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PREFACE

A glance at the table of contents will reveal that this textbook treats topics in
analysis at the “Advanced Calculus” level. The aim has been to provide a develop-
ment of the subject which is honest, rigorous, up to date, and, at the same time,
not too pedantic. The book provides a transition from elementary calculus to
advanced courses in real and complex function theory, and it introduces the reader
to some of the absiract thinking that pervades inodern analysis.

The second edition differs from the first in many respects. Point set topology
is developed in the setting of gpeneral metric spaces as well as in Euclidean #-space,
and two new chapters have been added on Lebesgue integration. The material on
line integrals, vector analysis, and surface integrals has been deleted. The order of
some chapters has been rearranged, many sections have been completely rewritten,
and several new exercises have been added.

The development of Lebesgue integration follows the Riesz-Nagy approach
which focuses directly on functions and their integrals and does not depend on
measure theory. The treatment here is simplified, spread out, and somewhat
rearranged for presentation at the undergraduate level.

The first edition has been used in mathematics courses at a variety of levels,
from firsi-year undergraduate to first-year graduate, both as a text and as supple-
mentary reference. The second edition preserves this flexibility. For example,
Chapters 1 through 5, 12, and 13 provide & course in differential calculus of fane-
tions of one or more variables. Chapters 6 through 11, 14, and 15 provide 2 course
in integration theory. Many other combinations are possible; individaal instroctors
can choose topics to suit their needs by consulting the diagram on the next page,
which displays the legical interdependence of the chapters.

I would like to express iny gratitude to the many people who have taken the
trouble to write me about the first edition. Their comments and suggestions
influenced the preparation of the second edition. Special thanks are due Dr.
Charalambos Aliprantis who carefully read the entire manuscript and made
numerous helpful suggestions. He also provided some of the new exercises.
Finally, I would like to acknowledge my debt to the undergraduate students of
Caltech whose enthusiasm for mathematics provided the original incentive for this
work.

Pasadena . T.M.A.
September 1973
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® CHAPTER 1

| THE REAL AND
COMPLEX NUMBER SYSTEMS

1.1 INTRODUCTION
Mathematical analysis studies concepts related in some way to real numbers, so

we begin our study of analysis with a discussion of the real-number system.

Several methods are used to introduce real numbers. One method starts with
the positive integers 1, 2, 3, ... as undefined concepts and uses them to build a
larger system, the positive rational numbers (quotients of positive integers), their
negatives, and zero. The rational numbers, in turn, are then used to construct the
irrational numbers, real numbers like nfi and rg-which are not rational. The rational
and irrational numbers together constitute the real-number system.

Although these matters are an important part of the foundations of math-
ematics, they will not be described in detail here. As a matter of fact, in most
phases of analysis it is only the properties of real numbers that concern us, rather
than the methods used to construct them. Therefore, we Shail take the real numbers
themselves as undefined objects satisfying certain axioms from which further
properties will be derived. Since the reader is probably familiar with most of the
properties of real numbers discussed in the next few pages, the presentation will
be rather brief. Its purpose is to review the important features and persuade the
reader that, if it were necessary to do 50, all the properties could be traced back
to the axioms. More detailed treatments can be found in the references at the end
of this chapter. '

For convenience we use some elementary set notation and terminology. Let
S denote a set (a collection of objects). The notation x € § means that the object x
is in the set §, and we write x ¢ § to indicate that x is not in S,

A set S is said to be a subset of T, and we write § < T, if every object in S is

,also in T. A set is called nonemprty if it contains at least one object.

We assume there exists a nonempty set R of objects, called real numbers,
which satisfy the ten axioms listed below. The axioms fall in a natural way into
three groups which we refer to as the field axioms, the order axioms, and the
completenexs axiom (also called the Jeast-upper-bound axiom or the axiom of
continuity},

1.2 THE FIELD AXIOMS

Along with the set R of real numbers we assume the existence of two operations,
called addition and multiplication, such that for every pair of real numbers x and y

1




2 Real and Complex Number Systems Ax. 1

the sum x + y and the product xy are real numbers uniquely determined by x
and y satisfying the following axioms. (In the axioms that appear below, x, y,
z represent arbitrary real numbers unless something is said to the contrary.)

Axiem¥, x +y=y + x, xy = yx .(commutatme laws),
Axiom2 x +(y+2) =(x+y) + 2z x(yz2)= {x¥)z (associative laws).
Axiom 3. x{y + z) = xy + xz (distributive law).

Axiom 4. Given any two real numbers x and y, there exivis a real number z such that
X + z=y. This z is denoted by y —'x; the number x — x is denoted by 0. (It
can be proved that 0 is independent of x.) We write —x for 0 — x and eall —x the
negative of x.

Axiom 5. There exists at least one real number x # 0. If x and y are two real
numbers with x # 0, then there exists a real number 2 such that xz = y. This z is
denoted by yix; the number x{x is denoted by 1 and can be shown to be independent of
x. Wewrite x™* for 1/x if x # Oand call x™* the reciprocal of x.

From these axioms all the usual laws of arithmetic can be derived; for example,
Xy =, XY =, ~{x =P =y — %%~ y=x+ (), etc. (For
2 more detailed explanation, see Reference 1.1.)

1.3 THE ORDER AXIOMS

We alzo assume the existence of a relation < which esiablishes an ordering among
the real numbers and which satisfies the following axioms:

Axiom 6. Exactly one of the relations x = y, x < y, x > y holds.
NOTE. x > y means the same as y < x. ‘

Axiom 7. If x < y, then for every zwe have x + z < y + z.
Axiom 8. If x > O0and y > 0, then xy > 0.

Axiom 9. If x > yandy > z, then x > z.

NOTE. A real number x is called positive if x > 0, and negative if x < 0. We
denote by R* the set of all positive real numbers, and by R~ the set of all negative
real numbers,

From these axioms we can derive the usual rules for operating with inequalities.
For example, if we have x < y, then xz < pz if z is positive, whereas xz > yz if
z 18 negative. Also, if x = y and z > w where both y and w are positive, then
xz > yw. {For a complete discussion of these rules see Reference 1.1.)

NOTE. The symbolism x < y 15 used as an abbreviation for the statement:

“x <y o x=yp"

Th 1.1 Intervals 3

Thus we have 2 < 3 since 2 < 3; and 2 £ 2 since 2 = 2. The symbol > is
similarly used. A real number x is called nonmegative if x = 0. A pair of simul-
taneous imequalities such as x < p, ¥ < z Is wvsually written more brit By as
X< y<az :

“The following theorem, which is a simple consequence of the foregoing axioms,
is often used in proofs in analysis.

Theorem 1.1, Given real mumbers a and b such that

axb+sg foreverye > 0. (1)
Thena = b.

Progf. If b < a, then inequality (1) is violated for 2 = (g — b)/2 because

a—bﬂa_—}-b{a+a
2 2 2

Therefore, by Axiom 6 we must have ¢ < b,

= a.

b+sg=5b+

Axiom {0, the completeness axiom, will be described in Section 1,F1.

1.4 GEOMETRIC REPRESENTATION OF REAL NUMBERS

The real numbers are often represented geometrically as points on a line (called
the real fline or the real axis). A point is selected to represent 0 and another to
represent |, as shown in Fig. 1.1. This choice determines the scale. Under an
appropriate set of axioms for Euclidean geometry, each point on the real line
corr¢spends to one and only one real number and, conversely, each real number
is represented by one and only one point on the line. It is customary to refer to
the point x rather than the point representing the real aumber x.

{ } Figure 1.1
a 1 x ¥

The order relation has a simple geometric interpretation. If x < y, the point
x lies to the left of the point y, as shown in Fig. 1.1, Positive numbers lie to the
right of 0, and negative numbers to the left of 0. If & < 5, a point x satisfies the
inequalities @ < x < b if and only if x is befween a and b,

1.5 INTERVALS

The set of all points between a and b is called an inferval. Sometimes it is important
to distinguish between intervais which include their endpoints and intervals which
do not.

NOTATION, The notation {x: x satisfies P} will be used to designate the set of
all real numbers x which satisfy property £.




4 Real and Complex Namber Sysiems Def. 1.2

Definition 1.2, Assume a < b, The open interval (a, b} is defined 1o be the et
(¢, 0) = {x:a < x < b}

The closcd interval [a, b] is the set {x:a.< x < b}. The half-open intervals
(a4, b] and o, b} are similarly defined, using the inequalities a < x < b and
a < x < b, respectively. Infinite intervals are defined as follows:

(@, +o) = {x:x > 4}, [ +w) = {x:x 2 a},
(—e,8) = {x:x < a}, {(—w,a} = {x:x < a}.

The rea] line R is sometimes referred to as the open interval (—oo, +o). A
single point is considered as a “degencrate” closed interval.

NoTE. The symbols + oo and — o are used here purely for convenience in notatien
and are not to be considered as being real numbers. Later we shall extend the
real-number system to include these two symbols, but until this is done, the reader
should understand that all real numbers are “finite.”

1.6 INTEGERS

This section describes the infegers, a special subset of R. Before we define the
integers it is convenient io introduce first the notion of an inductive set.

Definition 1.3. A set of real numbers is called an inductive set if it has the following
two properties;

a) The number 1 is in the set.

b} For eoery X in the set, the number x + 1 is also in the set.

For example, R is an inductive set. So is the set R*. Now we shall define the
positive integers to be those real numbers which belong to every inductive set.

Definition 1.4. A real number is called a positive integer if it belongs o every
inductive set. The set of positive integers is denoted by % .

The set Z.F is itself an inductive set. It contains the number [, the number
1 + 1 {denoted by 2), the number 2 + | (denoted by 3), and so on. Since Z* isa
subset of every inductive set, we refer to Z% as the smallest inductive set. This
property of Zt is sometimes called the principle of induction. We assume the
reader is familiar with proofs by induction which are based on this principle.
(See Reference 1.1.) Examples of such proofs are given in the next section.

The negatives of the positive integers are called the negative integers. The
positive integers, together with the negative integers and 0 (zero), form a set Z
which we call simply the set of infegers.

1.7 THE UNIQUE FACTORIZATION THEOREM FOR INTEGERS

If n and & are integers and if # = cd for some integer ¢, we say d is a divisor of »,
or n is a multiple of d, and we write d|n (read: & divides n). An integer n is called
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a prime if n > 1 and if the only positive divisors of nare 1 andn. Ifn > land n
is not prime, then # is called composite. The integer 1 is neither prime nor composite.

This section derives some elementary results on factorization of integers,
culminating in the unique factorization theorem, also called the fundamental theorem
of arithmetic. .

The fundamental theorem states that (1) every integer n > 1 can be represented
as a product of prime factors, and (2) this factorization can be done in only one
way, apart from the order of the factors. Ii is easy to prove part {1).

Theorem 1.5. Every integer n > 1 is either a prime or a product of primes.

Proof. We use induction on #. The theorem holds trivially for # = 2. Assume
it is true for every integer ¥ with 1 < & < n. If a is not prime it has a positive
divisor d with 1 = d < n. Hence n = od, where 1 < ¢ < n. Since both ¢ and
d are <n, each is a prime or a product of primes; hence n is a product of primes,

Before proving part (2), uniqueness of the factorization, we introduce some
further concepts.

If dla and 4|k we say & is a common divisor of a and . The next theorem
shows that every pair of integers a and & has a common divisor which is a linear
combination of g and &.

Theorem 1.6. Every pair of integers a and b has a common divisor d of the form
d=ax + by

where x and y are integers. Moreover, every common divisor of a and b divides
thisd, '

Proonf. First assome that @ = 0, & > 0 and use induction on n=a + b. If
n = Dthena = b = 0, and we can take d = 0 with x = y = 0. Assume, then,
that the theorem has been proved for 0,1, 2,...,»# — 1. By symmetry, we can
assume g > b, Ifb=0taked=a, x= 1,y =0. Ifb > | we can apply the
induction hypothesis to @ — b and b, since their sum is a =2 — b < n — 1.
Hence there is a common divisordof 2 — band boftheformd = (¢ — B)x + by.
This 4 also divides (¢ — by + b = a, so 4 is a common divisor of a and b and
we have d = ax + (y — x)b, a linear combination of a and 5. To complete the
proof we need to show that every common divisor divides 4. Since a common
divisor divides @ and 5, it also divides the linear combinationax + (¥ — x}p = 4.
This completes the proof if 2 = 0 and b = 0. 1f one or both of @ and & is negative,
apply the result just proved to ja} and [5|.

Note. If d is a common divisor of g and b of the form d = ax + by, then —dis
also a divisor of the same form, —d = a(—x) + b(—y). Of these two common
divisors, the nonnegative one is called the greafest common divisor of a and b,
and is denoted by ged(a, b} or, simply by {4, 8). If (g, &) = 1 then a and b are
said to be relatively prime.

Theorem 1.7 (Euclid’s Lemma). If albc and (a, b) = 1, then alc.
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Proogf. Since {(a, b} = | we can write | = ax + by. Therefore ¢ = acx + bey.
But glacx and albcy, so glc.

Theorem 1.8. If a prime p divides ab, then pla or plb. More generally, if a prime p
divides a product a, - - - a, then p divides at least one of the factors.

Proof. Assume plab and that p does not divide a. If we prove that (p, &) = 1,
then Euclid’s Lemma implies plb. Letd = (p,g). Thend|psod =1ord = p.
We cannot have d = p because d|a but p does not divide . Henced = 1. To
prove the more general statement we use induction on &, the number of factors.
Details are left to the reader.

Theorem 1.9 { Unigue factarization theorem). Frery inieger n > | can be repre-
sented ax a product of prime factors in only one way, apart from the order of the
Jfactors.

Proaf. We use induction on n. The theorem is tree for # = 2. Assume, then,
that it is true for all integers greater than 1 and less than #. If # is prime there is
nothing more to prove. Therefore assume that # is compos:te and that n has two
factorizations into prime factors, say

R=ppPr P =127 "4, 2)

We wish to show that s = 7 and that each p equals some ¢. Since p, divides the
prodoct ¢4, " - 4., it divides at least one factor. Relabel the ¢’s if necessary so
that p,l¢,. Then p; = ¢, since both p; and ¢, are primes. In (2) we cancel p,
on both sides to obtain

n
— == Py Py T gt e
P
Since n is composite, | < nfp; < m; so by the induction hypothesis the two
factorizations of #/p, are identical, apart from the order of the factors. Therefore
the same is true in {2} and the proof is complete.

L8 RATIONAL NUMBERS

Quotients of integers afb (where b # 0) are called rational numbers. For example,
12, —145, and & are rational numbers, The set of rational numbers, which we
denote by Q, contains Z as a subset, The reader should note that all the field
axioms and the order axioms are satisfied by Q.

We assurng that the reader is familiar with certain elementary propertics of
rational numbers. For example, if  and & are rational, their average (@ + 5)/2 is
also rational and lies between ¢ and b. Therefore between any two rational numbers
there are infinitely many rational numbers, which implies that if we are given a
certain rational number we cannot speak of the “next largest™ rational number.
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Real numbers that are not rational are called irrational. For example, the numbers
V2, ¢, w and ¢ are irrational.

Ordinarily it is not too easy to prove that some particular number is irrational.
There is no simple proof, for example, of the irrationality of ¢*. However, the
irrationality of certain numbers such as v'2 and +/3 is not too difficult to estabhish
and, in fact, we eastly prove the following:

Theorem 1.10. If n is a positive integer which is not a perfect sguare, then Jn i
irrational.

Proof. Suppose first that i contains no square factor >1. We assume that v/» is

rational and obtain a contradiction. Let \/; = afh, where @ and b are integers
having no factor in common. Then nb? = a* and, since the left side of this equation
is a multiple of n, so too is @®. However, ifa®isa multiple of #, @ itself must be a
multiple of #, since # has no square factors > 1. (This is easily scen by examining
the factorization of g into its prime factors,) This means that @ = cn, where ¢ is
some integer. Then the equation #b* = o becomes mb? = c?»?, or #* = nc’.
The same argument shows that b must also be a multiple of n. Thus a and b are
both multiples of #, which contradicts the fact that they have no factor in common.
This completes the proof if # has no square factor =1,

If # has a square factor, we can wiite 7 = »°k, where k > | and ¥ has no
square factor >1. Then \/ no= mx/k and if \/n were rational, the number \/ i
would also be rational, coniradiciing that which was just proved.

A different type of argument is needed to prove that the number e is irrational.
(We assume familiarity with the exponential e* from elementary calculus and its
representation as an infinite series.)

Theorem 111, If e = 1 + x + X320 4 x*3V 4 -+ + XMl 4+ <<+, then the
member € is irrational.

Proof. We shall prove that ¢! is irrational. The series for e ! is an alternating
series with terms which decrease steadily in absolute value. [n such an alternating
series the error made by stopping at the sth term has the algebraic sign of the first
neglected term and is less in absolute value than the first neglected term. Hence,
if 5, = ¥ (— 1)k, we have the inequality

1
De 5y | e,
k-1 k)1
from which we obtain
1 1
0= 2k - 1! L < — % 3
( e Sag-1) % 2 (3)

for any integer k > 1. Now (2k — [)!5,,_, is always an integer. If ¢~ ! were
rational, then we could-choose k so large that (2 — 1)! ¢™! would alse be an
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integer. Because of (3) the difference of these two integers would be a number
between 0 and 4, which is impossible. Thus ¢™* cannot be rational, and hence ¢
cannot be rational.

Note. For a proof that n is irrational, see Exercise 7.33.

The ancient Greeks were aware of the existence of irrational numbers as early
as 500 3.c. However, a satisfactory theory of such numbers was not developed
until late in the nineteenth century, at which time three different theories were
introduced by Cantor, Dedekind, and Weierstrass. For an account of the theories
of Dedekind and Cantor and their equivalence, see Reference 1.6,

L10 UPPER BOUNDS, MAXIMUM ELEMENT, LEAST UPPER BOUND
(SUPREMUM)

Trrational aumbers arise in algebra when we try to solve certain quadratic equa-
tions. For example, it is desirable to have a real number x such that x* = 2. From
the nine axioms listedd above we cannot prove that such an x exists in R because
these nine axioms are also satisfied by Q and we have shown that there is no
rational number whose square is 2. The completeness axiom allows us to introduce
irrational sumbers in the real-number system, and it gives the real-number system
a property of continuity that is fundamental to many theorems in analysis.

Before we describe the completeness axiom, it is convenient to introduce
additional terminology and notation.

Definition 1.12. Let S be a set of real mumbers. If there is a real number b such
that x < b for every x in S, then b is called an upper bound for S and we say that
S is bounded above by b,

We say an upper bound because every number greater than b will also be an
upper bound. If an upper bound b is also a member of S, then b is called the
largest member or the maximum element of S. There can be at most one such &.
If it exists, we write

b = max 8.
A set with no upper bound is said to be unbounded above.

Definitions of the terms lower bound, bounded below, smallest member {or
minimum element) can be similarly fonnulated, If $ has a minimum clement we
denote it by min §.

Examples
1. The set RY = (0, + o) is unbounded above., It has no upper bounds and no max-
imom glkement. It is bounded below by ) but has no minimum element.
2. The closed interval S = [, 1] is bounded above by 1 andisbuundudhelawbyﬂ.
Infact, max § = land min § = 0.

3. The half-open interval S = [0, 1) is bounded above by 1 but it has no maximurn
element. Iis minimum element is 0.
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For sets like the one in Example 3, which are bounded above but have no
maximum element, there is a concept which takes the place of the maximum ele-
ment. Tt is called the least upper bound or supremum of the set and is defined as
follows:

Definition 1.13. Let S be o set of real numbers bounded above. A real mumber b is
called a least upper bound for S if it has the following two properties:

a) b is an upper bound for S.
b) No number less than b is an upper bound for 8.

Examples. If § = [0, 1] the maximum elemnent 1 is also a least upper bound for 5. If
8 = [0, 1) the number 1 is a least upper bound for 8, evep though § has no maximum
clement.

It is an easy exercise io prove that a set cannot have two different least upper
bounds. Therefore, if there is a least upper bound for 8, there is only one and we
can speak of the least upper bound.

it is common practice to refer to the least upper bound of a set by the more
concise term suprentiom, abbreviated sup. We shall adopt this convention and write

E=saps

to indicate that b is the supremum of §. If § has a maximum element, then
max 8 = sup S.

The greatest lower bound, or ugfimum of 8, denoted by inf S, is defined in an
analogous fashion.

1,11 THE COMPLETENESS AXIOM
Qur final axiom for the real number system involves the notion of supremum.

Axiom 10, Every nonempty set S of real numbers whick is bounded cbove hay a
supremum,; that is, there is a real number b such that b = sup S,

As a consequence of this axiom it follows that every nonempty set of real
numbers which is bounded below has an infimum.

1.12 SOME PROPERTIES OF THE SUPREMUM

This section discusses some fundamental properties of the suptemum that will be
useful in this text. There is a corresponding set of properties of the infimum that
the reader should formulate for himself.

The first property shows that a set with a supremum contains numbers arbi-
trarily close to its supremum.

Thearems 1.14 { Approximation property}. Let S be a nonempty set of real mmnbers
with a supremum, say b = sup S. Then for every a < b there is some x in S such
that

a<x b
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Proof. Firstofall, x < bforallxin S, If we had x < a for every x in §, then a
would be an upper bound for S smaller than the least upper bound. Therefore
Xx > afor at least one x in S.

Theorem 1.15 ( Additive property). Given nonempty subsets A and B of R, let C
denote the set
C={x+y:xed, yeB}

If each of A and B has a suprernum, then C has a supremum and
sup € = sup A + sup B,

Proof. Let a = sup A, b=supB. I ze C then z = x + y, where xe A,
yeBsoz=x+ y 5 a+ b Hencea + b isan upper bound for C, so Chasa

supremum, say ¢ = sup C, and ¢ < @ + b. We show next that g + F < .-

Choose any ¢ > 0. By Theorem 1.14 there is an x in 4 and a y in B such that
g—s<x and h—e<y
Adding these inequalities we find
a+b-2Ze<x+y=zec
Thus, @ + & < ¢ + 2eforeverye > 050, by Theorem 1.1, 0 + b < .
The proof of the next theorem is left as an exercise for the reader.

Theorem 1.16 (Comparison praperty). Given nonempty subsets § and T of R such
thats < tfor everysin Sand t in T. If T has a supremum then S has a SuUpremumn
and

sup § < sup T.

1.13 PROPERTIES OF THE INTEGERS DEDUCED FROM THE
COMPLETENESS AXIOM

Theorem 1.17. The set % of positive integers 1, 2, 3, . .. is unbounded above.

Proof. If Z* were bounded above then Z* would have a supremum, say a = -

sup Z*. By Theorem 1.14 we would have & — 1 < » for some n'in Z*. Then
n + 1 > aforthisn. Sincen + 1 e Z* this contradicts the fact that ¢ = sup Z*.

Theorem 1.18. For every real x there is & positive integer n such that n > x.

Proof. If this were not true, some x would be an upper bound for Z*, contra-
dicting Theorem 1.17.

114 THE ARCHIMEDEAN PROPERTY OF THE REAL NUMBER SYSTEM

The next theorem describes the Archimedean property of the real number system.
Geometrically, it tells us that any line segment, no matter how long, can be

Th, 1L.20 Finite Decimat Approximationy 11

covered by a finite number of line segments of a given positive length, no matter
how small.

Theorem 1.19. If x > O and if y is an arbitrary real number, there is a positive
integer n such that nx > ¥.

Proof. Apply Theorem 1.18 with x replaced by y/x.

115 RATIONAL NUMBERS WITH FINITE DECEMAL REPRESENTATION
A real number of the form

r=q + + o —
° 102 10*
where g, is a nonnegative integer and a,, . . . , o, are integers satisfying 0 < o, < 9,
is usually written more briefly as follows:

r=gy.a,a, - a,
This is said to be a finite decimal representation of r. For example,

1 .5 1 2 29 2 5
c=—=05 —=-0=002, =7+ =+-—=72
2 10 S0 107 4 10 107

Real numbers liké these are necessarily rational and, in fact, they all have the form
r = afl0", where a is an integer. However, not all rational nembers can be ex-
pressed with finite decimal representations. For example, if ; could be 50 expressed,
then we would have 4 = a/10" or 3a = 1Y for some integer @, But this is im-
possibie since 3 does not divide any power of 10.

116 FINITE DECIMAL APPROXIMATIONS TO REAL NUMBERS

This section wses the completeness axiom to show that real numbers can be
approximated to any desired degree of accuracy by rational nurabers with finite
decimal representations.

Theorem 1.20. Assume x > 0. Then for every integer n = | there is a ﬁmte
decimat r, = a,.a,a, - - - a, such that

W S X<+ —.
" 10°

Proof. Let .S be the set of all nonnegative integers <x. Then S is nonempty,
since 0 € §, and 5 is bounded above by x. Therefore 5 has a supremum, say

ay = sup &. It is easily verified that g, € §, so a, is a nonnegative integer. We
call ay the greatest integer in x, and we write a, = [x]. Clearly, we have

aoﬂx{au+l.
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Now let a; = [10x — 10a,], the greatest integer in 10x — 10a,. Since
0 < 10x — 10a, = 10(x — ag) < 10, we have 0 < 2, < 9 and
g = 1W0x — a, < a, + 1.
In other words, a4, is the largest integer satisfying the inequalities

a, a; +1
a — s X = T —
o+ 10 x < ay + 0
More generally, having chosen @,...,a,_, with 0 < a; < 9, let a, be the
largest integer satisfying the inequalities

a, + 1

ao+ﬂ+'“+£§$x<a°+fl+o_n+ 0"

10 wr 10
Then 0 £ a, < 9 and we have

“@

r,,sx{r_+—l~,
[ty

ro
where r, = a,.4,4, - -* g,. This completes the proof. It is easy to verify that x is
actually the supremum of the set of rational numbers r,, rp, .. ..

1.17 INFINITE DECIMAL REPRESENTATIONS OF REAL NUMEBERS

The integers a,, 4y, 45, - .. obtained in the proof of Theorem 1.20 can be used to
define an infinite decimal representation of x. We wrile

X=d.am

to mean that a, is the Jargest integer satisfying {(4). For example, if x = % we find
@ = 0a =1 a =24, =5 and a, = 0 for ali n = 4. Therefore we can
write

' 4 = 0.125000 - - -

If we interchange the inequality signs = and < in (4), we obtain a slightly
different definition of decimal expansions. The finite decimals r, satisfy 7, < x <
r, -+ 107" although the digits @, @,, 4,, ... need not be the same as those in (4),
For example, if we apply this second definition to x = } we find the infinite decimal
representation

4 = 0.124999 - -+

The fact that a real pumber ng,ht have two different decimal representations is
merely a reflection of the fact that two different sets of real numbers can have the
same supremoim.

118 ABSOLUTE VALUES AND THE TRIANGLE INEQUALITY

Calc_ulm'iona with inequalitics arise quite frequently in analysis. They are of
particular importance in dealing with the notion of absolute value. If x is any real
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number, the absolute value of x, denoted by |x|, is defined as follows:

X, ifx >0,
Ix| = .
— X, ifx =<0

A fundamental inequality concerning absolate values is given in the following:

Theorem 1.21. If a = 0, then we have the inequality x| < a ¥, and only ¥,
-—a <X <a

Proof. From the definition of {x|, we have the inequality —|x] £ x < x|, since
x = |[x]orx = —|x|. 1f we assume that |x] < 4, then we can write —a £ —|x| <
x < |x] £ 2 and thus half of the theorem is proved. Conversely, let us assume
—a £ % < a Thenif x > 0, we have {x] = x < 4, whereas if x < 0, we have

ixl] = —x < a. In either casc we have (x| < a and the theorem is proved.
We can use this theorem to prove the friangle inequality.
Theorem 1.22. For arbitrary real x and y we have
Ix + ¥ < |x + |yl (the trigngle inequality).

Proof. We have —|x| < x < |x] and —|p < y < [yl. Addition gives us

C—(xl + ¥ € x + p = x| + |», and from Theorem 1.2]1 we conclude that

ix 4+ pl = |x| + |». This proves the theorem,

The triangle inequality is often used in other forms, For example, if we take
x=g — candy = ¢ — bin Theorem 1,22 we find

la— bl <la— ¢ + lc— 4.

Also, from Theorern 1.22 we have |x| = [x + yf — |¥|. Taking x =a + b,
y = —b, we obtain
la + b = |a| — 8.

Interchanging @ and b we also find |o + 8] = |b] — la] = —{la] — |6D. and
hence

la + &l = |l — {bll.
- By induction we can also prove the generalizations
by + x4+ ol S il 1kl o+

and .
lxl + X3 + -+ xul = ixll - |x2| - = ]xul'

1.19 THE CAUCHY-SCHWARZ INEQUALITY

We shall now derive another inequality which is often used in analysis.
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Theorem 1,23 (Cauchy-Schwary ineguality). If a,, ..., a, and b, .. ., b, are
arbitrary real numbers, we have

a 2 n L
akbk) < ( a? bz) )
Moreover, if some a; # (0 equality holds if and only if there is a real x such thai
ax + by, = 0foreachik = 1,2,...,n

Proaf. A sum of squares can never be negative. Hence we have
N
Z (ax + 5) = 0
k=1

for every real x, with equality if and only if each term is zero. This inequality ean
be written in the form
Ax? + 2Bx + C = 0,

where
L]

4=Yd B=Yabh C=3H
K= i

k=1

If4 > 0,putx = —B/4toobtain B° — 4C < 0, which is the desired inequality.
I A = 0, the proof is trivial.

NOTE. In vector notatien the Cauchy-Schwarz inequality takes the form
@by’ < fali*b}?,

where s = (a,,...,a), b = {b,,..., 5, are two p-dimensional vectors,.

L]
ab = Z ah,,
k=1

is thetr dot product, and [|a| = (a-a)'/? is the length of a.

1.20 PLUS AND MINUS INFINITY AND THE EXTENDED REAL NUMBER
SYSTEM R*

Next we extend the real number system by adjoining two “ideal poinis™ denoted
by the symbols + o0 and — oo (“plus infinity™ and “minus infinity™).

Definition 1.24. By the extended real number system R* we shall mean the set of
real numbers R together with two symbols + oo and — oo which satisfy the following
properiies:

a) If x e R, then we have

X + {+®) = +o0,
xr—(+®) = —o,
xf(+ o0} = x/(— o0} = 0.

x4+ {—m)= —om,
X — (—o0) = +00,

|

Def. 1.26 Complex Numbers 15

b) If x > O, then we have

x(+0) = 40, x(— o0} = —~00.
€) {f x < U, then we have

XM+ o0) = —oo, x—oo) = +o.
d) (+ o) + (+o) = (+ @+ 0) = (~®)(—x) = +00,

(—w) + (—@) = (+o)(~x) = —x.

e} If x e R, then we have — o0 < x < 400,

NOTATION. We denote R by (~ o0, -+ o) and R* by [~ w, +o0]. The points in R
are called “finite” to distinguish them from the “‘infinite” points + 06 and —oo.

The principal reason for introducing the symbols 4+ o0 and — oo is one of
convenience. For example, if we define + oo to be the sup of a set of real numbers
which is not bounded above, then every nonempty subset of R has a supremum
in R*. The sup is finite if the set is bounded above and infinite if it is not bounded
above. Similarly, we define — co to be the inf of any set of real numbers which is
not bounded below. Then every nonemptiy subset of R has an inf in R*.

For some of the later work concerned with limits, it is also convenient to
introduce the following terminology.

Definition 1.25. Every open interval (a, + w0) is called a neighborhood of +w or
@ ball with center +oo. FEvery open interval (— o0, a) is called a neighborhood of
~ao or a balf with center — .

1.21 COMPLEX NUMBERS

It foliows from the axioms governing the relation < that the square of a real
number is never negative. Thus, for example, the elementary quadratic equation
x? = —1 has no solution among the real numbers. New types of numbers, called
complex numbers, have been introduced to provide solutions to such equations. It
turns out that the introduction of complex numbers provides, at the same time,
solutions to general algebraic equations of the form

g+ @ x + - +ax"=0,

where the coefficients ay, a,, ..., a, are arbitrary real numbers. (This fact is

known as the Fundamental Theorem of Algebra.)
We shall now define complex numbers and discuss them in further detail.

Definition 1.26. By a complex mamber we shail nrean an ordered pair of real numbers
whick we destote by (x,, x;). The first mermber, x,, is called the real part of the
complex number; the second member, x,, is called the imaginary pari. Two complex
numbers x = {x(, X;) and y = (¥, ¥,) are called equal, and we write x = y, if,
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and only if, x, = y, and x; = y;. We define the sum x + y and the product xy by
the equations

X+ y=(x + pyy X2 + ¥2h xY = (X, ¥ ~ Xap¥2, X Y2 + Xapy)
wrre. The set of all complex numbers will be denoted by C.

Theorem 1.27. The operations of addition and multiplication just defined satisfy
the commutative, associative, and distributive laws.

Proof. We prove only the distributive law, proofs of the others are simpler. 1

x = (x;, X3), ¥ = (¥, y2), and z = (zy, 7,), then we have

xy + z) = (x, X0 p; + 23, P2 + Z2)
= (X} + X2y = X3¥2 = XaZz XYy + XyZz + Xy + XpZ)
= (X0 = X2l XV + X2 W) + (X2 — XaZy, XyZp + XpZ)
= Xy 4+ XI.
Theorem 1.28.
(xh xz} + (09 0) = (xla x!}} (xh xz)m, 0) = (0’ 0}’
(xla xl}(lt 0} = (I], xl)! (xh xz) + {_xl: —xz) = (o:» 0)

Proof. The proofs here are immediate from the definition, as are the proofs of
Theorems 1.29, 1.30, 1.32, and 1.33.

Theorem 1.29. Given two complex numbers x = (x(, x;) and y = (y,, ¥,), there
exists acomp!ex number z suck that x + 2 = y. Infact, z = {y; — X1, ¥5 — X2}k
This z is denoted by y — x. The complex nuntber (—x,, —x,) Is denoted by —x.

Theorem 1.30. For ony two complex numbers x and y, we have
(—x)y = x(=y) = —(xy) = (1], O}xy)-
Definition 131, If x = (x,, X3) # (0, 0) and y are complex numbers, we define
x7! =[x + x3), —x2f(x} + 2], and yix = yx7t
Theorem 1.32. If x and y are complex numbers with x # (0, 0), there exists a
complex number z such that xz = y, namely, z = yx~ L.
Of special interest are operations with complex numbers whose imaginary
part is 0. i
Theoren 1.33. (x, O) + (¥, 0) = (x; + 3,0},
(xls O)’(_}']; 0) = {xtylv 0):
(2, Oy, O) = (/3. 0%, 'y # 0

NOTE. 1t is evident from Theorem 1.33 that we can perform arithmetic operatioas
on complex numbers with zero imaginary part by performing the usual real-num-
ber operations on the real parts alone. Hence the complex numbers of the form
(x, 0) have the same arithmetic propertics as the real numbers. For this reason it is

Fig- 13 Geomedric Representution 17

convenient to think of the real number system as being a special case of the complex
number system, and we agree to identify the complex number (x, 0) and the real
number x. Therefore, we write x = (x, 0). In particular,0 = (0, O)and 1 = (i, 0).

1.22 GEOMETRIC REPRESENTATION OF COMPLEX NUMBERS

Just as real numbers are represenied geometrically by points on a line, so complex
numbers are represented by points in a plane. The complex number x = (X, x3)
can be thought of as the “*point” with coordinates {x,, x;). When this is done, the
definition of addition amounts to addition by the parallelogram law. (See Fig. 1.2.)

Z+y= (2 + pu2z+ ¥

¥v=(n,¥2
2 = (zy, 29)

0 = (0,0} x) = (zg, O} Fignre 1.2

The idea of expressing complex numbers geometrically as points on a plane
was formulated by Gauss in his dissertation in 1799 and, independently, by Argand
in 1806, Gauss later coined the somewhat unfortunate phrase “complex number.”
Other geometric interpretations of complex numbers are possible. Instead of
using points on a plane, we can use points on other surfaces. Riemann found the
sphere particularly convenient for this purpose. Points of the sphere are projected
from the North Pole onto the tangent plane at the South Pole and thus there
corresponds to cach poiot of the plane a definite point of the sphere. With the
exception of the North Pole itself, cach point of the sphere corresponds to exactly
one point of the plane. This correspondence is called a stereographic projection.
{See Fig. 1.3)
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1.23 THE IMAGINARY UNIT

It is often convenient to think of the complex number (%, x,) as & two-dimensional
vector with compouents x, and x,. Adding two complex numbers by means of
Definition 1.26 is then the same as adding twe vectors component by component.
The complex number | = (1, 0) plays the same role as a unit vector in the hori-
zontal direction. The analog of a unit vector in the vertical direction will now be
introduced.

Definition 1.34. The complex number {0, 1} is denoted by i and is called the imag-
inary unii.

Theorem 1.35. Every complex number x = (x,, x,) can be represented in the form
x = x; + ix,.

P?Mf: X, = (x_‘l! 0)! ixl = (nx I)(xls 0} = (ﬂs xz)s
X + B = (x1, ) + (0, x) = (xy, x3)-

The next theorem tells us that the complex number § provides us with a solution
to the equation x* = —1,

Theorem 1.36. i = 1.
Proof. £ =0, 10, 1) =(-1,0) = —1.

1.24 ABSOLUTE VALUE OF A COMPLEX NUMBER
We now extend the concept of absolute value to the complex number system,

Definition 137, If x = (x,, X;), we define the modulus, or absolute value, of x to
B the nonnegative real number | x| given by

x| = v x7 + %3 -
Theorem 1.38.
DGO =0 and|x| > 0if x # 0.
ity |xfyl = Ix}{|yl, if p # 0.

Proof. Statements (i} and (iv) are immediate. To prove (i), we write x = x, + ix,,
Y=+ iy, so that xy = X33, — x39; + ix,y; + x;»,). Statement (ii)
follows from the relation

lxyl? = x{yi + x3y3 + X134 x3yi = (o + x0T+ ¥D = IxplR
Equation (iii) can be derived from (i) by writing it in the form x| = |3f ix/y).

ii) |xy] = tx| 1y
) |(x, O = Ix,l.

Geometrically, |x] represents the length of the segment jeining the origin to
the point x. More generally, [x — | is the distance between the points x and y.
Using this geometric interpretation, the following theorem siates that one side of
a triangle is less than the sum of the other two sides.

§
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Theorem 1.39. If x and y are complex numbers, then we have
Ix + ¥ =< |x| + |3 {triangle inequality).
The proof is left as an exercise for the reader.

1.25 IMPOSSIBILITY OF ORDERING THE COMPLEX NUMBERS

As yet we bave not defined a relation of the form x < y if x and y are arbitrary
complex numbers, for the reason that it is impossible to give a definition of < for
complex numbers which will have all the properties in Axioms 6 through 8. To |
illustrate, suppose we were able to define an order relation < satisfying Axioms
6, 7, and 8. Then, since i % 0, we must have either i > 0 or i < 0, by Axiom 6.
Let us assume i > 0. Then taking, x = y = { in Axiom 8, we get i > 0, or
—1 > 0. Adding 1 to both sides (Axiom 7}, we get 0 > 1. On the other hand,
applying Axiom 8 to —1 > 0 we find 1 > 0. Thus we have both 0 >> 1 and
1 > 0, which, by Axiom 6, is impossible. Hence the assumption / = 0 leads us
to a contradiction. {Why was the inequality —1 > 0 not already a contradiction?]
A similar argument shows that we canmot have § < 0. Hence the complex numbers
cannot be ordered in such a way that Axioms 6, 7, and 8 will be satisfied.

1.26 COMPLEX EXPONENTIALS

The exponential e* (x real) was mentioned earlier. We now wish to define ¢* when
2 is a complex number in such a way that the principal properties of the real
exponential function will be preserved. The main properties of ¢* for x real are
the law of exponents, ¢°e¢™ = ¢*'*™ and the equation ¢ = 1. We shall give a
definition of € for complex z which preserves these properties and reduces to the
ordinary exponential when z is real.

If we write z = x + iy (x, y real), then for the law of exponents 1o hold we
want €1 = ¢, It remains, therefore, to define what we shall mean by 7.

Definition 140, If z = x + iy, we define ¢ = &7 1o be the complex number
&€ =¢e(cosy + isiny)

This definition® agrees with the real exponential function when z is real (that
is, y = 0). We prove next that the law of exponents still holds.

* Several arguments can be given to motivale the equation €7 = cos y + ism y. For
example, iet us write 2” = £(3) + ig(y) and try to determine the real-valued functions f
and g so that the usual rules of operating with real exponentials will also apply to complex
exponentials. Formal differentiation yields e = g'(3) — #°(y), if we assume that
{e"”Y = ie'””. Comparing the two expressions for &%, we see that f and g must satisfy the
equations f(¥) = g'(3), S () = —g(y). Elimination of g yields f(y} = —f“(y). Since
we want ¢° = 1, we must have £(0) = 1 and £(0) = 0. It follows that f/{y) = cos y and
g0y = — (%% = sin y. Of course, this argument proves nothing, but it strongly suggests
that the definition ¢'7 = cos y + 7-sin y is reasonable.
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Theorem 141, If z, = x| + iy, and 2z, = x, + iy, are two complex numbers,
then we have
el = ghta

Proof,
o= ¢™cos y, + isiny), € = e™cos y, + isiny,),
ele't = e¢"[cos y, cos y, — sin y, sin y,
+ #{cos y, sin y, + sin y, cos y,)}
Now e¥e*? == ¢*** gince x, and x, are both real. Also,

CO§ ¥ COS pp — sin p; sin y; = cos {3, + ¥}
and

cos ¥y $in ¥z + sin py cos ¥y = sin (3, + ),
and hence

1w @ T cos {(yy 4 yp) + Psin (¥ + ¥y)] = 215

I

1.27 FURTHER PROPERTIES OF COMPLEX EXPONENTIALS
In the following theorems, z, z,, z; denote complex numbers.

Theovem 1.42. & is never zero.

RECUE U

Progf. &~ = ¢ = |. Hence ¢ cannot be zero.
Theorem 1.43. If x is real, then {e*| = 1.

Proof. je™|* = cos* x + sin® x = 1, and {e"] = O,

Theorem 1. 44. & = | if, and only if, z is an integral multiple of 2ni. 3

Progf. If z = 2nin, where n is an integer, then :
& = cos (2nn} + isin (2nn) = 1.

Conversely, suppose that ¢ = 1. Thismeans thatefcos y = land ¢ sin p = 0. .
Since ¢° # 0, we must have siny = 0, y = kn, where & is an integer. But
cos (kn) = (—1¥. Hence ¢ = {—1), since e cos (kn) = 1. Since & > 0,
k must be even. Therefore ¢* = 1 and hence x = 0. This proves the theorem.

Theorem 1.45. € = e if, and only if, z, — z, = 2nin (where n is an integer).

Proof. & =2 if,and only if, 7% = |,

128 THE ARGUMENT OF A COMPLEX NUMBER

If the point z = (x, ¥) = x + iy is represented by polar coordinates r and 8, we
can write x = rcosf and y = rsinf, so that z = rcos 8 + irsn 8 = re'®

Def. 1.49 Integral Powers and Roots 21

The two numbers r and & uniquely determine z. Conversely, the positive number
r is uniquely determined by z; in fact, r = |z]. However, z determines the angle #
only up to multiples of 2z. There are infinitely many values of & which satisfy the
equations x = |z| cos 0, y = |z| sin & but, of course, any two of them differ by
some multiple of 2z. Each such @ is called an argument of z but one of these values
is singled out and is called the principal argument of z.

Definition 1 .46. Let z = x + iy be a nonzero complex number. The unique real
mumber 8 which satisfies the conditions

x =|zlcosf, y=|z|sinh, —a<8 < +nx
is called the principal argument of z, denoted by 8 = arg (z).
The above discussion immediately yields the following theorem:

Theorem 1.47. Every complex mumber z # 0 can be represented in the form
z = re® where r = |z| and & = arg (2} + 2nn, n being any integer.

NOTE. This method of representing complex numbers is particularly useful in
connection with multiplication and division, since we have

(re®¥re®) = rr,e® 2 and re =71 gHes~on)
re™
Theorem 1.48. If z,z; # 0, then arg (z,2;) = arg (z,) + arg (2,) + 2an(z,, 2;),
where
0, i —m<ag(z)+arg(z) % +m,
n(zy, 733 = {+1, if —27 < arg{z,) + arg{z;) £ —=,
=L, if =m<arglz)+ arg(z) < 2n

Proof. Write z, = |z,e™, z, = |7,|€'®, where 8, = arg (z,) and 8, = arg (z;).
Then z,2, = |z;2,0e"*™ %2 Since —a < 8, < +nand ~z < 8, £ +nx, we
have —2x < 8, + 6, = 2n. Hence there is an integer n soch that —n < 8, +
f; + 2nm < n. This # is the same as the integer n(z,, z,) given in the theorem,
and for this » we have arg (z,z,) = & + 8, + 2nn. This proves the theorem.

1.29 INTEGRAL POWERS AND ROOTS OF COMPLEX NUMBERS

Definition 1.49. Given a complex number z and an integer n, we define the nth power
of z as follows:

=1 MMl=z ifa=0,
z—n = (z—l)n,

* Theorem 1.50, which states that the usual laws of exponents hold, can be proved
by mathematical induction. The proof is left as an exercise.

ifz#Oandn > 0.




22 Real) and Complex Number Sysieny Th. 1.50

Theorem 1.50. Given two integers m and n, we have, for z # 0,

"™ =" and (22,0 = 2]zl

Theorem 1.51. If z # G, and if n is a positive integer, then there gre exactly n
distinct complex numbers z,, z,, . . . , 2, (called the nth rools of z), such that

=2, Joreachk =0 1,2,...,0~ 1
Furthermore, these roots are given by the formulas

z, = Re"™,  where R = |z|',
and

¢,,=-‘”—5r;@+2%" k=01,2....n~ 1)

NoTE, The n nth roots of z are equally spaced on the circle of radius R = |z|'/,
center at the origin.

Progf. The n complex numbers Re™~, 0 < k < n — 1, are distinct and each is
an nth root of z, since

(R = RrP™ = [z|flers k] o g

We must now show that there are no other ath roots of z. Suppose w = 4e™ is
a complex number such that w* = z. Then [w|" = |z|, and hence 4” = |z],
A = |z|*" Therefore, w* = z can be written ¢™* = 212 which implies

ny — arg (z) = 2nk for some integer k.

Hence o = [arg (z) + 2nk]/n. But when & runs through all integral values, w
takes only the distinct values z,, ..., z,.,. (See Fig. 1.4))

i3 i

i/ ¢4 Figure 1.4

1.30 COMPLEX LOGARITHMS

By Theorem 1.42, & is never zero. It is natural to ask if there are other values
that ¢ cannot assume. The next theorem shows that zero is the only exceptional
value.

i
i
k)
i
:
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Theorem 1,52, If z is a complex number #0, then there exist complex rumbers w
such that €* = 2. One such w is the compiex number

log |z} + i arg{z),
and any other such w must have the form
log |z| + 7arg (z} + 2Znni,
where n is an integer.

Proof. Since £otlsl¥isn) = JellgfamG) o 2|33 = 7 we see that w =
log |z| + iarg (z) is a solution of the cquation e” = z. But if w, is any other
solution, then e” = & and hence w — w, = Zani

Definition 1.53. Let z % 0 be a given complex number. 1f w is a complex number
such that ¥ = z, then w is called a logarithm of z. The particular value of w given
by

w = log |z]| + iarg (z)

is ealled the principal logarithm of z, and for this w we write
w = Logz.

Examples

1. Since [i| = 1 and arg (i) = =/2, Log (i) = /2.

2, Since |~i| = 1 and arg (—i) = —nf2, Log (—i) = —ixf2.

3. Sincei—1| = 1 andarg{—1) = n,Log{—1) = =i

4. If x > 0, Log (x) = log x, since x| = x and ang (x)=0. )

5. Since |1 + i| = V2 andarg (1 + §) = /4, Log (1 + i) = log V2 + inja.
Theorem 1.54, If 2,2, # 0, then

Log (z,23) = Log z; + Log 2z + 2nin(z,, z3),

where n(z,, z,) is the integer defined in Theorem 1 4’8

Proof.

Log (z,73) = log iz,z,| + i arg (z,2;)

log lzy} + log |z,| + i [arg (z,) + arg (z3) + 2mn(zy, 25)].

1.31 COMPLEX FOWERS

Using complex logarithms, we can now give a definition of complex powers of
complex numbers.

Definition 1.55. If z # 0 and if w is any complex number, we define
z¥ = v loen,
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Examples
1. it = oilemt — plUx2) _ w2

e R (_n! = glol=1) _ Gix} . gt

3. If nis an integer, then 2™+ 1 = R+ 118z o grlogzgless oo oy oo Definition 1.55 does
not conflict with Definition 1.49.

The next two theorems give rules for calculating with complex powers:
Theorem 1.56. z% 2%3 = 27 P2 jf 7 % (),

Proof. 'zw,-l-w-; = e(w,-nv;]l.ngz — ew.l..ugzen:bojz = Z"‘Z':.

Theorem 1.57. If z,2; # O, then

(z422)° = zlfz;'e.hz‘wltzun)’
where n(z,, 2,) is the integer defined in Theorem 1.48.
Proof. (z,22)" = e . pwilepzitlogza+aninizy, 220

132 COMPLEX SINES AND COSINES
Definition 1.58. Given a complex number z, we define
e 4 " . & — o7
5 sin z = oy
WOTE. When z is real, these equations agree with Definition 1.40,
Theorem 159, Ifz = x + iy, then we have
€08 I = cos x cosh y — i gin x sinh y,
sin z = gin x cosh y + { cos x sinh y.

Proof. .
2eosz =e" 7"
€ gos x + {sin x) + ¢{cos x — isinx)
cos x(e’ + e77) — isinx(e* — e 7)
2 ¢os x cosh y — 27 sin x sinh y.

The proof for sin z is similar.

Further properties of sines and cosines are given in the exercises.

133 INFINITY AND THE EXTENDED COMPLEX PLANE C*

Next we extend the complex number system by adjoining an ideal point denoted by
the symbeol .

Definition 1.60. By the extended complex number system C* we shafl mean the
complex plane € along with a symbol oo which satisfies the following properties:

a) IfzeC, thenwe havez + 0 = 7 — © = w, 20 = Q.

BES e

{

[
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B) IfzeC, but 2 # 0, then z(o0) = w0 and z{0 = w.
) © + o = (wXw) = w©.

Definition 1.61. Every set in C of the form {2 {z] > r > 0} is called a neighbor-
hood of w0, or a ball with center at o.

The reader may wonder why two symbols, + o and — o0, are adjoined to R
but only one symbol, o, is adjoined to C. The answer lies in the fact that there is
an ordering relation < among the real numbers, but no such relation occurs
among the complex numbers. In order that certain properties of real numbers
involving the relation < hold without exception, we need two symbeols, -+ co and
— 0, as defined above. We have already mentioned that in R* every nonempty
set has a sup, for example.

In € it turns out to be more convenient to have just one ideal point. By way
of illustration, let us recall the stereographic projection which establishes a one-
to-one correspondence between the points of the complex plane and those points
on the surface of the sphere distinct from the North Pole. The apparent exception
at the North Pole can be removed by regarding it as the geometric representative
of the ideal point oo. We then get a one-to-one correspondence between the
extended complex plane C* and the 1otal surface of the sphere. It is geometrically
evident that if the South Pole is placed on the origin of the complex plane, the
exterior of a *‘large” circle in the plane will correspond, by stercographic projection,
to a “small” spherical cap abeut the North Pole. This illustrates vividly why we
haye defined a neighborhood of oo by an inequality of the form |z]| > r.

EXERCISES

Integers
1.1 Prove that there is no largest prime. (A proof was known to Euclid.)
1.2 If n is a positive integer, prove the algebraic identity

a—1
aSa—-—=(@@- 5 apr Lok
(a )§

1.3 If 2" — 1 js prime, prove that n is prime. A prime of the form 27 — |, where p is
prime, is called a Mersenne prime.

1.4 IF 2° + 1 is prime, prove that » is a power of 2. A prime of the form 22" + 1 is
calied a Fermat prime. Himt. Use Exercise 1.2. :

15 The Fibonacei numbers 1, 1,2, 3, 5, 8, 13, ... are defined by the recursion formula
Xpgp1 = Xp + Xo_y, with x; = x; = 1. Prove thal (x,, x,4,) = | and that x, =
(" — b"){a — b}, where @ and b are the roots of the quadratic equation ¥2 — x — 1 = 0.

1.6 Prove that every nonemply set of positive integers contains a smallest member.
This is called the well-ordering principle.
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Rational and irrational munbers

L7 Find the rational number whose decimal expansion is 0.3344444 . .,

L8 Prove that the decimal expansion of x will end in zeros (or in nines) if, and only if,
x is a rational number whose denominator is of the form 2*5™, where m and » are non-
negative ntegers.

L9 Prove that v'2 + +/3 is irrational.

L.10 If a, b, ¢, dare rational and if x is irrational, prove that (ax + £)f(ex + d) is usually
irrational. When do exceptions oceur?

1.11 Given any real x = @, prove that there is an irrational number between 0 and x.
L2 If afb < cfd with b > 0, d > 0, prove that (o + &)() + &) lies between ofb
and cfd.

113 Let @ and b be positive integers, Prove that V2 always lies between the two fractions
ajb and (a + 2b)f(a + b). Which fraction is closer to v/27

1.14 Prove that v/ — | + Vi + 1 is irrational for every integer # = 1

1.I5 Given a real x and an integer N > 1, prove that there exist intepers k and &k with

0 < k < Nsuch that [kx — & < I/N. Hint. Consider the N + 1 numbers 1x — [tx]
fort = 0,1,2,..., Nand show that some pair differs by at mest 1/N.

1.16 If x is irrational prove that there are infinitely many rational mumbers ik with
£ > 0 such that |x — Afk] < 1/&%. Hint. Assume there are only. a finite number
hifkq, ..., Rfk, and obtain a contradiction by applying Exercise 1.15 with & > 1/3,
where & is the smallest of the numbers |x — &,/k,].

1.17 Let x be a positive rational number of the form

n
Ay

X = =X
=k

where each g, is a nonnegative integer with g, < k — 1 fork = Zand g, > 0. I_et [x]
denote the greatest integer in 5. Prove thate, = [x], thatg, = [k!x] — &{k — D! x]
for k = 2,..., n, and that » is the smallest integer such that #! x is an integer. Con-
versely, show that every positive rational number x can be expressed in this form in one
and only one way. :

Upper bounds
1.18 Show that the sup and inf of a set are uniquely determined whenever they exist.
1.19 Find the sup and inf of each of the following sets of real numbers:

a) All nurnbers of the form 277 + 377 4+ 5-7 where p, ¢, and r take on all positive
integer values.

b} §= {x:3x% — 10x + 3 < 0.
) 8= {x:(x ~ afx — BH{x — ¢Hx — o) « 0}, wherea < & < ¢ < d.
1.20 Prove the comparison property for suprema (Theorem 1.16).

1.21 Let 4 and B be two sets of positive numbers bounded above, and let @ = sup 4,
b = sup B. Let C be the set of alt pm-ducts of the form xy, where xe A and ye B
Prove that ab = sup €,

t
*
E
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122 Given x > 0 and an integer & = 2. Let ap denote the largest integer <x and,
assuming that ay, 4,, - .., &,.; have been defined, let g, denote the largest integer such
that

a°+al+a2+ +555x.
ki k"
a) Provethat 0 < g, < & — Iforeachi = 1,2,...
W Letr, = @ + ak™' + a2k~ % + --- + ek " and show that x is the sup of the
set of rational numbers ry, r2,. ..

NOTE. When & = 10 the integers ag, 4., 4g, . . . are the digits in a decimal representation
of x. For general k they provide a representation in the scale of &.

Inequalities
1.23 Prove Lagrange’s identity for real numbers:
n 2 n a
(Z a,‘bk) = (Z ai) (): bi) - Y (b - @b
k=1 k=1 i=1 Ixk<jzsn
Note that this identity implies the Cauchy—Schwarz inequality.
1.24 Prove that for arbitrary real a;, b, ¢, we have
o L3 2 »
(> ane) < (L) (3 ) ()
£=1 Pray] £=1
1.25 Prove Minkowski's ineguality:
» 172 " 1z " 12
(C@rar) s(Sa) +(Ln) -
k=1 k=1 =1

This is the triangle inequality |2 + b| = Jaf + [[b] for r-dimensional vectors, wherg
@ = (@, .., 9, 0b=10.. ..5)and

lall = (E ai)m.

A=1

1.26 Ifa, 2 a, > -z a,and b; = b, = = b, prove that

B o Eon

Hint. 20 zjsxan @ — 0}l — 8) 2 0

Complex numbers

1.27 Express the following complex numbers in the form a + bi.
a) (1 + §¥, by {2 + 33 — 4i),
Q) i% + il d) M1+ 0+ 8

1.28 In each case, determine all real x and y which satisfy the given relation.
a0

a)k-!-fya[_r—fy[, B ox + iy = (x - D, &:)Zi"=x+iy.
k=0
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129 If z = x + iy, x and y real, the complex wruugate of z is the complex. number
Z = x — iy. Prove that:
F4

a) By + 23 = 1) + I, b Zyzy = 5,2, c} 27 = 2|3,
d) z + Z = twice the real part of =z,
&) (z — IWF = twice the imaginary part of z.

1.30 Describe geometrically the set of complex numbers z which satisfies cach of the
iollowing conditions:

ay lzf = 1, b) {z] < 1, ¢ lzl =1,
dyz+ 2=1, ) 74 z=1z4%
1.31 Given three complex numbers z,, z,, z; such that |z;] = |z;} = |z = 1 and

Zy + z; + z; = 0. Show that these numbers are vertices of an equilateral triangle
inscribed in the unit circle with center at the origin.

132 If ¢ and b are complex numbers, prove that:

a) [a — 512 = (1 + |a|®X1 + o]

by I & # 0, then lo + 8] = [a| + |b] if, and only if, bfa is real and nonnegative.
1.33 If @ and 5 are complex numbers, prove that

e} z — F =1

e — b =1 — abj

if, and only if, o] = 1 o1 |b] =
valid?

1.34 If 2 and ¢ are real constants, 5 complex, show that the eguation

1. For which g and b is the inequality | — & < |1 — ab|

azf+ b+ br+c=0 (a#0,z=ux+ ¥
represents a circle in the xy~plane.
1.35 Recall the definition of the inverse tangent: given a real number &, tan™! (£) is the
unique real number @ which satisfies the two conditions
Y X tan @ = ¢
2 2

If z = x + &, show that

a) arg (z) =

() ifx >0,

1
b)Y arg (z) = tan™! (—) + n, Tx<0,9y=0,
X

-

<) arg(z}=tan“(£ -, Hx<0p<0
A

d) arg (2) = gifx =0,y > 0;arg (z) = —gifx=o,y < 0.

Exerciscs 2%

1.36 Define the following *pseudo-ordering” of the complex numbers: we say z, < z;
if we have either
Bl <l or D)z = |z] and arg (z)) < arg (2,).
Which of Axioms 6, 7, 8, 9 are satisfied by this relation?
1.37 Which of Axioms 6, 7, 8, 9 are satisfied if the pseudo-ordering is defined as follows?
We say (xy, y1) < (%2, y2) if we have either .
x, <X, or iy xy = xy and yy < ¥y
1.38 State and prove a theorem analogous to Theorem 1.48, expressing arg (z,/z,) in
terms of arg {z,) and arg (2;).
1,39 State and prove & theorem analogous to Theorem 1.54, expressing Log (z;/z,) in
terms of Log {z,) and Log (z4).
1.40 Prove that the »th voots of 1 {also called the ath roots of unity) are given by a,
., ", where @ = ¢2™/* and show that the roots 1 satisfy the equation
T+x+xT+---+x"l=0

1.41 a) Prove that |2'] < ¢* for all complex z # 0,
b) Prove that there is no constant M > O such that Jcos z| < M for all complex z.
1.42 ¥ w = w + ir (u, o real), show that
W oo gelomlxl-earp(z) e iz)+uarg ()]

1.43 ay Prove that Log {z“’) = w Log z + 2nin, where n is an integer.
b) Prove that (z¥)* = z"%?*_ where # is an integer.
1.44 i) If 8 and o are real numbm, —a < & = +nx, prove that
{cos & + isin @ = cos {gf) + i sin (af).
ii} Show that, in g:neml the restriction —n < # =<+ is necessary in (i) by taking
= —m,a=4%4

ifi} If a is an integer, show that the formula in (i) holds without any restriction on 8,
In this case it is known as DeMaoivre's theorem,

1.45 Use DeMoivre’s theorem (Exercise 1.44) to derive the trigonometric identities
sin 38 = 3 cos® fsin & — sin® 4,
coe 38 = cos* # — 3 cos @sin? 6,

valid for real 8. Are these valid when £ is complex?

1.46 Define tan z = (3in z)f(cos z) and show that for z = x + iy, we have

sin 2x + isinh 2y

tan z = .
cos 2x + cosh 2y

1.47 Let w be a given complex number. If w # 1, show that there exist two values of
z = x + Jp satisfying the conditions cos z = wand —n < x £ + . Find these values
when w = jand when w = 2.
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1.48 Prove Lagrange's identity for complex numbers:

Z ab,

k=1

2 ] 2

=Y lal bl = 3 ek — e

= 1<k<j<n
Use this to deduce a Cauchy-Schwarz inequality for complex numbers,
1.49 a) By equating imaginary parts in DeMoivre™s formula prove that

sin #8 = sin” § {(;1) cot" g — (;) cot* > @ + (:) cot" %@ — 4+ } .

b) If0 < 7 < w2, prove that
sin (Zm + 1 = sin®*™* 8 P (cot? @)
where P, is the polynomial of degree m given by

P = (2m1+ 1) o~ (2m3+ 1) —— (2m5+ 1) ey

Use this to show that P, has zeros at the m distinct points x;, = cot® {k/(2Zm + 1))
fork = 1,2,..., m

<) Show that the sum of the zeros of P, is given by

imtz"nk _ m@2m — 1)
St Im + 1 3 ’

and that the sum of their squares is given by

Z"‘: cort Tk _ m(2m — idm® + 10m — 9)
&=t 2m 4+ 1 45 -

NOTE. These identities can be used to prove that 702, #n™? = g2 f6and ¥ o, o~ = x*/90,
{See Exercises 8.46 and 8.47.)

1.50 Prove that 2" — | = [[5-, (z = ¢*™™) for all complex z. Use this to derive the
formula

-l kx ]
gin - ==
"

forn = 2,

H—¥
k=1 2
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CHAPTER 2

SOME BASIC NOTIONS
OF SET THEORY

2.1 INTRODUCTION

In discussing any branch of mathematics it is helpful to use the notation and
terminology of set theory. This subject, which was developed by Boole and Cantor
in the latter part of the 19th century, has had a profound influence on the develop-
ment of mathematics in the 20th century. 1t has unified many seemingly discon-
nected ideas and bas helped reduce many mathematical concepts to their logical
foundations in an elegant and systematic way.

We shall not attempt a systematic treatment of the theory of sets but shall
confine ourselves to a discussion of some of the more basic concepts. The reader
who wishes to explore the subject further can consult the references at the end of
this chapter.

A collection of objects viewed as a single entity will be referred to as a sef.
The obiects in the collection will be called elements or members of the set, and they
will be said to befong to or to be contained in the set. The set, in turn, will be said
to contain or to be composed of its elements. For the most part we shall be inter-
ested in sets of mathematical objects; that Is, sets of numbers, points, functions,
curves, etc. However, since much of the theory of sets does not depend on the
nature of the individual objects in the collection, we gain a great economy of
thought by discussing sets whose elements may be objects of any kind. It is becavse
of this quality of generality that the theory of sets has had such a strong effect in
furthering the development of mathematics.

22 NOTATIONS
Sets will usnally be denoted by capital letters:
A, 8C....X,. ¥, Z,

and elements by lower-case letters: a, b, ¢, ..., x, ¥, z. We write x € § to mean
“x is an element of §,” or “x belongs to $. 1f x does not belong to S, we write
x ¢85, We sometimes designate sets by displaying the elements in braces; for
example, the set of positive even integers less than 10 is denoted by {2, 4, 6, 8.
If § is the collection of all x which satisfy a property P, we indicate this briefly by
writing § = {x: x satisfies P}.

From a given set we can form new sets, called subsers of the given set. For
example, the set consisting of all positive integers less than 10 which are divisible

az

Def. 2.3 Cartesian Prodact of Two Sets k)

by 4, namely, {4, 8}, is-a subset of the set of even integers less than 10. In general,
we say that a set A is a subset of B, and we write A © B whenever every element
of A also belongs to B. The statement 4 = B does not rule out the possibility
that B & A. Infact, wehaveboth 4 € Band B © A if, and only if, A and B have
the same elements. In this case we shall call the sets 4 and B equal and we write
A =B If4and Bare not equal, wewrite A ¥ B. f 4 & Bbut 4 # B, then
we say that 4 is a proper subset of B.

It is convenient to consider the possibility of a set which contains no elements
whatever; this set is called the empty sef and we agree to call it a subset of every
set, The reader may find it helpful fo picture a set as a box containing certain
objects, its elements. The empty set is then an empty box. We denote the empty
st by the symbol 9. '

2.3 ORDERED PAIRS

Suppose we have a set consisting of two elements 4 and »; that is, the set {a, 5}.
By our definition of equality this set is the same as the set {b, a}, since no question
of order is involved. However, it is also necessary to consider sets of two elements
in which order is important. For example, in analytic geomeiry of the plane, the
coordinates (x, y) of a point represent an ordered pair of numbers. The point (3, 4)
is different from the point (4, 1), whereas the set {3, 4} is the same as the set {4, 3}.
When we wish to consider a set of two elements g and & as being ordered, we shall
enclose the elements in parentheses: (g, 5). Then & is called the first element and
b the second. It is possible to give a purely set-theoretic definition of the concept
of an ordered pair of objects (g, #). One such definition is the following:

Definition 2.1, (g, &) = {{a}, {a, b}}.

This definition states that (g, b) is a set containing two elements, {a} and
{a, b}. Using this definition, we can prove the following theorem:
Theorem 2.2, (0, 5) = (¢, Yif,andonly if,a = cand b = d.

This thecrem shows that Definition 2.1 is a “‘reasonable” definition of an
ordered pair, in the sense that the object @ has been distinguished from the object
b. The proof of Theorem 2.2 will be an instructive exercise for the reader. (See
Exercise 2.1.)

2.4 CARTESIAN PRODUCT OF TWO SBETS

Definition 2.3. Given two sets A and B, the set of o¥f ordered pairs (a, b) such that
ae A and b e B is called the cartesian product of A and B, and is denoted by A x B.

Example. 1f R denotes the set of all real numbers, then R » R is the set of all complex
numbers.
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2.5 RELATHONS AND FUNCTIONS

Let x and y denote real numbers, so that the ordered pair (x, ¥} can be thought of
as vepresenting the rectangular coordinates of g point in the xy-plane (or 2 com-
plex number). We frequently encounter such expressions as

=), xX+y=1 aeyegl, x<p {3

Each of these expressions defines a certain set of ordered pairs (x, ¥ of real
numbers, namely, the set of all pairs {x, ¥} for which the expression is satisfied.
Such & set of ordered pairs is called a plane relation. The corresponding set of
peints plotted in the xy-plane is called the graph of the relation. The graphs of
the relations described in (a) are shown in Fig. 2.1. ‘

!"x\\% | \
| {

N

&

i
1 gt gt =} eyt g %y
Figure 2.3

The coneept of relation can be formulated quite generally so that the objects
x and y in the pairs (x, y) need not be numbers but may be objects of any kind,

Definition 2.4, Any set of ordered pairs is called a relation.

If § is a relation, the set of all elements x that occur as first members of pairs
(x, ¥}y in S is called the domain of S, denoted by %(5). The set of second members
y is called the range of 8, denoted by #(S).

The first example shown in Fig. 2.1 is a special kind of relation known as o
Janction,

bgﬁnﬁtiﬂu;’ﬁ. A function ¥ is a set of ordered pairs (x, ¥}, no two of which have
the same first member. That is, if (x, y)e Fand (x,z) e F, then y = z.

The definition of function requires that for every x in the domain of F thers is
exactly one y such that {x, ) € F. 1t is customary 1o ¢all ¥ the value of F at x and
10 write

y = Flx}

instead of {x, ¥) & F to indicate that the pair (x, ¥} is in the set F.

As an alternative to describing a function F by specifying the pairs it contains,
it is usually preferable o describe the domain of ¥, and then, for each x in the
domain, to describe how the function value F(x} is obtained. In this conmection,
we have the following theorem whose proof is left as an exercise for the reader.

|
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Fheorem 2.6, Two funcrions F and G are egunl if and only i
8} SFY = GG} (F and G have the sume domain), and
by Fix) = Glxy  for every x in G(F).

2.6 FURTHER TERMINOLOGY CONCERNING FUNCTIONS

When the domain D(F) is 2 subset of R, then F is calied a flmction of one regl
variable, W 2(F} is a subset of €, the complex number systern, then Fis calied &
function of a complex variable.

H 2{F) is a subsei of g gartesian product 4 % B, then F is called g fupction
of rwo pariagbles. In this case we denote the function values by Fla, b} instead of
Fila, by A function of two real variables is one whose domain is a subset of
R xR

If 5 is a subset of 2({F), we say that F is defined on 5. In this case, the set
of F{x) such that x & § is called the imuge of 5 under F and is denoted by F15). I
T is any set which containg F{S), then F is abso called a mapping from 8 to T.
This is often denoted by writing

F:85 T

1f F(8} = T, the mapping is said to be onfo 7. A mapping of S into itself is some-
times called a transformation.

Consider, for example, the function of a complex variable defined by the egua-
tion F(zy = z*. This funciion maps every sector § of the form 0 < arg {z} <
# & nfd of the complex z-plane onto a sector F(5) described by the inequalities
0 = arg [Flz)] = 20 (See Fig. 2.2

Figurs 2.2

I vwo functions F and @ satisfy the inclusion relation ¢ © F, we say that ¢
is a restriction of F or that Fis an extension of . In particular, if 8 is a subset of
B{FY and if 7 is defined by the equation

Gixy = Fix) for all v in §,
then we call & the restriction of Fto 5. The function & consists of those pairs
{x, F{x)) such that x ¢ §. lis domain is § and its range is F{5).
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2.7 ONE-TO-ONE FUNCTIONS AND INVERSES

Defimition 2.7. Let F be a function defined on S. We say F is one-to-one on S if,
and only if, for every x and y in S,
F(x) = F(y) implies x =y
This is the same as saying that a function which is one-to-one on S assigns
distinct function values to distinct members of §. Such functions are also called
infective. They are important because, as we shall presently see, they possess

inverses. However, before stating the definition of the inverse of a function, it is
convenient to introduce a more general notion, that of the comverse of a relation.

Definition 2.8. Given a relation S, the new relation S defined by

S = {(a, b): (b, a)e 5}
is called the converse of S.

Thus an ordered pair (g, 5) belongs to $ if, and only if, the pair (b, g), with
elements interchanged, belongs to §. When § is a plane relation, this simply means
that the graph of § is the reflection of the graph of S with respect to the line
¥ = x. Inthe relation defined by x < y, the converse relation is defined by y < x.

Definition 2.9, Suppose that the relation F is a funciion. Consider the converse
relation F, which may or may not be @ function. If F is alse a function, then F is
called the inverse of F and is denoted by F™*,

Figure 2.3(a) illustrates an example of a function Ffor which Fis not a function.
In Fig. 2.3(b} both F and its converse are functions.

The next theorem tells us that a function which is one-to-one on its domain
always has an inverse.

{a) . b

Figure 2.3
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Theorem 2.10. If the function F is one-to-one on its domain, then Fis also a Junction,

Proof. To show that Fisa function, we must show that if (x, ¥} e Fand (x,2)e F,
then y = z. But (x, y) € F means that (y, x) € F; that is, x = F(y). Similarly,
(x,2)e F means that x = Fiz). Thus F(y)} = F{z) and, since we are assoming
that F is one-to-one, this implies y = z. Hence, ¥ is a function.

NOTE, The same argument shows that if F is one-to-one on a subset S of G(F),
then the restriction of Fto § has an inverse.

.8 COMPOSITE FUNCTIONS

Definition 2.11, Given two functions F and G such that 3(F) = %(G), we can form
a new function, the composite G o F of G and F, defined ax follows: for every x in
the domain of F, ( <« F)(x) = G[F(x)].

Since A(F) © D{G), the element F(x) is in the domain of G, and therefore it
makes sense to consider G[F(x)]. In general, it is not true that Ge F = Fo G.
In fact, F o G may be meaningless unless the range of G is contained in the domain
of F, However, the associative law,

He(GsF) = (H-G)<F,

always holds whenever each side of the equation has a meaning. (Verification will
be an interesting exercise for the reader. Sce Exercise 2.4.)

2.9 SEQUENCES

Among the important examples of functions are those defined on subsets of the
integers. '

Definition 2.12. By a finite sequence of n terms we shall understand a function F
whose domain is the set of mumbers {1, 2, ..., n}.

The range of F is the set {F(1), F(2), F(3), ..., F(n}}, customanly written
{Fy, Fy, Fa, ..., F;}. The elements of the range are called terms of the sequence
and, of course, they may be arbitrary objects of any Kind,

Definition 2.¥3. By an infinite sequence we shall mean a function F whose domain
is the set {1,2,3,...} of all positive integers. The range of F, that is, the set
{F(1), F(2), F(3), ...}, is alse written {F,, F,, F,, ...}, and the function value F,
is called the nth term of the sequence.

For brevity, we shall occasionally use the notation {F,} to denote the infinite
sequence whose nth term is F,.

Let s = {s,) be an infinite sequence, and let £ be a function whose domain is
the set of positive integers and whose range is a subset of the positive integers,
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Assume that k is “order-preserving,” that is, assume that
k(m) < k{n), ifm<n

Then the composite function 5 - k is defined for all integers 7 > 1, and for every
such 7z we have

{s°k)r) = Txiny

Such a composite function is said to be a subsequence of 5. Again, for brevity,
we often use the notation {5} or {5, } to denote the subsequence of {s,} whose
nth term is S,

Example. Let 5 = {l/n} and let k be defined by k(n) = 2%, Thenso& = {1/2"}.

2.10 SIMILAR (EQUINUMEROUS) SETS

Definition 2.14. Two sets A and B are called similar, or equinumerous, and we write
A ~ B, if and only if there exists a one-to-one fimction F whose domain iz the set A
and whose range is the set 8.

We also say that F establishes a one-to-one correspondence between the seis
A and B. Clearly, every set A is similar to itself (take Fio be the “identity” function
for which Fix) = x for all x in 4). Furthermore, if 4 ~ B then B ~ A, because
if Fis a one-to-one function which makes A similar to B, then F~! will make B
similar to 4. Also, if 4 ~ Bandif B ~ C, then A ~ C. (The proof is left to
the reader.) :

2.11 FINITE AND INFINITE SETS
A set S is called finite and is said to contain » elements if

S~ 1{L2,..., 1.

The integer n is called the cardinal number of S. 1t is an easy exercise to prove
that if {1,2,...,n} ~ {1, 2,...,m} then m = n. Therefore, the cardinal
number of a finite set is well defined. The empty set is also considered finite. Its
cardinal number is defined to be 0.

Sets which are not finite are called infinite sets. The chief difference between
the two is that an infinite set must be similar to some proper subset of itself,
whereas a finite set cannot be similar to any proper subset of itself. (See Exercise
2.13.} Forexample, the set Z* of all positive integers is similar to the proper subset
{2, 4, 8,16, ...} consisting of powers of 2. The one-to-one function F which
makes them similar is defined by F{x} = 2* for each x in Z*.

Th 2.17 Uncoumtabillty of the Real Namber System »

212 COUNTABLE AND UNCOUNTABLE SETS
A set 8 is said to be countably infinite if it is equinumerous with the s=t of all
positive integers; that is, if

§~4{123...}%

In this case there is a function / which establishes a one-to-one correspondence
between the positive integers and the elements of §; hence the set S can be dis-

played as follows:
8= {f(), f2, 1B, -- -}

Often we use subscripts and denote f{k) by a, (or by a similar notation) and we
write § = {a@y, #2, 3. ... . The important thing here is that the correspondence
enables us to nse the positive integers as “labels” for the elements of 5. A count-
ably infinite set is said to have cardinal number R, (read: aleph nought).

Definition 2.15. A set S iy called coumtable if it is either finite or coumtably infinite.
A set which is not countable is called uncountable.

The words denumerable and nondenumerable are sometimes used in place of
countable and uncountable.

Theorem 2.16. Every subset of a countable set is countable.

Froof. Let & be the given countable set and assume 4 = 5. If A is finite, there is
nothing to prove, so we can assume that 4 is infinite (which means § is also in-
finite). Let s = {s,} be an infinite sequence of distinct terms such that

S: {31)32)"’}*

Define a function on the positive integers as follows:

Let %(1) be the smallest positive integer m such that s5,, € 4. Assuming that
(1), k{2), ..., k(n — 1) have been defined, let A(n) be the smallest positive
integer m > k(n — 1) such that s, € A. Then & is order-preserving: m > »n
implies k(m) > k(»}). Form the composite function s« k. The domain of so k is
the set of positive integers and the range of s« k is 4. Furthermore, 5 < k is one-
to-ong, since

sik(m] = stk(m)].
implies
i) = Shimys
which implies k(n) = k(m), and this implies # = m. This proves the theorem.

2,13 UNCOUNTABILITY OF THE REAL NUMBER SYSTEM
The next theorem shows that there are infinite sets which are not countable.
Theorem 2.17. The set of all real mumbers is uncountoble.




4 Some Basic Notions of Set Theory ‘ Th. 218

FProof. 1t suffices to show that the set of x satisfying 0 < x < 1 is uncountable.
If the real numbers in this interval were countable, there would be 2 sequence
s = {5,} whose terms would constitute the whole interval. We shall show that this
is impossible by constructing, in the interval, a real number which is not a term
of this sequence. Write each 5, as an infinite decimal:

I = 0‘“'.1“!.2“».3 L]

where each 4, ;is 0, 1, ..., or 9. Consider the real number y which has the decimat
expansion
y=0p0,...,
where
b = {1, ifu,, # 1,
t2, fu,=1

Then no term of the sequence {s,} can be equal to y, since y differs from £, in the
first decimat place, differs from s, in the second decimal place, ..., from s, in
the nth decimal place. (A sitvation like 5, = 0.1999... and y = 0.2000...
cannot occur here because of the way the o, are chosen) Since 0 < y < 1, the
theorem is proved.

Theorem 2,18, Let Z* denote the set of all positive integers. Then the cartesian
product Z* x Z* is countable.

Proof. Define a function fon Z* x Z% as folows:
Sftm, m) = 273", ifmmeZ" x Z*.

Then fis one-to-one on Z¥ »x Z* and the range of fis a subset of Z*.

2.14 SET ALGEBRA

Given two sets 4, and A,, we define a new set, called the union of 4, and A,
denoted by 4, w 4, as follows:

Definition 2.19. The union Ay U A; is the set of those elements which belong
either to A, or 1o 4, or to both.

This is the same as saying that 4, U A, consists of those elements which betong
to at least one of the sets A, A;. Since there is no gquestion of order invoived in
this definition, the union 4, v A, is the same as A, v A, ; that is, set addition is
commutative. The definition is also phrased in such 2 way that set addition is
asseciative:

A1 W (Ag U.As) = {Al L Az} LW .43.
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The defipition of union can be extended to any finite or infinite collection of
sets:

Definition 2.20. 1f F is an arbitrary collection of sets, then the union of all the sets
in F is defined to be the set of those elements which belong to al least one of the sets
in F, and is denoted by '

U 4

AsF

If Fis a finite collection of sets, F = {A,, ..., A}, we write

»
UA=UA*=A,UA3U"‘UA.,~
AsF k=1

If Fis a countable collection, F = {A4,, 4,, ...}, we write

a
UA= UA);=AIUA3U“”
AeF k=1
Definition 2,21, If F is an arbitrary collection of sets, the intersection of all sets in
F is defined to be the set of those elements which belong to every one of the sets in F,
and is denoted by

‘{'1 A

The intersection of two sets 4, and A, is denoted by 4, n A; and consists
of those elements common to both sets, If 4, and 4, have no elements in common,
then A, n A; is the empty set and 4, and A, are said to be disjoint, If Fisa
finite collection {as above), we write ’

Ld
E}A"—' nAk=A1ﬂAzﬂ""ﬁAm
A

k=1

and if F is a countable collection, we write

@
1A= NA=4nd;n--
AsF k=3

If the sets in the collection have no elements in common, their intersection is the
empty set. Qur definitions of union and intersection apply, of course, even when
F is not countable. Because of the way we have defined unions and intersections,
the commutative and associative laws are automatically satisfied.

Definition 2.22, The complement of A relative to B, denoted by B — A, is defined
to be the set
B~ 4= {x:xeB but x § A}.

Note that B — (B — A) = A whenever A = B. Also note that B — 4 = B if
B v A is empty.
The notions of union, intersection, and compilement are illustrated in Fig. 2.4.
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Figure 1.4

Theorem 2,23, Let F be a collection of sets. Then for any set B, we have
B-{]A=[1(B -4,

AuF Auf
and

B (Yd= | & - A

AeF AsF

Proof. Let 8= |J o A, T= Vyoo (B — 4} If xc B~ 5, then x¢ B, but
x ¢ 5. Hence, it is not true that x belongs to at least one A in F; therefore x
belongs to no 4 in F. Hence, for every A in F, xe B ~ A. But this implies
e, sothat B — § = 7. Reversing the steps, we obtain 7 © B ~ §, and this
proves that 8 — § = 7. To prove the second statement, use a similar argument,

235 COUNTABLE COLLECTIONS OF COUNTABLE SETS

Definition 2.24. If F iz a colfection of seis such that every twe distinet sets in F gre
disioint, then F is said to be @ collection of disjoint sets.

i
a4

Theorem 2.25. If'F is a countable collection of disjoint sets, say F = {4,, 4,, ..
such that each set A, is countable, then the wnton U | 4, is alse countable.

Proof. Let Ay = 0, @0 @3, . 5 n=1,2,..., and let §={JZ, 4.
Then every element x of s in at least one of the sets in Fand hence x = o £OT
some pair of integers (m, n3. The pair Om, ») is uniquely determined by x, since
£is a collection of disjoint sets. Hence the fupction £ defined by fiz} = tm, w3 iF
X = d, % € 8 has domain 8. The range /(S) isasubset of 27 x 27 {where Z*
is the set of positive integers) and hence is countable. Bui fis one-to-one and there-
fore § ~ f15), which means that S is also countable,

Theorem 2.26. If F = {4, A,,...} is a counable collection of sets, let
& = {8, By, ...}, where B, = A, amd, forn = 1,

#~§
B, = A, — |J A
R}
Then G Is a collection of disjoint sers, and we have

k2 B
U 4= U B
k=1 %
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Proof. Each set 8, is constriwied so that 11 has no elements in common with the
earlier seis B,, &, ..., 8, Hence 7 &5 a coliection of disicint sets.  let

(m UJiy Ay and B = |}, B, We shall show that 4 = B, First of all, if
x€ A4, then x e 4, for some & If » is the smaliest such £, then v e 4, but
x ¢ 1Jio! 4. which means that x ¢ B, and therefore xe B Hence 4 & B
Conversely, if x & B, then x & B, for some n, and therefore x & A, Tor this same n.
Thus v g 4 and this proves that 8 « A4,

Using Theorems 2.25 and 2.26, we immediately obtain

Theorem 2.27. 1f F is g countable collection of countable sets, then the union of afl
xees in F is also @ countable set,

Example 1. The set € of all rationa] numbers i a countable set,

Proef. Let 4, denote the set of all positive rational numbers having denominator o
The set of all positive rational numbers s egual 1o %Jf;i Ay From this it follows that
€ 5 coumtable, since each A, Is counalde,

Example 2. The set 5 of intervals with rational endpoints is a conntable set.

