

Singular and semi-simple character in *E***-injective** *N***-groups with weakly descending chain conditions**

Navalakhi Hazarika[1](http://orcid.org/0000-0002-9699-8412) · Helen K. Saikia²

Received: 7 July 2015 / Accepted: 15 May 2018 © African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Abstract Injective modules and near-ring groups have been studied by several researchers like Mason et al., Faith et al., Jara, Harada, Cheng. Of these Oswald and Mason have studied injective and projective near-ring modules. Mason studied injective near-ring modules and defined the concepts like n-injective, loosely injective and almost injective near-ring modules. In Hazarika and Saikia (Int J Math Sci 33(2), [2013\)](#page-7-0) we extended the notion of relative injectivity of modules to near-ring groups. Here *E*-injective *N*-groups with descending chain conditions are studied. It is shown that the singular and semi-simple characters play a vital role in characterization of *E*-injective *N*-groups with weakly descending chain conditions.

Keywords Near-ring group · *E*-injective *N*-group · Weakly Noetherian *N*-group · Singular *N*-group · Semi-simple *N*-group

Mathematics Subject Classification 16Y30

1 Prerequisites

All basic concepts used in this paper are available in Pilz [\[4\]](#page-7-1). In this section we define the basic terms and results that are needed in the sequel. Throughout the paper we consider *N* as a zero symmetric right near-ring and *E* as a left *N*-group.

Definition 1.1 If *A*, *B* are two *N*-subgroups of *E* such that $A \subseteq B$ then *A* is essential (weakly essential) in *B* when any non-zero *N*-subgroup (ideal) *C* of *E* contained in *B* has a

B Navalakhi Hazarika navalakhmi@gmail.com Helen K. Saikia hsaikia@yahoo.com

¹ Department of Mathematics, Royal School of Engineering and Technology, Guwahati 781035, India

² Department of Mathematics, Gauhati University, Guwahati 781014, India

nonzero intersection with *A*. In such case *B* is an essential(weakly essential) extension of *A* and is denoted by $A \leq_e B (A \leq_{we} B)$.

If *A* is an *N*-subgroup (ideal) of *E* and *A* is essential in *E* (when $B = E$) then we say that *A* is an essential *N*-subgroup (ideal) of *E*

Using the definition of essential *N*-subgroup easily we can prove the following proposition:

Proposition 1.1 *If A, B, C are N-subgroups of E, with* $A \subseteq B \subseteq C$ *, then* $A \leq e$ *C, if and only if* $A \leq_e B \leq_e C$.

Definition 1.2 The singular subset of E , denoted by $Z(E)$, is defined as the set $Z(E) = \{x \in E \mid Ix = 0 \text{ for some essential } N\text{-subgroup } I \text{ of } N\}.$ *E* is called a singular *N*-group if $Z(E) = E$. *E* is called a non-singular *N*-group if $Z(E) = 0$.

Definition 1.3 The set $(B : a)$ is defined as $(B : a) = \{n \in N | na \in B\}$.

It can be shown easily that if *B* is an essential *N*-subgroup of *E* and $a \in E$ then $(B : a)$ is an *N*-subgroup of *N* and if *B* is an essential *N*-subgroup, $(B : a)$ is also an essential *N*-subgroup of *N*.

Proposition 1.2 *If proper essential N-subgroups of N are distributively generated, then Z(E) is an N-subgroup of E.*

Proof Let $e_1, e_2 \in Z(E)$. Then there exist essential *N*-subgroups I_1, I_2 of *N* such that $(I_1 \cap I_2)(e_1 - e_2) = 0$ as $(I_1 \cap I_2)$ is distributively generated. So $e_1 - e_2 \in Z(E)$. Again let $e \in Z(E)$. For $a \in N$ and essential *N*-subgroup *I* of *N*, $(I : a)$ is an essential *N*-subgroup of *N*. So for *z* ∈ (*I* : *a*) we get (*za*)*e* = 0 ⇒ *z*(*ae*) = 0 ⇒ *ae* ∈ *Z*(*E*). Thus *Z*(*E*) is an *N*-subgroup of *E*. □ *N*-subgroup of E.

Definition 1.4 The weak singular subset of *E*, denoted by $Z_w(E)$, is defined as the set $Z_w(E) = \{x \in E \mid Ix = 0 \text{ for some essential ideal } I \text{ of } N\}.$

E is called a weak singular *N*-group if $Z_w(E) = E$.

E is called a weak non-singular *N*-group if $Z_w(E) = 0$.

Definition 1.5 An *N*-monomorphism $f : A \rightarrow B$ is said to be an essential *N*monomorphism if $f(A) \leq_e B$.

Proposition 1.3 *An N-group C is singular if there exists a short exact sequence* $0 \rightarrow A \stackrel{f}{\rightarrow}$ $B \stackrel{\overline{g}}{\rightarrow} C \rightarrow 0$ *such that f is an essential N-monomorphism.*

Proof For any $b \in B$, we have a map $k : N \to B$ defined by $k(n) = nb$. Then $k^{-1}(fA) \leq_e$ *N*, which gives the *N*-subgroup $I = \{n \in N | nb \in fA\}$ is an essential *N*-subgroup of *N*. Now *Ib* ≤ *f A* = *Kerg*. Hence *I*(*gb*) = 0 and so *gb* ∈ *Z*(*C*). Since *g* is an *N*-epimorphism, $Z(C) = C$. \Box $Z(C) = C$.

Proposition 1.4 *If A, B are N-groups such that B is non-singular and B/A is singular then* $A \leq_{we} B$. *i.e A is weakly essential in B.*

Proof If *B*/*A* is singular and $x \neq 0$) \in *B*, then $I\bar{x} = 0$ for some essential *N*-subgroup *I* of $N \Rightarrow Ix \le A$. As *B* is non-singular, we have $Ix \ne 0$ and thus $Nx \cap A \ne 0$. Therefore $A \leq_{we} B$.

Proposition 1.5 [\[12\]](#page-7-2) *The following are equivalent*

- (a) *Every normal N-subgroup of E is a direct summand.*
- (b) *E is a sum of simple normal N-subgroups.*
- (c) *E is a direct sum of simple normal N-subgroups.*

Definition 1.6 The strict socle of *E*, denoted by s-*SocE*, is defined as the direct sum of simple normal *N*-subgroups. *E* is called a strictly semisimple if $s\text{-}Soc(E) = E$. In other words *E* is strictly semisimple if one of the conditions of Proposition [1.5](#page-1-0) holds.

Definition 1.7 The socle of *E*, denoted by *Soc*(*E*), is defined as the sum of simple ideals of *E*. Equivalently, $Soc(E)$ = the direct sum of simple ideals of *E*.

E is called semisimple if $Soc(E) = E$

We observe that every semisimple *N*-group is strictly semisimple but the converse is not true. If *N* is a distributively generated near ring(dgnr) then every strictly semisimple *N*-group is semisimple.

The following is an example of strictly semisimple *N*-group which is not semisimple.

Example 1.1 We consider the near-ring $N = \{0, a, b, c, x, y\}$ under the addition and multiplication defined in the following table:

Here $\{0, a\}$, $\{0, b\}$, $\{0, c\}$, $\{0, x, y\}$ are simple left normal *N*-subgroups of *N*. And *N* = $\{0, a\} + \{0, b\} + \{0, c\} + \{0, x, y\}$. So *N* is strictly semisimple. But *N* is not semisimple.

Definition 1.8 Let *E* and *U* be *N*-groups. *U* is called *E*-injective or *U* is injective relative to *E* if for each *N*-monomorphism $\varphi : K \to E$, every *N*-homomorphism *g* from *K* into *U* can be extended to an *N*-homomorphism *h* from *E* into *U*. i.e. the diagram

commutes. i.e. $q = h\varphi$.

An *N*-group *A* is injective if it is *E*-injective for every *N*-group *E* of *N*. So if an *N*-group *A* is injective it is *E*-injective for any *N*-group *E*.

Definition 1.9 *E* is called a V *N*-group if every simple *N*-group is *E*-injective.

E is called a *Vc N*-group if every simple abelian *N*-group is *E*-injective.

E is called a GV *N*-group if every simple singular *N*-group is *E*-injective.

E is called a S^3 I *N*-group if every strictly semi-simple singular *N*-group is *E*-injective.

E is called a $S^2 S_w I$ *N*-group if every strictly semi-simple weak singular *N*-group is *E*-injective.

Definition 1.10 *N* is called a *V* near-ring if $_N N$ is a *VN*-group and a *GV* near-ring if $_N N$ is a *GV N*-group.

N is called a V_c near-ring if $_N N$ is a $V_c N$ -group.

Definition 1.11 *E* is said to be weakly Noetherian (Noetherian) if every strict ascending chain of ideals or normal *N*-subgroups(*N*-subgroups) $A_1 \subset A_2 \subset \cdots$ of *E* terminates after finitely many steps or equivalently for each chain $A_1 \subseteq A_2 \subseteq \cdots$ of E , $\exists n \in N$ such that $A_n = A_{n+1} = \cdots$.

2 Strictly semi-simple character of E-injective N-groups with weakly descending chain conditions

Proposition 2.1 *If* $\{Ne\}_{e \in E}$ *is an independent family of normal N-subgroups of E in a dgnr N and direct sum of E-injective N-groups is an abelian N-group then E is Noetherian V N-group(Vc N-group) implies every strictly semi-simple N-group is E-injective.*

Proof E is Noetherian *VN*-group \Rightarrow *E* is Noetherian and every simple *N*-group is *E*injective. Again any direct sum of *E*-injective *N*-groups is *E*-injective as *E* is Noetherian [5,Theorem 4.12]. Let *K* be any strictly semi simple *N*-group \Rightarrow *K* is direct sum of simple normal *N*-subgroups. So *K* is *E*-injective. normal *N*-subgroups. So *K* is *E*-injective.

Proposition 2.2 *For a finitely generated N-group E every countably generated strictly semisimple N-group is E-injective implies E is weakly Noetherian Vc N-group.*

Proof Suppose $\{A_{\alpha}\}_{{\alpha \in J}}$ is a family of *N*-groups such that for every countable subset *K* of J , $\bigoplus_{\alpha \in K} A_{\alpha}$ is *E*-injective. Then by [5, Theorem 4.11] $\bigoplus_{\alpha \in J} A_{\alpha}$ itself *E*-injective. Now given that every countably generated strictly semi simple *N*-group is *E*-injective. To show *E* is weakly Noetherian and every simple abelian *N*-group is *E*-injective, let *U* be a countably generated strictly semi-simple *N*-group. Then $U = \bigoplus U_{\alpha}$, where U_{α} is simple normal

N-subgroup, so U_α 's can be taken as abelian *N*-groups and $\alpha \in K$, *K* is countable subset of *J* (as *U* countably generated).Given *U* is *E*-injective. So we have $\bigoplus U_{\alpha}, \alpha \in J$ is also *E*-injective [5,Theorem 4.11]. So by [5,Theorem 4.8], we get every U_{α} is *E*-injective $\Rightarrow E$ is V_cN -group.

Next to show *E* is weakly Noetherian. Given *E* is finitely generated and *W* countably generated semi-simple *N*-group and *W* is *E*-injective.

Let N_1 ⊂ N_2 ⊂ N_3 ⊂ ... be an ascending chain of distinct ideals of *E*. Let f_K : $N_K \to W(k = 1, 2, 3, \ldots)$. As *W* is *E*-injective, for inclusion map $i_K : N_K \to E$, \exists a map $\gamma_K : E \to W$ such that $f_K = \gamma_K i_K$. Let $N' = \sum_{k=1}^{\infty} N_k$. Define the map $f : N' \to W$ by $f(x) = \sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{\infty} \gamma_k i_k(x)$. *f* is well defined. ∵ *W* is *E*-injective, ∃ a map $g : E \to W$ extending *f*. But *E* is finitely generated and $g(E) \subset W$, w countably generated. So *g* can be defined as $g(x) = \sum_{k=1}^{m} \gamma_k i_k(x)$ for some positive integer m, which gives chain of ideals must be finite. \Box

Corollary 2.1 *For a finitely generated N-group E, every strictly semi-simple N-group is E-injective implies E is weakly Noetherian Vc N-group.*

Proposition 2.3 *For dgnr N, if E is a finitely generated* $S^3 I$ *N-group, then* $E/(Soc(E))$ *is a weakly Noetherian Vc N-group.*

Proof From the above Corollary [2.1,](#page-4-0) it is enough to show that every strictly semi-simple *N*-group is $E/(Soc(E))$ -injective. Let *L* be a strictly semi-simple *N*-group. So as *N* dgnr, *L* is a semi-simple *N*-group. Let *M* be an ideal of *E* such that $M/(Soc(E))$ is an ideal of $E/(Soc(E))$ and $f : M/(Soc(E)) \rightarrow L$ be a non-zero *N*-homomorphism. Let $K/(Soc(E)) = Ker f$. We claim *K* is essential ideal in *M*. For if $K \cap I = 0$ for some nonzero ideal *I* of *M* then $I \cong (I + K)/K$ and since the latter is isomorphic to an ideal of *L*, it follows that for some ideal $I_1 \neq 0$ and contained in *I* that $I_1 \subset L$, hence $I_1 \subseteq Soc(E) \subseteq K$, a contradiction. Now M/K singular, we may take *L* singular, since $f(M/K) \subseteq Z(L)$. Let $\eta : M \to M/SocE$ denote the quotient map and consider the map $f \cdot \eta : M \to L$. ∴ *L* is *E*-injective *f*.*η* extends to a map of *E* into *L*. ∴ $Soc(E) \subseteq K$. This yields a map of $E/(Soc(E))$ into *L* by [5 Proposition? 6] $E/(Soc(E))$ into *L* by [5, Proposition2.6].

3 Semi-simple and singular character of *E***-injective** *N***-groups with weakly descending chain conditions**

Proposition 3.1 *Let N be a dgnr. If E is an N-group satisfying the following conditions*

- 1. {*N e*}*e*∈*^E is an independent family of normal N-subgroups of E,*
- 2. *the direct sum of E-injective N-groups is an abelian N-group*
- 3. *no non-zero homomorphic image of Nx*, $\forall x (\neq 0) \in \text{Soc}(E)$, *is semi-simple, singular*
- 4. $E/(Soc(E))$ *is a Noetherian V N-group, then E is an* $S^3 I$ *N-group.*

Proof Let *L* be a strictly semi-simple singular *N*-group. Let *M* be an *N*-subgroup of *E*. *f* : *M* → *L* a non-zero map with $ker f = K$. Then by given condition $Soc(E) \cap M$ is contained in *K*. [For *x* ∈ *Soc*(*E*)∩ *M* ⇒ *x* ∈ *Soc*(*E*), *x* ∈ *M* ⇒ *N x* ⊆ *Soc*(*E*), *N x* ⊆ *M* ⇒ *N x* ∈ *Soc*(*E*)∩*M*]. So by [5, Proposition2.6], ∃ an *N*-homomorphism f' : $M/(Soc(E) \cap M) \rightarrow L$. $Sinee M/(Soc(E) \cap M) \cong (Soc(E)+M)/(Soc(E)),$ so f' : $(Soc(E)+M)/(Soc(E)) \rightarrow L$. As *E*/(*Soc*(*E*)) is Noetherian VN-group and L semi-simple singular by Proposition [2.1,](#page-3-0) *L* is $E/(Soc(E))$ -injective, that is f' is extended to $g' : E/(Soc(E)) \to L$. If we define $g : E \to L$ by $g(e) = g'(\bar{e} + Soc(E))$, g is extension of f. $g: E \to L$ by $g(e) = g'(\overline{e} + Soc(E))$. *g* is extension of *f*.

Definition 3.1 N-group *E* is called almost weakly Noetherian if *E*/*SocE* is weakly Noetherian.

Proposition 3.2 *If E is non-singular and every singular homomorphic image of E is weakly Noetherian then E is almost weakly Noetherian.*

Proof Let *M* be an essential ideal of *E* and *E* is non-singular. Then *E*/*M* is singular. Again *E*/*M* is homomorphic image of *E*, by given condition *E*/*M* is weakly Noetherian.

Proposition 3.3 *If E is non-singular and almost weakly Noetherian and in E every weakly essential N-subgroup is essential then every singular homomorphic image of E is weakly Noetherian.*

Proof Let $f : E \to L$ be an *N*-epimorphism and *L* is singular. Now *E* is non-singular and *ker f* ⊆ *E*, *L* \cong *E*/*ker f* singular, so *ker f* \leq_{we} *E* by Proposition [1.4.](#page-1-1) Then *Soc*(*E*) ⊆ *ker f*. So by [5, Proposition2.6] we get *L* ≅ *E*/(*Soc*(*E*)). As *E* is almost weakly Noetherian, *L* is weakly Noetherian. weakly Noetherian.

Definition 3.2 An *N*-subgroup *U* of an *N*-group *E* is called pure in *E* if $IU = U \cap IE$ for each ideal *I* of *N*.

Definition 3.3 *E* is an injective hull of its *N*-subgroup (ideal) *K* if *E* is injective and $K \subseteq$ *L* ⊆ *E*, where *L* is injective *N*-subgroup (ideal) \Rightarrow *L* = *E*. Equivalently, *E* is an injective hull of its *N*-subgroup (ideal) *K* if *E* is injective and *E* is an essential extension of *K*.

Proposition 3.4 *If N is non-singular, SocN is pure and every injective right N-group is injective as an N*/*K -group for ideal K of N then the direct sum of (countably many) injective hulls of simple weak singular left N-groups is injective implies N is an almost weakly Noetherian near-ring.*

Proof Let $\{S_i\}_{i \in I}$ be a family of simple weak singular $N/Soc(N)$ -groups. Since a simple *N*-group is weak singular if and only if it is annihilated by $Soc(N)$. For let *E* is simple and weak singular. So $Z_w(E) = x \in E \mid I_x = 0, I \leq_{ei} N = E$. So $x \in E \Rightarrow I \leq_{ei} N$ such that $Ix = 0 \Rightarrow Soc(N)x = 0$. Thus *E* is annihilated by $Soc(N)$. Again let *E* be annihilated by $Soc(N)$, we get $Soc(N)E = 0 \Rightarrow Soc(N) \subseteq Ann(E)$. Now we show $Ann(E) = \{x \in N | xE = 0\}$ is essential ideal in *N*. If possible $Ann(E)$ is not essential ideal in *N*. Then $Ann(E) \cap J = 0$ for some non-zero ideal *J* of *N*. If $\forall x \in E$, $f : J \rightarrow Jx$, defined by $f(j) = jx$, it is a well defined *N*-homomorphism. $f(j_1) \neq f(j_2) \Rightarrow (j_1x) \neq j$ $(j_2x) \Rightarrow (j_1 - j_2)x \neq 0 \Rightarrow (j_1 - j_2) \neq 0 \Rightarrow j_1 \neq j_2$. So f is well-defined. Next let $j_1 \neq j_2 \Rightarrow (j_1 - j_2) \neq 0 \Rightarrow (j_1 - j_2)x \neq 0 \Rightarrow (j_1x) \neq (j_2x) \Rightarrow f(j_1) \neq$ *f* (*j*₂). So *f* is one-one. Again for every $jx \in Jx$, $\exists j \in J$ such that $f(j) = jx$. So *f* is onto. $f(j_1 + j_2) = (j_1 + j_2)x = (j_1x + j_2x) = f(j_1) + f(j_2)$ & $f(nj) =$ $(nj)x = n(jx) = nf(j)$. So *f* is *N*-isomorphism $\Rightarrow \forall x \in E, J \cong Jx$. Again $Z(N) =$ $0 \Rightarrow Z(J) = 0 \Rightarrow Z(Jx) = 0 \Rightarrow \forall I \leq_{ei} N, I(Jx) \neq 0 \Rightarrow SocN.(Jx) \neq 0$. But $Jx \subseteq E$ and $SocN.E = 0 \Rightarrow SocN.(Jx) = 0$, a contradiction. So $Ann(E)$ is essential ideal of *N*, so *E* is weak singular. It follows that each $N S_i$ is weak singular as an *N*group. Since *SocN* is pure we get $Soc(N)$. $E(N) \cap N S_i = SocN S_i$, $\forall i \in I$. As each $(N_i S_i)$ is annihilated by $Soc(N)$, $SocN.S_i = 0$. So $Soc(N)$. $E(N S_i) \cap N S_i = 0$. i.e. $∀x ∈ E(y, S_i)$, $Soc(yN)x ∩ (y, S_i) = 0$. $E(y, S_i)$ is an essential extension of $y_i S_i$, and since $Soc(N)$.*x* is *N*-subgroup of $E(N)$ *E*(*N Si*) we get $\forall x \in E(N)$, $Soc(N)$.*x* = 0. Thus *E*(*N S_i*) is annihilated by *Soc*(*N*), ∀*i* ∈ *I*. We claim that ∀*i* ∈ *I*, *E*(*N S_i*) is weak singular

as *N*-group. For $x \in E(y, S_i)$ with $x \notin Z_w E(y, S_i)$ then $\forall I \leq_{ie} N$, $Ix \neq 0 \Rightarrow Ann_N(x)$ is not essential in *N*. So $Ann_N(x) \cap J = 0$ for some non-zero ideal *J* of *N*. Since $J \cong Jx$ and $Z(N) = 0$, we infer that $Z(Jx) = 0$, whence $Jx \cap S_i = 0$. [Let $Jx \cap S_i \neq 0$. $Z(Jx \cap S_i) = 0$ $0 \Rightarrow \forall I \leq_{ie} N$, $I(Jx \cap S_i) \neq 0 \Rightarrow SocN(Jx \cap S_i) \neq 0$. But $(Jx \cap S_i) \subseteq E(NS_i)$ and $SocN.E(yS_i) = 0$, a contradiction]. This implies that $Jx = 0$. So $J \subseteq Ann_N(x)$, a contradiction. Now $E_{(N/Soc(N)}S_i) = \{x \in E(NS_i)|Soc(N)x = 0\} = E(NS_i)$ is injective as *N*-group. By given condition $\bigoplus_{i \in I} E_i$ is injective as an *N*-group and hence injective as $N/Soc(N)$ -group. This implies that $N/Soc(N)$ is weakly Noetherian by [7, Proposition 2.8]. \Box

For a distributively generated near-ring we get the following:

Definition 3.4 [Pilz] The Jacobson-radical of *N*-group *E* is the intersection of maximal ideals of *E* which is maximal as *N*-subgroup. We denote it by $J_2(E)$.

Note3.1[Pilz]:The Jacobson-radical, $J_2(E)$ of N -group E contains all nilpotent N subgroups of *E*.

Lemma 3.1 *Let N be a GV- near-ring, then* $Z(E) \cap J_2(E) = 0$ *, for every N-group E.*

Proof If $Z(E) = 0$, we are done. Otherwise let $(0 \neq)x \in Z(E)$. By Zorn's lemma, the set of all ideals *M* of *E* with $x \notin M$, has a maximal member *L*. The quotient *N*-group $S = (Nx + L)/L$ is simple and singular, therefore *E*-injective.

 $[Z((Nx+L)/L)] = {\bar{x} \in ((Nx+L)/L)} | I\bar{x} = (\bar{0})$ for essential *N*-subgroup *I* of *N*. Let $\bar{y} \in (Nx + L)/L$ such that $\bar{y} = nx + l + L$. Now for essential *N*-subgroup *I* in *N*, $I\bar{y} = \{n/\bar{y} | n/\epsilon I\} = \{(\sum_{i=1}^k s_i)(nx + L)| n/ = (\sum_{i=1}^k s_i) \epsilon I\} = \{s_1(nx + L) + k\}$ $s_2(nx+L)+\cdots+s_k(nx+L)|$ $n' \in I$ } = { $s_1nx+L+s_2nx+L+\cdots+s_knx+L|$ $n' \in$ I } = { $(s_1nx + s_2nx + \cdots + s_knx$ } + *L*| $n' \in I$ } [since $s_i \in I$ and $nx \in Z(E)$] = { L } = 0̄. $\text{So } \bar{y} \in Z((Nx+L)/L)]$

This means that the natural map of *N x* onto *S* extends to all of *E*. The kernel of this extension map is a maximal ideal of *E* which does not contain *x*. Whence *x* can not be in J_2E). So $Z(E) \cap J_2(E) = 0.$

Definition 3.5 If $B \subseteq E$, then the annihilator of *B* in *N* is defined as the set $\{n \in N | nx = n\}$ 0, ∀*x* ∈ *B*} and is denoted by $Ann_N(B)$, which is a left ideal of *N*.

Theorem 3.1 *If N is a GV near-ring with A.C.C. on essential ideals and if finite intersection of essential N-subgroups of N is distributively generated, then Z*(*N*) = 0*. In particular, if N is S*³ *I near-ring with unity then it is non-singular.*

Proof Let $x \in Z(N)$. Then $Ann_N(x) \subseteq Ann_N(x^2) \subseteq \cdots$ is an ascending chain of essential left ideals in *N*, since $Ann_N(x) \leq_e N$. So for some $t \in I^+$, $Ann_N(x^{t+1}) \leq_e N$ by Propo-sition [1.2.](#page-1-2) We claim $x^t = 0$. Suppose $x^t \neq 0$. Then we get $Ann_N(x^{t+1}) \cap Nx^t \neq 0$. As N has A.C.C. on essential left ideals $\exists t \in I^+$ such that $Ann_N(x^t) = Ann_N(x^{t+1})$, whence we get $Ann_N(x^{t+k}) = Ann_N(x^t)$ for all $k \in I^+$. Let $y = nx^t (\neq 0) \in Ann_N(x^{t+1}) \cap Nx^t$ for $n \in N$. Now $y \in Ann_N(x^t) \Rightarrow yx^t = 0 \Rightarrow nx^{2t} = 0 \Rightarrow n \in Ann_N(x^{2t}) = Ann_N(x^t) \Rightarrow$ $y = nx^t = 0$, a contradiction. i.e. $y \in Ann_N(x^{t+1}) \Rightarrow y \notin Ann_N(x^t) \Rightarrow Ann_N(x^t) \neq$ $Ann_N(x^{t+1})$, a contradiction. Thus $Z(N)$ contains nilpotent elements. As finite intersection of essential *N*-subgroups of *N* is distributively generated, *Z*(*N*) is *N*-subgroup of *N* [by Proposition [1.1\]](#page-1-3). So $J_2(N)$ contains $Z(N)$. By Lemma [3.1,](#page-6-0) $Z(N) = 0$. For $S^3 I$ near-ring *N*, *N*/*Soc*(*N*) is weakly Noetherian by Proposition [2.3.](#page-4-1) Again by [7, Proposition 2.4], (considering *N* as *N*-group) it follows that *N* has acc on essential ideals when we get *N* is non \Box singular.

Theorem 3.2 *If* $\{N\bar{e}\}_{(\bar{e} \in N/5oc(N))}$ *is an independent family of normal N-subgroups of N*/*Soc*(*N*)*-group E, direct sum of E-injective N*/*Soc*(*N*)*-groups is abelian N-group, then* N/I *is weakly Noetherian V_c N-group for every essential ideal I of N implies* $N/(Soc(N))$ *is weakly Noetherian V_c near-ring.*

Proof N/*I* is weakly Noetherian for every essential ideal *I* of *N* implies *N*/(*Soc*(*N*)) is weakly Noetherian as [7, Proposition 2.3]. Let *L* be a strictly semi-simple *N*/*Soc*(*N*) group.Then as *N* dgnr, *L* is a semi-simple *N*/*Soc*(*N*)-group. *I* /*Soc*(*N*) is an ideal of $N/Soc(N)$ and $f: (I/Soc(N)) \rightarrow L$ is a non-zero *N*-homomorphism. Let *Kerf* = $(K/Soc(N))$. Now *K* is essential in *N*. For if $K \cap J = 0$ for some non-zero ideal *J* of *N* then $J \cong (J + K)/K$ and since the latter is isomorphic to an ideal of *L*, it follows that for some ideal $I_1 \neq 0$ and contained in *J* that $I_1 \subseteq L$, hence $I_1 \subseteq Soc(N) \subseteq K$, a contradiction. Thus *N*/*K* is a weakly Noetherian *V_cN*-group. If $N \rightarrow N/5oc(N)$ is canonical quotient map, then $(N/Soc(N))/(K/Soc(N))$ is a weakly Noetherian V_c N-group. Proposition [2.1,](#page-3-0) yields a map of $N/(Soc(N))$ into L. So, L is $N/(Soc(N))$ -injective. Thus by Corollary [2.1,](#page-4-0) $N/(Soc(N))$ is weakly Noetherian *V_c* near-ring.

References

- 1. Armendariz, Efraim P.: Rings with dcc on essential left ideals. Commun. Algebra **8**(3), 299–308 (1980)
- 2. Dung, Nguyen, V., Huynh Ding, V., Wisbauer, R.: Quasi-injective modules with acc or dcc on essential submodules. Arch. Math. **53**, 252–255 (1989)
- 3. Page, S.S., Yousif, M.F.: Relative injectivity and chain conditions. Commun. Algebra **17**(4), 899–924 (1989)
- 4. Pilz, G.: Near-rings. North Holland publishing Company, Amsterdam (1977)
- 5. Hazarika, N., Saikia, H.K.: Direct sum of E-injective N-groups. Int. J. Math. Sci. **33**(2), 1179–1187 (2013)
- 6. Clay, J.R.: Near-rings: Geneses and Applications. Oxford Univ. Press, Oxford (1992)
- 7. Hazarika, N., Saikia, H.K.: On weakly noetherian N-groups and ascending chain conditions on essential ideals. Global J. Pure Appl. Math. **10**(3), 395–400 (2014)
- 8. Fuller, Kent R.: Relative projectivity and injectivity classes determined by simple modules. J. London Math. Soc. **2**(5), 423–431 (1972)
- 9. Bharadwaj, P.C., Jaiswal, Ritu: Small pseudo projective modules. Int. J. Algebra **3**(6), 259–264 (2009)
- 10. Chen, J., Ding, N., Yousif, M.F.: On noetherian rings with essential socle. J. Aust. Math. Soc. **76**, 39–49 (2004)
- 11. Feigelstock, S., Raphael, R.: Some aspects of relative injectivity. Bull. Austral. Math. Soc. **36**, 161–170 (1987)
- 12. Mason, G.: Injective and projective near-ring modules. Compos. Math. **33**, 43–54 (1976)