = 0. [Let J x∩Si 
= 0. Z(J x∩Si ) =
0 ⇒ ∀I ≤ie N , I (J x ∩ Si ) 
= 0 ⇒ SocN (J x ∩ Si ) 
= 0. But (J x ∩ Si ) ⊆ E(N Si ) and
SocN .E(N Si ) = 0, a contradiction]. This implies that J x = 0. So J ⊆ AnnN (x), a
contradiction. Now E(N/Soc(N )Si ) = {x ∈ E(N Si )|Soc(N )x = 0} = E(N Si ) is injective
as N -group. By given condition ⊕i∈I Ei is injective as an N -group and hence injective as
N/Soc(N )-group. This implies that N/Soc(N ) is weakly Noetherian by [7, Proposition 2.8].

��
For a distributively generated near-ring we get the following:

Definition 3.4 [Pilz] The Jacobson-radical of N -group E is the intersection of maximal
ideals of E which is maximal as N -subgroup. We denote it by J2(E).

Note3.1[Pilz]:The Jacobson-radical, J2(E) of N -group E contains all nilpotent N -
subgroups of E .

Lemma 3.1 Let N be a GV- near-ring, then Z(E) ∩ J2(E) = 0, for every N-group E.

Proof If Z(E) = 0, we are done. Otherwise let (0 
=)x ∈ Z(E). By Zorn’s lemma , the
set of all ideals M of E with x /∈ M , has a maximal member L . The quotient N -group
S = (Nx + L)/L is simple and singular, therefore E-injective.

[Z((Nx + L)/L) = {x̄ ∈ ((Nx + L)/L)| I x̄ = (0̄) for essential N -subgroup I of N }.
Let ȳ ∈ (Nx + L)/L such that ȳ = nx + l + L . Now for essential N -subgroup I in N ,
I ȳ = {n/ ȳ| n/ ∈ I } = {(∑k

(i=1) si ))(nx + L)| n/ = (
∑k

(i=1) si ) ∈ I } = {s1(nx + L) +
s2(nx + L)+· · ·+ sk(nx + L)| n/ ∈ I } = {s1nx + L + s2nx + L +· · ·+ sknx + L| n/ ∈
I } = {(s1nx + s2nx +· · ·+ sknx)+ L| n/ ∈ I } [ since si ∈ I and nx ∈ Z(E)] = {L} = 0̄.
So ȳ ∈ Z((Nx + L)/L)]
This means that the natural map of Nx onto S extends to all of E . The kernel of this extension
map is a maximal ideal of E which does not contain x . Whence x can not be in J2E). So
Z(E) ∩ J2(E) = 0. ��
Definition 3.5 If B ⊆ E , then the annihilator of B in N is defined as the set {n ∈ N |nx =
0,∀x ∈ B} and is denoted by AnnN (B), which is a left ideal of N .

Theorem 3.1 If N is a GV near-ring with A.C.C. on essential ideals and if finite intersection
of essential N-subgroups of N is distributively generated, then Z(N ) = 0. In particular, if N
is S3 I near-ring with unity then it is non-singular.

Proof Let x ∈ Z(N ). Then AnnN (x) ⊆ AnnN (x2) ⊆ · · · is an ascending chain of essential
left ideals in N , since AnnN (x) ≤e N . So for some t ∈ I+, AnnN (xt+1) ≤e N by Propo-
sition 1.2. We claim xt = 0. Suppose xt 
= 0. Then we get AnnN (xt+1) ∩ Nxt 
= 0. As N
has A.C.C. on essential left ideals ∃t ∈ I+ such that AnnN (xt ) = AnnN (xt+1), whence we
get AnnN (xt+k) = AnnN (xt ) for all k ∈ I+. Let y = nxt (
= 0) ∈ AnnN (xt+1) ∩ Nxt for
n ∈ N . Now y ∈ AnnN (xt ) ⇒ yxt = 0 ⇒ nx2t = 0 ⇒ n ∈ AnnN (x2t ) = AnnN (xt ) ⇒
y = nxt = 0, a contradiction. i.e. y ∈ AnnN (xt+1) ⇒ y /∈ AnnN (xt ) ⇒ AnnN (xt ) 
=
AnnN (xt+1), a contradiction. Thus Z(N ) contains nilpotent elements. As finite intersection
of essential N -subgroups of N is distributively generated, Z(N ) is N -subgroup of N [ by
Proposition 1.1]. So J2(N ) contains Z(N ). By Lemma 3.1, Z(N ) = 0. For S3 I near-ring
N , N/Soc(N ) is weakly Noetherian by Proposition 2.3. Again by [7, Proposition 2.4], (con-
sidering N as N -group) it follows that N has acc on essential ideals when we get N is non
singular. ��
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Theorem 3.2 If {Nē}(ē ∈N/Soc(N )) is an independent family of normal N-subgroups of
N/Soc(N )-group E, direct sum of E-injective N/Soc(N )-groups is abelian N-group, then
N/I is weakly Noetherian Vc N-group for every essential ideal I of N implies N/(Soc(N ))

is weakly Noetherian Vc near-ring.

Proof N/I is weakly Noetherian for every essential ideal I of N implies N/(Soc(N ))

is weakly Noetherian as [7, Proposition 2.3]. Let L be a strictly semi-simple N/Soc(N )-
group.Then as N dgnr, L is a semi-simple N/Soc(N )-group. I/Soc(N ) is an ideal of
N/Soc(N ) and f : (I/Soc(N )) → L is a non-zero N -homomorphism. Let Ker f =
(K/Soc(N )). Now K is essential in N . For if K ∩ J = 0 for some non-zero ideal J of N
then J ∼= (J + K )/K and since the latter is isomorphic to an ideal of L , it follows that for
some ideal I1 
= 0 and contained in J that I1 ⊆ L , hence I1 ⊆ Soc(N ) ⊆ K , a contradiction.
Thus N/K is a weakly Noetherian VcN -group. If N → N/Soc(N ) is canonical quotient
map, then (N/Soc(N ))/(K/Soc(N )) is a weakly Noetherian Vc N-group. Proposition 2.1,
yields a map of N/(Soc(N )) into L. So, L is N/(Soc(N ))-injective.Thus by Corollary 2.1,
N/(Soc(N )) is weakly Noetherian Vc near-ring. ��
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