Proof. Let ix,, x,,...} denoie the set of rational numbers and et 4, be the set of all
intervals whose left endpoint is x, and whose right endpoint is rational. Then 4, s
vountable and § = U;z ¢ g

EXERCISES

2.3 Prove Theorem 2.2, Himr. o by = {o, d) mears {{a}, (g, b)) = {{e}, e . d3%
Weow appeal 1w the definition of sl eguality.
22 Let 8 be g relation and et ;‘?Zéﬂffvvbe its domain. The relation § is said to be
¥ reflexive if a = P8 implies (o, @} 2 5,
Hy svmmmetric i ia, B) s K mplies (b, ) & 5,
Hiy transitive § (o, Bre Sand (b, ¢i e 8 imples (g, 01 &
A relation which s symmetric, refexive, and transitive s called an eguinalence n{imz‘om
Determine which of these properties is possessed by &, if § is the set of all pairs of real
mymbers {x, v) such that
2y x %y, By ox < p,
d) x% 4yt w1, g} % 4 ¥ < O,
2.3 The following functions F and & are defined for all real x by the equations given.
I gach case where the composite function &+ F can be formed, give the domain of
G o Fand g formula {or formulas) for (G - Fiixk
Glxy = x* + Zx.
Glxy = ixifx, T x # 0. 00} = L
fxﬁ, HEE A

1o, otherwise,

o x < ¥
Bt ox eyt op

gl Fixy =1 ~ x,
by Fixi = x 4+ 3,
gZx g x =i,

) N otherwise,
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Find Fi{x} if G(x} and G[F(x)] are given as follows:
4} G{x) = x3, GIF(x)] = x* - 3x* 4 3x — 1.
&) Gl =3 + x + X7, GlF(x)] = x* — 3x 4+ 5.
2.4 Given three functions F, G, H, what restrictions must be placed on their domains
so that the following four compeosite functions can be defined?
Ge F, He (@, Ha(Go F), (HeG)o F
Assuming that H = {G - F) and (¥ - G) = Fcan be defined, prove the associative law:
He(GeF) = {He{G)s F.
2.5 Prove the following set-theoretic identities for union and intersection :
DAVBUC) = (AUBUC, ANBAC)=ANBNC
) AN{BUC=(ANBYUANC).
AV BIN{AVC) = Au BN ).
DUACBABUONCVA ={ANBUANCIU(BAC).
DANB-C)=(ANB) = (ANC),
f){(d - C)n@B~C)y={ANB)— C.
g {A - BywB=Aif andonlyif, B = A.
246 iet f: 85~ Tbeafunction. If A and B are arbitrary subsets of 5, prove that
AV B)=AHVBY  and  fl4 N BY = flA) N f(B).
Generalize to arbitrary unions and intersections,
2.7 Letf: 8§ — Thea function. If ¥ = T, we denote by £~ (¥) the largest subset of §
which f maps into ¥. That i, '
FFUVY = {xixeSand fl) e ¥L
The set /() is called the inverse imuge of Y under £, Prove the following for arbitrary
subsets X of Sand ¥ of T
a) X © [N N TS 93 K= 4
v Rl = FTUYY w U,
A 7Y N ) = FURY O,
e T - ¥y =8—f(r)
f) Generalize () and (d)} to arbitrary unions and intersections,

2.8 Refer to Exercise 2.7. Prove that f[f~'(¥)] = ¥ for every subset ¥ of T if, and
only if, T = f(S).

29 Let f: § - Tbe a function, Prove that the following statements are equivalent.
a} fis one-to-one on 8.
bY f(A N B) = f{Ay A f(B) for all subsets A, B of S.
) fTAA] = 4 for every subset 4 of §.
dy For all disjoint subsets 4 and 8 of S, the images f(A) and f{B) are disjoint.
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e} For all subsets 4 and B of § with B < A, we have

f(A — B) = f(A) — F(B),
2.10 Prove that if 4 ~ Band B ~ C, then 4 ~ C.
20 IF§1,2,..., 0% ~ {1,2,..., m), prove that m = n.
2,12 If § is an infinite set, prove that 5 contains a countably infinite subset. Hint. Choose
an element &, in .5 and consider § — {o L
2,13 Prove that every infinite set 5 contains a proper subset similar to 5.
2.14 If A is a countable set and B an uncountable set, prove that 8 — 4 is similar to B.
2.15 A real number s called algebraic if it is a root of an algebraic equation f(xy = 0,
where f(x} = aqy + ayx + --- + ax" is a polynomial with integer coefficienis. Prove
that the set of all polynomials with integer cocfficients is countable and deduce that the
set of algebraic numbers is also countable,
2,16 Lot § bea finite set consisting of »# elements and let 7 be the collection of all subsets
of S. Show that T is a finite set and find the number of clements in 7.
2,17 Let R denote the set of real numbers and let 5 denote the set of all real-valued func-
tions whose domain is R. Show that § and R are not squinumerous. Hint. Assume
S ~ R and let f be & one-to-one function such that f(R) = §. Ifee R, letyg, = fla) be
the real-valued function in § which corresponds to the real number ¢. Now define & by
the equation Mx) = 1 + g.(x) if x & R, and show that k¢ &§.

2.18 Let 5 be the collection of all sequences whose termis are the integers O and 1. Show
that § is uncountable.

2,19 Show that the following sets are countable:

a} the set of circles in the complex plane having rational radii and centers with
rational coordinates,
b} any collection of disjoint intervals of positive length.
220 Let £ be a real-valved function defined for every x in the interval 0 £ x = 1,

Suppose there is a positive number Af having the following property: for every choice of
a finite number of points x,, x3,..., X, in the interval 0 < x < 1, the sum

fexy + -0+ fla) = M.
Let & be the set of thase xin 0 = x < 1 for which £(x} # 0. Prove that § is countable.

221 Find the fallacy in the following “proof”” that the set of all intervals of positive
length is countable,

Let {x, x3,... } denote the countable set of rational numbers and let 7 be any
interval of positive length. Then I contains infinitely many rational points x,, but among
these there will be one with smailest index n. Define a function F by means of the equation
F(IN = n,if x, is the rational nurnber with smallest index in the interval £ This function
establishes a one-to-one correspondence between the set of all intervals and a subset of the
positive integers. Hence the set of all intervals is countable.

2.2 Let § denote the collection of alf subsets of a givenset 7. Letf: 5 —+ R be a real-
valued function defined on 8. The function fis called additive if /(A « B) = F(A) + F(B)
whenever A and B are disjoint subsets of 7. If fis additive, prove that for any two subsets
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A and B we have
fAVBY=fMH) +f(B— A4 and f(AUB) = S(A) + (B} ~ fid ~ B).
w'Refer to Exercise 2.22. Assume f is additive and assume also that the following
relations hold for two particular subsets A and B of T
FAv By = fid) + f(B} — (A (B)
SANB) = fA(B), f(A) + /(B) = AT,

where 4" = T — A, B’ = T'— B, Prove that these relations determine d com-
puie the value of (7). ST, and com
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CHAPTER 3

ELEMENTS OF
POINT SET TOPOLOGY

3.1 INTRODUCTION

A large part of the previous chapter dealt with “abstract™ sets, that s, sets of
arbitrary objects. In this chapter we specialize our sets to be sets of real numbers,
sets of complex numbers, and more generally, sets in higher-dimensional spaces.

In this area of study it is convenient and helpful to use geometric terminology.
Thus, we speak about sets of points on the real line, sets of points in the plane, or
sets of points in some higher-dimensional space. Later in this book we will study
functions defined on point sets, and it is desirable to become acquainted with
certain fundamental types of point sets, such as open sets, closed sets, and compact
sets, before beginning the study of functions. The study of thesc sets is called
point set topoiogy.

32 EUCLIDEAN SPACE R*

A point in two-dimensional space is an ordered pair of real pumbers (x;, x,).
Simdlarly, a point in three-dimensional space is an ordered triple of real numbers
{xy, %3, X33, 1t is just as easy to consider an erdered n-tuple of real numbers
(X5 %25« . » %,) and to refer to this as a point in #-dimensional space.

Definition 3.1. Let n > 0 be an integer. An ordered sei of n real numbers
(X, X3, - .-, X} is caffed an n-dimensional point or @ vector with n components.
Points or vectors will usually be denoted by single bold-face letters; for example,

xz{xlixZ'»"'ixn} o y={thZv-"*yn}'

The number x; is called the kth coerdinate of the point x or the kth component of
the vector x. The set of all n-dimensional potnis is cafled n-dimensional Euclidean
space or simply n-space, and is denoted by R”.

The reader may wonder whether there is any advantage in discussing spaces of
dimension greater than three,  Actually, the language of s-space makes many
complicated situations much easier to comprehend. The reader is probably familiar
enough with three-dimensional vector analysis to realize the advantage of writing
the equations of motion of a system having three degrees of freedom as a single
vector equation rather than as three scalar equations. There s a similar advantage
if the system has » degrees of freedom.

47
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Another advantage in studying »-space for a general # is that we are able to
deal in one stroke with many properties common to l-space, 2-space, 3-space,
¢te., that is, properties independent of the dimensionality of the space.

Higher-dimensional spaces arise quite naturally in such fields as relativity, and
statistical and quantum mechanics. In fact, even infinite-dimensional spaces are
quite common in quantum mechanics.

Algebraic operations on #-dimensional points are defined as foliows:
Definition 3.2. Letx = (xy, ..., x)andy = (yy,..., y,) be in R*. We define:
a) Equality;

Xx=yif,andonlyif,x, =y, ..., %, = %,
b) Sum:

X + y = (xl +y1!"'sx- +yu}‘
<) Multiplication by real numbers (scalars):

aX = (@xy, ..., ax,) {a real}.
d) Difference:

X—¥=x+ (~1y
€) Zero vector or origin:
6=(0,...,00
£} Inner product or dot product:
XY =3 GYe
=1
g) Norm or length:

Il = ()M = (E xi)”’.

The norm |x — y| is called the distance between x and y.

NOTE. In the terminology of linear algebra, R* is an example of a finear space.

Theorem 3.3. Let x and y denote poinis in R". T}m: we have:

a) [xj = 0, and x| = 0 if, and only if, x = 0.

b) jaxi{ = |ai |Ix}} for every real a.

<) Ix — yll = lly - x}.

dj [x-¥l < {x] vl (Cauchy-Schwarz ineguality).
€) Ix + ¥yl < iIxll + fiy} (triangle inequality).

Proof. Statements (a), (b) and (c) are immediate from the definition, and the
Cauchy-Schwarz inequality was proved in Theorem 1.23. Statemént (¢) follows
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from (d) because

»

Ix + ¥ = 3 (o + p* = 3 Gk + 2054 + 4D

k=1 k=1
= Ixl? + 2x-y + lyh* < Ix® + 20k Iyl + Uyl = (il + B9D?
NOTE, Sometimes the triangle inequality is written in the form
fx =2 < |Ix ~ ¥} + [y - z|.
This follows from (e) by replacing x by x — yand y by ¥y — z. We also have
fx — byl < Ix — ¥f.

Definition 3.4. The unit coordinate vector w, in R® is the vector whose kth com-
porent is | and whose remaining components are zero. Thus,

o, =(0...,0, wv=0010...,0..,4b=(0..,01N

If x =(x;,...,x) then X = x;u; + <~ 4+ xu, and x, = X'w, X =
XUy, ..., X, = X'm, Thevectorsu,, ..., u, are also called dasis vectors.

3.3 OPEN BALLS AND OPEN SETS IN R"

Let a be a given point in R* and let # be a given positive number. The set of all
points x in R* such that
fx — aff < r,

is called an open n-ball of radius r and center a. We denote this set by B(a) or
by B(a; r).

The ball £(2; r) consists of all points whose distance from a is less than r.
in R this is simply an open interval with center at a. In R? it is a circular disk,
and in R? it is a spherical solid with center at a and radius r.

3.5 Defimition of an interior point. Let S be a subset of R®, and assume that a € §.
Then & Is calfled an interior point af S if there is an open n-ball with center at a, all of
whose points belong to S.

In other words, every interior point 8 of § can be surrounded by an #-bail
B(a) = 8. The set of all interior points of S is called the interior of § and is
denoted by int §. Any set containing a ball with center & is sometimes called a
neighborhood of a.

3.6 Definition of an open set. A set § in R is called open if all its points are interior
poinis.

NOTE. A set Sis open if and only if § = int S. (See Exercise 3.9.)
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Examples. Jn R! the simplest type of nonempty open sct is an open interval. The union
of two or more open intervals is also open. A closed interval [a, b] is not an open set
because the endpoints @ and 4 are not interior points of the interval.

Examples of open sets in the plane are: the interior of a disk ; the cartesian product of
two ene-dimensional epen intervals. The reader should be cautioned that an opean interval
in R? is no longer an open set when it is considered as a subset of the plane. Im fact, no

subset of R' (except the empty set) can be open in R2, because such a set cannot contain
a 2-ball.

In R" the empty set is open {(Why?) as is the whole space R". Every open a-ball
is an open set in R*. The cartesian product

(ﬂ,, bl) X X am én:}

of n one-dimensional open intervals (a,, b}, . . ., (a,, b,) is an open set in R” called
an n-dimensional open intervad. We denote it by (s, b), where a = (g,,..., a) and
b=(b,....5)

The next two theorems show how additional open sets in R" can be constructed
from given open sets.

Theorem 3.7. The union of miy collection of open sets is an open set.

Froof. Let Fbe a collection of open sets and let § denote their union, § = |} ,.r 4.
Assume x € §. Then x must belong to at least one of the sets in F, say x € 4.
Since A4 is open, there exists an open n-ball B{x) € A. Bui 4 < S,s0 B(x}) = S
and hence x is an interior point of 8. Since every point of § is an interior point,
S is open.

Theorem 3.8. The intersection of a finite collection of open sets is open.

Proof. Let § = (\7., A, where each 4, is open. Assumexe S. (If Sis empty,
there is nothing to prove.) Then x e 4, for every k = 1, 2,..., m, and hence
there is an open n-ball B(x; /) < A,. Let r be the smallest of the positive numbers
Fiafz,0.., 7 Then x€ B(x;r) € S, That is, x is an interior point, so § is
open.

Thus we see that from given open sets, new open sets can be formed by taking
arbitrary unions or finite intersections. Arbitrary intersections, on the other hand,
will not always lead to open scts. For example, the intersection of all open intervals
of the form (—1jn, 1/m), where # = 1,2, 3, ..., is the set consisting of 0 alone.

34 THE STRUCTURE OF OPEN SETS IN R!

In R' the union of a countable collection of disjoint opert intecvals is an open set
and, remarkably enough, every nonempty open set in R' can be obtained in this
way. This section is devoted to a proof of this statement.

First we introduce the concept of a component interval,
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3.9 Definition of component interval. Let S be an open subset of RY. An open
interval I (which may be finite or infinite) is cailed a component interval of S if
i< 8§ andif there is no opent interval J & Isuch that F < J & S,

In other words, a component interval of § is not a proper subset of any other
open interval contained in S.

Theorens 3.18). Every point of a nonempty open set S belongs te one and only one
component interval of S.

Proof. Assume x € S. Then x is contained in some open interval with F < 5.
There are many such intervals bui the “largest” of these will be the desired com-
ponent interval. ‘We leave it to the reader to verify that this largest interval is

I, = (a(x), b(x)), where
alx) = inf {a: {a, x) & S}, bix) = sup {b:(x, b) € §}.

Here a(x) might be — oo and A(x) might be 4 oo. Clearly, there is no open interval
J such that I, € J € &, so I, is a component interval of § containing x. If J,
is another component interval of § containing x, then the union I, U J, is an
open interval contained in § and containing both J, and J,. Hence, by the defi-
nition of component interval, it follows that I_ v J, = f,and I, w J, = J 50
IL.=J.

Theorem 3.11 ( Representation theorem for open sets on the real line).  Every non-
empty open set 8 in R* is the union of a countable collection of disjeint component
intervals of 8.

Proof. 1 x € 8, let {, denote the component interval of § containing x. The vnion
of all such intervals I is clearly S. If two of them, f, and I,, have a point in
commen, then their union 7, w 7, is an open interval contained in 8 and containing
both I, and 4, Hence I, u i, = I and I, v f, = I, s0 I, = I, Therefore the
intervals f, form a disjoint collection. :

It remains to show that they form a countable collection. For this purpose,
let {x,, x5, X3, ...} denote the countable set of rational nurbers. In each com-
ponent interval £, there will be infinitely many x,, but among these there will be
exactly one with smallest index n. We then define a function F by means of the
equation F{I,} = n, if x, is the rational number in [, with smallest index n. This
function F is one-to-one since F({,} = F(I,) = n implies that 7, and [, have x, in
commen and this implies /, = I, Therefore F establishes a one-to-one corre-
spondence between the intervals f, and & subset of the positive integers. This
completes the proof.

nNoTg. This representation of S is unigue. In fact; if §is a union of disjeint open
intervals, then these intervals must be the component intervals of S, This is an
immediate consequence of Theorem 3.10.

if § is an open interval, then the representation contains only one component
interval, namely § itself. Therefore an open interval in R! cannot be expressed as
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the union of fwo nonempty disjoint open sets. This property is also described by
saying that an open interval is connected. The concept of connectedness for sets
in R* will be discussed further in Section 4.186,

35 CLOSED SETS

3.12 Definition of @ closed set. A set 5 in R" is called closed if its complemen:
R* — 8 isx open.

Examples. A closed interval [a, #)in R' is a closed set. The caresian product
[ﬂ'x, bl] X o ¥ ['am bn]

of n one-dimensional closed intervals is a closed set in R” called an s-dimensional closed
interval [a, b]. :

The next theorem, a consequence of Theorems 3.7 and 3.8, shows how to
construct further closed sets from given ones.

Theorem 3.13. The union of a finite colfection of closed sets is closed, and the
intersection of an arbitrary collection of closed sets is elosed,

A further relation between open and closed sets is described by the following
theorem,

Theorem 3.14. If A is open and B is closed, then A — B is open and B — A4 is
closed.

Proof. We sunply note that 4 — B = 4 n (R” — B), the intersection of two _

open sets, and that B — A = B~ (R" — A), the intersection of two closed sets.

3.6 AD}'_IERENT POINTS. ACCUMULATION POINTS

Closed sets can also be described in terms of adherent peints and accumulation
points.
3.15 Definition of an adherent point. Let S be g subset of R*, anld x a point in R",
x not necessarily in S, Then x is said to be adherent to 8 if every n-ball B(x) contains
at least one point of S.
Examples
1. If x £ 5, then x adheres to S for the trivial reason that every »-ball B(x) contains x.
2. If 5'is a subscet of R which is bounded above, then sup 5 is adherent to S,

Some points adhere to S because every ball B(x) contains poinis of § distinct
from x. These are called accumulation points,

3.16 Definition of an accumulation point. If 5 < R* and x & R”, then % is called
an accurnulation point of S if every n-baif B(x) contains at least one point of §
distinet from x.

3
3
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In other words, x is an accumulation point of S if, and only if, x adheres to
§ — {x}. If x e § but x is not an accumulation point of 8, then x is called an
isolated point of S, ‘

Examples
1. The set of numbers of the form Vn, w = 1, 2, 3,..., has 0 as an accumulation point.
2. The set of rational numbers has every real number as an accumulation point.

3. Every point of the closed interval [g, #] fs an accumulation point of the set of num-
bers in the open interval (g, &).

Theorem 3.17. If x is an accumulation point of S, then every n-ball B(x) contains
infinitely many points of S.

Proof. Assume the contrary; that is, suppose an #-ball B(x) ¢xists which contains
only a finite number of points of § distinct from x, say &, a,, . . ., a,. Ifr denotes
the smallest of the positive numbers :

ﬂx - ll"» "x - ﬁz“: ey "x e “uﬁv

then Bix; r/2) will be an n-ball about x which contains no points of § distinct
from x. This is a contradiction.

This theorem implies, in particular, that a set cannot have an accumulation
point unless it contains infinitely many points to begin with. The converse, how-
ever, is not true in general. For example, the set of integers {1, 2, 3,...} is an
infinite set with no accumulation points. In a later section we will show that
infinite sets contained in some n-ball always have an accumulation point. This is
an important resull known as the Bolzano—Weierstrass theorem.

3.7 CLOSED SETS AND ADHERENT POINTS

A closed set was defined to be the complement of an open set. The next theorem
describes closed sets in another way.

Theorem 3.18. 4 set § in R is closed if, and only ¥f, it contains all its adherent
poinis.

Proof. Assume S is closed and let x be adherent to S. We wish to prove thatx € S,
We assume x ¢ S and obtain a contradiction. If x ¢ Sthen x e R — § and, since
R* — $is open, some n-ball B(x) lies in R* — S. Thus B(x) contains no points of
S, contradicting the fact that x adheres to S.

To prove the converse, we assume § contains all its adherent points and show
that § is closed. Assume x€ R* — 8. Then x ¢ 5, s0 x does not adhere to 5.
Hence some ball B(x) does not intersect §, so B(x) & R* — 5. Therefore R® — §
is open, and hence 5 is closed.

3.19 Definition of closure. The set of all adherent points of a set S is called the
closure of S and is denoted by §.
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For any set we have § = 5 since every point of S adheres to 5. Theorem 3.18
shows that the oppesite inclusion § = § holds if and only if S is closed. Therefore
we have:

Theorem 3.20. A set S is closed if and only if § = §.

3.21 Definition of derived set. The set of all accumulation pointzx of a set S is
called the derived set of § and is denoted by §°.

Clearly, we have § = § v S’ for any set S. Hence Theorem 3.20 implies that
5 is closed if and only if S = S. In other words, we have:

Theorem 322, A ser S in R” is closed if, and only If, it contains alf its accumuiation
points,

38 THE BOLZANO-WEIERSTRASS THEOREM -

3.23 Definition of a bounded set. A set S in R® i3 said to be bounded if it lies entirely
within an n-ball B(a; r) for seme r > 0 and some a in R”.

Theorem 3.24 { Bolzano—Weierstrass). If a bounded set S in R” contains infinitely
many paints, then there is at least one point in R” which is an accumulation point of S.

Proaf. To help fix the ideas we give the proof first for R Since § is bounded,
it lies in some interval [—a, g]. At least one of the subintervals [ ~a, 0] or [0, 4]
contains an infinite subset of S. Calf one such subinterval [a,, b,]. Bisect [a,, b,]
and obtain a subinterval [, b;] containing an infinite subset of S, and continue
this process. In this way a countable collection of intervals is obtained, the nth
interval [a,, b,] being of length b, — a, = @/2""', Clearly, the sup of the left
endpoints &, and the inf of the right endpoinis b, must be equal, say to x. [Why
are they equal?] The point x will be an accumulation point of S because, if r is
any positive number, the interval [a,, &,] will be contained in B{x; r) as soon as n
is large encugh so that b, — a, < #/2. The interval B{(x; r} contains a point of §
distinct from x and hence x is an accumulation point of 5. This proves the theorem
for R*, (Observe that the accumulation point x may or may net belong to §)

Next we give a proof for R, # > [, by an extension of the ideas used in treating
R'. (The reader may find it helpful to visualize the proof in' R? by referring to
Fig. 3.1)

Since § is bounded, S Hes in some n-ball B(9; 4), ¢ > 0, and therefore within
the n-dimensienal intervat J, defined by the inequalities

- X, %O (k= 1,2,...,n).
Here J, denotes the cartesian product
Jyo= I [0 x - x I8

that is, the set of points (x,, ..., x,), where x, & I{"> and where each If*? is a
one-dimensional interval —a < x, < o FEach interval J{'? can be bisected to
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form two subintervals 7§} and I{!), defined by the inequalities
e —a < x, < 0; 0 < x <a
Next, we consider all possible cartesian products of the form
I x B x - x B4, (a)
where each &; = 1 or 2. .There are exactly 2 such preducts and, of course, each
such product is an a-dimensional interval. The union of these 2" intervals is the
original interval J,, which contains S; and hence at least one of the 2” intervals in

(a) must contain infinitely many points of S. One of these we denote by J,, which
can then be expressed as

Iy =1 x K x --- x I,

where each 7{? is one of the subintervals of 7{'’ of length 2. 'We now proceed
with J, as we did with J,, bisecting each interval £{*’ and arriving at an n-dimen-
sional interval J, containing an infinite subset of 5. If we continue the process,
we obtain a countable collection of r-dimensional intervals J,, J,, J4, ..., where
the mth interval J has the property that it contains an infinite subset of § and
can be expressed in the form

Jo=I x I x oo x I, where [ = [V
Writing
I = Lo, 5],
we have
a
b™ ~ a{"')=2w_z (h=1,2,,n.

For each fixed &, the sup of all left endpoints &f™, (m = 1, 2, ...), must therefore
b equal to the inf of all right endpoints A™, (m = 1,2, ...), and their commeon
value we denote by r,. We now assert that the point t = (¢, f5; ..., ;) is an
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accumulation point of S. To see this, take any »-ball B(t; r). The point t, of
course, belongs to each of the intervals J,, Jy, ... constructed above, and when
m is such that a/2™"? < r{2, this neighborhood will include J_. But since J,
contains infinitcly many points of S, so will B(t; ), which proves that t is indee:i'
an accumulation point of §.

3% THE CANTOR INTERSECTION THEOREM

fﬂxs an application of the Bolzano-Weierstrass theorem we prove the Cantor
intersection theorem.

Theorem 3.25. Let {Qy, OQ,, ...} be a countable collection of nonempty sets in R*
such that:

BOwisEO k= 1_,2, 3,...)
i) Each set Q, is closed and 0, is bounded,

Then the intersection (Yi% | Oy is closed and nonempty.

Proof. Let S = (|, Q) Then § is closed because of Theorem 3.13. To show
thfxt §'is nonempty, we exhibit a point X in S. We can assume that each @, con-
tains u?ﬁnitcly many points; otherwise the proof is trivial. Now form a collection
of dw:unct'poims A = {Xy4, X3, ...}, where x, ¢ ;. Since A is an infinite set
contained in the bounded set 0,, it has an accumulation point, say x. We shall
ghow that x & .§ by verifying that x ¢ ¢, for each k. ¥t will suffice to show that x
is an accumulation point of each Q,, since they are all closed sets. But every
neighborhood of x contains infinitely many points of 4, and since all except
(poasi'bly}' a ﬁr.nitz number of the points of A beleng to 3,, this neighborhood also
contains infinitely many points of ;. Therefore x is an accomulation point of
@, and the theorem is proved,

310 THE LINDELOF COVERING THEOREM

h‘l. this" sectionf we introduce the concept of a covering of a set and prove the
Fmdelof covering theorem. The usefulness of this concept will become apparent
in some of the later work. -

3:26 Dlﬁnmu of & covering. A collection F of sets is said to be a covering of a
given set S i85 Usr A The collection F is also said 1o cover S. If Fis a
collection of open sets, then F is called an apen covering of S.

Examples
1. The co}iect.ion of all intervals of the form It < x < 2fn, (r = 2,3,4,...), is an
open covering of the interval 0 < x < 1. This is an example of a countable covering.

2. The real line R' is covered by the collection of all open intervals (a, 5). This covering
1s ot countable. However, it contains a countable covering of RY, namely, all inter-
vals of the form (r, n + 2), where # runs through the integers.
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3. Let S = {{x. ) :x > 0,y > 0} The collection F of all circular disks with centers
at (x, x) and with radius x, whete x > 0, is a covering of 8. This covering is not
countable. However, it contains a countable covering of 5, namely, all those disks
in which x is rational. (See Exercise 3.18.)

The Lindeldf covering theorem staies that every open covering of a set §in R”
contains a countable subcoliection which also covers S. The proof makes use of
the following preliminary result:

Theorem 3.27 Let G = {d,, Ay, ...} denste the countable collection of all n-
balls having ravional radii and centers at points with rational coordinates. Assume
x € R" and let § be an open set in R* which contains x. Then at least one of the

n-balls in G contains X and is contained in §. That is, we have
xeAd, =85 jorsome A, inG.

Proof. The collection G is countable because of Theorem 2.27. If x e R"and if §
is an open set containing x, then there is an »n-ball B(x; r) = §. We shall find a
point y in § with rational coordinates that is “near” x and, using this poini as
center, will then find a neighborhood in G which lies within 8(x; r} and which
contains x. Write

X = (Xpy Xzpen ey Xy

and let 3, be a rational number such that I¥e — %] < #/(4m) for each
k=12, ...,n Then

Iy — Xk < 1y = Xl + o + iy, — xl -:g.

Next, let g be a rational number such that r/4 < ¢ < rf2. Then x ¢ Bly; ) and
Biy:qy< B(x;r) = S. But B(y;g)e G and hence the theorem is proved.
(See Fig. 3.2 for the situation in R?)

Figure 3.2

Theorem 3.28 { Lindelsf covering theorem). Assume 4 = R* and let F be an opern
covering of A. Then there is a countable subcollection of F which also covers A.

Proof. Let G = {4;, A;,...} denote the countable collection of all n-balls
having rational centers and rational radii, This set G will be used to help us extract
a countable subcollection of F which covers 4.
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Assume x € A. Then there is an open set S in F such that x € S, By Theorem
3.27 there is an a-ball 4; in G such that x € 4, < §. There are, of course, infinitely
many such A, correspending to each .S, but we choose only dne of these, for ex-
ample, the one of smallest index, say m = m(x). Then we have x Ay © 5.
The set of all n-balls A,y obtained as x varies over all elements of 4 is a countable

collection of open sets which covers 4. To get a countable subcollection of F.

which. covers A, we simply correlate to each set Ay, one of the sets § of F which
contained Ay,,. This completes the proof,

311 THE HEINE-BOREL COVERING THEOREM

The LindelSf covering theorem states that from any open covering of an arbitrary
set A in R” we can extract a countable covering. The Heine-Borel theorem tells
us that if, in addition, we know that A4 is closed and hounded, we can reduce the
c](:vering to a finite covering. ‘The proof makes use of the Cantor intersection
theorem,

Theorem 3.29 (Heine—Borel). Let F be an open covering of a closed and bounded
set A in R*. Then a finite subcollection of F also covers A.

Proof. A countable subcollection of F, say {f}, I, ...}, covers 4, by Theorem
3.28. Consider, for m > 1, the finite unjon

This is open, since it is the union of open sets. We shall show that for some value
of m the union §,, covers A. :

For this purpose we consider the complement R* — S, which is closed.
Define a countable collection of seis {Q,, Q,, ...} as follows: O, = A, and for
m eI,

On=A4An R -5

That is, @,, consists of those points of 4 which lie outside of §,,. If we can show that
for some value of m the set O, is empty, then we will have shown that for this
ne point of A lies outside S,; in other words, we will have shown that some S
covers A. - ' "

Observe the following properties of the sets @,,: Each set 0, is closed, since
it is the intersection of the closed set A and the closed set R* — S,.. The sets O
are decreasing, since the S, are increasing; that is, 0,,, € Q.. The sets s
being subscts of A4, are all bounded. Therefore, if no set O, is empty, we can apply
the Cantor intersection theorem to conclude that the intersection e, O is
also not empty. This means that there is some point in 4 which is in all the sets
Q... or, what is the same thing, outside all the sets §,,. But this is impossible, since
4 € Y&, 8, Therefore some O, must be empty, and this completes the proof.

Th. 3.31 Compactness in R” 59

312 COMPACTNESS IN R"

We have just seen that if a set 5 in R" is closed and bounded, then any open
covering of § can be reduced to a finite covering. Tt is natural to inguire whether
there might be sets other than closed and bounded sets which alse have this
property. Such sets will be called compact.

336 Definition of a compact sef, A set S in R* is said to be compact if, and only if,
every open covering of S contains a finite subcover, that is, a finite subcollection whici
also covers 8.

The Heine—Borel theorem states that every closed and bounded set in R” i3
compact. Now we prove the converse result.

Theorem 3.31. Let S be a subsei of R". Then the following three statements are
equivalent:

a) S iy compact. .
b) S is closed and bounded.
<) Ewvery infinite subset af S has an accumulation point in S.

Proof. As noted above, (b) implies (a). If we prove that (a)} implies (b), that (b)
implies () and that {c) implies (b), this will establish the equivalence of alt three
statements.

Assume (a) holds. We shall prave first that S is bounded. Choose a point p
in.5. The collection of n-balls Bfp: k), & = 1,2,..., is an open covering of §.
By compactness a finite subcollection also covers S and hence § is bounded.

Next we prove that § is closed. Suppose S is not closed. Then there is an
accumulation point y of Ssuch thaty ¢ 5. Wx e S, letr, = |x — ¥}|/2. Eachr,
is positive since y ¢ § and the collection {B(x; r,) : x € 5} is an open coveriag of
S. By compaciness, a finite number of these neighborhoods cover S, say

)
S = |J B(x; ).
v

Let r denote the smallest of the radii r,, r,, ..., r,. Then it is easy to prove that
the ball B(y; r) has no points in common with any of the balls B(x;; r). In fact,
if x & B(y; r), then |x — y| < r € r, and by the triangle inequality we have
fly — xl <y — x) + Ix - xJ, 50

x = x =ty — %l - x ~ ¥} = 2r — |Ix = ¥ > ra.

Hence x ¢ B(x,; r,)). Therefore Bly; ¥) n § is empty, contradicting the fact that
y is an accumulation point of §. This contradiction shows that 5is closed and hence
{a) implies {b).

Assume (b) holds. In this case the proof of (¢) is immediate, because if T is
an infinite subset of § then T is bounded (since 5 is bounded), and hence by the
Bolzano—Weicrstrass theorem T has an accumuiation point x, say. Now X is also
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an accumulation point of S and hence x € §, since § is closed. Therefore (b)
implies (c).

Assume (c) holds. We shall prove (b). If § is unbounded, then for every
m > O there exists a point X, in S with [x_|| > m. Thecollection T = {x,, X,, ...}
is an infinite subset of S and hence, by (c), 7 has an accumulation point ¥ in 5,
But form > 1 + [y| we have

e — ¥ = Ixall — ¥l > m — ¥yl > 1,

contradicting the fact that y is an accumulation point of 7. This proves that § is
bounded.

To complete the proof we must show that S is closed. Let x be an accumulation
point of 8. Since every neighborhood of x contains infinitely many points of S,
we can consider the neighborhoods B(x; 1/k), where & = 1, 2, ..., and obtain a
countable set of distinct points, say T = {X,, X,, ... }, contained in S, such that
X, € B(x; 1/k}. The point x is also an accumulation point of 7. Since T is an
infinite subset of S, part () of the theorem tells ws that T must have an accumula-
tion point in §. The theorem will then be proved if we show that x is the only
accumulation point of T,

To do this, suppose that y # x. Then by the triangle inequality we have

by — xt < )y —xll + Ix — x| <y —x} + Ik, ifxel

If ky is taken so large that 1/k < Yy — x| whenever & > k,, the last inequality
leads to }{ly — x| < |y — xJ. This shows that x, ¢ B(y; r) when k > k, if
r = 4|y — x||. Hence y cannot be an accumulation point of 7. This completes
the proof that (¢} implies {b}.

313 METRIC SPACES

The proofs of some of the theorems of this chapter depend only on a few properties
of the distance between points and not on the fact that the pomts are in R*. When
these properties of distance are studied abstractly they lead to the concept of a
metric space. ‘

3.32 Definition of a metric space. A metric space is a nonempty set M of objects
(called points) together with a function d from M x M to R (called the metric of
the space) satisfying the following four properties for afl points x, y, zin M:
L d(x, x} = 0.
2.dx. >0 x#y
3. dix, y) = d(y, x).
4. dix, y) £ d(x, 2} + d(z, y).
The nonnegative namber d(x, v} is to be thought of as the distance from x to

y. In these terms the intuitive meaning of properties | through 4 is clear. Property
4 is called the triangle inequality.

Point Set Topology In Metric Spaces o

We sometimes denote a metric space by (M, d) to emphasize that both the set
M and the metric 4 play a role in the definition of a metric space.

Examples

1. M = R"; d(x, ¥) = |x — y). This is called the Euclidean metric. Whenever we refer
to Euclidean space R”, it will be understood that the metric is the Euclidean metric
unkss another metric is specifically mentioned.

2, M = C, the complex plane; d{z,, z;} = |2, — z3]- As a metric space, C is indistin-
guishable fror Fuclidean space R? because it has the same points and the same metric.

3. M any nonempty set; d{x, y) = 0if x = 3, d{x,»} = 1il x # y. Thisiscalled the
discrefe metric, and (M, ) is called a discrete metric space.

4. If (M, d} is a metric space and if 5 is any nonempty subset of M, then (S, d) isalso a
metric space with the same metric or, more precisely, with the restriction of d to
& x 5 as metric. This is sometimes called the relative metric induced by don §, and
S is called a metric subspace of M. For example, the rational numbers Q with the
metric d(x, 1) = |x — y| form a metric subspace of R.

5. M =R% dx,y) = V(x; - 37 + #xy — 2%, where X = (x,,x) and y =
(¥, ¥;). The metric space (M, &) is not a metric subspace of Euclidean space R?
because the metric is different.

6. M = {{x,, x;):x3 + x3 = 1}, the unit circke in R?; d(x, ¥} = the length of the
smaller arc joining the two points x and y on the unit circle.

1. M = {{x;, Xz, Xx3): X3 + x3 4+ x3 = 1}, the unit sphere in B*; d(x, ¥} = the length
of the smaller arc along the great circle joining the two poinis x and y.

8. M=RGdxy)=|x —yi+ -+~ n

9. M= R dx, ¥) = max {lx; — yl,.... . — plh

3.14 POINT SET TOPCGLOGY IN METRIC SPACES

The basic notiens of point set topology can be extended te an arbitrary metric
space (M, d).
If @ € M, the ball B(a; r) with center @ and radius r > 0 s defined to be the
set of all x in M such that
dix, @y <r.

Sometimes we denote this ball by By(a; r) to emphasize the fact that its peints
come from M. If §is a metric subspace of 4, the ball By(a; r) is the intersection
of § with the ball By(a: r).

Examples. 1n Fuclidean space R! the ball B(Q; 1) is the open imterval (—1, 1). Ta the
metric subspace 5 = [0, 1] the ball 840; 1) is the half-open interval [0, 1).

NOTE. The geometric appearance of & balt in R” need not be “spherical” if the
métric is not the Euclidean metric. (See Exercise 3.27.)

If 8 = M, a point a in S is called an interior point of § if some ball Byla; r}
lies entirely in S. The interior, int 8, is the set of interior peints of . A set Sis
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called open in M if all its points are interior points; it is called closed in Mif M — 5
is open in M.
Examples.
1. Ewvery ball Byle; r) in a metric space M is open in M,
2. In a discrete metric space M every subset Sis open. Infact, if x € S, the ball B(x: 1)
consists entirely of points of § (since it contains only x), so § is open. Therefore every
subset of M is also closed !

3. In the metric subspace § = [0, 1] of Buclidean space RY, every interval of the form
[0, x)or (x, 1], where 0 < x < 1, is an open set in & These seis are not open in R

, Example 3 shows that if S is a metric subspace of M the open sets in § need
not be open in M. The next theorem describes the relation between open seis in
M and those in S. '

Theorem 3.33. Let (S, d) be a metric subspace of (M, d), und let X be a subset of
S. Then X is open in S if, and only #f,

X=AnS
for some set A which is open in M.

Proof. Assume A is openin M and let X = A n 8. If xe X, then x€ 4 s0
By(x;ry = Aforsomer > 0. Hence B{x; 7r) = Bulx;r)nScAnS=X
s0 X is open in S,

Conversely, assume X is open in S. We will show that X = A4 n § for some
open set A in M. For every x in X there is a ball Bg(x; r,) contained in X. Now
By(x; r) = Bylx; r,) n S, so if we let

4= U Bylx; 1),

xeX

then A is open in A and it is easy to verify that A n 5 = X,

Theorem 3.34. Let (S, d) be a metric subspace of (M, d) and let Y be a subset of

S. A}"}zeﬂ Y is closed in 8 if, and ondy if, ¥ = B S for some set B which is closed

in M,

Progf. f Y = B n S, where B is closed in M, then 8 = M — A where A is open

mMswoY=8nB=8n{M~ 4) =8 ~ A4, hence ¥ is closed in S.
Conversely, if Yisclosed in S,Iet ¥ = § — ¥. Then Xisopenin §s0 X =

A~ S, where 4 is open in M and

Y=8§-X=5-AnS) =5 —A=5n{M - A)= 5B,
where B = M — A is closed in M. This completes the proof.

If § € M, a point x in M is called an adherent point of S if every ball B,(x; r)
contains at least ene point of 8. If x adheres to 8§ — {x} then x is called an
accumulation point of §. The closure § of S is the set of all adherent points of S,
and the derived set 87 is the set of all aconmulation points of $. Thus, § = Su .
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The following theorems are valid in every metric space (M, &) and are proved
exactly as they were for Euclidean space R”. In the proofs, the Euclidean distance
ix — ¥} need only be replaced by the metric d(x, ).

Theorem 3.35. 2) The union of any collection of open sets is open, and the inter-
section of a finite collection of open sets is open.

b) The union of a finite collection of closed sets is closed, and the intersection of any
collection of closed sets is closed.

Theorem 3.36. Ff A is open and B is closed, then A — B is open and B — A is
closed.

Theorem 3.37. For any subset S of M the following statenients are equivalent:

a) S iy closed in M.

) S contains all its adherent poinis.

<} S contains all its accumulation points.
d) §=§.

Example. Let M = (@, the set of rational numbers, with the Euclidean metric of R
Let 5 consist of all rational numbers in the open interval (g, ), where both a and & are
irrational. Then 5 is a closed subset of Q.

Our proofs of the Bolzano—Weierstrass theorem, the Cantor intersection
theorem, and the covering theorems of Lindeldf and Heine--Bore! used not only the
metric properties of Euclidean space R" but also special proper jies of R® not gen-
erally valid in an arbitrary metric space (M, ). Further restrictions on M are
required to extend these theorems to metric spaces. One of these extensions is
outlined in Exercise 3.34.

The next section describes compactness in an arbitrary metric space.

3.15 COMPACT SUBSETS OF A METRIC SPACE

Let (M, d) be a metric space and let § be a subset of M. A collection F of open
subsets of M is said to be an open covering of Sif § € J4er 4-

A subset S of M is called compact if every open covering of § contains a finite
subcover. S is called bounded if S < B(a; r) for some r > 0 and some ain M.

Theorem 3.38. Let S be a compact subset of o metric space M. Then:

i} & is closed and bounded.
iiy Every infinite subset of S has an accumulation point in S.
Proof. To prove (i) we refer to the proof of Theorem 3.31 and use that part of the

argument which showed that (a) implies (b). The only change is that the Euclidean
distance [[x — y| is to be replaced throughout by the metric d(x, »).
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To prove (i} we argue by contradiction. Let 7 be an infinite subset of :§ and
assume that no point of § is an accumulation point of 7. Then for each point x in
S there is a ball B(x) which contains no point of T (if x ¢ T) or exactly one point
of T (x utself, if x € 7). As x runs through S, the union of these balls B(x) is an
open covering of 5. Since § is compact, a finite subcollection covers § and hence
also covers T. But this is 2 contradiction because 7 is an infinite set and each ball
contains at most one point of 7.

NOTE. In Euclidean space R, each of properties (i) and (ii) is equivalent to com-
pactness (Theorem 3.31). In a peneral metric space, property (i) is equivalent to
compactness (for a proof see Reference 3.4), but property (i) is not. Fxercise 3.42
gives an example of a metric space f in which certain closed and bounded subsets
are not compact.

Theorem 3.39. Let X be a closed subset of a compact metric space M. Then X is
compact.

Progf. Let F be an open covering of X, say X < [}, 4. We will show that a
finite number of the sets A cover X. Since X is closed its complement M — X is
open, so Fu {{(M — X)} is an open covering of M. But M is compact, so this
covering contains a finite subcover which we can assume includes A — X. There-
fore

SA v ud UM - X)
This subcover also covers X and, since M — X contains no points of X, we can

delete the set M — X from the subcover and stillcover X. Thus X € 4, v« U 4,
s0 X is compact.

3.16 BOUNDARY OF A SET

Definition 3.40. Let 3 be a subset of a metric space M. A peint x in M is called a
boundary point of S if every ball By(x; r) contains at least one point of S and at
least one point of M — 5. The set of all baundary points of 8 is called the boundary
af 8 and is denoted by 885.

The reader can easily verify that
, IS=8nM_35
This formula shows that &5 is closed in M.

Examyple InR" the boundary of a ball B(a; r} is the set of points x such that |x — a] = r.
In R', the boundary of the set of rational numbers is all of R!.

Further properties of metric spaces are developed in the Exercises and also in
Chapter 4.

EXERCISES

Open and closed sets in R* and R?
3.1 Prove that an open interval in R? is an open set and that a closed interval is a closed
sed.

3.2 Determine all the accumulation points of the following sets in R? and decide whether
the sets are apen or closed (or neither).

a) All integers.

b) The interval (g, 8]

<} All numbers of the form 1/n, {n=1,23...%
d) All rational pumbers.

e) All numbers of the form 27" + §7=, mnr=12...)
3 All numbers of the form (— 1) + {1/m), {m,n=1,2.)
g) All numbers of the form {1/7) + {1/m), (ma=12..)

h) All numbers of the form {— I¥/[l + (1jm], (n=12...)
3.3 The same as Exercise 3.2 for the following sets in R*:
a) All complex z such that [z]| > I.
b} All complex z such that [z| = I
c} Al complex numbers of the form (1/n} + (i/m), (ma=1,2,...)
d} All points {x, yy such that x? — y? < L.
e} All points (x, ») such that x > §.
£} All poiats (x, y) such that x = 0.

3.4 Prove that every nonempty open set S in R' contains both rational and irrational
numbers.

3.5 Prove that the only sets in R? which are both open and closed are the empty set and
R jtself. Is a similar statement true for R*?

3.6 Prove that every closed sef in R! is the intersection of a countable collection of open
sets.

3.7 Prove that a nonempty, bounded cfosed set § in RY is either a closed interval, or that
S can be obtained from a closed interval by removing a countable disjoint coliection of
open intervals whose endpoints belong to §.

Open and closed sets in R"

3.8 Prove that open n-balls and a-dimensional open intervals are open sets in R*.
3.9 Prove that the interior of a set in R” is open in R™.

310 If § < R", prove that int 5 is the union of all open subsets of B* which are contained
in 8. This is described by saying that int § is the fargest open subset of 5.

A1l K X and T are subsets of R*, prove that
(It (it N =int(EAT), and {MSwintT)=int{(SUT)
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3.12 Let 8’ denote the derived set and § the closure of a set §in R*. Prove that:
a) 87 is closed in R"; that is, {5y = 5.
S Tthen§ < T, D EVTY = ST
d) 5y = 8" e} S s closed in R™.
f) §is the intersection of all closed subsets of R™ cortaining 5. That is, 5 is the
smallest closed set containing 5.

3.13 Let Sand Thesubsets of R™. Provethat 5 7 @ S Tandthat SN T € A T
if § is open.

NOTE. The statements in Exercises 3.9 through 3.13 are true in any metric space.

3.14 A set 5 in R” is called convex if, for every pair of points x and ¥ in & and every real
& satisfying 0 < 0 < 1, we have #x + (1 — #)y € 8. Interpret this statement geometric-
aily (in R? and R} and prove that:

a} Every a-ball in R® is conves.,

b} Every n-dimensional open interval is convex.

¢) The imterior of a convex set is convex.

d} The closure of a convex set is convex,

3.15 Let F be a collection of sets in R™, and let § = U“F Aand T = n“p A. For
each of the following statements, either give a proof or exhibit a counterexampie.
a) If x is an accumulation point of 7, then x is an accumulation point of each set
Ain F :
b) If x is an accumulation point of S, then x is an accumulation point of at least one
set A in F.

3.16 Prove that the set § of rational numbers in the interval (0, 1) cannot be expressed
as the intersection of a countable collection of open sets. Hint. Write § = {x,, x3,... },
assume § = [, Si, where each 5, is open, and comstruct a sequence {Q,} of ¢losed
intervals such that @, , < @, < S, and such that x,¢ ,. Then use the Cantor inter-
section theerem to obtain a contradiction.

Coavering theorems in R”

3.17 If § < R", prove that the collection of isolated points of .S is countable.

3.18 Prove that the set of open disks in the xy-plane with center at {x, x) and radius
x > 0, x rational, is a countable covering of the set {(x, y}:x > 0,y > 0}

3.19 The collection F of open intervals of the form {1/n, 2/n), where s = 2, 3,..., is an
open covering of the open interval (0, 1). Prove {without using Theorem 3.31} that no
finite subcollection of F covers (0, I).

3.20 Give an example of a set § which is closed but net bounded and exhibit a countable
open covering F such that no finite subset of F covers §.

3.21 Given a sef 5 in R™ with the property that for every x in ¥ there is an n-ball B{x)
such that B(x) N 5 is countable. Prove that § is countable.

3.22 Prove that a collection of disjoint open sets in R is neéessarily countable. Give an
example of a collection of disjoint closed sets which is not countable.

Exerciges 87

3,23 Assume that § © R". A point x in R* is said to be a condensation point of S if every
a-ball B(x) has the property that B(x) 1 § is not countable, Prove that if § is nct count-
able, then there exists a point x i § such that x is a condensation point of §,

3.24 Assume that § = R* and assume that S is not countable. Let T denote the set of
condensation points of .5, Prove that; )

a) § — Tis countable, b} & T is not couniable,

c} Tis a closed set, d) 7 contains no isolated points.
Note that Exercise 3.23 is a special case of (b).

3.25 A set in R" is called perfect if § = &, that is, if §is a closed set which contains no
isolated points. Prove that every uncountable closed set Fin R” can be expressed in the
form F = AV B, where 4 is perfect and B is countable {Canter-Bendixon theorem).

Hint. Use Exercise 3.24.

Metric spaces

3.26 In any metric space (M, d), prove that the empty set § and the whole space M are
both open and closed.

3.27 Consider the following two metrics in R™:

di(x.y) = !T?f fxi = wl, dy(x, ¥) = Z 2 — wl.
= =1

In each of the following metric spaces prove that the ball 8(a; r) has the geometric
appearance indicated:

a) In (R?, 4)), a square with sides parallel 10 the coordinate axes.

b} In (RZ, 4;), a square with diagonals paraliel io the axes.

¢} A cube in (R3, d)).

d)} An octahedron in (R3, 4,).

. 328 Let 4, and d, be the metrics of Exercise 3.27 and let |x — y| denote the usual

Euclidean metric. Prove the following inequalities for all x and y in R":
dixy) < [x -yl < dyx, ¥} and  dyx.¥) < Valx - y] < ndix, y).
3.29 If (M, 4) is a metric space, defing
dix, y)
1+ dix, »)
Prove that d” is also a metric for M. Note that 0 < d'(x, y) < I forall x, yin M.
3.30 Prove that every finite subset of a metric space is closed.

3,31 In a metric space (M, d) the closed hall of radius r > @ about a point a in M is the
set Bla;ry = {x:dix,a) < r}.
a) Prove that Bla; r) is 2 closed set,

b) Give an example of a metric space in which B(a: r) is not the closure of the open
ball B{a; r).

d'{x, y) =
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3.32 In a metric space M, if subsets satisfy A © § = A, where 4 is the closure of 4, then
A is said to be dense in §. For example, the set ) of rational numbers is dense in R. If
A is dense in ¥ and if § is dense in 7, prove that 4 is dense in 7.

3.33 Refer to Exercise 3.32. A meiric space M is said to be separable if there is a countable
subset 4 which is dense in M. For example, R is separable because the set ) of rational
numbers is a countable dense subset. Prove that every Euclidean space R* is separable.

3.3 Refer to Exercise 3.33. Prove that the Lindelof covering theorem (Theorem 3.28)
is valid in any separable metric space.

3.35 Refer to Exercise 3.32. If Aisdense in Sandif Bisopenin §, provethat B = £ " 8.
Hint, Exercise 3.13.

3.36 Refer to Exercise 3,32, If each of A and Bis dense in .S and if Bis open in S, prove
that 4 M Bis dense in 5.

3.37 Given two metric spaces (55, d;) and (53, 43), a metric p for the Cartesian product
§, = &, can be constructed from d, and 4, in many ways. For example, if x = (x;, x3)
and y = (yr, yy) are in 8, x 5, ket plx, ) = dylxy, ¥,) + dy{x,, ¥;). Prove that p is
a metric for 8, x 8§, and construct further examples.

Compact subsets of a2 medric space
Prove each of the following statements conderning an arbitrary metric space (M, 4) and
subsets §, T of M.

338 Assume S = T & M. Then 5 is compact in (M, &} if, and ounly if, S is compact in
the metric subspace (T, d).

3.39 It § is closed and T is compact, then § © T is compact.
3.40 The intersection of an arbitrary collection of compact subsetz of M is compact,
3.41 The union of a finite number of compact subsets of M is compact,

342 Consider the metric space @ of rational nombers with the Euclidean metric of R,
Let § consist of all rational numbers in the open interval (a, 5), where @ and b are irra-
tional. Then 5 is a closed and bounded subset of Q@ which is not compact,

Miscellancous properties of the interior and the bosodary
If 4 and B denote arbitrary subsets of a metric space M, prove that:
3B inid=M-M- A
344 int (M — AY = M — 4.
3.45 int (int A) = int A.
3.46 a) int ((Y.y 4) = ()i, Gint A), where each 4, = M.
) int ((Yuer A € {Yacr (int A), if Fis an infinite coflection of subsets of M.
c) Give an example where equality does not hold in (b).
3.47 a) | Jucr Got A) < int (4o r A).
b) Give an example of a finite collection F in which eguality does not hold in (a).
3.48 8) int {dA) = O il A is open or if 4 is closed in A,
b) Give an example in which int (84) = M.
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CHAPTER 4

LIMITS AND
CONTINUITY

4.1 INTRODUCTION

The reader is afready familiar with the limit concept as introduced in elementary
calenlus where, in fact, several kinds of limits are usnally presented. For example,
the limit of a sequence of real numbers {x,}, denoted symbolically by writing

lim x, = A,

L tad ]
means that for every nomber £ >> 0 there is an integer N such that
|xy — A| = & whenever n > N,
This limit process conveys the intuitive idea that x, can be made arbitrarily close
to A provided that » is sufficiently large. There is also the limit of a function,
indicated by notation such as
lim f(x} = 4,

and

which meang that for every ¢ > 0 there is another number 8 > 0 such that
fx) — A < & whenever 0 < |x — p| < 8.

This conveys the idea that f{x) can be made arbitrarily close to 4 by taking X
sufficiently close to p.

Applications of calculus to geometrical and physical problems in 3-space
and to functions of several variables make it necessary to extend these concepis
to R®. It is just as easy to go one step further and introduce limits in the more
general setting of metric spaces. This achieves a simplification in the theory by
stripping it of unnecessary restrictions and at the same time covers nearly all the
important aspects needed in analysis.

First we discuss limits of sequences of points in a metric space, then we discuss
limits of functions and the concept of continuity.

4.2 CONVERGENT SEQUENCES IN A METRIC SPACE

Definition 4.1. A sequence {x.} of points in a metric space (S, d) is said te converge
if there is a point p in S with the following property:

For every 8 = 0 there is an integer N such that

d(x,,p) <e  whenever n > N.

70
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We also say that {x} converges to p end we write x, = p as B — oo, or simply
Xp = p. If there is no such p in 8, the sequence {x.} ix said to diverge.

NOoTE. The definition of convergence implies that
X, —+ p if and only if d{x,, p}) = 0.

The convergence of the sequence {d(x,, p)} to 0 takes place in the Euclidean metric
space R1,

Examples

1. In Euclidean space R!, a sequence {x,} is called increasing if x, £ x,,., for all n. If
an increasing sequence is bounded abaove {that is, if x, < Af for some M > 0 and
all #), then {x,} converges to the supremum of its range, sop {xy, X3, ... }. Similarly,
{x,} is called decreasing if x,,, = x, for all n. Every decreasing sequence which is
bounded below converges to the infimum of its range. For example, {1/n} converges
to 0.

2. If {a,} and {5,} are real sequences converging to 0, then {a, + b,} also converges to 0.
H O < e < a, for all n and if {a,)} converges to 0, then {c,} also converges io 0.
These elementary properties of sequences in R can be used to simplify some of the
proofs concerning limits in a general metric space.

3. In the complex plane C, let 2, = 1 + 72 + (2 — 1/n¥. Then {z,} converges to
1 + 2i because

o L+ 2P = [z, — (1 + 2)P = -+ = = 0asn - o,
nt
50 dze, 1 + 28) -+ 0,

Theorem 4.2. A sequence {x,} in a metric space (S, d} can 'canverge to at most one
point in S.
Proof. Assume that x, - p and x, - ¢. We will prove that p = g. By the
triangle inequality we have
¢ < d(p, q) < d(p, x) + d(x,, ).

Since d(p, x,) — 0 and d(x,, g) — 0 this implies that d(p, g} = O, 50 p = 4.

If a sequence {x,} converges, the unique point to which it converges is called
the limit of the sequence and is denoted by lim x, or by lim,_ , x,.

Example. In Fuclidean space R! we have lim,_, . 1f# = 0. The same sequence in the
metric subspace T = {0, 1] does not converge because the only candidate for the limit is
Oand 0 ¢ 7. Thisexample shows that the convergence or divergence of a sequence depends
an the underlying space as well as on the metric.

Theorem 4.3. In a metric space (S, d), assume x, = pand let T = {x;, x,,...}
be the range of {x,). Then:

a) T is bounded,
b} p is an adherent point of T.
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Proof. a) Let N be the integer corresponding to & = 1 in the definition of con-
vergence. Then every x, with # > N lies in the ball B(p; 1), so every point in T
lies in the ball B(p; r), where

r=1+ max {d(p, x;), ..., d(p, xy-)}.
Therefore T is bounded.
b) Since every ball B(p; £) contains a point of T, p is an adherent point of T

NOTE. If T is infinite, every ball B(p; &) contains infinitely many points of T, s0
P is an accumulation point of T.

The next theorem provides a converse to part (b).

Theorem 4.4, F?ismcmewc:pace(s,d)mdammri‘g S. Ifapointpin§is
an adherent point of T, then there is a sequence {x,} of points in T which conperges
to p.

Proof. For every integer » > 1 there is a point x, in T with d(p, x) < 1jn.
Hence d(p, x,) + 0,50 x, - p.

Theorem 4.5, I a metric space (S, d} a sequence {x,} converges to p if, and onl
N r Ll y
y’,mmbseqmce{x.(.,} converges to p. "

me: Assume x, — p and consider any subsequence {Xym}. Foreverye >0
there isan N such that » > N implies d(x,, p) < e. Since {x,,)} is a subsequence,
there is an integer M such that k(n) > N for n > M. Hence n > M implies
d(3y1, PY < £, which proves that Xy — P. The converse statement holds trivially
since {x,} is itself a subscquence. .

4.3 CAUCHY SEQUENCES
If & sequence {x,} converges to a limit P, its terms must ultimately become close to

2 and hence close to cach other. This property is stated more formally in the next

Theorem 4.6, Assume that {x,} converges in a metric space (S, d). Then for every
& > O there iy an integer N such that ' ¢

d(x, x,) < 8  whenever n > Nandm > N.
Proof. Letp = lim x,. Given £ > 0, let N be such that d(x,, p} < 22 whenever
fsaﬂ._'lh_end(x_.p)-:afzifmzﬂ. Ifboth# > Nand m > N the triangle
incquality gives us

d(xmx‘)Sﬂ(xmp)+d(p,xj<§+§=a

Th. 4.8 Cauchy Sequences b

4.7 Definition of a Cancky Sequence. A sequence {x,} in a metric space (S, d} is
called a Cauchy sequence if il satisfies the following condition (called the Cauchy
condition}:

For every & > 0 there is an integer N such that
2x, %) < &  whenevern > Nandm = N.

Theorem 4.6 states that every convergent sequence is a Cauchy sequence. The
converse is not true in a general metric space. For example, the sequence {1{s} is
a Cauchy sequence in the Euclidean subspace 7 = (0, 1] of R*, but this sequence
does not converge in T. However, the converse of Theorem 4.6 is true in every
Euclidean space R,

Theorem 4.8. In Euclidean space R* every Cauchy sequence is convergent.

Proof. Let {x,} be a Cauchy sequence in R*and let T = {x,, X;, ...} be the range
of the sequence. If T is finite, then all except a finite number of the terms {x,} are
equal and hence {x,} converges to this common value.

Now suppose T is infinite. We use the Bolzano-Weierstrass theorem to show
that 7 has an accumulation point p, and then we show that {x,} converges to p.
First we need to know that 7'is bounded. This follows from the Caunchy condition.
In fact, when 2 = 1 there i an N such that n = N implies [|x, — x| < 1. This
means that all points x, with n > N lie inside a ball of radius 1 about xy as center,
so T lLies inside a ball of radius | + M about @, where M is the largest of the
numbers [|X,l, ..., [xyll. Thercfore, since T is a bounded infinite set it has an
accomulation point p in R* {by the Bolzano-Weierstrass theorem). We show next
that {x,} converges to p.

Given £ > 0 there is an N such that |x, — x| < &2 whenever n > ¥ and
m = N. The ball B(p; =/2) contains a point x,, withm > N. Hence ifn > N we
have

so lim x, == p. This completes the proof.

Exsmples

1. Theorem 4.8 is often used for proving the convergence of a sequence when the limit
is not known in advance. For example, consider the sequence in R! defined by

— ~1
P el s
5

xu=l—%+§—i+"

Ifm > n = N, we find (by taking sucoessive terms in pairs) that

g, — Xy = | e e b | g
n
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50 ey~ a0 < cassoonas N > Ve Therefore fx,}is a Cauchy sequence and hence
it converges 1o some Hmit. It can be shown (see Bxercise 8.18) that this fimit is Jog 2,
a fact which iz not imoediately obvious.

2. Given a real sequence {2,) such that M.y — syl S $a, e —al foralln 2 1,
We can prove that {a,} converges without knowing its imit. Let &, = lg,., ~ 2}
Then® = b,,, = bf2so,byinduction, b,,, = &,/2% Henced, - 0, Also, ffm > n

we have
e §
Ly = My == Zfﬁmz - @}
Ko
hence

S 1 1
2ﬂm*ﬁ“§$ &y 5&,,(1'%‘5”5”’“@@;@%%”;)42&,,

grd

This implies that {a,} I8 a Cauchy sequence, so {a,} converges.

44 COMPLETE METRIC SPACES

Definition 4.9. A metric space {5, d) is called complete if every Cauchy sequence
in § converges in 8. A subset T of § is called complete if the metric subspace (T, d)
is complete.

Example 1. Every Euclidean space R* is complete (Theorem 4.8). In particular, RY i
complete, but the subspace T = {0, 1] is not complete,

Example 2. The space R with the metric d(x, ¥} = max, 4., x; ~ ¥ is complete.
The next theorem relates completeness with compactness,

Theorem 4,10, In any metric space (S, d) every compact subset T is complete.

Proof. Let {x,} bea Cauchy sequence in T and let 4 = {x,, x,, ...} denote the
range of {x,}. If 4 is finite, then {x,} converges 1o one of the elements of 4, hence
{x,} converges in T\

if 4 is infinite, Theorem 3.38 telis us that 4 has an sccumulation point p in
7 since T1s compact. We show pest that x, - p. Given ¢ » 0, choose N so that
oz Nand m 2 N mplies dix,, x,) < ¢/2. The ball B(p; ¢/2) contains a point
X, withm 2 N, Therefore if n = N the triangle inequality gives us

g

A% P) < (5 %) + dlxny ) < 7 j = g,

0 X, ~ p Therefore every Cauchy sequence in 7 has a limit in 7, so T is complete,

4.8 LIMIT OF A FUNCTION

In this section we consider two metric spaces (S, dy) and (7, dy), where dg and d,
denote the respective metrics, Let 4 be a subset of Sand let 14 > T hea
function from Ato T

7

7
7

SN s s

s\
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Definition 4.11, 1 p is an accumulation point of A end if b T, the notation

lim f{x} = b, m

K g
is defined to mean the following
For every 5 > O there is a 3 > O such that
dd fixy By < = whenever x € 4, x # p, and ddx.p) < 8,

The symbol in {1} is read “the limit of £(x), a5 x tends to p, 8 57 or "fix}
approaches b as x approaches p.” We sometimes indicate this by writing f(x) — &
43 X - p.

The definition conveys the intuitive idea that f(x) can be made arbitrarily
close to b by taking x sufficiently close to p. (See Fig. 4.1.) We require that p be
an accumulation point of 4 to make certain that there will be points x in 4
sufficiently close to 2, with x # p. However, p need not be in the domain of f
and b need not be in the range of £

Figure 4.1

wote, The definition can also be formulated in terms of balls. Thus, {1} holds if,
and only if, for every ball B (), there is a ball Bg{p) such that By(p) m 4 is not
empty and such that

fixye BAby whenever x € B(p) m 4, x # p.

When formutated this way, the definition is meaningful when p or b (or both} are
in the extended real number system R* or in the extended complex number system
©*. However, in what follows, it is to be understood that p and b are finite unless
it is explicitly stated that they can be infinite.

The next theorem relates limats of funciions to limits of convergent sequences.
Theorem 4,12, Assume p is an cecenadation point of A and assume be T. Then

fim f(x} = b, @

g
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if, and only if,
lim f(x,) = b, 3
Jor every sequence {x,} of points in A — {p} which converges 1o p.
Proof. 11 (2) holds, then for every ¢ > O thereis a § > 0 such that
d{fx), b) < & whenever x € £ and 0 <« dy(x, p} < 6. “4)

Now take any sequence {x,} in 4 — {p} which converges to p. For the § in (4),
there is an integer N such that n > N implies dy(x,, p} < 5. Therefore (4) implies
dr(f(x). b) < & for m = N, and hence {f{(x,)} converges to b. Therefore (2)
implies (3). .

To prove the converse we assume that (3) holds and that (2) is false and arrive
at a contradiction. If (2) is false, then for some ¢ > Gand every § > O thereis a
point x in A (where x may depend on ) such that

D<ddx,py<éd but  &H{Ax), b= - &3]

Taking & = 1fn, n = 1, 2,..., this means there js a corresponding sequence of
points {x,} in 4 — {p} such that

0 < dgix,, p) < 1jn but di{f(x), b)Y = &

Clearly, this sequence {x,} converges to p but the sequence {/(x,)} does not con-
verge to b, contradicting (3).

NOTE. Theorems 4.12 and 4.2 together show that a function cannot have two
different limits as x — p.

4.6 LIMITS OF COMPLEX-YALUED FUNCTIONS

Let (S5, d) be a metric space, let A be a subset of §, and consider two complex-
valued functions f and g defined on 4,

f:A4-C  g:A-C

The sum f + g is defined to be the function whose value at each point x of A is
the complex number f{x) + g(x}. The difference f — g, the product - g, and the
gquotient f|g are similarly defined. It is understood that the quotient is defined only
at those points x for which g{x) # 0.

The usual rules for calculating with limits are given in the next theorem.

Theorem 4.13. Let [ and g be complex-valued functions defined on a subset A of o
metric space (8, d). Let p be an accumulation point of A, and assume that

lim f(x) = a, lit g{x} = b.

a=p itp

Th. 414 Limite of Vector-Valoed Fomctions 77

Then we aiso have: : l

a} lim,., [f(x} £ g(x)] =a + &, i
b) lim,,, f(x)g(x) = ab,

0) lim,.,, f0lglx) = afb b # 0.

Proof. We prove (b}, leaving the other parts as exercises. Given e with0 < ¢ < |,
let &' be a second number satisfying 0 < & < 1, which will be made to depend on

ein a way to be described later. Thereisad > Osuchthatif x € 4 and dix, p) < 8, :
then

ifixy —al < ¢ and lg(x) — ¥ < £.
Then

N =la+ {(fixy —a) < jal + & < |a] + .
Writing f(x)g{x) — ab = fix)g{x) — 5/(x) + Bf{x) — ab, we have
[Jg(x) — abl < /0] lglx) — 8] + [B] LAx) ~ qf
< (lo] + )¢ + [blg’ = &(al + b + 1).

If we choose & = ef{lal + |3 + 1), we see that |f{x)g(x) — ab| < ¢ whenever
xe Aand d(x, p) < 8, _and this proves {(b).

4.7 LIMITS OF VECTOR-VALUED FUNCTHONS

Again, let (S, d) be a metric space and let 4 be a sabset of S, Consider two vector-
valued functions f and g.defined on 4, each with values in R¥,

f:Ad-»RY, g:A-R- !
Quotients of vector-valued functions are not defined (if X > 2), but we can define

the sum f + g, the product Af (if A is real) and the inner product 1+g by the respec-
tive formulas

(f+g)x) = Kx) + &(x), (D) = Afx),  (f-g)x) = f(x)-g(x)

for each x in 4. We then have the following rules for calculating with limits of
vector-valued functions.

Theorem 4.14. Let p be an aecumulation point of A and assume that
lim f{x) = a fimg(x) = b,

x-p v x-p
Then we also have :

a) lim,.., [fx) 4+ g(x}] = & + b,

b) lim,_, Al(x) = Aa for sve 'y scalar 2,

o) lim,.., f(x)-g(x) = a-b,

d) lim, ., [fx) = |lall.
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Progf. We prove only parts {c) and (d). To prove (¢} we write
f(x)-gx) — a-b = [f) — al-[g(x) — b] + a-Tgx) — b] + b-[Hx) ~ a).
The triangle inequality and the Cauchy-Schwarz inequality give us
O = fxy-plsy — a 'l
< [0 — al jglx} — b) + fa}

iglx) — b + b 1f(x) — al.

Each term on the right tends to 0 35 x — p, s0 f{xygixi — a-b. This proves
(€). To prove {d} note that [H{x)] — Jaii < {x) — aj.

NOTE. Let 1, ..., f, be r real-valued functions defined on Ayand et f: 4 - RY
be the vector-valued function defined by the equation

1) = (f00, 400, ... (%) fxe A

Then £y, ..., /, are called the components of , and we also write £ = {(Fisoo
to denote this relationship.
a="(a,....0)then foreach r = 1,2,. ., n we have

) ~ a] = Ji(x) — a]l = };ﬁ; Xy = all.

These inequalities show that lim.,, fix) = a if, and only if, bm,., fix) = q,
for each r.

4.8 CONTINUOUS PUNCTIONS

The definition of continuity presented in elementary caleufus can be extended to
functions from one metric space to another.

Definition 4.15. Let (S, dgy and (T, dyt be metric spaces and let 05 -+ T he a
Sunction fram 8 to T. The function § is said 16 be continuows at a polat p in & if
Jorevery s > Qthereisa b > O suckh thot

A, Ap)) < e

1f [ is continuous at every point of a subset 4 of S, we say Fis contimuons on A,

whenever ddx, py < 8,

This definition reflects the intuitive ides that points close fo p are mapped by
7 into points close 1o /{p). It can also be stated in terms of balls: A function Fis
cortinuous 4t p if and z:mig if, foreverv & > 0, there is 8 6 > 0 such that
SBs(p: &) = BAS(py: 0).
Here Bylp; 6) is a ball in 8; its image under / must be contained in the ball
Belfip); 8yin 7. (Bee Fig. 4.2) )
If p is an accwrpulation point of 8, the definition of continuity implies that

Lm f(xy = f(p).
xp

e - .

N

e

W
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Br{fipye)
e bmage of Bglp 5

L Byip 8

Figure 4.2

I p is an isolated point of 5 (a point of 5 which is not an accumulation point of
), then every f defined at p will be continuous at p because for sufficiently small &
there is only one x satisfving delx, p} < 8, namely x = p, and d{f{p), flp}} = 0.

Theorem 4.16. Let f: 8 — T be a function from one metric space (S, dg) to another
{7, dy), and assume p € S, Then fis continuous at p if, and ondy if, for every seguence
{x,} in 5 comvergent to p, the sequence { fix)} in T converges to fip}; in symbois,

i flx,) = }“(%%m x,,).
B oy gy

The proof of this theerem is similar to that of Theorem 4.12 and is left gs an
exercise for the reader. (The result can also he deduced from 4.12 but there is a
minor complication in the argument due to the fact that some terms of the sequence
{x,} vould be equal to p.)

The theorem is often described by saving that for continuous functions the
iimit symbol can be interchanged with the function svmbol. Some care is needed
in interchanging these symbols beeause sometimes { fix,)) converges when {x,}
diverges.

Exzample If x, » x and y, - ¥ in 2 melric space (5,4}, then dix, y,) —~ dlx, ¥}
(Exercise 4.73. The reader can verify that 4 is continuous on the metric space (8 x 5, g,
where p is the metric of Exercise 3,37 with &, = 8, = §.

NOTE, Continuity of a function / at a point p is called a local property of f because
it depends on the behavior of £ oply in the immediate vicinity of p. A property of
F which concerns the whole domain of fis called a global property. Thus, continuity
of fon its domain is a global property.

48 CONTINUITY OF COMPOSBITE FUNCTIONS

Theorem 4.17. Let {8, dy), (T, dyy, and (1, d,)y be metric spaces. Let £:8 - T
and g1 [(8) - U be functions, and let & be the composite function defined on 5 by
the eguation

hxy = g{fix)} Jorxin§S.

If £ is continuous at p and if g is continuous af f{p}, then k iy contiruous af p.
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Froof. Let b = fp). Given e > 0, there is 2 8 > O such that
difg(y), g(b)) < &  whenever di{y, b) < 4.
For this § there is a & such that
dAL ) < 8 whenever dolx, p) < &
Combining these two statements and taking v = fix}, we find that
do{ixs, RpY} < & whenever dyix, p)y < &,

50 A s contiguous &t p.

4,16 CONTINUOUS COMPLEX-VALUED AND VECTOR-VALUED FUNCTIONS

Theorem 4.18. Let [ and g be complex-valued functions continuous at @ point p in
a metric spuce (8, dy. Then f + g, f — g, and {5 are eackh vontinuous at p. The
quotient fly is also continuous at p if glpy # 0.

FProof. The result is trivial if p is an isolated point of 8. ¥ p is an accumulation
point of 5, we obtain the result from Theorem 4,13,

There is, of course, a corresponding theorem for vector-valued functions, which
is proved in the same way, using Theorem 4.14,

Theorem 4.19. Let T and g be functions continuous at a point p In & metric space
(8, d, and assume that { and g have values in R*. Then each of the following is
continuous at p: the sum § + g, the product Af for every real i, the iner product
f-g, wld the morm J1].

Theovem 4.20. Lot f,, .. ., [, be n real-valued functions defined on a subser 4 of a
meiric space (S, dg), and Tt £ = {f,, ..., ). Then § is contimuous ot @ point p
of A if and only if each of the fiunctions f, . . ., [, is continnous at p.

Progf. If pis an isolated point of 4 there is z}t}ihiﬁg o prove. If # is an accumula-
tion point, we note that f{x) — #p) a3 x — pif and only i .0 - £{p) for each
ke=12,...,n

411 EXAMPLES OF CONTINUOUS FUNCTIONS

Let § = C, the complex plane. It is a trivial exercise to show that the following
complex-valued functions are continuous on €

a} constant functions, defined by flzy = e for every z in
b} the identity function defined by f{z) = z for every z in C.

Repeated application of Theorem 4,18 establishes the continuity of every poly-
nomial:
fley = ag 4+ a2 4 a2 4 4 g

the o, being complex numbers.

.
;

Th, 421 Coutioudty and Taverse Tmages of Open o Closed Sels Bl

if % is & subset op C on which the polynomial £ does not vanish, then 1/f is
continuvous on 5. Therefore a rational function gf, where ¢ and fare polynemisls,
is pontinuous &t those points of € at which the denominator does not vanish,
The familiar wabvalued functions of elementary calculus, such as the ex.
ponential, trigonon stric, and logarithmic functions, are all continuous wherever
they are defined. The continuily of these elementary functions justifies the common
practice of evalupating cerlain lmits by substituting the hmiting valve of the
*independent variable”; for example,
fim o = & = 1
Ead
The continuity of the complex exponential and trigonometric functions is a
consequence of the continuity of the corresponding reabvalued functions and
Theorem 4,20,

4.12 CONTINUITY AND INVERSE IMAGES OF OPEN OR CLOSED SETS

The concept of inverse image can be used 1o give two important global descriptions
of continpous functions. :

4.2F Definition of inverse imuge. Let {18 — T be g function from g set 5 fo a
set T. If Y is a subset of T, the inverse image of ¥ under f, denoted by £ 1Y), is
defined 1o be the largest subset of S which [ maps inte ¥, that is,

FHYy={x:xe5 and fixye ¥}

werrE, IF £ has an inverse function /7%, the inverse image of ¥ under fis the same
as the image of ¥ under /7%, and in this case there is no ambigueity in the notation
£7HYy. Nowesisothat /"My g /"B fd g B T

Theovem 4.32. Let .8 = T he a fwwtion from Sto 7. X c Sand Y & T,
then we have !

al X = £ Y Y implies fXY & 1.

by ¥ = fIX) implies X < £™HY).

Fhe proof of Theorem 4.2 is a direct transtation of the definition of the sym-
bols £ HY) and LX), and is left to the reader. It should be sbserved that: in
general, we cannot conclude that ¥ = F{¥) implies ¥ = 7 Y. (See the exampie
in Fig. 4.3

Figure 4.2
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Note that the statements in Theorem 4.22 can also be expressed as follows:

ey, xe/ ')
Note also that f~*(4 u B) = f~1(4) u f "1(B) for all subsets A and B of T,

Theorem 4.23. Let f: 8 > T be a finction from one meiric space (S, dg) to another
(T, dy). Then [is contimwous on 5 if, and only if, for every open set ¥ in T, the
inverse image (¥} is open in 5.

Progf. Let f be continuous on S, let Y be open in T, and let p be any point of
S7H¥). We will prove that p is an interior point of f~1(¥}. Let y = f{p). Since
¥ is open we have B,{y; ¢} © Y for some £ >> 0. Since f is continuons at p, there
is 1 & > O such that f(By(p; 8)) = By(y; ¢). Hence,

By(p; ) € £ Lf(Blp: )] < /' (Bely; ) = £71(X),

50 p is an interior point of £~ YY),

Conversely, assume that f ~*(¥) is open in & for every open subset ¥ in 7.
Choose pin Sand let y = f(p). We will prove that fis continuous at p. For every
8 > 0, the ball Br(y; e} is open in T, so f~'(Br(y; ¢)} is open in S. Now,
P &S (By(p; &)} so there is a & > 0 such that Bg(p; 8) < I Y Bry; €)). There-
fore, f(By(p; 8)) = B;(y; & so fis continuous at p.

»

Theorem 4.24. Let f: 8 — T be a function from ene metric space (S, ds) to another
(T, dr). Then [ is continuous on S if, and only if, for every closed set Y in T, the
inverse image f ~ YY) is closed in 8.

Proof.  Yisclosedin T, then T — Yis open in 7 and
ST~ )= 8~ 7YY),
" Now apply Theorem 4.23. A

Examples. The image of an open set under a continucus mapping is not necessarily open.

A simple counterexample is a constant function which maps all of § onto a single point

inR'. Similarly, the image of a closed set under a continuous mapping need not be closed.

For Examfg)le. the real-valued function f{x) = arcian x maps R onto the open interval
—nf2, =f2).

4.13 FUNCTIONS CONTINUQUS ON COMPACT SETS

Thf: l?exl theorem shows that the continuous image of a compact set is compact.
This is another global property of continuous functions.

Theorem 4.35__. Let f 1 § — T be a function from one metric spuce (S, dg) to another
(T, dr}. If £ is continuous on a compocr subset X of 8, then the image f(X)isa
compact subset gf T} in particular, {(X) is closed and bounded in T.

Th. 4.29 Fuctions Cowtinnous on Compact Sets 5

Proof. Let Fbe an open covering of f(X), so that f{X) |} .r 4. We will show
that a finite number of the sets 4 cover f(X). Since fis continuous on the metric
subspace (X, d5) we can apply Theorem 4.23 to conclude that each set f ~'(A) is
open in (X, d5). The sets f~'(4) form an open covering of X and, since X is
compact, a finite number of them cover X, say X = /71 4,) v -~ f™{4,).
Hence
JX)y s fI D)) = U] v o LA
c AUV A,

s0 f(X}is compact. As a corollary of Theorem 3.38, we see that f{X) is closed and
bouunded.

Definition 4.26, A function 12 8§ — R* is called bounded on S if there is a positive
number M such that |f(x)] < M for all x in §.

Since f is bounded on § if and only if £(S) is a bounded subset of R*, we have
the following corollary of Theorem 4.25. '

Theorem 4.27. Let 1.8 — R® be a function from a metric space S to Euclidean
space R®. If f is contimious on a compact subset X of S, then f is bounded on X.

This thearem has important implications for real-valued functions. If 1 is
real-valued and bounded on X, then f{X) is a bounded subset of R, s0 it has a
supremum, sup f{X), and an infimum, inf f(X). Morcover,

inf {X) = fix) < sup f{X) for every xin X,

The next theorem shows thal a continuous f actually takes on the values sup f{X)
and inf f£(X) if X is compact.
Theorem 4.28. Let f: 5 — R be a real-valued function from a metric space S to

Evuclidean space R. Assume that J is continuous on a compact subset X of S. Then
there exist points p and q in X such that

Apy =il fiX) and flg) = supfX)
NoTE. Since f(p) < fx) < f(g) for all x in X, the numbers f{p) and f(g) are

called, respectively, ihe absolute or global minimum and maxipmem values of
Sfon X,

Proof. Theorem 4.25 shows that (X} is 2 closed and bounded subset of R. Let
m = inf f(X). Then m is adherent to f{X) and, since J(X} is closed, m € f{X).
Therefore i = f(p) for some p in X. Similarly, f{g) = sup f{X) for some gin X.

Theorem 4.29. Letf: S — T be a funclion from one metric space (S, ds) to another

(T, dy). Assume that f is one-to-one on S, so that the inverse function [~ exists.
If S is compact and {f [ is continuous on S then §~* is continuous on J(S).

Proof. By Theorem 4.24 (applied to £~ ') we need only show that for every closed
set X in § the image f{X) is closed in 7. (Note that f{X) is the inverse image of
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Xunder £ ™) Since X is closed and § is compact, X is compact (by Theorem 3.39),
80 (X} is compact (by Theorem 4.25) and hence f{X) is closed (by Theorem 3.38).
This completes the proof.

Example. This example shows that compactness of § is an essential part of Theorem
4,29, Let § = [0, 1) with the usual metric of R* and consider the complex-valued fonction
£ defined by

Jxy = ™% for0 = x = 1.

This is a one-to-one continuous mapping of the half-open interval [0, 1) onto the unit
circle |z| = 1 in the complex plane. However, /~! is not continuous at the point £{(),
For example, if x, = 1 — 1/n, the sequence {f{x,)} converges to f(0) but {x,} doss not
converge in 5.

414 TOPOLOGICAL MAPPINGS (HOMEOMORPHISMS)

Definition 4.30. Let £:5 - T be a function from one metric space (8, dg) to
another (T, dy). Assume also that f is one-to-one on S, so that the inverse function
FYexists. If f is continuous on § and if f~* is continuous an f(S), then f is called
a topological mapping or & hemeomorphism, and the metric spaces (S, dg} and
(f(5), dy} are said to be homeomorphic.,

If f is a homeomorphism, then so is f~'. Theorem 4,23 shows that a homeo-
morphism maps open subsets of S onto open subsets of /(S). 1t also maps closed
subsets of § onto closed subsets of £(.S).

A property of a set which remains invariant under every topological mapping
is called a fopological property. Thus the properties of being open, closed, or
compact are topological properties.

An important example of 2 homeomorphism is an isomerry. This is a function
£ 8 — T which is one-to-one on § and which preserves the metric; that is,

d(f(x), f(»)) = dlx, y)

for all points x and p in S. H there is an isometry from (S, dg) to (f(S), dy} the
two metric spaces are called isometric.

Topological mappings are particularly important in the theocy of space curves,
For example, a simple arc is the topological image of an interval, and a simple
closed curve is the topological image of a circle.

415 BOLZANO’S THEOREM

This section is devoted to a famous theorem of Bolzano which concerns a global
property of real-valued fonctions continuous on compact intervals [a, 5] in R,
If the graph of f lies above the x-axis at a and below the x-axis at &, Bolzano's
theorem asserts that the graph must cross the axis somewhere in between. QOur
preof will be based on a jocal property of continuous functions known as the
sign-preserving property.

Th. 433 Bolzano's Theorem as

Theorem 4.31. Let f be defined on an interval § in R. Assume that f is continuous
at « point ¢ in S and that f{€) % 0. Then there is a 1-ball B(c; §) such that f(x}
kas the same sign as f{c) in Bl 8) n S.

Proof- Assume f{¢) > 0. Forevery ¢ > Othereisad > 0 such that
A —s<fix) <fley+ &  whenever xe Ble; &) n S
Take the § corresponding to ¢ = f{c)/2 (this £ is positive). Then we have
() < fix) < £f(cy  whenever x e Blc; é) n S,

50 f(x) has the same sign as Fley in Ble; 8) n S. The proof is similar if (¢} < 0,
cxcept that we take ¢ = —4§j(c).

Theorem 4.32 ( Bodzano). Let f be real-valued and continuous on a compact interoal
[a, 8] in R, and suppose that f(a) and f(b) have opposiie signs; that is, assume
(@) f(B) < O. Then there is at least one point ¢ in the open interval (a, b) such that
fe) = 0.

Proof. For definiteness, assume f(a) > 0 and (B} < 0. Let
A={x:xela b] and fix) = 0}

Then A is nonempty since a € A, and 4 is bounded above by . Let ¢ = sup A.
Then a < ¢ < b. We will prove that f{c}) = 0.

If f(c) # O, there is a 1-ball B(c; §) in which f has the same sign as f(c). If
f(c) > 0, there are points x > ¢ at which f{x) > 0, contradicting the definition
of ¢. K f{c) < 0, then ¢ — {2 is an upper bound for A, again contradicting the
definition of ¢. Therefore we must bave f{c) = 0.

From Bolzano’s theorem we can easily deduce the intermediate value theorem
for continuous fungtions.

Theorem 4,33, Assume  is real-valued and continuous on a compact interval S in
R. Suppose there are two points o < B in § such that f(o) # f(F). Then [ iakes
every value between f(2) and f(B) in the interval (e, B).

Proof. Let k be a number between f{a) and f(§) and apply Bolzano’s theorem to
the function g defined on [=, §] by the equation g{x} = f(x) — k.

“The intermediate value theorem, together with Theorem 4.28, implies that the
continuous image of a compact interval S under a real-valued function is another
compact interval, namely,

[inf {$), sup f(S}].

(If  is constant on S, this will be a degencrate interval) The next section extends
this property to the more general seiting of metric spaces.
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4.16 CONNECTEDNESS
This section describes the concept of connectedness and its relation o continuity,

Definition £34. A metric space S is called disconnected ifS=Av B, where A

and B are disjoint nonempty open sets in S. We call § if it i ]
;e comer:tgd if it is not dis-

NOTE. A subset X of a metric space 8 is called connected if, regarde

_ A . When d as
metric subspace of S, it is a connected metric space. *
Examples
1. The metric space § = R — {0} with the usual Euclidean metric is disconnected, since

it is the union of two digjoint nonempty open the positi

ho union ' sets, the positive real numbers and the

2. Every open mterval in R is connected. This was i i

. e el proved in Section 3.4 as a conse-
A The set Q of rational nurithers, regarded as a metric subspace of i

The Euclidean space R?,

is disconnected, In fact, Q) = A U B, where A consists of all rational numbers

< V2 and B of all rational numbers > 2. Similarly, every ball in © is disconnected.

4. Every metric space § contains nonempty connected i
tho ot (o3 b ’ ty subsets. In fact, foreach pin §

To n:'latc connectedness with continuity we introduce the concept of a two-valued
function.

Definition 4.35. A real-valued function f which is continuous tric sp ‘
said to be two-velued on S f (5} = {0, 1). on @ metric space S is

I.n other words, a two-valued function s a comtintous fumction whose only
possible values are 0 and 1. This can be regarded as a continuous function from §
to the metric space T = {0, 1}, where T has the discrete metric. We recall that
every subset of a discrete metric space T is both open and closed m 7

Theorem 4.36 A metric space S is connected if, and only i
Jumction on 8 is constant. ’ > 8 coery tworvalued

Proof. Assume § is connected and let £ be a two-valued function on S. We must
§how that f is constant. Let 4 = f~({0}) and B = f~({1}) be the inverse
images of ﬂl(-i subsets {0} and {1}. Since {0} and {I} are open subsets of the
discrete metric space {0, 1}, both A and B are open in S. Hence, S=Au B
where 4 and B are digjoint open sets. But since § is connected, either 4 is empt;r
and B = S, orelse Bisempty and 4 = 5, In either case, f is constant on S
Conversely, assume that S is disconnected, so that S = 4 U B, where 4 'and

B are disjoint nonempty open subsets of 5. We will exhibit 2 i
jom! . two-valued
on & which is not constant. Let function

0 .
ﬂx)={ ffxEA,
1 if x ¢ B.
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Since 4 and B are nonempty, f takes both values 0 and 1, so f is not constant,
Also, fis continuous on § because the inverse image of every open subset of {0, 1}
is open in 8.

Next we show that the continuous image of a connected set is connected.

Theorem 4.37. Let f:5 — M be a function from a metric space § to another
metric space M. Let X be a connected subset of S. If f is continuous on X, then
F(X) is @ connected subset of M.

Proof. Let g be a two-valued function on f(X). We will show that g is constant.
Consider the composite function k defined on X by the equation A(x} = g =N,
Then k is continuous on X and can only take the values 0 and 1, so & is two-valued
on Y. Since X is connected, & is constant on X and this implies that g is constant
on f(X). Therefore f(X} is connected.
Example. Since an interval X in R! is connected, every continuous image f(X) is con-
nected. If £ has real values, the image f(X) is another interval. If £ has values in R”, the
image f(X) is called a curve in R". Thus, every curve in R is connected.

As a corollary of Theorem 4.37 we have the following extension of Bolzano's
theorem.

Theorem 4.38 (Intermediate-value theorem for real continuous functions). Let f be
real-valued and continuous on a connected subset S of R*. If [ takes on two different
vafues in S, say a and b, then for each real ¢ between a and b there exists & point X
in & such that f(x) = ¢

Proof. The image f{5)} is a connected subset of R!, Hence, f(5) is an interval
containing a and b (see Exercise 4.38). If some value ¢ between ¢ and b were not
in f(5), then f(S) would be disconnected.

4.17 COMPONENTS OF A METRIC SPACE

This section shows that every metric space § can be expressed in a unique way as
a union of connected “pieces” called components. First we prove the following:

Theorem 4.39. Let F be a collection of connected subsets of a meiric space § such
that the intersection T = (Vaer A is not empty. Then the union U = \Jjer A is
connected.

Proof. Since T # 9, there is some ¢ in T. Let f be a two-valued function on U.
We will show that f'is constant on U by showing that f(x) = f(¥) for all x in U.
If x & U, then x & A for some A in F. Since 4 is connected, f is constant on A4
and, since ¢ & 4, f(x) = f{r).

Every point x in a metric space S belongs to at least one connected subset of
S, namely {x}. By Theorem 4.39, the union of all the connected subsets which
contain x is alse connected. We call this union a component of S, and we denote it
by U(x), Thus, U{x) is the maximal connected subset of § which contains x.
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Theorem 4.40. Every point of a metric space S belongs o u uniguely determined

component of S. In other words, the components of 8 form a collection of disjoint
sets whose union is 5,

Proof. Two distinct components cannot contain a point x; i
) i point x; otherwise Theo
4.39) their union would be a larger connected set containing x. ®r e

418 ARCWISE CONNECTEDNESS

This section describes a special property, called arcwise comneciedness, which is
possessed by some (but not all} connected sets in Euclidean space R,

Drﬁnit!bui.ﬁ.‘ A set 8 in R" is called arcwise connected if for any two points a
and b in § there is a continuous fimction £ : [0, 1] — S such that
i) =a ad Kl)=0>b.

NOTE. Such a function is called 2 parh from & to b. I KO) = f(1), the i

i 2 p \ unage of
io, l]ulfdcrft_sgaﬂedanarcjoxmnglandb. Thus, S is arcwise connected if
everypmrofdmhnctpointsin.‘s‘mnhejuimdbyanmlyiugin.ﬁ Arcwise
connected sets are alzfo.c?]led pathwise comnected. I f(f) = th + (1 — )= for
0 < 1 < 1, the curve joining 8 and b is called a line segment.
Examples
1. Every convex set in B is arcwise connecied, since the kne joining i

set § segrent two

of such a set es i the set, Inmicuhr,warymtnﬂismwisgcg:nmd. pomt

2. The set in Fig. 44 (2 mion of two tangent closed disks) is arcwise connecied.

Figwe 4.4
3. The set in Fig. 4.5 consists of those points on the curve described by ¥ = sin {1/x),

Q < x £ 1, along with the points on the horizontal segment ~1 < x < 0. This set
is connected but not arcwise connected (Exercise 4.46). ‘

Figure 4.5
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The next theorem relates arcwise connectedness with connectedness.

Theorem 4.42. Every arcwise connected set S in R® is connected.

Proof. Let g be two-valued on S. We will prove that g is constant on §. Choose
apointain & Ifxe §, join a to x by an arc I lying in §. Since I'" is connected,
g is constant on T so g{x) = g(a). Butsince x is an arbitrary point of S, this shows
that g is constant on §, so §is connected.

We have already noted that there are connected sets which are not arcwise
connected. However, the concepts are equivalent for open sets.

Theorem 4.43. Every open connected set in R* is arcwise connected.

Proof. Let S be an open connected set in R™ and assume x € 5. We will show that
x can be joined to every point y in § by an arc lying in §. Let 4 denote that subset
of S which can be so joined to x, and let B = § — A. Then 8 = A w B, where
A and B are disjoint. We will show that 4 and B are both open in R”,

Assume that a € 4 and join a to x by an arc, say [, lying in S. Since 2 §
and § is open, there is an n-ball B(a) & S. Every ¥ in B(a) can be joined to a by
a line segment (in S) and thence to x by I'. Thus ye 4 if y € B(a). That is,
B(a) & A, and hence A is open.

To see that B is also open, assume that b € B. Then there is an n-ball B(by = §,
since S is open. But if a point y in B(b) could be joined to x by an arc, say I”,
lying in §, the point b itself could also be so joined by first joining b to y (by a
line segment in B(B)) and then using I But since b ¢ A4, no point of B(b} can be
in A. That is, B(b) = B, so B is open.

Therefore we have a decomposition § = 4 v B, where 4 and B are disjoint
open sets in RY. Moreover, A is not empty since x € A. Since 515 connected, it
follows that B must be empty, s0 § = 4. Now A is clearly arcwise connected,
because any two of its points can be suitably joined by first joining each of them to
x. Therefore, S is arcwise connected and the proof is complete.

NOTE. A path f:[0, 1] — S is said to be polygenal if the image of [0, 17 under £
is the union of a finite number of line segments. The same argument used to prove
Theorem 4.43 also shows that every open connected set in R is polygonally con-
nected. That is, every pair of points in the sct can be joined by a polygonal arc
lying in the set.

Theorem 4.44. Every open set S in R" can be expressed in one and only one way as a
countable disjoint union of open connected sets.

Proof. By Theorem 440, the components of § form a collection of disjoint sets
whose union is §, Each component T of § is open, because if x € T then there is
an n-ball B(x) contained in S. Since B(x) is connected, B{x) = T, so Tis open.
By the Lindelsf theorem (Theorem 3.28), the components of S form a countable
collection, and by Theorem 4.40 the decomposition into components is unique.

Definition £.45. A set in R" is called a region if it is the union of an open connected
set with some, none, or all its boundary points. If none of the boundary points are




included, the region is called an open region. If all the boundary points are included,
the region is called a closed region. ,

NOTE. Some authors use the term domain instead of open region, especially in the
compiex plane.

4.19 UNIFORM CONTINUITY

Suppoase f is defined on a metric space (S, dy), with values in another metric space
(TE dr), and assume that /'is continuous on a subset 4 of S. Then, given any point
p mAA iﬂd any ¢ > 0, there is a 6 > 0 (depending on p and on &) such that, if
x & A, then

d{f(x), f(p)) < &  whenever de(x, p) < 3.

In general we camjot expect that for a fixed & the same value of & will serve equally
well f:i:ll‘ every point p in A. This might happen, however. When it do¢s, the
functien is called smiformiy continuous on A.

Definition 4.46. Let [ : S — T be a function from one metric space (S, ds) to another

(7. dy). Then fis said to be uniformly continuous on a subset A of § if the following
condition holds :

For every € > O there existy a § > 0 (depending only on &) such that ifxed
and p e A then

d{f(x). f(p)) < & whenever dfx, p) < 6. )

To empha‘size the difference between continuity on A and uniform continity
on 4 we consider the following examples of real-valued functions.

Examples

1. Let /() = 1fx for x > 0 and take A = (0, 1]. This function is continuous on .4
but net uniformly continuous on 4. To prove this, let £ = 10, and suppose we could
findad, 0 < § < 1, to satisfy the condition of the definition. Takingx = 4, p = §/11
we obtain [x — p| < & and ’

11

)~ f(p)| = -,

1_10
- = >
d 4

F
Hence, for these two points we would always have [ — fip)| > 10, contradicting
the definition of uniform continuity,

2 Let jf’(x) = x*if x€R! and take A = (0, 1] as above. This function is uniformly
continuouws on A. To prove this, observe that
1) — £ = Ix* — p?| = |(x — pYx + p)| < 2jx - p). -

l‘f |x ~ p| < 8, then 1f(x) ~ f(p)| < 25. Hence, if & is given, we need only take
d = #/2 to guarantee that |f(x) — f(»)| < = for every pair x, p with |x — p| < 4.
This shows that fis uniformly continuous on A.

10.

Th. 4.47 Uniform Continuity and Compact Sets L]

An instructive exercise is 10 show that the function in Example 2 is not uni-
formly continuous on R'.

4,20 UNIFORM CONTINUITY AND COMPACT SETS

Uniform continuity on a set A implies continuity on 4. (The reader should verify
this.) The converse is aiso true if A4 is compact. :

Theovem 4.47 (Heine}. Let f: 8 — T be a function from one metric space (S, ds)
to another (T, d;). Let A be a compact subset of 5 and assume that f is continuous
on A. Then f is uniformly continuous on A.

Proof. Let & > 0 be given. Then each point a in 4 has associated with it a bali
Bgla; r), with r depending on &, such that

d{ 0, fla)) < ; whenever x € Bya; r) n A.

Consider the collection of balls Bg{a; r/2) each with radius r/2. These cover 4
and, since 4 is compact, a finite number of them also cover A, say

Ac U B:(aa;&)-
k=1 2

In any bali of twice the radius, B(g,; r;), we have
de{f(x), fla)} < § whenever x € Bya,; n) n A

Let & be the smallest of the numbers r,/2, ..., raf2. We shall show that this é

works in the definition of uniform continuity.
For this purpose, consider two points of A, say x and p with di(x, p) < 8.
By the above discussion there is some ball Bs(a,; r,/2) containing x, so

d{fe) ftap) < 7.

By the triangle inequality we have

de(p. ) < dg(p, x) + dglx, a) < & + % < 5; +% = T

Hence, p e Bda,; ) n S, so we also have 4{f(p), f(&,)) < &/2. Using the
triangle inequality once more we find

d{f(x), f(P) = de{f(x), fla)) + dr{f(ap), f(P)) < ; + f =&

This completes the proof.
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421 FIXED-POINT THEOREM FOR CONTRACTIONS

Le} f:8 — S be 2 function from a metric space (S, d} into itself. A point p in
5 is calledh a ﬁ’xed_ ,qar'm of fif flp) = p. The function fis called a contraction of
5 if there is a positive number @ < | (called a contraction constant), such that

d(f(x), f(N) < adlx,yy foralix, yin §. )
Clearly, a contraction of any metric space is uniformly continuous on §.

Theorem 4.48 (Fixed-point theorem). A contraction f of a complete metric space S
has & unigue fixed point p.

Progf. If p and p’ are two fixed points, (7) impli 3 4
) plies d(p, p) < ad(p, p'), so
so dip, p'}y = .0 and p = p’. Hence f has at most one fixed point.
To prove it has one, take any point x in § and consider the sequence of iterates:

x fx), f{fx), ...
That is, define a sequence {p,} inductively as follows:

Po = X, Pria =:jtp;L n =’091929'“
We will prove that {p,} converges to a fixed point of £ First we show that {p_} is
& Cauchy sequence. From (7} we have : ’
4(?!!'{-1! pll) = d(f(pn}vf(pn— I}) s ad{p,,, Pn- ])9
s0, by induction, we find

d(Pas1s P} < 2" d(py, po) = o,
where ¢ = d(p,, p,). Using the triangle inequality we find, for m > n,

m—1

-1
WP ) < D A prernp) e D= T ® o E
ey T=n 1 — P —a

Sir_lce o — Dasn w0, this inequality shows that {p,} is a Cauchy sequence. But
S is complete so there is a point p in S such that p, — p. By continuity of /,

7i9) = {tim 2.) = fim 55 = im g0, = b,

LT

so p is a fixed point of . This completes the proof.

Man}r importaqt existence theorems in analysis are easy consequences of the
ﬁxcd'pmnt th'eorem. Examples are given in Exercises 7.36 and 7.37. Reference
4.4 gives applications t6 numerical analysis,

4.22 DISCONTINUITIES OF REAL-VALUED FUNCTIONS

The rest of this chapter is devoted to speci i .
pecial properties of real-valued fi
defined on subintervals of R, pe valued functions

Def. 4.49 Discontinwities of Real-Valned Functions 93

Let f be defined on an interval (a, §). Assume celg 8). If Fix) -~ A as
x = ¢ through values greater than ¢, we say that A is the righthand limit of fat ¢
and we indicate this by writing
fim f(x) = A.

x—vet
The righthand limit 4 is also denoted by f{c+). In the ¢, & terminology this means
that for every ¢ > O thercisa § > 0 such that
[f(X) — fle+) <& wheneverc < x <c+d<b

Note that f need not be defined at the point ¢ itself. £/ is defined at ¢ and if
fle+) = f(c), we say that fis continuous from the right at ¢.
Lefthand limits and continuity from the left at ¢ arc similarly defined if

cela b
Ifa < ¢ < b, then fis continuous at ¢ if, and only if,

f©) = fle+) = fle—)

We say c is a discontimuity of fif fis not continuous at . In this case one of
the following conditions is satisfied:

a) Either flc+) or flc—) does not exist.

b) Both f(c+) and f{c—) exist but have different values.

¢) Both f{c+) and f{c—) exist and f{c+) = flc—) # f(c)-
In case (c), the peint ¢ is called a removable discontinuily, since the discontinuity

could be removed by redefining £ at ¢ to have the valve f(c+) = fic—). Incases
(a) and (b}, we call ¢ an irremovable discontinuity because the discontinuity cannot

be removed by redefining f at c.
Definition 4.49. Let f be defined on a closed interval [a. b} If flc+) and fic—})
both exist at some interior point ¢, then;

a) fle) — flc=) is called the lefthand jump of f at ¢,

b) fle+) — flc) is called the righthand jump of f at ¢,

¢} fle+} — fle—) is catled the jump of f at c.
If any one of these three numbers is different from O, then ¢ is called a jumyp dis-
contimdty of §.

For the endpoints a and b, only one-sided jumps are considered, the righthand

jump at a, fla+) — f(a), and the lefthand jump at b, /(5) — Jib—).

Examples
1, The function f defined by f{x} = xflxl if x # 0, f(0) = A, has a jump discontinuity
at 0, regardless of the value of A. Here f{0+) = 1 and f{0—) = — . (See Fig. 4.6.)
2. The function f defined by f{x) = [ if x # 0, f(0) = §, has a removable jump dis-
continuity at 0. In this case f(0+) = f(0-) = L
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3 The fuqction S defined by fix) = 1jx if x # 0, fi0) = A, has an irremovable dis-
continuity at G. In this case neither f(0+) nor f{0~ ) exists. (See Fig. 4.7.)

4. The f‘unFliDn f datﬁned by f(x) = sin (1/x}if x # 0,£(0) = A, has an irremovable dis-
contmuity at § since neither 70+ ) nor f(0—) exists. (See Fig. 4.8.)

. The function / defined by 7(x) = xsin (1/x) if x % 0, (@) = 1, has a removable
Jurmp discontinuity at 0, since f(0+) = f(0—) = 0. (See Fig. 4.9)

AW

Figure 4.3 Figure 4.9

A%

423 MONOTONIC FUNCTIONS

Dgﬁru‘tf'an ¢.50.. Let f be a reat-valued function defined on a subset S of R. Then
)‘f :g said 10 be increasing {or nondecreasingy on § if Jor every pair of points x and y
in 8,

X<y implies  f(x) < fy).

Ifx < yimplies f{x) < fUy), then [ is said to be strictly increasing on S. ( Decreasing

Junctions are simitarly defined) A function is called monatonic on S if it is increasing
on S or decreasing on §.

. Iffis an.mcreasin’g function, then —£ is a decreasing function. Because of this
simple fact, in many situatiofs involving monotonic functions it suffices to consider
only the case of increasing functions.

Th. 4.53 Monotooic Functions 95

We shall prove that functions which are monotonic on compact intervals
always have finite right- and lefthand limits. Hence their discontinuities (if any)
must be jump discontinuities. :

Theorem 4.51, 1ff is increasing on [, b), then f{c+) and f(c—) both exist for each
¢ in (a, b) and we have

fe=) 5 fle) < flet)
At the endpoinis we ﬁavf
flay < fla+) and  fB-) < f(B)

Progf. Let 4 = {f{x):a < x < ¢}. Since f is increasing, this set is bounded
above by f{c). Let « = sup 4. Then z < f{c) and we shall prove that fle=)
exists and equals a.

To do this we must show that for every £ > 0 there is a 8 > 0 such that

¢c=-d<x < implies 1fix) — al < e.

But since « = sup A, there is an element f(x,) of A such thate — & < f{x() = .
Since f is increasing, for every x in (x, ) we also have & — ¢ < Jix) £, and
hence |f(x) — a] < &. Therefore the number § = ¢ — x| has the required
property. (The proof that f{c+) exists and is = f(¢) is similar, and only trivial
modifications are needed for the endpoints.)

There is, of course, a corresponding theorem for decreasing functions which
the reader can formulate for himself. :

Theorem 4.52. Let [ be strictly increasing on a set S in R. Then [ =1 exists and is
sirictly increasing on f(5).

Proof. Since fis strictly increasing it is one-to-one on S, so ™7 exists. To sce
that £~ is strictly increasing, let y, < y, be two points in f(S)and let x, =F"x),
x; = £~ y;). We cannot have x; = x;, for then we would also have y, = y,.
The only alternative is

X, < Xgy

and this means that £ ~! is strictly increasing.
Theorem 4.52, together with Theorem 4.29, now gives us:
Theorem 4.53. Les  be stricily increasing and continuous on a compact interval

[a, ¥]. Then f~* is continuous and strictly increasing on the interval { f(a), £(bY].

NOTE. Theorem 4.53 tells us that a continuous, strictly increasing function is a
topological mapping. Conversely, every topological mapping of an interval [a, 8]
onto an interval [¢, ¢] must be a strictly monotonic function. The verification of
this fact will be an instructive exercise for the reader {Exercise 4.62).




2 Limits and Continuity

EXERCISES

Limits of sequences
4.1 Prove each of the following statements abouf sequences in C.
ay " = 0 if|z| < 1; {"} diverges if |z] > 1.
by 1F z, — O and if {c,} is bounded, then {c,z.} — 0
cy z°n! - 0 for every complex z.
d) Ifa, = Vn® + 2 — n, thena, » 0.
,«:;21 Ii a;a; i (.-.":v',:ll} + a2 foralln = 1, show that o, — (a, + 24,)/3. Hint. Tpyz =

430 < xy < landif x,py =1 — 1 -x,,fcralln‘»l prove that {x,} is a
‘ decreasing sequence with limit 0. Prove also that x. et 1/Xy — £

4.4 Two sequences of _posmv? integers {a,} and {b,} are defined recursively by taking
4y = b, = 1 and equating rational and irrational parts in the eguation
dy+ bV2 = (ay_, + b N2 fornz L
Prove that aj — 263 = 1 for o > 2. Deduce that a,;b - /2 through values > v2,
and that 25,fa, — + 2 through values < A2,
4.5 A real sequence {x,} satisfhes 7x,,; = x} + 6form = 1. If x; = 1, prove that the
sequence increases and find its limit. What happens if x; = $orifx, = §7?

46 10 | < 2 and |@p2 — @ay| < $al,y — all for all u = 1, prove that {a,}
converges.

a::.? I)n 4 metric space (8, 4), assume that x, —» x and y, — y, Prove that Alxg, ¥ =
X, ¥).

4.? Prove that i1.1 a compact metric space (S, d), every sequence in 5 has a subsequence
Whhll:h converges in 5. This property alsc implies that § is compact but you are.not re-
quired to prove this. (For a proof see either Reference 4.2 or 4.3.)

4.9 Let 4 be a subsct of a metric space §. If A is cowplete, prove that 4 is closed. Prove
that the converse also helds if § is complete.

Limits of functions
ROTE, In Exercises 4.10 through 4.28, all functions are real-valued.
4.10 Let f be defined on an open interval (g, &) and assume x ¢ (g, 8. Consider the two
statemnents
) lim [f(x + 1) — S = 0; by lim [f(x + B — fx — B = 0.

Prove that (a) always implies (b}, and give an example in which (b} holds but (a) does not.
4.11 Let f be defined on R*. If
lim  f(x, ») =

{x, )i b)

and if the one-dimensional limits lim,_,, f(x, ) and lim,_,,, f(x, ») both exist, prove that
lim []:mf(x M= hm [llmf(x =L

Kl Fer

Exercises 7

Now consider the functions £ defined on R? as follows:

x -yt .
a) f(x, y) = T if (x, ¥) # {0,0), (0, 0) =
2

b S = i"’& — if (x, ) # (0,0, 0,0 = 0,
9 fx, ) = _sin () fx # 0,00, 3) = ¥.

(x + yysin (Yx)sin(lfyy ifx#0Oandy#0,
d . =

) [0 9 ‘ ifx=0o0ry=20

e_shl x — Sy if tan x # tan y,
2} f(x, p) = {tanx — tan y

cos® x if tan x = tan y.

In each of the preceding examples, determine whether the following limits exist and
evaluate those limits that do exist:

lim [hm fix, 15 :Ln; [im fx, 95 lim  f(x, ).

X-r( pee L, 731D M)
4,12 If x = [0, 1] prove that the following limit exists,

tim [lim cos®" (m! zx}],
Mo A=

and that its value is 0 or 1, according to whether x is frrational or rational.

Contingity of real-valoed functions
413 Let f be continuous on [m, 5] and let f{x) = 0 when x is rational. Prove that
f(x) = O for every x in I, 5].
4.14 Let f be continuous at the point 8 = (&, a3, ..., @) in R'. Keep a5, &30, 4
fixed and define a new function g of one real variable by the equation
gx) = flx, a5, ..., a5).

Prove that g is continuous at the point x = a,. (This is sometimes stated as follows:
A continyous function of n variables is contingous in each variable separately.)
4,15 Show by an example that the converse of the statement in Exercise 4.14 is not true
in general.
4.16 Let f, g, and A be defined on [0, 1] as follows:

FL) = glx) = hx) = 0O, whenever x is irrational;

fix) = 1and g(x¥) = x, whenever x is rational;
B(x) = 1fn, if x is the rational number m/n {in lowest terms}:
MO = 1.

Prove that fis not continuous anywhere in [0, 1], that g is continuous only at x = 0, and
that k is continuous only at the irrational points in [0, 1]
4.17 For cach x in [0, 1], let f(x) = x il x is rational, and let f(x) = | — x if x is
irrational. Prove that:

a)y ffh) = xforallxin [0, 1] b} f(X) + f(1 - x} = 1 forall xin [0, 1]
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€} / is continuous only at the point x = i,
d) fassumes every value between 0 and 1.
e} fix + ¥) — f(x) — f13) is rational for all x and yin [0, 1] A
4.18 Let fbe defined on R and assume that there exists at least one point x, in R at which
S8 continuous. Suppose also that, for every x and y in R, f satisfies the equation
Hx + ) = () + FO)
Prove that there exists a constant 4 such that Jix} = ax foc all x.

4.19 Let fbecontinuous on [a, &) and define g as follows: g(e) = f(a) and, fora < x < b,

let g{x} be the maximum value of fin the subinierval [e, x]. Show that g is continuous on
|z, 2]

420 Latfy, ..., £, be m real-valued functions defined on 2 set 5 in R™. Assume that each
Ji is continuous at the point a of §. Define a new function fas follows: For each x in $,
S(x) is the largest of the m numbers filx), ..., £ 4x). Discuss the continuity of /at a.

4.21 Let 1 § — R be continuous on an open set §in R", assume that p € .5, and assume
that f{p) > 0. Prove that there is an #-ball B(p; r} such that f(x} > 0 for every x in the
ball.

4.22 Let £ be defined and continuous on a closed set 5 in R. Let
A= {x:xe& and f(x)} = 0}
Prove that A is a closed subset of R.
4.23 Givcn a function £ R — R, define two sets 4 and B in B2 ay follows:
A=Hxy)iy <N B={{x,y:y > [}

Prove that £ is continuous on R if, and only if, both 4 and B are open subsets of R2,
4.24 Let f be defined and bounded on a compact interval Sin R, I T < 5, the nymber
QAT) = sup {f(x) — fiy):xe F,ye T}
is called the asciflation (or spard) of fon T, If x € 8, the oscillation of fat x is defined to

be the number
wx) = lim Q(B(x:h)~ S)
S ¥4

Prove that this limit always exists and that wx) = 0if, and only if, fis continuous at .

4.25 Let f be continuous on a compact interval {a. 8]. Suppose that £ has a local max-
imum at x; and a local maximum at x,. Show that there must be a third point between
x, and x, where f has a local minirmum,

NoTE. To say that £ has a local maximum at X, means that there is a E-ball B(x,} such
that f{x} < fix,) for all x in B(x,) [a. ). Local minimum is similarly defined.

4.26 Let fbe a real-valued function, continuous on {0, 1], with the following property:
For every real p, either there is no x in [0, 1] for which f{x) = y or there is exactly ong
such x. Prowve that £ is strictly monotonic an &, 1]

4.27 Let f be a function defined on [0, 1] with the following property: For every real

number p, either there is no x in [0, 1] for which f{x) = y or there are exactly two-values
of x in [0, 1] for which f{x} = y.

Exercices el

) Prove that fcannot be continaous on [0, 1].
by Construct a function fwhich has the above property. ‘ o
©) Prove that any function with this property has infinitely many discontinuities on
[0. 1}
428 In each case, give an example of a function f, continuows on § and such that
F(5) = T, or else explain why there can be no such £

ay 8 = (0, 1), 7= (0 1]
by S =, 1), T=00v(,2.
) S =R, T = the set of rational numbers.

B S=001]vR3l, T=i01}
a85=1001]x[B1], T=RA
Ns=10011x 011 7T=(@1Nx0MNn
£ 85 =101 x {1 T=R2

Contingity in mefric spaces ' ‘ .
Tn Exercises 4.29 through 4.33, we assume that f: § — ¥ is a function from one metric
space (S, ds) to anather (T, dy).

4.29 Prove that fis continuous on S if, and only if,

F-Yint B) < int f~}(B)  for every subset Bof T.

4,30 Prove that fis continuous on § if, and pnly if,
74 = JTAy  for every subset A of §.

4.31 Prove that f is continuous on § if, and only if, fis gontinuous on every compact
subset of 8. Hinr. If x, - pin S, the set {p, x,, ¥z, ... } is compact. '
4.32 A function f: § — T is called a closed mapping on § if the image f{4) 1s.close;l in IT
for every closed subset 4 of §. Prove that f is continwous and closed on X if, and only
if, f(A) = F(A) for every subset 4 of 5. ‘ ‘
4.33 Give an example of a continuous f and a Cauchy sequence {x,} in some metrc
space .§ for which {f{x,}} is not a Cauchy sequence in 7. -
4.34 Prove that the interval (—1, 1} in R* is homeomorphic to R'. This shows that
neither boundedness nor completeness is a topological property,

4.35 Section 9.7 contains an example of a function £, continuous on [0, 1], with
F([0, 1) = [0, 1) x [0, 1]. Prove that no such f can be one-to-one on [0, 1)

Conpectedness

4.36 Prove that a metric space § is disconnected if, and only i, there is a nonempty subset
Aof §, A £ &, which is both open and closed in S. ‘
4.37 Prove that a metric space S is connected if, and onllg if, the only subsets of § which
are both open and closed in S are the emply set and & itself. N
4.38 Prove that the only connecled subsets of R are (a) the emply s-et, (b) sets consisting
of a single point, and (<) intervals (open, closed, half-open, or infinite).
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4.39 Let X be a connected subset of a metric space 5. Let ¥ be a subset of & such that
X < ¥ < X where Xis the closure of X. Prove that Y is also connected. In particular,
this shows that X is connected.

4.40 If x is a point in a metric space S, let £(x) be the component of § containing x.
Prove that £/(x) is closed in 5.

ft.-‘il Let & be an open subset of R, By Theorem 3.11, $ is the union of a couniable dis-
Jjoint collection of open intervals in R. Prove that each of these open intervalk is a com-
ponent of the metric subspace §. Explain why this does not contradict Exercise 4.40.

4.42 Gi*-:en a compact set 5 in R™ with the following property: For every pair of points
aand b in § and for every # > 0 there exists a finite set of points {Xg, X;,..., X,} in .S
with x5 = a and x, = b such that

Fxe = % :] < & fork = 1,2,...,m
Prove or disprove; 5 is connected.

443 Prove that a metric space § is connected if, and only if, every nonempty proper
subset of § has a nonempty boundary. P prope

4.44 Prove that every convex subset of R” is connected.

445 Givm-a fanction £: R* -+ R™ which is one-to-one and continuons on R*. If 4 is
open and disconnected in R”, prove that (A} is open and disconnected in (R,

446 LetAd = {(x,y):0<x <1, p=sinljx}, B= fx,D:ry=0 —t=x=0}
and let § = 4w B. Prove that § is connected but not arcwise connected, {See Fig. 4.5,
Section 4.18.) ’

447 Let F = {F,, F;, ... } be a countable collection of connected compact sets in R
such that F,,; = F, for each k = 1. Prove that the intersection &% 1 Fi is connected
and closed.

4.48 Let 5 be an open connected set in B™. Let Thea component of R* — 5. Prove that
R* — T is connected,

4.:%9 Let (8, ) be a connected metric space which is not bounded. Prove that for every
e in §and every r = §, the set {x:d{x, @) = r} is nonempty.

Uniform continuity
4.50 Prove that a function which is uniformly continuous on S is also continuous on .
4.51 If f{x} = x* for x in R, prove that fis not uniformly continuous on R,

4.52 Assume that fis uniformly continuous on a bounded set § in B*. Prove that £ must
be bounded on §. -

4.53 Let [ be a function defined on a set & in R™ and assume (hat fi(S) < BR™ Letghe
defined on £(S) with value in R*, and let h denote the composite function defined by
hix) = g[f(x)]if x & 8. If {is uniformly continuous on 5 and if g is uniformly continuons
on f(5), show that h is unilormly continuous on 5.

4.54 Assume f: 8 — Tis uniformly continuous on S, where $ and T are metric spaces.

If {x,} is any Cauchy sequence in §, prove that | J{x)} is a Cauchy sequence in T, {Com-
pare with Exercise 4.33))

Exercites 101

455 Let : 5 -+ T be a function from a medric space 5 to another metric space T.
Assume f is uniformly continuous on a subset 4 of S and that T'is comp_!ete. Prave that
there is a unigue extension of £ to 4 which is uniformly continuous on A.

456 In a metric space (S, 4), let 4 be a nonempty subset of 5. Define a function
fa+1 8 = R by the equation
Jalx} = inf {d(x, 3} 1y € A}

for each x in §. The number £,{x) is called the distance from x to A.

a) Prove that £, is uniformly continuous on §.

b) Provethat £ = {x:xe § and f(x) = 0}
4.57 In a metric space (S, 43, let A and B be disjoint closed subsets of §. Prove that there
exist disjoint open subsets U and V of Ssuwch that A = Uand B V. Hint. Let
Fx) = f{x) — f{x), in the notation of Exercise 4.56, and consider g~ '(— o0, 0) and
§7'(0, + oo}

Discontinsith
4.58 Locate and classify the discontinuities of the functions /defined on R! by the follow-
ing equations:

a) f{x) = (sin x)/x ifx#0,0(0) = 0
b) f(x) = /% ifx # 0,000 = 0.
€} fix) = Y* + sin (1) if x # 0, /(0 = 0.
d) f(x) = (1 — ') ifx # 0, f(0) = 0.

4.5% Locate the points in R? at which each of the functions in Exercise 4.11 is not con-
tinuous.

Muonotonic fonctions
4.60 Let fbe defined in the open interval {a, &) and assume that for each interior point x
of {a, B) there exists a 1-ball B(x) in which f is increasing. Prove that f is an increasing
function throughout (g, &).
4.61 Let fbe continuous on a compact interval {a, &#] and assume that f does not have a
ocal maximum or a local minimum at any interior point. (See the Note following
Exercise 4.25.) Prove that £ must be monotonic on [, b].
4.62 T fis one-to-one and continuous on {a, b1, prove that £ must be strictly monotonic
on [a, b]. That is, prove that gvery topological mapping of [a. 8] onto an interval {c, d]
must be strictly monotonic.
4.63 Let J be an increasing function defined on [a, 4] and let x,,. .., x, be n points in
the interior such that o < x; < x3 < -+ < X, < b

a) Show that 7., [flix+) — flx—) = fb—) — fla+).

b} Deduce from part (2} that the set of discontinuities of f is countable.

) Prove that f has points of continuity in every open subinterval of [a, &)
4.64 Give an example of a function f, defined and strictly increasing on a set § in R, such
that f~! is not continuous on f(S}.
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4.65 Let f be sirictly increasing on a subset S of R. Assume that the image (%) has one
of the following properties: (a} #(3) is open: (b} /(S) is connected; (¢) £(S) is closed. Prove
that f must be continuous on 5.

Metric spaces and fixed points
4.56 Let B(S) denote the set of all real-valued functions which are defined and bounded
on a nonemply set S, If fe B(S), let .

11 = sup | fx)].
. xe5

The number | £] is called the “sup norm™ of f.

a) Prove that the formula 4(f, ) = [/ — g defines a metric 4 on B(5).

b) Prove that the metric space {B(S), d) is complete. Hint. 1f {£}is a Cauchy
sequence in B(S), show that {£,(x)} is a Cauchy sequence of real numbers for each x in 5.

4.67 Refer 1o Exercise 4.66 and let C(5) denote the subset of B(S5) consisting of all func-
tions continuous and bounded on 5, where now 5 is a metric space.

a) Prove that C(S) is a closed subset of B{5).
b) Prove that the metric subspace C(S) is complete.

4.68 Refer 1o the proof of the fixed-point theorem (Theorem 4.48) for notation.
a) Prove that di{p, p,) < d{x, f XDt = a).

This inequality, which is useful in numerical work, provides an estimate for the distance
from p, to the fixed point p. An example is given in (b).

b} Take f(x} = 4{x + 2/x), § = [1, + ). Prove that /'is a contraction of § with
contraction constant & = 4 and fixed point pP= }/ 2. Form the sequence {p,}
starting with x = p, = 1 and show that |p, ~ é'2! = 271

4469 Show by counterexamples that the fixed-point theoremn for contractions need not
hold if either (a) the underlying metric space is not complete, or (b) the contraction
conslant o > 1,

4.70 Let £:.5 — 5 be a function from a complete metric space (S, 43 into itself. Assume
there is a real sequence {a,} which converges to 0 such that (™, SN < edix, p)
forall » = 1 and all x, y in S, where 7 is the nth iterate of £; that is,

1) =fx), ) = f1(%0) form 1,

Prove that f has a unique fixed point. Hint, Apply the fixed-point theorem to ™ for a
suitable m.

471 Let f: 5 ~ S be a function from a metric space (5, o) into itself such that .
A0, F() < dlx, )
whenever x # y.

a} Prove that fhas at most one fixed point, and give an example of such an £ with no
fixed point,

b) If § is compact, prove that £ has exactly one fixed point. Hint., Show that
glx) = d(x, f(x}) attains its minimum on 5.

¢} Give an example with 8 compagt in which f is not a coniraction.
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412 Assume that f satisfies the condition in Exercise 471, If xc 8, let py = x,
Pas1 = flpo), and ¢y = d(py, ppyy) forn = 0.

a) Prove that {c,} is a decreasing sequence, and let ¢ = lim c,.

b) Assume there is a subsequence {py,,} which converges to a peint g in 5. Prove

that
) ¢ = d{g, fig) = d(fgh S/ (@D
Deduce that 4 is a fixed point of fand that p, — ¢.
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CHAPTER 5

DERIVATIVES

5.1 INTRODUCTION

This chapter treats the derivative, the central concept of differential calculus. Two
different types of problem—the physical problem of finding the instantaneous
velocity of a moving particle, and the geometrical problem of finding the tangent
line to a curve at a given point—both lead quite naturally to the notion of deriva-
tive. Here, we shall not be concerned with applications to mechanics and geometry,
but instead will confine our study to general properties of derivatives.

This chapter deals primarily with derivatives of functions of one real variable,
specifically, real-valued functions defined on intervals in R. It also discusses
briefly derivatives of vector-valued functions of one real variable, and partial
derivatives, since these topics involve no new ideas. Much of this material should
be familiar to the reader from elementary calculus. A more detailed treatment of
derivative theory for functions of several variables involves significant changes
and is dealt with in Chapter 12.

The last part of the chapter discusses derivatives of complex-valued functions
of a complex variable,

5.2 DEFINITION OF DERIVATIVE

If fis defined on an open interval (g, ), then for two distinet points x and ¢ in
(a, &) we can form the difference quotient

fx) ~ 1@

R
We keep ¢ fixed and study the behavior of this quotient as x — c.

Definition 5.1. Let f be defined on an open interval (a, b), and asswme that ¢ e (g, &).
Then [fis said to be differentiable at ¢ whenever the limit

tim J&X) — f(0)

x—¢ X —C
exists. The limir, denoted by f(c), is called the derivative of far c.

This limit process defines a new function f*, whose domain consists of those
points in (&, b) at which f is differentiable. The function J is called the first

14
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derivative of f. Similarly, the nth derivative of £, denoted by S ""., is defined to be
the first derivative of f®~%, for n = 2,3, ... . (By our definition, we do not
consider ™ unless £~*) is defined on an open interval} Other notations with
which the reader may be familiar are

ey = Df(e) = %‘i {c) = ji . [where y = f(x)],

Nl ’ . K L3 o
or similar notations. The function f itself is sometimes written f1°'. The process
which produces f* from f is called differentiation.

53 DERIVATIVES AND CONTINUITY

The next theorem makes it possible to reduce some of the theorems on derivatives
to theorems on continuity.

Theorem 5.2. If fis defined on (a, b) and differentiuble at a point ¢ in (@, b), th_en
there is a_function f* (depending on f and on c) which is continuous at ¢ and which
satisfies the equation

fx) — fle) = {x — )f "), n

Jor all x in (a, b), with f¥() = f"(c). Conversely, if there is a Junction f*, con-
tinuous at ¢, which satigfies (1), then f is differentiable at ¢ and f*(c) = ).

Proof. If f'{c) exists, let £* be defined on (a, b) as follows:
rre =1 S i sl 1@ = 1.
) x—c

Then f* is cantinubus at ¢ and (1) holds for all x in (4, b).

Conversely, if (1) holds for some f* continuous at ¢, then by dividing by x — ¢
and letting x — ¢ we see that f*(c) exists and equals f*().

As an immediate consequence of {1} we obtain:

Theorem 5.3. If [ is differentinble at ¢, then f is continyous at ¢.

Proof. Letx — ¢in (I}

NOTE. Equation (1) has a geometric interpretation which helps us gain insJtht
into its meaning. Since f* is continuous at ¢, f*(x) is ?early equal‘to ey =10
if x is near ¢. Replacing /*(x} by f'(c) in (1) we obtain the equation

JO) = f(e) + ez — o),

which should be approximately correct when x — ¢ is small. In other word_s, if fis
differentiable at ¢, then f is approximately a linear fm]ctiun near ¢, (See 1':1g, 5.
Differential calculus continually exploits this geometric property of functions.
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Tangent line
with slope F/{r}

(!7; f((‘)} _____ PO JSRSSNIp. 3

L2 ) P ———
Y S ——

Figure 5.1

54 ALGEBRA OF DERIVATIVES

The next theorem describes the usual formulas for differentiating the sam, differ-
ence, product and quotient of two functions.

Theorem 5.4, Assume f and g are defined on (o, b) and differentiable at c. Then
I+ g.f — g,and [ - g are also differentiable at c. This is also true of flg if g(c) s 0.
The derivatives at ¢ are given by the following formulas:

2) (f £ 9)(e) = S'(c) + g'(c),
b)  {[-9)Y(e) = fle)g(e) + f(Dgle),

9 Ulayie) = 9 = f9g'(d)
glcy

Proaf. We shall prove (b). Using Theorern 5.2 we write

’ provided gle) # 0.

Jx) = fle) + (x — af*x),  g(x) = g(c) + (x = c)g*(x).
Thus,

Jx)g(x} — flegle) = (x — A S(Dhg*(x) + F*xgle)] + (x — P2/ (x)g*(x).

Dividing by x — ¢ and letting x — ¢ we obtain {h). Proofs of the other statements
are simjlar.

From the definition we see at once that if £ is constant on (a, Bythen /" = 0
on (&, b). Also; if fix) = x, then f'(x} = 1 for all x. Repeated application of
Theorem 5.4 tells us that if f(x) = 3" (n a positive integer), then f{x) = nx""!
for all x. Applying Theorem 5.4 again, we see that every polynomial has a deriva-

tive everywhere in R and every rational function has a derivative wherever it is
defined.

5.5 THE CHAIN RULE

A much deeper result is the so-called chain rufe for differentiating composite func-
tions.
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Theorem 5.5 (Chain vale). Let [ be defined on an open interval S, let g be defined on
(8}, and consider the composite function g o f defined on S by the equation

(g = Hx) = gLFfx)]

Assume there is ¢ point ¢ in S such that f(c} is an interior point of f(S). If fis
differentiable at ¢ and if g is differentiable at f(¢} then g < f is differentiable at ¢

and we have
{go/Y(e) = g[S .
Proof. Using Theorem 5.2 we can write
S — fle) = {x — )f*xy forallxin §,
where /¥ is continuous at ¢ and f¥{c) = {(c). Similarly,

g(») — glf(©] = [v = fAe)g*(y),

for all y in some open subinterval T of f(§) containing f(c}). Here g* is continuous
at f{c) and g*[ (o)} = o' f(c}). :
Choosing x in S so that ¥y = f{x) € T, we then have
gLro) — o[ /(9] = L1 - f(@)e*Lf)] = (x - o *xg*/)). @)
Ry the continuity theorem for composite funcfions,

g0l - g Al =glfle)] asx-e.

Therefore, if we divide by x — ¢ in (2) and let x — ¢, we obtain

tm 401~ AL _ g1 gy

as required.

5.6 ONE-SIDED DERIVATIVES AND INFINITE DERIVATIVES

Up to this point, the statement that f has a derivative at ¢ has meant that ¢ was
interior to an interval in which f was defined and that the limit defining f'(c) was
finite. It is convenient to extend the scope of our ideas somewhat in order to discuss
derivatives at endpoinis of intervals. It is also desirable to introduce /nfinite
derivatives, so that the usual geometric interpretation of a derivative as the slope
of a tangent line will still be valid in case the tangent line happens to be vertical,
I such a case we cannot prove that f is continuous at ¢. Therefore, we explicitly
require it to be so.

Definition 5.6. Let f be defined on a closed interval § and assume that f is continwous
af the paint c in S. Then f is said to have a righthand derivative at ¢ if the righthand
timit

lim f&) =9

P
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exists as a finite value, or if the limit is + 0 or — 0. This limit will be denoted by
_f 0. Lefthand derivatives, denoted by f'(c), are similarly defined. In addition,
if ¢ is an interior point of S, then we say that f has the derivative f'(¢) = +oco if
both the right- and lefthand derivatives at ¢ are + o. (The derivative f'(c) = —w
is similarly defined.)

]t' is clear that fhas a derivative (finite or infinite) at an interior point ¢ if, and
only if, £i(c) = f (), in which case £i(¢) = f'{c) = f{c).

:
*1 T o Ty 5 zy

X

Figure 5.2

Figure 5.2 illustrates some of these concepts. At the point x, we have f1(x,) =

— 0. At x; the lefthand derivative is 0 and the righthand derivative is — 1. Also

S} = —o0, fllxg) = =1, filx) = +1, fxs) = +o0, and fi(x;) =2

;I}'lhere 15 no derivative (one-sided or otherwise} at xy, since fis not continuous
ere.

3

27 FUNCTIONS WITH NONZERO DERIVATIVE

Tlfearem 3.7. Let [ be defined on an open interval (a, b) and assume that for some
¢ in (a, b) we have f'(c} > O or f*(¢) = +oo. Then there is a 1-ball B(c) < (a, b)
in which ’

x> Aa ifx > ¢ and  fix) < fiey ifx < c.
Proof. If f'{e} is fintte and positive we can write

f) — fle) = (x — o)f*(x),

where)ft* is continun?us at cand /¥(c) = f'(¢) > O. By the sign preserving property
e'f continuous functions there is a 1-ball B{c) < {a, 5) in which f*(x) has the same
sign as f*(c), and this means that f{x) — f{c} has the same sign as x — ¢
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If f(c) = + oo, there is a 1-ball B{c) in which

M > 1 whenever x # .
X —¢

In this ball the quotient is again positive and the conclusion follows as before.

A result similar to Theorem 5.7 holds, of course, if f'(c) < Dorif f'(c) = — 0
at some interior point ¢ of (a, b).

58 ZFRO DERIVATIVES AND LOCAL EXTREMA

Definition 5.8. Let f be a real-valued function defined on a subset S of a meiric
space M, and assume a € S. Then f is said to have a local maximum al a if there is

a ball Bla) such that
Jx) s flay  forall xin B{@) n 8.
If f(x) = fla) for all x in B(a) 1\ S, then [ is said to have a local minimum at a.

NOTE. A local maximum at @ is the absolute maximum of £ on the subset B(g) m S.
If £ has an absolute maximum at g, then a is also a local maximum. However, Fi
can have local maxima at several points in § without having an absolute maximum

on the whole set S.

The next theorem shows a cennection between zero derivatives and local
extrema (maxima or minima) at interior points.

Theorem 5.9, Let f be defined on an open interval (g, b) and assume that [ has a
local maximum or a local minimwn at an interior point ¢ of {a, b). 1ff has a derivative
( finite or infinite} at ¢, then {'(c) must be 0. :

Proof. 1f f'{£) is positive or +co, then f cannot have a local extremum at ¢
because of Theorem 5.7. Similarly, f'{c) cannot be negative or — . However,
because there is a derivative at ¢, the only other possibility is /() = Q.

The converse of Theorem 5.9 is not true. In general, knowing that f'(c) = 0
is not enough to determine whether £ has an extremum at ¢. In fact, it may bhave
neither, as can be verified by the example f(x) = x* and ¢ = 0. In this case,
F(0) = 0 but f is increasing in every neighborhood of 0.

Furthermore, it should be emphasized that f can have a local extremum at ¢
without f’(c) being zero. The example f(x} = |x| has a minimum at x = 0 but,
of course, there is no derivative at 0. Theorem 5.9 assumes that £ has a derivative
(finite or infinite) at ¢. The theorem alse assumes that ¢ is an interior point of
(a, b). In the example f{x) = x, wherea < x < b, f takes on its maxinum and
minimum at the endpeints but f’(x) is never zero in [a, ). '
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5.9 ROLLE'S THEOREM

It is geometrically evident that a sufficiently “smooth” curve which crosses the
x-axis at both endpoints of an interval {4, 5] must have a “turning point™ some-
where between g and b, The precise statement of this fact is known as Rolle’s
theorem.

Theorem 5.10 (Rolle). Assume [ has a derivative ( finite or infinite) ar each point of
an open interval (a, b), and assume that f is continuous at both endpoinis a and b.
If fla) = f(b) there is at least one interior point ¢ at whick Fle) =0,

Praaf. We assume f” is never 0 in {g, &) and obtain a contradiction. Since fis
continuous on a compact set, it attains its maximum M and its minimuem m some-
where in g, b]. Neither extreme value is attained at an interior point {otherwise
J* would vanish there) so both are attained at the endpoints. Since f{a} = f($),
then m = M, and hence fis constant on {a, §]. This contradicts the assumption
that /* is never 0 on (a, #). Therefore f*(c} = 0 for some ¢ in (z, b).

510. THE MEAN-VALUE THEOREM FOR DERIVATIVES

?‘keo':'em 5.1 (Mean-Value Theorem}. Assume that f has a derivative (finite or
infinite) at each point of an open interval (a, b), and assume also that Jis continuous
at both endpoints a and b. Then there is a point ¢ in {a, b) such that

Sy — flay = f'(c¥b — a).

Geometrically, this states that a sufficiently smooth curve joining two points
A and B has a tangent line with the same slope as the chord 48. We will deduce
Theorem 5.11 from a more general version which involves two functions fand g in
a symmetric fashion.

Theorem 5.12 { Generalized Mean-Value Theorem). Let ¥ and g be two functions,

each having a derivative (finite or infinite) at each point of an open interval (g, b)

and each continuous at the endpoints @ and b. Assunte also that there is no interior

foim x ar which both ['(x} and g'(x) are infinite. Then for some interior pcint £ we
ane

F(Ma®) - 9@)] = g'@Lf®) - f(a)].

NOTE. When g{x) = x, this gives Theorem 5.11.

Proof. Let blx) = f(x)[g(b) — ¢(@)] — g(x)[f1b) ~ f(@)]. Then H'{x) is finite if
?:oth J(x) and g'(x) are finite, and A'(x) is infinite if exactly one of f*(x) or g'(x) is
infinite. (The hypothesis excludes the case of both Ftx) and ¢'(x) being infinite.)
Also, 4 is continuous at the endpoints, and h{a) = h(h) = Flayg(by — gla)f(h).
By R(?Ile‘s theorem we have #'(c) = 0 for some interior point, and this proves the
assertion.

Cor. 5.15 Intermediate-Value Theoreom i

NOTE. The reader should interpret Theorem 5.12 geometrically by referring to the
curve in the xy-plane described by the parametric equations x = g{t), y = f(£),
asrsbh

There is also an extension which does not require continuity at the endpoints.

Theorem 5,13, Let f and g be two functions, each having a derivative ( finite or
infinite) al each point of {a, b). At the endpoints assume that the limits fla+ ),
ala+), fA(b—) and glb-—) exist as finite values. Assume further that there is no
interior point x at which both f'(x) and g'(x) are infinite. Then for some interior
point ¢ we have

F©@gb-) — gla+)] = 4 QLAB-) - /@)

Proof. Define new functions F and G on [g, b] as follows:
F(x) = flx) and G(x) = g(x} ifxe(a, b);
F@) = fla+), G@) = gla+), F®) = flb=), GO} — glb—).

Then Fand @ are continuous on [, 5] and we can apply Theorem 5.12 to F and
G to obtain the desired conclusion.

The next result is an immediate consequence of the Mean-Value Theorem,

Theorem 5.14. Assume f has a derivative (finite or infinite) at each point of an open
interval (o, b) and that f is continuous at the endpoints a and b.

&) If f' takes only positive values (finite or infinite) in {a, b), then f is swrictly
inereasing on {a, b]. A

b) If [ takes gnly negative values (finite or infinite} in (a, b), then f is strictly
decreasing on [a, b}

¢} ffF" is zero everywhere in (a, b) then f is constant on [a, §].

Progf. Choose x <« y and apply the Mean-Valug Theorem to the subinferval
[x, ¥] of [a, #] to obtain

Ay = x) =y -~ x)  whereee(x, y).
All the statements of the theorem follow at once from this equation.

By applying Theorem 5.14 (¢) to the difference / — g we obitain:

Corollary 3.135. If f and g are continuwous on [a, 5| and have equal finite derivatives
in (a, b}, then f — g is constant on [a, b].

511 INTERMEDIATE-VALUE THEOREM FOR DERIVATIVES

In Theorem 4.33 we proved that a function f which is continuous on a compact
interval [a, b} assumes every value between its maximum and its minimum on
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the interval. ln particular, f assumes every value between f(a) and f(b). A similar
result will now be proved for functions which are derivatives.

Theorem 5.16 (Imtermediate-value theorem for devivatives), Assume that I is de-
fined on a compact interval [a, b] and that f has a derivative ( finite or infinite) at each
interior point, Assume also that f has finite one-sided derivatives f2(a) and {7 (b) at
the endpaints, with f1(a) # f.(b). Then, if ¢ is a real number between f'.(a) and
FLB), there exists at least one interior point x such that f (x) = ¢

Progf. Define a new function g as follows:

PORCETC

ifx #a gla)=fila).

Then g is contingouns on the closed interval [a, b]. By the intermediate-value
theorem for continuous functions, g takes on every value between fi(a) and
[f(3) — f@)]{t6 — a) in the interior (g, b). By the Mean-Value Theorem, we have
g(x) = f'(k) for some k in (g, x) whenever x € (@, ). Therefore f' takes on every
value between fi(a) and [ f(b} — f(a)}/(b — a) in the interior {a, §). A similar
argument appidied to the function 4, defined by

h(x) = fx) — f(b)
. x— b
shows that 7/ takes on every value between [ /(b)) — fa)])(b — @) and f_(#) in the

interior (g, b). Combining these results, we see that f* takes on every value between
Si{a) and f7(4) in the interior {g, b), and this proves the theorem.

ifx # b, h{b) = f.(b),

NOTE. Theorem 5.16 js still valid if one or both of the one-sided derivatives
fila), £24b), is infinite. The proof in this case can be given by considering the
auxiliary function g defined by the cquutmn glx) = f(x) — cx, if xefa, b}
Details are left to the reader.

The intermediate-value theorem shows that a derivative cannot change sign
in an interval without taking the value 0. Therefore, we have the following
strengthening of Theorem 5.14(z} and (b).

Theorem 5,17, Assume f has a derivative (finite or infinite) on (a, b) and is con-
tinuous at the endpoints a and b. If f'(x) # O for alf x in (a, b) then f is strictly
monotonic on [a, b).

The intermediate-value theorem also shows that monotonic derivatives are
necessarity continuous,

Theorem 5.18. Assume {7 exists and is monotonic on an open interval (g, b). Then
J' is continuous on (a, b).

Proof. We assume f* has a discontinuity at some point ¢ in (g, &) and arrive at a
x_:ﬂntradlction. Choose a closed subinterval [, 8] of (a, #) which contains ¢ in its
Interior.  Since {7 is monotonic on [o, £] the discontinuity at ¢ must be a jump
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discontinuity (by Theorem 4.51). Hence £’ omits some value between #'(x) and
F(B), contradicting the intermediate-value theorem.
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As noted earlier, if £ is differentiable at ¢, then £is approximately a linear function
near ¢, That is, the equation

J&x) = fle) + f{elx — o),
is approximately correct when x — ¢ is small. Taylor's theorem tells us that, more
generally, fcan be approximated by a polynomial of degree n — 1if fhas a deriva-

tive of order n. Moreover, Taylor’s theorem gives a useful expression for the error
made by this approximation.

Theorem 5.19 { Taylor). Let f be a function having finite nth derivative f* every-
where in an open interval (a, b) and assume that f@™V is continuous on the closed
interval {a, b). Assume that ¢ € [a, b). Then, for every x in [a, b], x # ¢, there
exists o point x, interior 1o the imterval joining x and ¢ such that

) = &) + Zf “’)(x 4+ {%x) "‘” x — o

Taylor’s theorem will be obtained as a consequence of a more general result
that is a direct extension of the generalized Mean-Yalue Theorem.

Theorem 5.20, Let f and g be two functions having finite mth derivatives [ and
g™ in an open interval (a, B) and continuwous (n — 1)st derivatives in the closed
interval [a, b]. Assume that ¢ € [a, B). Then, for every x in [a, b}, x # ¢, there
exisis a point X interior to the interval joining.x and ¢ such thot

nol e n_l k),
[0~ 37 T = o | 4e = e [g(x) SPILR T c)*].

nore. For the special case in which g(x) = (x — o, we have ¢®(c) = 0 for
0 <k < »n—1andg™(x) = nl. This theorem then reduces to Taylor’s theorem.

Proof. Forsimplicity, assume that ¢ < band that x > ¢. Keep x fixed and define
new functions F and @ as follows:

[ Sl 1 (k)
o =10+ 0 6 -0,

n—1
60 = o + 19D
k=1 -

for each 1 in [, x]. Then F and G are continuous on the closed interval [c, x]
and have finite derivatives in the open interval (¢, x). Therefore, Theorem 5.12 is




114 Derivmtives

applicable and we can write -
Fix)Gx) — G(0)] = G )[F(x) — F(e)],  where x, € (c, x).
This reduces to the equation

Fx)lgtx) — G = Gx)LAX) — Fe)], (a)

since.G(x) = g{x) and F(x) = f(x). If, now, we compute the derivative of the sum
defining F(#), keeping in mind that each term of the sum is a product, we find that
all terms cancel but one, and we are left with

qny = X= 0w
F) = 2 1.
Sitnilarly, we obtain
o = (————-__x - t)!_l L))
60 = T g,

If we put # = x, and substitute into (), we obtain the formula of the theorem,

513 DERIVATIVES OF VECTOR-VALUED FUNCTIONS

Let £: (a, ) —+ R be a vector-valued function defined on an open interval (@, )
m R Then f = (f,,..., f) where each component f; is a real-valued function
defined on {a, 5). We say that f is differentiable at a point ¢ in (a, &) if each com-
ponent £ is differentiable at ¢ and we define

Fle) = (fileh, ..., fio)).
In other words, the derivative £'(c) is obtained by differentiating each component
of fat ¢. In view of this definition, it is not surprising to find that many of the
theorems on differentiation are also valid for vector-valued functions. For example,
if f and g are vector-valued functions differentiable at ¢ and if A is a real-valued
function differentintle at ¢, then the sum f + g, the product AF, und the dot product
- g are differentiable at ¢ and we have '

(f + g¥(e) = () + 2o},
(M)} = Yof(c} + (o),
(f-gric) = f'ic) gley + ) -g'(e).

The proofs follow easily by considering components. There is also a chain rule for
differentiating composite functions which is proved in the same way. I { [s vector-
valued and if v is real-valued, then the composite function g given by p(x) =
f[u{x)] is vector-valued. The chain rule states that

g'(©) = U"{u()]u'te),

if the domain of f contains a neighborhood of w(c) and if ¥'{e) and T'Tu(c)] both
exist.
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The Mean-Value Theorem, as stated in Theorem 5.11, does not hold for vector-
valued functions. For example, if f{#) = (cos ¢, sin ) for all real {, then

f2n) — K0) = 0,

but £'(z) is never zero. In fact, |['(f)] = 1 for all i. A modified version of the
Mean-Value Theorem for vector-valued functions is given in Chapter 12 {Theorem
12.8).

5.14 PARTIAL DERIVATIVES

Let 8 be an open set in Euclidean space R®, and let £:.5 — R be a real-valued
function defined on §. X = (x;,..., x) and ¢ = (¢, ..., ¢,) are two points
of § having corresponding coordinates equal except for the kth, that is, if x; = ¢,
for i # k and if x, # ¢, then we can consider the hmit

i £60 — J©

xevee Xy — O

When this limit exists, it is called the partial derivative of f with respect to the kih
coordinate and is denoted by

Difle),  Sile), &

3,

or by a similar expression. We shall adhere to the notation D, f(c).

This process produces # further functions D, f, D, f, ..., D, f defined at those
points in § where the corresponding limits exist.

Partial differentiation is not really a new concept. We are merely treating
flxy, ..., x,) as a function of one variable at a time, holding the others fixed.
That is, if we introduce a function g defined by

(c),

9T = flegs o5 O X Chpta - - Gy

then the partial derivative D, f{c) is exactly the same as the ordinary dertvative
g'(e,). This is usually described by saying that we differentiate f with respect to
the kth variable, holding the others fixed.

In generalizing a concept from R' to R*, we seek to preserve the important
properties in the one-dimensiconal case. For example, in the one-dimensional case,
the existence of the derivative at ¢ nmplies continuity at ¢, Therefore it seems
desirable to have a cencept of derivative for functions of several variables which
will imply continuity. Partial derivatives do nor do this. A function of » variables
can have partial derivatives at a point with respect to cach of the variables and yet
not be continuouns at the point.  We iliustrate with the following example of a
function of two variables:

flx, 5) = {

x+p fx=00ry=0490
1, otherwise.
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The partial derivatives D, f{0, 0) and D, £(0, 0) both exist. In fact,

DS, 0) = im0 SO0 _ Lox

Xt} x -0 xe3 X

and, similarly, D, f(0, 0) = 1. On the other hand, it is clear that this function is
not continuous at (0, 0),

The existence of the partial derivatives with respect to each variable separately
tmplies continuity in cach variable separately; but, as we have just seen, this does
not necessarily imply continuity in all the variables simultaneously. The difficulty
with partial derivatives is that by their very definition we are foreed to consider
only one variable at a time. Partial derivatives give us the rate of change of a
function in the direction of each coordinate axis. There isa more general concept of
derivative which does not restrict our considerations to the special directions of
the coordinate axes. This will be studied in detail in Chapter 12.

The purpose of this section is merely to introduce the notation for partial
derivatives, since we shall use them occasionally before we reach Chapter 12.

¥ f has partial derivatives D, f, ..., D, fon an open set S, then we can also
consider their partial derivatives. These are called second-order partial derivatives.
We write D, , f for the partial derivative of D, f with respect to the rth variable.
Thus,

Dy uf = DADLS).

Higher-order partial derivatives are similarly defined. Cther notations are

af 3f
D,.f = Y S S —
o 0x, B3, rar] ax, dx, dx,

5.5 DIFFERENTIATION OF FUNCTIONS OF A COMPLEX VARIABLE

In this section we shall discuss briefly derivatives of complex-valved functions
defined on subsets of the complex plane. Such functions are, of course, vector-
valued functions whose domain and range are subsets of R%, All the considerations
of Chapter 4 concerning limits and continuity of vector-valued functions apply,
in particular, to functions of a complex variable. There is, however, one essential
difference between the set of complex numbers C and the set of n-dimensional
vectors R” (when n > 2) that plays an important role here. In the complex number
system we have the four algebraic operations of addition, subtraction, multiplica-
tion, and division, and these operations satisfy most of the “uswal” laws of algebra
that hold for the real number system. In particular, they satisfy the first five
axioms for real numbers listed in Chapter 1. {Axioms 6 through 10 involve the
ordering relation <, which cannot exist among the complex numbers.) Any
algebraic system which satisfies Axioms I throngh 5 is called a field. (For a
thorough discussion of fields, see Reference 1.4.) Multiplication and division, it
turns out, cannot be introduced in R* (for 7 > 2) in such a way that R" will
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become a fieldf which includes C. Since division is possible in C, hou.fever, we can
form the fundamental difference quoetient [ f(z) — Ac)}iz — c)'wh{ch was used
to define the derivative in R, and it now becomes clear how the derivative should be

defined in C.

Definition 5.21. Let f be a complex-valued function defined on an open set SinC,
and assume ¢ € S. Then f is said to be differentiable at ¢ if the imit

T 22—
exists.

By means of this limit process, a new complex-valued function f* is defined at
those points z of § where f'(z) exists. Higher-order derivatives /7, ... are,

of course, similarly defined. ]
The foltowing statements can now be proved for complex-valued functions

defined on an open set S by exactly the same proofs used in the real case:

a) fis differentiable at ¢ if, and only if, there is a function [*, contimous af c, such
that

fz) = fle) = (z — )f*@)
Sor ail z in S, with f*(c) = f'(c).
NoTE. If we let g(z) = f*(z) — f'(c) the equation in (a) can be put in the form
f(2) = f(o) + 1)z — ¢) + glz)z — ¢,
where g(z) — 0 as z — ¢. This is called a firsr-order Taylor formula for f.

b) If f is differentiable at ¢, then f is continuous af c.

<) If two functions { and g have derivatives at ¢, then their sum, difference, product,
" and quotient also have derivatives at ¢ and are given by the usual formulas (as in
Theorem 5.4). In the case of fig, we must assume glc) # 0.

d) The chain rule is valid; that is to say, we have
(g-fY(0) = g'[Aa]S/ (e},
if the domain of g contains a neighborhood of f(c) and if f'(c) and g'{ f(c)] both
exist.

When f(z) = z, we find f(z) = 1 for all zin C. Using (c) repeatedly, we find
that f'(z) = nz*~! when f(z) = 2* (n is a positive integer). This also holds when

t For example, if it were possible to define multiplicgtionain RY¥s0as to makze R; a field
including €, we could argue as follows: For every x in R? the VECIOFS I, 1:; x% x "m)uld
be linearly dependent (see Reference 5.1, p. 558). Hence for each x in R?, a relation of
the form gp + @yX + @;x° + a3x® = ¢ would hold, where ay, a,, a3, a5 are real
numbers. But every polynomial of degree three:- with real cogﬁicuen(s is a product of a
linear polynomial and a quadratic polyromial with real coefficients. The only reots such
polynomials can have are either real numbers or complex numbers.
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n is a negative integer, provided z # 0. Therefore, we may compute derivatives
of complex polynomials and complex rational functions by the same techniques
used in elementary differential calcolus.

5.6 THE CAUCHY-RIEMANN EQUATIONS

If £ is a complex-valued function of a complex variable, we can write each function
value in the form

J(z) = nlz) + i(z),

where u and » are real-valued functions of a complex variable. We can, of course,

also consider v and » to be real-valued functions of two real variables and then
we write

J2) = ulx, ¥} + ivlx, y), ifz =x+ iy

In either case, we write f = u + fv and we refer to # and v as the real and fmag-

inary parts of f. For example, in the case of the complex exponential function f,
defined by

Jiz) = ¢ = e°cosy + i siny,
the real and imaginary parts are given by
u(x,y) = e*cosy, olx, ¥y} = e siny.
Similarly, when f(z) = z* = (x + iy)?, we find
wx, y) = x* — 38, o(x, ¥) = 2xp.

In the next theorem we shall see that the existence of the derivative f* places a
rather severe restriction on the real and imaginary parts 1 and ».

Theorem 5.22. Let f = u + iv be defined on an open set Sin C. I [ (e} exists for
some ¢ in S, then the partial derivatives Dyu(c), Dyu(c), D v(c) and D,vic) also
exist and we have

Se) = Dule) + i Dyole), 3
and

J(e) = Dyp(e) — i Dyule). @
This implies, in particular, that
Dau(c) = Dyo(e)  and  Dyp{c) = — Dyuic).

NOTE. These last two equations are known as the Cauchyp—Riemann equations.
They are usually seen in the form

@=§_z_; ar ou

dx 9y Bx ay
Proof. Since f"(c) exists there is a function £* defined on S such that
fz) = fle) = (2 — e)f*(2), &)
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where f* is continuous at ¢ and f*(c) = f'(¢). Write
z=x4+1iy, c=a+ib, and [z} = A(z) + iB(z),

where A(z) and B(z) are real. Note that A(z) — A(c) and B(z} - B{c) asz — c.
By considering only those z in § with y = & and taking real and imaginary parts
of {5), we find ,

ulx, ) — ula, &) = (x — DA(x + ib), vix, b)Y — vla, b) = (x — a)Bix + ib).
Dividing by x — a and letting x - a we find
Do) = Ay  and Dypley = Ble)

Since f7{¢) = A(c} + iB(c), this proves (3). ‘
Similarly, by considering only those z in § with x = a we find

D,yo(ey = Ale) and Duu(e) = — Ble),
which proves (4).
Applications of the Cauchy-Riemann equations are given in the next theorem.

Theorem 5.23. Let f = u + iv be a function with a derivative everywhere in an
open disk D centered at {a, 5). If any one of u, v, or |f] is constantt on D, then
[fis constant on D. Also, fis constant if {'(z) = O for ail z in D.

Proof. Suppose u is constant on D. The Cauchy-Riemann equations show ti?at
D, = Dyp = 0on D. Applying the one-dimensional Mean-Value Theorem twice
we find, for some 3’ between & and y,

v(x, ¥} — v{x, &) = (y -~ b)Dyv(x, )} = 0,
and, for some x’ “between 2 and x,
vix, by — vla, b) = (x — a}D,v{x’, B = Q.

Therefore vix, ¥) = #{a, b} for all (x, y} in D, so v is constant on D, A similar
argument shows that if # is constant then w is constant. .

Now suppose |f] is constant on D. Then |f|* = «* + ¢* is constant on D.
Taking partial derivatives we find

b + eDie =0, whyu + vihyr =0,
By the Cauchy-Riemann equations the second equation can be written as
tDy — uDip = 0.

Combining this with the first to eliminate D,p we find (> + o'} = 0. If
W+t =0thenu=1v=0 50 =0 Ifw + 0% # 0then Dy = 0; hence
u is constant, so f is constant.

+ Here |f] denotes the function whose value at z is [ f(2).
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Finally, if /* = 0 on D, both partial dertvatives Dy and D, are zero on D.
Again, as in the first part of the proof, we find £ is constant on D.

Theorein 5.22 tells us that a necessary condition for the functionf = # + into
have a derivative at ¢ is that the four partials P, D,u, Do, Dy, exist at ¢ and
satisfy the Canchy-Riemann equations. This condition, however, is not sofficient,
as we see by considering the following example.

Example. Let » and » be defined as follows:

il _
“(xi y) - ;?'_’-_yz lf(x; }') F (ns 0)’ “*"(09 D) - Oi
] 3 .
o, ) =X i) 20,0, o0,0) = 0.
x4+ y

It is easily seen that D,u(0, 0) = D p(0, 0} = 1 and that D0, 0) = — D0, 0} = ~1,
so that the Cauchy-Riemann equations hold at (0, 0). Nevertheless, the function f =
# + fv cannot have a derivative at z = 0. In fact, for x = 0, the difference quotient
becomes

f@Q-SO_ -ytiy_ .

z—0 iy
whereas for x = y, it becomes

f(z)“f(ﬂ)z x 1+
z—-0 x + ix 2

E

and hence f{0) cannot exist.

In Chapter 12 we shall prove that the Cauchy-Riemann equations do suffice to
establish existence of the derivative of /' = u + v at ¢ if the partial derivatives of
# and » are continucus in some neighborhood of ¢. To illustrate how this result is
used in practice, we shall obtain the derivative of the exponential function, Let
Jz)=¢& = u + iv. Then

ux, ¥} = e cosy, vlx,y) = e siny,
and hence

Duulx, y) = €"cosy = Dyo(x,y),  Dyuulx,p) = —& siny = —Dvlx, y).

Since these partial derivatives are continuous everywhere in R? and satisfy the
Cauchy-Riemann equations, the derivative f’(2) exists for all z. To compute it we
use Theorem 5.22 to obtain

Sz} = e"cosy + ie* siny = flz).

Thus, the exponential function is its own derivative (as in the real case).

Exercises 2

EXERCISED

Real-valoed functions
Tn the following exercises assume, where necessary, a knowledge. of tvhe forrlnulas for
differentiating the efementary trigonometric, exponential, and logarithmic functions,

5.1 A function fis said to satisfy a Lipschitz condition of order « at ¢ if there exists a
positive number M (which may depend on ¢) and a 1-ball B(¢}such that

f(x} — flo)l < Mx — <
whenever x € Bic), x # ¢ . ~
a) Show that a function which satisfies a Lipschitz condition of order « is continuous
at¢cif « > 0, and has a derivativeatcif & > 1.
b) Give an example of a function satisfying a Lipschitz condition of order 1 at ¢ for
which [“¢) does not exist.
52 In each of the following cases, determine the intervals in which the function f is
increasing or decreasing and find the maxima and minima (if any) in the set where each f
is defined.

A= taxt+h xeR.
b) f(x) = log (x* ~ 9), x> 3
Q) f) = 3 x - D, 0<x= L

&) fix) = Gin x)xifx # 0,/0) = L, 0 < x = mf2
53 Find a polynomial f of lowest possible degree such that
flxg) = ay, Jxy) = az, fixd = by, f(x3) = by,
where %, # x; and ay, 4, b,, b, are given real numbers.
5.4 Define f as follows: fix} = e~ if x # 0, f(0) = 0. Show that
a) fis continuous for ali x.
b) £ is continuous for all x, and that /' W)= 0,(n=1,2,...).

55 Define /. g, and h as foliows: f(0) = g(0) = h(0) = Oand,if x # 0,/(x} = sin (1/x},
gix)y = xsin (1ix), #(x) = x2 sin (1fx). Show that

@) f(x) = —1fx? cos (M), if x # 0; £'(0) does not exist.
b) g'(x) = sin (1) — Lfxcos (1fx),if x # 0;  ¢'0) docs not exist.
&) () = 2xsin(lx) ~ cos (), if x # & H(O) =0

lim,_,, A'(x) does not exist,

5.6 Derive Leibnitz’s formula for the nth derivative of the product & of two functions

Sand g;
u!

W = Y (z) SO0, where (:) = o

k=0

5% Let fand g be two functions defined and having finite third-ord«fr dar-ivativm 7 "(x)
and g"(x) for all x in R. If f(x)g(x) = 1 for all x, show that the relations in (a}, (b}, {c},
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and (d) hold at those points where the denominators are nol zero:
ay £ (If(x) + g'(x)iglx) = 0.
b) £ — 2P 0(x) — ¢ (g'tx) = ©.
o fT@ L@ 0 g,
Fx) SCedg'(x) flxy  gx)
o f7w _ g(f"cx))’ - oW () :
Fixy 23\ Fx) 9’(x))

glxy 2
NOTE, The expression which appears on the left side of (d) is called the Schwarzian
derivative of fart x.

-

¢} Show that fand g have the same Schwarzian derivative if
g(x) = [afx) + b} {ef(x) + d], where ad ~ be s 0.

fair;f.( d)If ¢ # 0, write (af + B)/(cf + d) = (afc} + (e ~ adlf[elef + 4}), and apply

5.8 Let £, £5, 21, 84 be four functions having derivatives in {a, 5). Define F by means of
the determinant

L1x) fiix)

Flo) =
S P R

. if x € (a, b).

a} Show that F'(x) exists for each x in (e, b} and that

FUx) i Lilx)  fi(x)
#1x) g gi(x) (%)

b} State and prove 2 more general result for ath order determinants.

59 Given n functions fy, . . ., f,. each having nth order derivatives in (g, 6). A function
W, called the Wronskian of f,. . .., [, is defined as foliows: For each x in {a, b), W(x} is
the value of the determinant of order n whose element in the &th row and smth colurnn is
fo D), wherek = 1,2,...,mandm = 1,2,...,n [The expression fi7(x) is written
for f(x).]

a) Show that W'(x) can be obtained by replacing the last row of the determinant
defining W(x) by the nth derivatives f%x), ..., fi"x),

b) Assuming the existence of n constants c,,..., ¢, not all zero, such that

€ [i(x) + <o« + e, f(x) = O for every x in (g, &), show that W(x} = 0 for each
x in {a, b).

F'(x) =

NOTE. A set of functions satisfying such a relation is said to be a fineariy dependent set
on {a, 5). '

c} The vanishing of the Wronskian throughout (g, b) is necessary, but not sufficient,
tor linear dependence of f;, .. ., .. Show that in the case of two functions, if the
Wronskian vanishes throughout (a, &) and if one of the functions does not vanish
in {a, &), then they form a linearly dependent set in (o, by

Mean-Valoe Theorem

510 Given a function f defined and having a finite derivative in (g, ) and such that
fim,.,,. f(¥) = + . Prove that lim,_,,_ f'{x) either fails to exist or is infinite,

5.11 Show that the formula ino the Mean-Value Theorem can be writien as follows:

fix +_’_1_) = f{x) = f{x + OR),

h
where O < # = 1. Determine & as a function of x and i when
a) f(x) = x7%, b} f(x) = x3,
¢} flx) = &% dy f(x) = logx, x>0

Keep x # 0 fixed, and find limy,_, # in cach case.
512 Take f(x} = Ix* — 2x* — x* + 1 and g(x) = 4x* — 3x* — 2xin Theorem $5.20.

Show that f'(x)/g'(x) is never equal to the quotient [f(1) — f}[g(1) — g®] if
0 < x = 1. How do you reconcile this with the equation

£6) — fla) _ f7x1)
gb)y — gla)  §gx1)
obtainable from Theorem 5.20 when # = 17
%.13 In each of the following special cases of Theorem 5.20, take n = 1, ¢ = &, x = b,
and show that x, = {a + §)f2.
a) f(x} = sinx,  g{x} = cos x; b} flx) = &5,  glx} =%
Can you find a genéral class of such pairs of functions fand g for which x, will always be
{a + b}?2 and such that both examples {a) and (b} are in this class?
5.14 Given a function £ defined and having a finite derivative f” in the half-open interval
0 < x = 1and such that |[#(x}| < 1. Definea, = f(/mpforn =1,2,3,..., and show
that lim,, ., a, exists. Hirr. Cauchy condition.
5.15 Assume that fhas a finite derivative at each point of the open interval {a, 5). Assume
also that lim,., . f'(x} exists and is finite for some interior point c. Prove that the value
of this limit must be /{c).
5.16 Let £ be continuous on (g, &) with a finite derivative f” everywhere in (n, b), except
possibly at ¢. If lim,_, . £{x) exists and has the value A, show that f"(c) must also exist
and have the value A. _
557 Let £ be continuous on [0, 1], £(0} = 0, f*(x} finite for each x in (0, 1). Prove that
if # is an increasing function on {0, 1), then so too is the function g defimed by the equa-
tion g(x) = f(x)/x.
5.18 Assume f has a finite derivative in (a, &) and is continuous on [g, 5] with fla) =
ft8) = 0. Prove that for every real 1 there is sorne ¢ in (e, b) such that (e} = Af(c).

Hing. Apply Rotle's theorem to g(x)f{x) for a suitable g depending on 4.

ﬂ{xl<b,

5.19 Assume f is continuous on [a, b] and has a finite second derivativ f” in the open
interval (g, b). Assume that the line segment joining the points 4 = {a, f(a)) and
B = (b, f(5)) intersects the graph of /in a third point P different from 4 and 8. Prove
that F*(c) = 0 for some ¢ in (g, b).
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5.20 If fhas a finite third derivative £~ in [a, b] and if
f@=7ra =1 =r@ =0
prove that £ (¢} = 0 for some ¢ in {a, ).

521 Assume J'is nonnegative and has a finite third derivative £ in the open interval
{0, I). If f(x) = © for at least two values of x in (0, 1), prove that f"(c) = 0 for some ¢
in (@, 1).

522 Assume f has a finite derivative in some interval (a, + o0).
a) If fix) ~» 1 and f(x)} —+ c a8 x — + o, prove that ¢ = 0.
b) If f(x) = 1 as x — + oo, prove that f{x)/x — 1 as x = +co,
<) ' (x) » Qas x - +oo, prove that f(x)/x » Das x — -+ 0.

523 Let & be a fixed positive number. Show that there is no function £ satisfying the
following three conditions: f*(x}exists for x = 0, f(0) = 0, f{x) = hforx > 0.

S24 If h > O and if /7(x} exists (and is finite) for every x in (@ — k&, a + &), and if fis
continuous on fg — &, a + k], show that we have:

pleth=fa_h

b) fla+ h) - 2Ha) + fla— h)
h
©) If £*{a)} exists, show that
F@ = mf @B - 2@+ fa— B
k

=0 }12

=fla+6R)+fa—-0R), 0O<f<l1;

=fla+ il) —fla— k), OB<il<l

d) Give an example where the limit of the quotient in {c) exists but where £*(0} does
not exist.

5.25 Let f have a finite derivative in (o, 5 and assume that ¢ & (g, §). Consider the
following condition: For every ¢ > 0 there exisis a 1-ball B(c; §), whose radius & depends
only on £ and not on ¢, such that if x ¢ Ble; &), and x # ¢, then

f{x) - f(ﬂ) _ f'(c)
| X -

Show that /7 is continuous on (a, b} if this condition holds throughout (a, b).

< &

526 Assume f has a finite derivative in (g, 5 and is continuous on [a, B], with & <
Fx) < bforall xin fg, ] and [£(x)] < « < 1 for all x in (g, &). Prove that f has a
unigue fixed point in [a, ).

5.27 Give an example of a pair of functions £ and g having finite derivatives in (@, 1),
such that

imf2 _ o
X i} g(x)

but such that lim, ., ' {x)/g'(x) does not exist, choosing g so that g'(x) is never zero.

5.28 Prove the following theorem:
Let [ and g be two functions having finite nth derivatives in (a, b). For some interior poini ¢
in (a, b), assume that fic)} = [1e) = -+ = = c) = 0, and that glc) = g{e) = ---
= g"~ ¢} = O, but that g™(x) is never zero in {a, b). Show that
)

lim £y _ f{:)(f—') .

e gx)  gNe)
NOTE. £* and g™ are not assumed to be continuous at e Hint, et

- =Y 1)
F(x) - f(x) {n . 1)! E]
define G similarly, and apply Theorem 5.20 to the functions F and G.

539 Show that the formula in Taylor's theorem can also be written as follows:

n=xi — — -1
f‘:fc}( {x — cHx — x) £,

i
28 YT oo

where x, is interior to the interval joining xand ¢. Let1 — 0 = (x — x)}(x — ¢}. Show
that 0 < @ « 1 and deduce the folkywing form of the remainder term (due to Cauchy):

fix) =

(-0 -
— Fol0x + (1 — B)x)

Hint. Take G(#) = g(¢) = ¢ in the proof of Theorem 5.20.

Vector-valued fimetions
530 If a vector-valued function f is differentiable at ¢, prove that

re) = lim L [1c + B — 1)
W0 B

Conversely, if this limit exists, prove that f is differentiable at .
531 A vector-valued function f is differentiable at sach point of (e, &) and has constant
norm [f]. Prove that () () = 0 on (g, H).

%32 A vector-valued function f is never zero and has a derivative f which exists and is
continuous on R. IF there is a real function A such that £(r) = A(#Yi(¢) for all 1, prove
that there is & positive real function » and a constant vector ¢ such that f{¢) = u(t)c
for all £

Partial derivatives
%33 Consider the function £ defined on R? by the following formulas:

flx, 3 = =22 if(x ) £ 0,0) f00,0)=0.
x5+ }’2
Prove that the partial derivatives D, f(x, ») and D, f{x, y) exist for every (x, y! in R? and
evaloate these derivatives explicitly in terms of x and y. Also, show that fis not con-
tinuous at (0, 0).
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534 Let fbe defined on B2 as follows:

Sy = y::—'—”: (e, ) # (0,0), f(0,0)=0.

+ ¥

Compute the first- and sscond-order partial derivatives of fat the origin, when they exist.

Complex-valoed functions

5.3§ Let S be an open set inC and let $* be the set of complex conjugates 7, where z € S,
If fis defined on 5, define g on §* as follows: g{#) = f{z). the complex conjugate of f{z).
If fis differentiable at ¢ prove that g is differentiable at £ and that g'() = f{c).

5.36 1) In each of the following examples write /' = » + fv and find explicit formulas
for “(xa f) and I)(I, _}'):

a) f{z) = sin z, b} f(z) = cos z,

¢} f(z) = [z, d) flz) = 7,

e flz)=agz (z#0) NfzY=Logz z#0),

2 flz) = ¢, h) f(z) = 2* (a complex, z  0),

{These functions are to be defined as indicated in Chapter 1.)

ii} Show that # and v satisfy the Cauchy-Riemann equations for the following values |

of z; All z in (a), (), (g); no z in {c), {d), (e}; all z except real z = O in (), (h).
(In part (h), the Cauchy-Riemann equations hold for afl 2 if « is a nonnegative
integer, and they hold for all z # 0 if ¢ is a negative integer.)

iii) Compute the derivative 7{z) in {a), (b), (F), (), (h), assuming it exists.

837 Write f = u + iv and assume that fhay a derivative at each point of an open disk D
centered at (0, 0). I au® + bv® is constant on D for some real g and b, not bath 0, prove
that fis constant on D.

SUGGESTED REFERENCES FOR FURTHER STUDY

5.1 Apostol, T. M., Calculus, Vol. 1, 2nd ed. Xerox, Waltham, 1967,
5.2 Chaundy, T. W., The Differential Calenius. Clarendon Press, Oxford, 1935,
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CHAPTER 6

FUNCTIONS OF
BOUNDED VARIATION AND
RECTIFIABLE CURVES

6.1 INTRODUCTION

Some of the basic properties of monotonic functions were derived in Chapter 4.
This brief chapter discusses functions of bounded variation, a class of functions
closely related to monotonic functions. We shall find that these functions are
intimately connected with curves having finite arc length (rectifiable curves). They
also play a role in the theory of Riemann—Stieltjes integration which is developed
in the next chapter.

6.2 PROPERTIES OF MONOTONIC FUNCTIONS

Theorem 6.1, Let [ be an increasing function defined on {a, b] and let xp, x,, .. .. X,
be n + 1 points such that

2=Xp <X <X << x,=h

Then we have the inequality

a1

3 [f+) = flx—)] < f(b) — fla).

N

Proof. Assume that y, € (x;, X;4;)- Forl < & < n — 1, we have f{x,+) < flyJ)
and f(y,_,) =< fix,—), 50 that fix+) — fx—) < fly) — f(5e-). 1f we add
these inequalities, the sum on the right telescopes to f(¥,-.) — f(¥0)}. Since
f(¥a-1) — () = f(B) — fla), this completes the proof.

The difference f{x,+) ~ f{x,—) is, of course, the jump of £ at x,. The fore-
going theorem tells us that for every finite collection of points x, in (g, 4), the sum
of the jumps at these points is always bounded by f{b) — f(a). This result can be
used to prove the following theorem,

Theorem 6.2. If f is monotonic on (a, b, then the set of discontinuities of [ is
countable.

Proof. Assume that fis increasing and let 5, be the set of peints in {a, 5) at which
the jump of fexceeds Ifm, m > 0. If x; < x; <+ < X,., are in §,,, Theorem
6.1 tells us that

"= 1< 1) - fa

m
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?I'his means that S, must be a finite set. But the set of discontinuities of fin {a, b)
is a subset of the union | JZ_; S, and hence is countable. (If fis decreasing, the
argument can be applied to —7.)

6.3 FUNCTIONS OF BOUNDED VARIATION
Definivion 6.3. If [a, b] is a compact interval, a set of points

A . . P={xmxl’~rﬂxu}v
satisfying the inequalities

8= Xq <X < Xy < X, = b,

w
is called a parlil‘fan of [a, b]. The interval [x,_,, x.] is called the kth subinterval
af P and we write Ax, = x, — X, So that 35_, Axy, = b — a, The collection
of all possible partitions of {a, ] will be denoted by P[a, b].

Definition 6.4. Let [ be defined on [u, b}, If P = {x4, Xy, ..., x.} iv a partition

of [a, B, write Afy = f(x) — fix,_ ), for k = 1,2,...,n. If there exists a
positive member M such that

;mﬁ]gu

for ail partitions of [a, b), then f is said to be of bounded variation on [a, b).

Examples of functions of bounded variation are provided by the next two
theorems.

Theorem 6.5. If f is monotonic on [a, b, then f is of bounded variation on [a, b).

FProof. Let f be increasing. Then for every partition of [a, 5] we have Af, > 0
and hence B

2 1Al = 2 AL = 3 [f6) — fln-] = 1) ~ f@)
?‘keorem 6.6. If f is continuous on [a, b] and if f* exists and is bounded in the
interior, say \f'(x)| < A for all x in (g, b), then f is of bounded variation on [a, b}.
Proof. Applying the Mean-Value Theorem, we have
Afy = f(x) — fln-1) = f(1)05% — Xy where 4, € (X1, %)
This implies

22180 = 316 Ax < 4 3 Ax = Ah - o).

Theorem 6.7. If f is of bounded variation on [a, b], sa
A , b, say 3 1AL < M for alt par-
titions of [a, b), then f is bounded on [a, b). In fact, ' g "

f) < |fta)l + M for all x in [a, b].

e,
£ T .
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Proof. Assame that x & (@, b). Using the special partition P = {a, x, b}, we find
x) — f@1 + 1f) — fx)| = M.

~ This implies | /{x) — fla)l = M, | F(x)t < 1f(@) + M. The same inequality holds

ifx =agorx =&

Examples
1. 1t is easy to construct a continuous function which is not of bounded variation. For
example, et f(x} = x cos {xf(2x}tif x # 0, (@) = 0. Then fis continuous on [0, 1],
but if we consider the partition into 2» subintervals

P = oslv ! ,...,1,!,1 1
3n 2n— 1 32
an easy calculation shows that we have

Fi]
Z]&_&l:.‘l—-‘(-i_;_ i + 1 +...+1 £=1+£+,..+l_
=1 In 2n 2—2 2n- 12 2 2 2 &

This is not bounded for all », since the series 3.2, (1/n) diverges. In this example
the derivative f* exists in (0, 1) but f” is not bounded on (0, 1). However, f”is baunded
on any compact interval not containing the origin and hence fwill be of bounded
variation on such an interval.

2. An example similar to the first is given by f(x) = x* cos (1/x) if x # 0, f(0) = 0.
This £ is of bounded variation on [0, 1}, since f* is bounded on [0, 1]. In fact,
F10) = 0 and, for x # 0, £(x) = sin (1/x) + 2% cos (1/x), s0 that |f{x)} = 3 for
all x in {0, 1].

3, Boundedness of £ is not necessary for fto be of bounded variation. For example, let
f(x} = x3. This function is monotonic {nd hence of bounded variation} on every
finite interval. However, f{x} -+ twasx — 0.

64 TOTAL VARIATION
Definition 6.8. Let f be of bounded variation on [a, B), and let T {P) denote the sum
$u_, |Afl corresponding to the partition P = {Xg, X1y ..o s %o} of [ B). The

number
Via, b) = sup {3 (P): Pe Pq, 513,

is called the total variation of f on the interval [a, b].

NOTE. When there is no danger of misunderstanding, we will write ¥ instead of
Vila, ).

Since fis of bounded variation on [a, &), the number ¥ is finite. Also, V, = 9,
since each sutn T (P) = 0. Morcover, Vila, &) = O if, and only if, ¥ is constant
on [a, &].
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Theorem 6.9. Assume that  and g are each of bounded variation on {a,b]. Then
30 are their sum, difference, and product. Also, we have

Visg <V +V, and V., < AV, + BV,
where

A = sup {lg(x)| : xe{a. b]}, B = sup {ifix)|: xe[a, b]}.
Proof. Let h(x) = f(x)g(x). For every partition P of [a, b], we have
|Ady] = | FxJge) — flxe_ )g(2 - 1)
= |[flxdgx) — fix-)g(x]
+ - dgln) — fla_ )9t )] < AJAS] + Blag,l.

This implics that & is of bounded variation and that ¥, < AV, + BV,. The proofs
for the sum and difference are simpler and will be omitted.

NOTE. Quotients were not included in the foregoing theorem because the reciprocal
of a function of bounded variation need not be of bounded variation. For exampie,
if f(x) - 0 as x -» x,, then 1/f will not be bounded on any interval containing x,
and (by Theorem 6.7} 1/f cannot be of bounded variation on such an interval. To
extend Theorem 6.9 to quotients, it suffices to exclude functions whose values
become arbitrarily close to zero.

Theorem 6.10. Let f be of bounded variation on [a, b) and assume that f is bounded
away from zero; that is, suppose that there exists a positive number m such that
0 < m < |f(x)| for all x in [, B). Then g = 1f is also of bounded variation on
[a, 8], and V, = V,im*.

Proof.

AL

- Af l
Ag,] = <
1494 Sl f(x) = m?

1 1 ]=
Jx)  flxey)

6.5 ADDITIVE PROPERTY OF TOTAL VARIATION

In the jast two theorems the interval [, 5] was kept fixed and Vi(a, b} was con-
sidered as a function of £ If we keep f fixed and study the total variation as a
function of the interval [a, 5], we can prove the following additive property.

Theorem 6.11. Let S be of bounded variation on [a, b)), and assume that ¢ € {(a, b).
Then f is of bounded variation on [, c] and on [¢, b) and we have

Vida, ) = Vda, ¢) + Vile, b).
Proof. We first prove that fis of bounded variation on [a, ¢] and on [¢, 5]. Let
£, be a partition of [a, c] and let P, be a partition of [, 5]. Then Py = P, U P,
is 2 partition of [a, 8]. If 3 (P) denotes the sum 2. |Af] corresponding to the
partition P (of the appropriate interval), we can write

L)+ L (P) = L(Po) < Vila, b). ()
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This shows that each sum Y (P,) and X (P;) is bounded by V(a, b) and this means
that 1 is of bounded variation on [a, ¢] and on [¢, #]. From (1) we also ob.ain the
inequality .

Vita, ¢} + V¢, b) < Vila, b),

because of Theorem 1,15,

To obtain the reverse inequality, let P = {xy, Xy, ..., Xt € Pla, 5] and let
P, = P u {c} be the (possibly new) partition obtained by adjoining the point ¢.
If ¢ & [x. 4. X:], then we have

) — fixe-d)l € x) — fl + 1€} — fn- ),
and hence ¥ (P) < T (Py). Now the points of Py in [&, ¢ determine a partition
P, of [a, c] and those in [e, #] determine a partition P, of [c, 5]. The corre-
spending sums for all these partitions are connected by the relation

L@ Z @) =X )+ X)) < Vda, ) + Viic, ).

Therefore, Via, ¢} + V/{c, b) is an upper bonnd for every sum 3 (P). Since this
cannot be smaller than the least upper bound, we must have

Vda, b) = Vda, ) + Ve, b),
and this completes the proof.

6.6 TOTAL VARIATION ON [, x] AS A FUNCTION OF x

Now we keep the function f and the left endpoint of the interval fixed and study
the total variation as a function of the right endpoint. The additive property
implies important consequences for this function.

Theorem 6.12, Let f be of bounded variation on [a, b]. Let V be defined on [a, b)
as follows: Vix) = Vda, x}ifa < x £ b, V(@) = 0. Then;

i} V is an increasing function on [a, b].

il) V' —f is an increasing function on [a, b).
Proof. I a < x < y < b, we can write Vi{a, ¥) = Vi{a, x) + .Vf(x, »). This
implies F(y} — V(x) = VAx, ¥) = 0. Hence ¥(x} < ¥{y), an‘d (i) holds.

To prove (il), let D(x) = W3} — fix)ifxe[a, ). Then,fa s x <y < b,

we have

D(y) — D) = V(3) — V(x) — [f(») — fx)] = Viix, ) — [FO) - fix)).
But from the definition of ¥(x, »} it follows that we have

JO) = [l £ Vilx, y).

This means that B(y) — D(x) = 0, and (ii) holds.

note, For some functions f, the total variation Vg, x) can be expressed as an
integral. (See Exercise 7.20.)
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67 FUNCTIONS OF BOUNDED VARIATION EXPRESSED AS THE
DIFFERENCE OF INCREASING FUNCIIONS

The following simple and elegant characterization of functions of bounded varia-
tion is a consequence of Theorem 6.12.

Theorem 6.13. Let f be defined on [a, b]. Then f is of bounded variation on [a, b]
if, and only if, f can be expressed as the difference of two increasing functions.

Proof. If f is of bounded variation on [a, &), we can write f = V — D, where
V is the function of Theorem 6.12 and B = V — £ Both ¥ and D are increasing
functions on [a, #].

The converse follows at once from Theorems 6.5 and 6.9.

The representation of a function of bounded variation as a difference of two
increasing functions is by no means unique. If f = f; — f., where £, and f; are
increasing, we also have f = (f, + g) — (/3 + g), where g is an arbitrary in-
creasing function, and we get a new representation of £ If g is strictly increasing,
the same will be true of f; + g and f; + g. Therefore, Theorem 6.13 also holds
if “increasing™ is replaced by “'strictly increasing.”

6.8 CONTINUOUS FUNCTIONS OF BOUNDED VARIATION

Theorem 6.14. Let f be of bounded varigtion on [a, ), If x € (g, b], let V{x) =
Vda, x} and put V(a) = Q. Then every point of continuity of fis also a point of
continuity of V. The converse iy also true.

Proof. Since V is monotonic, the right- and lefthand limits ¥{x+) and ¥{(x—}
exist for each point x in (g, /). Because of Theorem 6.13, the same is true of
Flx+)and f(x-).

Ifa < x < y < b, then we have [by definition of ¥V,(x, )]

0 < |f(») = fix) < V() — V(x)
Letting y — x, we find
0.< |fix+) = fx)| £ Vix+) — Vix).

Similarly, 0 < If(x) — fix—)| £ ¥(x) — Vix—). These inequalities imply that
a point of continuity of ¥ is also a peint of continuity of f.

To prove the converse, let £ be continuous at the poini ¢ in (g, b). Then, given
&> 0,thereexistsad > Osuchthat0 < |x — ¢ < &implies [f(x) — f(o)} < &f2,
For this same ¢, there also exists a partition P of [, 8], say

P={xo,x1,.._,x,}, Xg = € xnzb!

such that
Ve, ) — 5 < Z (AL
A=1
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Adding more points to P can only increase the sum 3 |Af;] and bence we canassume
that 0 < x, — x; < 6. This means that

Ir-‘-f11=lf(xn}—f(6)l<§,
and the foregoing inequality now becomes
Vie, by — - < = AL < £+ Vix, b,
Ve B) - <k DA = 5+ Vikx b)

since {X,, X, ..., X, is a partition of [x,, 5}. We therefore have

Vile, B — Vilxy, b < &
But

0 < Vix,) — V() = Vda, x;,) — V(a, ©)

= Ve, x,) = Vdc, b} — Vilxy. B) < &
Hence we have shown that
0 < Fixd — Vi) < &
This proves that ¥(c+) = V(c). A similar argument yields ¥{c—) = V{¢). The
theorem is therefore proved for all interior points of [a, b]. (Trivial modifications
are needed for the endpoints.)

Combining Theorem 6.14 with 6,13, we can state

Theorem 6.15. Let f be continuous on [a, b]. Then f is of bounded variation on
[a, b] if, and only if, f can be expressed as the difference of two increasing continuous

Sfunctions.

NOTE. The theoremn also holds if “increasing” is replaced by “strictly increasing.”

Q<x, —¢c«<d  implies

Of course, discontinuities (if any) of a function of bounded variation must
be jump discontinuities because of Theorem 6.13. Moreover, Theorem 6.2 tells us
that they form a countable set.

692 CURVES AND PATHS

Let £: [a, #] = R™ be a veclor-valued funciion, continuous on a compact interval
[a, b] in R. As ¢ runs through [a, &), the function values f(¢) trace ont a set of
points in R* called the graph of f or the curve described by f. A curve is a compact
and connected subset of R since it is the continuouls image of a compact interval.
The function 1 itself is called a path.

It is often helpful to imagine a curve as being traced out by a moving particle.
The interval [a, b] is thought of as a time interval and the vector f{7) specifies the
position of the particle at time ¢, In this interpretation, the function f itself is
called a motion.
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Different paths can trace out the same curve. For example, the two complex-
valued functions

f(l} - 82'“, g(r) = e-hi:’ ﬂ <t 1,

each trace out the unit circle x? + y? = 1, but the points are visited in opposite
directions. The same circle is traced out five times by the function A(r) = £'%*7,
0<r <l

6.10 RECTIFIABLE PATHS AND ARC LENGTH

Next we introduce the concept of arc length of a curve. The idea is to approximate
the curve by inscribed polygons, a technique learned from ancient geometers. Our
intuition tells us that the length of any inscribed polygon should not exceed that
of the curve {since a straight line is the shortest path between two points), so the
length of a curve should be an upper bound to the lengths of all inscribed polygons.
Therefore, it seems natural to define the length of a curve to be the least upper
bound of the lengths of all possible inscribed polygons.

For most curves that arise in practice, this gives a useful definition of arc
length. However, as we will sce presently, there are curves for which there is no
upper bound to the lengths of the inscribed polygons. Therefore, it becomes
necessary to classify curves into two categories: those which have a length, and
those which do not. The former are called rectifiable, the latter nomrectifiable.

We now turn to a formal description of these ideas,

Letf:fa, b} - R" be a path in R*. For any partition of [a, &] given by

P = {r(!s TP tm}-

the points Kz}, £(1,), ..., Kz} are the vertices of an inscribed polygon. (An
example is shown in Fig. 6,1.) The length of this polygon is denoted by A{P) and
is defined to be the sum

AfP) = Z () — £t ).

Definition 6.16. If the sef of numbers A(P) is bounded for alf partitions P of [a, b],
then the path £ is said to be rectifiable and ity arc length, denoted by Afa, B}, is

1(t5)

£it;) o

HEY

1itg)

£l
Figare 6.1
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defined by the equation
Ada, B) = sup {ALP): Pe P[g, b]}.
If the set of numbers A{P) is unbounded, 1 is called nonrectifiable.
It is an easy matter to characterize all rectifiable curves.

Theorem 6.7, Consider a path £ [a, b} - R* with components £ = (fy, ..., f,).
Then { is rectifiable if, and only i, each component f, is of bounded variation on
[a, ). Iffis rectifiable, we have the inequalities

Via, b) < Ada, B < Vila, &) + - + Ve, b),
where Vi{a, b) denotes the total variation of f on [a, ).

Progf. IfP = {ty, 1y, ..

(k#l,z,“.,ﬂ), (2)

., by} is a partition of [a, &] we have

i:; LA — J- s AP) = r-Ei le 1At — A6, 3)

for each k. All assertions of the theorem follow easily from (3).

Examples
1. As noted earlier, the fonciion given by f{x) = x cos {#f(2)) for x # 0, f(0) = ¢,
is continuous but not of bounded variation on [0, I]. Therefore its graph is a non-
rectifiable curve.
2. It car be shown (Exercise 7.21) that if £ is continuous on [z, 5], then f is rectifiable
and its are length can be expressed as an integral,

Ada, B) = f * I dr.

6.11 ADDITIVE AND CONTINUITY PROPERTIES OF ARC LENGTH

Letf = (f,, ..., f.) be arectifiable path defined on [, 5]. Then each component
1, is of bounded variation oa every subinterval [x, ¥] of [a, b]. in this section we
keep f fixed and study the arc length A,(x, ¥) as a function of the interval [x, y].
First we prove an additive property.

Theorem 6.18. If ¢ ¢ (a, b) we have
Ada, By = Ada, ¢} + Adc, 5).

Proof. Adjoining the point ¢ to a partition P of [a, b}, we get a partition P, of
[2, c] and a partition P, of [c, &] such that

AfP) < APy + MPy) 5 Ada, ¢} + Adlc, B).

This implies Agda, 5) < Ada, ¢) + Afc, b). To obtain the reverse inequality, let
P, and P, be arbitrary partitions of {a, c] and [c, &], respectively. Then

P=P]UP2,
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is a partition of {a, b] for which we have
AP + AP = A(P) < Afa, b).

Since the supremum of all sums ALP|) + AdP,) is the sum Agg, ) + Afe, b)
{see Theorem 1.15), the theorem follows.

Theorem 6.19. Consider a rectifiable path § defined on [a, b]. If x e {(a, b], fet
$(x} = Ada, x) and let 5(e) = 0. Then we have:

iy The function s so defined iy increasing and continuous on [a, b1,
ii} If there is no subinterval of [a, b) on which 1 is constant, then s is strictly in-
creasing on [u, b].

Proof. f @ < x < y < b, Theerem 6.18 implies () — s(x) = Afx, 3 = 0.

This proves that 5 is increasing on [g, b]. Furthermore, we have s(3) — s(x} > 0

unless Adx, ¥) = 0. But, by inequality (2}, Adx, ¥) = 0 implies Vi{x, y} = 0 for

each k and this, in turn, implies that T is constant on [x, y]. Hence (ii) holds.
To prove that s is continuous, we use inequality (2) again to wtite

0 < 5(p) — s(x) = Adx, y) < Z Vi, »).

Ifwelety — x, we find each term ¥,(x, ¥} — Oand hence s(x} = s{x+). Similarly,
$(x) = s(x—) and the proof is complete.

6.12 EQUIVALENCE OF PATHS, CHANGE OF PARAMETER

This section describes a class of paths having the same graph. Letf:[a, b] — R”
bea path in R". Let u:l¢, 4} - [a, b] be a real-valued function, contineous and
strictly monotonic on [e¢, &] with range [a, #]. Then the composite function
g = fougiven by

gty = flu(®)] forc=it=<d,

is a path having the same graph as {. Two paths § and £ 50 related are called
equivalent. They are said to provide different parametric representations of the
same curve. The function u is said to define a change of parameter.

Let € denote the common graph of two equivalent paths fand g. If w is
strictly increasing, we say that f and g trace out C in the same direction. Wu is
strictly decreasing, we say that  and g trace out C in opposite directions. In the
first case, u is said to be eriemtation-preserving; in the second case, orientation-
reversing.

Theorem 6.20, Let f:[a, b] — R* and g: [c, d] = R™ be two paths in R", each
of which ix one-to-one on its domain. Then § and g are equivalent if, and only if, they
have the same graph.

Proof. Equivalent paths necessarily have the same graph. To prove the converse,
assume that f and g have the same graph. Since f is one-to-one and continuous on
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the compact set [, &1, Theorem 4.29 tells us that £~! exists and is continuous on
its graph, Define u{t) = £~ [g(r)] if ¢ € [c, d]. Then u is continuous on [e, 4]
and g(f) = f[x(r)]. The reader can verify that u is strictly monotonic, and hence
f and g are cquivalent paths.

EXERCISES

Functions of bounded variation

6.1 Determine which of the following functions are of bounded variation on [0, 1].
a) fix) = xz_sin (fxyif x # 0,0 = 0.
b) f(x) = Vxsin (x)if x # 0,7(0) = 0.

62 A function f, defined on {a, 5], is said to satisfy a uniform Lipschitz condition of
order « > 0 on [a, £] if there exists a constant M > 0 such that [f(x} — /()| <
Mix — y[*forall x and y in [, #]. (Compare with Exercise 5.1.)

a) If fis such a funciion, show that & > 1 fmplies £is constant on [a, ], whereas
a = 1 implies £is ol bounded variation [a, ].

b) Give an example of a function fsatisfying a uniform Lipschitz condition of order
& < 1 on [a, ] such that £ is not of bounded variation on [a, b].

¢} Give an example of a function f which is of bounded variation on [a, £] but
which satisfies no uniform Lipschitz condition on [a, 5]

6.3 Show that a polynomial fis of bounded variation on every compact interval [a, b}
Describe a methed for finding the total variation of Fon [a, b] if the zeros of the derivative
£ are known.

6.4 A nonempty set § of realvalued functions defined on an interval [, 5] is called a
linear space of functions if it has the following two properties:

a) i fe X, then ¢f & § for every real number ¢.

b)) ffeSandge S, thenf+ g€ 8.
Theorem 6.9 shows that the set ¥ of all functions of bounded variation on [a, ] is a lincar
space. 1.5 is any Hnear space which contains aH monotonic functions on [a, b}, prove

that ¥ < §. This can be described by saying that the functions of bounded variation
form the smallest linear space containing all monotonic functions,

6.5 Let fbe a real-valued function defined on {0, 1] such that £(0) > 0, f(x) £ x for
all x, and £(x) = f(y) whenever x = y. Let 4 = {x:f{x) > x}. Prove thatsup A ¢ A
and that f{1} > 1.

6.6 If fis defined everywhere in R, then f is said to be of bounded variation on
{— w0, +o)if fis of bounded variation on every finite interval and if there exists a positive
number M such that V/{a, b} < M for all compact intervals [a, b). The total variation of
fon (— o, +o0) is then defined to be the sup of all numbers V{a, 4), ~o0 < a < & <
+ oo, and is denoted by V{— oo, 4+ ). Similar definitions apply to half-open infinite
intervals [@, + o) and (— 0, b].

a) State and prove theorems for the infinite interval (— o0, + o) analogous to
Theorers 6.7, 6.9, 6.10, 6.11, and 6.12.
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b) Show that Theorem 6.5 is true for (— w, -+ ¢o) if “monotonic™ is replaced by
“bounded and monotonic.™ State and prove a similar modification of Theorem
6.13. ’

6.7 Assume that fis of bounded variation on [a, £] and let
P = {xg, Xyy.. ., X} € Pla, 6]
As usual, write Afy, = f(x) — f(xe_,) k = 1,2,..., n. Define

AlP) = ki1 Af > 0], B{P) = {k:Af < 0},
The nuwnbers

pra, ) = sup ‘ Z: Af.: PePla, b] }
)
and

ny(a, b) = sup { 3" A7) : Pelq, b]}
keB{F}

are called, respectively, the positive and negative variations of fon [a, #]. For each x in
(a, 6], let V(&) = Vila, x), pix) = ple, 1), nix) = nple, 0, and lee Vig) = pla) =
a{e) = 0. Show that we have:

a) ¥(x) = plxy + n(x)

b) 0 = pi{x) = V{x)and 0 < n{x) < V(x).

¢} ¢ and n are increasing on [a, &).

d) fx} = flg) + pixy — m(x), Pari(d} gives an alterative proof of Theorem 6,13.
e) 2p(x) = V(x) + f(x) — fl@), 2n(x) = V(x} — fix) + fa).

f) Every point of continuity of fis also a point of continuity of p and of #.

Curves
6.8 Let fand g be complex-valued functions' defired as follows:
£y =™ ifre0,1],  glry = e ifre [0,2].
2) Prove that f and ¢ have the same graph but are not equivalent according to the
definition in Section 6.12. :
b} Prove that the Iength of g is twice that of £,

6.9 Let £ be a rectifiable path of length L defined on [a, 51, and assume that f is not
constant on any subinterval of [g, ] Let s denote the arclength function given by
slx) = Afda, x)ifa < x £ b, s(a) = 0.

a) Prove that s~! exists and is continuous on [0, £.].
b) Define g(z) = f[s~}{#)] if re [0, L] and show that g is equivalent to . Since

(1) = gls(r)], the function g is said to provide a representation of the graph of £
with arc length as parameter.

6.1¢ Let fand g be two real-valued continuous functions of bounded variation defined
on [z, b, with 0 < f(x} < g(x) for cach x in (g, &), fla) = gla), f(b} = g(h). Let h be
the complex-valued function defined on the interval [a, 26 — a) as follows:

My = 1 + §(0), fa<r<éb,

Wity =2b— ¢t + ig(2b — 1), fb=sr=x2b—a

i R BT
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a) Show that 4 describes a rectifiable curve I
b) Expiain, by means of a sketch, the geometric relationship between £, g, and 4.
<) Show that the set of points

§={x,y):a<x<h flx)=<y=<glx);

is a region in R? whose boundary is the curve I
d} Let H be the complex-valued function defined on [, 2b — 2] as follows:

B = 1 — +i[g@) — £iN), fastrsbh
Ht) =t + }i[gb — ) ~f@b~ 1], ibst=i~-a
Show that H describes a rectifiable curve I'y which is the boundary of the region
Se=x,N:asxsh fx)-gx) 5 2y < glx) ~ F(x)}
)} Show that §, has the x-axis as a line of symmetry. (The region S, is called the

symmetrization of § with respect to the x-axis.}
f) Show that the Jength of Ty does not exceed the fength of T

Absolutely coptinnous functions

A real-valued function f defined on {a, 4] is said to be absolutely continuous on [a, b] if
for every 2 > Othereis a d > O such that

3 15B) - fla)] < &

k=1 . .
for every n disjoint open subiniervals {a;, &) of [g, £}, # = 1, 2, ..., the sum of whose
Iengths 5., (B ~ @) is Jess than d.

Absolutely continuous functions occur in the Lebesgue theory of integration and

differentiation. The foilowing exercises give some of their elementary properiies.
6.11 Prove that every absolutely continuous function on [a, #] is contineous and of
bounded variation on [a, b}
noTe. There exist functions which are continnous and of bounded variation but not
absolutely continucus.
6.12 Prove that fis absolutely continvuous if it salisfies a uniform Lipschitz condition of
order I on [a, B} {(See Exercise 6,2.)
6.13 If f and g are absolutely continuous on [¢, &), prove that each of the following is
also: |f], ¢f (c constant), £ + g, f- g; also flg if g is bounded away from zero,
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CHAPTER 7

THE RIEMANN-STIELTIES INTEGRAL

7.1 INTRODUCTION

Calculus deals principally with two geometric problems: finding the tangent line
1o a curve, and finding the area of a region vnder a curve. The first is studied by a
limit process known as differenfiation; the second by another limit process—
integration—to which we turn now.

The reader will recall from elementary calculus that to find the area of the
region under the graph of a positive function f defined on [a, 5], we subdivide
the interval [, 5] into a finite number of subintervals, say », the kth subinterval
having length Ax,, and we consider sums of the form Y7, f(4) Ax,, where 4 is
some point in the kth subinterval, Such a sum is an approximation to the area by
means of rectangles. If f is sufficiently well behaved in [a, b}—continuous, for
example—then there is some hope that these sums will tend to a limit as we let
n - oo, making the successive subdivisions finer and finer. This, roughly speaking,
is what is involved in Riemann’s definition of the definite integral {3 f(x) dx. (A
precise definition is given below.)

The two concepts, derivative and integral, arise m entirely different ways and
it is a remarkable fact indead that the two are intimately connected. If we consider
the definite integral of a continuous function / as a function of its upper limit,
say we write

Fx) = r f) dt,

then F has a derivative and F'(x) = f{x). This important result shows that
differentiation and ntegration are, in a sensg, inverse operations.

In this chapter we study the process of integration in some detail, Actually
we consider 2 more general concept than that of Riemann: this is the Riemann-
Stieltjes integral, which involves two functions f and «. The symbol for such an
integral is [} £(x) du(x), or something similar, and the usual Riemann integral
occurs as the special case in which 2(x) = x. When « has a continuous derivative,
the definition is such that the Stieltjes integral [* /(x) du(x} becomes the Ricmann
integral [® f(x) a’(x) dx. However, the Stieltjes integral still makes sense when «
is not differentiable or even when o is discontinuous. In fact, it is in dealing with
discontinuous o that the importance of the Stieltjes integral becomes apparent, By
a suitable choice of a discontinuous a, any finite or infinite sum can be expressed
as a Stieltjes integral, and surmmation and ordinary Riemann integration then
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become special cases of this more general process. Problems in physics which
involve mass distributions that are partly discrete and partly continuous can also
be treated by using Stieltjes integrals. In the mathematical theory of probability
this integral is 2 very useful tool that makes possible the simultaneous treatment
of continuous and discrete random variables.

In Chapter 10 we discuss another generalization of the Riemann integral
known as the Lebesgue integral.

72 NOTATION

For brevity we make certain stipulations concerning notation and terminology to
be nsed in this chapter. We shall be working with a compact interval [a, 5] and,
unless otherwise stated, all functions denoted by £, g, a, §, etc., will be assumed to
be real-valued functions defined and bownded on [a, b]. Complex-valued functions
are dealt with in Section 7.27, and extensions to unbounded functions and infinite
intervals will be discussed in Chapter 10,

Asin Chapter 6, a partitiun P of [a, b] is a finite set of points, say

= {Xgy X1z o on s Fuhs

such that 2 = X < x; < -** < X,_y < x,'= b. A pantition P’ of [a, b] is said
to be finer than P (or a reﬁnemenr of P)if P = P, which we also write P’ 2 P.
The symbol Az, denotes the difference Axy, = a(x;) ~ a{x;_,), so that

E Axy = w(b) ~ o{a).

The set. of all possible partitions of [a, 8] is denoted by #[g, 5].
‘The norm of a partition P is the Iength of the largest subinterval of P and is
denoted by | Pl. Note that

P 2P  implies 12’ = 12l

That is, refinement of a partition decreases its norm, but the converse does not
necessarily hold.

7.3 THE DEFINITION OF THE RIEMANN-STIELTJES INTEGRAL

Definition 7.1. Let P = {xg, Xy, ..., X,} be a partition of [a, b] and iet 4 be a
point in the subinterval [x,_., X,]. A sum of the form

S(P, f, @) = E F() Ae,

is caﬂed a Riemann—Sticltjes sum of f with respect to «. We say [ is Riemann-
integrable with respect to o on [a, b, and we write “f € R{a) on [a, E]" if there
exists @ number A having the following property: For every £ > 0, there exists a
partition P, of [a, b) such that for every partition P finer than P, and for every
choice of the points &, in [x,_1, %), we have |S(P, [, @) — A] < &.
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When such a number A exists, it is vniquely determined and is denoted by
fa 1 dx or by [& f(x) da(x). We also say that the Riemann—Stieltjes integral {2 fdx
exists. The functions f and o are referred to as the integrand and the infegrator,
respectively. In the special case when w(x) = x, we write S(P, ) instead of
S(P, f, ®), and Fe R instead of fe R(z). The integral is then called a Riemann
integral and is denoted by [/ dx or by [®f(x) dx. The numerical value of
2 F(x) da(x) depends only on f, &, 4, and b, and does not depend on the symbol x.
The letter x is a “*dummy variable” and may be replaced by any other convenient
symbol.

NOTE., This is one of several accepted definitions of the Riemann-Stieltjes integral.
An alternative (but not equivalent) definition is stated in Exercise 7.3.

74 LINEAR PROPERTIES

It is an easy matter to prove that the integral operates in a linear fashion on both
the integrand and the integrator. This is the context of the next two theorems.

Theorem 7.2. If fe R(x) and if g € R() on [a, b], then o,f + c39 € R(®) on
[a, b] (for any wwo constants ¢, and c,) and we have

& ] ]
J e f + ‘-'zg)tfa=C;J. _fdnt+c,_[ g da.

Progf. Leth = ¢, f + c,g. $Given a partition P of [a, &], we can write

S(P, h, o) = Z Kty Aay = ¢, r;f(t.) Avy + ¢, ; #(t) A

= ¢y S{P, f, a) + ¢,8(P, g, @).

Given £ > 0, choose P; so that P = P; implies |S(P, £, o) — [} fda| < &, and
choose Py so that P = P} implies [S(P,g,0) — [Sgda| <2 I we take
P, = P, U _P%, then, for P finer than P,, we have
b

S(P,h,as)—cl.rfd‘amczj g da

< Jeyle + legle,

and this proves the theorem.
Theorem 7.3. If f= R(x) and fe R(f) on [a, b), then f e R{c,a + ¢1f8) on [a, b]
(for any two constants ¢, and ¢3) and we have

rfd(‘fﬂ + e,f) = ¢, .rfdu + fbfdﬁ.

The proof is similar to that of Theorem 7.2 and is left as an exercise.
A result somewhat analogous to the previous two theorems tells us that the
integral is also additive with respect to the interval of integration.
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Theorem 7.4. Assume that ¢ € (n, b). If two of the three integrals in (1) exist, then
the third also exists and we have

ijda-bffda=ffdm @

Proaf. H Pis a partition of [g, &] such that c & P, let
P=Pnlac] and P"=Pnleb)

denote the corresponding partitions of [a, c] and [e, ], respectively. The Rie-
mann-Stieltjes sums for these partitions are connected by the equation

S(P.Jf, a} = S(P, f, o) + S(P", £, ).
Assume that [¢ fdx and [% f dx exist. Then, given & > 0, there is a partition
P, of [a, c] such that ’

< ;—:‘ whenever P’ is finer than P,

S(P'. f. @) — JA’: fdu

and a partition P7 of [¢, b] such that

‘S(P",f, o) — 'rf da

c

< g whenever P* is finer than P%.

Then P, = P, P, is a partition of [a, ] such that P finer than P, implies
P2 P and P' 2 P;. Hence, if P is finer than P,, we can combine the foregoing
resulis to obtain the inequality

= &

a L4

SP, f. o) — j'fda - rfda

This proves that [}  dx exists and equals [< fdx + 2 fda. The reader can easily
verify that a similar argument proves the theorem in the remaining cases.

Using mathematical induction, we can prove a similar result for a decomposi-
tion of [&, &] into a finite number of subintervals.

NOTE. The preceding type of argument cannot be used to prove that the integral
[2 f dax exists whenever [¢fdx exists. The conclusion is correct, however. For
integrators « of bounded variation, this fact will later be proved in Theorem 7.25.

Definition 7.5. If @ < b, we define [ifdx = —f% fdx whenever % fdu exists.
We also define |3 f do. = 0.

The equation in Theotem 7.4 can now be written as follows:

_rfda + J‘tfda + J’afda -0
'] b =
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75 INTEGRATION BY PARTIS

A remarkable connection exists between the integrand and the integrator in a
Riemann-Stieitjes integral. The existence of {%fdx implies the existence of
fa 2 df, and the converse is alse true. Moreover, a very simple relation holds
between the two integrals,

Theorem 7.6, Iff € Rix) on [a, b), then « € R(f) on [a, b] and we kave
] b
J‘ 1) dax) + j o(x) df(x) = f(bY(b) — fakea).

-
Note. This equation, which provides a kind of reciprocity law for the integral, is
known as the formula for integration by parts.

Proof. Let & > 0 be given. Since 3 fdu exists, there is a partition P, of [a, b]
such that for every P’ finer than P,, we have

5P, f, o) — r fde| <5 @

Consider an arbitrary Riemann-Stieltjes sum for the integral [} « df, say

S0 = 3 ) Ay = 3 al0S) — 3 a5

k=1

where P is finer than P,. Writing 4 = f(B)a(d) — f(aku(a), we have the identity

A= E FOorax) — f_’f;_f(xk-oa(xk_l).

Subtracting the last two displayed equations, we find

A—3P, uf)= ;f(ﬂ)[“(xx) - o)] + ;f(xk-x)[“(‘u) = afx- 1))

The two sums on the right can be combined into a single sum of the form S(P7, £, e,
where P’ is that partition of [a, #] obtained by taking the points x; and 7, together.
Then P’ is finer than P and hence finer than P,. Therefore the inequality (2) is
valid and this means that we have

]

A—S(P,ot,f)-—ffduc

< g,

whenever P is finer than P,. But this is exacily the statement that [2 x df exists
and equals A — [ fda.

7.6 CHANGE OF VARIABLE IN A RIEMANN-STIELTJES INTEGRAL

Theorem 7.7. Let fe R(@) on [a, b] and let g be a strictly monotonic comtinuous
Sunction defined on an interval S having endpoints ¢ and d. Assume that a = g(c),
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b = gld). Let h and B be the composite functions defined as follows:
h(x) = flo()], Bx) =alglx)], ifxesS.
Then k€ R(P) on S md we have (5 fdu = [$h df. That is,

d d
" ) dar) = j (0] dfala(e)]}-

wle)

Proof. For definiteness, assume that g is strictly increasing on §. (This implies

¢ < d) Then g is one-to-one and has a strictly increasing, continuons inverse g ~*

defined om {a, b]. Therefore, for every partition P = {yy, ..., »,} of [¢ 4],
there corresponds one and only one partition P' = {x4, ..., x,} of [a, b] with
X, = g{y). In fact, we can write ‘

P=gpP) and P=g'(P)

Furthermore, a refinement of £ produces a corresponding refinement of P’, and
the converse also holds.

If & = 0 is given, there is a partition P} of [a, 8] such that P’ finer than P,
implies |S{F", f, &} — [8fda] < . Let P, = g~ '(P]) be the corresponding par-
tition of [e, &), and let P = {y,, ..., y,} be a partition of {c, d] finer than P,
Form a Riemann-Stieltjes sum

S(P, 1, f) = Z k() Ay

where 1, € [y, ] and Af, = Sy — B(y-:). 1f we put & = g4} and
x, = g{¥ ). then P' = {xq, ..., x,}isa partition of [a, &] finer than P,. Moreover,
we then have

S, i 8) = 2 fTaGa)lala(3)] = alg(3i- )]}

= 2 fldfax) - alx ) = 5P, f, ),
since #x € [x,_y, x;]. Therefore, {S(P, #, B) — ¥ fdal < & and the theorem is
proved.

NOTE. This theorem applies, in particular, to Riemann integrals, that is, when
a{x) = x. Another theorem of this type, in which g is not required to be mono-
tonic, will Jater be proved for Riemann integrals. (See Theorem 7.36.)

7.7 REDUCTION TO A RIEMANN INTEGRAL

The next theorem teclls us that we are permitted to replace the symbol du(x) by
«'{x) dx in the integral [} f(x) dx(x) whenever o has a continuous derivative o',
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Theorem 78. Assume fe R(x) on [a, &) and assume that « has a continuous
derivative o’ on [a, b, Then the Riemann integral % f(x)a'(x) dx exists and we have

j " f) dax) = J' " fen(e) d.

Proof. Let g(x} = f(x)x'(x) and consider a Riemann sum

S, g) = Z 9(ty) Ax, = Ef(rg«'aa Ax;.

The same partition P and the same choice of the #, can be used to form the
Riemann—Stielties sum

S(P, f, &) = Z f(1) Agg.

Applying the Mean-¥alue Theorem, we can write
Agy = a'(n) Axy,  where v € (X g, X,

and hence

S £, ) — S, g) = 3 e’ — a(5)] A,
k=1

Since f'is bounded, we have |f{x)] < M for all x in [a, 5], where M > 0. Con-
timity of o' on [g, b] implies uniform continuity on [e, b]. Hence, if & > 0 is
given, there exists a § > 0 (depending only on &) such that

-5
2M(b — a)

If we take a partition P, with norm [P} < &, then for any finer partition P we
will have |e'{v,) — o'(t)| < /[2M(b — a)] in the preceding equation. For such
P we therefore have

Ogsx—~ypl<d implies le'fx) — o' p)] <

ISP, f, 0) — S(P, )l < g-

On the other hand, since f'e R(x) on [a, b), there exists a partition P} such that
P finer than P implies

lS(P,f,m)—~ thdac

£
< =
2

Combining the last two incqualitics, we see that when P is finer than P, = PL U P,
we will have |S(P, g) — | fdu| < &, and this proves the theorem.

NOTE. A stronger result not requiring continuity of &' is proved in Theorem 7.35,
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7.8 STEP FUNCIYIONS AS INTEGRATORS

If « is constant throughout [a, &1, the integral {2 f dx exists and has the value 0,
since each sum S(2, f, «} = 0. However, if « is constant except for a jump dis-
continuity at one point, the integral {2 / dx need not exist and, if it does exist, its
value need not be zero. The situaiion is described more fully in the following
theorem:

Theorem 7.9, Given a < ¢ < b. Define o on [a, b] as follows: The values n{a),
ulc), alb) are arbitrary;

a(x) = ala) ifa < x«<.e
and
olx) = ) He<x<h

Let f be defined on {a, b) in such a way that at least one of the functions f or o is
continuous from the left at ¢ and at least one is continuous from the right af ¢. Then
J & R(a) on [a, b)] and we have

j " fde = fOac+) — afe—)].

NOTE. The result also holds if ¢ = &, provided that we write «{c) for a(c—), and
it holds for ¢ = b if we write «(c) for a{c+). We will prove later (Theorem 7.29)
that the integral does not exist if both fand  are discontinuous from the right or
from the left at ¢,

Proof. If c € P, every term in the sum S(P, f, @) is zero except the two terms arising
from the subinterval scparated by c, say

S(P, £, o) = fit_)x(e} — ale—)] + f(r)[ale+) — wle)],

where 4, £ ¢ £ 4. This equation can also be written as follows:

A = [flti-1) — SOI[e) — ale—)] + LS8 ~ fO][e(e+) — ()],
where A = S(P, f, o) — f()a(c+) ~ ofe~)]. Hence we have

1Al < [f(tx-1} — Ol lale) — ale—)| + |f(4) — flell la(e+) — alc).
If fis continuous at ¢, for every & > Othereis a § > 0 such that [P} < § implies

ft-a) —fll < e and  |f(1) — flo)l < &
In this case, we obtain the inequality
|Al < glale) — ale—)] + elalc+) — el

But this inequality holds whether or not f is continuous at ¢. For example, if £ is
discontinuous both from the right and from the Ieft at ¢, then a(c) = a(c~) and
afc) = afc+) and we get A = 0. On the other hand, if f is continuous from the
left and discontinucas from the right at ¢, we must have e(¢} = a{c+) and we get
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lA] < elafcy — alc—). Similarly, if fis continuous from the right and discon-
tinvous from the left at ¢, we have a(c) = a{e—) and |A] < gle(e+) — (o).
Hence the last displayed inequality holds in every case. This proves the theorem.

Example. Theorem 7.9 tells us that the value of a Riemann-Sticltjes integral can be altered
by changing the value of fat a single point. The following example shows that the
existence of the integral can also be affected by such a change. Let

ax}) =0, ifx#0 a@=—1,
fy=1, -if~1=<x=< +1.

In this case Theorem 7.9 implies [L; fdx = 0. But if we re-define 50 that £(0) = Zand
Fx) = 1ifx # 0, we can easily see that [L | #da will not exist. In fact, when P is a par-
tition which includes 0 as a point of subdivision, we find

S(P, £, @ = fldalxy) — a@)] + fl6. @ — ol ;)]
= fih)y = flte_s}

where x,_, % £, < 0 = # < x,. The value of this sum is 0, 1, or ~ 1, depending on
the choice of 1, and #,_,. Hence, [1, fdz does not exist in this case. However, in a
Riemann integral J2 £(x} dx, the values of f cen be changed at a finite number of points
without affecting either the existence or the value of the integral, To prove this, it suffices
ta consider the case where f(x} = 0 for all x in {s, 5] except for one point, say x = c.
But for such a function it is obvious that [S(P, /)| =< |/(O}P]. Since | P[] can be made
arbitrarily small, it follows that §5 7{x) dx = 0,

7.9 REDUCTION OF A RIEMANN-STIELTJES INTEGRAL TO A FINITE SUM

The integrator « in Theorem 7.9 is a special case of an important class of functions
known as step fiinctions. These arc functions which are constant throughout an
* interval except for z finite number of jump discontinuities.

Definition 7.10 (Step function). A funciion « defined on [a, b] is called a step function
if there is a partition :

a=X <Xy < L X, = b

such that « is constant on each open subinierval (x,_y, %), The munber a{x,+) —
olx,—Y) is called the jump ar x, if | < & < a. The jump at x, is «(x, +) — 2{x,)
and the jump at x, is a{x,) — a(x,~).

Step functions provide the connecting link between Ricmann-Stieltjes integrals
and finite surns:

Theorem 7.11 (Reduction of a Riemann—-Sticlijes integral to a finite sum). Let o be
a step function defined on [a, b] with jump 2, ot x,, where Xy, . . ., x, are as described
in Definition 7.10. Let f be defined on [a, B] in such a way that not both f and « are
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discontinuous from the right or from the left at each x,. Then §% f do exists and we
have

j " 1) da(x) = pIFEN

Proof. By Theorem 7.4, [% f da can be written as a sum of integrals of the type
considered in Theorem 7.9,

One of the simplest step functions is the greatest-integer function. Its value at
x is the greatest integer which is less than or equal to x and is denoted by [x].
Thus, [x] is the unique integer satisfyirig the inequalities [x] < x < [x] + 1.

Theorem 7.12. Every finite sum can be written as a Riemann-Stieltjes integral. In
fact, given a sum Y-, oy, define f on [0, n] as follows:

HESERA Fk—1<x=<k k=12..,nm f0=0
Then

Soa =2 ft) = I 69 dx],
k=1 k=1 o
where [x] is the greatest integer < x.

Proof. The greatest-integer function is a step function, continuous from the right
and having jump 1 at each integer. The function f'is continuous from the left at
i, 2,...,n Now apply Theorem 7.11.

7.1¢ EULER'S SUMMATION FORMULA

We shall illustrate the use of Riemann—Sticltes integrals by deriving a remarkable
formula known as Euler’s summation formula, which relates the integral of a
function over an interval [, ] with the sum of the function values at the infegers
in [a, 5]. It can sometimes be used to approximate integrals by sums or, conversely,
to estimate the values of certain sums by means of integrals.

Theorem 7.13 (Euler’s summation formula). If f has a continuous derivative f* on
[a, b, then we have

X o = becx:: dx + rf’(x)((x)) dx + f@h(@) — FEXB).

[T T4

where ((x)) = x — [x]. When a and b are integers, this becomes

I;f(n) = be(x)dx + rf’(x)(x - [x] - %)dx +w.

NOTE. ¥, <, means the sum from # = [a] + 1ton = [b].
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Proof. Applving Theorem 7.6 {integration by parts), we have

.

% (x = D dftx) = fib)b — [B]) — fla)a — [a)

P

5
j‘ Sy d{x - [x]) 4+

Since the greatest-integee function bas updt jumps at the integers [u) + 1,
{al + 2,.. ., [bL we can write

{ bf{x}d{x] = 3 fin).

e T
Ja FET L]

1 we combine this with the previous equation, the theorem follows at onve.

741 MONOTONICALLY INCREASING INTEGRATORS., UPPER AND
LOWER INTEGRALS

The further theory of Riemans-Stielties integration will now be developed for
monotonically increasing integrators, and we shall see later (in Theorem 7.24) that
for many purposes this is just as general as studying the theory for integrators which
are of bounded variation.

When 2 is increasing, the differences Ag, which appear in the Riemann-
Sticlties sums are all nonnegative. This simple fact plays a vital role in the develop-
ment of the theory, For brevity, we shall use the abbreviation “a» on fa, 517 to
mean that “z is increasing on [a, 817

As stated earlier, to find the area of the reglon under the graph of a function
Jwe consider Riemang sums 3 f{1,) Ax, as approximations to the area by means
of rectangles. Such sums also arise quile naturslly in certain physical problems
requiring the use of integration for their solution. Another approach to these
problems i by means of upper aud Jower Riemann sums. For example, in the case
of areas, we can consider approximations from “above” and from “below” by
mwans of the sums T M, Ax, and S, Ax,, where M, and m, denote, respectively,
the sep and inf of the functon walees in the Ath subinterval. Our geometric
intuition tells us that the upper sums are at least as big as the area we seek, whersas
the fower suws cannot exceed this area. (See Fig 7.1.) Therefore i1 seems natural

Figere 7.3
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to ask: What is the smallest possible value of the upper sums? This leads us 1o
consider the inf of all upper sums, 3 number called the wpper iwegral of £ The
ower infegrad is similarly defined to be the sup of all lower sums, For reasonable
functions (for example, continuous functions) both these integrals will be equal to
jz fix) dx. However, in general, these integrals will be different and it bﬁmmm an
important problem to find conditions on the function which will ensure that the
upper and lower integrals will be the same. We now discuss this type of problem
for Riemann—5Stielties integrals,

Definition 7.14. Let P be g partition of [, b} and let
MU= sup Lfx) xe Lx X1
i fy = inf {flxsxefxn.y, 20t

The mumbers
UP.f0 = 3 M) ds,  and  L(P.f,a) = 2 m(f)Au,
ket k=1

are catled, respectively, the upper and lower Stieltjes sams of f with respect 1o ¢ for
the purfition P,

o, We always have m(f) < MU Waz on [a b], then Aoy = & and we
can also write my{ £) Ax, = My Ax, from which it follows that the lower sums
do not exceed the upper sums. Forthermore, if f, € [x,_,, %), then

m{ [y = fln) < M{S)
Fherefors, when a7, we have the inequalities
Lp fioy = SIP. fay = UP S )

relating the upper and lower swins to the Riemans-Sticlties sums. These inequali-
ties, which are frequently used in the material that follows, do not necessarily hold
when « i5 not an increasing function.

The next theorsm shows that, for increasing «, refinement of the partition
increases the lower suims and decreases the upper sums,

Fheorem 715, Assume that 0.7 on[a, 8], Then:
iy If P is finer than P, we have
Ui, fa) < U, 0y and  L(P'.f, 0 = L{P, f, a).
i}y For any two partitions P, and Py, we hove

LP,, fa) < UPs, 2
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Proof. It suffices to prove (i) when P’ contains exactly one more point than P,
say the point ¢. If ¢ is in the ith subinterval of P, we can write

U(P', f, o) = ; M(f) gy + MTale} — (- )] + M [a(x) — {c}],

ki
where M’ and M” denote the sup of fin [x,_,, ¢] and [¢, x;]. But, since
M < M(f) and M" £ MJ)),

" we have U(P‘, f, o) < U(P, [, «). (The inequality for lower sums is proved in a
similar fashion.)
"To prove (ii), ket P = P, u P,. Then we have

LP, ey« LIPS 0) < UP, [, @) < U(Py, f, )
NOTE. It follows from this theorem that we also have (for increasing a)
mfa(d) — a(@)] < L(P,, f, ) < U(P,, f, o) < M[a(d) — ala)],
where M and m denote the sup and inf of f on [a, &]. '

Definition 7.76. Assume that « » on [a, ¥). The upper Sticltjes integral of f with
respect to o is defined as follows:

Ty
J fda = inf {U(P, f, o) : P e #[a, b]}.
The fower Stieltjes integral is similarly defined: )
b
j fdo = sup {L(P, f, &) : P e #[a, b]}.

NOTE. We sometimes write J(f, &) and I(J, @) for the upper and Jower integrals.
In the special case where a(x) = x, the upper and lower sums are denoted by
U(P, f} and L(P, ) and are called upper and lower Riemann sums. The corre-
sponding integrals, denoted by {® f(x) dx and by J? f(x) dx, are called upper and
lower Riemann integrals. They were first introduced by J. G. Darboux (1875).

Theorem 7.17. Assume that o on [a, ¥]. Then K, o) < I{f, o).
Progf. If ¢ > 0 is given, there exists a partition P, such that
UPLf0) < I(f,a) + e

By Theorem 7.15, it follows that I(f, ) + & is an upper bound to all lower sums
L(P, f, 2). Hence, I(f, o) < I(f, o) + &, and, since ¢ is arbitrary, this implies
Kf o) < I{f, ).

Example. li is casy to give an example in which I(f, o) < I(f, o). Let a{x) = x and
define £ on [0, 1] as follows:

fixy =1, ifxisrational, f(x} = 0, if x is irrational.
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Then for every partition P of [0, 1], we have M,{f) = 1 and m{f) = 0, since every
subinterval contains both rational and irrational numbers, Therefore, U(P, f) = 1 and
L(P, F) = O for all P. It follows that we have, for {a, 5] = [0, 1],

“p .
jfdx=l and ffdr=0.

Observe that the same result holds if f{x)} = 0 when x is rational, and f(3) = 1 when x is
irrational.

712 ADDITIVE AND LINEARITY PROPERTIES OF UPFER AND
LOWER INTEGRALS

Upper and lower integrals share many of the properties of the integral. For ex-

ample, we have
' e TB
dea=J.fdm+'f J de,

ifa < ¢ < b, and the same equation holds for lower integrals. However, certain
equations which hold for integrals must be replaced by inequalities when they are
stated for upper and lower intcgrals. For example, we have

F(I+g)da < j'bfdﬂrgda,
and '

b ' ¥ b

J (f-i—g)duaj-fdcc-!-}' g du.

These remarks can be easily verified by the reader. (See Exercise 7.11.)

713 RIEMANN'S CONDITION

If we are to expect equality of the upper and lower integrals, then we must also
expect the upper sums to become arbitrarily close to the lower sums. Hence it
seems reasonable to seck those functions f for which the difference U(P, f, «} —
L(P, f, o) can be made arbitrarily small.

Definition 7.18. We say that [ satisfies Riemann's condition with respect to u on
[a, B) if, for every & > 0, there exists a partition P such that P finer than P, implies

0 < U, fa) — P, f,0) < &

Theorem 7.19. Assume that 2.7 on [a, b). Then the following three statements are
equivalent:

i) fe R(z) on [a, b).
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ii) f satisfies Riemann's condition with respect to @ on [a, B].
i) I(f, @) = K, o).

Proof. We will prove that part (i) imphies (ii), part (i) implies (ifi}, and part (jii)
implies {i). Assume that (i) holds. If a(f) = a(a), then (i) holds trivially, so we
can assume that a{@) < a(b). Given ¢ > 0, choose P, so that for any finer P and
all choices of # and # in [x,_,, x,], we have

3" 700 Ay — Al <*,
E=1 3

where A = |} fdx. Combining these inequalities, we find

?;‘{f(rg Ax, — A

< d and
3

L; Lftw) — 1 {IQ] Al < %s,

Since My(f) — m(f) = sup {f(0) — Ax): %, x' in [xy, x,.}}, it follows that
for every 2 > 0 we can choose £, and t; so that

) — &) > M) — m(f) — k.
Making a choice corresponding to b = e/[a(d) — x(a)], we can write

UP, f, &) — L(P, f, a) = Z [My(f) — m)] A,

n »
< Z; LAt — FD] Ay + ;; Aw, < &
Hence, (i) implies (ii).
Next, assume that (ii) holds. If e > 0 is given, there exists a partition P, such
that P finer than P, implies U(P, f, «) < L(P,f, a) + &. Hence, for such P we
© have

) s UR Loy < LIP fa) +6 < If,0) + &

That is, I(f, @) < I(f, o) + & for every & > 0. Therefore, K(f, ) < I(f, «). But,
by Theorein 7.17, we also have the opposite inequality. Hence (ii) implies (ifi).

Finally, assume that I(f, «) = I(/, o) and let 4 denote their common value.
We will prove that [} f d exists and cquals A. Given 2 > 0, choose P, so that
U(P, f, @} < Kf, @) + & for all P finer than P,. Also choose P” such that

LP, fie) > Kfyo) — ¢
for all P finer than P7. If P, = PIu P7, we can wrile
Hia)—e< (P, f,0) < S(P, f,2) < VP, fo)< Kfo) + ¢

for every P finer than P, But, since I/, @) = J{f, «) = A, this means that
ISP, £, &) — A < e whenever P is finer than P,. This proves that 2 1 d exists
and equals A, and the proof of the theorem is now complete.
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7.14 COMPARISON THEOREMS

Theorem 7.20. Assume that a7 on {a, B]. If f ¢ R(a) and g € R(5) on [a, b) and
¥ 1(x) = g(x) for all x in [a, ¥, then we have

] b
J F) dulx) < J' 90x) dai).
Proof. For every partition P, the corresponding Riemann-Sticltjes sums satisfy
S(P. f, @) = b}::lf(rk) A, < 3 9(td Aay = S(P, g, ),

since ¢ on {4, ¥]. From this the theorem follows easily.

In particular, this theorem implies that [} g(x) dx(x) = ¢ whenever g(x) = 0
and 2.2 on [a, b].

Theovem 7.21. Assume that w” on [a, b]. If f € R(x) on [a, &), thea | ] € R(x) on
[a, b] and we have the inequality

r $x) dal)

< r G do).

Proof. Using the notation of Definition 7.14, we can write
M(f) — m(f) = sup {f(x} — f(3) : x, yin [x_y, 2]}

Since the inequality jt (] — | ﬂy)]] < Lf(x) — f(y}} always holds, it follows that
we have

M fD = mdf]) = M) — m{f).
Multiplying by Az, and summing on k, we obtain
U Ifl.a) — LP,If) o) < UP.f,0) — LP, fL0),

for every partition P of {a, ]. By applying Riemann’s condition, we find that
|f] € Riz) on [a, b]. The inequality in the thecrem follows by taking g = |f] in
Theorem 7.20. -

NOTE. The converse of Theorem 7.21 is not true. (See Exercise 7.12.)

[Tkeo:rlem 7.22. Assume that o ” on[a, b]. Iffe R(@) on[a, b), then f* ¢ R{x) on
a, bl.
Proof. Using the notation of Definition 7.14, we have
M(f3) = M) asd  m(f) = [m(/DD
Hence we can write
M) — m(f*) = [MA7D + m( DM 7D — md D)
< 2MIMASN) - m( /D)
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where M is an upper bound for |f] on [@, . By applying Riehann’s condition,
the conclusion follows.

Theorem 7.23. Assume thot a ~ on[a, b). If f € R(a) and g € R(z) on [a, b], then
the product f-g € R(a) on [a, b}

Proof. We use Theorem 7.22 along with the identity
2f(x)g(xy = [f(x) + 9] — [F9]* - [9(0]*.

7.15 INTEGRATORS OF BOUNDED VARIATION

In Theorem 6.13 we found that every function & of bounded variation on [a, 5]
can be expressed as the difference of two increasing functions, Ifz = &, — 4, is
such a decomposition and if f € R(z;} and /' ¢ R(az) on [a, &], it follows by linearity
that & R(x) on [a, #]. However, the converse is not always true. If £ € R{a) on
[a, b], it is quite possible to choose increasing functions «, and «, such that
a = 2, - @&, but such that neither integral 2 f du,, {2 f dx, exists. The difficuity,
of course, is due to the nonuniqueness of the decomposition & = «, — &,. How-
ever, we can prove that there is at least one decomposition for which the converse
is true, namely, when o, is the total variation of « and «, = «, — . (Recall
Definition 6.8.)

Theorem 7.24. Assume that a is of bounded variation on [a, b}. Let V{x) denote the
totad voriation of w on [a, x| if a < x < b, and let V{g) = 0. Let f be defined and
bounded on {a, b]. If fe Riz) on {g, b), then f € R(V) on [a, b].

Proof. M V(B) = 0, then ¥ is contant and the result is trivial. Suppose therefore,
that ¥{b) >> 0. Suppose also that [f(x)] < M if x ¢ [a, ]. Since V is increasing,
we neced only verify that f satisfies Riemann's condition with respect to ¥ on [a, ).

Given ¢ > 0, choose P, 5o that for any finer P and all choices of points 7, and
t5in [xg g, %] we bhave

[

[ ] ; B ]
; U0 - S0l A < . and V() < Z lAa) +

For P finer than P, we will establish the two inequalitics

21 I0) - mDJAK, — 18y < 7,

and
Z; [MLf) — m)] Ay < 5"

which, by addition, yield U(P, f, ¥} — L(P, f, V) < &.
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To prove the first inequality, we note that AV, — A, > 0 and hence

2; [MUf) — m )Y, — |Az,)) = 2M 2 @V - jaw)

= M (V(b} - ,.Z:; [A:x&;) < L;'
To prove the second inequality, let
AP) = {k:An, 2 0}, B(P)= {k:Aa, < 0},
and let & = 1efV(5). I &k ¢ A(P), choose £, and £, so that
S — f) > M) — malf) ~ ks
!;;;t, if ke B(P), choose ¢, and £ so that f{t) — f(1) > M) — m{f) — h.
on ,

i3

Y. M) — m()] 1Al < “;m [7(6) — SU)] 1A

k=1

+ 20 [fUD — fN g + B D JAxy]
heB(P) k=}

= 2, U6 — 161 Axy + b 3 (4w

£ &€ & £
4‘:_—-+th S oam e W
4 ®) 4 4 2

It follows that f'e R(V) on [a, b].

NOTE. This theorem (together with Theorem 6.12) enables us to reduce the theory
of Riemann-Sticltjes integration for integrators of bounded variation to the case
of increasing integrators. Riemanr’s condition then becomes available and it
turns out to be a particularly useful tool in this work. As a first application we shall
obtain a result which is clesely related to Theorem 7.4.

Theorem 7.25. Let o.be of bounded variation on [a, b] and assume that f € R{a) on
le. 1. Then f € R(a) on every subinterval [c, d] of [a, b].

Proof. Let V(x) denote the total variation of « on [a, x7], with ¥(g} = 0. Then
a =V — (V — u), where both ¥ and ¥ — & are increasing ou [a, b] (Theorem
6.12). By Theorem 7.24, fe R(V), and hence f€ R(V — «) on [a, 6]. Therefore,
if the theorem is true for increasing integrators, it follows that f'e R(V) on [c, d]
and fe R(V — o) on [¢, ], 50 fe Rz} on [c, d].
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Hence, it suffices to prove the theorem when «» on {4, $]. By Theorem 7.4
it suffices to prove that each integral |5 fdx and [2fdx exists. Assume that
a < ¢ < b If Pis a partition of [a, x], let A(P, x) denote the difference

A(Pa x) = U(P!f; a) - L(P,f; 'x)!

of the upper and lower sums associated with the interval [a, x]. Since fe R{x)
on [&, §], Riemann’s condition holds. Hence, if ¢ > 0 is given, there exists a
partition P, of [a, b} such that A{P, b} < & if P is finer than P,, We can assume
that ¢ e P,. The points of P, in [a, ¢] form a partition P, of [a, ¢]. If P isa
partition of [, ¢] finer than P/, then P = P’ 1 P, is a partition of [a, 5] com-
posed of the points of P’ along with those points of P, in [¢, #]. Now ihe sum
defining A(P’, ¢) contains only part of the terms in the sum defining AP, b). Since
each term is >0 and since P is finer than £,, we have

A(P, ) < AP, b) < &

That is, P’ finer than P; implies A(P’, ¢} < ¢. Hence, f satisfies Riemnann’s con-
dition on [a, ¢] and ¢ f dx exists. The same argument, of course, shows that
I4 f dt exists, and by Theorem 7.4 it follows that f; f du exists.

The next theorem is an application of Theorems 7.23, 7.21, and 7.25.

Theorem 7.26. Assume [e Riw) and ge R(e) on [a, b], where a7 on [a, b].

Define

Fx) = ffm dae)

and

Gix) = JX g{t) da(t) if x & [a, b].

Then f € R(G), g € R(F), and the product - g € R{(x) on [a, b], and we have

b : ]
j (X)a(x) dafx) = j £x) dG(x)

- f o(x) dF(x).

@

Proof. The integral % f g du exists by Theorem 7.23. For every partition P of
[«, b] we have

S(P.£, 6) = 2 b o) dutt) = 3 -

g w1 E Y

F(1)g(r) dait),

and

b ] 2y
j 1690 dat) = 3 | feorgte )

A

:
:
i

i

P
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Therefore, it M, = sup {|g(x)| : x € [a, b]}, we have

> " e - slen dao

g -1

IS(P,f, G) - jbf-g da

1A

<M 3 ™ 1w - 101 dety < M, Y r" (M) — my()] dedt)
k=1

E k=t fages

M'{U(Psf: a] - I‘(P,.rs a)}‘

Since f € R(x), for every ¢ > O there is a partition P, such that P finer than P,
implies U(P.f, #) — I(P,f, @) < ¢. This proves that fe R(G) on [a, 5] and
that 2 f-g de = [} fdG. A similar argument shows that g € R(F) on [a, b] and
that [ f-g de = |} g dF.

note, Theorem 7.26 is also valid if @ is of bounded variation on [a, 5).

7.16 SUFFICIENT CONDITIONS FOR EXISTENCE OF RIEMANN-STIELTIES
INTEGRALS

In most of the previous theorems we have assumed that certain integra}s;xisted
and then studied their properties. It is quite natural to ask: When does the integral
exist? Two useful sufficient conditions will be obtained.

Theorem 7.27. If f is continuous on [a, b] and if « is of bounded variation on [a, 5],
then f ¢ R(x) on [, b].

NoTE. By Theorem 7.6, a second sufficient condition can be obtained by inter-
changing / and o in the hypothesis. .

Proof. It suffices to prove the theorem when x ” with afa) < w(h). Continuity
of f on [a, b} implies uniform continuity, so that if £ > 0 is given, we can find
5 > 0 (depending only on &) such that [x — y| < & implies [ f(x) — f{(¥)} < &/A,
where 4 = 2[a(b) — a(a)). If P, is a partition with norm [P.] < §, then for P
finer than P, we must have
M) — m(f) < /4,

since My(f) — m(f) = sup {/(x} — f(3):x, yin [x-.. %]} Multiplying the
inequality by Aw, and summing, we find

UP f0) — L.Lo) < £ Ay = =< g,
A k=1 2

and we see that Riemann’s condition holds, Hence, f& R(x} on [a, b].

For the special case in which a{x) = x, Theorems 7.27 and 7.6 give the following
corollary: '

Theorem 7.28. Each of the following conditions is sufficient for the existence of the
Riemarm integral I3 f(x} dx:

a) fis contimewus on (a, b]. b} fis of bounded variation on [a, b].




160 The Ricsayrm-Stielties Integral Th. 7.2%

7.17 NECESSARY CONDITIONS FOR EXISTENCE OF RIEMANN-STIELTIES
INTEGRALS

When « is of bounded variation on [, 5], continuity of f is sufficient for the exis-
tence of [ fdx. Continuity of f throughout [a, 5] is by no means necessary,
however. For example, in Theorem 7.9 we found that when « is a step function,
then £ can be defined quite arbitrarily in [, 5] provided only that £ is continuous
at the discontinuitics of . The next theorem tells us that common discontinuities
from the right or from the left must be avoided if the integral is to exist,

Theorem 7.29. Assume that @7 on [a,b) and let a < ¢ < b. Assume further
that both w and f are discontinuous from the right at x = ¢ that is, assume that there
exists an & > 0 such that for every 8 > 0 there are values of x and y in the interval
{c, ¢ + &) for which

) —fieh=e  amd  a(p) — afo)] = e

Then the integral (} f(x) du(x) cannot exist. The integral also fails to exist if & and
S are discontinuous from the left at c.

Progf. Let P be a pertition of [a, 5] containing ¢ as a point of subdivision and
form the difference

U(P, f, @) ~ L(P, f,0) = E (M) — m()] Aoy
If the ith subinterval has ¢ as its left endpoint, then
UL, f, o) — L&, £ ) = [M(f) — m(N][alx) — a(e)],

since each term of the sum is =0. If ¢ iz a common discontinuity from the right,
we can assume that the point x; is chosen so that a(x,}) — a(¢) = e. Furthermore,
the hypothesis of the theorem implies MLf) — m{f) > & Hence,

U(P:,fn EX) - L(Pa,fn ’x) = 52!

and Riemann’s condition cannot be satisfied. (If ¢ is a common discontinuity
from the left, the argument is similar.)

7.18 MEAN-VALUE THEOREMS FOR RIEMANN-STIEL'TJES INTEGRALS

Although integrals occur in a wide variety of problems, there are relatively few
cases in which the explicit value of the integral can be obtained. However, it
often suffices to have an estimate for the integral rather than its exact value. The
Mean Value Theorems of this section are especially useful in making such estimates.

Theorem 7.30(First Mean-Value Theorem for Riemann-Stieltjes integrals). Assume
that o 7 and let f € R(g) on [a, b). Let M and m denote, respectively, the sup and
inf of the set {f(x):xe[a, b}). Then there exists a real number ¢ satisfying
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m = ¢ < Msuch that
J' " 1) daf) = ¢ j da(x) = c[a(b) — a(a))

In particular, if ¥ is continwous on [a, k), then ¢ = f{xg) for some x, in [a, b].

Proof. If a{z) = afb), the theorem holds trivially, both sides being (. Hence we

‘can assume that x(g) < ofb). Since all upper and lower sums satisfy

mla(®) -~ o@)] < L(P, f, o) < U(P, f; o} < M[a(b) — ala)],

the integral {5 / do must lie between the same bounds, Therefore, the quotient
¢ = ([ f dw){([ da) lies between m and M. When fis continuous on [a, b], the
intermediate value theorem vields ¢ = f(x,) for some x; in [a, b].

A second theorem of this type can be obtained from the first by using integra-
tion by paris.

Theorem 7.31 (Second Mean-Vaine Theorem for Riemann-Sticltjes integrals).
Assume that o is contimuous and that £~ on [a, b). Then there exists a point x,
in [a, b) such that
] X0 b

j 1) dax) = f(@) j dofs) + J(B) f do(x).
Proaof. By Theorem 7.6, we have

) b

J $(x) datx) = f(b)a(b) — f(aa(a) - j o(3) df).

Applying Theorem 7.30 to the integral on the right, we find

j " fix) datx) = fl@)alxo) — a(@)] + JOHad) — atxo)],

where x, & [a, 5], which is the statement we set out to prove.

719 THE INTEGRAL AS A FUNCTION OF THE INTERVAL

If f& R(x) on [a, b] and if « is of bounded variation, then (by Theorem 7.25) the
integral |3 f dx exists for each x in [g, #] and can be stedied as a function of x.
Some properties of this function will now be obtained.

Theorem 7.32. Let o be of bounded variation on [a, B)] and assume that e R{a) on
{a, b]. Define F by the equation ’

F(x)} = J.xf de, ifxela bl
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Then we have:
i} Fis of bounded variation on [a, b].
ii) Every point of continuity of o is also a poini of continuity of F.

iii} If a 7 on [a, b), the derivative F'{x) exists at each point x in (a, b) where o' (x)
exists and where f is continuous. For such x, we have

Fi(x) = f(x)'(x).

Proof. Tt suffices to assume that «# on [a, b]. If x # y, Theorem 7.30 implies
that

F(y) - F(x) = f’fda = a(y) ~ a(x)],

where m < ¢ < M (in the votation of Theorem 7.30). Statements (i) and (ii)
follow at once from this equation. To prove (iii), we divide by y — x and observe
thatc — f{x)as y — x. '

When Theorem 7.32 is used in conjunction with Theorem 7.26, we obtain the
following theorem which converts a Riemann integral of a product f~g into a
Riemann-Sticltjes integral |5 fdG with a continuous integrator of bounded
wariation,

Theorem 733, Iffe Rondge Ronfa, b], let

X

Fx) = -rf(i) dt, G(x} = J g dt ifxefa bl
Then F and G are continuous Sunctions of bounded variation on [a, b]. Also,
J € R(G) and g € R(F) on [a, b], and we have

b b b
[ 100w ax = [ sy a6y = [ g9 aree

Proaf. Parts (i} and (i) of Theorem 7.32 show that F and G are continoous func-

tions of bounded variation on [a, 8]. The existence of the integrals and the two

formulas for % f{x)g{x) dx follow by taking a{x) = x in Theorem 7.26.

NOTE. When a{x) = x, part (1ii} of Theorem 7.32 is sometimes called the firss
Jundamental theorem of integral calcufus. It states that F'(x) = f{x) at each point
of continuity of /. A companion result, called the second fundumental theorem, is
given in the next section.

7.20 SECOND FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS
The next theorem tells how to integrate a derivative.

Theorem 7.34 ( Second fundamental theorem of integral caleulus). Assume that fe R
on [a, b} Let g be a function defined on [a, b] such that the derivative g* exists in

Tl

g T

[ S——

3

.
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(a, &) and has the value
g'(x) = fix)  jorevery x in{a, b).
At the endpoints axsume that gla+) and g(b—) exist and satisfy

g(@) — gla+) = g(b) — g(b-).
Then we have

»
J f) dx = f g'() dx = g(b) — g(a).
Proof. For every partition of [a, b} we can write
g(b) — gla) = Z [9(x) — g(x-s)] = :Z 2'(t) Ax, = j,;f(:.} A,

where f, is a point in (x; ., x;) determingd by the Mean-Value Theorem of
differential calculus, But, for a given ¢ > 0, the partition can be taken so fine that

< g,

.3
#(5) — (@) — J' f0) dx

hnd ']
> 70 Ax, — j f0x) dx

and this proves the theorem,

The secord fundamental theorem can be combined with Theorem 7.33 to give
the following strengthening of Theorem 7.8.

Theorem 7.35. Assume f€ R on [a, b]. Let a be g function which is continuous on
[a, b] and whose derivative o' is Riemann integrable on [a, b]. Then the following
integrals exist and are equal:

& b ’
J' F(x) dex) = .[ o' (x) dix.

Proof. By the second fundamental theorem we bave, for each x in [g, 5],

3

w(x) — «a) = J. «'(t) dt.

Taking g = o in Theorem 7.33 we obtain Theorem 7.35.

NOTE. A related result is described in Exercise 7.34,

721 CHANGE OF VARIABLE IN A RIEMANN INTEGRAL

The formula §? fdx = {I 4 dp of Theorem 7.7 for changing the variable in an
integral assumes the form

w(d) d
$5) dx = j flale') de,

LG
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when o{x)} = x and when g is a strictly monotonic function with a continuous
derivative g'. It is valid if f& R on [a, 5] When f is continuous, we can use
Theorem 7.32 to remove the restriction that g be monotonic, In fact, we have the
following theorem:

Theorem 7.36 (Change of variable in a Riemann imegral). Assume that g has a
contimious derivative g’ on an interval [c, d). Let f be contimuous on g{[c, d7) ond
define F by the equation '

Fo = | fe)de
i)

Then, for cach x in [c, d] the integral (% f{g()]9'(¢) dt exists and has the value
Flg(x)]. In particuiar, we have

if x € g([e, ).

{d) d
J f(xydx = '[ Sflg)]g’(v) dt.
#le) E

Proof. Since both g’ and the composite function f= g are continuous on {¢, 4]
the integral in question exists. Define G on [¢, 4] as follows:

6(x) = j " fLoe) d.

We are to show that G{x) = F[g(x)]. By Theorem 7.32, we have
G'(x) = fTg(x]e'),

and, by the chain rule, the derivative of F[g(x}] is also /T g(x}g'(x), since F'(x) =
Fix). Hence, G{x) — F]g(x)] is constant. But, when x = ¢, we get G{¢} = 0 and
F[g(c)] = 0, so this constant must be 0. Hence, G(xj = Flg(x)] for all x in
[e, d]. In pariicular, when x = d, we get G(d) = F[g(d}] and this is the last
equatien in the theorem.

NOTE. Some texts prove the preceding theorem under the added hypothesis that
g is never zero on [ ¢, &), which, of course, implies monotonicity of g. The above
proof shows that this is not needed. It should be noted that g is continuous on
[, €], so g{[¢, 4]) is an interval which contains the interval joining g(e) and g(d).

pld)

gle)

Figure 7.2
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In particular, the result is valid if g(c) = g(d). This makes the theorem especially
useful in the applications, (See Fig. 7.2 for a permissible g.)

Actually, there is a more general version of Theorem 7.36 which does not
require continuity of for of g*, but the proof is considerably more difficult. Assume
that 1e R on [¢, d] and, if x € [c, d], let g{x) = [ &) dt, where a is a fixed
point in [¢, ). Then if f€ R on g([¢, d]) the integral [¢ f{g(r)] A(r) dt exists and
we have

() d
f0) dx = J FTa(e)A(0) dt.

gic)

This appears to be the most general theorem on change of variable in a Riemana
integral, (For a proof, see the article by H. Kestelman, Mathematical Gazette,
45 (1961), pp. 17-23.) Theorem 7.36 is the special case in which # is continezous on
[e, 4] and f'is continvous on g([c, d].

7.22 SECOND MEAN-VALUE THEOREM FOR RIEMANN INTEGRALS

Theorem 7.37. Let g be continuous and assume that f » on [a, B). Let A and B be
two real numbers satisfying the inequalities

A s flav) and Bz f(b-)

Then there exists a point x, in [a, B) such that

i) f f(x)g() dx = A r’ g(x)dx + B J- " o0 d.

xp

In particular, if f(x) = 0 for all x in [a, b], we have

where x € [a, b].
£

ii) f ’ {(x)g(x) dx = B J' " g(x) d,

NoTE. Part (i) is known as Bonmet’s theorem.

Proof. M a{x) = _F; g(t) dt, then o* = g, Theorem 7.31 is ap_plicable, and we get
b xn i
j £(9)a() dx = f(a) J' 9x) dx + f(b)j o) dx.

This proves (i) whenever 4 = f{a) and B = f(b). Now if 4 and B are any two
real numbers satisfying A < f{a+) and B > f(#—), we can redefine f"at the end-
points a and b to have the values f{a) = 4 and /(&) = B. The modified {is still
increasing on [a, 5] and, as we have remarked before, ¢hanging the value of fat
a finite number of peoints does not affect the value of a Riemann integral. (OF
course, the point x, in (i) will depend on the choice of 4 and B.) By taking 4 = 0,
part (ii) follows from part (i).
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723 RIEMANN-STIELTJES INTEGRALS DEPENDING OMN A PARAMETER
Theorem 7.38. Let f be contimious at each point {x, y) of a rectangle
O={x,iaxx=sbc<y=d)

Agsume that a is of bounded variation on [a, b] and let F be the finction defined on
Le, d] by the equation

(]
F) = j £, 3) daf).
a
Then F is comtinuous on [c, d]. In other words, if y, € [¢, d], we have

b
i [ 100 ) o) = [ im 1, ) )

- j 15, o) da).

Proof. Assume that « # on [a, b]. Since @ is a compact set, f is uniformly con-
tinucus on (. Hence, given ¢ > 0, there exists a § > 0 (depending only on g)
such that for every pair of points z = (x, y)and 2’ = (x', ¥) in @ with |z — 2’| < 3§,
we have [ f{x, ¥} — AX, ¥ < e If]y — y'| < &, we have

IF(3) — F(y)| < j 5 ¥) — S ¥) dax) < efab) — o(a)].

This establishes the continuity of F on [¢, 4].

Of course, when a(x) = x, this beécomes a continuity theorem for Riemann
integrals involving a parameter. However, we can derive 3 much more useful
result for Riemann integrals than that obtained by simply setting afx) = x if we
employ Theorem 7,26,

Theorem 7.39. If [ is continuous on the rectangle [a, b] x [¢,d], and if g R on
[a, ), then the function F defined by the equation

i ]
F) = J' gX)f(x, y) dx,

is continuous on (¢, d). That is, if yy € [c, d}, we have

1] . b
umJ' 95, y) dx = J. g, yo) dx.

FF0 Ja a

Proof. ¥ G(x) = [% g(t) dt, Theorem 7.26 shows that F(y) = [® f(x, y) dG(x).
Now apply Theorem 7.38. .
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724 DIFFERENTIATION UNDER THE INTEGRAL SIGN

Theorem 7.40. Let Q ={{x,N:axx5 bcsy=<d) Assume that a is of
bounded variation on [a, b) and, for each fixed y in [¢, d], assume that the integral

Fy) = j’f(x, ») dat),

exists. If the partial derivative D, f is continuous on (, the derivative F () exists
for each y in (¢, d) and iz given by

b
F(y) = J D, f(x, y} du(x).
Note. In particular, when g € R on [a, 5] and afx) = % g(r) dt, we get
' b

F(y) = j of (s pydx  and  F() = j' 90 D, f(x, ) dx.

Proof. Wysele, dyand y # y,, we have
F(y) — F(yo) _ J' 1Y) — S YD) g
Y= Yo " ¥ = Yo

where y is between y and y,. Since D, f is continuous on 3, we obtain the con-
clusion by arguing as in the proof of Theorem 7.38.

- J D, f(x, ) dat),

7.25 INTERCHANGING THE ORDER OF INTEGRATION
Theorem 741, Let O = {{x,¥):a < x < b,¢ £y < d}. Assume that « is of

bounded variation on [a, b), B iv of bounded variation on [c, &), and f iy continuous
on Q. If (x, y) e O, define
£ = [ e, 6 = [ s 9 amen.
Then F e R(f) on [c, d], G & R(2) on [a, b, and we have
[ Forase = [ 6o aato
In other words, we may interchemge the order of integration as follows:

f ' U fx 9 dﬂ(y)] do(x) = J“ Ubf(x, » da(x)] dp().

Proof. By Theorem 7.38, F is continuous on [¢, 4] and hence F & R(f) on [¢, d}.
Similarly, G € R(x} on [a, #]. To prove the equality of the twe integrals, it suffices
to consider the case in which « # on [a, b] and . on [c, d].
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By uniform continvity, given ¢ > 0 there is a 6 > 0 such that for every pair of
points z = {x, ¥y and 2’ = (x', y) in O, with |z — 2| < §, we have

W, ») — i, y) < e
Let us now subdivide Q into »® equal rectangles by subdividing [a, #] and [e, 4]
each into # equal parts, where n is chosen so that
- ﬂ) ' and -9 .
n \/2 n \;’ 2

Writing

. and Ve =€+ M:
n n

fork = 0,1,2,...,n we have

a1

b 4 n_1 Xy
f (J 10 9) dﬁ(y)) da) = EJ (  fx ) dﬁ(y)) ).

‘We apply Theorem 7.30 twice on the right. The double sum becomes

-1 a=1

TG yDIB(y551) — By el ) — alx],

= ()

=

L
(=)
R

where (x;, ¥;} is in the rectangle @, ; having (x,, y;} and (x;, 4, ¥;41) as opposite
vertices. Similarly, we find

d b
J' (J £ ) dm(x)) dp(y)

e

g
=, ;}ﬂxi, YOIB(yis ) — B aCxes ) — a(x],

-

where (x§, y) e Oy ;. But [f(x;, ¥)) — fixi, yPl < e and hence

] d
f G(x) da(x) —J. F(y) dﬁ(y)‘

w1 B L
< BJZG LA yye1) — B(y] 12;} Lo 4 1) — afx )]
= ¢[Bd) - Be)][(b) — oAa)]:
Since ¢ is arbitrary, this imphies equality of the two integrals.

Theorem 741 together with Theorem 7.26 gives the following result for Rie-
mann integrals,
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Theorem 7.42. Let f be continious on the rectangle [a, b] x [e.d]. Ifge Ron
[a, &) and if k € R on [c, d], then we have

; ]
r U M, ¥) dy] dx = JU dOI(NIx, 1) dx] dy.

Proof. Let a(x) = [% g(u)} du and let $(3) = % k() dv, and apply Theorems 7.26
and 7.41.

7.26 LEBESGUE'S CRITERION FOR EXISTENCE OF RIEMANN INTEGRALS

Every continuous function is Riemann integrable. However, continuity is certainly
not necessary, for we have scen that £ € R when fis of bounded variation on [a, b].
In particular, f can be & monotonic function with a countable set of discontinuities
and yet the integral {% f(¥) dx will exist. Actually, there are Riemann-integrable
functions whose discontinuitics form a noncountable set. (See Exercise 7.32.)
Therefore, it is natural to ask “how many" discontinuities a function can have and
still b¢ Riemann integrable. The definitive theorem on this question was dis-
covered by Lebesgue and is proved in this section. The idea behind Lebesgue’s
theorem is revealed by examining Riemann’s condition to see the kind of restriction
it puts on the set of discontinuities of £,
The difference between the upper and lower Riemann sums is given by

Z (M) — md )] Ax,,

and, roughly speaking, # will be integrable if, and only if, this sum can be made
arbitrarily small. Split this sum into two parts, say .5, + 3, where 5, comes from
subintervals containing only points of continuity of f, and S, contains the re-
maining terms. 1n .S, cach difference M (f) —~ m(f) is small because of continuity
and hence a larpe number of such terms can occur and still keep S, small, In §,,
however, the differences M,(f) — m{f) need not be small; but because they are
bounded (say by M), we have {S;] < M FAx,, so that S, will be small if the sum
of the lengths of the subintervals corresponding to S; is small. Hence we may
expect that the set of discontinuities of an integrable function can be covered by
tervals whose total jength is small.

This is the central idea in Lebesgue’s theorem. To formulate it moxe preclsely

we introduce sets of measure 2ero.

Definition 7.43. A set $ of real numbers is said to have measure zero if, for every
£ 0, thereisa caumable covering of S by open intervals, the sum of whose lengths
iz less than .

If the intervals are denoted by (g, &), the definition requires that
Scljlab) and Y —a)<e (3)
£ ¥ A
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If the collection of intervals is finite, the index & in (3) runs over a finite set. If the
collection is countably infinite, then k goes from 1 to oo, and the sum of the lengths
is the sum of an infinite series given by

3 N
J. (b —a) = lim ) (b — a).
i=1 N k=1
Besides the definition, we need one more result about sets of measure zero.
Theorem 7.44. Let F be a countable collection of sets in R, say
F={F,F, ..},

each of which has measure zero. Then their union

oy
S = U F, &2
k=1
aiso has @ measure zero,

Proof. Given g = 0, there is a countable covering of F, by open intervals, the sum
of whose lengths is less than /2%, The union of all these coverings is itself a
countable covering of § by epen intervals and the sum of the lengths of all the
intervals is less than ’

o0

2

k=1

= &

Rile

Examples. Since a set consisting of just one point has measure zero, it follows that every
countable subset of R has measure zero. In particular, the set of rational numbers has
measure zero. However, there are uncountable sets which have measure zero. (See Exer-
cise 1.32.)

Next we introduce the concept of oscillation,

Definition 745. Let | be defined and bounded on an interval 8. If T < S, the
number

QT =sup {fx) —f(¥):xeT, yeT}
is called the oscillation of fon T, The oscillation of f at x is defined 1o be the number

@x) = kiig’: Q(B(x; h) n S).

Note. This limit always exists, since Q (B(x; k) n S} is a decreasing function of
k. Infact, T, & T, mplies QAT,) < QAT,). Also, w{x) = 0 if, and only if,
15 continuous at x (Exercise 4.24).

The next theorem tells us that if w,(x) < & at each point of a compact interval
La, 8], then AT} < ¢ for all sufficiently smali subintervals 7.

Theorem 746. Let f be defined and bounded on [a; ¥}, and let £ > 0 be given,
Assume that wAx) < & for every x in [a, B), Then there exists a 3 > 0 (depending
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only on &) such that for every closed subinterval T < [a, b, we have QAT) < ¢
whenever the length of T is less than 8.

Proof. For each x in [a, b] there exists a i-ball B, = B{x; &,) such that
QB N [a, b < wx) + [~ wfx)] =&

The set of all halfsize balls B(x; 5,/2) forms an open covering of [a, b]. By
compactness, a finite number (say k) of these cover [a, b]. Let their radii be
82, ..., 8,/2 and let & be the smallest of these k numbers. When the interval
T has length <4, then T is partly covered by at least one of these balls, say by
B(x,; 8,{2). However, the ball B(x,; 8,) completely covers T (since 6, = 28).
Moreover, in B(x,; 6,) n [a, b] the oscillation of fis less than e. This implies
that (T} < ¢ and the theorem is proved,

Theorem 747, Let f be defined and bounded on [a, ). For each ¢ > 0 define the
set J_ as follows:
Jo={x:xelabl, wfdx) el

Then J, iv a closed set.

Proaf. Let x be an accumulation point of J,. If x ¢J,, we have wix) < &
Hence there is a 1-ball B(x) such that

DAB) o [a, b]) < &

Thus no points of B(x) can belong to J,, contradicting the statement that x is an
accumulation point of J,. Therefore, x € J, and J, is closed.

Theorem 748 {Lebesgue's criterion for Riemanwn-integrability). Let f be defined
and bounded on [a, b] and let D denate the set of discontinuities of f'in [a, B]. Then
J€ Ronla, bl if, and enly if, D hus measure zero,

Proof. (Necessity). - First we assume that D does not have measure zero and show
that £ is not integrable. We can write D as a countable union of sets

4
D= |} D,
r=1
where

) = L
D,={x.mf(x) p-3 r}'

If x € D, then o3 {x} > O, so D is the union of the sets D, forr = 1, 2,...

Now if D does not have measure zero, then some set D, does not {by Theorem
7.44), Therefore, there is some & > 0 such that every countable collection of open
intervals covering D, has a sum of lengths >&. For any partition P of [a, ] we
have ‘

UP.f) - P, f) = ; M) — m()] Ax, = 5, + S, = §,,
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where §, contains those terms coming from subintervals containing points of D
in their interior, and §; contains the remaining terms. The open intervals from S,
cover D except possibly for a finite subset of D,, which has measure 0, so the sum
of their lengths is at least &. Morgover, in these intervals we have

M- m() = 1 and hence S, > £
r r
This means that

UP,f) - LP, ) 2 f,

for every partition P, so Riemann’s condition cannot be satisfied. Therefore fis
not integrable. In other words, if f€ R, then D has measure zero.

(Sufficiency). Now we assume that D has measure zere and show that the
Riemann condition is satisfied. Again we write D = | )= |, D,, where D, is the set of
points x at which w{x} > lfr. Since D, € D, each D, has measure 0, so D, can
be covered by open intervals, the sum of whose lengths is < 1fr. Since D, is compact
(Theorern 7.47), a finite number of these intervals cover D,. The union of these
intervals is an open set which we denot€ by 4,. The complement B, = [a, 5] — 4,
is the union of a finite number of closed subintervals of [a, &]. Let I be a typical
subinterval of B,. If x € /, then w(x) < 1/r so, by Theorem 7.46, there isa § > 0
{depending only on r} such that f can be further subdivided into a finite number of
subintervals T of length <6 in which £2{T} < lfr. The endpoints of all these
subintervals determing a partition P, of [a, 8]. If P is finer than P, we can write

UP, f) — P, f) = E ML) — miN] Ax = S, + 5o,

where S; contains those terms coming from subintervals containing points of
D,, and S, contains the remaining terms. In the Ath term of §; we have

1 ) —_
M) — m(fy <~ and hence §; < b ‘.
r r
Since A, covers all the intervals contributing to §,, we have
M-m
r

where M and m are the sup and inf of f on [a, b]. Therefore

Sy

1A

¥

up.f) - up.py <Ml o0
Since this holds for every r = 1, we see that Riemann’s condition holds, so fe R
on [a, ).

NOTE. A property is said to hold almast everywhere on a subset S of R? if it holds
everywhere on § except for a set of measure 0. Thus, Lebesgue’s theorem states

B bR T
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that a bounded function f on a compact interval [z, ¥] is Riemann integrable on
[, b] if, and only if, £is continoous almoest everywhere on [a, 5.

The following statements (some of which were proved earlier in the chapter)
are immediate consequences of Lebesgue’s theorem,

Theorem 7,49, a) If fis of bounded variation on [a, b), then f' R on [a, b].

b) If fe R on [a, b], then f< R on [c, d] for every subinterval [¢c, d] < [a, ],
ifleR and f>c R on [a,b]. Aiso, f-g€ R on [a, b] whenever ge R on
[a, 8].

¢) Iffe Randg € Ron [a, b), then fig ¢ R on [a, ] whenever g is bounded away
Jrom 0,

d) If fand g are bounded functions having the same discontinuities on [a, b}, then
Se Ronla, b] if, and only if, g ¢ R on [a, b].

) Let g c R on [a, b} and assume that m < g(x) < M forall x in[a, b]. Iffis
continuous on [m, M, the composite function k defined by h(x) = f[g(x)] is
Riemann-integrable on [a, b].

NOTE. Staiement (¢) need not hold if we assume only that fe R on [m, M].
(See Exercise 7.29.)

7.27 COMPLEX-YALUED RIEMANN-STIELTJES INTEGRALS

Riemann-Stieltjes integrals of the form %/ dx, in which £ and « are complex-
valued functions defined and bounded on an interval {a, b], are of fundamental
importance in the theory of functions of a complex variable. They can be intro-
duced by exactly the same definition we have used in the real case. Im fact,
Definition 7.1 is meaningful when f and ¢ are complex-valued. The sums of the
products /() ofx) — alx,-,)] which are used to form Riemann—Stieltjes sums
need only be interpreted as sums of products of complex numbers. Since complex
nuinbers satisfy the commutative, associative, and distributive laws which hold
for real numbers, it is not surprising that complex-valued integrals share many of
the properties of real-valued integrals. In particolar, Theorems 7.2, 7.3, 7.4, 7.6,
and 7.7 {as well as their proofs) are all valid (word for word) when £ and a are
complex-valued functions. (In Theorems 7.2 and 7.3, the constants ¢, and ¢, may
now be complex numbers,) In addition, we have the following theorem which, in
effect, reduces the theory of complex Stieltjes integrals to the real case.

Theorem 7.50, Let f=f, + ify and & = oy + iny be complex-valued functions
defined on an interval [a, b]. Then we have

b b (] . ] &
J’fda=qf1d«1 —jfzd¢2)+i(jfzdﬁz +jfldu;),

whenever all four integrals on the right exist.
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The proof of Theorem 7. S{) is immediate from the deﬁmmn and is left to the
reader.

The use of this theorem permits us to extend most of the important properties
of real integrals to the complex case. For example, the connection between
differentiation and integration established in Theorem 7.32 remains valid for
complex integrals if we simply define such notions as continuity, differentiability
and bounded variation by components, as with vector-valued functions, Thus, we
say that the complex-valued function o = a, + iz, is of bounded varfation on
[a, B] if each component «, and a, is of bounded variation on [a, §]. Similarly,
the derivative «'(t) is defined by the equation a’(t) = aj(f) + ia3{f) whenever the
derivatives () and «25(¢) exist. (One-sided derivatives are defined in the same
way.) With this understanding, Theotems 7.32 and 7.34 {the fundamental theorems
of integral calculus) both remain valid when f and o are complex-valued, The
proofs follow from the real case by using Theorem 7.50 in a straightforward
manner,

We shall return to complex-valued integrals in Chapter 16, when we study
functions of a complex variable in more detail,

EXERCISES

Riemann-Stieltjes integrals

7.1 Prove that |2 de(x) = a(b) — a(a), directly from Definition 7.1. -

7.2 If fe R(o) on g, b] and if §} fdx = O for every f which is monotonic on [q, ],
prove that & must be constant on [a, b}

7.3 The following definition of a Riemann-Stieltjes integral is often used in the literatore:
We say fis integrable with respect to z if there exists a real number A4 having the property
that for every ¢ > 0, there exists a § > 0 such that for every partition P of [g, 5] with
norm [P < & and for every choice of # in [x,_,, x,], we have [S(P, £, a) — 4| < &

ay Show that if §3 7 dx exists according to this definition, then it also exists according
to Definition 7.1 and the two integrals are equal.

by Letfix) =alx) =0fora < x < e, X)) ~e(x) = Ifore < x < b, flc) = O
afc) = 1. Show ihat [2 £ do exists according to Definition 7.1 but does not exist
by this second definition,

7.4 M /€ Raccordiag to Definition 7.1, prove that ¢ #(x) dx also exists according to the
‘definition of Exercise 7.3, [Contrast with Exercise 7.3(b).] Hinr. Let F = 2 f(x) dx,
M = sup {|f(x)|:x € [a, #]). Given &> 0, choose P, so that U(P, f) < I + &2
{notation of Section 7.11), Let & be the number of subdivision peints in P, and Jet
3 = gf(2MN). I |P| < &, write

U(Pvf) = EMx(ﬂAxx = Sl. + SZl

where §, is the sum of terms arising from those subintervals of P containing no points of
P, and §, is the sum of the remaining terms. Then

< UWP, ) <I+z2 and S, < NM|P| < NM5 = ¢f2,
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and hence (P, ) < I + ¢ Similarly,
LP,fy> I~ eif [Pl « &  forsomed.
Hence |S(P, /)y — 1] < 2if [P] < min (&, 6.
7.5 Let {a,} be a sequence of real ourobers, For x = 0, define
x]
Alx) = Za,z Ea,,
rEx a=1

where [x] is the greatest intsger in x and empty sums are inierpreted as zero. Let fhave
a continuous derivative in the interval 1 < x < a. Use Stieltjes integrals to derive the
following formula:

LT g

2 af(m) = — r AGOL 0O de + Alayf(a).
1

1.6 Use Euler's summation formula, or integration by paris in a Stieltjes integral, to
derive the following ideniities:

a)Z§"'}"——1 J.x[“‘]‘dx ifg # 1.

k=1
o 1 " “{x]
b)g;k 1ogn-—J: = A+ L

7.7 Assume f” is continuous on [1, 2¢] and use Euler’s summation formula or integra-
tion by parts to prove that

2n £ ]
‘; (- 1Yftk) = .[1 FXIxY — 2[x2]) dx.

78 Let p,(x) = x — [x] — 3 if x # integer, and let ¢,(x) = 0if ¥ = integer. Also,
ket ¢)(x) = f§ @t} dr. If 7 is continuous on [1, n] prove that Euler’s summation
formula implics that

Zu:m‘) = J. fx) dx — _r ox) () dx + TS
k=1 1 1 2
7.9 Take f(x) = log x in Exercise 7.8 and prove that
logn!=(n +Piogrn—n+1+ I'*:L;:’,)m
1

710 If x = 1, let n(x) denote the number of primes = v, that is,
ax)= 31
PEX

where the sum is extended over all primes p < x. The prime number theorem states that

lim a(x)“’“ L

- &)
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Thig is usually proved by studying a related function 8 given by
8(x) = 3" log p,

PAX

where again the som is extended over all primes 7 < x. Both functions & and & are step

functions with jumps at the primes. This exercize shows how the Riemann-Stielties
integral can be used o relate these two functions.

a) If x = 2, prove that a(x) and 3(x) can be expressed as the following Riemann—
Sticltjes integrals:

x
8x) = f log ¢ dels),  x(x) = _( L asqr.
32 a2 log s
KoTE. The lower limit can be replaced by any number in the open interval (1, 2).

b} If x = 2, use integration by parts to show that

Hx) = rl(x) log x — r”(T')dt,
)

a) = 20 [T K
log x y tlog?t

These equations can be used to prove that the prime number theorem is equivalent
to the relation lim, , , Mx)x = 1.

711 If e on [a, b), prove that we have

x}ffduffawfﬂ«, @<ec<b),

b}fcfu)d«sffdnf'gda,
¢ J o o

c)r(f+ g)dzzvrfda-t»'rgdm

712 Give an example of a bounded function £ and an iwreasing function « defined on
fo. b] such that | f] & R{a) but for which [J f dx does not exist.

7.13 Let @ be a continuous function of bounded variation on [a, ). Assume g & R{a)
on [a, 5] and define 8(x) = [T o(¢) duft) if x € [a, b]. Show that:
a) If /7 on [a, 5), there exisis a point x, in [e, 5] such that
b Xo b -
[ra8=ria[ s +10) [ g
R - E

b) I, in addition, £ is continuous on [& &], we also have

f " 7)) dxtx) = £(a) j"“ 7 dx + 1(5) r gds
a - Y

Exercises in

7.14 Assume fe R(x) on [a, b, where « is of bounded variation on [a, 5]. Let ¥(x)
denote the total variation of x on [a, x] for each x in (2, b}, and let ¥{g) = 0. Show that

frra

where Af is ar upper bound for | f] on [a, ). In particular, when a{x) = x, the inequality
hecormes

= .F |F] dV < MV(3),

f " ax| < M - o,
X

715 Let {z,} be a sequence of functions of bownded variation on [a, 5]. Suppose there
exists a function a defined on [a, £#] such that the total variation of @ — «, on [a, b] tends
to 0 as » — oo, Assume also that ale) = afa) = ODforeachn = 1,2,... If fis con-
tinuous on Ja, &), prove that

Jim f " flx) dnx) = J"f(x) ).

Ao

716 Tf fc Ried, f2 € Rie), g € R(w), and g2 € Ria) on [a, b], prove that

LT o0
AL

2
i ¢» da(y)] w

- ( f " 2 da(x)) ( J‘ " gy dm(x)) - (ff(x)g(x) dx(x))z.

When 2+ on [a, 8], deduce the Cauchy-Schwarz inequality

i 2
( f £CI0tx) dm(x)) < ( f " fixy? aez(x)) U " ooy da(x:s) .

{Compare with Exercise 1.23.)
7.17 Assume that / € R(a), g € R(a), and /- g € Rz} on [a, b]. Show that

; f [ f ") = FEONeO) ~ 900) duty)] dx)

p
~ (a®) — oa)) ffe:x)g(x) ) ~ ( f 76 dwcx;) ( f " o9 d&x(x)) .
If wx on {a, &), deduce the inequality |
(J" ) dw(x)) U " g0 du{x}) < (a(B) — (@) f * F) o) datx)

when both f and g are increasing (or both are decreasing) on [a, #]. Show that the reverse
inequality holds if f increases and g decreases on [a, b].
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Ricmmon integrals

T3 Assume fe Ron [z, #]. Use Exercise 7.4 to prove that the Limit
mn”""zf(a+k”'“)
FET-- TR 4 =1 n

exists and has the value [2 f(x) dx. Deduce that

n n -
im ey = - 1 2 4+ BB = log {1 4+ V2
mn AR A aem et (r + &%) og {1 + v2)

T.19 Define
x A2 » 1 =¥+ 1)
Fe) = U e dt) L dm= [
o s 241

a) Show that g'(x) + f{(x) = 0 for all ¥ and deduce that g(x) + f(x) = =/4.
b) Use (a) to prove that

X
lim e dt = % vz,

E el N 1.1

7.20 Assume g € R on [g, b] and define f(x) = [T g(r) dr if x € [a, 5]. Prove that the
integral §3 lg(t)] dr gives the total variation of fon [a, x].

721 Let £ = (f,.... /) be a vector-valued function with a continnous derivative f° on
[a, #]. Prove that the curve described by f hag length

)]
Ada, ) = _[ W) dr.
TR I £+ is continuous on [a, x), define
Lo = ;!‘—, f " (¢ = ORI

a} Show that

J —
Loa(®) — L) = fﬂa_)(;i_q_)_"
b) Use (a) to express the remainder in Taylor’s formula (Theorem 5.19) as an integral,
7.23 Let f be continuous on [0, a]. If x e [0, 2], define f(x) = f(x) and let

k=1,2,...

foa(0) = lf’(x O d,  m=0,1,2,...
ﬂ! 0

a) Show that the nth derivative of f] exists and equals f.

b) Prove the following theorem of M. Fekete: The number of changes in sign of f

in [0, a] is not kess than the number of changes in sign in the ordered set of
nurnbers

Ha, fila), . . ., fila).
Hint. Use mathematical induction.
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) Use (b) to prove the following theorem of L. Fejér: The number of changes in
sign of fin [0, a] is not Jess than the number of changes in sign in the ordered set

10, f’f(t) dr, J" foa ... j"m:w.
i1 L) 2

7.24 Let £ be a positive continuous function in [a, #]. Let Af denote the maximum value
of fon [a, #1. Show that

1fs
im {{ feor dx) - M.

Wl 3

7.25 A function f of two real variables is defined for each point (x, ¥} in the unit square
D=x=10=y =<1 asfollows:
fx, ) = 1,  ifxis rational,
¥} = 12y, if x is ircational.
a) Compute J3 /(x, y) dr and [3 f(x, y) dx in terms of y.

b) Show that [£ 7{x, ¥} dy exists for each fixed x and compute [§ f{x, ) dy in terms
ofxandfford<x< 1,015 1.

) Let F(x) = ji f{x, ¥) dv. Show that [} F{x) dx exists and find its value.
726 Let fbe defined on [0, 1] as follows: £0) = 0;if 27"~ < x = 27", then f(x) = 27,
forn=1012...
a) Give two reasons why [3 f(x) dx exists.
b) Let F{x) = [§ f(t) dt. Show that for 0 < x =< 1 we have
F(x} = xA(x) — $4(x)%,
where A(x) = 2717559821 5nd where |r] is the greatest integer in y.

7.27 Assume f has a derivative which is monotonic decreasing and satisfies f(x) =
m > Oforall xin [a, #). Prove that

b 2
J cos f{x) dxl = =,
A m

Hint. Multiply and divide the integrand by £’(x) and use Theorem 7.37(ii).

728 Given a decreasing sequence of real numbers {G(x)} such that G{n) —» Oas s — o,
Define a function fon [0, 1] in terms of {G(r)} as follows: f{0} = 1;if xisirrational, then
f(x) = 0 if x is the rational m/n (in Jowest terms), then f(m/r) = G(r). Compute the
oscillation @,(x) at each x in [0, 1] and show that f< Ron [0, 11

1.29 Let f be defined as in Exercise 7.28 with G(m} = 1fn. Letglx) = 1if0 < x x 1,
#{0) = 0. Show that the composite function k defined by h(x) = g[f{x)] is not Riemann-
integrable on [0, 1], although both fe Randge Ron [0, 1],

7.30 Use Lebesgue’s theorem to prove Theorem 7.49.

7.31 Use Lebesgue’s theorem to prove that if fe R and g€ R on [g, 4] and if /(x) =
m > O for all x in [a, b], then the function A defined by

x) = S
is Riemann-integrablke on [z, 5]
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132 Let I = [O,I]andletA,=I—(},§}b=thatsubsetoflobtainedbymmving
those poinls which tie in the open middle third of 7; that is, 4, = [0, 3] v [§, 1], Let
A be that subset of 4, obtained by removing the open middle third of [0, 1] and of
[, 1]. Continue this process and define A3, Ay, ... Theset € = ()=, 4, is called the
Cantor set. Prove that:

a) Cis a compact set having measure zero,

b) xe Cif, and only if, x = 3.0, 0,37", whexe each a, is either 0 or 2.
€} C is uncountable.

d) Let f(x} = 1if x€ C, f(x) = 0if x ¢ C. Prove that fe Ron [0, 1].

733 This exercise cutlines a proof (due to Ivan Niven) that &2 is irrational. Let f(x} =
x*{1 — x}*/n!. Prove that:

A} 0 < f(x) < 1fn! #O0 =< x < L
b) Each kth derivative f®(0) and f&X(1) is an integer.
Now assume that * = afb, where ¢ and b are positive integers, and let

*
F(x) = b* Z; (=10 (x) -2,
Prove that: B
c} F(0) and F(I) are integers.

d)y 72a"f(x) sin mx = % {F{x) sin mx — =F(x) cos nx}.

e} F() + F(©0) = na" J' * f00) sin ex dx.
0

I} Use (a) in (e} to deduce that 0 < F(1) + F(0) < 1 if n is sufficiently large. This
contradicts (c) and shows that z? (and hence #) is irzational,
724 Given a real-valued function , continuous on the interval [, ] and having a finite

bounded derivative a” on (g, 5). Let £ be defined and bounded on [a, 5] amd assume that
both integrals

] 5]
ff(x) d(x) and J-f(x) a'(x) dx

exist. Prove that these integrals are equal. (It is not assumed that ¢’ is continuous.)
7.35 Prove the following theorem, which implies that a function with & positive integral
must itself be positive on some interval. Assume that f= Ron [a, b]and that 0 < f(x) <
Mon [a 6], where M > 0. LetJ = [2f(x)dx, let h = 3I{M + b — a), and assume
that 1 > 0. Then the set T = {x:f(x) > A} contains a finitc number of intervals, the
sum of whose lengths is at least & Himr. Let P be a partition of [, 5] such that every
Riemann sum S(P, £) = Y., f(4,) Ax, satises S(P, f) > I12. Split (P, f) into two
M,S(P,f] *&A"‘ &n;wm

A=k [x.-ux]e T, and B=1ik:k¢A)

Il k € A, use the inequality £(,) < M; if k = B, choose 1, so that f(t,) < k. Deduce that
T awa Axy > A .

Exercises 1]

Existence theorems for integral and differential equations

The following exercises illustrate how the fixed-point theorem for contractions (Theorem
4.48) is used to prove existence theorems for solutions of certain integral and differential
equations. We denote by Cla, ] the metric space of all real continuous functions on
[a, 5] with the metric

At @ = 1f — gl = max |f(x) — g(x}],
anxsb

and recall that C [, 5] is a compiete metric space (Exercise 4.67).

7.36 Given a function g in C|g, 5], and a function X continuous on thc. rectangle
¢ = [a, ] % [e b], consider the function T defined on C[a, 5] by the equation

T(oX) = o0 + 4 r K(x, Delt) di,

where 4 is a given constant,

a) Prove that T maps C [a, b] into itself.

b) If [K(x, y)} < Mon Q, where M > 0, and if [] < M~'(d — a)~ !, prove that
7 is a contraction of C [a, 5] and hence has a fixed point ¢ which is a solution of
the integral equation ¢(x} = g(x) + 4 {2 K(x, )glr) at.

7.37 Assume fis continucus on a rectangle @ = [e —ha + k] x [b— &k b+ k),
where & > 0,k > 0, '

a) Let ¢ be a function, continuous on [a — A, @ + &), such that {x, ¢(x)) € @ for
gl xin [ea — A a+ A]. IT 0 < ¢ < h, prove that ¢ satisfies the differential
equation ¥ = f(x, »} on (@ — ¢, @ + ¢ and the initial condition g = & if,
and only if, ¢ satisfics the integral equation

ox)=b + -rf(t, pltydt on (a2—¢a+ o)

b} Assume that |fix,»)} < M on @, where M > 0, and let £ = min [k, &fM}.
Let S denote the metric subspace of Cla — ¢, a2 + ¢] consisting of all ¢ such
that [p{x} — &| < Mcon [a — ¢, @ + ¢). Prove that §is a closed subspace of
Cle — c, ¢ + ¢] and henoe that .S is itself a complete metric space.

¢} Prove that the function T defined on 5 by the equation

T(oHx) = b+ f ", o) de

maps § into itself,
d} Now assume that f satisfies a Lipschitz condition of the form

If(x)y) _f(xyz)l = Aly - Z;

for every pair of points (x, y) and {x, z) in Q, where 4 > 0. Prove that Tisa
contraction of §if & < 1/4. Deduce that for & < 1/A the differential equation
¥ = f(x, ») has exactly ope solation y = @(x) on {2 — ¢, a + ¢) such that
wa) = b
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CHAPTER 8

INFINITE SERIES
AND INFINITE PRODUCTS

21 INTRODUCTION

This chapter gives a brief development of the theory of infinite series and infinite
products. These are merely special infinite sequences whose terms are real or
complex numbers. Convergent sequences were discussed in Chapter 4 in the setting
of general metric spaces. We recall some of the concepts of Chapter 4 as they apply
to sequences in C with the usual Euclidean metric.

82 CONVERGENT AND DIVERGENT SEQUENCES OF COMPLEX NUMBERS

Definition 8.1. A sequence {a,} of points in C is said to converge if there is a point p
in C with the following property:
For every e > 0 there ir an integer N (depending on €) such that

la, — pl <&  whenevern > N.

If {a,} converges to p, we write lim, ., @, = p and call p the Iimit of the sequence.
A sequence is called divergent if it is not convergent.

A sequence in C is called a Cauchy sequence if it satisfies the Cauchy condition;
that is, for every ¢ > 0 there is an integer N such that

lay ~ @] =&  whenevern > Nandm 2> N.

Since C is a complete metric space, we know from Chapter 4 that a sequence in C
is convergent if, and only if, it is 3 Cauchy sequence,

The Cauchy cordition is particularly useful in establishing convergence when
we do not know the actoal value to which the sequence converges.

Every convergent sequence is bounded (Theorem 4.3) and hence an unbounded
sequence necessarily diverges,

If a sequence {a,} converges to p, then every subsequence {g, } also converges
to p {Theorem 4.5).

A sequence {a,} whose terms are real numbers is said to diverge to + o i,
for every M > 0, there is an integer N (depending on M} such that

a, > M  whenevern = N.

In this case we write lim, , , g, = +oo.
If im,_ , (~q,) = +w, we write lim,,, 4, = —oo and say that {a,} diverges
to —oo. Of course, there are divergent real-valued sequences which do not diverge
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to -+ or to —o0. For example, the sequence {{— 1)1 + 1/n)} diverges but does
not diverge to + o or to —w.

§.3 LIMIT SUPERIOR AND LIMIT INFERIOR OF A REAL-VALUED SEQUENCE

Defimition 3.2. Let {a,} be a sequence of real numbers. Suppose there is a real
member U satisfping the following twe conditions :

1) For every £ > O there existt an integer N such that n > N implies

a, < U+ e
i) Given € > O and given m > O, there exists an integer n > m such that

a>U—-¢
Then U is called the limit superior (or upper limit) of {a,} and we write

U = bim sup a,.
wrm

Statement (i) implies that the set {a,, a, ...} is bounded above. If this set is not
bounded above, we defime

lim sup g, = +o0.
If the set is bounded above hut not bowunded below and if {a,} has no finite limit
superior, then we say lim sup, ., 4, = — 0. The limit inferior (or lower limit) of
{a,} is defined as foHows:

liminfa, = —limsupb,, whereb, = —a, forn=12,...
F g L -]
NOTE. Statement (i) means that vltimately alf terms of the sequence lie to the left
of U + e. Statement (ii) means that infimitely many terms lie to the right of U — ¢.
It is clear that there cannot be more than one {/ which satisfes both (i) and (ii).
Every real sequence has a limit superior and a limit inferior in the extended real
number system R*, (See Exercise 8.1.)

The reader should supply the proofs of the following theorems:

Theorem 8.3, Let {a,} be a sequence of real mambers. Then we have:

8) lim inf, ., 4, < him sup,., 4,

b) The sequence converges if, and only if, lim sup, ., a, and tim inf, , . 4, are both
finite and equal, in which case lim, ,  a, = lim inf,, ., @, = lim sup,_, ,, a,.

€) The sequence diverges to + 0 if, and only if, im inf, ., @, = lim sup,_, 4, =
-+ 0.

d) The sequence diverges to —co if, and only if; lim inf, .., a, = }im sup.._ g, =
-
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NOTE. A sequence for which lim inf,, ., @, % lim sup,.. o, is said to oscillate.
Theorem 8.4, Assume that o, < b, foreachn = 1, 2,... Then we have:

lim inf a, < lim inf b, and  limsup a, < lim sup b,.

A Ll P = ot
Examples
Loa, = {~1P1 + Ifn), liminf,.,pa, = —1, Lim sup a, = +1.
2. a = (=17, tim inf, o &, = ~1, HM S0P 2 = +1.
3 a,=(-1rn biminf, 2, = —w, limsup, .a = +©.
4. a, = n* sin® (3nw), lim inf, ., 2, = 0, lim sup g, = + .

8.4 MONOTONIC SEQUENCES OF REAL NUMBERS

Definition 8.5. Let {a,} be a sequence of real numbers. We say the sequence is
increasing and we write g, » if o, < a  forn = 1,2,... Ifa, > a,,, forail n,
we sdy the sequence is decreasing and we write a, . . A sequence is called monotonic
if i1 is increasing or if it is decreasing.

The convergence or divergence of a monotonic sequence is particularly easy
to determine. In fact, we have

Theorem 8.6. A monotonic sequence converges if, and only if, it is bounded.

Proof. If a7, im.,a, =supia:n=12,...}, If a ~, lim,_,4 =
inff{a,:mn=12,...}

8.5 INFINITE SERIES

Let {a,} be a given sequence of real or complex nummbers, and form a new sequence
{s,} as follows:

sﬂ=a‘+.“‘+a‘=lzlak (uml,Z,...). (l)

Definition 8.7, The ordered pair of sequences ({a,}, {5,}) is called an infinite series.
The monber 3, is called the nth partil sum of the series. The series is said to con-
verge or to diverge according as {5} is comvergent or divergent. The following
symbols are used to denote the series defined by (1):

i
a +a +--+a, +--, dy + dy + as + -, Za..
k=1

NOTE. The letter k used in 3%, 4, is a “dummy variable” and may be replaced
by any other convenient symbol. IF p is an integer >0, a symbol of the form

= b, is interpreied to mean Y=, g, where g, = b,y ,—;. When there is no
danger of misunderstanding, we write 3'b, instead of 33, b,
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K the sequence {s,} defined by (1) converges to s, the number x is called the sum
of the series and we write
5 = 2 Ay,

Thus, for convergent series the symbol 3a, is used to denote both the series and
its sum.

Example. If x has the infinite decimal expansion x = ag.0,8, - - (see Section 1.17), then
the series 373 o @107 converges to x.

Theorem 8.8, Let a = Fa, and b = Y'h, be convergent series, Then, for every
pair of constants a and B, the series Y(xa, + Pb,) converges to the sum aa + £b.
That is,
- L o0
2@+ Bby=ad atB b,

=i

Proof. Yp-1(aay + Bl =adi &+ B3, b

Theorem 8.9. Assume that a, > O for eachn = 1,2,... Then ¥a, comverges if,
and only if, the sequence of partial sums is bounded above.

Proof. Lets, =a; + -+ a Thens,» and we can apply Theorem 8.6.

Theorem 8.10 (Telescoping sevies). Let {0} and {b,) be two sequences such that
@y = b4y ~ b form=12... Then Ta, comverges if, and only if, lim,_,, b,
exists, in which case we hase

o

> a,=lim b, — b,.

==}l L]

Proof. Thay 8y = Xi=y (Bysq — b} = byyy — by,

Theorem 8.11 { Cancky condition for series). The series T a, converges if, and only
if, for every & > O there exists an integer N such that n > N implies

|Gats + -+ Guspl <8 foreachp =1,2,... 2)

ﬁwj: Let S = Z:=1 Gy Write sa-fp — ¥ =4, + o+ ﬂ..',!, n"ﬂd apply
Theorem 4.8 and Theorem 4.6. ’

Taking p = 1 in (2), we find that lim, .., o, = 0 is a recessary condition for
convergence of 3 a,. That this condition is not sufficient is seen by considering the
example in which g, = Ifn. When # = 2* and p = 2™ in (2), we find

N
+ + LR + 1 > 2 =
2 +1 i N '
.and hence the Cauchy condition cannot be satisfied when z < 4. Therefore the
series 3w, L diverges. This series is called the harmonic series.

Bysy L ar!—p:

1
2!
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8.6 INSERTING AND REMOVING PARENTHESES
Defimition 8.12. Let p be a function whose domain is the set of positive integers and
whose range is a subset of the positive integers suck that
) pimy < plm), ifn<m
Let Ta, and b, be two series related as follows:
bl = 0y -+ ay + et dp(l}’
ii) Byrt = Gppys1 ¥ Bpuyiz + o Gpryyp He= 12,

Then we say that Tb, is obtained from ¥ a, by inserting parentheses, and that Y a, is
obtained from b, by removing parentheses.

Theorem 8.13. If 3a, converges to s, epery series 3.b, obtained from Y a, by in-
serting parentheses also converges to 5.

Proof. Let Ya, and T, be related by (i) and write 8, = 201 @ e = 241 B
Then {1,} is a subsequence of {s,}. In fact, ¢, = 5, Thercfore, convergence of
{5} to s implics convergence of {£,} to 7.

Removing parentheses may destroy convergence. To see this, consider the
series Y0, in which each term is 0 {obviously convergent), Let p{n) = 2» and let
a, = (— 1. Then (i} and (3i) bold but Y a, diverges.

Parentheses can be removed if we further restrict 2a, and p.

Theorem 8.14. Let Y'g,, b, be related as in Definition 8.12, Assume that there
exists a constant M > O such that p{n + 1) — p{n) < M for all n, and assume that
lim,., a, = 0. Then Ya, converges if, and only if, b, converges, in which case
they have the same sum. '

Proof. If Ta, converges, the result follows from Theorem 8.13. The whole
difficulty lies in the converse deduction. Let

S,=a + -t a, ’u:bl"'“-'}'bu’ ¢ = lim £,

A=y
Let & > 0 be given and choose N so that n > N implies

€ £
jt, —t] <= and la,| < —.
n =l 2 oM

If n > p(N), we can find m > N so that N < p(m) < n < pim + 1). [Why?]
For such n, we have
S,=ay ot Gy — @ass + Gpig + 7 F Ty
=ty — (Opps + Gea + 7 “"fap{uuﬂj}s
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and hence
Isw = ) S Howy =t Flayey + 02 00 + sy

2 sy — 2+ 2ot + [8ppiezl + 50 F |@pmeny]

£ E E £
<£+(p(m+1)-p(m))ﬁ<£+§—s.

This proves that lim, . 5, = ¢.

8.7 ALTERNATING SERIES
Definition 8.15. If a, > O for each n, the series 32 {—~1"*' a, ix called an
alternating series.

I?manﬁ 8.16. If {a,} is a decreasing sequence converging to 0, the alternating
series 3~ 1Yt a, converges. If s denotes its sum and s, its nth partial sum, we have
the inequality

0<(~1s —5) <@y Jorm=12,,.. 3)

NoTE, Inequelity (3) tells us that when we “approximate” s by s,, the ercor made
has the same sign as the first neglected term and is less than the absolute value of
this term.

Progf, We insert parentheses in 3(—1)"*! q,, grouping together two terms at a
time. That is, we take p(n) = 2 and form a new series ¥ 5, according 1o Definition
8.12, with ’

by=a—a, by=ay—a, ..., by=ay_ 1~ o

Since a, — 0 and p(n + 1) — p(n) = 2, Theorem 8.14 tells vs that Y (—1)"* 4,
converges if 35, converges. But 335, is a series of nonnegative terms (since a, ™),
and its partial sums are bounded above, since

"
Db=a, —(ay = a3) — = (Qamez — G2-1) ~ a3, < ay.
k=1

Therefore Th, converges, so 3(— 17+ g, also converges.
Inequality (3) is a consequence of the following relations:

{(—Ds —5) = "Z; (_nl*lagﬂz = *El (Gnize- 1 — Gasn) > 0,
and

-]
(17 — 5) = dpyy — ; (@ns st = Bpsirr) < Gugre
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88 ABSOLUTE AND CONDITIHONAL CONVERGENCE

Definition 8.17. A series Ya, is called absolutely convergent if Y|a,| converges. [t
is called conditionaily convergent if 3 a, converges but ¥|a,} diverges,

Theorem 8.18. Absolute convergence of 3 a, implies convergence.

Froof. Apply the Cauchy condition to the inequality
|Gees + 00+ b S lagrdd + 0+ [yl

To see that the converse is not true, consider the example
bl {_ l)u-!-l
u=1 H i

This alternating series converges, by Theorem £.16, but it does not converge
absolutely.

Theorem 8.19. Let 2.3, be a given series with reel-valued terms and define

pﬂzw q =w (n=1,2..) )

2 " 2
Then:

1) If 3 a, is conditionally comvergent, both 3. p, and 3 q, diverge.
i) If Yla,| converges, both ¥ p, and ¥g, vonverge and we have

o oy
Ea.=||z‘—';Pn__

fro ]

9n-

n=]
NOTE. f, = @, and g, = 0ifa, = 0, whereas ¢, = —a, and p, = 0ifa, < 0.

Proof, We bave 4, = p, — 4, I8l = p. + g~ To prove (i), assume that ¥a,

converges and ¥ |a,] diverges. H Tg, converges, then 3 p, also converges (by

Theorem 8.8), since p, = &, + ¢,. Similarly, if 3 p, converges, then 3¢, also

converges. Hence, if either 2 p, or 3 g, converges, both must converge and we

deduce that ¥a,| converges, since |a,| = p, + ¢,. This confradiction proves (i).
To prove (i), we simply use {4) in conjunction with Theorem 8.8.

8.9 REAL AND IMAGINARY PARTS OF A COMPLEX SERIES

Let 3¢, be a series with complex terms and write ¢, = a, + ib,, where 4, and b,
are real. The series 32, and b, are called, respectively, the real and imaginary
parts of 3 c,. In situations involving complex series, it is often convenient to treat
the real and imaginary parts separately. Of course, convergence of both Yo, and
b, implies convergence of Y, Comversely, convergence of Y, implies con-
vergence of both 3a, and 7°b,. The same remarks hold for absofute convergence.
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However, when 3¢, is conditionally convergent, one (but not both) of Ya, and
2.5, might be absolutely convergent. {See Exercise 8.19.)

If ¢, converges absolutely, we can apply part (i) of Theorem 8.19 to the real
and imaginary parts separately, to obtain the decomposition.

2260 = 2(py + fuy — Yg, + i),

where 3op. ¥q,, 2w, 20, are convergent series of nonnegative terms,

8.1¢ TESTS FOR CONYERGENCE OF SERIES WITH POSITIVE TERMS

Theorem 8.20 {Comparison test). If a, > 0 and b, > O forn =1,2,..., and
if there exist positive constants ¢ and N such that

a, < och, fornz='N,
then corvergence of 3b, implies convergence of Ya,,

Praaf. The partial sums of Ya, are bounded if the pariial sums of 35, are bounded.
By Theorem 8.9, this completes the proof,

Theorem 8.21 (Limit comparison test). Assume that o, > 0 and b, > 0 for
n=12 ..., and suppose that

lim % = 1,

arm ]

Then Ya, converges if, and only if, b, converges.

FProof. There exists N such that # = N implies 4 < a,/b, < 2. The theorem fol-
lows by applying Theorem 8.20 twice.

NOTE. Theorem B.21 also holds if lim,. /b, = ¢, provided that ¢ 2 0. If
lim,_, , a,fb, = 0, we can only conclude that convergence of Th, implies con-
vergence of Ya,.

3.1 THE GEOMETRIC SERIES

To use comparison tests effectively, we must have at our disposal some examples of
scries of known behavior. Omne of the most important series for comparison
purposes is the geometric series.

Theorem 8.22. If |x] < 1, the series 1 + x + x* + -+ converges and has sum
11 — x). If x| = |, the series diverges.

Proof. (1 — x) Theox* = o (" — ) =1 — x**'. When |x] < 1, we
find lim, ., x***' = 0. If [x| > 1, the general term does not tend to zero and the
series cannot converge.
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$.12 THE INTEGRAL TEST

Further examples of series of known behavior ¢an be obtained very simply by
applying the integral test.

Theorem 8.23 (Istegral test). Let f be a positive decreasing function defined on
[1, +o0) such that tim, , .., f(x) = 0. Forn = 1,2,..., define

5 = i:f k), &= J‘Bf x)dx, d, - Sy — tu
=1 L

Then we have:

DO<fin+ N=sdy, sd =f(1), forn=12..

i) lim,_,, d, exists.
iiiy =, f{n) converges if, and only if, the sequence {1,} converges.
Mo<sd —lim..d <fik), fork=12 ...

Proof. To prove (i), write

foos = J'“f(x) ax = 3 r”f(x) dx < rlf(k) dx
1 k=1 lg k=1 Jp

Ll
= 2, fU) = 5,
k=1
This implies that f(n + 1) = S441 — 5S¢ < Sas1 — faty = Gnsg, and We oObtain

0 {f(n + ]) 5 du-l'l
But we also have -

dy = dyyy = fors =t = (5yay — 80 = J'"Hf(x) ix-fn+ D) (5

nti .

Zj. frn + DNdx —fin+ 1) =0,
and hence d,,, < d, < d, = f(1). This proves (i}. But now it is clear that (i)
implies (i) and that (ii) implies {ii). )

To prove part (iv), we use (5) again to write
at1
0<d—dusy = J fimy dx = SO0 + 1) = f(n) — fin + 1.
Summing on n, we get
0 Y [ —duds 2 (f—fn+ 1), ifk=1
LEY Bk

When we evaluate the sums of these telescoping series, we get (iv).
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NOTE. Let D = lim,..,, 4,. Then (i) implics 0 < D < f{(1), whereas (iv) gives us
EDW R L ) dx = D < fim. ©

This inequality is extremely useful for approximating certain finite sums by
integrals.

8.13 THE BIG OH AND LITTLE OH NOTATION

Definition 8.24. Given two sequences {a,} and {b,} such that b, = 0 jor all n. We
write
a, = Ofb) {read: “"a, is big ok of 5.,

if there exists a constant M > 0 such that |\a,| < M¥, for all n. We write

a, =olb) asn—- (read: “a is little ok of b,"),
iflimy .., a,fb, = 0.
NOTE, An equation of the form 4, = ¢, + O(b,) means g, — ¢, = O(b,). Sim-
flariy, @ =6 + o(b,) means a, — ¢, = o(b,). The advantage of this notation
is that it allows us to replace certain inequalities by equations. For example, (6)
implies

> = rf(x) dx + D + o(f(m). @

Example 1. Let f(x) = 1/x in Theorsm 8.23. We find £, = logn and hence 31/n
diverges. However, (ii) establishes the existence of the limit

=1
I |
:;amous number known as Exlers constart, usually denoted by C (or by 7). Equation (7)
TS :

Eé::mn+c+a(l). (®)

k=1 1)

Exumple 2. Let f{x) = x7*, 5 # 1, in Theorem 8.23, We find that ¥n~* converges if
5 > I and diverges if s < 1. For s > 1, this series defines an important function known
as the Riemann zeta function:

=1
W) = Z;’ &> 1.
N=1

Fors > 0, ¢ # 1, we can apply {7} to write

SL_ETet o
& 1-3 © + 0

where Cls} = tim,_, (Xhoy k75 — (277 ~ DA - ).
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8.14 THE RATIO TEST AND ROOT TEST
Thkeorem 8.25 { Ratlo test). Given a series 3 a, of nonzero complex terms, let

Gyt

al

dyyy
a'

, R = lim sup

Lind ]

r = him inf
E bl

a) The series Yo, converges absolutely if R < 1.
b) The series Ya, diverges if r > 1.
¢} The test is inconclusive if r = 1 < R

Proof. Assume that R < 1 and choose x so that R < x < 1. The definition of R
implies the existence of N such that |a,,,/a,l < xif n = N. Since x = x**1/x",
this means that

a .
{81l < M < laxl ifn > N,

o xn TR
and hence |a} < ex™if 7 = N, where ¢ = |ay|x~". Statement (a) now follows by
applying the comparison test.
To prove (b), we simply observe that r > 1 implies |a,, | > la,/foralla > N
for some N and hence we cannot have lim,.. , @, = 0.
To prove {c), consider the two examples T2~ ' and Tn~ % In both cases,
r = R = 1 but Tn~? diverges, whereas $n"? converges.

Theorens 8.26 { Root test). Given a series Ta, of complex terms, let
p = lim sup ¥ja ).
M=o

a) The series Ta, converges absolutely if p < 1,
b) The series Y a, diverges if p > 1.
¢) The test is inconclusive if p = 1.

Proof. Assume that p < 1 and choose x so that p < x < 1. The definition of p
implies the existence of N such that g < x* forn > N. Hence, Y[a,| converges
by the comparison test. This proves (a).

To prove (b), we observe that p > | implies |g] > 1 infinitely often and
hence we cannot have lim,_ . a, = 0.

Finally, (¢} is proved by using the same examples as in Theorem 8.25.

NOTE. The root test is more “powerful” than the ratio test. That is, whenever the
root test is inconclusive, so is the ratio test. But there are examples where the ratio
test fails and the root test is conclusive. (See Exercise 8.4.)

8.15 DIRICHLET'S TEST AND ABEL'S TESL

All the tests in the previous section help us to determine absolute convergence of a
series with complex terms. It is also important to have tests for determining
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convergence when the series might not converge absolutely. The tesis in this
section are particularly useful for this purpose. They all depend on the partial
summation formula of Abel {equation (%) in the next theorem).

Theorem 8.27. If {a,} and {b.} are two sequences of complex numbers, define
Ay = g + " + 4,

Then we have the identity
; aby = Abyyy — tZ; ABrey — By )

Therefare, T3w, aby converges if both the series T35, Adbyy, — b)) and the
sequence {Ab, , ) converge.

Proof. Writing A, = 0, we have

Z ayb, = Z (A — A )by = E Ab, ~ Z Abyg + Abyyy.
=1 = i=1 k=1

The second assertion follows at once from this identity.

NoTE. Formula (9) is analogous to the formula for integration by parts in a
Riemann-Stieltjes integral.

Theorem 8.28 (Dirichklet’s test). Let S a, be a series of complex terms whose partial
sums form a bounded sequence. Let {b,} be a decreasing sequence which converges
to 0. -Then ¥Yab, converges.

Proof. Let A, = a, + '~ + a, and assume that [4,] < M for all n, Then

]im ‘énbu-(' 1 =
Therefore, to establish convergence of Y a5, weneed only show that T A4,(b, ., — &)
is convergent. Since b, v, we have

|Ai(bl+l - ka = M{&t - x+1)—

But the series (b 4y — b)) is a convergent telescoping series. Hence the com-
parison test implics absolute convergence of 3 A,(b, ., — ).

Theorem 8.29 (Abel's test). The series Y ab, converges if 3a, converges and if
{b,} is a monotonic convergent Sequence.

Proof. Convergence of 3a, and of {b,} establishes the existence of the limit
Hm, ., Ab, .y, where A, = &, + -~ + 4, Also, {4,} is a bounded sequence.
The remainder of the proof is similar to that of Theorem 8.28. (Two further tests,
similar to the above, are given in Exercise 8.27.)
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816 PARTIAL SUMS OF THE GEOMETRIC SERIES 3 'z* ON THE
UNIT CIRCLE |z| =1

To use Dirichlet's test effectively, we must be acquainted with a few series having
bounded partial sums. OFf course, all convergent series have this property. The next
theorem pives an example of a divergent series whose partial sums are bounded.

“This is the geometric series 3 2" with |z| = 1, that is, with z = ¢** where x is real,

The formula for the partial sums of this series is of fundamental importance in the
theory of Fourier seri¢s,

Thearem 8.30. For every real x 3¢ 2ma (m is an integer), we have

= w b= €™ sin (/) ..
= & = L 1]::;2'
2 1—& a2 (1o

~ote. This identity yields the following estimate:

1
T sin (x/2)

X

(11}

k= i

Proof. (1 — ) 35, ¢ =31, (6% — 707 = g° _ JOH I Thig estabe
lishes the first equality in (10). The second follows from the identity ’

elxl — & — ¢ ginxi St a2

[ - & S22 _ ik

NOTE. By considering the real and imaginary parts of (10), we obiain

"
Zcmkx =sin£;cos(n + I)f sin X
k=1 2 2 2

1 1., x/. x
= -~ sin 20 + 1) fsin =, 12
2 2 ¢ )2/ 2 (12
S .onx Jxfox
sinkx = sin —sinf{m + I} /sin =, 13
& 5 sn @+ 03 fan 3
Using (10), we can also write
i Pt ix E": KD _ Si’f‘ nx & (14)
k=1 k=1 sin x

an identity valid for every x ¢ mn (m is an integer). Taking real and imaginary
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parts of (14) we obtain

3" cos (2k — 1)x = HR2X (15)
k=1 2sinx

L] « 3

Y sin (2k — Dx = ELTE (16)
k=l Sift X

Formulas {12} and {16} cecur in the theory of Fourier series.

£.17 REARRANGEMENTS OF SERIES
We recall that Z* denotes the set of positive integers, Z* = {1,2,3,...}.

Definition 831, Let f be a function whose domain is ¢ mnd whose range is ",
and assume that f is one-fa-one on Z*. Let Ta, and ¥ b, be two series such that

b" = Eﬂ,) ﬁ’ﬂ = l, 2, . (1?)
Then 3b, is said to be a rearrangement of Ya,.

NOTE. Equation (17) implies a, = b1, and bence Ya, is also a rearrangement
of 3 b,

Theorem 8.32. Let 3 a, be anr absolutely convergent series having sum s. Then
every rearrangement of ) a, alse converges absolutely and has sum 5.

Proof. Let {5} be defined by (17). Then
Bul oo 1B = lagol + o + gl < 20 lail,
so ¥, |b,] has bounded partial sums. Hence 375, converges absolutely.

To show that b, = 5, letf, = by + -~ + b, 5, =a, + -+ + a,. Given
g > 0, choose N so that lsy — 5| < &/2 and so that 3%, |aw:s| < /2. Then

[
Its‘slﬁlln_sﬂi'l‘lsﬂ—s‘lﬁltn"'ﬁ}{!+E*

Choose M so that {1, 2,..., N} < {f(), f(2),..., fFiM)}. Thenn > M implies
f(m) > N, and for such n we have

e — sul = by +--- 4 by — (@ + -+ + ay)
= lagay + -+ + Gy — (@ + -~ + ax)i

€ layes] + lagsd + 00 < -,

kaim

since all the terms a,, . .., @y cancel out in the sebtraction. Hence, n > M im-
plies lf_ — 8! <« g and this means b, = &
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£18 REEMANN'S THEOREM ON CONDITIONALLY CONVERGENT SERIES

The hypothesis of absoluie convergence is essential in Theorem 8.32. Riemann
discovered that any conditiomally convergent series of real terms can be rearranged
to yield a series which converges to any preseribed sum. This remarkable factis a
consequence of the following theorem:

Theorem 8.33. Let T a, be a conditionally convergent series with real-valued terms.
Let x and y be given numbers in the closed interval [ — oo, + o], withx 5 y. Then
there exisis @ reqrrangemend 3.5, of ¥ a, such that

T o £, = x and  limsupi, = p,

L. nd F ad 1

where t, = by + - + b,

Proof. Discarding those terms of a sexies which are zero does not affect its con-
vergence or divergence, Hence we might as well assume that no terms of ¥a, are
zero. Let p, denote the ath positive term of 34, and let — g, denote its nth negative
term. Then Y p, and Tg, are both divergent series of positive terms. [Why?]
Next, construct two sequences of real numbers, say {x,} and {y,}, such thai

lm x, = x, lims y, =y, withx, <y, ¥ >0

R+ Lo ]
The idea of the proof is now quite simple. 'We take just enough (say k,) positive
termis so that ’

F:7 0 i ol =l

“followed by just enough (say r,) negative terms so that

Pyt Py oy S X
Next, we take just enough firther pasitive terms so that
By G Py T Py Y
followed by just enough further negative terms to satisfy the inequality
Pyt Py — @ — T G, Per T
t Pry 7 G ™ ey S X

These steps are possible since Y p, and 3 g, are both divergent series of positive
terms. If the process is continued in this way, we obviously obtain a rearrangement
of Ta,. We leave it to the reader to show that the partial sums of this rearrangement
have limit superior y and limit inferior x.

8.19 SUBSERIES

Definition 8.34. Let f be g fimetion whose domoin is ZY and whose range is an
infirite subset of 2%, and assuswe that f iy ene-to-one on L%, Let Ya, and Th, be
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two series such that
b, = any, ifnel’.
Then 3°b, is said to be a subseries of Ya,’

Theorem 8.35. If T o, comverges absolutely, every subseries YT b, also converges
absalutely. Moreover, we have

\;mgng;ML

Proof. Given n, let N be the largest integer in the set {f(1), ..., f(n)}. Then

.3 a N o
Em£2w52w52w.
k=1 k=1 k=1 km ]

The inequality 3°7.., 5] = 3%, |4, implies absolute convergence of Y5,

Theorem 8.36. Let {f,, 1,, ...} be a coumtable collection of fimetions, each defined
on Z*, having the following properties:

a) Each f, is one-to-one on Z*.
b) The range f(Z*} is a subset O, of 2.
¢} {Qy O3, ...} is a collection of disjoint seis whose umion is 5,
Let 3a, be un absolutely convergent series and define
bim) =ay, ifnel*, kel*
Then:
1} For each k, ¥ | Bdn) is an absolutely convergent subseries of Ya,.
) If 5y = L&, b(n), the series 7., 5 converges absohaely and has the some
Sumas 3 ooy G

Proof. Theorem 8.35 implics (). To prove (i), let § = |5y] + -~ + |8). Then

f £ i )| + -0+ z; Iby(n)l = Z; (bym)] + +++ + [bym)])
n=1 = H=

[}
= Zl Qagml + -7 + lagmb.
=

But I (laeml + - + l8pml) = T, la). This proves that Fin| has
bounded partial sums and hence 3, converges absolutely.

To find the sum of 35, we proceed as follows: Let £ > 0 be given and choose
N so that # > N implies

L) .3 8
;w—gmwa (18)

-l AR e
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Choose enongh functions fy, .. ., /. so that each term a,, a,, .. ., gy will appear
somewhers in the sum

o o
Z armt o+ E 21wy
ami aw g

The number r depends on N and hence one. If# > rand r > N, we have

5+ s b s — DL

k=1

£
S lapad + ayeq + -0 < 3 (19

because the terms a,, 2;, .. ., ay cancel in the subtraction. Now (18) implies
n

=
;al_zan

k=1

<

¢
5
When this is combined with (19) we find

oy

sl+"'+s,,-z.s:,
k=1

< &

if > r,n > N. This completes the proof of (ii).

820 DOUBLE SEQUENCES
Definition 8.37. A function f whose domain is Z+ x Z* is called a double sequence,
NOTE. We shall be interested only in real- or complex-valued double _sequennés.

Definition 8.38. If ae C, we write lim, ., f(p.q) = a and we say that the
double sequence f converges to a, provided that the following condition is satisfied :
For every ¢ > 0, there exists an N such that 1f(p, g} — a} < & whenever both
P> Nandg > N. :

Theorem 8.39. Assume that lim, ... Fp, g) = a. For each fixed p, assume that
the limit im_ . 1(p, q) exists. Then the limit lim,_, , (lim., f(p, §)) also exists
and hay the value a.

noTE. To distinguish lim, ... f(p, ¢) from lim,_, (lim .., /(p, q)), the first is
called a double limit, the sccond an iterated limit,

Proof. Let F(p) = lim,, . f(p, g). Given¢ > 0, choose N, so that
If(p,q)—al-{g, ifp> N andg > N,. 20
For each p we can choose N, so that

IFp) = f(p, )l <=, ifq> Na. (21)
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{Note that N, depends on p as well as on e.) For each p > N, choose N, and then
choose a fixed g greater than both ¥, and N,. Then both (20) and (21) hold and
henee

[F(p) — af < &, ifp = N,
Therefore, lim,, ., F(p) = a
NOTE. A similar result holds if we interchange the roles of p and ¢.

Thus the existence of the double limit lim, ... f(p, g) and of im,.... f{p, ¢)
implies the existence of the iterated limit

Iim (Iim J(p, q)).

pmw \g=em
The following example shows that the converse is not true.
Example, Let

f(s )=L9 (p=]!2!"'! q=1129"')-
P q Pt

Then lim,.,, f(p, ¢) = 0 and bence lim,, (lim,.. f(p,¢)) = 0. But f(p,q) = }
when p = ¢ and f(p, g) = %+ when p = 24, and hence it is clear that the double limit
cannot exist in this case.

A suitable converse of Theorem 8£.39 can be established by introducing the
notion of uniform convergence. (This is done in the next chapter in Theorem 9.16.)

Further examples ilfustrating the behavior of double sequences are given in
Exercise 8.28.

8.21 DOUBLE SERIES

Definition 8.40. Let f be a double sequence and let 5 be the double sequence defined
by the equation

» 3
s(p, q) = E Zf(m, n).

m=1 x=1

The pair {f, 5) is called a double series and is denoted by the symbol ¥, | fim, n) v,
more briefly, by 3. fim, n). The double series is said 10 converge to the sum a if

lim s(p, g) = a.
2% hadtd
Each numbér f{m, n) is called a ferm of the double series and each s(p, g) is
a partial sum. If 3 f{m, »} has only positive terms, it is easy to show that it con-
verges If, and only if, the set of partial sums is bounded. {See Exercise 8.29.) We
say ¥ flm, m) converges absolutely if X} fim, a)| converges. Theorem 8.18 is valid
for double series, (See Exercise 8.29.)

£
¢
£
x
L

@ BRERIRTIT g xd s
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$.22 REARRANGEMENT THEOREM FOR DOUBLE SERIES

Definition 8.41. Let f be a double sequence and let g be a one-to-one function
defined on 7% with range 27 x T*. Let G be the sequence defined by

Gln} = flg(m]

Then g is said to be an arrangement of the double sequence f into the sequence G.

if nelt,

Tkeorem 8.42. Let 3. f(m, n) be a given double series and let g be an arrangement
of the double sequence f into a sequence G. Then

a) Y (in) converges absolutely if, and only if, 3 fim, n) converges absolutely.
Assuming that 3 fim, n) does converge absolutely, with sum S, we have further:

b) Xi%s Gtn) = S.

) T8, fim, n) emd T5_, fGn, n) both converge absolutely.

d) If A, =22, fim,n) and B, = 2., fim, n), both series Y A, and 3B,
converge absoluiely and both have sum S. That is,

=

>

[Ms

Sflm, ny = ; ;f{m’ ") = S.

It

1

Proof. Let Ty = |G(1)} + --- + |GEk)] and let

2 5
S(p.g) = 2 2 If(m, n).

m=1 n=1]

Then, for each k, there exists a pair {p, ¢) such that T, < S(p, ¢) and, conversely,
for each pair {p, q) there exists an integer  such that S{p, ¢) < 7.. These in-
equalities tell us that ¥'[G(#)} has bounded partial sums if, and only if, 3| f{m, n)|
has bounded partial sums. This proves {a).

Now assume that 3| f{m, n)] converges. Before we prove (b), we will show thai
the sum of the series 3 .G(n) is independent of the function g used to construct &
from £, To see this, let 4 be another arrangement of the double sequence finto a
sequence . Then we have

G(n) = f[gtm)]  and  H(n) = fTh(m)].

But this means that G(n) = H[k(m)], where k{n) = k" '[g{r}]. Since k is a one-
to-one mapping of Z* onto Z7, the series 3" H(x) is a rearrangement of T G(n},
and hence has the same sum. Let us denote this common sum by §°. We will
show later that §” = S.

Now observe that each series in {¢) is a subseries of 3 G{#). Hence {c) follows
from {a). Applying Theorem 8.36, we conclude that 3 4, converges absolutely
and has sum §°. The same thing is true of 3 8,. N remains to prove that § = §.
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For this purpose let T = lim, ..., S(p, ¢). Given ¢ > 0, choose ¥ so that
0 < T — S(p, q) < &2 whenever p > N and ¢ > N. Now write

k . L 4
h=2,6Gm, spq)=2, 2 flmn
| ol B L
Choose M so that #y, includes all terms f{m, n) with
l<m<N+1, 1l<a<N+lLl,
Then £, — $(¥ + 1, N + 1) is a sum of terms f{m, n) with either m > N or
# > N. Therefore, if n = M, we have
it —s(N+ LN+ Dl sT—-8N+1N+ 1)<§.
Similarly,
S—s(N+ LN+ =T—SN+ LN+ 1)«:-3.
Thus, given £ > 0, we can alwajrs find M so that Jz, — S| =< & whenever n > M.
Since lim,_,, t, = &, it follows that §* = §.

NoTE. The series ¥2_, 32, fim, a) and 2., X2, flm, n) are called “iterated
series”. Convergence of both iterated series does not imply their equality. For
example, suppose

1, fm=n+1,n=12,...,
Sim,my = {—1, fm=n—-1,n=12...,

; 0, otherwise.
Then

Z Zf(ma w=—1 but Z Ef(m, n =L

wWw] u=1 L B B

823 A SUFFICIENT CONMTION FOR EQUALITY OF ITERATED SERIES

Theorem 8.43. Let f be a complex-valued double sequence. Assume that 300 | fim, n)
converges absolutely for each fixed m and that

2. 2 \fem
converges. Then:

a) The double series T, , fim, n) converges absolutely.
b)Y The series Y7, fim, n) converges absolutely for each n.
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¢) Both iterated series 320, 3% _ fim.n) and 32 35, fim, n) converge
absolutely and we have

oy

.,Z=:1 ;f(m, n) = El );;f(m, n) = gf(m’ %),

Proof. Let g be an arrangement of the double sequence finto a sequence G. Then
Y G(n) is absolutely convergent since all the partial sums of Y |G{»)] are bounded
b Ye 2y | fim, m)l. By Theorem £.42(a), the double sedes Y, , fim, #)
converges absolutely, and statements (b) and {c) also follow from Theorem 8.42.

As an application of Theorem 8.43 we prove the following theorem concerning
double series ¥, . f(m, #) whose terms can be factored imto a function of m times
2 function of n.

Yheorem 8.44. Let 3, and 3b, be two absolutely convergent series with sums
A and B, respectively. Let f be the double sequence defined by the equation

fim,m) = ap, fmmeZt x 2*.
Then 3., f(m, n) comverges absolutely and has the sum AB.

Proof. We have
2ol 3010 = 3 (ia...i 3 !b,.l) = % Y iad b

Therefore, by Theorem 8.43, the double series 3, , a5, converges absolutely and
has sum AB.

824 MULTIPLICATION OF SERIES

Given two series 3 g, and 3'b,, we can always form the double series 3 fm, n),
where f{m, n) = a,b,. For every arrangement g of f into a sequence G, we are led
to a further series Y G(#). By analogy with finite sums, it seems patural to refer to
X f(m, 1) or to Y.G(n) as the “product” of Ya, and ¥'3,, and Theorem 8.44 justifies
this terminology when the two given series 3 g, and T b, are absolutely convergent.
However, if either Ya, or 2b, is conditionally convergent, we have no guarantee
that either ¥ f(m, ) or YT .G(n) will converge. Moreover, if one of them does
converge, its sum need not be AB, The convergence and the sum will depend on
the arrangement g, Different choices of g may yield different values of the product.
There is one very important case in which the terms f(mn, ») are arranged “diag-
onally” to produce 3 G{#), and then parentheses are inserted by grouping together
those terms a,b, for which m + n bhas a fixed value. This product is called the
Cauchy product and is defined as follows:
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Definition 8.45. Given two series 2., a, and T'°. , b,, define

b= O Gbpy  Fn=0,12... (22)
k=9

The series 35, ¢, 15 called the Cauchy product of Ta, and Th,.

NOTE. The Cauchy product arises in a natural way when we multiply two power
series. (See Exercise 8.33.)

Because of Theorems $.44 and 8.13, absolute convergence of both 3 a, and
b, implics convergence of the Cauchy product to the value

.:Z., 6 = (‘2 a,) (f) bn). @3

m={) M=
This equation may fail to hold if both Ya, and }'5, are conditionally convergent,
(See Exercise 8.32.) However, we can prove that (23) is valid if at least one of
3a,, ¥b, is absolutely convergent.
Theorem 8.46 ( Mertens). Assume that 35, a, converges absolutely and has sum
A, and suppose T3 o b, comverges with sum B. Then the Cauchy product of these
two series converges and has sum AB.
Proof. Define A, = ¥3_ o4, B, = Ti_o b €, = Yins 01, where ¢, is given by
(22). letd, = B— B, ande, = 350 a4,y Then

» 1.4 P
Cp= 2. 2. by =2, ;om), (24)

=0 k=1 =0}
where :
b, ifn >k
,,k = B0y ks ¥
1® {O, ifn < k.
Then (24) becomes
r 2 [ ¥ pk »
Co= 2, DAk =2 2 @by =20, ), ba= D a:B,.,
k=0 amQ k=D a=k k=0 =0 k=0

L4
=Y aB-d_)=AB—e,

Te complete the proof, it suffices 1o show that ¢, —+ 0 as p —» . The sequence
{d,} converges to 0, since B = 3b,. Choose M > 0 so that |[d,| < M for all n,
andlet X = 35, |a,|. Givene > 0, choose N sothata > Nimplies |d} < £/(2K)
and also so that

o

> la) <=

a=R+1 M
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Then, for p > 2N, we can write
)

N ”
Y ladpid < ziKZ)fa,.l +M 3 la

k=N+1

leld < X lad, sl +
k=

This proves thate, + 0as p — oo, and hence C, » 4Basp - o,

A related theorem (due to Abel), in which no absolute convergence is assumed,
will be proved in the next chapter. (See Theorem 9.32.)

Another product, known as the Dirichlet product, is of particular importance
in the Theory of Numbers. We take g, = b, = 0 and, instead of defining ¢, by
(22), we use the formula

=D Gby (m=12_.) 25)

in
where ¥, means a sum extended over all positive divisors of # {including 1 and
n). For example, ¢y = a,bg + @by + azb; + agb,, and ¢y = ayb, + asb,.
The analog of Mertens” theorem holds also for this product. The Dirichlet product
arises in a natural way when we multiply Dirichlet series. (See Exercise 8.34.)

825 CESARO SUMMABILITY

Definition 8.47. Lef 5, denote the nth partial sum of the series Ya,, and let {6} be
the sequence of arithmetic means defined by
GH=M, fn=12... (26)
" .
The series Ta, is said to be Cesdro summable (or (C, 1} summable) if {o,} converges.
Iflim,., ., 6, = S, then S is called the Cesdro sum {or (C, 1) sum) of Ta,, and we
write
Sa, =8 (C1).

Example 1. leta, = 2" lz] = 1,z ¢ 1. Then

1 2" o1 1027
1-z n(l-2zP’

Therefore,

o2 i
3z 1*"1“;‘ (C, 1.

=1

In particular,
PG LS S (e}
a=1
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Example 2. Let g, = (—1)"*'~. In this case,

lim sup o, = 1, liminf g, = 0,

- e (T
and hence Y(— 1)"* 4x is not {(C, 1) summable.

Theorem 8.48. 1f a series is comvergent with sum S, then it is also (C, 1) summabie
with Cesdro sum S,

Proof. Let s, denote the sth partial sum of the series, define o, by (26), and
introduce 1, = 5, — S, 1, = o, — S. Then we have

=tl+.‘.+tﬂ
."—n »

n 27
and we must prove that t, — Dasn — co. Choose 4 > 0 so that each |1,] < A.
Given ¢ > 0, choose N so that n > N implies |t,}] < ¢. Taking » > N in (27,
we obtain

i‘fnlﬁltd +“‘+ltﬁj+|fy+1|+‘”+ifnl{ﬂ+
n

n n
Hence, lim sup, .., It} < & Since 2 is arbiteary, it follows that lim,_, , |t,] = 0.

NOTE. We have really proved that if a sequence {s,} converges, then the sequence
{o,} of arithmetic means also converges and, in fact, to the same limit.

Cesaro summability is just one of a large class of “summability methods™
which can be used to assign a “sum” to an infinite series. Theorem 8.48 and
Example 1 (following Definition 8.47) show us that Cesdro’s method has a wider
scope than ordinary convergence. The theory of summability methods is an
important and fascinating subject, but one which we cannot enter into here. For
an excellent account of the subject the reader is referred to Hardy’s Divergent
Series (Reference 8.1). We shall see later that (C, 1) summability plays an impor-
tant role in the theory of Fourier series. (See Theorem 11,15.)

8.26 INFINITE PRODUCTS
This section gives a brief intzoduction to the theory of infinite products.
Definition 8.49. Given a sequence {u,} of real or complex numbers, let

Po=u, py=tMy p,=ul;c U, = ,,H Uy (28)
=1

The ordered pair of sequences ({4}, {p,}) is called an infinite product (or simply,
a product). The number p, is valled the nth partial product and u, is calied the nth

Tw. 851 Infinite Prodacts 207

Jactor of the product. The following symbols are used to denote the product defined
by (28):

ISR | T (29)
awl
NoTE. The symbol [T ., #, means [[i%, #y4, We also write [Jw, when there
is no danger of isunderstanding.

By analogy with infinite series, it would seem natural to call the product (29)
convergent if {p,} converges. However, this definition would be inconvenient
since every product having one factor equal to zero would converge, regardless of
the behavior of the remaining factors. The following definition turns out to be
more useful:

Definition 8.50. Given an infinite product []%., u,, let p, = [[2-, 4.

a) If infinitely many factors u, are zero, we say the product diverges to zero.

b} ¥f no factor u, is zero, we say the product converges if there exists a mumber
P # 0 such that {p,} converges to p. In this case, p is called the value of the
product and we write p = T, u,. If{p,} converges to zero, we say the product
diverges to zerp.

c} If there exists an N such that n > N implies u, # 0, we say [[>., u, converges,

provided that [1Ly, ( W, converges as described in (b). In this case, the value
of the product TI5, u, is

@
Mtz " Uy H Uy
=N+l

4) 1%, u, is called divergent if it does not converge as described in (b) or (c).

Note that the value of a convergent infinite product can be zero. But this happens
if, and ouly if, a finite number of factors are zero. The convergence of an infinite
product is not affected by inserting or removing a finite number of factors, zero or
not. It is this fact which makes Definition 8.50 very convenient.

Example. JTu.: (1 + 1/n) and I, (1 — 1/n) are both divergent. In the first case,
Px = n + 1, and in the second case, p, = 1/n.

Theorem 8.5 (Cauchy condition for products). The infinite product [u, con-
verges if, and only if, for every ¢ > O there exists an N such that n > N implies

gt 1Bz "ty — 1 <&, fork=1,23... {30}

Proof. Assume that the product [Ju, converges. We can assume that no w, is
zero (discarding a few terms if necessary). Let p, = u, -+ u, and p = lim,_, p,.
Then p 5 0 and hence there exists ar M > 0 such that |p,| > M. Now {p}
satisfies the Cauchy condition for sequences. Hence, given & > 0, there is an N
such that # = N implies |p,,. — p| < eM for k = 1,2, ... Dividing by |p.[,
we obtain {30}
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Now assume that condition (30) holds. Then » > ¥ implies », # 0. [Why?]
Take £ = } in (30}, let N, be the corresponding ¥, and let g, = iy, . Myge2 " s
ifn > Ny. Then (30) implies ¥ < |g,) < 4. Therefore, if {g,} converges, it cannot
converge to zero. To show that {g,} does converge, Iet 2 > 0 be arbitrary and
write (30) as follows:

M—l’<s.
L'

This gives us [gyex — @ < elgu] < 3¢.  Therefore, {g,] satisfies the Caochy
condition for sequences and hence is convergent, This means that the product
ITu, converges.

NoTE. Taking X =1 in {30}, we find that convergence of [[u, implies
lim,.. u, = I. For this reason, the factors of a prociuct are written as 4, = 1 + 4,
Thus convergence of T[(1 + 4.} implies hm,, ,, 4, = 0.

Theorem 8.52. Assume that cach a, > 0. Then the product H{l + a,} converges
if, and only if, the series Y a, converges.
Proof. Part of the proof is based on the following inequality:

1+ x5 e ‘ {31)

Although (31) holds for all real x, we need it only for x = 0. When x > 0, (31)
is & simple consequence of the Mean-Yalue Theorem, which gives us

&' — 1 = xe™, where 0 < x, < x.

Since ™ = 1, (31) follows at once from this equation.

Nowlets, = a; + a3+ + a,p, = {1 + X1 + a3} --- (1 + a,). Both
sequences {s,) and {p,} are increasing, and hence to prove the theorem we need
only show that {s,} is bounded if, and only if, {p,} is bounded.

First, the inequality p, > s, is obvious. Next, taking x = 4 in (31), where
k=1,2,...,n and multiplying, we find p, < ¢~ Hence, {s5,} is bounded if,
and only if, {p,} is bounded. Note that {p,} cannot converge to zero since each
P. = 1. Note also that

Do + @ if. 5, = + 0.

Definition 8.53. The product [[(1 + a,) is said to converge absolutely if [I(1 + |a,}}
converges.

Theorem 8.54. Absolute convergence of TI(1 + a,) implies convergence.
Proof. Use the Cauchy condition along with the inequality

Hl + a0 + ageq) (L + a2, — |
S+ g DU+ g (1 + o,y — L
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note. Theorem 8.52 tells us that [J(1 + a,} converges absolutely if, and only if,
3.a, converges absohetely. In Exercise 8.43 we give an example in which JJ(I + a,)
converges but 3 a, diverges.

A result analogous to Theorem 8.52 is the following:

Theorem 8.55. Assume that each a, 2> 0. Then the product [{(1 — a,) converges
i, and only if, the series Ya, converges.

Proaf. Convergence of ¥ a, implies absolute convergence (and hence convergence)
of TI(1 — a).

To prove the converse, assume that Y, diverges. If {4,} does not converge to
zero, then J](1 — a) also diverges. Therefore we can assume that a, — 0 as
n — oo, Discarding a few terms if necessary, we can assume that each a, < 1.
Then each factor 1 — a, = 1 (and hence # 0). Let

Pe={ ~all~aj-Q1 ~a) Go={ +a}l +a)-(+a)
Since we have
t-aXl+a)=1—al=sI,

we can write p, < 1fg,. But in the proof of Theorem 8,52 we observed that
gy — +oo if 3a, diverges. Therefore, p, —» 0 as 1 — o and, by part (b) of
Definition 8.50, it follows that [J{1 —~ a,} divgrges to 0,

8.27 EULER’S PRODUCT FOR THE RIEMANN ZETA FUNCTION

We conclude this chapter with a theorem of Euler which expresses the Riemann
zeta function [{s) = ¥'& . #™7 as an infinite product extended over alt primes.

Theorem 8.56. Let p, denote the kth prime number. Then if 5 > 1 we have

[ +] 1 "
=Y. L

s =.[-[1T— =2

The product converges absolutely.

Progf. We consider the partial product P,, = [[r., (i — pc" "' and show that
P, = {(syas m — oo. Writing each factor as a geometric series we have

ﬁ {1
P, = 1+~+—A+~--),
T ( n

a product of a finite number of absolutely convergent series. When we multiply
these series together and rearrange the terms according to increasing denominators,
we- get another absclutely convergent series, a typical term of which is

! =—I, where n = p}' - -- pi™,

p}lﬂ p;ls P Pi::nﬁ n!
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and each q; = 0. Thercfore we have
1
Tum 2

where T, is summed over those # having all their prime factors <p,. By the
unique factorization theorem (Theorem 1.9}, each such n occurs once and only
once in ¥ ;. Subtracting P, from {{s) we get

R 1 1

where }°, is summexd over those n having at least one prime factor >p,. Since these
& occur among the integers > p, . we have

i) — Pl = 35

LB

1

¥

As m — oo the last sum tends to 0 because 3n™ converges, so P, — £(s).
To prove that the product converges absolutely we use Theorsm 8.52. The
product has the form [J(1 + ), where

1,1
non
The series Y g, converges absolutely since it is dominated by S~ Therefore
TI(1 + ) also converges absolutely, :

&y =

VEXERCISES

Sequences
8.1 a) Given a real-valued sequence fa,} bounded above, let o, = sup {a, : k > n}.
Then u#,~ and bence & = lim,_, . 4, is cither finite or — o0, Prove that

U=1limsupa, = lim (sup {a, 1 &k = a}).

Land-1 L i d -]
b) Similarly, if {a,} is bounded below, prove that
V= liminfa, = lim (nf {a:k = »)).

atm = o
If I/ and V are finite, show that:

<) There exists a subsequence of {a,} which converges to U and a subsequence
which converges to V.

d) If U = ¥, every subsequence of {a,} converges to U,
8.2 Given two real-valued sequences {a.} and {4, bounded below. Prove that
a) lim sup, ., (3, + &) = lim sup,. 2, + Him sup,_, o &

Exerciges ’ pill

by Lim suop,..,, (g5,) = (lim sup,.., @ Xlim sup,... &) ifq, > 0, b, > Ofor all m,
and if both im sup, ..., 4, and lim sup,., ., 5, are finite or both are infinite.

3.3 Prove Theorsms B3 and 8.4,
8.4 If each a, > 0, prove that

tim inf ®%1 < {im inf Ya, < lim sup Ve, < lim sup T2

A [ = N 85 LRS- [

85 Let a, = n"{n!. Show that limy_, ., 4,10, = ¢ and use Exeircise 8.4 to deduce that

i e = &
)

8.6 Let {a,} be a real-valued sequence and let o, = {a; + --- + a)/n. Show that

lim inf @, = lim inf o, < lim sup o, = lim sup a,.

T OO [ Y.+ [ S 3 L -]

8.7 Find lim sup,_. , @, and lim inf,_, , 4, if a, is given by

a) cos n, b} (1+1)cosrm, c) nsinﬂ,
F] 3
. nm nr . . n_[a
dx smzcos?, e) {—1)"nf(t + n)", ) 3 [3] .

wotE. In (F), [x] denotes the greatest integer < x.

838 Let g, = 2n — b l;"v@. Prove that the sequence {a,} converges to a limit p
in the interval 1 < p « 2.

In each of Exercises 8.9 through 8.14, show that the real-valued sequence {a,} is con-
vergent. The given conditions are assumed to hold for all # = 1. In Exercises £.1¢
through 8.14, show that {a,} has the limit L indicated.

8.9 Iﬂ.u| =1, ]al+! - an+l' = %Iaf—}l - ail-
8104 =20, a 20, ayz = @G, )3, L= (g,a3)53

Aanlizg—1
81t g, =1, & =8, Gyay = Mo + fpe1)s Gapgz = :—' y L= 4,
2841

812 o, = —3, 3@, =2+ a3 L =1 Modifya, tomake L = —2.

1l + ay

813 a, = 3, =T p o

ay 1 3+ a,

814 a, = b’;‘, where by = by = 1, Byyp = byt Byyys L =1 ‘;"’G.
{.]

Hint. Show that by, — b3iy = (—1P"*! and deduce that |, — a,,,] < n~%, if
n> 4
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Sexies
8.15 Test for convergence (p and g denote fixed real numbers).

= a

a) E nle™", b 3 (og 5,
=l Fry
o ! o 1
c);p"n’ @ > 0), d);;;—_'; ©<g<p),
] m1re © 1
B);;” e, ﬂ.-lp“q’ ©<g<p),
) @m q_‘!“ o 1
& ;nlog(l-l-l[u)’ ) 2, (og ny’
N ST A e
D “anlog n {log log »*’ » _Zs(leghgn) )
o N Ry 1 mn’( ! --i)
m}EI(V;—l)", 0 Y w(Va+1—2vn+ Vn - 1)
= m=1

8.16 Let § = {ny, n;,... } denote the collection of those positive integers that do not
involve the digit 0 in their decimal representation. (For example, 7€ .5 but 101 ¢ )
Show that 32, 1/, converges and has a sum less than 90,

8.17 Given integers @, @,,... such that { S g, < w —~ 1, m = 2, 3,... Show that the
sum of the series 3 %, a./#! is rational if, and only if, there exists an integer N such that
a,=nr— 1forallm = N. Hint. For sufficiency, show that T2, (r — Dfn! is a tele-
scoping series with sum 1.

8.18 Let p and g be fixed infegers, p = ¢ = 1, and let

Lol 1 n{_l)k+l
Ny = Ty By = —————
Tk R R

a) Use formula (8} to prove that lim__ xy = log (piq).
b} When g = 1, p = 2, show that 5, = x, and deduce that

DO 1yttt
¢ )—=lng2.

=i "

) Rearrange the series in (b), writing alternately p positive terms followed by ¢
negative terms and use (a) to show that this rearrangement has sum

log 2 + {log(plq).
d) Find the sum of T30, (— 1Y (1B — 2) — 1/(3n - 1.

8.19 Letc, = a, + ib, wherea, = (— 1y, b, = 1n*. Show that ¥¢, is conditionally
convergent.

Exercisea 213
820 Use Theorem 8.23 to derive the following formulas:

o, | 1 1
a) %k = ilog" n+ A+ 0(%5) (A is constant).
ot

= 1 . .
b};m=lagﬂogn)+3+0( ) (B is constant).

nlogn
821 0 <ax<l,s> Ldefinef{s,d) = Tuno (7 + a)~%
a) Show that this series converges absolutely for 5 > 1 and prove that

u A
Zc(s,;) =K Hk=12...,
A=1

where {(s) = {{s, 1) is the Riemann zeta function.

b) Prove that 32, (1" = (1 ~ 2 W@ if s > 1.
8.22 Given a convergent series ¥ a,, where each g, > 0. Prove that E\/c_z.u"converges
if p > % Give a counterexample for p = 4.
8.23 Given that ¥a, diverges. Prove that  na, alzo diverges.
8.24 Given that Ya, converges, where each a, > 0. Prove that

pACT N 1}“?

also converges., Show that the converse is also true if {g,} is monotonic,
8.25 Given that Y, converges absolutely. Show that each of the following series also
converges absolutely:

) ¥ WY, @mog=-n,

a:

c}zl-l-af'

8.26 Detarming all real values of x for which the following series converges:
o 1 1\ sin mx
E 14— dareg — A
=1 z n n
827 Prove the following statements:

a} Ya,b, converges if ¥ a, converges and if 3.(b, — b, ,) converges absolutely,

b} Taub, converges if 3 g, has bounded partial surs and if 3,(b, ~ by, ) converges
absolutely, provided that 5, —+ 0 as 7 = w0,

Double sequences and double series
8.28 Investigate the existence of the two iterated limits and the double limit of the double
sequence f defined by

1

o) = - —, b) f(p, ) = —4—,
pta Pty
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o (o, a) = S2F, d) f(p, g) = (~1P* (1 + 1) ,
P+ q P q
& f(p, 9) = "‘"—;)’ £ £(5, a) = (~ 177+,
= s P : h _ P~ N
B flp. ) pad YAp. q) q2§’“"p'

Answer, Double limil exists in (a), (4), (e}, (£). Both iterated limits exist in (a), (b}, (h).
Only one iterated limit exists in {c), e). Neither iterated limit exists in (d), ().
£.19 Prove the following statements:

a)} A double series of positive terms converges if, and only if, the set of partial sums
s bounded.

b) A double series converges if it converges absolutely,
€} T~ ™ " converpes.

830 Assume that the double series 3, , a{m)x™ converges absolutely for [x} < 1. Call
its sum S{x). Show that each of the following series also converges absolutely for |x| < 1
and has sum S(x):

“Zl a(n) f, E Alm)e®,  where A(r) = }; a(d).

831 H « is real, show that the double series 3, , (m + ix)™* converges absolutely if,

and only if, « > 2. Hint. Let5(p, q) = 2wy 23, |m + n|™% The set
m+imim=12,. .,pn=12,...,p}

consists of p? complex numbers of which one has absolute value \/E, three satisfy
1+ 2] < |m + in} < 2v/2, five satisfy |1 + 3/| < |m + in| < 3V2, etc. Verify this
geometrically and deduce the inequality

l Zn
2—&{3
$.32 a) Show that the Cauchy product of T4 (— D**4//u + 1 with itself is a divergent
series.
b) Show that the Cauchy product of 350 4 (— 1Y /(r + 1) with itself is the series
= (_ I)!H-l 1 l'
2 E (1 MR )

a+1 n

Bodn—1
{S(Pmﬁ) = Z(nz TN

-]
Does this converge? Why?

8.33 Given two absolutely convergent power series, say 320 o a,x" and T2, &,x", having
sums 4(x) and B(x), respectively, show that 3 37, c,x" = A(x)B{x) where

= i aibl -t

k=0
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8.34 A series of the form 300, afn’ s called a Divichiet series. Given two absolutely
convergent Dirichlet series, say Y o, /¢ and Y2, | b, /r?, having sums A1) and B(s),
respectively, show that 355, e /n® = A(B(s) where ¢, = 3y delinya.

835 I [(s5) = 3%, 1/, s > 1, show that {3(s) = ¥’ , d(m)/*, where d(n) is the
nimber of positive divisors of & (including 1 and ).

Cestiro summability
8.36 Show that each of the following series has (C, 1) sum O;
a1l — 1~ 2141 4+1—1—~14+1+41—— 44

-1+ +4-1+34+3-14+—---.
c} oos x + ¢08 Ix + cos 5x + ---(xreal, x # m=).

8.37 Given a series Y o, et

n N 1
= E O, I, = z: ke, Ty = S
k=1 =1 o =51
Prove that
ay & = (@ + Lis, — ng,.
b) If ¥a, is (C, 1) summable, then 3'a, converges if, and only if, £, = o{m)as » — o,
€} 34, is (C, 1) summable if, and only if, 3,7, 1,/n(a + 1) converges.
838 Given a monotonic sequence {a,} of positive terms, soch that im,__ . o, = 0. Let
» L »
£ = by = -Da, bo,= — 1)
; a, g( Ya, ;:( .
Prove that:
a) oy = Yy + (=152,
b) T2, (—1)s, is (C, 1) summable and has Cesiro sum 132, (—a,.

ATE (D + 1 4+ U = —logv2 (C, 1.
Infinite products

$.39 Determine whether or not the following infinite products converge. Find the value
of each convergent product,

a) [[( et 1)) v JJa-»?,

=2 LEF]
=3 -1 @ i 4
c),!ln"+1’ d}.= {1+ 3z iflsd =< L

#.40 If each partial sum 3, of the convergent series 2 o, is not zero and if the sum jtself
is mot zero, show that the infinite product 4, J[owz (1 + @45, ) converges and has the
value 3,24 a,.
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8.41 Find the values of the following products by establishing the following identities and
summing the series:

) Z u(n + 1

a)H(l+

ey

)_222-" b)fI(

T} =3

$.42 Determine all real x for which the product ]2, cos (x/2"} converges and find the
value of the product when it does converge.

843 a) Let o, = {~ l}"h'{; form = 1, 2,... Show that J{(1 + a,) diverges but that
3o, converges,
b) Letasy_; = —1/vn,a5, = 1/v/n + Inforn = 1,2,... Show that [J(I + ay
converges but that ¥ a, diverges,
8.44 Assome that g, = Oforeach m = 1,2,... Assume further that

Pan
Gankz < Ganss < T form=1,12,...
¢ ]

Show that JIiL, (1 + (—1Ya) converges if, and only if, 3%, (— 12, converges.

8.45 A complex-valued sequence {f(n)} is called multiplicative if £(1) = 1| and if f(pm) =
F(m)f(n) whenever m and n are relatively prime. (See Section 1.7) It is called com-
Ppletely multiplicative if

A =1 and  flmr) = flim)fin) for all m and .
a} If {,¥n)} is multiplicative and if the series 3" f(n) converges absolutely, prove that
Z!(n) = ]‘[ 4+ fpd + FPD +--- ),
am] A=

where p, denotes the &th prime, the product being absohutely convergent.
b) M, in addition, {f(n)} is completely multiplicative, prove that the formula in (a)

becomes

Zlf(") L f(p)
Note that Euler's product for (s} {Theorem 8.56) is the special case in which
fmy =n*

8.46 This exercise outlines a simple proof of the formula {(2) = #%/6. Start with the
inequality sin x « x < tan x, valid for 0 < x < n/2, take reciprocals, and square each
member to obtain

cot® x « ——1—2— < i+ cot®x.
x
Now put x = knf(2Zm + 1), where & and m are integers, with 1 < & < m, and sum on &
o obtain
kn (Zm + 1P =1

L3
2o 1 < Zk""'”z“"z

1
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Usetheformulaofﬁxcmiselﬂc)todeducetheimquaﬁty
-Dx? X1 Zmim+ n?

3{2m+l)"{ ECT3am 7

Now let m — oo to obtain J(2) = x%/6.
847 Use an argument similar to that outlined in Exercise 8.46 to prove that {{4) = »*/90.
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CHAPTER 9

SEQUENCES
OF FUNCTIONS

9.1 POINTWISE CONVERGENCE OF SEQUENCES OF FUNCTIONS

This chapter deals with sequences {£,} whose terms are real- or complex-valued
functions having a common domain on the real line R or in the complex plane C.
For each x in the domain we can form another sequence {f,(x)} whose terms are
the corresponding function values. Let S denote the set of x for which this second
sequence converges. The function f defined by the equation

f(x) = lim f(x), ifxeS,

is called the limit function of the sequence {f£.}, and we say that {£) converges
pointwise to S on the set S.

Our chicf interest in this chapter is the following type of question: If each
function of a sequence {f,} has a certain property, such as continuity, differen-
tiability, or integrability, to what extent is this property transferred to the limit
function? For example, if each function £, is continuous at ¢, is the limit function
[ also continuous at ¢7 We shall see that, in general, if is not, In fact, we shall
find that pointwise convergence is usually not sirong enough to transfer any of the
properties mentioned above from the individual terms f, to the limit function £,
Therefore we are led to study stronger methods of convergence that do preserve
these properties. The inost important of these is the notion of uniform convergence.

Before we introduce uniform convergence, let us formulate one of our basic
questions in another way. When we ask whether continuity of each f, at ¢ implies
continuity of the limit function fat ¢, we are really asking whether the equation

lim f,(x) = fc},

implies the equation

Hm f(x) = f(c). ()
But (I} can also be written as follows:
lim B f(x) = Lim lim f{x). (2}

Therefore our question about continuity amounts to this: Can we interchange the
limit symbols in (2)?7 We shall see that, in general, we cannot. First of all, the
limit in (1) may not exist. Secondly, even if it does exist, it need not be equal to
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flc). We encountered a similar situation in Chapter 8 in connection with iterated
series when we found that 32, 3= . f(m, n) is not necessarily equal to
2ot Yome1 fUm, ).

The geoeral question of whether we can reverse the order of two limit pro-
cesses arises again and again in mathematical analysis. We shall find that uniform
convergence is a far-reaching sufficient condition for the validity of interchanging
certain limits, but it does not provide the complete answer to the question. We
shall encounter examples in which the order of two limits can be interchanged
although the sequence is not uniformly convergent.

9.2 EXAMPLES OF SEQUENCES OF REAL-VALUED FUNCTIONS

The following examples illusirate some of the possibilitics that might arise when
we form the limit function of a sequence of real-valued functions.

L

ful=x) =

T #=123. J iz} =:i_'::f, (=)

-+

Figure 9.1

Example 1. A sequence of continuous functions with o discontinnous limit funcrion. Let
Jix) = ¥l + x™ ifxeR,a= 1,2,... The graphs of a few terms are shown in
Fig. 9.1, In this case lim,,_, .. £.(x) exists for every real x, and the limit fonction fis given by

0 iflx] <1,
fo=t iflx]=1,
1 if|x > L
Each £, is continuous on R, but fis discontinoons at x = Tand ¥ = —1,

Example 2, A sequence of functions for which lim,_, o, [5 /(<) dx # {} lim,_, o, fi(x) dx. Let
fA) = mxll — xPifxeR a=12,... 10<x <] thelimit f(x) = lim,_, o ,(x)
exists and equals 0, (See Fig. 9.2,) Hence [§ f{x) dx = 0. But

J-l};(.x} dx = n? J.E ol — x¥ dx
0 )

1 P w w
= 1 - "dt = - = -
"J;{ o 1 ht2 Gr et D
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Figme 9.2

»o= 1
"2

n=23
r=25

%0 lim, ., J3/ix) dx = 1. In other words, the limit of the integrals is not equal to the
integral of the limit function. Therefore the operations of “limit” and “integration™
cannot always be mterchanged.

Example 3. A sequence of diffeventiable functions {3} with limit O for which {F.} diverges.
Let /i(x) = (sin ax){Vnif xR, » = 1,2,... Thenlim, ., £(x) = O for every ». But
£3(x) = V1 c0s nx, 50 lit,...., £(x) does not exist for any x. (See Fig, 9.3.)

93 DEFINITION OF UNIFORM CONVERGENCE

Ijet_ {3 be a sequence of functions which converges pointwise on a set S to a
]m.m function . This means that for each point x in 5 and for each & > 0, there
exists an N (depending on both x and £) such that

n> N implies [f(x) — f(x)| < &

Th 9.2 Uniform Coavergence p i

If the same N works equally well for every point in 5, the convergence is said to be
uniform on §. That is, we have '

Definition 9.1. A sequence of functions {f,} is said to converge uniformly to f on a
set S if, for every & > 0, there existy an N (depending only on &) such that n > N
implies
(e} — fix) < &,  forevery X in§.
We denote this symbolicaily by writing
Jo = funiformiv on 8.

‘When each term of the sequence {f.} is real-valued, there is a useful geometric
interpretation of uniform convergence. The inequality |£,{x) — f(x)| < ¢ is then
equivalent to the fwo inequalities

fx) -8 < fix) < f(x) + & &)

If (3) is to hold for all 2 > N and for all x in §, this means that the entire graph
of f, (that is, the set {(x, ¥): ¥ = f,(x), x € 5}} lies within a “band” of height 2z
situated symmetrically about the graph of f. (See Fig. 9.4.)

y = flz) +
v = fu®) / ev-i@
AT A e
y=flx) — «

A sequence {£,} is said to be wriformly bounded on § if there exists a constant
M > 0 such that |£,(x)| < M for all x in §and all n. The number M is called a
uniform bound for {f,}. If each individual function is bounded and if f, - f
uniformly on S, then it is easy to prove that {£,} is uniformly bounded on §. (See
Exercise 9.1.) This observation often enables us to conclude that a sequence is
rot uniformly convergent. For instance, a glance at Fig. 9.2 telly us at once that
the sequence of Example 2 cannot converge uniformly on any subset containing a
neighborhood of the origin. However, the convergence in this example is uniform
on every compact subinterval not containing the origin.

9.4 UNIFORM CONVERGENCE AND CONTINUITY

Theorem 9.2, Assume that [, — f uniformly on 5. If each f, is continuous at a
point ¢ of 5, then the limit funetion [ is also comtinuous at c.

NOTE, If ¢ is an accumulation point of S, the conclasion implies that
lim lim fi{x) = lim lim f,{x).

X Ay A~ras X0
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Progf. If ¢ 15 an isolated point of .5, then f is automatically continnous at c.
Suppose, then, that ¢ is an accumulation point of §. By hypothesis, for every
& > O there is an M such that » > M implies

Fx) — f(x)] < -; for every x in S.

Since fy is continwous at ¢, there is 2 neighborhood B(c) such that x e B{e) n §
implies

(%) ~ SO < ; :
But
LA — £ < 1SR — S + [/l — fuO)] + 1fael®) — £

If x € B(e) 8, each term on the right is less than /3 and hence [ f(x) — f(c)| < &.
This proves the theorem.

NOTE. Uniform convergence of {f,} is sufficient but not necessary to transmit
continuity from the individual terms to the limit function. In Example 2 (Section
9.2}, we have a nonuniformly convergent sequence of continuous functions with
a continuous lmit function.

9.5 THE CAUCHY CONDITION FOR UNIFORM CONVERGENCE

Theorem 9.3. Let {1.} be a sequence of funciions defined on a set S. There exists a
Junction f such that f, — f uniformly on S if, and only if, the following condition
{called the Cauchy condition) is satisfied: For every & > 0 there exists an N such
that m > N and n > N implies

172) — fillx) < &, foreweryxin 5.

Proof. Assume that f, — f uniformly on 5. Then, given & > 0, we can find ¥ so
that n > N implies [f,(x) — f(x)| < &2 for all x in 8. Taking m > N, we also
have [/,(x) — f{x}] < &2, and hence |f{x) — f,(x)] < & for every x in S.
Conversely, suppose the Cauchy condition is satisfied. Then, for each x in 5,
the sequence {£,(x)} converges. Let f{x) = lim,.,, /{X) if x £ 5. We must show
that f, — f uniformly on S. If € > O is given, we can choose N so that n > N
implies |/i(x) — fia(®)| < g2 foreveryk = 1,2, ..., and every x in S. There-
fore, limy., |f(x) — £, = |£i(x) — fiX)] < &/2. Hence, n > N implies
1£0) — f(x)] < efor every x in 5. This proves that £, — f uniformly on 5.

NOTE. Pointwise and uniform convergence can be formulated in the more general
setting of metric spaces. If f, and fare functions from a nonempty set S to a metric
space (T, dy), we say that £, — funiformly on S, if, for every & > 0, there is an
N (depending only on ¢) such that » > ¥ implies

d{f,(x), fx)) <& forallxin 5.
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Theorem 9.3 is valid in this more general setting and, if §is a metric space, Theorem
9.2 is also valid. The same proofs go through, with the appropriate replacement
of the Enclidean metric by the metrics dg and 4. Since we are primarily interested
in real- or complex-valued functions defined on subsets of R or of €, we will not
pursue this extension any further except to mention the following example.

Exomple. Consider the metric space (B(S), 4) of all bounded real-valued functions on a
nonempty set S, with metric 4(f, g} = |f — 2|, where /] = sup,.s |f(x)] is the sup
non. (See Exercise 4.66.) Then £, — fin the metric space (B(S), d) if and only if £, — F
uniformly on §. In other words, uniform convergence on § is the same as ordinary con-
vergence in the meiric space (B(X), d).

9.6 UNIFORM CONVERGENCE OF INFINITE SERIES OF FUNCTIONS

Definition 9.4, Given a sequence { £} of functions defined on a set S. For cach x in
5, let

s{x) = I;Z!fa(x) n=12...) 4

If there exists a function f such that s, — f uniformly on S, we say the series 3. £(x)
converges uniformiy on S and we write

Y 00) = S0 Gniformly on 5).

Theorem 9.5 (Cauchy condition for uniform convergence of series}. The infinite series
5 £.(x) converges uniformly on S if, and only if, for every £ > © there is an N such
that n > N implies

rtp

PEAC.

[T T8

FProof. Define s, by (4) and apply Theorem 9.3.

<g Joreachp =12 .. . andeveryxinh.

Theorem 9.6 ( Weierstrazss M-test). Let {M,) be a sequence of nonnegative numbers
such that

0= {f(x <M, forn=12,...,andfor every xin 5.
Then Y. f,(x) converges uniformly on S if 3 M, converges.
Proof. Apply Theorems 8.11 and 9.5 in conjunction with the inequality

wtp nt
k;;;lju*) = k;g;l hnr

Theorem 9.7, Assume that Y f(x) = f(x) (miformly on S). If each f, is continuous
at a point x, of S, then f is also continugus at x,,
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Proof. Define s, by (4). Continuity of each f, at x, implies continuity of s, at
Xy, and the conclusion follows at once from Theorem 9.2,

NOTE. If x; is an accumulation point of S, this theorem permits us to interchange
limits and infinite sums, as follows:

Hm i Fhx) = i Hm f(x).

Xwxg #=1 a1 x-rxp

9.7 A SPACE-FILLING CURVE

We can apply Theorem 9.7 to construct a space-filling curpe. This is a continuous
curve in R? that passes through every point of the unit square [0, 1] x [0, 1].
Peano (18%0) was the first to give an example of such a curve. The example to be
presented here is due to 1. J. Schoenberg {Bulletin of the American Mathematical
Society, 1938) and can be described as follows:

Let ¢ be defined on the interval {0, 2] by the foliowing formulas:

0, fO0=st=zdoriff <1<
_) -1 ifi<r<i,
$() = 1 i<zt

-3 +35 #2grgd
Extend the definition of ¢ to all of R by the equation
#r + 2) = ().
This makes ¢ periodic with period 2. (The graph of ¢ is shown in Fig. 9.5

\:m Figure 9.8
-2 -1 0 1 2 3 4

Now define two functions £, and f; by the following equations:

= 20— had 2n-1
Lm=;@?ﬂ.ﬁm=;ﬂ%ﬁ.

Both series converge absolutely for each real ¢ and they converge uniformly on
R. In fact, since |¢(f)] < 1 for all ¢, the Weierstrass M-test is applicable with
M, = 27" Since ¢ is continuous on R, Theorem 9.7 tefls us that £, and f, are
also continuous on R, Let £ = (f}, £,} and let T denote the image of the unit
interval [0, 1] under £ We will show that I *filis” the unit square, ic., that
F=1{01] x [0, 1]. :

First, jt is clear that 0 < /() < I and O < f5(r) < 1 for each f, since
2y 27" = 1. Hence, I' is a subset of the unit square. Next, we must show that
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w, by e I" whenever {g, 8) € [0, 1] x [0, I]. For this purpose we write ¢ and 5
in the binary system. That is, we write

‘=L PTX

where each g, and each b, is either 0 or 1. (See Exercise 1.22.) Now let

.3
n?

8P
W

W
c=22§3, where ¢y, 4 = a,and ¢5, = b, n = 1,2,...
A=k

Clearly, 0 < ¢ < 1 since 2352, 3™ = 1. We will show that fi{c) = a and that
e} = b,
If we can prove that
#(3*c) = ¢;,,,, foreachk =0,1,2,..., 3)

then we will have $(3® %) = ¢;, | = a, and $(3* 10 = ¢,, = b, and this
will give us f,(c) = a, f3(¢) = b. To prove (5), we write

a@n

k
Fe=2D, LI D a_ _ (an even integer) + d,,

wmi 3"F wiita 37F
where d, = 2300, €.:xl3". Since ¢ has period 2, it follows that
(39 = ¥dy).

If ¢g4q =0, then we have 0 < &, €233, 37" = 1, and hence ¢{d) = 0.
Therefore, $(3%c)} == ¢y, in this case. The only other case to consider is ¢4, = L.
But then we get < &, < | and hence ¢{d) = 1. Therefore, $(3%) = ¢, in
all cases and this proves that £1(c) = a, f:(¢) = b Hence, I fills the unit square.

9.8 UNIFORM CONVERGENCE AND RIEMANN-STIELTJES INTEGRATION

Theorens 9.8. Let a be of bounded variation on [a, b]. Assume that each term of
the sequence {f.} Is a real-valued function such that [, & R(a} on [a, b] for each
n=12,... Assume that f, — funiformly or [a, b] and define g(x) = | f(r) dnlt)
ifxe[a,bl,n=1,2,... Then we have:

a) fe R(@)on[a, b].

b) g. — g uniformly on [, b), where g(x) = [ f(t) da(t).

~NoTE. The conclusion implies that, for each x in [a, &], we can write
lim J "1ty det) = r tim £, dofo).

This property is often described by saying that a uniformly convergent sequence
can be integrated term by term.
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Proof. We can assume that o is increasing with a(a} < a(d). To prove (a), we
will show that f satisfies Riemann’s condition with respect to « on [a, 5]. (See
Theorem 7.19.)

Given ¢ > 0, choose N so that

[Ax) — fulx) <

&
—_ for ali x in [4, &].
3a(b) — a(a)] L4 #]
Then, for every partition P of [a, b], we have

UR.S— fuol < and (LS~ fua) <7,

{uwsing the notation of Definition 7.14). For this N, choose P, so that P finer than
P, implies U(P, fy, &} — L{P, fx. &) < &/3. Then for such P we have

UP, f,a) — LP, f,a) < UP, f — fu, ) = LP,J = fy, @)
+ U(P, fy, a) — L(P, fy, @)
< |U(P, f — fyo 0l + [LAP, [ ~ f, )] + ; < e

This praves (a). To prove (b), let € > 0 be given and choose & so that

£
14y —~ f0) < m,

forall # > N and every ¢ in [a, ). If x € [a, &], we have

- T 10 - o) —da) e
00 ~ o) < 710 - Sl daty < D= 2D £ £

This proves that g, — g uniformly on [q, ¥].

Theorem 9.9. Let o be of bounded variation on [o, b and assume that ¥ f(x) = f{x)
(uniformly on [a, b]), where each f, is a real-valued function such that f, € R(x) on
[a, &). Then we have:

a) fe R(x) on [a, 5).
b) 2 ToLs fike) da(e) = T2 fif40) du(s) (uniformly on [a, b]).
Proof. Apply Theorem 9.8 to the sequence of partial sums,

NOTE. This theorem is described by saying that a uniformly convergent series
can be integrated term by term.

2.9 NONUNIFORMLY CONVERGENT SEQUENCES THAT CAN BE
INTEGRATED TERM BY TERM

Uniform convergence is a sufficient but not a necessary condition for term-by-
term integration, as is seen by the following example.
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L1

Figwre 9.6

Mo B s s e i i s s e e

Example. Letf(x) = «*if0 = x < 1. {See Fig. 9.6.) The limit function fhas the value
0in [0, 1) and /(1}y = 1. Since this is a sequence of continpous functions with discon-
tinuous limit, the convergence is not uniform on [0, 1]. Nevertheless, term-by-term
integration on [0, 1] leads to a correct result in this case. In fact, we have

1
n+1

~+ (s g~ o0,

jlf,(x)dx=flx“dx=
o (1]

50 lim, .o §5 /u(x) dx = 3 f(x) dx = ©.

The sequence in the foregoing example, although not uniformly convergent
on [0, 1], is unifermly convergent on every closed subinterval of [0, 1] not con-
taining 1. The next theorem is a general resilt which permits term-by-term inte-
gration in examples of this type. The added ingredient is that we assume that {f,}
is uniformly bounded on [a, &1 and that the limit function f is integrable.

Definition 9.10, 4 sequence of functions {f,} is said to be boundedly convergent on
T if {1} is pointwise convergent and uniformiy bounded on T.

Theorem 9.11. Let {f.} be a boundedly convergent sequence on [a, b). Assume that
each f, & R on [a, b, and that the limit function f R on [a, ). Assume also that
there is a partition P of [a, ), say

P = {x,, xl?"'!x.n}:

such that, on every subinterval [, d] not containing any of the peints %y, the sequence
{£.} converges uniformiy to - Then we have

lim rf,,(u dt = r lim £(t) dr = be(r} dt. (6)

Prosf. Since f is bounded and {f,} is uniformly bounded, there is a positive
number M such that jf(x} < M and {f{x)} = M for all x in [5, 5] and all
n = |, Given g > 0 such that 2e < [P, let & = &{(2m), where a1 is the number
of subintervals of P, and consider a new partition P’ of [a, b] given by

Po= {xmxo +h9xl - h9x! + hg-'-pxm—l - kvxm—] + h!xm: - h: xm}‘

Since |f ~ f] Is integrable on [, #] and bounded by 2M, the sum of the integrals
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of | f — f.} taken over the intervals
[xo,xg + h], [xl —'h, Xy + k], Pee g [I -y h, Xm~§ +h], [x_,,, - .t‘l, xm],

is at most 2M(2mh) = 2Me. The remaining portion of [a, 5] (call it §) is the
union of a finite number of closed intervals, in each of which {f,} is uniformiy
convergent to f. Therefore, there is an integer & {depending only on ¢) such that
for all x in 5 we have

FFA(xY — fx) < ¢ whenever 71 = N,

Hence the sum of the integrals of |/ — f,| over the intervals of ' is at most e(b — a),
S0

J.b () — ffxl dx < M 4+ b — a)e whenever n > N.

This proves that {2 f(x} dx — P fix) dxasn - .

There js a stronger theorem due to Arzeld which makes no reference whatever
to uniform convergence.

Theorem 9.12 (Arzels). Assume that {1} is boundedly convergent on [a,b) and sup-
pose each f, is Riemann-integrable on [a, b]. Assume also that the limit function
fis Riemann-integrable on [a, . Then

b & b
lim | fix)dx = J‘ fim f(x)dx = J‘ S(x) dx. (N
ey " " "X a
The proof of Arzely’s theorem is considerably more difficult than that of
Theorem 9.11 and will not be given here. In the next chapter we shall prove a
theorem on Lebesgue integrals which includes Arzeld’s theorem as a special case.
{See Theorem 10.29).

NOTE. It is easy to give an example of a boundedly convergent sequence {f.}
of Riemann-integrable functions whose limit # is not Riemann-integrable. I
{ry, r2, ...} denotes the set of rational numbers in [, 13, define £(x) to have the
value | if x = v forallk = 1,2,..., n, and put f,{x) = O otherwise. Then the
integral 3 fi(x) dx = O for each a, but the pointwise limit function f is not
Riemann-integrable on [, 1].

9.10 UNIFORM CONVERGENCE AND DIFFERENTIATION

By analogy with Theorems 9.2 and 9.8, one might expect the following result to
hold: If f, = funiformly on [a, &) and if f] exists for each n, then f* exists and
Jo — F uniformly on [a, b]. However, Example 3 of Section 9.2 shows that this
cannot be true. Although the sequence {/,} of Example 3 converges uniformly on
R, the sequence {/,} does not even converge pointwise on R. For example,
{40)} diverges since £(0).= v/n. Therefore the analog of Theorems 9.2 and
9.8 for differentiation must take a different form,
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Theorem 9.13. Assume that each term of {[.} is a real-valued funetion having a
finite derivative at each point of an open interval (a, b). Assume that for af least one
point xy in (o, B} the sequence { f{xo)} converges. Assume further that there exists
a function g such that £ — g uniformly on {(a, b). Flen:

ay There exists a function | such that f, — [ uniformly on (a, b).

b) For each x in (a, b) the derivative ['{x) exists and equals g(x}.

Proof. Assume that ¢ € (a, &) and define a new sequence {g,} as follows:
FAC A BT
gdx} =4 x—¢ &
e ifx = e

The sequence {g,} so formed depends on the choice of c. Convergence of {g,(c)}

follows from the hypothesis, since g,(c) = fi(c). We will prove next that {g,}

converges uniformly on {g, ). If x # ¢, we have

h(x) — Mo
x—¢

gdx) — gulx) = {9
where A(x) = fAx} — ££x). Now #{x) exists for each x in (¢, 5} and has the value
Fixy — fux). Applying the Mean-Value Theorem in (9), we get

8X) — gulx} = Si{x1} — Sulx1), (10}

where x, lies between x and o, Since {f} converges vniformly on {a, b) (by hy-
pothesis), we can use (10), together with the Cauchy condition (Theorem 9.3),
to deduce that {g,} converges uniformly on (g, b).

Now we can show that {£,} converges uniformly ow (g, b). Let us form the
particular sequence {g,} corresponding to the special point ¢ = x, for which
{filxg)} 15 assumed to converge. From (8) we can write

vf;!{x) ZL(’YO) + {X - ‘x(}.}gn{,x)v

an equation which holds for every x in {a, b). Hence we have

X)) = fuk XY = filxo) = Fulxg) + {x = XM @} — g.(xp)].

This equation, with the help of the Cauchy condition, establishes the uniform
convergence of {£,} on (a, ). This proves (a).

To prove (b), return to the sequence {g,} defined by (8) for an arbitrary point
¢ in (o, b} and let G(x) = lim,.., g,x). The hypothesis that f; exists means that
fim,__g,x) = gc). In other words, cach g, is continuous at ¢. Since g, —» G
uniformly on (g, &), the limit funttion & is also continuous at ¢. This means that

Ge) = lim G(x), (i)

E i g
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the existence of the limit being part of the conclusion. But, for x # ¢, we have

G{x) = Hm g‘,.(x) = lim .f;{x) _.;f;(c) =f(x} - f(“:) .

n=w xX— X -

Hence, (11} states that the derivative f7(¢} exists and equals G(¢). But
Gle) = lim gfe) = him f{e) = g(c);

hence £'(¢) = glc). Since ¢ is an arbitrary point of (a, 4}, this proves (b).

When we reformulate Theorem 9.13 in terms of series, we ohtain

Theorem 9,14, Assume that each f, is a real-valued function defined on (a, by such
that the derfvative f(x) exists for each x in {a, b). Assume that, for at least one
point x4 in (a, b), the series 3 f{x,) converges. Assume further that there exists a
Junction g such that 3.1 (x) = g(x) (uniformiy on (a, b)). Then:

a) There exists a function f suck that T (x) = f{(x) (uniformly on (a, by).
b} ¥f x € (0, b), the derivative F'(x) exists and equals ¥ f2{x).

9.11 SUFFICIENT CONDITIONS FOR UNIFORM CONVERGENCE OF
A SFRIES

The importance of uniformly convergent series has been amply illustrated in some
of the preceding theorems, Therefore it seems natural to seek some simple ways of
testing a series for uniform convergence without resorting to the definition in each
case. One such test, the Weierstrass M-test, was described in Theorem 9.6. There
are other tests that may be wseful when the M-test is not applicable. One of these
is the analog of Theorem B8.28.

Theorem 9,15 ( Dirichlet’s test for uniform convergence). Let F(x) denote the mh
partial sum of the series 2 f{x), where each [, is a complex-valued function defined
onaset S, Assume that {F.} is uniformly bounded on 8. Let {g.} be a sequence of
real-valued functions such thar g,, (x) < gJx) for each x in § and for every
n=12,...,and assume thet g, — O uniformly on S. Then the series T £,(x)g.4x)
converges uniformly on 8.

Proof, Let 5(x} = 2 x=; filx)g(x). By partial summation we have
) = 2 FiHa0) = 8i(3) + GuesCIFL),

and hence if 7 > m, we can write

$5) = 3a) = D3 FNOUE) ~ 02010)) + GuerCIFAX) = Gy (KIFnx).

L U 7

sl
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Therefore, if M is a uniform bound for {F,}, we have

() = a0 = M2 (00 = Gui@) + MPes s + Mgus 1)

= M(gm-bi(x) - 9»+1(x)) 4 Mgy (%) + Mgy (x)
= ZMQ.+ ;(I:l.
Since g, — G uniformly on S, this inequality (together with the Cauchy condition)
implies that 3" £,(x)g,(x) converges uniformly on S.
The reader should have no difficulty in exiending Theorem 8.29 (Abel’s test)
in a similar way so that it yields a test for uniform convergence. (Exercise 9.13.)

Example. Let Fy(x} = 3TT_, e, In the last chapter (see Theorem 8.30), we derived the
inequality F ()] = 1f]sin (x/2)|, valid for every real x # 2mr (v is an integer). There-
fore, if 0 < & < x, we have the estimate

IFx)] < Vfsin (3/2)

Hence, {F,} is uniformly bounded on the interval [, 2x — 4] If {g,} satisfies the condi-
tions of Theorem 9.15, we tan conclude that the series 3 g (x)e™* converges uniformly
on [8, 2z — 8], In particular, if we take g,(x) = 1/n, this establishes the uniform con-
vergence of the series

iféd<x=<2x—4

melax
=7

on [§, 2n — 4]if 0 < & <« x Note thai the Weierstrass M-test cannot be used to estab-
lish uniform convergence in this case, sinoe [¢™] = 1.

9.12 UNIFORM CONVERGENCE AND DOUBLE SEQUENCES

As a different type of application of uniform convergence, we deduce the following
theorem on donble sequences which can be viewed as a converse to Theorem 8.39.

Theorem 9.16. Let { be a double sequence and let Z* denote the sel of positive
integers. For eachn = 1,2, ..., define a function g, on Z" as follows:

gu(m] = ﬂms n, ffm eZ”.

Assume that g, ~ g uniformly on ZY, where glm) = lim_, ,, f(m, n). If the iterated
limit Yim, ,, (lim, . ., fim, n)) exists, then the double limit i, ..., f(m, n) also
exists and has the same value.

Proof. Given g > 0, choose N, so that n > N, implies

, [lorevery min Z*,

1f(m, n) — g(m)i < ;
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Let g = lim,,, , (lim,..., fim, n)) = lim,, .. g{#). For the same g choose Ny so
that m > N, implies |g(m) — a] < ¢f2. Then, if N is the larger of N and N,, we
have {f{m, 1) — a] < & whenever both m > N and # > N In other words,
iMoo S, 1) = a

9.13 MEAN CONVERGENCE
The functions in this section may be real- or complex-valued.

Definivion 9.17 Let {f.} be a sequence of Riemann-integrable functions defined on
{a, b]. Asswme that f& R on [a, b]. The sequence {f,} is said to converge in the
mean fo f on [a, b], and we write

Lim j,=f on[ab],

if
lim * ) — 3P dx = 0.

L b 1] a

If the inequality |f{x} — f{x}| < £ holds for every x in [g, &], then we have
1A — £3)N* dx < &b — a). Therefore, uniform convergence of {£,} to f
on [a, b} implies mean convergence, provided that each 7, is Riemann-integrable
on [a, #. A rather surprising fact is that convergence in the mean need not imply
pointwise convergence at any point of the interval. This can be seen as follows:
For each integer # > 0, subdivide the interval [0, 1] into 2* equal subintervals
and let 7,,.,, denote that subinterval whose right endpoint is (& + 1)/2%, where
k=10,1,2,...,2 —~ 1. This yiclds a collection {f,, I,, ... } of subintervals of
[0, 1], of which the first few are:

L = [01 l]9 I = {0, %]’ L = [%a l],
I = [0, k]& I5 = l}b 3] 1o = [§ il
and so forth. Define £, on [0, 1] as follows:
i fxel,
Jix) = {0 ifxe[0,1] - 1.

Then {f,} converges in the mean to 0, since {§ [£,(x}|* dx is the length of Z,, and
this approaches § as 5 —~ co. On the other hand, for each x in [0, 1] we have

lim sup fi{x) = 1 and lim inf f{x) = 0.

[Why?] Hence, {f,(x)} does not converge for any x in [0, 1].

The next theorem illustrates the importance of mean convergence.

R W R

i o
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Theorem 9.18. Assume that lim.,.,, f, = fon{a, b]. Ifge Ron[a k), deﬁwg
hx) = j fOe@) i, hx) = I  fOatn) dr,

ifx€[a, b). Then h, — h uniformly on [a, b).
Proof. The proof is based on the inequality

X 2
0x< U (@) — £L(01 o)l dr)

< ([ vor - seor ar) " 1o @), 1)

which is a direct application of the Cauchy-Schwarz inequality for integrals, (See
Exercise 7.16 for the statement of the Cauchy-Schwarz mequality and & sketch of
its proof} Given & > 0, we can choose N so that n > N implies

v 2
J‘ LAY — SN dt < 'i—q, a3
where A = 1 + {# |g(/)1* dr. Substituting (13) in (12), we find that » > N implies

0 < Jx) — hfx)| < & for every x in [a, b].

This theorem is particularly useful in the theory of Fourier series. (See Theorem
11.16.) The following generalization is alsc of interest.

Theorenr 9.19. Assume that lim.,. f.=f and lim, ., g, =g on [0, b
Define '

Hx) = j’f(r)g(r) di, b = rmmr) d,

if x € [a, ). Then b, - h uniformly on [a, B].
Progf. We have
W) = 9 = |0~ ske ~ e a

¥ (r;;g dt — j’fg dt) + (‘[x_fg., dt - rfgdr).

Applying the Cauchy-Schwarz inequality, we can write

0 < (j 7 —7il1g - o dr)z < (j Ty (VY. dx).

The proof is now an easy consequence of Theorem 9.18.
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914 POWER SERIES
An infinite series of the form

-3
dy + Z; “n(z - 30).,
=
written more briefly as

fed

2. afz ~ ), a4

ww )
is called a power seriesinz — z,. Herez, z, and @, (5 = 0, 1, 2, ... } are complex
numbers. With every power scries (14) there is associated a disk, called the disk
aof convergence, such that the series converges absolutely for every z interior to
this disk and diverges for every z outside this disk. The center of the disk is at z,
amd its radius is called the radius of convergence of the power serics. (The radius
may be 0 or + oo in extreme cases.) The next theorem establishes the existence of
the disk of convergence and provides us with a way of calculating its radins.

Theorem 9.20. Given a power series T2 o afz — z,), let

i=limsupvial,

Ll )

or | bt

(where r =0 if A= + and r = +o0 if A = 0), Then the series comverges
absolutely if 1z — 24| < r and diverges if |z — zy] > r. Furthermore, the series
converges uniformly on every compact subset interior io the disk of convergence.

Proof. Applying the root test (Theorem 8.26), we have

lim sup v ja{z — zglt =

Lt

and hence Ta(z — zp)" converges absolutely if [z — zyl < r and diverges if
lz — zg] > r.

To prove the second assertion, we simply observe that if T is a compact subset
of the disk of convergence, there is a point p in T such that z € T implies

2~ zl < |p — 2] < r.

Hence, |a(z — zo)*| < la{p — z,)] for each z in T, and the Weierstrass M-test
is applicable.

NOTE. If the limit lim,.., |4,/a,, | exists (or if this limit is + co), its value is also
equal to the radius of convergence of (14). (See Exercise 9.30)

Example 1. The two series 352, z" and a2 4 z%/n* have the same radius of convergence,
namely, r = 1. On the boundary of the disk of convergence, the first converges nowhere,
the second converges everywhere,

B i P B R NELIC R B

MR

™ 9.22 Power Series 235

Example 2. The series 3.7, z"/n has radius of convergence r = 1, but it does not con-
verge at z = 1. However, it does converge everywhere else on the bouadary because of
IDrrichlet’s test (Theorem §.28).

These examples illustrate why Theorem 9.20 makes no assertion about the be-
havior of a power series on the boundary of the disk of convergence.

Theorem 9.21. Assume that the power series 30y afz — 2o converges for each
z in Blzy, r). Then the function § defined by the eguation

1) = 2 afz — 5V,

=)
is continuous on B(zy; r).

Proof. Since each point in B(z,; ) belongs to some compact subset of B(zy; r),
the conclusion follows at once from Theorem 9.7,

NOTE. The series in (15} is said to represent fin B{z,; r). 1t is also called a power
series expansion of f about z,. Functions having power series expansions are
continunous inside the disk of convergence. Much more than this is true, however.
We will later prove that such functions have derivatives of every order inside the
disk of convergence. The proof will make use of the following thecrem:

Theorem 9.22. Assume that Yalz — z,) converges if z € Blzy; r). Suppose that
the equation

m

1) = ZD 8z — zo).

is known to be valid for each z in some open subsel 8 of B{z,; r). Then, for each
point z, in S, there exists a neighborhood B{z,; R} © 5 in which f has a power
series expansion of the form

fizy = 2o bz - 2 (16)
where
b= 2, (:) afzy — 2ol (k=0,1,2,...) an

Proof. If z € §, we have

flz) = Z afz — zof = Za,(z — 2z + 2~z
=2 a E( ) 2 = 2 — =l

PIPILION

uMa I

if z € B(zo; ), (15)
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where

Cn(k) - (:) a,,(z - zl)‘(zl - zu)u—.l! if k <n,
a, ‘ ifk > n

Now choose R so that B(z,; R) — § and assume that z € B{z,; R). Then the
iterated series 320, T, (k) converges absolutely, since

> 3 ekl =

w=0 k=i

Ela iz — z,] + iz, — zol) = El al(z; — zo)", (18)

where

Zy = zp + lz — | + Jzy — 2l
But

|z — z¢] « R+ |z, — Zo] < 7,

and hence the series in {18) converges. Therefore, by Theorem $.43, we can inter-
change the order of summation to obtain

foy =3 Sawr=3 3 (;) az — 20z, — 2

k=0 mek

= Z bz — z:)k,
i-o

where b, is given by (17). This completes the proof.

NOTE, In the course of the proof we have shown that we may use any R > 0 that
satisfies the condition
Bz By < 8. (19)

Theorem 9.23. Assume that Yoz — zo) converges for each 7 in B(zy; r). Then
the function f defined By the equation

fz) = Z az ~ zo¥,

if z € Bzp; 7}, (20)

hay a derivative f'(2) for each z in B(zy: r), given by

fz) = Z; na,fz — 20", (21)

NOTE. The series in {20} and (21} have the same radius of convergence.

Proof. Assume that z, € B(zy; r) and expand f in a power series about z,, as
indicated in (16). Then, if z € B(z,; R), z # z,, we have

£z} — f(z))

Z - Zy

= b, + ; booslz — z 8 (22)
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By continuity, the right member of (22) tends to b, as z — z,. Hence, f'(z,) exists
and equals b,. Using (17) to compute b,, we find

o

by = 2 nafz, — zpl L

=1
Since z, is an arbitrary point of B(z,; r), this proves {21}. The two series have the
same radins of convergence because :@ - lasn— oo

NOTE. By repeated application of (21), we find that for cach k£ = 1, 2 , the
derivative f*(z) exists in B{(zy; r) and is given by the seties

fsd

) = X e } afz — zof ™" @3
If we put z = z, in (23}, we obtain the important formula
S®zg) = kla, (k=12...) (24)

This equation tells us that if two power series Ta,(z — 20)" and Th(z — z,)" both
represent the same function in a neighborhood B(z,; r), then 4, = &, for every a.
That is, the power series expansion of a function f'about 4 given point z, is uniquely
determined (if it exists at all), and it is given by the formula

o = 300

valid for each z in the disk of convergence.

9.15 MULTIPLICATION OF POWER SERIES
Theorem 9.24. Given two power series expansions about the origin, say

L

f@) = Lo, fzeBOn,
and
g(z) = ) b2, ifze B{O; R).
a=p

Then the product f(2)g(z) is given by the power series

f(2)g(z} = Z 4 if z e BO; r) n B(0O; R),

L g by

where
n=0,12...)
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Proof. The Cauchy product of the two given series is
b » 3
i n—k§ __ L3
..Z(:) (“Z‘; Gz by 42 ) = RZO Cul's
and the conclusion follows from Theorem 8.46 (Mertens’ Theorem).

NOTE. If the two series are identical, we get

Nz = ; 2",

where G = ﬁ:o Olly—x = anl+uu=n e e+ The SYmbOI zm1+nu=n indicates
that the summation is to be extended over all nonnegative integers »z, and m,
whose sum is n. Similarly, for any integer p > 0, we have

<0

£z = 2 ed 0,

r={)
where

efp) = E Oy """ O

Myt e =

%16 THE SUBSTITUTION THEOREM
Theorem 9.25. Given two power series expansions about the origin, say

fzy = Zoa.z', if z& BO; 1),

g(z) = io ba2",  ifze B(O; R).

If, for a fixed z in B(O; R), we have T2 |b2"l < r, then for this z we can write

flez)] = gﬂ o,

where the coefficients ¢, are obtained as follows: Define the numbers By by the
equation

oo = (E bgz") =3 bme
k=0 =0
Theney =Y abmfork =0,1,2,...
NOTE. The series T2, ;2" is the power series which arises formally by substituting

the series for ¢(z) in place of z in the expansion of fand then rearranging terms in
increasing powers of z,

Th 926 Reciproonl of 8 Power Series F<

Proef. By hypothesis, we can choose z 50 that 5%, |8,2%| < r. For this z we have
lg(z)| < r and hence we can write

ez = Z; ag(z) = Zu ;; abmz~.

If we are allowed to interchange the order of summation, we obtain
@ a o
fToa)] = 3 (g a..tn(n)) 4= Yo,

which is the statement we set ont to prove. To justify the interchange, we will
establish the convergence of the series

2o 2 labum| = 2 lad D ib(mzh. (25)
nup kw0 #=0 =0

Now each number b,.(n) is a finite sum of the form

by = 2 b b

oy

and hence [ )| < T4 - ru,=2 [Puyl “ =~ 184, On the other hand, we have
(E !b.lz*) = 2 Bin),
k=0 E=0Q
where Byn) = T 4 . pmomt [0 2 1By |- Returning to (25), we have

> lal ; th(m2 < 3 la,l E;B..(u)lfl =2 lal (Z |b.z*1)',
=90 =0 n=g k= amQ F g

and this establishes the convergence of (25).

917 BRECIPROCAL OF A POWER SERIES

Ag an application of the substitution theorem, we will show that the reciprocal of
a power series in z is again a power series in z, provided that the constant term is
not 0.

Theorem 9.26. Assume that we have

P2) = 2 p, i zeBO:H),

where p(0) # 0. Then there exisis a neighborhood B(O; 8) in which the reciprocal of
P has a power series expansion of the form

1
@—J;q,,z".

Furthermore, go = 1/p,.
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FProof. Without loss in generality we can assume that p, = 1. [Why?] Then
PO) = L. Let P(z) = 1 + T3, |p2" if z € B(O; k). By continuity, there exists
a neighborhood B(0; ) such that [P(z) — 1} < 1 if z e BQ; ). The conclusion
follows by applying Theorem 9.25 with :

1
I-z

fin) = = sEo ™ and gz} =1~ pz) = Z; Bz

8218 REAL POWER SERIES

If x, xo, and a4, are real numbers, the series Ya,(x — xo)" is called a rea! power
series. Its disk of convergence intersects the real axis in an interval (x, — r, Xy + 1)
. called the interval of convergence.

Each real power series defines a real-valued sum function whose value af each
x in the interval of convergence is given by

) = X alx = xof.
The series is said to represent f in the interval of convergence, and it is called a
power-series expansion of f about x,,.
Two problems concern us here:

1} Given the series, to find properties of the sum function J.

2) Given a function f, to find whether or not it can be represented by a power
series.

It turns out that only rather special functions possess power-series expansions.
Nevertheless, the class of such functions includes a large number of examples that
arise in practice, so their study is of great importance.

Question (1) is answered by the theorems we have already proved for complex
power series. A power series converges absolutely for each x in the open subinterval
{xo ~ r, xo + r) of convergence, and it converges uniformly on every compact
subset of this interval, Since each term of the power series is continuous on R, the
sum function £is continuous on every compact subset of the interval of convergence
and hence £ is continuous on (xg — r, X, + ).

Because of uniform convergence, Theorem 9.9 tells us that we can integrate a
power series term by term on every compact subinterval inside the interval of con-
vergence. Thus, for every x in (xo — r, x, + r) we have

o

J.xf(‘) dt = 2 a, ‘r (t — x ) dt = z: 4 (x — x)"*t.

a=an+ 1

The integrated series has the same radius of convergence.
The sum function has derivatives of every order in the interval of convergence
and they can be obtained by differentiating the series term by term. Moreover,

g
;
q
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S®(xo) = nla, so the sum function is represented by the power scries

X i)

Fooy = S e 26)
We turn now to question (2). Suppose we are given a real-valved function f
defined on some open interval (x4 — r, x, + r), and suppose j has derivatives of
every order in this interval, Then we can certainly form the power series on the
right of (26). Duoes this series converge for any x besides x = x,? If 50, is its sum
equal to f(x)? In general, the answer to both questions is “No.” (See Exercise
9.33 for a counter example.) A necessary and sufficient condition for answering
both questions in the affirmative is given in the next section with the help of

Taylor’s formula (Theorem 5.19.)

512 THE TAYLOR’S SERIES GENERATED RY A FUNCTION

Definition 9.27. Let f be a real-valued function defined on an interval Iin R. If f has
derivatives of every arder at each point of I, we write fe C” on I.

If fe C” on some neighborhood of a point ¢, the power series

x

),
Z‘f -(_C) (x — c}“,
=0 n!
is called the Taylor’s series about ¢ generated by f. To indicate that f generates
this series, we write

iRy
(x) ~ an—(f} (x — o

The question we are interested in is this: When can we replace the symbol ~ by
the symbol = ? Taylor's formula states that if f € C* on the closed interval {a, b]
and if ¢ € [, b), then, for every x in [, 5] and for every n, we have

= L poy
Jix) = ,‘Z;i:f‘f) x—ot+ jln(-?‘) (x —er, Q7

where x, is some point between x and ¢. The point x, depends on x, ¢, and on .
Hence a necessary and sufficient condition for the Taylor's series to converge to
Fix) is that

lim ”L(f'} (x —er =0. (28)

Ao #

In practice it may be quite difficult to deal with this femit because of the unknown
position of x,. In some cascs, however, a suitable upper bound can be obtained
for £%x,} and the limit can be shown to be zero. Since A*a! — Gasn — w for
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all A, equation (28) will certainly hold if there is a positive constant M such that
/@) < M7,

for all x in [4, ]. In other words, the Taylor’s series of a function f converges if
the ath derivative / grows no faster than the nth power of some positive number.
This is stated more formally in the next theorem.

Theorem 9.28. Assume that f & C* on [a, b] and let ¢ € [a, b]. Assume that there
is a nmeighborhood B(c) and a constant M (which might depend on ¢ such rthat
[FMG)N < M* for every x in B(c) N [a, b] and every n = |, 2,... Then, for
each x in B{c) r [a, b}, we have

ft) = ;iof(—-——:f”) (x = o,

920 BERNSTEIN'S THEOREM

Another sufficient condition for convergence of the Taylor's series of £, formulated
by S. Bernstein, will be proved in this section. To simplify the proof we first obtain
another form of Taylor’s formula in which the error term is expressed as an
integral.

Theorem 9.29. Assume f has a continuous derivative of order n -+ | in some open
fnterval I containing ¢, and define E(x) for x in I by the equation

fix) = ;f{:@ (x — o + Efx). (29)
Then E(x) is also given by the integral

E) = ’%J‘ (6 = 07 £ 00) d. 30
Progf. The proof is by induction on #. Forn = | we have

£

By = f(x) — f(0) — F(e)x — ) = J [/(0) = F(&)] dr = I () doge),
where u(f) = f'(t) — f(c) and o(f) = 1 — x. Integration by parts gives

I " 6) dolt) = u(nx) — a(eolec) — j " ut) du(r) = _[ " - 0f) d.

[
This proves (30) for # = |. Now we assume (30) is true for n and prove it for
n + 1. From (29) we have

)= Ex) - 17O (e
Eunil) = Bfx) = S8 - o,

Th. .39 Berwitein’s Theores 0

We write E(x) as an integral and note that (x — cf'*! = (n + 1) X (x — )" dt
to obtain

x A1}, %
Evi) = 2 I (x — £ 00) di —f‘-;,—@f (x = O dt

i

L[ e-oueno - revaran= L[ o a,
n! . n! |,

where w(1) = fO*UG) — (D and oft) = ~(x — " n + 1). Integration
by parts gives us

x 1 X .t
B9 = - L _f o) du) = _[ (x — Y+ 7o D) gy,

This proves (30).

NOTE. The chaﬁge of variable t = x + (¢ — x)u transforms the integrai in (30)
to the form

Efx) = w "" Wf Y x + (¢~ xhu] du. (31)
n: o

Theorem 9.30 ( Bernstein}. Assume f and all its derivatives are nonnegative on a
compact interval (b, b + r]. Then, if b £ x < b + r, the Taylor’s series

w

Zif;_:.?.).(x—b)k,

k=0
converges to f(x).

FProof. By 2 translation we can assume b = 0. The result is trivial if x = 0 s0
we assume O < x < r. We use Taylor’s formula with remainder and write

L)
fx) = Zf @ 4y £, G2
=0 k!
We will prove thai the error term satisfies the inequalities
a+1
0 < Efx) < (fr) 1. (33)

This implies that E,(x) — O as n — oo since (x/r}** - 0if 0 < x < r.
To prove (33) we use (31) with ¢ = 0 and find

xn+l 1
Efx) = —J' @ N — xu) du,
n! g '

for each x in [0, r]. Ifx 5 6, et

Fx} = E,'f:) = i,fl u" [ x — xu) du.
X n g
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The function f**? is monotonic increasing on [0, r] since its derivative is non-
negative. Therefore we have '

SOx = )y = ST~ w)] < SO[F - )],

if 0 <ux< 1, and this implies Fx) < F(r) if 0 < x < r. In other words,
Ex)[x"*! < Efr)fr**?, or

Efx) = (i‘) E(r). @)

Putting x = r in (32), we see that Efr) < f(r) since each term in the sum is
nonnegative. Using this in (34), we obtain (33) which, in turn, completes the proof.

9.21 THE BINOMIAL SERIES

As an example illustrating the use of Bernstein’s theorem, we will obtain the fol-
lowing expansion, known as the binomial series:

(1+x)'=i;(§)x', if—1<x<1, (35)

where a is an arbitrary real number and () = a(@a — 1)<+ (g — n + 1)/nl.
Bernsteia’s theorem is not directly applicable in this case. However we can argue
as follows: Let f{x) = (1 — x)™*, where ¢ > Oand x < 1. Then

O =cle + D)l +n~ 1)1 - x)7=",

and hence f™{x} = O for each , provided that x < 1. Applying Bernstein’s
theorem with & = —1 and r = 2 we find that f(x) has a power series expansion
about the point b = -1, convergent for ~1 < x < 1. Therefore, by Theorem
9.22, f(x) also has a power series expansion about 0, f(x) = ¥, FPO*kY,
convergent for —~1 < x < 1. But f®0) = )N—1)}* k!, 5o

1 =i(“ )(-1)*;;*, if—1<x<l (36)

(1 —x ji=ei\k

Replacing ¢ by —a and x by —x in (36) we find that (35) is valid for each a < 0.
But now (35) can be extended to all real a by successive integration.

Of course, if a is a positive integer, say a = m, then (7) = 0 for n > m, and
(35) reduces to a finite sum (the Binomial Theorem).

9.22 ABEL’S LIMIiT THEOREM
If -1 <« x « 1, integration of the peometric series
1 k2l

1_x=§x‘
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gives us the series expansion

hid -
log (1 — x) = — 3. =, 37
a1 M
also valid for —1 < x < 1, If we put x = —1 in the righthand side of (37), we
obtain a convergent alternating series, namely, 3(— 1" /n. Can‘ we a.ls'o put
x = -1 in the lefthand side of (37)? The next theorern answers this question in
the affirmative.

Theoren 9.31 { Abel's fimit theorem). Assume that we have

L]

=Y ax, if-r<x<r (38)

n=0
If the series also converges at x = r, then the limit lim, . f(x) exists ond we have
o
lim f(x) = ¥ a,"
Xy n=Q

Proof. For simplicity, assume that » = 1 (this amounts to a change in scale).
Then we are given that f(x) = Xax" for —1 < x < I and that Za, converges.
Let us write f{1) = Y2, 4,. We are to prove that lim_,,_ fix} = f(1}, or, in
other words, that f is continuous from the left at x = 1.

If we multiply the series for f{x) by the geometric series and use Theorem
9.24, we find

E-r] ) N
1l fy =T e, wheree, = 3 4.
1 —-x A=l k=Q

Hence we have
S -/ =0-% i}) [e — fO]x",  if —1 < x < 1. 39

By hypothesis, lim,_. . ¢, = f(1). Therefore, given ¢ > 0, we can find & such that

n > N implies |¢, — ST} < g2, If we split the sum {39} into two parts, we get

N-1 o
J&) —f) = (1 = 0 X [e = SOOI + (1 = 0 2 [0 — FD (40)

Let M denote the largest of the ¥ sumbers |c, — f{l}.n =0, 1L, 2,... N — L.
If0 < x < 1, (40) gives us

G — f()] < (1 ~ ONM + (1 — x)gn};;x“

xN

=(l-—x)NM+{l——x)§ <(1-x)N.»;+§.

1 —-x
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Now let § = f2NM. Then 0 < | — x < & implies | f(x) — f(1})| < &, which
means lim,_;_ f{x) = f{1). This completes the proof.

Example. We may put x = -1 in {37) to obtain

log 2 = i g:_l,)’_“ )

x=1
{Sce Exercise 8.18 for another derivation of this formula.)

As an application of Abel's theorem we can derive the following result on
multiplication of series:

Theorem 9.32. Let 3.7 o a, and Y5, by, be two convergent series ond let 37, ¢,
denote their Cauchy product. If 3% o €, converges, we have

Kt X3 L
Zc,-—-(Za, Eb,).
a= »= L
NOTE. This result is similar to Theotem 8.46 except that we do not assume absolute

convergence of either of the two given series. However, we do assume convergence
of their Canchy product.

Froof. The two power seties Y g x" and ¥b_x" both converge for x = |, and hence
they converge in the neighborhood B(0; 1). Keep |x] < I and write

5 - (S )5 00).

using Theorem 9.24. Now let x — 1— and apply Abel's theorem.

9.23 TAUBER'S THEOREM

The converse of Abel’s limit theorem is false in general. That is, if fis given by
(38}, ihe limit f{(r—) may exist but yet the series ¥o,7" may fail to converge. For
example, take @, = (—1}". Then f{x} = 1! + x)if —1 < x < 1 and f(x) — 1
as x — 1—. However, 2{—1)* diverges. A. Tauber (1897} discovered that by
placing further restrictions on the coefficients a,, one can obtain a converse to
Abel's theorem. A large number of such results are now known and they are

referred to as Tauberian theorems. The simplest of these, sometimes called Fouber’s _

Jirst theorem, is the following:

Theorem 9.33 (Tauber). Let f(x) = 5, ax" for —1 < x < 1, and assume that
lim, . na, = 0. Iffix) > Sasx = 1—, then ¥ 4, converges and has sum S.

Proof. Let no, = 37 4 klay|. Then o, = 0 as n — 0. {(Sec Note folowing
Theorem 8.48.) Also, lim, . f(x,)) = Sif x, = | — ljn. Hence, given & > 0,

=
3
T
k4
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we can choose N so that # > N implies

f(x) — S| 4‘-;, a,,::g

Now let 5, = 334 & Then, for —1 < x < 1, we can write

&
. o .
njm, 3

L

s,,rS=f(x)-S+gak(1—f}-—kzﬂa,‘x".

Now keep x in (0, 13. Then
(e o= (1= X+ x4+ 7Y <R — x),
for each k. Therefore, if » > N and 0 < x < 1, we have

&

3n(l1 — x)°

Taking x = x, = 1 — 1fn, we find |s, — S| < &f3 + /3 + ¢/3 = ¢. This com-
pletes the proof.

Iy — S| < [f(x) — S| + (1 — x}g kla,| +

NoTE. See Exercise 9.37 for another Tauberian theorem.

EXERCISES

Uniform convergence

9.1 Assume that £, — f uniformly on 5 and that each f, is bounded on §. Prove that
{4} is uniformly bounded on 5.

9.2 Define two sequences {f,) and {g,} as follows:

j;(x]=x(l+1) ifxeR, = 1,2,...,
/]

1 it x = O or if x is irrational,
alxr = {" .
b+ if x is ralional, say x = 7’ b > Q.

a -

Let b,{x) = flx)g,(x).
a) Prove that both {£,] and {g,} converge uaiformly on every bounded interval.
b) Prove that {h,} does not converge uniformly on any beunded interval.
9.3 Assume that f, ~ f uniformly on 8, gu — ¢ uniformly on S.
a) Prove that £, + g, — f + g uniformly on §.

bY Let A (x) = fixygdx), A(x} = f(x)g(x), if x € §. Exercise 9.2 shows that the
assertion A, — h uniformly on 5 is, in general, incorrect. Prove that it ir correct

if each f, and each g, is bounded on &.
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9.4 Assume that f, — f uniformly on § and suppose there is a constant M > QO such
that {7,(x)] < M for all xin Sand all ». Let g be continuous on the closure of the disk
B(0; M) and define A () = g{fx)], Mx) = glfx)), if xe S. Prove that k, — &
uniformily on .

85 a) Let () = Hmx + DifO0<x< L, g = 1,2,... Prove that {£,} converges

pointwise but not uniformly on (0, 1).
bB) Let g () = xf{nx + DifO<x <1, m=12_.. Prove that @x — O uni-
formly on {0, 1).

9.6 Let f(x) = x*. The sequence {,} converges pointwise but not unifornly on [0, 1],
Let g be continuous on [0, 1] with g{1} = 0. Prove that the sequence {g(x)x"} converges
uniformly on [0, 1],

9.7 Assume that £, — funiformly on S, and that each Sy scontinupus on 8. I x e S,
let {x,} be a sequence of points in & such that Xy = Xx. Prove that f{x,} — f{x).

9.8 Let {£} be a sequence of continuous functions defined on & compact set $ and
assuine that {f;} converges pointwise on § to a limit function f. Prove that £, - f uni-
formly on 5 if, and only if, the following two conditions hold :

i) The limit function £ is continuous on 5,

ii}Foreverye}O,ﬂmreaistsanm:-ﬁandaé:»-{)suchlhatn:»mand
Ix) — F(x)] < dimplies [£,,(x} — f(x)| < eforallxin Sandall & = 1,2,...

Hint. To prove the sufficiency of (i} and (ii), show that for each X in § there is a neigh-
borhood B(x,) and an integer k (depending on Xg) such that

A2 —~ Al < 8 ifxe Blx)

By compaciness, a finite set of integess, say 4 = {,,..., k,), has the property that, for
cach x in S, some & in A satisfies [£{x) — S| < & Uniform convergence is an casy
consequence of this fact.

99 @) Use Exercise 9.3 to prove the following theorem of Dini- I {£,} #s a sequence of
real-calued continuous functions conperging poirtwise lo a continswoas fimit function
Son a compact set S, and i £.(x) = f,, (%) for each x in Sandeveryn = 1,2,...,
then £y — funiformiy on §.
b) Use the sequence in Exercise 9.5(a) to show that compactness of X is essential in
Dini’s theorem,

9.10 Let fi(x) = nx(1 ~ x*) for xreal and » = 1. Prove that {/4} converges pointwise
on [0, 1] for every real c. Determine those ¢ for which the convergence is uniform on
{0, 1] and those for which term-by-term integration on (0, 1] leads to a correct result.

9.11 Prove that 3x™(1 — x) converges peintwise but not uniformly on {0, 1], whereas
2(—1x*1 — x)converges uniformly on {0, 1. This illustrates that uniform convergence
of §.£,(x) along with pointwise convergence of 21 £4x)} does not necessarily imply uniform
convergence of 3] £(x)].

9.12 Assume that g, , {x) < g,(x) for each x in T and each n = 1, 2,..., and suppose
thai g, — G uniformly on T. Prove that T~ 17+, (x) converges uniformly on 7%

9.13 Prove Abel's test for uniform convergence: Let {gy} be a sequence of real-valued
functions such that g, ;(x} < g(x) for each x in 7 and for everyn = 1,2,... If {g}
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is uniformly bounded on T and if 3 f{x) converges uniformly on 7, then X f{x)g,{x)
also converges uniformly on 7.
914 Let f(x) = x/{]l + ax®)if xeR, n = 1,2,... Find the limit function 7 of the
sequence {f,} and the limit function g of the sequence {f;}.

a) Prove that £(x) exists for every x but that /(0) # g{0b. For what values of x is

S(x) = g{x)?

b} In what subintervals of R does £, — f uniformly?

¢) In what subintervals of R does f; — g uniformty?
915 Let fi{x) = (Ume ™" i xR, n=1,2,... Provethat f, — 0 unifnrmlj‘r on R,
that £, — 0 peintwise on R, but that the convergence of { £} is not wniform on any interval
containing the origin.
9.16 Let {f,} be a sequence of real-valued continuous functions defined on [0, 1] and
assume that £, — Funiformily on [0, 1]. Prove or disprove

1—-1/n

1
fim £l dx = J' ) dx.
0

LI I ¥

9.17 Mathematicians from Slobbovia decided that the Riernanno integral was too compii-
cated so they replaced it by the Slebbovian integral, defined as follows: If fis a function
defined on the set Q of rational numbers in [0, 1], the Slobbovian integral of f, denoted
by S(f), is defined to be the limit
= f 4
Sy = Jim 3 f(n) ,

A—+@

whenever this limit exists. Let {£,} be a sequence of functions such that 3(£) exists for
each # and such that £ — f uniformly on Q. Prove that {5(£)} converges, that S(f)
exists, and that §(/,) — S(f)asn — oo,

918 Let (M) = (1l + #x) W0 s x < L, n=1,2,... Prove that {f,} converges
pointwise but not uniformly on [0, 1]. Is term-by-term integration perrhissible?

9.19 Prove that T2, x/n(1 + nx?) converges uniformly on every finite interval in R
if ¢ > 4. Is the convergence uniform on R?

9.20 Prove that the series 3% ; ((— 1"/v/) sin (1 + (x/r)) converges uniformly on every
compast subsct of R,

9,21 Prove that the series 3w o (x> 120 + 1} — 27327 + 2)) converges pointwise
but not mniformly on [C, 1].

9,22 Prove that ¥ .-, a, sin sx and 3,0, a, ¢os ax are uniformly convergent on R if
a1 layf converges.

9,23 Let {o,} be a decreasing sequence of positive terms. Prove that the series ¥ a, sin nx
converges uniformty on R if, and only if, na, ~ Qas n — o,

9.24 Given a convergent series 3o, a,. Prove that the Dirichlet series 3 o2, an™*
converges uniformty on the half-infinite interval 0 < 5 < +oc. Use this to prove that
]im.s—d)+ z:il a:r“-; = Z:;z Qp-
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?.25 Prove that the series {(s) = 3.5, n~° converges uniformly on every half-infimite
interval 1 + h < 5 < +00, where & > 0. Show that the equation

.

coy = - Y B0
n=1

is valid for each 5 > 1 and obtain a similar formula for the kth derivative £®(s),

Mean convergence

9.26 Let f(x) = n*Zxe~"*_ Prove that {f,} converges pointwise to 0 on [~ I, 1] but
that Lim., ., f, # Oon [~1,1]

227 Assume that {£,} converges pointwise to f on [a, 5} and that Lim., . £, = g on
[, 8]. Prove that £ = g if both fand g are continuous on [a, 5].

928 Let f(x) = cos" xifD = x < n
a) Prove that Lim.,, o £, = O on [0, =] but that {£(n)} does not converge.
b) Prove that {,} converges pointwise but not uniformly on [0, =f2].

929 Lletf(x} = 0if0 =< x < Mnorif2in < x = lLandlet fi(x) = mif Ifr < x < 2/n.
Prove that {/,} converges pointwise to 0 on [0, 1] but that Lim, /4 # Gon [0, 1]

Power sevies
9.30 Xf r is the radius of convergence of Ya,(z — z,)", where each a, # 0, show that
G
L

lim inf %

o

= r = lim sup
L]

oty

9.31 Given that the power series 32 , a,.2* has radius of convergence 2. Find the radius
of convergence of each of the following series:

a0 bl oy

a) Y abe", b) Y a2 ) Y 2™
T =10 a={

In (a) and (b), & is a fixed positive integer.

?.32 Given a power series 3.2 5 a,x" whose coefficients are related by an equation of the
OYm

4+ day  + Bay,_; =0 {n=213...).
Show that for any x for which the series converges, its sum is
g + (o + Aag)x
T+ Ax + B
9.33 Let f(x} = e~ if x 2 0, £0) = 0,
a} Show that £%0) exists for all n > 1.

b} Show that the Taylor’s series about 0 generated by f converges everywhere on R
but that it represents / only at the origin.
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9.34 Show that the binomial series {1 + x)* = ¥ 2, (ac) x* exhibits the following be-
havior at the points x = +1. n
a) If x = —1, the seties converges for & > O and diverges for o« < 0.

D) If x = 1, the series diverges for o < —1, converges conditionally for x in the
interval —1 < a « 0, and converges absolutely for o = 0.

9.35 Show that Y ax" converges uniformly on [0, 1] if Ya, converges. Use this fact to
give another proof of Abel’s limit theorem.

936 If each g, = 0 and if 3a, diverges, show that Ya.x" - +00 as x — 1—. (Assume
Fa,x" converges for x| < 1)

9.37 If cach a, = 0 and if lim,,,_. > a,x" exists and squals 4, prove that 3 @, converges
and has sum A. (Compare with Theorem 9.33.)

9.38 For each real ¢, define £,(x} = xe®f(e* — 1Dif xR, x # 0, {0 = 1,
a) Show that there is a disk B(0; §) in which f; is represented by a power series in x.
b) Define Po(?), Py(1), Puff), .. ., by the equation
i x"
Ly = 3 RO, ifxe BO;9),

=

and use the identity
sl x bt x"
DR =Y PO
=3 " n=0 ”

to prove that Pt} = Y3 o (:) B (0y*~*, This shows that each function P, isa

polynomial, These are the Bermoull! polynowdals. The numbers B, = PJ0)
(n=0,1,2,...) are called the Bernvulli numbers. Derive the following further

properties:
. w1 o
C)B(l:ll Blz_'&'; 2(&).3&50’ ifn=2,3,...
k=

d) PUO) = nP,_ (1), ifn=12..
P+ 1)~ P)=n"t ifn=12...

f) Pl ~ £) = (~1PPf2) g) Bypgr =8¢ Hn=12,...
B+ +- et k- 1= Poirk) = Pps(0) (n=2173...%

r+ 1
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CHAPTER 10

THE LEBESGUE INTEGRAL

10.1 INTRODUCTION

The Riemann integral [% f(x) dx, as developed in Chapter 7, is well motivated,
simple to describe, and serves all the needs of elementary calculus, However, this
integral does not meet all the requirements of advanced analysis, An extension,
called the Lebesgue integral, is discussed in this chapter. It permits more general
functions as integrands, it treats bounded and unbounded functions simultaneously,
and it enables us to replace the interval [, ] by more general sets.

The Lebesgue integral also pives more satisfying convergence theorems. If a
sequence of functions {f,} converges pointwise to a limit function f on [g, 5], it
is desirable to conclude that

"k oy

lim J‘* Jixy dx = J‘b J(x) dx

with a minimum of additional hypotheses. The definitive result of this type is
Lebesgue’s dominated convergence theorem, which permits term-by-term integra-
tion if each {f,} is Lebesgue-integrable and if the sequence is dominated by a
Lebesgue-integrable function. (See Theorem 10.27) Here Lebesgue integrals are
essential, The theorem is false for Riemann integrals.

In Riemann’s approach the interval of integration is subdivided into a finite
number of subintervals. In Lebesgue’s appreach the interval is subdivided into
more general types of sets called measurable sets. In a classic memoir, Integrale,
longueur, aire, published in 1902, Lebesgue gave a definition of measure for point
sets and applied this to develop his new integral.

Since Lebesgue’s early work, both measure theory and integration theory have
undergone many generalizations and modifications. The work of Young, Daniell,
Riesz, Stone, and others has shown that the Lebesgue integral can be introduced
by a method which does not depend on measure theory but which focuses divectly
on functions and their integrals, This chapter follows this approach, as outlined
in Reference 10.10. The only ¢oncept required from measure theory is sets of
measure 2¢ro, a simple idea introduced in Chapter 7. Later, we indicate bricfly
how measure theory can be developed with the help of the Lebesgue integral.

152
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10.2 THE INTEGRAL OF A STEP FUNCTION

The appreach used here is to define the intepral first for step functions, then for a
larger class (called upper functions) which contains Nmits of certain increasing
sequences of step functions, and finally for an even larger class, the Lebesgue-
integrable functions.

We recall that a function s, defined on a compact interval [a, 5], is called a
step function if there is a partition 2 = {xy, Xy, ..., x,} of [a, #] such that s is
constant on cvery open subinterval, say

s(xy =0, fxeix.,, x)

A step function is Riemann-integrable on cach subinterval [x,_,, x,] and its
integral over this subintervat is given by

K
J s(x} dx = (%, — Xey),
Xk =¥

regardless of the values of s at the endpoints. The Riemann integral of 5 over
[a, B] is therefore equal to the sum

b "

}' ) dx = 3 el — Xy %)
a - -

NOTE, Lebesgue theory can be developed without prior knowledge of Riemann

integration by using equation (1) as the definition of the integral of a step function.

It should be noted that the sum in (1) is independent of the choice of P as long as 5

is constant on the open subintervals of P,

It is convenient to remove the restriction that the domain of a step function be
compact.

Definition 10.1. Let 1 denote a general intervai (bounded, imbounded, open, closed,
or half-open). A function s is called a step fimction on 1 if there is a compact
subinterval [a, b] of I such that 5 iz a step fumction on [a, 5] and s(x} = 0
fxel— [a b). Theintegrol of s over I, denoted by [; s(x) dx or by |y s, is defined
te be the integral of s vver [a, &), as given by {1).

There are, of course, many compact intervals [a, &] outside of which 5 vanishes,
but the integral of 5 is independent of the choice of [a, ).

The sum and product of two step functions is also a step function. The follow-
ing properties of the integral for step functions are easily deduced from the fore-
going definition

I(s+t}=fs+jr,

J. s = J‘ t  ifs(x) < ox) forallxinl
f

r

J. cs = cJ‘ s for every constant ¢,
T ¥
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Also, if T is expressed as the union of a finite set of subintervals, say
I= UL, a,. b,], where no two subintervals have interior points in common, then

LI 8
j s(x) dx = Z s(x) dx.
K r=1 o

10.3 MONOTONIC SEQUENCES OF STEP FUNCTIONS

A sequence of real-valued functions {/,} defined on a set S is said to be increasing
on S il

S = fa XY for all x in S and all n.
A decreasing sequence is one satisfying the reverse inequality.

NOTE. We remind the reader that a subset T of R is said to be of measure 0 if,
fqr every ¢ > O, T can be covered by a countable collection of intervals, the sum
of whose lengths 1s less than &, A property is said to hold almost everywhere on a
set S (written: a.e. on 8} if it holds everywhere on 5 except for a set of measure 0.

NotaTioN. If {£,) is an increasing seguence of functions on § such that f, — f
almost everywhere on S, we indicate this by writing

FAf aeonS

Similarly, the notation £, v fa.c. on § means that {f} is a decreasing sequence
on § which converges to f almost everywhere on S.

The next theorem is concerned with decreasing sequences of step functions on
a general interval L

Theorem 10.2. Let {5} be a decreasing sequence of nonnega!fba step funetions such
that s, ~ 0 a.e. on an imterval 1. Then

lim | s, = 0.
[l ] ¥

FProof. The idea of the proof is to write

[ [

where each of A4 and B is a finite union of intervals, The set A is chosen so that
in its intervals the integrand is small if » is sufficiently large. In £ the integrand
need not be small but the sum of the lengths of its intervals will be small. To carry
out this idea we proceed as follows,

There is a compact interval [a, #] outside of which s, vanishes. Since

0 < sfx) < 5,(x) Tforalxinl,

cach s, vanishes outside [e, b]. Now g, is constant on each open subinterval of

Sl SR
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some partition of {#, 5]. Let D, denote the set of endpoints of these subintervals,
and let D = |J=, D,. Since each D, is a finite set, the union D is countable and
therefore has measure 0. Let E denote the set of points in [a, 5] at which the
sequence {s,} does #or converge to 0. By hypothesis, E has measure 0 so the set

F=DuUE

also has measure 0. Therefore, if ¢ > 01is given we can cover £ by a countable
collection of open intervals F,, F,, .. ., the sum of whose lengths is less than e.

Now suppose x € [@, B] — F. Then x ¢ £, so s,{x) — O as # —» . Therefore
there is an integer N = N(x) such that sy(x) < &. Also, x ¢ D so x s interior o
some interval of constancy of 5. Hence there is an open interval 8(x) such that
su(?) < gfor all rin B(x). Since {s,} is decreasing, we also have

s{t) < ¢ foralln > Nandall{in B{x). (2)

The set of all intervals B(x) obtained as x ranges through [a, 5] — F, together
with the intervals F, Fy, ..., form an open covering of [a, #]. Since [a, b] is
compact there is a finite subcover, say

[0, 8] = ‘i} B(x) v 0 F,

Let N, denote the largest of the integers N(x,), ..., N{x,). From (2) we see that

’
s{ty<e forall s = N,andall tin .U( Bix). {3)

Now define A and B as follows:
B=()F, A=[ab]-B

r=1

Then A is a finite union of disjoint intervals and we have

[ R &

First we estimate the integral over B. Let M be an upper bound for s, on [a, b].
Since {s,} is decreasing, we have 5,{(x) < 5:(x) £ M forall xin [a, b]. The sum
of the lengths of the intervals in # is less than ¢, so we have

j 5, £ Me,
B

Next we estimate the integral over A. Since 4 € U;;l B(x;), the inequality
in (3) shows that 5,{(x) < e if x € 4 and v 2 N, The sum of the lengths of the
intervals in A does not exceed b — a, 50 we have the estimate

Js,ﬁ(b—a}a ifn = N,
A
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The two estimates together give us {;5, < (M + b — a)¢ if n = N,, and this
shows that lim,_ , {; 3, = 0.
Theorem 10.3. Let {1} be a sequence of step functions on an interval I such that :

a) There is a function f such that 1, » f a.e. on I,
and

b) the sequence {[; 1,} converges.
Then for any step function t such that Kx) < f(x) a.e. on I, we have

I t < lim .[ T (4)
7 Ll 5

FProof. Define 2 new sequence of nonnegative step functions {s,} on I as follows:

5,00 = {I(x} = t{x)  iffx) = t,(x),
? 0 if {x) < 1{x).

Note that s(x} = max {H{x) — £(x), 0}. Now {s5,} is decreasing on I since {z,} is
increasing, and 5,(x) — max {#(x) — f(x), 0} a.e. on L. But#(x) < f(x) a.e. on I,
and therefore 5, \ 0 a.e. on L Hence, by Theorem 10.2, lim, ., [;5, = 0. But
£(x) = 1{x) — £{x) for all x in I, so

I 5 > J - j f

¥ X ¥

Now let n — oo to obtain (4).

104 UPPER FUNCTIONS AND THEIR INTEGRALS

Let S(f) denote the set of all step functions on an interval £, The integral has been
defined for all functions in S(/). Now we shall extend the definition to a larger

class U(f) which contains limits of certain increasing sequences of step functions.
The functions in this class are called upper fimctions and they are defined as follows:

Definition 104. A real-valued function f defined on an interval I is called an upper
Junction on I, and we write f & U(I), if there exists an increasing sequence of step
Junctions {5,} such that

a)s, ~f aeonl,
and
b) lim, ., |; 5, i finite.
The sequence {s,} is said 1o generate f. The integral of f over 1 is defined by the
equation

S = lim J‘ S 5)
'

I LT

£
7
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NOTE. Since {f, 5} is an increasing sequence of real numbers, condition (b) is
equivalent to saying that {{; 5.} is bounded above.

The next theoremn shows that the definition of the integral in (5) is unambiguous.
Theorem 10.5. Ascume fe U(T) and let {8} and {1} be two sequences generating

}fi Then -
fim J 8 = lim J b
L =] i m X ¥

Proof. The sequence {z,} satisfies hypotheses {a} and {b) of Theorem 10.3. Also,
for every n we have

s5(x) < f(x} aeonl
s0 {4) gives us

J‘s_s lim | 1.
I

. Sl <} I
Since this holds for every », we have
fim | 5, < lim J‘ Ly
l - I m—ton I

The same grgument, with the sequences {s,} and {¢,} interchanged, gives the reverse
inequality and completes the proof.

it is easy to sec that every step function is an upper function and that its
integral, as given by (5), is the same as that given by the earlier definition in
Section 10.2. Further properties of the integral for upper functions are described
in the next theorem. '

Theorem 10.6. Asswme f e U(I) and g € U(I). Then:

A (F+geUDand
I'(f+9)=jf+jg-
¥ I r

b)) ¢f € U(I) for every constant ¢ = O, and

o= [

I f< 019 ¥7G) < g(x)ae onl

NOTE. In part (b} the requirement ¢ = 0 is essential. There are examples ferr
which fe (I} but —f¢ U(I). (Sec Exercise 10.4) However, if f e U({I) and if
seS,thenf — se D sincef — s = f + (—3)

Progf. Parts (a) and {b) are easy consequences of the corresponding properties
for step functions. To prove (¢}, let {s,.} be a sequence which generates £, and let
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{4} be a sequence which generates g. Then s, » fand 1, ~ g a.e. on I, and

lim | 5, = '[f, lim | ¢, = J‘ g,
But for each nt we have

s X} = f(x)

Hence, by Theorem 10.3,
anﬂlimj-r,=fg.
¥ L 5 4 I

Now, let m — o {o obtain (c).

A

g(x) = lim t(x) a.e. on i

The next theorem describes an important vonsequence of part (c),

Theorem 10.7, I f € U(T) and g e U(I), and if {(x) = g{(x) almost everywhere on I,
then{, f= [, 9.

Proaf. We have both ingqualities f(x) < g(x) and g(x) < f(x) almost everywhere
on I, so Theorem 10.6 (¢) gives [, f < {,gand [, g < [, 1.

Definition 10.8. Let f and g be real-valued finctions defined on 1. We define
max (f, g} and min (f, g} to be the functions whose values at each x in I are equal to
max {f(x), g(x)} and min { f(x), g(x)}, respectively.

The reader can easily verify the following propertics of max and min:

aymax{f;g) + min (£, ¢) = f + g,

by max (f+h g+ =max (f,g)+h and min (f+ A, g+ ) =min (£, g} + A
Iff,” fae on I, andifg, » g ae onl then

¢} max (f,, ga} » max (f, ) a.e. on |, and min (£, g} » min (f, g) a.e. on L.

Theorem 10.9. Iff e Ul and g = U(L), then max (f, g) € U() andmin (¥, g) & U}

Proof. Let {s,} and {£,} be sequences of step functions which generate f and g,
respectively, and let u, = max (s, t,), v, = min (s,, ). Thea u, and o, are step
functions such that w, * max (f, g)and o, / min (/. g) ae. on I

To prove that min (f, g) e U{J), it suffices to show that the sequence {[; v} is
bounded above. But », = min (s, £,) £ fa.e. on [, s0 §r va < |1 f. Therefore the
sequence {f; v,} converges. But the sequence {f; ,} also converges since, by
property (a), ¥, = s, + ¢, — v, and hence

Lu,,:J;s,-yJ;r_—J;v,—»LfﬁLJ;g—J:min(ﬂg)-

The next theorem describes an additive property of the integral with respect
to the interval of integration.

W3 Cagpae
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Theorem 10.10. Let I be an imterval which & the union of two subintervals, say
I = ¥ Uk, where I, and I, have no interior points in common.

a) feUD and if f 2 0 ace. on I, then fe U(L,), fe Ully), and

j'f=jf+J'ﬂ ©)
1 Iy I 71

b} Assume f, € (1)), f, € U(L,), and let f be defined on 1 as follows:

_VAm ¥xel,
S = {Jt';(x) Fxel — I,

jf=Jf;+J i
I 1 FES

Progf. If {5} is an increasing sequence of step functions which generates f on 7,
let 5, (x) = max {5,(x), 0} for each x in Z. Then {s;'} is an increasing sequence of
nonnegative step functions which generates f on [ (since £ = 0). Moreover, for
every subinterval J of Fwe have {; 5, < f; 57 < [; fs0 {s7} generates fon J, Also

_[S::J s:+J s¥,
¥ LN I

so we let n > oo to obtain {3). The proof of {b) is left as an exercise.

Then fe Ul and

NOTE. There is a corresponding theorem (which can be proved by induction) for
an interval which is expressed as the union of a finite number of subintervals, no
two of which have interior points in common.

10.5 RIEMANN-INTEGRABLE FUNCTIONS AS EXAMPLES OF UPPER
FUNCTIONS

The next theorem shows that the class of upper functions includes all the Riemarin-
integrable functions,

Tkeorem 10.11. Let f be ydeﬁned and bounded on a compact interval [a, b], and
assume that f is continous almost everywhere on [a, B]. Then f € U([a, 5]} and the
integral of £, as a function in U([s, b)), is equal 10 the Riemann integral [} 1(x) dx.

Froof. let P, = {xq, X1, ..., X;s} be a partition of {a, §] into 2* equal sub-
intervals of length (b — a)/2". The subintervals of P, arc obtained by bisecting
those of P, Let

= inf {fx):x & [%- 0 1} forl < k < 2%
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and define a step function 5, on [a, #] as follows:
sKy=m Hx_, <x<x, sfa) = my.

Then 5,(x) < f(x) for all x in [a, ¥]. Also, {s,} is increasing because the inf of
in a subinterval of [x;.,, x.] cannot be less than that in [x,.. 5, %]

Next, we prove that s,(x) — f{x)at each interior point of continuity of . Since
the set of discontinuities of f on [g, b] has measure 0, this will show that s, - f
almost everywhere on [a, &]. If /is continuous at x, then for every e > 0 there is
a & (depending on x and on g} such that /{(x) — & < f{3) < f(x) + & whenever
x—-dxy<x+d Let m@=iof{f{(y):ye(x—38x+ 8N} Then
fix) — & < mid), so Fix) < m(d) + s. Some partition P, has a subinterval
[xx-1» %] containing x and lying within the interval (x — 8, x + ). Therefore

W) =m <)< m@) +e<m + 8= 5(x) +
But 5,(x) < f(x) for all n and sy{x) < s)(x)forall n == N. Henee
s S <sxX)+e  ifaz N,
which shows that 5,(x} — f(x) as 2 — w.

‘The sequence of integrals {f? 5,} converges because it is an increasing sequence,
bounded above by M{(b — a), where M = sup {f(x): x ¢ [a, b]}. Moreover,

B n
J' S = 2 s = Xaog) = LB, /)
. k=1

where L{P,, ) is a lower Riemann sum. Since the limit of an increasing sequence
is equal to its supremum, the sequence {{* 5,} converges to the Riemann integral
of f over [a, #]. (The Riemann integral {3 f(x) dx exists because of Lebesgue's
criterion, Theorem 7.48.)

NoTe, As already mentioned, there exist functions fin U({) such that —f ¢ L{J).

Therefore the class I{(I) is actually larger than the class of Riemann-integrable
functions on £, since —fe Ron Zif fe Ron L.

10.6 THE CLASS OF LEBESGUE-INTEGRABLE FUNCTIONS ON A
GENERAL INTERVAL

If u and v are upper functions, the difference ¥ — ¢ is not necessarily an upper
function. We eliminate this undesirable property by enlarging the class of inte-
grable functions.

Definition 10.12, We denote by L(I} the set of all functions fof the form f = u — »,
where ue U(FY and ve U(l). Each function [ in L{I) is said to be Lebesgue-
integrable on I, and its integral is defined by the equation

J.f=fu—J.rz. (7
) I f
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If f & L{I} it is possible to write £ as a difference of two upper functions u — ¢
in more than one way. The next theorem shows that the integral of fis independent
of the choice of v and ».

Theorem 10.13. Let u, v, 1y, and v, be functions in U(I) such that u — v = Uy — Py

Then
O O
H I T I

Progf. The functions u + v, and %, + v are in U and u + v; = u, + o
Hence, by Theorem 10.6{a), we have [, w + [, v, = {, u, + [; o, which proves (8).

NOTE. If the interval 7 has endpoints 2 and 4 in the extended real number system R*,
where a < 5, we also write

) b
jf or If(x) dx

for the Lebesgue integral {; /. We also define [§ f = — [t £.

If [a, b] is a compact interval, ¢very function which is Riemann-integrable on
[& b] is in U([a, #]) and therefore also in L([a, &]).

10,7 BASIC PROPERTIES OF THE LEBESGUE INTEGRAL
Theorem 10.14. Assume f & L) and g & L{I). Then we have:
2) (@f + bg) e IL{I) for every real a and b, and

j(ﬂf+b9)=ajf+bfg.
4 i T

b) [, f=0 iff(x) > 0ae onl.

difzig  ¥fx) zgx)ae onl

D if=fg ¥x)=gx)aeonl

Progf. Part (a) follows easily from Theorem 106, To prove (b) we write

f=u— v, where uc U(I) and v € U(J). Then w(x) = o{x) almost everywhere
on I 50, by Theorem 10.6(c), we have _[; > L v and hence

P:Ju-]ua

Part (c) follows by applying (b) to  — g. and part (d) follows by applying (¢)
twice.

Definition 10.15. If f i5 a real-valued function, its positive part, denoted by [, and
its negative part, denoted by [, are defined by the equations

Fr=max (£,0), S = max{—/, 0.
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Note that £* and £~ are nonnegative functions and that
S=f=f U=Ff+f.
Examples are shown in Fig. 10.1.

Theorem 10.16. If f and g are in L(I), then so are the functions f*, ~, |fl,
max (f, g) and min ({f, g). Moreover, we have

f 1< j 7. ©

Proof, Write f = u — v, where & ¢ U{I} and v ¢ (). Then

Ft =max(x — » 0) = max (v, 6} — o.

But max (¥, vy € U(I}, by Theorem 109, and v e U{I), so f* e L{I). Since
f7 =f" — f, we see that f~ e L(I). Finally, |f| = f* + f~,s0 |fl € L(D).
Since — |f{x)] < f(x) < |F(x)| for all x in T we have

- _[ 1 gj'fﬂjzfl,
I I Fi

which proves (9). To complete the proof we use the relations
max (@) =Hf+g+|f—gl), mn(f,9)=3+g-1f- gl

The next theorem describes the behavior of a Lebesgue integral when the inter-
val of integration is translated, expanded or contracted, or reflected through the
origin. We use the following notation, where ¢ denotes any real number:

I+e={x+e:xel}, e¢l={x:xel}
Theorem 10.17. Assume e L(I). Then we have:

a) Invariance under transiation. Ifg(x) = f(x — c)forxinI + ¢, thenge L(I + ¢),
and

g=\r
wite o1
b) Behavior under expansion or contraction. If g(x) = fixje) for x in cf, where
¢ > O, then g € L{el) and
o e
g=c|f

bk o1
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¢} Invariance under reflection. If g(x) = f{(—x) for x in I, theng e I{—1I) and

Jo=lr

NoTE. If I has endpoints ¢ < b, where g and b are in the extended real number
system R¥*, the formula in (a) can also be written as follows:

bte

Jix —cydx = wa(x) dx.

ate

Properties (b) and (c) can be combined into a single formula which includes both
positive and negative values of ¢:

'[df(xfc) dx = | J‘bf(x) dx  ife £ 0.

Prpgf. In proving a theorem of this type, the procedure is always the same. First,
we verify the theorem for step functions, then for upper functions, and finally for
Lebesgue-integrable functions. At each step the argument is straightforward, so
we omit the details.

Theorem 10.18. Let I be an interval which is the union of two subintervals, say
= [y o Ky, where I, and I, have no interior points in common.

a) iffe L), then f € L(I)), f € L), and

jf=jf+jﬁ

b} Assume f, € L(1,), f € L(E,), and let f be defined on I as follows:

_{f®  ¥xel,
76 = {fzm ifxel - I

T&er:feI(I) mj!f: Il'uf'l + jf:efz'

Proof. Write ff = u — v where ue U(f) and ve U(l). Then u = ¢ — ¢~ and
v=0" —p7, 80 f=ur +¢” — (u +0v*). Now apply Theorem 10.10 to
each of the nonnegative functions u* + »™ and ¥~ + »* 1o deduce part (a). The
proof of part (b) is left to the reader.

NOTE. There is an extension of Theorem 1{L18 for an interval which can be
expressed as the unjon of a finite number of subintervals, no two of which have
interior points in common. The reader can formulate this for himself,

We conclude this section with two approximation properties that will be
needed later. The first tells us that every Lebesgue-integrable function § is equal
to an upper function # minus a nonnegative upper function » with a small integral.
The second tells us that £ is ‘equal to a step function s plus an integrable function
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é with a small infegral. More precisely, we have:
Theorem 10.19. Assume fe€ L{(I) and let ¢ > O be given. Then:

a) There exist functions u and v in U(T) such that f = u — v, where v is non-
negative a.e, on Fand [; v < &
b) There exists a step function s and @ funciion g in L) suck that f = s + g,
where [, lg] < &
Proof. Since fe L(I), we can write f = #, - p, where ») and », arc in U(J).
Let {1} be a sequence which generates v,. Since {, #, - |; v, we can choose N so
that 0 < [, (vy — ty) <& Nowletv =p, — tyand ¥« = w, — ty. Then both
#and vare in U(f)and ¥ — 0 = »; — v, = f. Also, v is nonnegative g.e. on J
and f;» < & This proves (a).
To prove (b) we use (a) to choose wand pin I sothatv = O ae. on

f=u—uv and ngv*::f.
P 2

Now choose a step function s such that 0 < f; (¥ — 5) < ¢/2. Then
f=u—-v=35+U—-8—-v=5+4g,
where g = (u — 5) — v. Hence g € L{I) and

£ 2
|ﬂsjh—ﬂ+}ﬁwﬁ—+-x&
L I I 22

108 LEBESGUE INTEGRATION AND SETS OF MEASURE ZERO

The theorems in this section show that the behavier of a Lebesgue-integrable
fanction on a set of measure zere does not affect its integral.

Theorem 10.20. lLet f be defined on I If f = 0 almost everywhere on 1, then
feL{Dandf;f=0.

Proof. Let 5(x)} = O for all x in I. Then {s,} is an increasing sequence of step
functions which converges to O everywhere on . Hence {s,} converges to falmost
everywhere on 1. Since [; 5, = 0 the sequence {f, s,} converges. Therefore f is
an upper function, so fe L(fyand §, /= lim,,, [; 5, = 0.

Theorem 1021, Let f and g be defined on £ If fe L) and if f = g almost every-
whereon I, thenge LN and |1 f = 1 g. .
Proof. Apply Theorem 10.20tof — ¢. Thenf — ge L) and §, (f — g) = 0.
Henceg = f~ (f-gQeliand 9=/~ (/-9 = f

Examiple. Define fon the interval [0, 1] as follows:

f(x) = 1 if x is rational
" 10 if x is irrational.

RS AR s s o A
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Then f = 0 almost everywhere on [0, 1] so £ is Lebesgue-integrable on [0, 1] and its
Lebesgue integral is 0. As noted in Chapter 7, this function is not Riemann-integrabie
on [0,1].

NOTE. Theorem 10.2] suggests a definition of the integral for functions that are
defined almost everywhere on 1. If g is such a function and if g(x} = f(x) almost
everywhere on I, where f & L{J), we say that ¢ € L(f) and that

L9=Lﬁ

189 THE LEVI MONOTONE CONVERGENCE THEOREMS

We turn next to convergence theorems concerning term-by-term integration of
monotonic sequences of functions. We begin with three versions of a famous
theorem of Beppo Levi. The first concerns sequences of step functions, the second
sequences of upper functions, and the third sequences of Lebesgue-integrable
functions. Although the theorems are siated for increasing sequences, there are
corresponding results for decreasing sequences.

Theorem 10.22 (Levi theorem for step functions). Let {s,) be a sequence of step
Sunctions such that

a) {s,} increases on an interval I, and
b) Kim, o, [y 5, exists,

Then {s,} converges almost everywhere on I to a limit function Jin U, and

fleimjs,.

Proof. We can assume, without loss of generality, that the step functions s, are
nonnegative. (If not, consider instead the sequence {s, — 5,}. If the theorem is
true for {s, — 5,}, then it is also true for {s5,}.) Let D be the set of x in 7 for which
{s(x)} diverges, and let & > 0 be given. We will prove that D has measure 0 by
showing that D can be covered by a countable collection of intervals, the sum of
whose lengths is < ¢

Since the sequence {J, s,} converges it is bounded by some positive constant
M. Let

tx) = [ﬁ s,,(x}] ifxel,
where [ ] denotes the greatest integer <y. Then {1} is an increasing sequence of
step functions and each function value £,(x} is a nonnegative integer,
If {5,(x)} converges, then {s5,(x)} is bounded so {£,(x)} is bounded and hence
4 (¥} = 1,(x) for all sufficiently large #, since each 7,{x) is an integer.
If {s,(x}} diverges, then {1,(x)} also diverges and ¢, ,(x) — 1) = | for
infinitely many values of n. Let

D o={x:xel and £ ,(x) — 10} = 1}
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Then D, is the union of a finite number of intervals, the sum of whose lengths we
denote by iD,|. Now

o
De {J b,
=1
sa if we prove that 2%, |2,] < &, this will show that D has measure 0,

To do this we integraie the nonnegative step function 1,,, — 1, over f and
obtain the inequalities

J.(‘.-n-l - b} EJ. (avy — 1) ZJ 1 = (D}
I Dy B

Hence for every m = | we have

al — A & &
D < Loy =0 = | tygr = | 1S | s € | Sy < <.
FZII [ FZ‘ ’( + 1 } _[' +1 '[ i L +1 2M . +1 2

Therefore 3%, |1D,] < &/2 < &, so D has measure 0.
This proves that {s,} converges almost cverywhere on 7. Let

lim,,,s{x}) ifxel~ D,

) = ‘{0 if x € D.

Then f is defined everywhere on Fand s, — falmost everywhere on I. Therefore,
feUhyand [, f = lim,_,,, |; s,

Theorem 1023 { Levi theorem for upper functions), Let {f,} be a sequence of upper
Junctions such that

a) { fu} increases almost everywhere on an imterval I,
and
b} lim,. , [, £, exists.

Then {f,} converges aimost everywhere on 1 to a limit function f in U}, and

ff:limj‘f,,.

Proof. For cach k there is an increasing sequence of step functions (s, ;} which
penerates ;. Define a new step function ¢, on I by the equation

(n(x) = max {3n,l(x)$ Sn,!(x)s s Sn,n(x}}‘
Then {1,} is increasing on I because

foer(X) = Max {0 3o Spe e (XD 2 max {5, ,(5), ..., 5,0 (60}
2 max {5, (X} . ... 5.2} = f{x).
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But 5, ,(x) < fi{x) and {/,} increases almost everywhere on f, so we have
1(x) < max {{i(x),..., (=)} = filx) (10)
almost everywhere on I, Therefore, by Theorem 10.6(c) we obtain

J. I,S.J‘f;. {an
i I

But, by (b}, {[, £} is bounded above so the increasing sequence {[, 1,} is also
bounded above and hence converges. By the Levi theorem for step functions,
{r.} converges almost everywhere on 1 to a limit function fin U(!), and §; f =
tim, . f; t, We prove next that #, — falmost everywhere on 7,

The definition of 1,(x) implies s, (x) < £,(x) for all ¥ < # and all x in I.
Letting # — oo we find

Alx) < f(x) almost everywhere on L. {12

Therefore the increasing sequence {£(x)} is bounded above by f(x) almost ¢very-
where on 7, so it converges almost everywhere on 1 to a limit function g satisfying
g(x} < f(x) almost everywhere on . But (10) states that 1{x) < f(x) almost
everywhere on [ so, letting n — oo, we find f(x) < g(x) almost everywhere on 7.
In other words, we have

lim f(x) = f(x) almost everywhere on I.
n—m

Finally, we show that |; f = lim,.,,, |, £, Letting # — « in (11) we obtain

J‘fglifnj.j;. (13

Now integrate (12), using Theorem 10.6(c) again, to get {, £ < [; £ Letting
k — co we obtain lim,.., [;fi < §; f which, together with (i3), completes the
proof.

NotE. The class U(Z) of upper functions was constructed from the class S(7) of
step functions by a certain process which we can caill 7. Beppo Levi’s theorem
shows that when process P is applied to U(f) it again gives functions in U(J). The
next theorem shows that when P is applied to L(f) it again gives functions in
L{).

Theorem 10.24 ( Levi theorem for sequences of Lebesque-integrable functions). Let
{£.} be a sequence of functions in L(I) such that

a) {f.} increases almost everywhere on I,
and
b) lim,., §; £ exists.
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Then {f,} converges almost everywhere on I to a Hmit function f in L(I), and

jf=limj.ﬁ.

‘We shall dednce this theorem from an equivalent result stated for serfes of
functions.
Theorem 10.25 (Levi theoremn for series of Lebexgue-imtegrable functions). Let
{g.} be a sequence of functions in L{I) such that
a) each g, is nonnegative almost everywhere on I,
and
b} the series ¥, {1 g, converges.

Then the series Y5, g, converges almost everywhere on I te a sum function g in
L{I), and we have

f.q= Doa=2.| o (14)
¥ w=1 Ji

=1

Proaf. Since g, € L(I), Theorem 1019 tells us that for every & > 0 we can write
Gu = Uy — Uy
where u, € U{l), v, € U(l), v, > 0 ae. on [, and [; v, < &. Choose u, and v,
corresponding to g = (3)". Then
u, = g, + U, whcrcj v, < (Y.
H

The inequality on §; v, assures us that the series 3=, [, v, converges. Now
#, = 0 almost everywhere on 7, so the partial sums

Ux) = ;‘. u,(x)

form a sequence of upper functions {U,} which increases almost everywhere on 7.

Since
j;vn: ‘E“t=§1“k=éjlgt+§ﬁﬁ.,

the sequence of integrals {f; U} converges because both series T2, f, 4, and
T Jr v, converge. Therefore, by the Levi theorem for upper functions, the
sequence {U,} converges almost everywhere on [ to a limit function U in U(I),
and f, U = lim,_, §; U, But

.[UH=Z uh
r i
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SO
o
U = E uk.
H k=1

Similazly, the sequence of partial sums {¥,} given by

V00 = 2 n(x)

L]

convefges almost everywhere on f to a limit function ¥ in U(I) and

jV=f:jvk.
1 k=1 Jr

Therefore & — V& L(I) and the sequence {Ti., ) = {U, — V,} converges
almost everywhere on fto U — V. Letg = U — V. Thenge L{I}and

JQ=IU—JV=E (nn—vk)=z.[gk-
r r ¥ k=1 Jr k=1 Jy

This completes the proof of Theorem 10.25.

Proof of Theorem 10.24, Assume { f.} satisfies the hypotheses of Theorem 10.24.
Letg, = f, and let g, = f, — f,.., for n > 2, so that

f;=§§k-

Applying Theorem 10.25 to {g,}, we find that 3%, ¢, converges almost everywhere
on I to a sum function g in L(I), and Equation (14) holds. Therefore £, — g
almost everywhere on 7 and {, g = lim,_, {; i

In the following version of the Levi theorem for series, the terms of the series
are not assumed to be nonnegative.

Theorem 10.26. Let {g,} be a sequence of functions in L(I) such that the series

> j la.l

is convergent. Then the serigs Y7, g, converges almost everywhere on I 1o a sum
Sfunction g in L(I) and we have

€. o
2= 2,4 o
Fou=i w=1 [y
Proof. Write g, = g} — g, and apply Theorem 10.25 to the sequences fgh1)
and {g. } separately.

The following examples illustrate the use of the Levi theorem for sequences.
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Example 1. Let f(x) = x* for x > 0, f{0) = 0. Prove that the Lebesgue integral
§3 7(x) dx exists and has the value 1/ + 1) if s > —1,

Solution. If s = 0, then £is bounded and Riemann-integrable on [0, 1] and its Riemann
integral is equal to 1/(s + 1).

If 5 < 0, then £ is not bounded and hence not Riemann-integrable on [0, 1], Define
a sequence of functions {/,} as follows:

ifx = 1fn,

x‘
Hx) = {0 if0 < x < Un

Thea {f£,} is increasing and f, — f everywhere on [0, 1]. Each £, is Riemann-integrable
and hence Lebesgue-integrable on [0, 1] and

Cpde= [ wde=_1 (11
[[ama= [ a2 (i-255).

Hs + 1 > 0, the sequence {f5 /,} converges to 1/{s + 1). Therefore, the Levi theorem
for sequences shows that [ fexists and equals 1/¢r + 1),

Example 2. The same type of argument shows that the Lebesgue integral [§ =% x" ! dx
exists for every real y > 0. This integral will be used later in discussing the Gamma
function.

10.10 THE LEBESGUE DOMINATED CONVERGENCE THEOREM

Levi’s theorems have many important consequences. The first is Lebesgue’s
dominated convergence theorem, the cornerstone of Lebesgue’s theory of inte-
gration,

Theorem 10.27 (Lebesgue dominated vomvergence theprem). Let {1} be a mqﬁence
of Lebesgue-integrable fumctions on an interval I. Assume that

a) {f.} converges almost everywhere on I to a limit function f,
and
b) there is a nonnegative fimction g in L(I) such that, for alin = 1,
)| < g(x) ae onl
Then the limit funciion f € L(I}), the sequence {[, f,} converges and
I f=1im | £. (15)
f rm Jy

NOTE. Property (b) is described by saying that the sequence {f,} is dominated by
g almost everywhere on L

Progf. The idea of the proof is to obtain upper and Jower bounds of the form
glx) = fix) = Gx) (16)
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where {g,} increases and {G,} decreases almost everywhere on I to the limit function
f. Then we use the Levi theorem to show that fe L(I) and that [, f =
lim,., §; g, = lim ., |1 G,, from which we obtain (15).

To construct {g,} and {G.}, we make repeated use of the Levi theorem for
sequences in L(J). First we define a sequence {G, ;} as follows:

Gr,1(x) = max {f1(x), /(x), - .., A=)},

Each function G, , € L{J), by Theorem 10.16, and the sequence {G,,} is in-
creasing on I Since |G, ,(x)| = ¢g{x) almost everywhere on J, we have

J' Goa| < I G, il < j 0. a7
T H I

Therefore the increasing sequence of numbers {f; G,,} is bounded above by
I; g, solim,,, [; G, exists. By the Levi theorem, the sequence {G, ,} converges
almost everywhere on [ to a function &, in L(I), and

jG, =]imfG,,_, sjg,
I Ao I {

Because of (17) we also have the inequality —[; g < |, .. Note that if x is a
point in I for which G, 4(x) — G(x), then we also have

Gi{x) = sup {/i(x}, folx}, ... }.
In the same way, for each fixed r = 1 we let

Gy %) = max {f(x), frra(x), . ., SN}

for n = r. Then the sequence {G,,} increases and converges almost everywhere
on Ito a limit function G, in L{J) with

[r<fosfs
¥ I I

Also, at those points for which G, {x} = G,(x) we have
Gix) = sup {f(x), fr410x), ... },

f{x) < Gfx) ae onl

S0

Now we examine propertics of the sequence {G(x)}}. Since 4 = B implies
sup A < sup B, the sequence {G.(x)} decreases almost everywhere and hence
converges almost everywhere on 7. We show next that G {x) — f{x} whenever

lffﬂ £x) = fix). (18}

If (18} holds, then for every ¢ > (rthere is an integer N such that
Jx) — e < fix) < fix)+ e foralln > N.
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Hence, if m = N we have
f&x) — & < sup (), fra (), ..} < f(0) + 2.
In other words,
mz= N  implies f{x} — &% Gu(x) < f(x) + &
and this implies that
lm Gu(x) = f(x) almost everywhere on f. (19)

On the other hand, the decreasing sequence of numbers {[; G,} is bounded below
by —[; g, s0 it converges. By (19) and the Levi theorem, we sec that fe L(I) and

s+ 1y 1

By applying the same type of argument to the sequence
gn.r(x) = min {fr(x)s.ﬂ+l(x}s e ,L(XJ},

f-_m‘ n 2 r, we find that {g,,} decreases and converges almost everywhere to a
limit function g, in L{F), where

Q..(x} = inf {ﬂ(x},f;ﬂfx), [ } ae on i

Also, almost everywhere on J we have g(x) < fi(x), {4} increases, lim, . ., g,(x) =

Fx), and
Lim j o = j £
e Jr !

Since (16) hoids almost everywhere on I we have |, g, < [, £, < |; G,. Letting
n - o we find that {[, .} converges and that

]imJ‘f,,=J‘f.
LN § | f

16.11 APPLICATIONS OF LEBESGUE'S DOMINATED CONVERGENCE
THEOREM

The first application concerns term-by-term integration of series and is a companion
result to Levi's theorem on series,

Theorem 10.28. Let {g,} be a sequence of functions in LI} such that -

a} each g, is nonnegative almost everywhere on 1,
arnd

b) the series 3" | g, converges almost everywhere on I to a Junction g which is
bounded ahave by a function in L(I).
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Then g € L(I), the series 3.7, |, g, converges, and we have

a

i9n= 2| 9

ra=1 W] Jy

Proof. Let
Jolx} = ; gy ifxel

Then f, - g almost everywhere on I, and {£} is dominated almost everywhere
on I by the function in L{I} which bounds g from above. Therefore, by the Le-
besgue dominated convergence theorem, g € L(7), the sequence {{; £,} converges,
and [, ¢ = lim,_, §; f,- This proves the theorem.

The next application, sometimes called the Lebesgue bounded comvergence
theorem, refers to a bounded interval.

Theorem 10.29. Let I be a bounded interval, Assume {f,} is a sequence of functions
in LI} which is boymdedly convergent almost everywhere on 1. That is, assume there
is a limit function f and a positive constant M such that

m f(x) = fix} and |f0N < M, almost everywhere on 1.

TI:enf'e L(") W]imn—!m Ifj; = Iff'

Proof. Apply Theorem 10.27 with g(x) = M for all x in /. Then g € L{I), since
I i3 a bounded interval,

NOTE., A special case of Theorem 10.29 is Arzeld’s theorem stated earlier (Theorem
9.12). If { £} is a boundedly convergent sequence of Riemann-integrable functions
on a compact interval [o, B), then cach f, e L{[a, ]}, the limit function
Fe L([a, b]), and we have

_ b b
lim J fo= j Fa
Lol -] a a
If the limit function fis Riemanp-integrable (as assumed in Arzeld’s theorem),
then the Lebesgue integral [; fis the same as the Rieman integral 2 f(x) dx.
The next theorerm is often used to show that functions are Lebesgue-integrable,
Theorem 10.30. Let { £} be a sequence of functions in L{I) which converges almost
everywhere on I to a limit function f. Assume that there is a nommegative function g
in L{I) such that

|f(x)! < g(x) ae onl
Then fe L(I).

FProogf. Define a new sequence of functions {g,} on 7 as follows:

Gy = MAX {mm (f;n ), _y}-




X4 The Lebesgwe Integral Th. 18.3)

Figure 10.2

Geometrically, the function g, is obtained from f, by cutting off the graph of f,
from above by g and from below by —g, as shown by the example in Fig. 10.27
Then g (x}| € g(x) almost everywhere on I, and it is casy to verify that g, —» f
almost everywhere on I Therefore, by the lebesgue dominated convergence
theorem, f e L(D.

19.12 LEBESGUE INTEGRALS ON UNBOUNDED INTERVALS AS LIMITS
OF INTEGRALS ON BOUNDED INTERVALS

ﬂwrcm 10.31. Let f be defined on the half-infinite interval I = [a, + ). Assume
that f is Lebesgue-integrable on the compact interval (a, &) for each b > a, and
that there is a positive constant M such that

]
f iflsM foraldbza (20)
Then f & L(I), the limit limy., , , [® f exists, and
+a@ L]
J; r=im [ @

{’roof. Let {4,} be any increasing sequence of real numbers with b, = asuch that
lim,_ , b, = +o0. Define a sequence {£,} on [ as follows:

f,(x)={f(x) faxx<bh,

Q otherwise.

Bachj',e L(T) (by Theorem 10.18) and f, » fon I. Hence, |4l - |flon I But
AR increasing and, by (20), the sequence {J; |£,f} is bounded above by M.
Therefore lim, ., ,, §; £} exists. By the Levi theorem, the limit function |Fle L.
Now each [£)| < |fland [, - fon I, so by the Lebesgue dominated convergence
theorem, f€ L{I) and lim, ,, {; f, = [, /. Therefore

i [fr- ]

for all sequences {5,} which increase to +<0. This completes the proof,
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There is, of course, a corresponding theorem for the interval { - o0, a] which

concludes that
£ £ d
- e —w ],

provided that [¢|f] < Mforalle < a. If [21f] < M for all real ¢ and b with
¢ < b, the two theorems together show that fe L(R) and that

+m a L]
J f=lim | £+ lim | £
- co=a Jo b=~+w Jg

Example 1. Let fix) = 1J(1 + x*) for all x in R. We shall prove that /= L(R) and that
{g F = n. Now fis nonnegative, and if ¢ < b we have

L] b dx
F= = arctan & — arclan ¢ < 7.
e Je 1427

Therefore, /€ L{R) and

s 1] b
f=0im | % _ 4 tim *2:5+f=m
— e Jo 1+ x* ot Jo L+ x z2 2

Example 2. In this example the limit on the right of (21) exists but f¢ I{J). Let
I = [0, +ov) and define fon I as follows:

-1y

n

fn—1sx<n foon=12...

fix) =

I & > 0,let m = [b], the greatest integer < 5. Then
(b - m}(_ l)llH—l

[re[re [rmgr
0 o - =y N m-+ L

As b - + oo the last term — 0, and we find

b i iy
lim ff= Ew= —log 2.
0 =1 A

LES -
MNow we assume £z L(I) and obtain a contradiction. Let Jf be defined by

1£(x) for0 s x=n,
0 forx > n.

fix) = {

Then {f,} increases and f,(x) » |f(x) everywhere on I Since fe L{I) we also have
|£1 e L(H). But [£{x)] = |f{x)| everywhere on 7 so by the Lebesgue dominated con-
vergence theorem the sequence {[; £} converges. But this is a contradiction since
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10.13 IMPROPER RIEMANN INTEGRALS

;Peﬁail‘im 1032, If [ is Riemapn-integrable on [a, b] for every b = a, and if the
imit
£
lim J(x) dx  exists,

brboo g,
thten J is said to be improper Riemann-integrable on [a, + ) and the improper
Riemann integral of f, denoted by [}= f(x) dx or {* f(x) dx, is defined by the
equation
+x b

Jix)dx = lim F(x) dx.
P

M —+w g

In Example 2 of the foregoing section the improper Riemann integral
s © f{x) dx exists but f is not Lebesgue-integrable on [0, +co). That example
should be contrasted with the following theorem.

Theorem 10.33. Assume f is Riemann-integrable on [a, b) for every b > a, and
assume there is g positive constant M such that

1]
J. ) de < M forevery b = a. (22)
Then baﬂ‘f f and |f| are improper Riemann-integrable on [a, +o0). Also, f is
Lebesgue-integrable on [a, + o0) and the Lebesgue integral of f is equal to the im-
proper Riemann iriegral of f.

Proof. Let F{b)ﬁ: M| f(x)_l dx. Then Fis an increasing function which is bounded
above By M, so lim,... , ,, F(b) exists. Therefore | ] is improper Riemann-integrable
on fa, + o). Since

0 < 1S — A(x) < 25,
the limit

; ]
lim_ J‘ WO — £} dx

al§o exists; hence the limit lim, , , ., {2 £(x) dx exists. This proves that fis improper
Riemann-integrable on [a, + 00). Now we use inequality (22), along with Theorem
10.31, to deduce that fis Lebesgue-integrable on [a, + o) and that the Lebesgue
integral of f'is equal to the improper Riemann integral of £,

?om, There are corresponding results for improper Riemann integrals of the
orm

I ' ) dx = Gim | f0x) dx,

— —
- @ a

I

j “fdx = lim J.b Fx) dx,

Browgor
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‘rf(x) dx = Hm hf(x) dx,

Lind 5 20 P9

which the reader can formulate for himself,

If both integrals {< . f(x) dx and [} © f(x) dx exist, we say that the integral
2 f(x) dx exists, and its value is defined to be their sum,

+ L] + @
J Jix)dx = j‘ f(x)dx + J. f(x) dx.
If the integral [ f(x) dx exists, its value is also equal to the symmetric limit

b
lim I J(x) dx.
p oo Jog

However, it is important to realize that the symmetric limit might exist even when
§2 f(x) dx does not exist (for example, take f(x) = x for all x). In this case the
symmetric limit is called the Cauchy principal value of [*Z f(x) dx. Thus §*2 x dx
has Cauchy principal value 0, but the integral does not exist.

Example 1. Let f(x) = ¢ *x™ !, where y is a fixed real number. Since e™%*5"~1 - 0
as x -+ +00, there is a constant M such that ¢~=2x*~! < M for all x = 1. Then
e %7V = Me 2 5o

f'f(")l dx = Mfc"‘f’ dx = 2M(l — &%) < 2M.
1 [}

Henge the integral §§™ e~*x*~1 dr exists for every real y, both as an improper Riemann
integral and as a Lebesgue integral, :

Fxsmple 2, The Gamma function integral. Adding the integral of Exampie 1 to the
integral [4 e~*x*~! dx of Example 2 of Section 10.9, we find that the Lebesgue integral

+ oo

Iy = f e dx
o

exists for each real y > 0. The function T so defioed is called the Gamma fanction.

Example 4 below shows its relation to the Riemann zeta function.

NOTE. Many of the theorems in Chapter 7 concerning Riemann integrals can be
converted into theorems on improper Riemann integrals. To illustrate the straight-
forward manner in which some of these extensions can be made, consider the
formula for integration by parts:

] b
'[ f(x)g'(x) dx = f(b)g(b) — fla)g(a) ~ J glx}f'(x) dx.

Since b appears in three terms of this equation, there are three limits to consider
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as b > oo, If two of these limits exist, the third also exists and we get the
formula

o0 . [
J' Jg'G) dx = tim (b)) ~ Fledata) - J' 600/ (x) dx.
'] = .

i Other theqrems on Riemann integrals can be extended in much the same way
to improper R[emann integrals. However, it is not necessary to develop the details
of these extensions any further, since in any particular example, it suffices to apply
the required theorem to a compact interval [a, 5] and then let & — + co.
Enmp!e;!». The functional equation T(y + 1) = y[{y). 0 < a < b, integration by
parts gives

» s
f e dx = e — Pt + yJ‘ e " gy,

- o
Letting @ — 0+ and & — + o0, we find T(y + 1) = yI{y).

Example 4. Integral representation for the Riemann zeta Jfunction. The Riemann zeta
function { is defined for 5 = 1 by the equation )

= 1
OEDIE
=1

'_I‘hia example shows how the Levi convergenoe theorem for sevies can be used to derive an
integral representation,

LIS = f R

a -1
The integral exists as a Lebesgue integral,
In the integral for I'(s} we make the change of variable r = nx, n > 0, to obtain

= @
I'(s) = f Pl St B P ”'j P i
o 0

Hence, if 2 > 0, we have
27(s) = on e "t dx,
]
H 5 > 1, the series 32, »~* converges, so we have
wWre = 3° J; T e g,

the series on the right being convergent. Since the integrand is nonnegative, Levi's con-
vergence theorem (Theorem 10.25) tells us that the series $9 , = x5t converges
almost everywhere to a sum function which is Lebesgue-integrable on [0, + co) and that

o

Ere =3 J‘ emeiar = (T3 et g
o 9

e =51
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Butif x > 0, wehave 0 < £ * < 1 and hence,
Semo € b
1—e* &£-1

A=l

the series being a geometric series. Therefore we have

e—nxt—l —

[Ms

e -1

o

almost everywhere on [0, + ), in fact everywhere except at 0, so
-1

= s Xt 1 = w__
{(S)F(s)-J;Ze x* dx—J;ex_ldx.

n=1

10.14 MEASURABLE FUNCTIONS

Every function f which is Lebesgue-integrable on an interval £ is the limit, almost
everywhere on [, of a certain sequence of step functions. However, the converse
is not true.  For example, the constant function f = 1 is a limit of step functions
on the real line R, but this function is not in L{R). Therefore, the class of functions
which are limits of step functions is [arger than the class of Lebesgue-integrable
functions. The functions in this larger class are called measurable functions.

Definition 10.34. A function f defined on I is called measurable on I, and we write
F e M(D), if there exists a sequence of step functions {s,} on I such tha

fim s(x) = f(x) almost everywhere on I.

F -+
Note. If fis measorable on f then f is measurable on every subinterval of 7.

As already noted, every function in L{I} is measurable on I, but the converse
is not true. The next theorem provides a partial converse.

Theorem 10.35. If fe M(I) and if | f(x)| < g(x) almost everywhere on I for some
nonnegative g in L{I), then fe L(I).

Proof. There is a sequence of step functions {s,} such that 5(x) — j(x) almost
everywhere on 1. Now apply Theorem 10.30 to deduce that f e L(/).

Corollary 1. If fe M{I) and | f] € L), then f & L{I).
Corollary 2. If [ is measurable and bounded on a bounded interval I, then f e L(I).
Further properties of measurable functions are given in the next theorem,

Theorem 10.36. Let ¢ be a real-valued function continuous on R, If fe M(I) and
g € M(I), define h on I by the equation

h(x) = @[f(x}, g(x)].
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Then he M{I). In particular, f + g, {-g, |/, max (f, g), and min (f. @) are in
M(I). Also, 1/f e M(I} if f(x} # O almost everywhere on I.

Proof. Let {5} and {1,} denote sequences of step functions such that 5, — fand
t, -+ g almost everywhere on I. Then. the function 4, = ¢(s,, 1,} is 2 step function
such that », — & almost everywhere on . Hence 4 & M(J).

The next theorem shows that the class M(F) cannot be enlarged by taking
limits of functions in M(J).

Theorem 10.37. Let f be defined on I and assume that {£.} is a sequence of measur-
aife functions on I such that f{x} — f(x) almost everywhere on I. Then S is measur-
able on I,

Progf. Choose any positive function g in L(I), for example, 2x) = 1/{1 + x*)
forall xin I Let

JAx)

_— forxin 7.
b+ £

Fux) = g(x}

Then

F{x) —+ gix)f{x)
1+ [f(x)

Let F(x) = g(x}fx){l + |f(x)]}. Since each F, is measurable on J and since

IFy(x)] < g(x) for all x, Theorem 10,35 shows that each F, e L{I). Ako, |F(x)| =

g(x} for all x in I so, by Theorem 10,30, F e L(I} and hence Fe M{I). Now we
ave

almost everywhere on [

FCO{g(x) = [FOAN = £(x) {1 ~ _lﬂi)l..,} = Jex) _
V=IOt = G T i e = T

for all xin I, s0

- fx&
J(x) 0 = IFGIl

Therefore f'¢ M(I) since each of F, g, and |F, |15 in M(J) and g(x) — [F{x)| > 0
for all x in 1.

NOTE. There exist nonmeasurable functions, but the foregoing theorems show that
1L IS not easy to construct an example. The usval operations of analysis, applied to
measurable functions, produce measurable fanctions. Therefore, every function
which occurs in practice is likely to be measurable. (See Exercise 10.37 for an
example of a nonmeasurable function.)
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1015 CONTINUITY OF FUNCTIONS DEFINED BY LEBESGUE INTEGRALS

Let f be a real-valued function of two variables defined on a subset of R? of the
form X x ¥, where cach of X and ¥ is a general subinterval of R. Many functions

in analysis appear as integrals of the form
F(y) = j fix, y) dx.
X

We shall discuss three theorems which transmit continuity, differentiability, and
integrability from the integrand f to the function ¥, The first theorem concerns

continuity.
Theorem 10.38. Let X and Y be two subintervals of R, and let f be a function defined
on X x Y and satisfying the following conditions:

a) For each fixed y in ¥, the function f, defined on X by the equation

Hx) = fix, »)
is measurable on X.
b) There exists a nonnegative function g in LAX) such that, for each y in Y,

o, ) £ 9(x) aeond
c) For each fixed y in ¥,
Bm fi{x,t) = f{x,¥) aeonX.

f-y
Then the Lebesgue integral [y f(x, y) dx exists for each y in Y, and the function F
defined by the equation

Hﬂ=jﬂnﬂh
X
is continuous on Y. That is, if v € ¥ we have

lim J' f(x, ) dx = j lim £(x, 1} dx.
x X

=y vy

Proof. Since f, is measurable on Y and dominated almost everywhere on X by a
nounegative function g in L{X}, Theorem 10.35 shows that f, € L(X}. In other
words, the Lebesgue integral [y f{x, y) dx exists for each y in Y.

Mow choose a fixed y in ¥ and et { y,} be any sequence of points in ¥ such that
Hm y, = y. We will prove that lim F(y,} = F(»). Let G(x} = fi(x, »,). Each
G, € L{X) and (c) shows that G,(x} - f(x, ) almost everywhere on X. Note that
F(y) = [y Gdx) dx. Since (b) holds, the Lebesgue dominated convergence
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theorem shows that the sequence {F(,)} converges and that

lim F(y,) = f I 3) dx = F().
X

N

Example 1. Continuity of the Gamma function T(y) = [} e=* Y dx for y > 0. We
apply Theorem 10.38 with X = {0, + ), ¥ = {0, + o). For each y = 0 the integrand,
as a function of x, is continuous (hence measurable) aimost everywhere on X, 50 (&) holds,
Fot each fixed x > 0, the integrand, as a function of y, is continuous on ¥, so (¢} holds.
Finally, we verify (b}, not on ¥ but on every compact subinterval [g, ], where 0 < a < 5.
For each y in [a, b] the integrand is dominated by the function

xi 0 < x=<1,

glx) =
) {Me"’3 ifx =1,

where M is some positive constant. This ¢ is Lebesgue-integrable on X, by Theorem
10.18, so 'Ihgcrem 10.38 tells us that I is contiruous on fo, b1 But since this is troe
for every subinterval [a, &1, it follows that T is continuous on ¥ = {0, + o).

Example 2, Continuity of
+m :
FO) = J’ e SinX
[+ X

Jor y > 0. In this example it is understood that the quotient (sin x}/x is to be replaved
bylwhenx = 0, LetX = [0, +w), ¥ = (0, + co}. Conditions (a) and {c) of Theorem
10.38 are satisfied. As in Example 1, we verify (b} on each subinterval Y, = [a, +o0),
a > 0. Since [(sin x){x| < 1, the integrand is dominated on ¥, by the function

&£x

g(x) = e~ forx = 0.

Since ¢ is Lebesgue-integrable on X, F is continuous on ¥, for every g > 0: hence Fis
continuous on ¥ = (0, + ),

To illustrate another use of the Lebesgue dominated convergence theorem we
shall prove that F(3) — Oas y — + w0,

Let {y,} be any increasing sequence of real numbers such that Yo = 1 and
Yu o +ooazn - 0. We will prove that F{y ) — 0as s — oo, Let

JAx) = e™%m $in x forx = 0.
x

;‘hen lim,, . f(x} = 0 almost everywhere on [0, +a0), in fact, for all x except 0.
ow

Yo = 1 implies (f{x)| < e~ forallx = 0.

Also, each /, is Riemann-integrable on [0, 5] for every b > 0 and

.3 [}
J- !f,.ISJ. e *dx < 1.
a 0

&
i
i
%A
ki
3
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Therefore, by Theorem 10.33, f, is Lebesgue-integrable on [0, + ). Since the
sequence {f,} is dominated by the function g(x) = ¢ * which is Lebesgue-inte-
grable on [0, + ), the Lebesgue dominated convergence theorem shows that the
sequence {[7* f,} converges and that

+ +an
lim ﬂ:j lim £, = 0.

r+wo g o Ao

But {3 f, = F(y,), 50 F(y,) -+ 0asn —+ w. Hence, F(y}— Oas y - +o0.

NOTE. In much of the material that follows, we shall have occasion to deal with
integrals involving the quotient (sin x)fx. It will be undersiood that this guotient
is to be replaced by 1 when x = (. Similarly, a quotient of the form (sin xy}/x is
to be replaced by y. its Jimit as x — 0. More penerally, if we are dealing with an
integrand which has remevable discontinuities at certain isolated points within
the interval of integration, we will agree that these discontinuities are to be *‘re-
moved” by redefining the integrand suitably at these exceptional points, At points
where the integrand is not defined, we assign the value 0 {o the integrand.

10.16 DIFFERENTIATHON UNDER THE INTEGRAL SIGN

Theorem 10.39. Let X and Y be swo subintervals of R, and let [ be a function defined
on X x Y and satisfving the following conditions:

a) For each fixed y in Y, the function f, defined on X by the equation f(x} = f{x, y)
is measurable on X, and [, € L{X) for some a in Y.

b} The partial derivative D, f(x, y} exists for each interior point (x, ¥Y) of X x Y.
<} There is a nonnegative function G in L{XY} such that

B Jtx, il = G{x)  for all interior points of X x Y.

Then the Lebesgue integral {y f(x, ¥) dx exisis for every y in ¥, and the function F
defined by

F(3) = I ftx, y) dx

is differentiable ar each interior point of Y. Moreover, its derivative is given by the
Sformuda

Fiy) = f D2 f(x, 3} dx.
X
woTE. The derivative F'(y) is said to be obtained by Jifferentiation wunder the
integral sign. .
Proof. First we establish the inequality
|50 < 1460 + 1y — al Gix}, (23)
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for all interior points (x, y) of ¥ x ¥, The Mean-Value Theorem gives us
Jx.3) — f(x,a) = (y — a) D, f(x, ¢),

where ¢ lies between ¢ and y. Since [D,f(x, c)] < G(x), this implies

e N < 1f(x, a)l + |y — af G(x),

which proves (23). Since f, is measurable on X and dominated almost everywhere
on X by a nonnegative function in L(X), Theorem 10.35 shows that Jy e L(X).
In other words, the integral §; f(x, y) dx exists for each y in ¥,

Now choose any sequence {y,} of points in ¥ such that each ¥a * ¥ but
lim y, = y. Define a sequence of functions {g,} on ¥ by the equation

q.(x) =f(x’—y"),w'
Yo — ¥

Then g, € L(X) and g,(x) = D, f{x, y) at each interior point of X. By the Mean-
Value Theorem we have g,(x) = D, f(x, ¢,), where c_ lies between Yy.and y. Hence,

by (c) we have |g,{x)| < G(x) almost everywhere on Y. Lebesgue’s dominated

convergence theorem shows that the sequence {fx g.} converges, the integral
r D, f{x, y) dx exists, and

lim f a =j lim g, :J D,1(x, y) d.
nrm fx X #=w x
But

J'q.= : J'{f(x, ) = f(x, ) dx = Eal = FO)
) 4 Fe — ¥V ix Yo — ¥

Since this last quotient tends to a limit for all sequences {,}, it follows that F(y)
exists and that

F'(p) = lim J. e =J D3 f(x, y) dx.
X X

LAt 4

Exsmple 1. Derivative of the Gamma function. The derivative I“{y) exists foreach y > ©
and is given by the integral

i

r'e) = I 1 log x dx,
i}

obtained by differentiating the integral for I'(y} under the Integral sign. This is a conse-

quence of Theorem 10.39 because for each y in [a, 5], 0 < @ < &, the partial deriva-

tive Dy(e™%x"") is dominated a.e. by a function g which is integrable on [0, + o). In
fact,

Dye™ x4y = aﬁ(e_".x’_‘) = logx ifx >0,
¥y

i
*
s
b
L
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so if y = a the partial derivative is dominated (except at 0} by the function

x*=iog x| flcx=l,
g(x) = { Me—"2 ifxs=1,
0 ifx =10,

where M is some positive constant, The reader can easily verify that g is Lebesgue-
integrable on [0, + o).

Example 2. Evaluation of the integral
+m H
= -0 SN X g,
Fiy) J; ¢ <

Applying Theorem 10.39, we find
+ o .
F’(y)=—f e~ sin x dx ify > 0.
s
{As in Example 1, we prove the result on every interval ¥, = [a, +00), a > 0.) In this
example, the Riemann integral [§ e7*" sin x dx can be calculated by the methods of
elementary calculus (using integration by paris twice). This gives us

b e ¥(—ysinb — cos b) 1
¥ 51 = + - 24)
Le sin x dx Tt 7 e
for all real ¥, Letting b — + oo we find
+ o l A
e ™ gin x dx = = ify =0
o 1+

Therefore F () = —1j{1 + »%}if ¥ > 0. Integration of this squation gives us

= arctan b — arctan y, fory > 0,5 >0

¥oodt
F(}’}—F(b}=—L1+,z

Now Iet & — +oo. Then arctan § —+ z/2 and F{b) — 0 (see Example 2, Section 10.15),
s0 F(3) = =nf2 — arctan y. In other words, we have

re L L P arctan y  if y > 0. (25)
o x 2

This equation is also valid if » = 0. That is, we have the formula

J‘Miii’_i‘dx:g._ (26)
0 X

However, we cannot deduce this by putting y = 0in (25) because we hav? not shgwn that
F is continuobs at 0. In fact, the integral in (26) cxi§ts as an improper Riemann integral.
It does not exist as a Lebesgue integral. (See Exercise 10.9.)
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Epmnle 3. Proof of the Jormula

1
f““—"dx-.l.m ELEI. S
[

x [ x 2

Let {g,} be the sequence of functions defined for all real ¥ by the equation
70 = j e SR @n
o x
First we note that g.(#) — 0 as n — o¢ since

' 1 n i
[gu(m)| = J. e dx =~ f et df « .
1+ nto n
Now we differentiate (27) and use (24) to obtain
&G = - _r P sinxde = — € t-ysina—cosn + 1
o 1+ 5 ’

an equation valid for all real p. This shows that gj{y} ~ —1J(! + y*) for all y and that

g < & (':' : ll_ *1 fraliyzo.
¥

Therefore the function £, defined by

f(y) = {gf.(y) ifo < y=an
" 0 ify > n,

is Lebesgue-integrable on [0, + o) and is dominated by the nonnegative function

ey + b+ 1

o = 142

Also, g is Lebesgue-integrable on [0, + ). Since £,(3) » — 141 + ¥ on [0, + ), the
Lebesgue dominated convergence theorem implies

+ @ +@
Lol 7 o 1+ ;p; 2

But we have
“ J‘; == J‘“ g;(y) dy = gn‘(".) - 9;.(0)-
Jo @

Letting n — oo, we find g0} — n/2.
Nowifb > 0andifn = [b], we have

h -
sinx sin x
J‘ J‘ x4 J‘ smxdx - 00 + smxdx'
o

X . X

5
e
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Since

-—rﬂ as b — +oo,

we have

lim [ S0¥ gy - llmg.(O)——

o Jg x W

This formula will be needed in Chapter 11 in the study of Fourier series.

10,17 INTERCHANGING THE ORDER OF INTEGRATION

Theorem 10.48. Let X and Y be two subimtervals of R, and let k be a function which
iy defined, continuotis, and bownded on X x Y, say

kx, Wi <= M  Jorall(x,y)inX % Y.
Assume [ e L(X) and g € L(Y). Then we have.:
a) For each y in ¥, the Lebesgue integral [x f(x)k(x, y) dx exists, and the function
F defined on Y by the equation
F(y) = j F(I(x, 3) dx
X

iz continuous on Y.

b) For each x in X, the Lebesgue integral jr glk(x, ¥} dy exists, and the function
G defined on X by the equation

G(x) = j g{ykix, y) dy
T

is continuous on X.

©) The two Lebesgue integrals [y gQONF(y) dy and [x f(x)G(x) dx exist and are
equal. That iz,

[ s [L 90K, 3) dy] dx = L ) [ Lf(x}kfx, » dx] dy. (8
Proof. For each fixed y in ¥, let f,(x) = f{x}k(x, y}. Then f, is measurable on &'
and satisfies thg inequality
£ = 1fk(x, ) < MIfx)]  forall xin X.
Also, since k is continuous on X x ¥ we have
lim flxe(x, 1) = f(x)k(x, y) forall xin X.
-y

Therefore, part (a) follows from Theorem 10.38. A similar argament proves (b).




258 The Lebespue Integral Th. 10.40

Now the product /- G is measurable on X and satisfies the inequality
G = lﬂx)lj ¢ kix, ) dy < M’ |f(x)],
¥

where M’ = M {y |g(»)| dy. By Theorem 1{.35 we see that f-Ge L(X). A
similar argument shows that g+ Fe L({Y).

Next we prove (28). First we note that (28) is true if each of fand g is a step
function. In this case, each of £ and g vanishes outside a compact interval, so each
is Riemann-integrable on that interval and (28) is an immediate consequence of
Theorem 7.42.

Now we use Theorem 10.19(b) to approximate each of fand g by step functions.
If ¢ > 01is given, there are step functions s and ¢ such that

J'|f—s|<s and flg—t}ce.
X Y

Therefore we have

Lf-G=J;s-G+A1, 9

where

IAII =

J' - s)-G{ 5_[ - 5|J' 9O Ik(x, y)| dy < er lgl.
X X Y Y

Also, we have

Gx) = }' dk(x, ) dy = j FOCx, 1) dy + Ay,
Jr

¥

where
Ay = j' (g - Oklx, y)dy’ < MJ' lg — 1] < eM.
L 4 kil
Therefore
J' 56 = j ) U FOCx. 1) dy] dx + Ay,
X X Y
where

14, =

A,J s{x) dx
x

< M f is}

< an Is = f1 + 11} < &M + sMJ' 7

4
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so (29) becomes
f f6= J' s(x)[ _[ (MG, ) dy] dx + A, + A, (30)
x r r
Similaxdy, we find

J'g.hf ,(,,)“ s(x)k(x,y}dx]dy+81+33, 6D
¥ Y k4
where

1B, < an /1 and By < mJ’ i< M + sM! lgl.
X Y b 4

But the iterated integrals on the right of (30) and (31} are equal, 50 we have
< [} + [As] + |By| + |B5]

J‘f-G—J. g F
X Y
«:2:;%4»2:;:\4” il +j Igl}.
x ¥

Since this holds for every ¢ > 0 we have {y -G = [, g- F, as required.

NorE. A more general version of Theorem 10.40 will be proved in Chapter 15
using double integrals. (See Theorem 15.6.)

10.18 MEASURABLE SETS ON THE REAL LINE
Definition 10.41. Given any nonempty subset § of R. The function yg defined by

1 ifxe s,

1500} = {o fxeR -5,
is cafled the characteristic function of S. If S is empty we define x(x) = 0 for all x.

Theorem 1042, Let R = (— o, + o). Then we have:

a) If S has measure 0, then x5 € L(R) and g x5 = 0.
b) If xs € L(R) and if {3 xs = O, then 8 has measure 0.

Progf. Part (a) follows by taking ' = g in Theorem 10.20. To prove (b), let
_f“ = xsforanﬂ. T}lcn l};l ES xs 50

P V7 =Z§I % = 0.
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By the Levi thcorem for absolutely convergent series, it follows that the series
2 a=1 Ju{X) converges everywhere on R except for a set T of measure 0. If x € S,
the series cannot converge since each term is 1. If x ¢ §, the series converges
because each term is 0. Hence T = §, s0 § has measure 0,

Definition 10.43. A subses S of R is called measurable if its characteristic function
Xs is measurable. 1If, in addition, s iy Lebesque-integrable on R, then the measure
#(S) of the set 8 is defined by the equation

w9 = [ %
]
If x5 is measurable but not Lebesgue-integrable on R, we define i(S) = +oo. The

Sunction p 5o defined is called Lebesgue measure.

Examples
1. Theorem 10.42 shows that a set S of measure zero is measurable and that 4(5) = 0.
2. Every interval I (bounded or unbounded) is measurable. If f is & bounded interval
with endpoints a < b, then a(f) = b — a. If Iis an unbounded interval, then
#(f) =
3. If A and B are measurable and 4 < B, then g(4) < u(B).
Theorem 1044, a) If S and T are measurable, so is § ~ 7.
b) If S, S, ..., are measurable, so are | )2, S, and (N2, S,

Progf. To prove (2} we note that the characteristic function of § — Tis Xs — Fshy-
To prove (b}, let

[ n @
Un = lJI. Sl'* V; = 'nl Sf! U= lJl s.b
£ == £

Then we have

Zu.. = max (Xs.s---sls) and Ilr‘ = miﬂ. (Is,s---,Zs )9

so cach of U, and ¥, is measurable. Also, x, = lim,_, Xv, and y, = lim,.., xy.,
so U/ and ¥ are measurable.

Theorem 10.45. If A and B are disjoint measurable sets, then
#(4 v B) = p(A) + p(B). (32
Proof Let § = 4w B. Since 4 and B are disjoint we have
Xs = Xa + Xa-
Suppose that g is integrable. Since both y, and y, are measurable and satisfy

0= 24x) < x5{x), 0 = yp(x) < xsix) forall x,
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Theorem 10.35 shows that both x, and xy are integrable. Therefore
ms)=j xs=j u+j X = HA) + u(B).
[ 3 b 4 ]

In this case (32) holds with both members finite.
If x5 is not integrable then at least one of y, or y, is not integrable, in which
case (32) holds with both members infinite.

The following extension of Theorem 10.45 can be proved by induction.

Theorem 1046, If {A,, ...,
then

A} s a finite disjoint collection of measurable sets,

u (;Q. A,-) - ; Q(A,-).

NoTE. This property is described -by saying that Lebesgue measure is finitely
additive. In the next theorem we prove that Lebesgue measure is corntably additive.

Theorem 10.47. If {4,, As, ...} is a countable disfoint collection of measurable
sets, then

(O ) 3 uA). (33

Proof. Let T, = by Ai dy = X7 T = U, 1 4;. Since p is finitely additive,

we have -
WT) = 2. w(A) for each n.

We are to prove that u(T) — p{T’} as n = 0. Note that (7)) < w(T,,,) so
{u(T.)} is an increasing sequence.

We consider two cases. If p(77) is finite, then yp and each x, is integrable. Also,
the sequence {g({7,)} is bounded above by u(T) so it converges. By the Lebesgue
dominated convergence theorem, u(T,) — u(T).

If ¢{T) = -+ o, then ¥y, is not integrable. Theorem 10.24 implies that either
some y, is not integrable or ¢lse every y, is integrable but (T,) — +co. In ecither
case (33) holds with both members infinite.

For a further studi of measure theory and its relation to integration, the reader
can consult the references at the end of this chapter.

10.19 THE LEBESGLUE INTEGRAL OVEfRt ARBITRARY SUBSETS OF R
Definition 10.48. Let f be defined on @ measurable subset S of R. Define a new
function f on R as follows:

rn _ JSf(x)  fxeSs,
"“x)'{o FxeR—S.
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If [ is Lebesgue-integrable on R, we say that [ is Lebesgue-integrable on 5 and we
write f € L{S). The integral of f over S is defined by the equation

([

This definition immediately gives the following properties:

If [ € L(S), then f € L(T) for every subset of T of 8.
If S has finite measure, then 4(S) = 5 1.

The following theorem describes a countably additive property of the Lebesgue
integral. Its proof is left as an exercise for the reader.

Theorem 1049. Let {Ay, Ay, ...} be a countable disjoint collection of sets in R,
and let S = {J2, A, Let f be defined on S.

a) If fe L(S), then f € L{A)) for each i and

Jr=zls

b) If f'e L{A;) for eack i and if the series in (a) converges, then f € L(S) and the
equation in (a) holds.

1620 LEBESGUE INTEGRALS OF COMPLEX-VALUED FUNCTIONS

If fis a complex-valued function defined on an interval I, then f = u + iy, where
wand v are real. 'We say fis Lebesgue-integrable on 1 if both » and » are Lebesgue-
integrable on I, and we define

JlfzJ;u+iJ;u.

Similarly, £is called measurable on f if both u and » are in M(J).
It is casy to verify that sums and products of complex-valued measurable
functions are also measurable. Moreover, since

/=@ + o),

Theorem 10.36 shows that | /] is measurable if £ is.

Many of the theorems concerning Lebesgue integrals of real-valued functions
can be extended to complex-valued functions. However, we do not discuss these
extensions since, in any particular case, it usually suffices to write f = w + iv
and apply the theorems to w and v. The only result that needs to be formulated
explicitly is the following.

Sy
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Theoremn 10.50. If a complex-valued function f is Lebesgue-integrable on I, then
1f1 e L{I} and we have .

ff sjm.

Proof. Write f = u + iv. Since f is measurable and {f| < ju| + ||, Theorem
10.35 shows that | /| € L(I).
Leta = [; /. Then a = re®, where r = |al. We wish to prove that r < fr 1FL
Let
b= e~ ifr =0,
1 ifr = 0.

Then 6] = 1 and r = ba = b |, /= [; bf. Now write bf = U + iV, where
Uand V are real. Then {, f = {; U, since |; 5fis real. Hence

rzj'bfzfusjivigj'ibf|=j|f1.
I I Fi I 1

1021 INNER PRODUCTS AND NORMS

This section introduces inmer products and morms, concepts which play an im-
portant role in the theory of Fourier series, to be discussed in Chapter 11.

Definition 10.51. Let f and g be twe real-valued functions in L(I} whese product
[rgisin L{I). Then the integral

J' f(x)g(x) dx 34)

is called the inner product of { and g, and is denoted by (f, g). If £ € L(I), the
nonnegative number (£, 3"/, denoted by | f, is called the L*-norm of f.

NOTE. The mtegral in (34) resembles the sum 33., x ¥, which defines the dot
product of two vectors x = (x,,...,x) and ¥y = {y,....,»). The function
values f{(x) and g(x) in (34) play the role of the components x, and y,, and integra-
tion takes the place of summation. The L2-norm of £is analogous to the length of
a vector.

The first theorem gives a sufficient condition for a function in L(7) to have an
L-norm.
Theorem 1052, If fe L{I) and if [ is bounded almost everywhere on I, then
el
Proof. Since f e L(I), fis measurable and hence /? is measurable on f and satisfies

the inequality {f(x)}* < M|f(x)| abmost everywhere on I, where M is an upper
bound for |f{. By Theorem 10.35, f% € L(I).
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1022 THE SET L’() OF SQUARE-INTEGRABLE FUNCTIONS

Definition 1053, We denote by LI the set of ol real-valued measuroble fimctions
S on Isuch that f* € I(I). The functions in I*(I) are said 10 be square-integrable.

NOTE. The set L*(I) is neither larger than nor smaller than L({J). For example,
the function given by

X =x1 fuQ<x<l, fiO)=20,

is in L([0, I} but not in L([0, I]. Similarly, the fanction g(x) = Ixforx = |
is in Z([1, +o0)) but not in L{[1, + co)).

Theorem 10.54. ¥f fe LI} and g € IXI), then f- g € L{I) and (af + bg) € IX(I)
Jor every real a and b.

Proaf. Both fand g are measurable so /- g € M(]). Since
()] < ’w) ,

Theorem 10.35 shows that /- g € I(I). Also, (af + bg) € M(J) and
@ + bg)’ = d’f? + 2abf- g + Vg7,
so (af + bg) e IX()).

Thus, the inner product (f, g) is defined for every pair of functions f and gin
L*(I). “The basic properties of inner products and norms are described in the next
theorem.

Theorem 10.55. If f, g, and h are in EXI) and if ¢ is real we have:

a) (£, 9) = (9.0 (commuzativity).

B (f+ab)=00(0+(9.h (inearity).

SN =df@ (associativity).

d) e/ = lef 11} {homogeneity).

e} I(£. 9l < I£1 figl (Caucky-Schwarz ineguality).

DN+ g < 1] + §gl {triangle ineguality).

Proof. Parts (a) through (d) are immediate consequences of the definition. Part ()
follows at once from the inequality

I U LF0) — g@f 2 dy] dx = 0.
I T

To prove (f) we use (¢) along with the relation

If+ a1’ = +0.f+8) =N+ 219 + (9,9) = | F1? + 1g]* + 2£, 9).

ety eyt
S SR SR
2 TR

SRRURD. S
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NOTE. The notion of inner product can be extended to complex-valued functions
[ such that |f] € I*(Z). In this case, (f, g) is defined by the equation

f. g) = 'f SCOTE) dx,
X

where the bar denotes the complex conjugate. The conjugate is introduced so that
the inner product of f with itself will be a nonnegative quantity, namely,

(A = §; |£1%. The I2-norm of fis, as before, |/ = (£, /2,
Theorem 10.55 is also valid for complex functions, except that part (a) must be
medified by writing o
. 9)=(9./) (33} .

This implies the following companion result to part (b):
Lo+ =G+aN=GN+EN =29+ A
In parts (c} and (d) the constant ¢ can be complex. From {c) and (35) we obtain
(f, cg) = (£, 9).

The Cauchy-S8chwarz inequality and the triangle inequality are also valid for
complex functions.

10.23 THE SET L*(J} AS A SEMIMETRIC SPACE

We recall {Definition 3.32) that a metric space is a set T together with a nonnegative
function d on T x T satisfying the following properties for all points x, y, z in T:
1.dix,x) =0, 2. dix,y) » 0 ifx # p

. d(x, v} = &y, x). 4. d(x, ¥} = d{x, z) + d(z, ).

We try to convert I(f) into a metric space by defining the distance d{f, g) between
any two complex-valued functions in I2{I} by the equation

142
df g) = If — ol = (j - yP) .
i

This function satisfies properties 1, 3, and 4, but not 2. If fand g are functions in
L*(I) which differ on a nonempty set of measure zero, then f  gbutf — g = 0
almost everywhere on [, so d{f, g) = 0.

A function d which satisfics 1, 3, and 4, but not 2, is called a semimetric. The
set I*(I), together with the semimetric d, is called a semsimetric space.

1024 A CONVERGENCE THEOREM FOR SFERIES OF FUNCTIONS IN LD

The following convergence theorem is analogous to the Levi theorem for series
(Theorem 10.26).
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Theorem 10.56. Let {g,} be a sequence of functions in I3(I) such thar the serics

=
): gl

converges. Then the series of functions T.2., g, converges a.f‘masr everywhere on I
to a function g in I(I), and we have

gl = tim | > g.] <3 o (6)
mereg Rl kw ]l
Progf. Let M = 3.5, lg.ll. The trangle inequality, extended to finite sums,
gives us '
E L Z I ,‘u <M.
This implies
a 2 2
J (E |Qiz(x)|) dx = ' < M. (37
3 Lk=1
Ifxellet

L) 2
£ = (Z; rg.(x)e) .

The sequence {£,} is increasing, each £, e L{J) (since each g, € I*}(I)), and (37)
shows that [; f, < M?. Therefore the sequence {f, f,} converges. By the Levi
theorem for sequences (Theorem 10.24), there is a function f in LI} such that
Jfy = falmost everywhere on 1, and

J.f=]imj'f;$M3.
! ave ]y

Therefore the series 35 | g,(x) converges absolutely aimost everywhere on [ Let

¢(x) = lim E aax)

n=@m k=

at those points where 1he limit exists, and let

L 2
E g} .
=1
Then each G, € L{I} and G,(x) — |g{(x}{* almost everywhere on 7, Also,

G(x) £ ()< f(x) aeonl

Gx) =

Therefore, by the Lebesgue dominated convergence theorem, [g]? € L(f) and

-f!y = Iimj » {38)
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Since g is measurable, this shows that g € 2(7). Also, we have

n 2 r 2
dal = ZQ;‘, and jﬂnﬂf.ﬁ.ﬂf\fz«
k=1 ! I

,[G" B L k=1
5o

$0 (38) implies
k=1

Igl? = lim < M3,

A

and this, in turn, implies (36).

10.25 THE RIESZ-FISCHER THEOREM

The convergence theorem which we have just proved can be used to prove that
every Cauchy sequence in the semimetric space IX(7) converges to a function in
LXI), In other words, the semimetric space I%(7) is complete. This result, called
the Riesz—Fischer thearem, plays an important role in the theory of Fourier series.

Theorem 10.57. Let {f,} be a Cauchy sequence of complex-valued functions in
IXI). Thar is, assume that for every ¢ > O there is an integer N such that

Ifw = Fill <& whenever m > n > N. (39
Then there exists a function fin LX(]) such that

lim |f, — f]] = 0. (40}
et o
Proof. By applying (39) repeatedly we can find an increasing sequence of integers
n(1) < m(2) < -+ - such that

15 — Fumll < % whenever m = n(k).
Let g1 = fi), and Jet g, = fony — fu—ry for k = 2. Then the series T2, gl
converges, since it is dominated by

"f;u;." + Z: U;(k; _fn{k 1)” < "j;u;“ + Z fn{])“

Each g, is in LX) chce, by Theorem 10.36, the series 3=, g, converges almost
everywhere on 7 to a function fin £2(1). To complete the proof we will show that
bfw — Sl - Oasm — oo

For this purpose we use the triangle inequality to write

S — 1 5 b = sl + ey — FI. (41}

If m = n{k), the first term on the right is <1/2%. Te estimate the second term we
note that

=

.f:.m = X {f;nn - fn(p-n},

[ ETER}
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and that the series 372, ., /iy — Sur-1)l converges. Thercfore, we can use
inequality (36) of Theorem 10.56 to write

2]

= fanl < rx;n [ = Sl < rqzﬂ 71 = e
Hence, (41) becomes

e —f1 < == +

%=% if m = n(k).

Since n{k) — o as k& — ¢o, this shows that | £, — f]| > Gas m - .

NOTE. In the course of the proof we have shown that every Cauchy sequence of
functions in £2{4) has a subsequence which converges pointwise almost everywhere
on I to a limit function fin FA(I). However, it does not follow that the sequence
{ £} itsclf converges pointwise almost everywhere to fon £. (A counterexample is
described in Section 9.13.) Although {f,} converges to fin the semimetric space
IX(I), this convergence is not the same as pointwise convergence.

EXERCISES

Upper functions
10.1 Prove that max (f, g) -+ min (£, g) = f + g, and that

max (F+ hog + B = max (£, ¢} + A, min{(f+ b g + B = min (f, g} + A

10.2 Let {£.} and {g,} be increasing sequences of functions on an interval I. Let fy =
max (ﬁh gn) and Uy = min (fus gn)'

a) Prove that {«,} and {v,} are increasing on £
B)Iff, A f ae onTandifyg, # g ae onl prove that u, » max (£, g} and
v, s mn(f,g) ae onl

10.3 Let {s,} be an increasing sequence of step functions which converges pointwise on
an interval 1 to a limit function f. If £ is unbounded and if f(x) = 1 almost everywhere on
¥; prove that the sequence {{; s,} diverges.

10.4 This exercise gives an example of an upper function £ on the interval 7 = [0, 1]
such that —/¢ U(I). Let {r, r,, ...} denote the set of rational numbers in [0, 1] and
leth = [r,— 4™, + 47" N[ Letflix) =1 if xe £, for some u, and let f(x} = 0
otherwise. )

a) et fufx) = 1ifxe L, fi(x} = 0if x ¢ I, and iet 5, = max (fy,...,.f). Show
that {s,} is an increasing sequence of step functions which generates f, This
shows that f= U(]).

b) Prove that [, £ < 2/3,

c} If a step function s satisfes s(x} < —f(x) on /, show that s(x) = —1 almost
everywhere on fand hence f; 5 < —1.

d} Assume that ~f & U(J) and use {(B) and {c) to obtain a contradiction.

A
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noTE, In the following exercises, the integrand is to be assigned the value 0 at points
where it is undefined.

Convergence theorems
108 If fi(x} = e~ — 272 show that

' 2 J;m;(x}dx # Lmn;ﬁ.(x)dx.

10.6 Justify the following eguations:
1

1 w i 1
a)J]og ! o= Zfabmz;f dx = 1,
[+ =i 3]

} - x o k=l

1yt 1 < 1
= dy = — (p =0
o [ el s R ¢

10.7 Prove Tannery's convergence theorem for Riemamn integrals: Given a sequence of
Sfunctions {f,} and an increasing sequence {p,} of real numbers .gucl: that p, — +0 as
n —+ . Assume thar

a) f, — funiformiy on |, &) for every b = a.

by £, is Riemann-integrable on [a, b) for every b = a.

) (0] = glx) almost everywhere on [a, + ©0), where g is nonnegative and im-
proper Riemunn-integrable on [a, + ®).

Then both f and |f| are improper Riemann-integrable on [a, + o), the sequence {[3* £,
converges, and

+

L]

F(x) dx = lim J' " ) dhx.

L

d) Use Tannery’s theorem to prove that

3 o
Tim (t - f) X dx = J' x> dy, Hp> ~1l
Q (4]

o "

10.8 Prove Fatou's lemmna: Given a sequence {f,} of nonnegative fanctions in L{I) such
that (a) {f,) converges aimost everywhere on I to a limit function f, and (b) [; fu < A for
some A > Gand all n = 1. Then the limiy function f& LI} and iy f 5 A.

NOTE. It is not asserted that {[; £} converges. (Compare with Theorem 10.24.)

Hint, Letg(x) = inf {£{x), s 10... ). Theng, 7 f ae.onfand [;g, < [t fy =
A 50 limy_, o 17 g, exists and is <.4. Now apply Theorem 10.24.

Improper Riensann Integrals
109 a) If p > 1, prove that the integral [T ™ x~7 sin x dx exists bot_h as an improper
Riemann integral and as a Lebesgue integral, Hint. Integration by parts.
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b} If 0 < p < 1, prove that the integral in (a) exists as an improper Riemann
integral but not as g Lebesgue integral. Himt, Let

V2 e+ cxsm+ " forn=1,2,...,
g(x) = {2x r 4
L} otherwise,

and show that

- = 1si dx > dx::__
J; X" |sin x| >J; a(x) 2]‘

10.10 a) Use the trigonometric identity sin 2x = 2 sin x cos x, along with the formula
i§ sin x/x dx = nf2, to show that

J‘m sinxcosxdx -
0 x 4

b) Use integration by parts in (a) to derive the formula

“'sinzx P
o=
J; =2 2

¢} Use the identity sin® x + cos? x = 1, along with (b), to obtain

® sin* x
dx =
L%

d) Use the result of (¢} to obtain

L L N
J' sm&x dx =
o x
10.11 If a > 1, prove that the integral [} x? (log x)f dx exists, both as an improper
Riemann integral and as a Lebesgue integral forall gif p < — 1, orforg < —~1 ifp= —1.
10.12 Prove that each of the following integrals exists, both as an improper Riemann
integral and as a Lebesgue integral.

a)J- sin? 1 ax, b)J' *e*dx (p>0,q> 0)
1 X Q

E R ]

Wt R

10.13 Determine whether or not each of the following integrals exists, either as an

improper Riemann integral or as a Lebesgue integral.
a) Iw @) dr, b) f €os x x
o

“  logx d 1
¢ —E d ~¥ gim L
)J: I SN }J; e smxdx

1 oy
&) f log x sin 1 dx, 3 J. e~ * log (cos® x) dx.
o X o
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10,14 Determine those values of p and g for which the following Lebesgue integrals exist.

a) f 0 — Ky dx, h)J- xte==" dx,
i)
= g2l o e ® sin (x*)
" i, d dx,
° _‘. T1-x ) J:, x*
15 xp—! s .
dx, f) f Gog x)° (sin x)~ 172 dx.
s 1+ 2 -

10,15 Prove that the following improper Riemann integrals have the values indicated
(1 and » denote positive integers).

P sin?*tly  a(2m)) Iogx R
a} L x dx = 22'“()!!}3’ b) f*l N
© —m—— Wm — 1)
A+ vl gy o BB O
9 J; U +x (m + o)l

18.16 Given that fis Riemann-integrable on [0, 1], that fis periodic with period 1, and
that {} f(x}dx = 0. Prove that the improper Riemann integral §;7 < x~* f(x) dx exists
ifs > 0. Hint. Let g(x) = §T ) dr and write §§ x™* £(x) dx = §¥ x~* dg(x).

10.17 Assume that fz R on [a, b] for evety b > a > . Define g by the equation
xg(x) = §Tf@) dt if x > 0, assume that the lmit lim, ., g(x) exists, and denote this
limit by B. If g and b are fixed positive numbers, prove that

a) rf‘—")dx = b -g(a)+fb‘g~(f—)dx.
« X .

T
b} lim r'@ix=ﬂlogé.
ar X a

T+
¥
¢) J. flaxy = S®5) 4 = Brog? + r&ﬂd;
x N b . 1
d) Assume that the limit lim,_ g, x (% /()¢ ~2 dt exists, denote this limit by -4,
and prove that

fﬂurqmﬂﬂ A1og? Iﬂw
X

¢} Combine (c) and (d} to deduce
f”m%ﬂwhgw_mmf
x b

and use this result to evaluate the following integrals:

“ﬁg;@ﬂﬂ,Jwikifﬁ
X Y x
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Lebespur integrals
10.18 Prove that each of the following exists as a Ecbesgue integral.
' xlogx 191
a —= dx, b dx -1),
)Lu”}z ) [ s > -

1 1 _
c)J. log x log (1 + x) dx, d)f log1 —x) ,
£ 1] 1]

(] — x'}l}?
10.19 Assume that £ is continuous on [0, 1], 7(0) = 0, F'(0) exists. Prove that the
Lebesgue integral f3 F{x)x=%'2 dx exists.

10.20 Frove that the integrals in (a) and {c) exist as Lebesgue integrals but that those in
(b) and (d} do not.

a) J.m xze—x'sinzx dx, b) fm xie-z‘ﬂnzx dx,
[ o

c) v dx d v de
e I+ x*sin?x’ + 44 x¥sintx’

Hins. Qbtain upper and lower bounds for the integrals over suitably chosen neighbor-
hoods of the points nx (n = 1,2, 3,...).

Fanctions defined by mtegrals
10.21 Determine the set § of those real values of y for which e=ach of the folowing
integrals exists as & Lebesgue integral.

“’coaxydx ® o2 -1
o—]+x" b)ﬂ(x+y2) dx,

L
o [ e
a X

10.22 Let F(y) = [ e cos 2xydr if ye R. Show that F satisfies the differential
oquation F(3) + 2y F(3) = 0 and deduce that F(») = }vze . (Use the resuit
|8 e dx = §+/x, detived in Exercise 1.19))

10.23 Let F(y) = Ig sin xp/x(x® + 3 dxif y > 0. Show that F satisfies the differential
equation F*(y} ~ F(y) + n/2 = 0 and deduce that F(3) = 3x(l — 7). Use this result
to deduce the following equations, valid for y > 0 and a > O:

@ : = —ay
SNXY e Fol e, cosxy Lo mT
o x(x* + a?) 247 s x* 4 a2 2a

&y
4y f e~** cos 2xy dx.
[+

© x sin x n * i
5 idx=«e”r ¥OU may use §fl~l—’:dx=’—t.
o X + 2 ’ o X 2

10.24 Show that [ [T flx, ) dxldy # 7 [I® fix, ) dy) dx if

X — ¥ X% - yz
, = . b y = e
2 fx, v} CTop ) fix, ») P

Xy
H
p
i
&
; .
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10.25 Show that the order of integration cannot be interchanged in the following integrals:

S[[zele o[[[er-rmela
o Lo (x + ! o Lf1 |

1026 Let f(x, y) = 5 drf[(1 + x2¢2(1 + y26)]if (x,)) # (0, 0). Show (by methods
of elementary calculus) that f(x, y} = dn{x + ', Evaluate the iterated integral
I3 [§3 £(x, ¥} dx] dy to detive the formula:

0 ¥
J’ i"i“—‘-"i;?"_)dx=xlogz.
i3 X

10.27 Let f(p} = [ sin x cos xp/xfr if y = 0. Show (by methods of elementary
caloulus) that f(3) = #/2if0 < y < landthatf(») = Oify > 1. Evaluate the integral
13 £(3) dy to derive the formula

52‘-' fosas=1,

x2 =

f‘”sinaxsinxdx:
o - ifa > 1.
2

1028 a) If s > Oand 2 > 0, show that the series
i_lf“’sinbmxdx
=tn), x*

. =1 ™ sin Zanx
lim - —
Fal X aml " ™ x'

b) Let f(x) = ¥, sin 2nnx)fn. Show that

converges and prove that

dx = 0.

f‘”@dwtzx)‘—‘m—s)ri“—’dr, if0 <5 <1,
s X o &

where { denotes the Riemann zeta function.
10.29 a} Derive the following formuta for the ath derivative of the Gamma function:

M™(x) = Jw e dog Y dr (x> 0L

L

b) When x = 1, show that this can be written as follows:
1
o) = J @+ (—1% e Y2 (og 1) dt.
[1]

¢} Use (b) to show that (1) has the same sign as (—1)%,
In Exercises 10.30 and 10.31, I' denotes the Gamma function,

1030 Use theresult [§ e=* dx = v/ to prove that ['(3) = vz, Provefhat (s + 1) =
nland that T(r + §) = @0)! Ve/@mlifn = 0,1,2,...
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10.31 a) Show that for x > 0 we have the series representation

o

=3 1 4 S e

LN nt ntx n=Q

where ¢, = (1/nY) (¥ 1l (log e dr. Hint: Write [§f = 3 + [T and use
an appropriate power series expanston in each integral.
b) Show that the power series ¥ oo, £,2" converges for every complex z and that
the series Y02 o {(—1)"/ni]{(n + 2) converges for every complex z # 0, —1,
—3,...
10.32 Assume that f is of bounded variation on [0, 5] for every & > 0, and that
limy., 4o, f(x) exists. Denote this Hmit by f{w0) and prove that

T
lira yJ‘ e 7f(x) dx = f{eo)
¥4 )

Himt. Use integration by parts.

10.33 Assume that fis of bounded variation on [0, 1]. Prove that

1
lim yf () dx = F(0+).
L3

¥l

Measurable functions
.34 ¥ 1 is Lebesgue-integrable on an open interval 7 and if f7(x) exists almost every-
where on [, prove that /' is measurable on £, .
10.35 3) Let {s,} be a sequence of step functions such that 5, — f everywhere on R.
Prove that, for every real a,
20 <0 1
e +oo)) = |J ns{‘((a 4 =, +m)) .
=i k=n "
b} If fis measurable on R, prove that for every open subset A4 of R the set £~ 1(A4)
. is measurable,

10.36 This exercise describes an example of 2 nonmeasurable set in R, If x and y are real
numbers in the interval [0, 1), we say that x and y are equivalent, written x ~ », whenever
x — yis rational. The relation ~ is an equivalence relation, and the interval [0, 1] can
be expressed as a disjoint union of subsets (called equivalence classes) in each of which
no two distinct points are equivalent. Choose a point from cach equivalence class and
let E be the set of points so chosen. We assume that £ is measurable and obtain a contra-
diction. Let 4 = {ry, ra, ...} denote the set of rational numbers in {1, 1] and let
E, =i+ x:x€E}

a} Prove that each E, is measurable and that u(E,)} = a(E).

b) Prove that {E,, E,,...} is a disjoint collection of sets whose union contains

[0, 1] and #s contained in [—1, 2].
¢} Use parts {3} and (b) along with the countable additivity of Lebesgue measure
0 obtain a contradiction.

10.37 Refer to Exercise 10,36 and prove that the characteristic function yg is not measur-
able. Let f= X, — X;_, where I = [0, 1]. Prove that |f| e L(D but that f¢ M(I).
(Compare with Corollary 1 of Theorem 10.35.)

Square-integrable fanctions

In Exercises 10.38 through 10,42 all functions are assumed to be in £2(J3. The I*-porm
§f] is defined by the formala, § /] = (J; If|HY2

10.38 If limy, 1/ — S| = O, prove thatlim, .o ] = IS

1639 If lim,.., [ £, — S = Oand if lim, ., £,(x) = g(x) almost everywhere on I, prove
that f{x) = g(x) almost everywhete on [,

10.40 If £, — funiformly on a compact interval [, and if each /; is continuous on 7, prove
that li-m-!-.w "j:: - fB =4

1041 If lim,.,o |/ — F) = 0, prove that limp.,p §; o9 = [1f-g for every g in
13T,

1042 Hlim,., [/ — f] = Gandiim,, . |2, — ¢l = 0. prove thatbim,_. o J; -0 =
Lf-g
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CHAPTER 11

FOURIER SERIES
AND FOURIER INTEGRALS

1LI INTRODUCTION

In 1807, Fourier astounded some of his contemporaries by asserting that an
“arbitrary” function could be expressed as a linear combination of sines and co-
sines. These linear combinations, now called Fourier series, have become an
indispensable tool in the analysis of certain periodic phenomena (such as vibra-
tions, and planetary and wave motion) which are studied in physics and engineering.
Many important mathematical questions have also arisen in the study of Fourier
series, and it is a remarkable historical fact that much of the development of
modern mathernatical analysis has been profoundly influenced by the search for
answers lo these questions. For a brief but excellent account of the history of this
subject and its impact on the development of mathematics see Reference 11.1.

11.2 ORTHOGONAL SYSTEMS OF FUNCTIONS

The basic problems in the theory of Fourier series are best described in the setting
of a more general discipline known as the theory of orthogonal functions. There-
fore we begin by introducing some terminology concerning orthogonal functions.

NOTE. As in the previous chapter, we shall consider functions defined on a general
subinterval 7 of R. The interval may be bounded, unbounded, open, closed, or
half-open. We denote by Z*() the set of all complex-valued functions f which are
measurable on [ and are such that | 17 € I{I). The inner product (£, g) of two such
functions, defined by

fig) = j ST d,
1

always exists. The nonnegative number | £ = (f; £}'/* is the 2-norm of £,
Definition H.I. Let S = {@q, 0,, ¢y, .. . } be a collection of functions in IX(1). If
(P Pu} = 0 whenever m # n,

the collection § is said to be an orthogonal system on I. If, in addition, each @, has
norm 1, then S is said to be orthonormal on I.

NOTE. Every orthogenal system for which each ¢ # 0 can be converted into
an orthonormal system by dividing each ¢, by its norm.
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We shall be particularly interested in the special trigonometric system
S = {@¢ P1» P2, .. - }, Where

1 CO5 nX sin nx
¢0(x) = s @2;1—1(’:) = — 3 (PZn(x) = (I)
V2n Va Vr
for n = 1,2,... Itis a simple matter to verify that § is orthonormal on any

interval of length 2z. (See Exercise 11.1.) The system in {1} consists of real-valued
functions. An orthonormal system of complex-valugd functions en every interval
of length 2x is given by

inx .
e COS #X <+ {8In nx
= n=012...

¢H(X)=@—W,

11.3 THE THEOREM ON BEST APPROXIMATION

One of the basic problems in the theory of orthogonal functions is to approximate
a given function fin F*(F) as closely as possible by lingar combinations of elements
of an orthonormal system. More precisely, let 5 = {¢q, @, @1, ...} be ortho-
normal on Fand let

10x) = 5_‘, byo(),

where by, b,, .. ., b, are arbitrary complex numbers. We use the norm || f — ¢}
as a measure of the error made in approximating f by #,. The first task is to choose
the constants by, . .., b, so that this error will be as small as possible. The next
theorem shows that there is a vnigue choice of the constants that minimizes this

EITOT,
To motivate the results in the theorem we consider the most favorable case.

If f is already a linear combination of @y, @4, - - - , @y, 52y

f=2 ave
=4

then the choice 1, = Fwill make | f — ] = 0. We can determine the constants
€y . . - » C, a8 follows. Form the inner product (f, ), where 0 < m < n. Using
the propertics of inner products we have

*

n
(f, o) = (g; P w..) = .;:) P P = Ca
since (p, @) = 0 if k # m and (p,, 9.} = 1. In other words, in the most
favorable case we have ¢, = (f, @ dform = 0, 1, ..., n. The next theorem shows
that this choice of constants is best fér all fanctions in IX(1).
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:meo;em 1.2, Let {@g, 1. @3,-..} be orthonormal on I, and assume that
Fe IX{I). Define two sequences of ﬁmawﬂs {s.} and {1,} on I as follows:

%) = 2 a@l®),  4(x) = Z"I bupu(x}),
k=0 k=0

where
a={Le) Surk=012%., 2)
and bo, by, by, ..., are arbitrary complex numbers. Then for each n we have
Jf= sl < 1f -1 33

Moreover, eguality holds in 3) if, and only if, by = e, fork = 0,1,.. ., n
Progf. We shall deduce (3} from the equation
R L2 N
bf =t = 107 = 2o led® + 2 I — el “)
= =0

It is clear that (4) implies (3) because the right member of (4) has its smallest value
when b, = ¢, for each k. To prove (4), write

"f_ tn”z = (f_ n!f_ rn) - (f"f} - (f; tu) - ("mf} + (!m rn)'

Using the properties of inner products we find

(1) = (E ) bpw 32 bmwm)
k=0 m=
= 20 22 hibow on) = 2 I,
=0 mpe=i} k=1

and
1) = (f, > m) =Y (e =3 b,
k=0 k=0 k=0
Also, (4, £ = {f, 1) = Tiwo MFy, and hence
I = al? = 102 Z By — 2 bt + ﬁ [AE
= 11 Z lex)? + E b — )b, — &)

= |/ ~ Z led? + Z I, — el
k=0 i=0
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1.4 THE FOURIER SERIES OF A FUNCTION RELATIVE TO AN
ORTHONORMAL SYSTEM

Definition 11.3. Let S = {@y, ®y, ©2, ... } be orthonormal on I and assume that
fe ). The notation
@«
163~ 3 canx) ©)
=

will mean that the numbers cg, ¢y, C3, . .. are given by the formuias
€ =Gw~)=JI{an{x) dx  (r=012...) ©
14

The series in (5) is called the Fourier series of f relative to S, and the wumbers
€0 €1s €2y - - - are called the Fourier coefficients of f relative to §.

NOTE. When 7 = [0, 2n] and § is the system of trigonometric functions described -
in (1), the series is called simply the Fourier series generated by f. We then write {5)
in the form

o)
F(x) ~ %’i + 2 (a, cos nx + b, sin nx),
a== |

the coeflicients being given by the following formulas:

2x 2x
= EJ. ftycosmedt, b, = ! F(t) sin nt dt. 7
7 Jo

T o

In this case the integrals for a, and b, exist if f e L{{0, 2r]).

11.5 PROPERTIES OF THE FOURIER COEFFICIENTS

Theorem 11.4. Let {@qg, 4, @1, . .-} be orthonormal on I, assume that fe '),
and suppose that

J(x) ~ EQ Cetpa{x).
e
Then
a) The series 3 |c.|? converges and satisfies the inequality

0

z c|> = Bf1*  (Bessel’s inequality). (8)

b) The equation

Z = [f1*  (Parseval’s formula)
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holds if, and only if, we also have
lim “f- sn[r = 0’
W

where (5.} is the sequence of partial sums defined by

sy(x) = 2: ep(x]).
k=0

Proof. We take &, = ¢, in (4) and observe that the left member is noanegative
Therefore t

f_, fal < i/

This establishes (a). To prove (b), we again put b, = ¢, in (4) to obtain

If = sl = IA12 = X led™
k=0
Part (b) follows at once from this equation.

AF a furthf:r consequence of part (a) of Theorem 11.4 we observe that the
Fourier coefficients ¢, tend to 0 as # — o (since T le,)? converges). In particular,
when ¢ (x) = " /\/2Ix and I = {0, 2x] we find

2z
lim J Jxje ™ dx = 0,
Ll ] [

from which we obtain the important formulas

L Zx x
lim Jxdcos mx dx = lim f fx)sinnx de = 0, L]
[1]

A= 4] n

These formulas are also special cases of the Riemann-Lebesgue lernma (Theorem

11.6).
NOTE. The Parseval formula
17 = leol® + eyl + Jeo® + -
is analogous to the formulg
I = <}

for the ]engfh O,f a vector X = (x4,..., x,} in R". Each of these can be regarded
as a generalization of the Pythagorean theorem for right triangles.
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11.6 THE RIESZ-FISCHER THEOREM
The converse to part (a) of Theorem 11.4 is called the Riesz—Fischer theorem.

Theorem I1.5. Assume {@q, 91, ...} is orthonormal on I, Let {¢,} be any sequence
of complex numbers such that T |c,|* converges. Then there is a function f in XD
such that

al {f, @) = ¢, foreachk = 0,

and
B 12 = D L
k=0
Proof. Let

5x) = Z € @ufx).
k=0

We will prove that there is a function fin L*(I} such that (f, ¢} = ¢, and such that
fim |js, — f = 0.

l ad )

Part (b) of Theorem 11.4 then implies part (b} of Theorem 11.5.

First we note that {s,} is a Cauchy sequence in the semimetric space L'(Z)
because, if m > n we have

i

5. — sull®
r=at+}

Z ;Ckgzs

k=n+1

Z E Ckar(‘ph (Pr}
k=a+1

and the last sum can be made less than ¢ if m and » are sufficiently large. By
Theorem 10.57 there is a function fin L*{(F) such that

hm |ls, — f| = 0.

Eand 4

To show that (£, @¢,) = ¢, we note that (s,, @) = ¢ ifn > k, and use the Cauchy-
Schwarz inequality to obtain

le, — (fs @)l = 15w @ — (s @l = I — £ o) < s, = Sl
Since |5, — f| = 0 as n — oo this proves (2).

NoTe. The proof of this theorem depends on the fact that the semimetric space
12(1) is complete. There is no corresponding theorem for functions whose squares
are Riemann-integrable.
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1.7 THE CONVERGENCE AND REPRESENTATION PROBLEMS FOR
TRIGONOMETRI(C SERIES

Consider the trigonometric Fourier series generated by & function f which is
Lebesgue-integrable on the interval 7 = [0, 2r], say

f(x) ~ %’ + Z {a, cos nx + b, sin nx).
n=]

Twa questions arise. Dogs the series converge at some point x in #7 If it does
converge at x, is its sum f{x)? The first question is called the convergence problem;
the second, the representation problem, In general, the answer to both questions
is “No.” In fact, there exist Lebesgue-integrable functions whose Fourier series
diverge everywhere, and there exist continuous functions whose Fourier series
diverge on an uncountable set.

Ever since Fourier’s time, an enormous literature has been published on these
problems. The object of much of the research has been to find sufficient conditions
to be satisfied by f'in order that its Fourier serics may converge, either throughout
the interval or at particular points. We shall prove later that the convergence or
divergence of the series at a particular point depends only on the behavior of the
function in arbitrarily small neighborhoods of the point. {See Theorem 11.11,
Riemann’s localization theorem.)

The efforts of Fourier and Dirichlet in the early nineteenth century, followed
by the contributions of Riemann, Lipschitz, Heine, Cantor, Du Bois-Reymond,
Dini, Jordan, and de la Vallée—Poussin in the latter part of the century, led to the
discovery-of sufficient conditions of a wide scope for establishing convergence of
the series, either at particufar peints, or generally, throughout the interval,

After the discovery by Lebesgue, in 1902, of his general theory of measure and
integration, the field of investigation was considerably widened and the pames
chiefly associated with the subject since then are those of Fegér, Hobson, W. H.
Young, Hardy, and Littlewood. Fejér showed, in 1903, that divergent Fourier
series may be utilized by considering, instead of the sequence of partial sums {s,},
the scquence of arithmetic means {g,}, where

i) = SO )

He established the remarkable theorem that the sequence {a,(x)} is convergent
and its limit is [ f(x+)} + f(x—)] at every point in [0, 2r] where f(x+) and
flx—) exist, the only restriction on f being that it be Lebesgue-integrable on
[0, 2z] (Theorem 11.15.). Fejér also proved that every Fourier series, whether it
converges or not, can be integrated term-by-term {Theorem 11.16} The most
striking result on Fourier series proved in recent times is that of Lennart Carleson,
& Swedish mathematician, who proved that the Fourier series of a function in
IX(I) converges almost everywhere on I (Acta Mathematica, 116 (1966), pp.
135-157)
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In this chapter we shall deduce some of the sufficient conditions f9r E;onvetgenoe
of a Fourier serics at a particular point. Then we shall prove F;Jér s th.eorems.
The discussion rests on two fundamental limit formulas which will be c'ilssussed
first. These limit formulas, which are also used in the theory of Foma mte:grals,
deal with integrals depending on a real parameter «, and we are mm_rwt_ed in the
behavior of these integrals as o — 4 0o. The first of these is a generalization of (9)

and is known as the Riemann-Lebesgue lemma.

11.8 THE RIEMANN-LEBESGUE LEMMA
Theorem 11.5. Assume that f € L(I). Then, for each real §, we have

lim | f(t)sin(at + B)dt = 0. (10)

ar+m |f

Proof. If fis the characteristic function of a compact interval [, 4] the result is
ohvious since we have

b
I sin (ot + ) drl =

c_os(aa+ﬁ)—ws(ba+ﬁ)5§, o> 0.
o x

The result also holds if fis constant on the open interval (g, b} a_nd zro Put%ide
[a, b], regardless of how we define f{a) and f(5). Therefore (10) is vah_d iffisa
step function. But now it is easy to prove (10} for every Lebesgue-integrable

function f. ‘
If £ > O is given, there exists a step function s such that [, 1/ — 5| < &2 (by

Theorem 10.19(5)). Since (10} holds for step functions, there is a positive M such
that

< £ ifa > M.
2

J‘ s(t) sin (at + Py dt
I
Therefore, if « = M we have

e f (fCr) — s(2)) sin (2t + B) dr‘
i

j Ft) sin (ar + By dt
i .

+

J s(t) sin {xt + By dt
I
Ndr+ Sl Bas
ngf(r)—s(r RS-
This completes the proof of the Riemann-Lebesgue lemma.

Exsmple. Taking § = Oand § = /2, we find, if fe L(f},

lim | feysinacdr = lim I f()cosat di = 0.
¥

e+t fz a++ @
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As an application of the Riemann-Lebesgue lemma we derive a result that will
be needed in our discussion of Fourier integrals.

Theorem 11.7. If fe L{— w0, +w), we have
im | f@yl= f"""—“"d: - Jmﬂﬁiﬂdt, (11
1]

a—ttw J_

whenever the Lebesgue integral on the right exists.

Proof. For each fixed o, the integral on the left of (11) exists as a Lebesgue
integral since the quotient (I — cos af)/7z is continuous and bounded on
{—0, +™). (At ¢ = 0 the quotient is to be replaced by 0, its limit as ¢ — 0)
Hence we can write

".w syl = fos *ar =

mf(ﬂ] — cos af di + J‘o f(t}-l — €08 at dt
o0 ! - B
= | LA ~ -] E R g

L]

- [P =S, J"’“f(r} — (=0
0 t

— gO% at dt.
Jo t

When a — + oo, the last integral tends to 0, by the Riemann-Lebesgue lemma.

11.% THE DIRICHLET INTEGRALS

Integrals of the form {§ g(¢)sin ef)/f df (called Dirichlet integrals) play an im-
portant role in the theory of Fourier serics and also in the theory of Fourier
integrals. The function g in the integrand is assumed to have a finite right-hand
fimit g(0-+) = lim,.q, g{t) and we are interested in formulating further con-
ditions on g which will guarantee the validity of the following equation:

3 .
tim 3J‘ 8 2% ds — g0+, (12)

w-r+ oo JT Jg

To get an idea why we might expect a formula like (12) to hold, let us first consider
the case when g is constant (g(¢) = g(04)) on [0, 5]. Then (12} is a trivial con-
sequence of the equation [§ (sin £)/r dt = n/2 (see Example 3, Section 10.16),

since

L wd

sin o gin ¢t bid

S = Y as @ - + 00,
4] £ ] 1t 2

More generally, if g & L([6, 5]), and if 0 < ¢ < 5, we have
2

3 N
lim < g(t) sinm &t
et T J f

dt =0,
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by the Riemann-Lebesgue lernma. Hence the validity of (12) is gu:vemed entirely
by the local behavior of g near 0. Since g(r) is nearly g(0+) when ¢ is near 0, there
is some hope of proving (12) without placing too many additional restrictions on g.
It would seem that continuity of ¢ at 0 should certainly be enough to insure the
existence of the limit in (12). Dirichlet showed that continuity of g on [0, 8] is
sufficient to prove (12), if, in addition, g has only a finite number of ma)cim‘aw or
minima on [0, ]. Jordan later proved (12) under the less restrictive condition
that g be of bounded variation on [0, 5]. However, all attempts to prove (12) under
the sole hypothesis that g is continuous on [0, §] have resulted in failure. In fact,
Du Bois-Reymond discovered an example of a continuous function g for whu,_:h tf}c
limit in (12) fails to exist. Jordan's result, and a retated theorem due to Dini, will
be discussed here.

Theorem 11.8 (Jordan). If g is of bounded variation on [0, 8], then

& L$ t
lim 2{ g0y 0% 4 = go+). (13
a++a T fo t
Proof. Tt suffices to consider the case in which g is increasing on [0, 8], Ifa > 0
and if 0 < h <« &, we have
¢ s sin ot
J‘ a0 S 4y t
]

¢ I . ] L] {
+ g((H-}J. "‘“:“' dt + j a1 s“‘r“ dt
0 ]

dt

J.h [g(t) — g(0+)]
t o

Iy(o, B} + Dola, B + Ix(e B), (14

let us say. We can apply the Riemann—Lebesgue lemma to Fy(a, A) (since the
integral [? g(£)/t dr exists) and we find Iy(x, &) ~» Das ¢ — +oo. Abo,

in ot
sin ot .
t

*
1 ) = 904) |
o
e gin g x
= gl0+) : ’—-—d:-vig(()—%) as o ~+ + L.
G

Next, choose M >  so that | (sin 1)/t dt] < M foreveryd = a = 0. It follows
that |f (siner)/z df| < M for every b2 a 20 if « > 0. Now let 2 > 0 be
given and choose A in (0, 8) so that jglh) — g{0+)] < g/(3M). Since

gt) ~g0+) 20 f0<t<h

we can apply Bonnet’s theorem (Theorem 7.37) in 1 (x, /) to write

Im, h) = Jk [g(t) — g(0+)] %E{ dt = {g(h) — g(0+)] J. 5":“‘ dt,
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where ¢ € [0, &]. The definition of & gives us

5 gin ar £ £
I, B} = {g(h) — (0 dil <« = M=%, 15
G, ) = 1g(h) — 9(0+) j : M= ()
For the same & we can choose 4 so that o« > A implies
ala, B)| < ‘33 and  |f(a, k) — —Zg(OJr)l < § . (16)

Then, for & > A, we can combing (14), {15), and (16) to get

3 -

f gy B gy _ 2 g(0+), <
o t 2

This proves (13).

A differemt kind of condition for the validity of (13) was found by Dini and
can be described as follows:

Theorem 11.9 (Dini). Assume that g(0+) exists and suppose that for some § > 0
the Lebesgue integral
¥ -
J‘ 9t} — g0+)
o t
exists. Then we have

é -
lim ‘—2J‘ g(t) Sin af dt = g{0+).
o

@ o T i

Proof. Write

§ : & _ T
J. 9(t) s—":—"“ dt = J' Q(”_f(o_“ sin at dt + g(0+) J %‘ dr.
Q D] 0

When o —~ + 0, the first tem on the right tends to 0 {by the Riemann-Lebesgue

lemma) and the second term tends to 3rg(0+).

NOTE. If g € L{[a, 8]} for every positive @ < &, it is easy to show that Dini's
condition is satisfied whenever g satisfies a “right-handed” Lipschitz condition at
0; that is, whenever there exist two positive constants M and p such that

lg(t) — gl0+)] < M2, for every ¢ in {0, §].

(See Exercise 11.21.) TIn particular, the Lipschitz condition holds with p =1
whenever g has a righthand derivative at 0. It is of interest to note that there exist
functions which satisfy Dini’s condition but which do not satisfy Jordan's con-
dition. Similarly, there are functions which satisfy Jordan’s condition but not
Dini’s. (See Reference 11.10.)

i
K
¥

Th. 11.19 Partial Soms of Fourier Serics M7

1110 AN INTEGRAL REPRESENTATION FOR THE PARTIAL SUMS OF A
FOURIER SERIES

A function fis said to be periodic with period p # 0if fis deﬁnec_i on R and if
FOx + py = f(x) for ali x. The pext theorem expresses the partial sums of a
Fourier series in terms of the function

= M - ift # 2mnr {m an integer),
D) =%+ 3 coskt = { 2sintf2 (17
=t n+ 3 ift = 2Zmr  {(m an integer).

This formula was discusscd in Section 8.16 in connection with the partial sums of
the geometric series. The function D, is calied Dirichlet’s kernel.

Theorem 11.10. Assume that fe L{[0, 2r}) and suppose that [ is periodic with
period 2x. Let {3} denote the sequence of partial sums of the Fourier series generated

by 1, say

s.(x) = -“29 + Y (g cosks + bysinkx), (n=1,2..). (18
k=1

Then we have the integriad representation

5.(0) = gj'f 4D IO p gy ar. (19)

A Jo 2

Proof. The Fourier coefficients of fare given by the integrals in (7). Substituting
these integrals in {18) we find

k=1

six) = 2 j 0 % + 3 (oos kf cos kx + sin kt sin kx}} dt
o

=1 F!f(!) {% + Zn: cos kit — x}} dt = ij‘hf(t)n_{z - x) dt.
k=1 o

o
Since both f and D, are periodic with period 2n, we can replace the interval of
integration by [x — =, x + #] and then make a translation u = f — x to get

L™ feypye — x) de

X%

! ,r Jix + w)D(u) du,
T -

5¥(%)

Using the equation D (—u) = D {u), we obtain (19).
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1111 RIEMANN'S LOCALIZATION THEOREM

Formula (19) tells us that the Fourier series generated by £ will converge at a point
x if, and only if, the following limit exists:

lim 2 fix+ 1)+ f(x —t}sin(n_-%—f)td
e % Jo 2 2 sin 3t

in which case the value of this limit will be the sum of the series. This integral is
essentially a Dirichlet integral of the type discussed in the previous section, except
that 2 sits 4 appears in the denominator rather than r. However, the Riemann—
Lebesgue lemma allows us to replace 2 sin 3¢ by ¢ in (20) without affecting either
the existence or the value of the limit. More precisely, the Riemann-Lebesgue
lemma implies

. 2071 1 Jx + 04+ fix - 1) .
lim < : = 1 dt =
v B J:, (: 2 sn y) 2 sin (n + 3) %
because the function 7 defined by the equation

t, 20)

1
" 2sin 3t
1] ift =190,

} fOd <t <nm
F(t) =

is continuous on [0, x]. Therefore the convergence problem for Fourier serics
amotnts to finding conditions on # which will guarantee the existence of the
following limit:

lim
L BT 14

2y

2 "ﬂ'x-;—r)+}"{x—1)siﬂ{u+§)fmff
o 2 t '

Using the Riemann-Lebesgue lemma once more, we need only consider the limit
n (21) when the integral {3 is replaced by 3, where 3 is any positive number <7,
because the integral fj tends to 0 as n — 0. Therefore we can sum up the results
of the previous section in the following theorem:

Theorem 11.11. Assume that f e L{[0, 21]) and suppose f has period 2n. Then
the Fourier series generated by f will converge for a given value of x if, and onl [y if,
Jor some positive 8 < n the following limit exists:

Yim 2% f(x + 1) + fix — I}sin(n-i—{r)rdr,
a—+w A | o 2 t

22)

in which case the value of this limit is the sum of the Fourier serics.

This theorem is known as Riemonn’s localization theorem. 1t tells us that the
convergence or divergence of a Fourier series at a particular point is governed
eatirely by the behavior of fin an arbitrarily small neighborhood of the peint.
This is rather surprising in view of the fact that the coefficients of the Fourier

Th 11.14 Ceaprr Sammabiity s

series depend on the values which the function assumes throughout the entire
interval [0, 2x].

11.12 SUFFICIENT CONDITIONS FOR CONVERGENCE OF A FOURIER
SERIES AT A PARTICULAR POINT

Assume that f'e L{0, 2x]} and suppose that { has period 2n. Consider a fixed x
in [0, 2x] and a positive § < x. Let

_ S+ +fx-1)

gli} = 2 if r e [0, 5],
and let
S(X) =§(0’+) =‘£l:::.f(x+ ') ‘zl‘f(x - !)'

whenever this fimit exists. Note that s(x} = f(x} if fis continuous at x.
By combining Theorers 11.31 with Theorems 11.8 and 11.9, respectively, we
obtain the following sufficient conditions for convergence of a Fourier series.

Theorem 11.12 ¢ Jordax's text). If [ is of bounded variation or the compact interval
[x — & x + &) for some § < =, then the limit 3{x} exists and the Fourier series
generated by f comverges 10 5{(X).

Theorem 11.13 (Diwr's test). I the limit s{x) exivts and if the Lebesgue integral
L —_
f g1} — s(x) dt
o ¢

exists for somte & < %, then the Fourier series generated by f converges to 5(x).

11.13 CESARO SUMMABILITY OF FOURIER SERIES

Continuity of a function f is not 2 very fruitful hypothesis when it comes to
studying convergence of the Fourier series gemerated by f. In 1873, Du Bois-
Reymond gave an example of a function, continuous throughout the interval
[0, 2x], whose Fourier sevies fails t¢ converge on an uncountable subset of [0, 2z].
On ihe other hand, continuity does suffice to establish Cesaro summability of the
series. This result (due to Feyr) and some of its consequences will be discussed
Xt

" Our first task is to obtain an integral representation for the arithmetic means
of the partial sums of a Fourier series.

Theovem 11.14. Assume thar fe L{[0, 2n}) and suppose that [ is periodic with

period 2n. Let s, denote the nth partial sum aof the Fourier series generated by fand

let

so(x} + X} + - + Se_y(x}
n

gx) = (n=12..) 23
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Then we have the integral representation

ofx) = - J'f(x + 1)+ f(x ~ 1) siffz%_m &
at Jo z sin® 4¢

29

Proof. If we use the integral representation for s,(x) given in (19) and form the
sum defining o,(x), we immediately obtain the required result because of formula
{16), Section 3.16.

NotE. If we apply Theorem 11.14 to the constant function whose value is 1 at each
point we find 6,{x) = 5,(x) = 1 for each n and hence (24) becomes

1 (" sin® ins
— | e dt = 1 2
nxm J; sin? ¢ @3
Therefore, given any nurnber s, we can combine (25) with (24) to write

o) — s = L J’ {f(x + 0+ flx—t) s} sin’ gt | 26)

L 2 sin® 3t )

If we can choose a value of 5 such that the integral on the right of (26) tends to 0
asn — oo, it will follow that 5,{x) — sas n — 6. The next theorem shows that it
suffices to take s = [ f(x+) + f(x-)]/2.

Theorem 11.15 (Fejér). Assume that f e L([0, 2z)) and suppose that iz periodic
with period 2n. Define a function s by the following equation:

s(x) = lim S+ 0+ flx - 1),

1=+ 2

27

whenever the limit exists. Then, for each x Jor which s(x} is defined, the Fourier
series generated by f is Cesdro summable and has (C, 1) sum 5(x). That is, we have

Iim afx) = (x),

where {0,} is the sequence of arithmetic means defined by (23). If, in addition, f ix
comtinuous on [0, 2n], then the sequence {o,} converges uniformiy to f on [0, 2x].

Proof. Let g,(1) = [f(x + 1) + fix - )2 — s(x), whenever s(x} is defined.
Then g,(r) — 0 as 1 — 04. Therefore, given ¢ > 0, there js a positive § < &
* such that {g. (1) < &2 whenever 0 < 1 < 5. Note that 3 depends on x as well as
on &. However, if f is continuous on [0, 27], then f is uniformly continuous on
[0, 2], and there exists a § which serves equally well for every x in [0, 2r]. Now
we us¢ (26) and divide the interval of integration into twe subintervals [0, ] and
(4, z]. On [0, &] we have

& o2 x 7
-l—f g1 = %'"dtl <2 f L LS

n jeo sin 3t | 2nm ) sin? 4t 2

T
|

n
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because of (25). On [4, n] we have

1 1= sin? int al < 1 * | I(x)
- =, 5 § s lgdt dt £ ——F—,
th g:(t) sin? }t nr sin® 36 J; nr sin’® 14

where I(x) = |5 |g.(2)| 4. Now choose N so that J(x)/{(N = sin? 45} < &/2. Then
n = N implies
. 1 sin® inf
— = |— }———dtl < &
loo(x) — s(x)] Lm L gt} Y k

In other words, g,(x) -+ s{(x) as » — o0, )

If fis continuous on [0, 27], then, by periodicity, fis bounded on R and thcfc
is an M such that [g(#)] < M for all x and ¢, and we may replace f(x) by =M in
the above argument. The resulting ¥ is then independent of x and hence s, 5 s = f

uniformly on [0, 2x].

11.14 CONSEQUENCES OF FEJER’S THEOREM

Theorem 11,16, Let { be continwous on [0, 2n] and periodic with period 2r. Let
{5,} denote the sequence of partial sums of the Fourier series generated by f, say

F(x) ~ % + i (a, cos nx + b, sin nx). (28)
n=1 .

Then we have:

a) Lim.y.y 5, = fon [0, 2x].

b 1 J‘:: )P dx = Ezé + Z (@ + &%) (Parsevals formula).
T e a=1

¢} The Fourier series can be integrated term by term. That is, for all x we have

bid z
rf(:) dr = 2% | ZJ (a, cos nt + b, sin nt) df,
i

2 a=1 Jp
the inmtegrated series being uniformly convergent on every intereal, even if the
Fourier series in (28) diverges.
d) If the Fourier series in (28) converges for some x, then il converges fo f{x).

Proof. Applying formula (3) of Theorem 11.2, with 1(x) = o,(x) = (1/m} 37} 5(x),
we obtain the inequality .

« X
r () — 50l dx < J L) = a0l dx. 29)
¢} 0

But, since g, — funiformly oa [0, 22], it follows that Li.m.,_., ¢, = fon [0, 2x],
and (2%) implies {a). Part {b) follows from (a} because of Theorem 11.4. Part {c)
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also follows from (a), by Theorem 9.18. Finally, if {5,(x)} converges for some x,
then {g,(x)} must converge to the same limit. But since a,(x) — f{x) it follows
that s,(x) — f(x), which proves (d).

1115 THE WEIERSTRASS APPROXIMATION THEOREM

Fejér’s theorem can also be used to prove a famous theorem of Weierstrass which
states that every continuous function on a compact interval can be uniformly
approximated by a polynomial. More precisely, we have:

Theorem 11.17. Let f be real-volued and contimious on a compact intervat fa, b1
Then for every & > 0 there is a polyromial p (which may depend on &) such that

If) — px)| <& for every x in [a, b). (30)

Proof. If 120, =), let g{t) = fla + 1(b — a)fx]; i re{m, 2x], let g(r) =
fla + (2n — t}{b — a)/x] and define g outside [0, 2] so that g has period 27.
For the ¢ given in the theorem, we can apply Fejés’s theorem to find a function ¢
defined by an equation of the form

N
o(t) = Ay + 2. (A cos kt + B, sin ki)
=1

such that |g(t} — a(¢})| < &2 for every rin [0, 2r]. (Note that &, and hence o,

depends on &) Since o is a finite sum of trigonometric fanctions, it generates a _

power series expar{sion about the origin which converges uniformly on every finite
interval. _The partial sums of this power series expansion constitute a sequence of
polynomials, say {p,}, such that p, » o uniformly on [0, 2z]. Hence, for the
same z, there exisis an m such that

12al8) — a(t)] < 2f . forevery tin [0, 2u].
Therefore we have

IPalt) — 9()] <&,  forevery ¢ in [0, 2x]. {31)

Now define the polynomial p by the formula p(x) = puJa(x ~ a)/(b — a)]. Then '

inequality (31) becomes (30) when we put r = a(x — a)f(b — a).

1L16 OTHER FORMS OF FOURIER SERIES
Using the formulas
2cosnx = €™ 4+ ¢ and  2isinmx = €T — o

the Fourier serics generated by f can be expressed in terms of complex exponentials
as follows:

o 0
Jix) ~ %’9 + z; {a, cos nx + b, sin nx) = % + 2 (%™ 4 e,
n= n=1

Fourier Integral Theorem 33

where o, = (@, — ib)/2and B, = (&, + B2 fweputa, = a,/2anda_, = f,
we can write the exponential form more briefly as follows:

Fxy~ D me™

L Lol -2

The formulas (7) for the coefficients now become
1 2x X
o, = -—J. e ™dt (n=0, %1, +2,...}
2n Jo

If S has period 2x, the interval of integration can be replaced by any other interval

of length 27,
More generally, if f'e L{[0, p]) and if f has period p, we write

Foo ~ % ¢ p (a,. cos 2mnx + b, sin 33:_:135)
2 =t 1 4 p

to mean that the coefficients are given by the formulas

a, = E.I.’f(t) €08 Zmnt dt,
Plo P

P
b"=gj f(t}sinwtdt (n=012...)
PJo P

In exponential form we can write

o

f( I) -~ a, e!:iux;’p,
oty

where
» .
@, = _IJ. f(!)e_zumlpdlr ifﬂ =0" il’ iz"'”
Plo

All the convergence theorems for Fourier series of peried 2z can also be applied
to the case of a general period p by making & suitable change of scale,

1117 THE FOURIER INTEGRAL THEOREM

The hypothesis of periodicity, which appears in all the convergence theorems
dealing with Fourier series, is not as serious a restriction as it may appear to be at
first sight. If a function is ipitially defined on a finite interval, say [a, #], we can
always extend the definition of foutside [, #] by imposing some sort of periodicity
condition, For example, if f{a) = f(b), we can define f everywhere on (— o, -+ w}
by requiring the equation f{x + p) = f(x) to held for every x, wherep = b — a.
{The condition fla) = f(b) can always be brought about by changing the value
of £ at one of the endpoints if necessary. This does not affect the existence or the
values of the integrals which are used to compute the Fourier coefficienis of £}
However, if the given function is already defined everywhere on (— o0, + o0) and
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is not periodic, then there is no hope of obtaining a Fourier series which represents
the function everywhere on {(—w, + o). Nevertheless, in such a case the function
can sometimes be represented by an infinite infegral rather than by an infinite series.
These integrals, which are in many ways analogous to Fourier series, are known as
Fourier integrals, and the theorem which gives sufficient conditions for representing
a function by such an integral is known as the Fourier integral theorem. The basic
tools used in the theory are, as in the case of Fourier series, the Dirichlet integrals
and the Riemann-Lebesgue lemma.

Theorem 11.18 { Fourier integral theorem). Assume thatf ¢ L{—w, + o). Suppose
there is a point x in R and an interval [x — 8, x + 8] abour x such that either

a) f iz of bounded variation on [x — 8, x + §],
or else

b} bath Iintits f(x+} and f(x—) exist and both Lebesgue integrals
& _ ] _ _ -
}‘ fix + :)t J&4) p g J‘f(x ) = fx=) .
o :

a

exist,

Then we have the formula

f("‘*)—';f(x_} - lr Uw fCu) cos (- x) du] dn, . (3
o o

the integral jg',” heing an improper Riemann integral.

Proof. The first step in the proof is to establish the following formula;

lim 1 f( +0 sin o _Jx+) +f(x )

a-rtom M J_

(33

For this purpose we write

o 5 —& 0 & il
j f{x+t)smmdz=j +I +I+J.
- izl - -4 O 4

When @ — + o0, the first and fourth integrals on the right tend to 0, because of
the Riemann-Lebesgue lemma. In the third integral, we can apply sither Theorem
11.8 or Theorem 11.9 (depending on whether (a) or (b} is satisfied) to get

lim J'&f(xﬂ)“"—“‘ds:fl’iﬁ.
Q it

[ T -] 2

Similarly, we have

0 - . ]
f fie + 0T di = Fﬂ'x - panat, JG7)
-3 144 o 3

as o — 400,
7t
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Thus we have established (33). If we make a translation, we get
= - ) o " —
I S+ 08 g = J. oy SR =,
—w t = U — X

and if we use the elementary formula

sin alg — x}
u— X

= 'r cos u — x)de,
o

the limit relation in {33) becomes

lim —J Ju [J. cos oy — x) dv] du _f'{x+) + ) (34

a4 T 2

But the formula we seck to prove is (34) with only the order of integration reversed.
By Theorem 10.40 we have

J-¢ [J'w Flu) cos tlu — x) du] dv = jm I:J.gl Jl)y cos o(u — x) du} du
[+ -w —o @

for every & > 0, since the cosine function js everywhere continuous and bounded.
Since the limit in (34) exists, this proves that

lim - [J Jlu) cos v{u — x) du] dv = JOct) + flx—) )

o T

By Theorem 10.40, the integral {2 f{u) cos o(u — x) du is a continuous function
of v on [0, 2], so the integral [’ in (32) exists as an improper Riemann integral.
1t need not exist as a Lebesgue integral.

11.18 THE EXPONENTIAL FORM OF THE FOURIER INTEGRAL THEOREM
Theorem 11.19. If f satisfies the hypotheses of the Fourier integral theorem, then

we have
foH) + fe—)y b g '[ U fluperum du]i (35)
2 ik, .

Proof. let Fo) = [~ fiu)cosvlu — x)die. Then F is continuous on
(=0, +a), Fiv) = F(—p) and hence [°, F(v) dv = [ F{—~v)dv = [§ F(v) dv.
Therefore (32) becomes

e+ G-y o 1 J- "Feydo = tim 2i T Foyde. (36
1] —a

2 attom B a=+x 23
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Now define ¢ on (— oo, + o) by the equation
{i(v) = jm Ju) sin o{u ~ x) du.

Then G is everywhere continuous and G(v) = —G(—v). Hence [*, Gt} dv = 0
for every w, s0 lim,.. , ,, {*, G(v) dv = Q. Combining this with (36) we find

fG4) + fx=y ﬁj {F() + iGW)} do.

2 a=+ o

This is formula (35).

11.1% INTEGRAL TRANSFORMS

Many functions in analysis can be expressed as Lebesgue integrals or improper
Riemann integrals of the form

o) = r K(x, $)f(x) dx. an

A function g defined by an equation of this sort {in which y may be either real or
complex) is called an integral transform of f. The function X which appears in the
integrand is referred to as the kernef of the transform.

Integral transforms are employed very extensively in both pure and applied
mathematics. They are especially nseful in selving certain boundary value prob-
lems and certain types of integral equations. Some of the more commonly used
transforms are listed below:

o

Exponential Fourier transform: ™ (%) dx.
o
(* o
Fourter cosine transform: cos xy f{x) dx.
40
(* ot
Fourier sine transform: sin xy f(x} dx.
0
- -
Laplace transform: e f(x) dx.
Jo
* oo
Mellin transform: 7 U (x) dx.
4o

Since e ™ = cos xy — isin xp, the sine and cosine transforms are merely
special cases of the exponential Fourier transform in which the function f vanishes
on the negative real axis. The Laplace transform is also related to the exponential
Fourier transform. If we consider a complex value of y, say y = u + jp, whete

Def, 11.20 Convolutions »7

u and » are real, we can write

f e (x) dx = j e e TN (xy dx = J. e~ " (x) dx,

4] ] o

where $(x} = ¢"™f(x). Therefore the Laplace transform can also be regarded
as a special case of the exponential Fourier transform.

NOTE. An equation such as (37) is sometimes written more briefly in the form
g = H(fyorg = Xf, where ¥ denotes the “operator” which converts finto g.
Since integration is involved in this equation, the operator ¥ is referred to as an
integral aperator. 1t is clear that X" is also a linear operator. That is,

Hla fi + af2) = a, X, + ;X S,

if a; and a, are constants. The operator defined by the Fourier transform is often
denoted by & and that defined by the Laplace transform is denoted by .

The exponential form of the Fourier integral theorem can be expressed in
terms of Fourier transforms as follows. Let g denote the Fourier transform of f,
s0 that

o) — f " e s (38
Then, at points of continuity of f, formula (35) becomes
Fe9 = tim L7 gre du, (9
s>+ 20 -

and this is called the inversion formula for Fouorier transforms. It tells us that a
continyous function f satisfying the conditions of the Fourier integral theorem is
uniguely determined by its Fourier transform g.

NOTE. If  denotes the operator defined by (38), it is customary to denote by # 1
the operator defined by (39). Equations (38} and (39) can be expressed symbolically
by writing ¢ = Ffand f = F 'y, The inversion formula tells us how to solve
the equation g = Ff for fin terms of g,

Before we pursue the study of Fourier transforms any further, we introduce a
new notion, the comvelution of two functions. This can be interpreted as a special
kind of integral transform in which the kernel K(x, ) depends only on the difference
x - y.

11.20 CONVOLUTIONS

Definition 11.20. Given 1wo fimctions | and g, both Lebesgue integrable on
{—o0, +c0), let § denote the set of x for which the Lebesgue integral

Mxy = J‘w J(g(x — t) ds (40}
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exists. This integral defines e function i on S called the convolution of f and g. We
also write h = [+ g 1o denote this function.

nNoTe. It is easy to see (by a translation) that f= g = g = f whenever the integral
exists.

An important special case occurs when both f and g vanish on the negative real
axis. In this case, g{x — 1) = 0if 1 > x, and (40) becomes

) — j’fu)g(x — 04 @1
13

It is clear that, in this case, the convolution will be defined at each point of an
interval [a, b} if both f and g are Riemann-integrable on [a, 5]. However, this
need not be so if we assume only that f and g are Lebesgue integrable on [a, 4],
For example, let

=L and g)=——, ifo<t<l,

\ﬁ \fl—r’

andlet f{t) = g{t) = 0ift < Oorif¢ = 1. Then fhas an infinite discontinuity at
t = 0. Nevertheless, the Lebesgue integral (2 f(r)df = 8 ¢ ™'/2 dt exists.
Similarly, the Lebesgue integral {2, g(t) df = [} (1 — 1)™ '/ df exists, although
& has an infinite discontinuity at £ = 1. However, when we form the convolution
integral in {40} corresponding to x = 1, we find

1]

Jm f(Ng(l — tydt = fl e~ de

Observe that the two discontinuities of f and g have “coalesced™ into one dis-
. continuity of such nature that the convolution integral does not exist.

This example shows that there may be certain points on the real axis at which
the integral in (40) fails to exist, even though both f and g are Lebesgue-integrable
on (—oo, +a0). Let us refer to such points as “singularities™ of 4. It is easy to
show that such singularities cannot occur unless bdoth f and g have infinite dis-
continuities, More precisely, we have the following theorem:

Theorem 11.21, Let R = (—o0, + ). Assume that f € L(R), g € L(R), and that
either | or g is bounded on R. Then the convolution integral

hix) = F Fglx — 1) dt : _ 42)

exists for every x in R, and the function ki so defined is bounded on R. If, in addition,
the bounded function f or g is continuous on R, then k is glso comtinuous on R and

h e L(R).
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Proof. Since f+g = g+, it suffices to consider the case in which g is bounded.
Suppose |g] < M. Then

f(Og(x — O < MifU. “3

The reader can verify that for each x, the preduct f{#)g{x — r) is a measurable
function of # on R, so Theorem 1(1.35 shows that the integral for A(x) caists. The
inequality (43) also shows that Ji(x)| < M { |£], so & is bounded on R.

Now if g is also contintous on R, then Theorem 10.40 shows that & is continuous
on R. Now for every compact interval [a, ] we have

fmx)l de < [ U” O lgtx = O afr] dx

» i

— (7 e Ubly(x— o) dx]dr

a

— " 1ron U 9O dy:l "

<" o .f * 19O .

-

A

o

50, by Theorem 10.31, i € L(R).

Theorem 11.22. Let R = (—, + ). Assume that fe I}(R} and g e IX(R).
Then the convolution integral (42) exists for each x in R and the function h is bounded
on R.

Proof. For fixed x, let g.(f) = g(x — t). Theng, is measurable on R and
g» € 1(R), so Theorem 10.54 implics that the product /- g, € L(R). In other words,
the convolution integral i(x) exists. Now A(x) is an inner product, #{x} = (f, g},
hence the Cauchy-Schwarz inequality shows that

BOA < DAY gkt = 1711 gl

50 /1 is bounded on R.

il21 THE CONVOLUTION THEOREM FOR FOURIER TRANSFORMS

The next theorem shows that the Fourier transform of a convolution f'+ ¢ is the
product of the Fourier transforms of fand of g. In operator notation,

Ff+g) = F() Flg.

Theorem 11.23. Let R = (— oo, + ). Assume that f € L{R), g € L(R), and that
at least one of f or g is continuous and bounded on R. Ler It denote the convalution,
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h = f«g. Then for every real u we have

Jm h{x)e ™ dx = (J’w fitye™ ™ d:) (J.no gy dy) . ()

The integral on the left exists both as a Lebesgue integral and as an improper
Riemann integral.

Proof. Assume that g is continuous and bounded on R. Let {a,} and {b,} be two
increasing sequences of positive real numbers such that @, —+ + 0 and b, — 0.
Define a sequence of functions {£,} on R as follows:

) = J.b- ™™ g(x — 1) dx.

G

Since
;] ) a
I le= % g — 1)) dt < f (gl

for all compact intervals [a, b], Theorem 10.31 shows that

At -0

ow
lim fi{1) = J. ™ glx — tydx  for every real 1. (45)
The translation y = x — 7 gives us

J e ™ g(x — ) dx = e""’J e~ g(y) dy,

- -

and {45) shows that

im 570 = s |

— a0

o

™™ g(y) dy)

for all 1. Now f£, is continuous on R {by Theorem 10.38), so the product £ f is
measurable on R. Since

LA < 110 J' |

-

the product - f, is Lebesgue-integrable on R, and the Lebesgue dominated con-
vergence theorem shows that

tim r' SOV dt = (J'” i) d:)(f’ e~ g() dy). (46)

r SO dt = f ® fm[r” e rg(x — r)dx] dt.

But

Convolution Theorem for Fourier Transforms k]|

Since the function k& defined by k(x, f) = g(x — #} is continuous and bounded
on R? and since the integral [* ¢™™* dx exists for every compact interval [4, b],
Theorem 10.40 permits us to reverse the order of integration and we obtain

J‘ s ar Jm g [r finglx — o) dr] dx

L
= j e ™ h{x) dx.

{

Therefore, (46) shows that

lim Jﬂh h(x)e ™ dx = (J.ﬂD f(tye™™ d:) ('r] gl y)e™ = dy) .

which proves (44). The integral on the left also exists as an improper
Riemann integral because the integrand is continuous and bounded on R and
2 lr(x)e ¥ dx < |2, |Al for every compact interval [a, 8].

As an application of the convolution theorem we shall derive the following
property of the Gamma function.

Example. If p > 0 and ¢ > 0, we have the formula
1
f xr—l{] _ x)ﬂ*—l dx = F(P}r{q_) ) (4?)
o p + q)
The integral on the left is called the Besa function and is usually denoted by 8(p, ¢). To
prove (47) we let
it e =0,

e = {o if £ < 0.

Then /, & L(R) and {Oq, £(6) dt = [§ ¢*" e~ " dr = T(p). Let h denote the convolution,
h = f,»f. Taking w = 0 in the convolution formula (A wefind, if p > 1org > 1,

f H(x) dx = f  fodr f ® L dy = TR, (8)

Mow we calculate the integral on the left in another way. Since both £, and f; vanish on
the negative real axis, we have ‘

L ] * e — - 1
k(x)—-L,&(t)f;(x—t)dr-—*{e j;:# (x — ¥ ar ifx > 0,

0 ifx <0
The change of variable t = ux gives vs, for x > 0,

1
B(x) = e"‘x’““j WM — @ du = XN B (p, q).
o

Therefore [P, A(x) dx = B(p, q) §5 ¢ *x® 91 dx = B(p, ¢} (p + ¢) which, when
used in (48), proves (47) if p > 1 or ¢ > 1. To obtain the result for p > 0, g > O use
the relation pB{p, ¢} = (p + g} (p + 1, q).
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11.22 THE POISSON SUMMATION FORMULA

We conclude this chapter with a discussion of an important formaia, called
Poisson’s summation formula, which has many applications. The formula
can be expressed in different ways. For the applications we have in mind, the
following form is convenient.

Theorem 11,24, Let f be a nonnegative function such that the integral ™, f(x) dx
€xists as an improper Riemann integral, Assume also that f increases on {—o0, 0]
and decreases on [0, +00), Then we have
Yo - + @ w .
> fm+) + fim—) _ Flt)e™ it gy (49)

= 2 B=—

each series being absolutely convergent.

Proaf. The proof makes use of the Fourier expansion of the function F defined
by the series

F(x)= 2. fim + x). (50)

M= =
First we show that this series converges absolutely for each real x and that the

convergence is uniferm on the interval [0, 1],
Since f decreases on [0, +00) we have, for x = 0,

3 fm+ 0 < S@ + 3 fom) 5 5O + j " fu) dr.

Therefore, by the Weierstrass M-test (Theorem 9.6), the series 32, fim + X}
converges uniformly on [0, +o0). A similar argament shows that the series
Yod o flm + x) converges uniformly on (-, 1]. Therefore the series in (50}
converges for all x and the convergence is uniform on the intersection

(~o0, 1] n [0, +00) = [0, 1].
The sum function F is periodic with period 1. In fact, we have Fx+ 1=

w2 J(m + x + 1), and this series is merely a rearrangement of that in (50},

Since all its terms are nonnegative, it converges to the same sum. Hence
Flx + 1) = F(x).

Next we show that F is of bounded variation on every compact interval. It
0 < x <}, then fim + x) is a decreasing function of x if m > 0, and an in-
creasing function of x if m < 0. Therefore we have

=1

Fi(x) = );fun +x) = 2 {=flm + %),

ME =

so F is the difference of two decreasing functions. Therefore F is of bounded

i AT A
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variation on [0, 4]. A similar argument shows that Fis also of bounded variation
on [ ~%, 0]. By periodicity, F is of bounded variation on every compact interval,
Now consider the Fourier series (in exponential form) generated by F, say

+

F(X) ~— Z aneZzMx_

L Rl -

Since F is of bounded variation on [0, 1] it is Riemann-integrable on [0, 1], and
the Fourier coefficients are given by the formula

H

o, = j‘ F(x}e—Zx!nx dx. (51)
D

Also, since F is of bounded variation on every compact interval, Jordan's test

shows that the Fourier series converpes for every x and that :

Fet) £ Fa=) 5 oo, 52)

2 n=—a
To obtzin the Poisson summation formula we express the coefficients a, in
another form. We use (50} in (51} and integrate term by term (justified by uniform
convergence) to obtain

i

o,
m=— o

+Ew flf(m + x)e” 27 dx,
o

m + x gives us

The change of variable ¢

+ >
@= 2

md
= =

If(‘)e—ltint dt - J'm f(!)e_h'" d-f,

gince ¢**™ = 1, Using this in (52) we obtain

F(x+) + Fx—) _ i { J'w f(t)e~ 2t dt} g2minx, (53)
2 =—m -

When x = 0 this reduees to (49).

NOTE. In Theorem 11.24 there are no continuity requirements on /. However, if
fis continuows at each integer, then each term f{m + x) in the series {50} is con-
tinnous at x = 0 and hence, because of uniform convergence, the sum function F
is also continuous at 0. In this case, (49) becomes

+@m + @ I
2 fm= 2 f Sf(e)e = du. (54)
m= D A= —m -

The monotonicity requirements on f can be relaxed. For example, since each
member of (49) depends linearly on f, if the theorem is true for £, and for £, then
it is also true for any linear combination a, f, + . In particular, the formula
holds for 2 complex-valued function /' = & + iv if it holds for v and ¢ separately.
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Example 1. Transformation formula for the theta function. The theta function @ is defined
for all x = 0 by the equation

40
B(x) = Z e~

We shall use Poisson’s formula to derive the transformation equation

1 1
Hx) = — 8=} forx >0 55
N (x) ©)

For fixed & > 0, let f(x) = ¢~ for all real x. This function satisfies all the hypoth-
esis of Theorem 11.24 and is continuous everywhere. Therefore, Poisson’s formula
implies

+ o . ] 0 )
e = e gPRint gy 56
The left member is 6(a/z). The integral on the right is equal to

i = @
f e'“zez’“‘"df — EJ‘ £ cne Yunt dr = _& f e—"“cgs Z_x_n_x dx = i__ F(x—ﬁ)
—w 0 Valo Ve Va \Va

where
o
F{y)=f &~ cos Xxy dx.
o

But F(y) = $+/ne~ " (see Exercise 10.22), so

a0 14z
e-'uﬂezaht dr = x £-'2'1“«
—= -4

Using this in (36) and taking « = zx we obtajn (55).

Example 2. Portial-fraction decomposition of coth x. The hyperbolic cotngent, coth x,
is defined for x # 0 by the equation

e 41

cothx = .
e |

We shall use Poisson’s formula to detive the so-called partial-fraction decomposition
g
1

-3 57
&t X+ a%n? 67

mthx=-I—+2x
x

for x > 0. For fixeda > 0, let

e fx=z=0,
0 ifx <0

Then fclearly satisfies the hypotheses of Theorem 11.24. Also, Fis continuous everywhere
except at 0, where f/(0+} = 1 and f{0—) = 0. Thercfore, the Poisson formula implies

[C] ER-] o0
3+ z P . E f o= Axint gy (58)
m=1

L LR 4]

Sixy = {

o Ve i o TR
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The sum on the left is a geometric series with sum 1/ (e* — 1}, and the integral on the right
is equal to 1/{x + 2xin}). Therefore {58} becomes

L e T e )
2 -1 u Zt\edt2nin x- 2ninf’
and this gives (57) when « is replaced by 2x. .

EXERCISES

Orthogonal systems

11.1 Verify that the trigonomeiric system in (1) is orthonormal on [0, 2x].

11.2 A finite collection of functions {@g, @1, ... 0wt is said to be nearly independent
on fa, 5] if the equation

Z awd¥) =0  forall xin [a, 5]
=0

implies ¢y = £, = -+ = ¢, = 0. An infinite collection ig called lincarly independent on
[a, b]if every finite subset is linearly independent on [a, b]. Prove that every orthonormal
systern on [a, b] is linearly indepandent on [a, 5]

11.3 This exercise describes the Gram-Schmidt process for converting any linearly inde-
pendent system to an orthogonal systemn.  Let {f, f1.... } be a lineady independent
system on [a, ] (as defined in Exercise 11.2). Define a new system {gy, #,... } recur-
sively as follows:

go =S Bre1 = Fa1 — E Ui
Y8
where gy = (foon 9o ) if (@] # 0, and 4, = O if [z = 0. Prove that g, is
orthogonal to each of gy, g1, ..., g forevery n 2 0.
11.4 Refer to Exercise 11.3. Let (f, 2) = [L, f{t)g(¢) dr. Apply the Gram-Schmidt
process to the system of polynomials {1, 1, ¢2,. .. } on the interval {1, 1] and show that

aN=5 gO=2 -4 g)=0-% g =r"-5"1+4

115 a) Assume fe R on [0, 2z}, where fis real and has period 2r. Prove that for every
e > 0 there is a confinuous function g of period 2z such that |If — gl < &
Hinmt. Choose a partition P, of [0, 2x} for which £ satisfies Riemann’s condition
U(P, 1y — L(P, '} < ¢ and construct a piecewise linear g which agrees with £
at the points of P,.
b} Use part (a) to show that Theorem 11.16(a), (b) and (¢} holds if f is Riemann
integrable on [0, 2x].
116 In this exercise all fonctions are assumed to be continuous on a compact interval
[e, 8] Let {@y, ¢,,.-. } be an orthonormal system on [a, b).
a) Prove that the following (hree statements are equivalent.
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D (£, 2 = (2, e for all x implies £ = g. (Two distinct continuous functions
cannot have the same Fourier coefficients )

2y (f, 9.y = Ofor all # implies £ = 0. (The only continuous function orthogonal
1o every g, is the zero function.)

HI Tis an orthonormal set on [a, 5] such that {e,, ¢,,...1 < T, then
{Pg, #1,-.. } = T. (We cannot enlarge the orthonormal set.) This property is
described by saying that {pg, ¢4, ... } is maximal or complete.

b) Let g fx) = e"“;’\/ 2 for nan integer, and verify that the set {p,: n & Z}is com-
plete on svery interval of length 2a.

17 HxeRandn = 1, 2,..., let f{x) = (x> — 1)" and define

$o(x) = 1, dulx) =

Tt is clear that ¢, is a polynomial. This is called the Legendre polynomial of order n. The
first few are

#(x) = x, $alx) = i’xz -3
a0 = &3 = dx, gulx) = 3t - 182 4 4

~ Derive the following properties of Legendre polynomials:
a) $4x) = xdp (X} + ngy_ (¥}
L)

2z
B) $ux) = Xy () + 5

&) (1 + Doy 1(3) = (210 + Dxd(x) — nd,_4(x).
d) ¢, satisfies the differential equation [(1 — x%)y'} + nln + Dy = 0.

&) [ — xDAX] + [mim + 1) — aln + D] (04.x) = 0, .
where A = §,dq — é:né:r

£} The set {éo, #1. #2,... } s orthogonal on [—1, 1].
1 2 2n—~ 1 1 7
dx = — - .
® f.. #rax= 2 lf_lé. 1 dx

mJ‘ ¢ dx -
-1

n+ 17

Hote, The polynomials

2%(nt)*
Qx{‘) = —(’2“ }1 'ﬁn(”

arise by applying the Gram-Schmidt process to the system {1, 7, 12,... } on the interval
[—1, 1. (See Exercise 11.4.)

Exercives Kyl

11.8 Assume that f€ I{[—=, =]} and that fhas period 2n. Show that the Fourier series
gencrated by f assumes the following special forms under the conditions stated:

ay W f(—x) = fxywhen 0 < x = 7, then

-] 'z
Foy~ 20y 3 a,cosnx, wherea, = EJ. F() cos nr dr,
2 7 Ju

- ]
b) Hf{—x) = —flxywhen 0 < x < =, then
foxy ~ '2': bysin nx,  where b, = 2 f’f(r) sin nt dt.
n=1 o Y

In Exercises 11,9 through 11,15, show that each of the expansions is valid in the range
indicated, Suggestion. Use Exercise 11.8 and Theorem 11.16{c) when possible.

sin .?!I

(4]
119 a)x-:ar—ZZ ifo < x < 2n.

' L4

xZ n2 2. oD8 RX .
b)?=m—§+2‘; ol if0 = x = 2n

WOTE. When x = 0 this gives ({(2) = »%/6.

x 4 p—
TRURVE bl
4" & m-1

4 o cos (2 — 1)x

H0 < x < m

7
Bx=--— - . ifO =< x < n
ye=3 x&t (2n— 12 ph=x=n

o _ln—] :
ll.lla)xnlzw, if—7 < x < 7

=1 L

2 = {— 1) cos '
b)x3=§-+4z{—-- )"nz =, f-r=<x=m

if0 < x < 2nm.

a

haid -
1112 x* = fnz + 42 (cos nx _ wsin NJF) .

3 1 n n
8 o 2 5in 2nx
11.13 = - ——, if 0 ,
a) cos X rr;mzz—l' fo0<x=<=x
. 2 4 o cOs 2nx .
b)smx:;—-};“zd“z_l, 0 < x < x.
oy -
. -1 X
Il.l4a)xcosx=—«}smx-!»-ZEQfH;—WE, if - < x <m
bY xsinx = 1—50:05::—22 (= 1) cos nx - = x <
o1 = x o

Fryd
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o
= —log2 — 3 BT ifx # 2Zkn (k an integer).

a=ioon

11.15 a) log ﬁng

b L
b) log cos{ = —log2 - E&m, ifx # {2k + )=,
2 n
<) log tan = -—22@2(—2?2—#, ifx # k.
" —

1116 a) Find a continuous function on [— =, =] which generates the Fourier series
'%f,"; 1 (—1Pn~? sin nx. Then use Parseval's formula to prove that £(6) =
7°i945.

b) Use an approprate Fourier series in conjunction with Parseval’s formula to
show that {(4) = n*/90.

11.17 Assume that f has a continuous derivative on [0, 2x], that £(0)} = f(Zx), and that
[3=fGyde = 0. Prove that || = |/}, with equality if and only if f{x} = a cos x +
b sin x. Hint. Use Parseval’s formula,

1118 A sequence {8, } of periodic functions (of period 1) is defined on R as follows:

2_(_2_11)! i €05 . 2nkx

_ {1
EZn(x} = ( I)" (2”)33 &t kz"

(n=12..),

2028 + 1)} o sin 2mkx
{h)za-u g kzn-H.

{8, is called the Bernoullf function of order n.) Show that:

By (xy = (1t (n=10,1,2.)

a) Bj(x) = x — [x] — }if x is not an integer. ([x} is the greatest integer < x.}
b) [AB{x)dx = Qifn = 1 and Bfx) = nB, j(x)ifnz 2

€) Bix) = Pix)if 0 < x < 1, where P, is the nth Bernoulli polynomial. (See
Exercise .38 for the definition of P,.)

nl & ezwi'kx
dy Bix)= - (2;6%;” % (n=12..).
(34

1119 Let f be the function of period 2z whose values on [— . z] are
Jixxr=1 fl<x<n fixy=—1 if —x < x <0,
Jfixy=10 ifx=0o0rx = m
a) Show that

2n— 1
o) = Z sin ;"ﬂ_ - »x . for every x.

This is one example of a class of Fourier series which have a curious property known as
Gibbs® phenomenon. This exercise is designed to illustrate this phenomenon. In that which
follows, £,(x) denotes the sth partial sum of the series in part {a).

S

b) Show that

L
RASS =2J. s—-———u"‘lzmdt
aje sint

¢) Show that, in (0, x), 5, has Iocal maxima at x;, X3, ..., X3, 20d local minima
Al Xy, Xgyo o, Xppey, Wheve x = dmmfn(m = 1,2,...,2¢ — 1}

d) Show that s,{(3n/n) is the largest of the numbers
sfxe  (m=1,2,... .20 — B
€) Interpret s, {4x/n) as a Riemann sum and prove that

1im ,‘(E),zgr?ﬂfd
s 2N Tt 1

The value of the limit in (&) is about 1.179. Thus, although fhas a jump squal io 2 at the
origin, the graphs of the approximating curves s, tend o approximaie a vertical segment
of length 2,358 in the vicinity of the origin. This is the Gibbs phenomenon.

1020 IF () ~ aof2 + ¥y (o €06 05 + &, sin mx) and if £is of bounded variation on

[0, 2x], show that @, = O(1/m) and b, == (1/n). Hint. Write f = g — h, wheregand k
are increasing on [0, 2r]. Then

o = -L J' * o) disin mx) — L f ** hx) dtsin n),
an y A

!
Now apply Theorem 7.31.
1121 Suppose g € L{[a, 5]) for every a in {0,.9) and assume that ¢ satisfies a “right-
handed” Lipschitz condition at 0. {See the Note following Theorem 11.5) Show that the
Lebesgue integral [§ |g(r) — gt0-+)|/r dr exists,
11.22 Use Exercise 11.21 to prove that differentiability of £at a peint implies convergence
of its Fourier series at the point.
11.23 Let g be continuous on [0, 1] and assume that [§ 1"g(r) dt = Oforn = 0,1,2,. ...
Show that:

a) [3 g(n? dr = [} gleNgle) — P()) dt  for every polynomial P,

b) fhe(? dr = 0.  Hint. Use Theorem 11.17,

¢} g{t) = 0 foreveryrin [0, 1]

11.24 Use the Weierstrass approximation theorem 0 prove each of the following state-
ments.

a) If fis continuous on [1, + <) and if f{x) ~ o as x ~ + 0, then fcan be uni-
formly approximated on [I, + oc) by a function g of the form g(x) = p{t/x),
where p is a polyromial.

b) If £ is continuous on [0, + o) and if f{x) - a as x = + =, then f can be
uniformly approximated on [0, + o) by a function g of the form g{x) = ple=*},
where p is 2 polynomial.

11.25 Assume that f(x) ~ ao/2 + Y aw, (@, co8 nx + b, sin nx) and let {7,} be the
sequence of arithmetic means of the partial sums of this serigs, as it was given in (23).
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Show that:
g = &
a) g x =~2~+ E (1——)(akcoskx+b,sinkx}.
k=1 L

33 2%
b) f f(x) — o) dx = f e dx
[+]

k=1

_E —nZ(a,,+b,)+ 22&:’({1.1—:‘; .

¢} I fis continuous on [0, 2z] and has period 27, then
P n
lim — )  &%ai + 5 = 0.
s nz FZL ( x + k)

11.26 Consider the Fourier series (in exponential form) generated by a function / which is
continnous on [0, 2x) and periodic with period 2x, say

o

@~ 3 et

=
Assurne also that the derivative f* € £ on [0, 2r].

a) Prove that the series 35" . #%luw|? converges; then use the Cauchy-Schwarz
inequality to deduce that 317 . || converges.

b) From (a), deduce that the series 352 . a.#'™ converges uniformly to a con-
tinuous sum function g on {0, 2x]. Then prove that £ = g.

Fourier integrals
1127 If f satisfies the hypotheses of the Fourier integral theorem, show that:
a} If fis even, that is, if /{—1) = f(r) for every ¢, then

Gy + 7=y _ 2 ¥ s ox [fmf(:t)cosnu du] do.
L]

2 Taeriw fg

b) If fis odd, that is, if /{— £} = —f{r) for every ¢, then
w:— lim smvx[j f(u}smvudu] dv,

2 M+

Use the Fourier integral theorem to evaluate the improper integrals in Fxercises 11.28
through 11.30. Suggestion. Use Exercise 11.27 when possible.

. I if~-1<x<l
2 o ¥
11.:3-] SO g =0 if|x > 1,
b t iflx] =

cos
129 J. » :: i’ibe""’, ifh > 0.

Hint, Apply Exercise 11.27 with f{u) = %M,

31
.

130 | g o T e ifg 0.
o 1+ 22 lal 2

11.31 a) Prove that

() _ 5 f”’ 11 - X dx.
Iz o

b} Make a suitable change of variable in (a) and derive the duplication farmula for
the Gamma function:

repr) = 27~ 10(p0e + B.
NOTE. Tn Exercise 10,30 it is shown that I'd) = V7.

1132 i f(0) = %72 and g(x) = xf(x) for all x, prove that

S f(y)=ﬁf“f{x}cmxydx and g(y}=ﬁrg(x)smxydx.
£ Jo ® Jo

11.33 This exercise describes another form of Peisson’s sumemation formula.  Assume
that £ is nonnegative, decreasing, and continuous on [0, + <o) and that jg';' FC) efx exists
as an improper Riemann integral. Let

o) = ,/2 f " fx) cos xy dx.
® Jo

If « and £ are positive numbers such that aff = 2x, prove that

- Va {m)) + Zf(m)} =V {mn +3 g(nm}.
m=1

e ]

11.34 Prove that the transformation formula (55) for 8(x) can be put in the form

G B B Bl
=1 a=1
where aff = 2r, 2 > 0.

11,38 If 5 > 1, prove that

ym 2 l—(f) -1 o Im o™, S2-1 1
2 o

nmsit r(f)c(s) = Jw (x4 dx,

and derive the formula
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where 2p(x) = 8(x) — 1. Use this and the transformation formula for #(x) to prove that

e ]-( )C() [ + j (21 ¢ -2y dy,

Laplace tramsforms )
Let ¢ be a positive namber such that the integral 3 e~™| f(r)| ¥ exists as an improper
Riemann integral. Letz = x + iy, where x > ¢, It is easy to show that the integral
F(z) = j e f(¢) dt
o

exists both as an improper Riemann integral and as a Lebesgue integral. The function ¥
so defined is called the Laplace transform of §, denoted by Z()). The following exercises
describe some properties of Laplace transforms.

11L.36 Verify the entries in the following table of Laplace transforms.

Ji6) F(z) = [§ e~ f(s) dt z=x+ iy
™ o fz—at {(x > a)

cos af 2f{z2 + %) x>0

sin af af(z® + «%) (x > 0}

P Tip + iz — ap*! x> ap >0

11.37 Show that the convolution & = £+ g assumes the form
h(e) = f!(xlﬁt —~ xydx
a

when both / and g vanish on the negative real axis. Use the convolution theorem for
Fourier transforms to prove that 2(f « g) = 2(Fy - Z{g).

1138 Assume fis continuous on (0, + w)and ket F(z) = [§ e™ fit) dtforz = x + iy,
x>¢>0 Ifs> cand a > 0 prove that:

a) Fls + a) = a [ g(re™ dr, where g(x) = [3 e f(1) dt.
D IEFs+r)=0forn=001,2,...,then fFf{({) = O for ¢ > 0. Hint. Use
Exercise 11.23.
¢} If & is continuous on (0, + 90} and if £ and & have the same Laplace transform,
then £(r) = A(t) for every £ > 0.
13 Let F(z) = [F e fliydiforz = x + inx > ¢ > 0 Let ¢ be a point at which f

satisfies one of the “focal” conditions (a) or (b} of the Fourier integral theorem (Theorem
11.18). Prove that for each o > ¢ we have

_ T
far) 2 S0 Ly [T pernpgg 4 i) db,
2 22Tt _r

This is called the inversion formula for Laplace transforms. The limit on the right is usually
evaluated with the help of residue calculus, as described in Section 16.26. Hint. Let
g1} = e"=f(tyfor t > 0, g{t) = Ofort < 0, and apply Theorem 11,190 ¢,

R SR
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CHAPTER 12

MULTIVARIABLE DIFFERENTIAL
CALCULUS

12.1 INTRODUCTION

Partial derivatives of functions from R* to R* were discussed briefly in Chapter 5.
We also introdoced derivatives of vector-valued functions from R* to R®. This
chapter extends derivative theory to functions from R* to R™.

As noted in Section 5.14, the partial derivative is a somewhat unsatisfactory
generalization of the usual derivative because existence of all the partial derivatives
bf, ..., D, f at a particular point does not necessarily imply continuity of f at
that point. The trouble with partial derivatives is that they treat a function of
several varables as a function of one variable at a time. The partial derivative
descaibes the rate of change of a function in the direction of ¢ach coordinate axis.
There is a slight generalization, called the directional derivative, which studies the
rate of change of a function in an arbitrary direction. It applies to both real- and
vector-valued functions.

12.2 THE DIRECTIONAL DERIVATIVE

Let S be a subset of R, and let £ : § — R™ be a fenction defined on S with values
in R™. We wish to study how £ changes as we move from a point ¢ in & along a
line segment to a nearby peint ¢ + w, where w # 0. Each point on the segment
can be expressed as ¢ + /m, where & is real. The vector u describes the direction
of the line segment. We assume that ¢ is an fterior point of S. Then there is an
n-ball B(c; r) lying in S, and, if & is small enough, the line segment joining ¢ o
¢ + /m will lic in B{c; r) and hence in S.

Definivion 12.1. The directional derivative of f at ¢ in the direction w, denoted by
the symboi t'(c; w), is defined by the equation

f'(c; n) = lim !{E-{-'—‘hll)_i{c) R (1)
A0 h

whenever the limit on the right exists.

NOTE. Some authors require that [luf| = 1, but this is noi assumed here.

Examples

1. The definition in {1} is meaningful if u = 0. In this case F'(c; 0) exists and equals 0
forevery ¢cin S.

344
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2. ¥ u = u, the &th unit coordinate vector, then f'(c; w) is called a partial derivative
and is denoted by I} f(c). When f is real-valued this agrees with the definition given
in Chapter 5.

3.0 F = (f,,....f). then £’(c; u) exists if and only if fi{e; u) exists for each & =
1,2,..., m, in which case
f'e;u) = (filesm), .. ., fules W)
In particuiar, when u = uy, we find
Df(e) = (Dfile). ... Difde)). _ {2)
4. IFF() = f{c + ru), then F(0) = {'(e; up. More generally, F'(¢) = f'{c + tu; u) if
either derivative exists.
5. I fix) = |x|3, then

f

F() = fle + m) = (¢ + ra)-{e + v}

I

fef? + 2te-m + £2uf?,

s0 F(1) = 2¢-u + 2¢]u|?; hence F(O0) = fe:w) = 2¢-u.

6. Linear functions. A fanctionf: R* — R" is called fivear if fax + by) = af(x) + bE(y}
for every x and ¥ in R* and every pair of scalars @ and b, I T is linear, the quotient
on the right of (1) simplifies to f{(u), s0 f{¢; u) = f{u) for every ¢ and every u.
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If £'{c; u) exists in every direction u, then in particular all the partial derivatives

Df(c), ..., D,f(c} exist. However, the converse is not true. For example,
consider the real-valued function /: R? —» R given by
. _ x4y ifx=0o0ry=0,
79 = {l otherwise.

Then D, f{0, 1) = D, (0, 0) = 1. Nevertheless, if we consider any other direction
n = (a,, a,), where a, # Oand a, # 0, then
fO + ) — f@ _ fim) _ 1
h h ne
and this does not tend to a limit as & — 0.

A rather surprising fact is thaf a function can have a finite directional derivative
f'(c; u) for every u but may fail to be continuous at ¢. For example, let

B xyifix? 4 Y ifx #0,
ﬂx’”_{o ifx = 0.

Let u = {&, 4;) be any vector in R2, Then we have

SO + hu) — f0) _ flha,, haz) 433
# h a? + kla} ’
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and hence

2 .
“0; u) = azfa, ifa, # 0,
fw {0 ifa, = 0,

Thus, '(0; v) exists for all w. On the other hand, the function f takes the value &
at each point of the parabola x = y* (except at the origin), so £ is not continuous
at (0, @), since A0, 0) = 0.

Thus we see that even the existence of all directional derivatives at a point fails
to imply continuity at that point. For this reason, directional derivatives, like
partial derivatives, are a somewhat unsatisfactory extension of the one-dimensional
concept of derivative. We turn now to a more suitable generalization which implies
continuity and, at the same time, extends the principal theorems of one-dimensional
derivative theory to functions of several variables. This is called the total derivative.

12.4 THE TOTAL DERIVATIVE

In the one-dimensional case, a function f'with a derivative at ¢ can be approximated
near ¢ by & lincar polynomial. In fact, if £(¢) exists, let E.(A} denote the difference

Efh) = (“J’—";:‘" O _pey ifnso Q)
and let E(0} = 0, Then we have
Jle + B = fley + flchh + RELR), 4

an equation which holds also for & = 0. This is called the first-order Tayior
Jormula for approximating f{c + &) — f{c) by f'(c)h. The error commiteed is
RE (h). From (3) we see that E(h) — O as & — 0. The error AE(h) is said to be
of smaller order than & as & — 0. :

We focys attention en two properties of formula (4). First, the quantity
F'(c)k is a linear function of 4, That is, if we write T(h) = f{c)k, then

Tlah, + bhy) = aThh) + bT.(h).

Second, the error term AE{A) is of smaller order than 4 as # — 0. The total
derivative of a function f from R” to R™ will now be defined in such a way that it
preserves these two properties.

Let £:5 — R™ be a function defined on a set § in R" with valoes in B, Let ¢
be an interior point of §, and let B(c; r) be an »-ball lying in S. Let v be a point
in R" with |yl < », so that ¢ + v & B{e: r).

Definition 12.2. The function { is said to be differentiable at ¢ if there exists a linear
Junction T_:R" — R™ such that

fle + v} = f(e) + TA¥) + IIv] E(v), )
where E(¥) > Dasvy —» 0.
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Note. Equation (5) is called a first-order Taylor formula. It is to hold for all vin
R" with |¥] < ». The linear function T, is called the rota/ derivative of fat e. We
also write (3) in the form

fle + v} = fe) + TAv) + o *) as ¥y — 0.

The next theorem shows that if the total derivative exists, it is unique. It also
relates the total derivative to directional derivatives.

Theorem 12,3, Assume § is differentioble at ¢ with total devivative T,. Then the
directional derivative '{c; u) exists for every u in R" and we have

T (u) = f'(e; ). : (6)
Proof. T v = 0 then f'(c; 0) = 0 and T(0) = 0. Therefore we can assume that
v # 0. Take v = huin Taylor’s formula (5), with # # 0, to get
fc + /) — f(c) = T 0m) + Nhull E(v) = AT ) + 14 fuf EL¥).
Now divide by & and fet r — 0 to obtain {6).
Theorem 12.4. I 1 iy differentiable ar &, then ¥ is continuous at ¢.

Proof. Let v — 0 in the Taylor formula {5). The error term J|¥| E(v) — 0; the
linear term T.(¥) also tends to O because if v = oyw; + -+ 4+ p,0, where
a,. ..., u, are the unit coordinate vectors, then by linearity we have

Tc(»u) - I)"l'rn(“l) + o vth{“n}r
and each term on the right tends to Gas v — 0.

NOTE. The total derivative T, is also written as '(¢) to resemble the notation used
in the one-dimensional theory. With this notation, the Taylor formula (3) takes
the form

fle + v} = fle) + 1°(c)v) + [vll Edv), (7}
where E (v} = 0 as v — 0. However, it should be realized that f'{(c) is a linear
Junction, not a number. It is defined everywhere on R*; the vector £'(c)}{v) is the
valug of £(c) at v, ,
Example. If T is itself a linear function, then (¢ + ¥) = Kc) + 1), so the derivative
7(c} exists for every ¢ and equals I. In other words, the total derivative of a linear fonction
is the function itself.

125 THE TOTAL DERIVATIVE EXPRESSED IN TERMS OF PARTIAL
DERIVATIVES

The next theorem shows that the vector '(c){v} is a linear combination of the partial
derivatives of f.

Theorem 12.5. Let £:8 — R™ be differentiable at an interior point ¢ of S, where
SCR" Ifv=opu +  + tu, where u,, ... U, are the unit coordinate
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vectors in R", then
»

£'(e)(v) = ; 0, D f(c).
In parsicidar, if f is read-valued (m = 1) we have
7@ = Ve, ()
the dot preduct of ¥ with the vector Vf(c} = (D, fie}, ..., D, f(c)).
Proof. We use the linearity of £'{(¢) to write

£(cKv) = g; f(cHnm) = :; o £ '(e)(uy)

= Z o f'e;w) = Z v, D, 1(c).
k=1 k=1

Note. The vector Vf(e) in (8) is called the gradient vector of £ at €. It is defined
at each point where the paruals D,f, ..., D,/ exist. The Taylor formula for
real-valued f now takes the form

fle +v) =fe) + Vf(e)-v +o(jv]) asv-0.

12.6 AN APPLICATION TO COMPLEX-VALUED FUNCTIONS

Let f = u + iv be a complex-valued function of a complex variable. Theorem
5,22 showed that a necessary condition for £to have & derivative at a point ¢ is that
the four partials Dyu, Du, D, Do exist at ¢ and satisfy the Cauchy-Riemann
equations:

Diu(c) = Dyole), Div(?) = —Dyulc).

Also, an example showed that the equations by themselves ate not sufficient for
existence of f'{(¢). The next theorem shows that the Cauchy-Riemann equations,
along with differentiability of u and », imply existence of f'{c).

Theorem 12.6. Let u and v be two real-valued functions defined on a subset S of the
complex plane. - Assume alse that u and v are differentiable at an interior point ¢
of § wnd that the partiol derivatives satisfy the Cauchy—Riemann equations at .
Then the function f = u -+ v has a derivative at ¢. Moreover,

Fe) = Dyule) + iDv(e).

Preof. We have f(z) — f{¢) = u(z) — ul{c) + i{v{z) — vle)} for eack z in S.
Since cach of u and » is differentiable at ¢, for z sufficiently near to ¢ we have

#(z} — ulc) = Vule)-(z — ) + of|z — ¢}
and

p(z} — olc} = Vo{c)-{z — ¢} + o(fz — |}

i
%
L]
4

Matrix of & Linear Function 9

Here we use vector notation and consider complex numbers as vectors in R?, We
then have

f(z) = fley = {Vu(e) + i Vo(e)} - (z — &) + ollz — ¢l).

Writing z = x + fyand ¢ = a + ib, we find
{Vule) + § V(o)) {2z — ©)

Dule)(x — a) + D)y — ) + i {Dp(e)(x — a) + Dp{e)y — b))
Du(e){{x — @) + i(y — B} + iD(e){(x — @) + {y — B},
because of the Cauchy-Riemann eqguations. Hence

f(2) = £&) = (Dyu(e) + D)} @ — &) + oflz — cll).
Dividing by z — ¢ and letting z — ¢ we see that f(¢) exists and is equal to

D,uley + iDp(c).

Il

127 THE MATRIX OF A LINEAR FUNCTION

In this section we digress briefly to record some elementary facts from linear
algebra that are uscful in certain calculations with derivatives.

Let T:R* = R™ be a linear function. (In our applications, T will be the
total derivative of a function £) We will show that T determines an m % matrix
of scalars (see (9} below) which is obtained as follows:

Let u,,...,u, denote the unit coordinate vectors in R”. If x € R" we have
x = x;m + -+ x4, so, by linearity,

n

Tx) = 2 xTiw).

ko=

Therefore T is completely determined by its action on the coordinate vectors
Uy, ey Uy

Now lete,, ..., €, denote the unit coordinate vectors in R™. Since T(u,) c R™,
we can write T(w,) as a linear combination of ey, . . . , &y, 5y

T(w,) = Zl 1,8

The scalars £, . . ., I are the coordinates of T(m). We display these scalars
vertically as follows:

t.'lk

i?,,

-
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This array is called a column vector. We form the column vector for each of
T(n,), ..., T(u,} and place them side by side to obtain the rectangular array
tyy tz ot}

fg1 taz 00 o (9)

rml ’mz e i]mu

This is called the matrix* of T and is denoted by »(T). Ii consists of m rows and
n columns. The numbers going down the kth columa are the components of
T{u,). We also use the notation

m(T) = [ ], or m(T) = (1)
to denote the matrix in (9).
NowletT: R" — R™and 5 : R® — R” be two lincar functions, with the domain
of S containing the range of T. Then we can form the composition 8 « T defined by
(S« T)x) = S[T(x)] for all x in R".

The composition 8o T is also linear and it maps R" into R?,
Let us calculate the matrix m{S < T). Denote the unit coordinate vectors in
R", B™, and R”, respectively, by

Uy, ..., N, €4,. .., 8, and LITRERPE

Suppose that 8 and T have matrices (5.} and (¥, j),‘ respectively. This means that

I
Ste) = o, sw,  fork=1,2...,m
f=1

and
T(uj) - Z b forj=12...,n
k=i

Then -

» m P

(SeTu) = S[Ta)] = D 5, Sle) = X b, 2 sy,
kel L § Bl ]
P -m
= ; (;‘_Z. —".’k’n) w;

50

W

- = 2
m(b“ T} = [; S_:;J'u:l

i1

In other words, m(S .+ T) is a p x # mateix whose entry in the ith row and jth

* More precisely, the matrix of T relative to the given bases u,,...,u, of R" and
£3...., 8, Of R™
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cojumn is
"
E Silijs
Y

the dot product of the ith row of #(S} with the jth column of m(T). This matrix
is also called the product mtSwn(T). Thus, m(S - T) = m(S)m{T).

12.8 THE JACOBIAN MATRIX

Next we show how matrices arise in connection with total derivatives.

Let f be a function with values in R™ which is diffcrentiable at a point ¢ in R”,
and let T = F(c) be the total derivative of f at e. To find the matrix of T we
consider its action on the unil coordinate vectors u,, ..., w, By Theorem 12.3
we have

Tiw) = {{e: ) = Dfie)

To express this us a linear combination of the unit coordinate vectors e,, . . ., €, of
R™ we write T = (f,, ..., m) 50 that D,f = (D fy, ..., DiJ,), and hence

T(w) = D,f(e) = 3 Difilede

Therefore the matrix of T is m(T) = (D, fi(e}). This is cailed the Jacobian matrix
of f at ¢ and is denoted by Df{c). That is,

D file) ﬂz.f:l[c) o Bufie)
Df(c) = Dif:z(C) Dz,{z(f-') te Du{z{c} {10}
D ne) Difule) 0 Do)

The entry in the ith row and kth column is D, fi(e). Thus, to get the catries in the
kth column, differentiate the components of f with respect 1o the ith coordinate
vector. The Jacobian matrix Di(e) is defined at each point ¢ in R” where all the
partial derivatives I, f{c) exist.

“Fhe kth row of the Jacobian matrix {10} is a vector in R" called the gradiem
rector of f,, denoted by Vf(c). That is,

Vfi(e) = (D, file), . ... D Si()).

In the special case when £ is real-valued (m = 1), the Jacobian matrix consists
of anly one row. In this case Df(c} = V/{c), and Equation (8) of Theorcm 12.5
shows that the directional derivative £7(e; v} is the dot product of the gradient
vector Vi{e) with the direction v.

For a vector-valued function f = (£}, ..., f,) we have

m

Flepy) = e v) = 2 fileive, = 2, IVA(e) - vie. tHn
=

k=1
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so the vector '(¢)(¥) has components

{vfl(c) ¥, me(c) ) V}-

Thus, the components of f{c){¥) are obtained by taking the dot product of the
successive rows of the Jacobian matrix with the vector v. If we regard {'(c)(¥) as
an m x | matrix, or column vector, then f'{e}v) is equal to the matrix product
Di{c)v, where Df(c) is the m X n Jacobian matrix and v is regarded as an n x 1
matrix, or column vector.

NoTE. Equation (11), used in conjunction with the triangle inequality and the
Cauchy-Schwarz inequality, gives us

I = E{Vﬁ(ﬂ“’}“—x gg,:wf;(c)-v[ < nvng;nw;(c}n.

Therefore we have
[F e}l = Mivi, 2

where M = 3 7., || V/{c)ll. This inequality will be used in the proof of the chain
rule. It also shows that £'(cX¥) = 0 as ¥ - 0.

12.9 THE CHAIN RULE

Let  and g be functions such that the cﬁmposili-nn h=f-g is defined in a
neighborhood of a point %, The chain rule tells us how to compute the total
derivative of h in terms of total derivatives of f and of g

Theorem 12.7. Assume that g is differentioble at a, with total derivative g'(a). Let
b = g{a) and assume that € is differentioble at b, with total derivative Ul). Then
the composite function b = { - g is differentiable ot a, and the toral derivative W(g)
is given by

B(a) = {'(b) - g'(a),
the composition of the linear functions I'(b} and g'(a).

Progf. We consider the difference b{a + ¥) — h{a) for small j¥l, and show that
we have a first-order Taylor formula. We have

h(a + y) — h(®) = flgla + y)] — flg@)] = Kb + v) — f(b), (13}
where b = g(a)and v = g(a + ¥) — b. The Taylor formula for g(a + y} implies
Y=g}y + Iyl E«y), where E,(y) » Oasy —» 0. (14)

The Taylor formula for f{(b + ¥} implies
fib + v) — () = W) + [v] E(v), where Ey(v) — Oasv — 0. (15)

e
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Using (14) in (15) we find
f(b + v) — fib) = F'(1)['@}Y] + CMIyY) Ey)] + v Eu(¥)

— Fm)[g@m] + iyl EW), (16)
where E(0) = 0and
E(y) = C[E(y] + H E() ify#0. an

Te complete the proof we need to show that E(y) - 0asy — 0.

The first term on the right of (17) tends to 8 as y — @ because E,(y) = 0. In the
second term, the factor E{v) - 0 because ¥ — & as ