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Abstract Injective modules and near-ring groups have been studied by several researchers
like Mason et al., Faith et al., Jara, Harada, Cheng. Of these Oswald and Mason have studied
injective and projective near-ring modules. Mason studied injective near-ring modules and
defined the concepts like n-injective, loosely injective and almost injective near-ring modules.
In Hazarika and Saikia (Int J Math Sci 33(2), 2013) we extended the notion of relative
injectivity of modules to near-ring groups. Here E-injective N -groups with descending chain
conditions are studied. It is shown that the singular and semi-simple characters play a vital
role in characterization of E-injective N-groups with weakly descending chain conditions.
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1 Prerequisites

All basic concepts used in this paper are available in Pilz [4]. In this section we define the
basic terms and results that are needed in the sequel. Throughout the paper we consider N
as a zero symmetric right near-ring and E as a left N-group.

Definition 1.1 If A, B are two N-subgroups of E such that A € B then A is essential
(weakly essential) in B when any non-zero N-subgroup (ideal) C of E contained in B has a
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nonzero intersection with A. In such case B is an essential(weakly essential) extension of A
and is denoted by A <, B (A <y B).

If A is an N-subgroup (ideal) of £ and A is essential in £ (when B = E) then we say
that A is an essential N-subgroup (ideal) of E

Using the definition of essential N-subgroup easily we can prove the following proposition:

Proposition 1.1 If A, B, C are N-subgroups of E, with A C B C C, then A <, C, if and
onlyif A <, B <, C.

Definition 1.2 The singular subset of E, denoted by Z(E), is defined as the set
Z(E) ={x € E| Ix = 0 for some essential N-subgroup / of N}.
E is called a singular N-group if Z(E) = E.
E is called a non-singular N-group if Z(E) = 0.

Definition 1.3 The set (B : a) is defined as (B : a) = {n € N|na € B} .

It can be shown easily that if B is an essential N-subgroup of E and a € E then (B : a)
is an N-subgroup of N and if B is an essential N-subgroup, (B : a) is also an essential
N-subgroup of N.

Proposition 1.2 [f proper essential N-subgroups of N are distributively generated, then Z(E)
is an N-subgroup of E.

Proof Let e1,er € Z(E). Then there exist essential N-subgroups /1, I of N such that
(I1 N 1) (e; —e2) = 0as (I N Ip) is distributively generated. So e; — ey € Z(E). Again let
e € Z(E) .Fora € N and essential N-subgroup I of N, (I : a) is an essential N-subgroup
of N.So forz € (I : a) we get (za)e =0 = z(ae) =0 = ae € Z(E) . Thus Z(E) is an
N-subgroup of E. O

Definition 1.4 The weak singular subset of E, denoted by Z,,(E), is defined as the set
Zyw(E) ={x € E| Ix =0 for some essential ideal / of N}.
E is called a weak singular N-group if Z,,(E) = E.
E is called a weak non-singular N-group if Z,,(E) = 0.

Definition 1.5 An N-monomorphism f : A — B is said to be an essential N-
monomorphism if f(A) <, B.
Proposition 1.3 An N-group C is singular if there exists a short exact sequence 0 — A 1)

B 5 C — 0 such that fis an essential N-monomorphism.

Proof Forany b € B, we have amap k : N — B defined by k(n) = nb. Then k= (fA) <,
N, which gives the N-subgroup I = {n € N|nb € fA} is an essential N-subgroup of N.
Now Ib < fA = Kerg.Hence I (gb) = 0andso gb € Z(C). Since g is an N-epimorphism,
Z(C)=C. O

Proposition 1.4 If A, B are N-groups such that B is non-singular and B/A is singular then
A <ye B.i.e A isweakly essential in B.

Proof Tf B/A is singular and x(# 0) € B, then I = 0 for some essential N-subgroup /
of N = Ix < A. As B is non-singular, we have /x # 0 and thus Nx N A # 0. Therefore
A <ye B. ]
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Proposition 1.5 [12] The following are equivalent

(a) Every normal N-subgroup of E is a direct summand.
(b) E is a sum of simple normal N-subgroups.
(c) Eis adirect sum of simple normal N-subgroups.

Definition 1.6 The strict socle of E, denoted by s-SocE, is defined as the direct sum of
simple normal N-subgroups. E is called a strictly semisimple if s-Soc(E) = E. In other
words E is strictly semisimple if one of the conditions of Proposition 1.5 holds.

Definition 1.7 The socle of E, denoted by Soc(E), is defined as the sum of simple ideals of
E. Equivalently, Soc(E) = the direct sum of simple ideals of E.
E is called semisimple if Soc(E) = E

We observe that every semisimple N-group is strictly semisimple but the converse is not
true. If N is a distributively generated near ring(dgnr) then every strictly semisimple N-group
is semisimple.

The following is an example of strictly semisimple N-group which is not semisimple.

Example 1.1 We consider the near-ring N = {0, a, b, ¢, x, y} under the addition and multi-
plication defined in the following table:

+ 0 a b c X y
0 0 a b c X y
a a 0 y X c b
b b X 0 y a c
c c y X 0 b a
X X b c a y 0
y y c a b 0 X

0 a b c X y
0 0 0 0 0 0 0
a 0 a b c 0 0
b 0 a b c 0 0
c 0 a b c 0 0
X 0 0 0 0 0 0
y 0 0 0 0 0 0

Here {0, a}, {0, b}, {0, ¢}, {0, x, y} are simple left normal N-subgroups of N. And N =
{0, a} 4+ {0, b} + {0, ¢} + {0, x, y}. So N is strictly semisimple. But N is not semisimple.
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Definition 1.8 Let E and U be N-groups. U is called E-injective or U is injective relative
to E if for each N-monomorphism ¢ : K — E, every N-homomorphism g from K into U
can be extended to an N-homomorphism / from E into U. i.e. the diagram

K—>E

N A

commutes. i.e. g = hyp.
An N-group A is injective if it is E-injective for every N-group E of N. So if an N-group
A is injective it is E-injective for any N-group E.

Definition 1.9 E is called a V N-group if every simple N-group is E-injective.
E is called a V. N-group if every simple abelian N-group is E-injective.
E is called a GV N-group if every simple singular N-group is E-injective.
E is called a S3 I N-group if every strictly semi-simple singular N-group is E-injective.
E is called a $2S,,I N-group if every strictly semi-simple weak singular N-group is
E-injective.

Definition 1.10 N is called a V near-ring if y N is a V N-group and a GV near-ring if y N
isa GV N-group.
N is called a V, near-ring if y N is a V. N-group.

Definition 1.11 FE is said to be weakly Noetherian (Noetherian) if every strict ascending
chain of ideals or normal N-subgroups(N-subgroups) A; C Az C --- of E terminates after
finitely many steps or equivalently for each chain Ay € A € --- of E, 3n € N such that
An=Anpr =+

2 Strictly semi-simple character of E-injective N-groups with weakly
descending chain conditions

Proposition 2.1 If {Ne}.cg is an independent family of normal N-subgroups of E in a dgnr
N and direct sum of E-injective N-groups is an abelian N-group then E is Noetherian V
N-group(V, N-group) implies every strictly semi-simple N-group is E-injective.

Proof E is Noetherian V N-group = E is Noetherian and every simple N-group is E-
injective. Again any direct sum of E-injective N-groups is E-injective as E is Noetherian
[5,Theorem 4.12]. Let K be any strictly semi simple N-group = K is direct sum of simple
normal N-subgroups. So K is E-injective. O

Proposition 2.2 For a finitely generated N-group E every countably generated strictly semi-
simple N-group is E-injective implies E is weakly Noetherian V. N-group.

Proof Suppose {Ay}aey is a family of N-groups such that for every countable subset K of
J, @B,k Aw is E-injective. Then by [5, Theorem 4.11] @, ; A« itself E-injective. Now
given that every countably generated strictly semi simple N-group is E-injective. To show E
is weakly Noetherian and every simple abelian N-group is E-injective, let U be a countably
generated strictly semi-simple N-group. Then U = € U, , where U, is simple normal
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N-subgroup, so U, ’s can be taken as abelian N-groups and @ € K, K is countable subset
of J (as U countably generated).Given U is E-injective. So we have @ Uy, o € J is also
E-injective [5,Theorem 4.11]. So by [5,Theorem 4.8], we get every U, is E-injective = E
is V. N-group.

Next to show E is weakly Noetherian. Given E is finitely generated and W countably
generated semi-simple N-group and W is E-injective.

Let Nt C N» C N3 C ... be an ascending chain of distinct ideals of E. Let fx :
Nk — Wk =1,2,3,...). As W is E-injective, for inclusion map ix : Nx — E, 3 amap
vk : E — W such that fx = yxig.Let N/ = Zf,le) Ny. Define the map f : N/ — W
by f(x) = XG0y fi) = 20—y vkik (x) . f is well defined. .- W is E-injective, 3 a
map g : E — W extending f. But E is finitely generated and g(E) C W, w countably
generated. So g can be defined as g(x) = Z?;cl) yk ik (x) for some positive integer m,
which gives chain of ideals must be finite. O

Corollary 2.1 For a finitely generated N-group E, every strictly semi-simple N-group is
E-injective implies E is weakly Noetherian V. N-group.

Proposition 2.3 For dgnr N, if E is a finitely generated S>I N-group, then E /(Soc(E)) is a
weakly Noetherian V., N-group.

Proof From the above Corollary 2.1, it is enough to show that every strictly semi-simple
N-group is E/(Soc(E))-injective. Let L be a strictly semi-simple N-group. So as N
dgnr, L is a semi-simple N-group. Let M be an ideal of E such that M /(Soc(E)) is an
ideal of E/(Soc(E)) and f : M/(Soc(E)) — L be a non-zero N-homomorphism. Let
K /(Soc(E)) = Kerf . We claim K is essential ideal in M. For if K N I = 0 for some non-
zero ideal I of M then I = (I 4+ K)/K and since the latter is isomorphic to an ideal of L, it
follows that for some ideal /; # 0 and contained in / that /; C L ,hence I} C Soc(E) C K,
a contradiction. Now M /K singular, we may take L singular, since f(M/K) € Z(L). Let
n: M — M/SocE denote the quotient map and consider the map f.n : M — L. - L
is E-injective f.n extends to a map of E into L. " Soc(E) € K. This yields a map of
E/(Soc(E)) into L by [5, Proposition2.6]. O

3 Semi-simple and singular character of E-injective N-groups with
weakly descending chain conditions

Proposition 3.1 Let N be a dgnr. If E is an N-group satisfying the following conditions

1. {Ne}eck is an independent family of normal N-subgroups of E,

2. the direct sum of E-injective N-groups is an abelian N-group

3. no non-zero homomorphic image of Nx,Vx(# 0) € Soc(E), is semi-simple, singular
4. E/(Soc(E)) is a Noetherian V N-group, then E is an S>I N-group.

Proof Let L be a strictly semi-simple singular N-group. Let M be an N-subgroup of E. f :
M — L anon-zero map with ker f = K. Then by given condition Soc(E) N M is contained
in K.[Forx € Soc(EYNM = x € Soc(E),x e M = Nx C Soc(E), Nx C M = Nx €
Soc(E)NM].Soby [5, Proposition2.6],3 an N-homomorphism f/ :M/(Soc(E)YNM) — L.
Since M /(Soc(EYNM) = (Soc(E)+M)/(Soc(E)), so f/ 2 (Soc(E)+M)/(Soc(E) — L.
As E/(Soc(E)) is Noetherian VN-group and L semi-simple singular by Proposition 2.1, L
is E/(Soc(E))-injective, that is f/ is extended to g/ : E/(Soc(E)) — L. If we define
g:E — Lbyg(e) = g/ (e + Soc(E)). g is extension of f. O
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Definition 3.1 N-group E is called almost weakly Noetherian if £ /SocE is weakly Noethe-
rian.

Proposition 3.2 If E is non-singular and every singular homomorphic image of E is weakly
Noetherian then E is almost weakly Noetherian.

Proof Let M be an essential ideal of E and E is non-singular. Then E /M is singular. Again
E /M is homomorphic image of E, by given condition E/M is weakly Noetherian. O

Proposition 3.3 If E is non-singular and almost weakly Noetherian and in E every weakly
essential N-subgroup is essential then every singular homomorphic image of E is weakly
Noetherian.

Proof Let f : E — L be an N-epimorphism and L is singular. Now E is non-singular and
kerf C E, L = E/kerf singular, sokerf <y, E by Proposition 1.4. Then Soc(E) C kerf.
So by [5, Proposition2.6] we get L = E/(Soc(E)). As E is almost weakly Noetherian, L is
weakly Noetherian. O

Definition 3.2 An N-subgroup U of an N-group E is called pure in E if /U = U NI E for
each ideal I of N.

Definition 3.3 E is an injective hull of its N-subgroup (ideal) K if E is injective and K C
L C E, where L is injective N-subgroup (ideal) = L = E. Equivalently, E is an injective
hull of its N-subgroup (ideal) K if E is injective and E is an essential extension of K.

Proposition 3.4 If N is non-singular, SocN is pure and every injective right N-group is injec-
tive as an N | K -group for ideal K of N then the direct sum of (countably many) injective hulls
of simple weak singular left N-groups is injective implies N is an almost weakly Noetherian
near-ring.

Proof Let {S;}ic; be a family of simple weak singular N /Soc(N)-groups. Since a simple
N-group is weak singular if and only if it is annihilated by Soc(N). For let E is simple
and weak singular. So Z,(E) = x € E| Ix=0,1 <,; N=E.Sox €e E =1 <, N
such that /x = 0 = Soc(N)x = 0. Thus E is annihilated by Soc(N). Again let E be
annihilated by Soc(N), we get Soc(N)E = 0 = Soc(N) € Ann(E). Now we show
Ann(E) = {x € N| xE = 0} is essential ideal in N. If possible Ann(E) is not essential
idealin N. Then Ann(E)NJ = 0 for some non-zeroideal J of N.If Vx € E, f:J — Jx,
defined by f(j) = jx, itis a well defined N-homomorphism. f(ji) # f(j2) = (jix) #
(2x) = (1 —j2)x #0 = (j1i — jo) # 0 = j1 # j2. So fis well-defined. Next
let j # o= G1—Jj2 #0= (i —jx #0= (ix) # (ox) = f(1) #
f(j2). So f is one-one. Again for every jx € Jx, 3j € J such that f(j) = jx. So
fisonto. f(j1+ j2) = (i +J2)x = (ix + jox) = fG) + f(2) & fnj) =
(nj)x = n(jx) = nf(j). So f is N-isomorphism = Vx € E,J = Jx. Again Z(N) =
0= 2Z(J)=0= ZUJx) =0 = VI <, N,I(Jx) # 0 = SocN.(Jx) # 0. But
Jx € E and SocN.E = 0 = SocN.(Jx) = 0, a contradiction. So Ann(E) is essential
ideal of N, so E is weak singular. It follows that each ynS; is weak singular as an N-
group. Since SocN 1is pure we get Soc(yN).E(xySi) N NySi = SocN.S;, Vi € I. As
each (y S;) is annihilated by Soc(N), SocN.S; = 0. So Soc(yN).E(ySi) N nS; = 0. ie.
Vx € E(yS;), Soc(yN).xN(nyS;) = 0. E(yS;) is an essential extension of yS; , and
since Soc(yN).x is N-subgroup of E(yS;) we getVx € E(yS;), Soc(yN).x = 0. Thus
E(nS;) is annihilated by Soc(N), Vi € I.WeclaimthatVi € I, E(yS;)is weak singular
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as N-group. For x € E(yS;) withx ¢ Z,E(nS;) then VI <;o N, Ix # 0 = Anny(x) is
not essential in N. So Anny (x) N J = 0 for some non-zero ideal J of N. Since J = Jx and
Z(N) = 0, weinfer that Z(Jx) = 0, whence JxNS; = 0.[Let JxNS; #0. Z(JxNS;) =
0=VI<i{ N, I(JxNS;)) #0= SocN(JxNS;)#0.But(JxNS;) C E(yS;) and
SocN.E(yS;) = 0, a contradiction]. This implies that Jx = 0. So J € Anny(x), a
contradiction. Now E(y/soc(v)Si) = {x € E(nS;)|Soc(N)x =0} = E(yS;) is injective
as N-group. By given condition @;c; E; is injective as an N-group and hence injective as
N /Soc(N)-group. This implies that N /Soc(N) is weakly Noetherian by [7, Proposition 2.8].

[m}

For a distributively generated near-ring we get the following:

Definition 3.4 [Pilz] The Jacobson-radical of N-group E is the intersection of maximal
ideals of E which is maximal as N-subgroup. We denote it by J>(E).

Note3.1[Pilz]:The Jacobson-radical, Jo(E) of N-group E contains all nilpotent N-
subgroups of E.

Lemma 3.1 Let N be a GV- near-ring, then Z(E) N Jo(E) = 0, for every N-group E.

Proof If Z(E) = 0, we are done. Otherwise let (0 #)x € Z(E). By Zorn’s lemma , the
set of all ideals M of E with x ¢ M, has a maximal member L. The quotient N-group
S = (Nx + L)/L is simple and singular, therefore E-injective.

[Z(Nx+ L)/L) ={x e (Nx+ L)/L)| Ix = (0) for essential N-subgroup [ of N}.
Lety € (Nx + L)/L such that y = nx + [ + L. Now for essential N-subgroup / in N,
I3 ={n/5] n/ ey = {(Chops)x + L) n/ = (Ch_pys) € 1) = {si(nx + L) +
so(nx + L)+ +se(nx+L)| n/ el}={sinx+L+snx+L+---+sinx+L| n' e
I} = {(sinx +sonx +---+sgnx)+L| n/ € I} [sinces; € [ andnx € Z(E)] = {L} = 0.
Soye Z(Nx+ L)/L)]

This means that the natural map of Nx onto S extends to all of E. The kernel of this extension
map is a maximal ideal of E which does not contain x. Whence x can not be in J,E). So
Z(E)N J2(E) = 0. O

Definition 3.5 If B C E, then the annihilator of B in N is defined as the set {n € N|nx =
0,Vx € B} and is denoted by Anny (B), which is a left ideal of N.

Theorem 3.1 IfN is a GV near-ring with A.C.C. on essential ideals and if finite intersection
of essential N-subgroups of N is distributively generated, then Z(N) = 0. In particular, if N
is S31 near-ring with unity then it is non-singular.

Proof Letx € Z(N). Then Anny(x) C Anny(x%) C .- isan ascending chain of essential
left ideals in N, since Anny(x) <, N. So for some ¢ € [T, Anny (X't <, N by Propo-
sition 1.2. We claim x’ = 0. Suppose x’ # 0. Then we get Anny (xt1) N Nx! # 0. AsN
has A.C.C. on essential left ideals 3¢ € It such that Anny (x") = Anny (x'T1), whence we
get Anny (x'1%) = Anny(x") forall k € IT. Let y = nx'(# 0) € Anny(x'*) N Nx' for
neN.NowyeAnny(x') = yx!' =0= nx? =0 =n € Anny(x?) = Anny(x") =
y = nx' = 0, a contradiction. i.e. y € Anny(x'T) = y ¢ Anny(x") = Anny(x') #
Anny (x't1), a contradiction. Thus Z(N) contains nilpotent elements. As finite intersection
of essential N-subgroups of N is distributively generated, Z(N) is N-subgroup of N [ by
Proposition 1.1]. So J>(N) contains Z(N). By Lemma 3.1, Z(N) = 0. For S37 near-ring
N, N/Soc(N) is weakly Noetherian by Proposition 2.3. Again by [7, Proposition 2.4], (con-
sidering N as N-group) it follows that N has acc on essential ideals when we get N is non
singular. O
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Theorem 3.2 If {Ne} en/soc(ny) is an independent family of normal N-subgroups of
N/Soc(N)-group E, direct sum of E-injective N /Soc(N)-groups is abelian N-group, then
N/I is weakly Noetherian V. N-group for every essential ideal I of N implies N /(Soc(N))
is weakly Noetherian V. near-ring.

Proof N/I is weakly Noetherian for every essential ideal I of N implies N/(Soc(N))
is weakly Noetherian as [7, Proposition 2.3]. Let L be a strictly semi-simple N/Soc(N)-
group.Then as N dgnr, L is a semi-simple N/Soc(N)-group. I/Soc(N) is an ideal of
N/Soc(N) and f : (I/Soc(N)) — L is a non-zero N-homomorphism. Let Kerf =
(K/Soc(N)). Now K is essential in N. For if K N J = 0 for some non-zero ideal J of N
then J = (J + K)/K and since the latter is isomorphic to an ideal of L, it follows that for
someideal /1 # 0 and containedin J that /1 C L ,hence I} € Soc(N) C K, acontradiction.
Thus N/K is a weakly Noetherian V. N-group. If N — N/Soc(N) is canonical quotient
map, then (N/Soc(N))/(K/Soc(N)) is a weakly Noetherian V. N-group. Proposition 2.1,
yields a map of N/(Soc(N)) into L. So, L is N/(Soc(N))-injective.Thus by Corollary 2.1,
N/(Soc(N)) is weakly Noetherian V. near-ring. ]
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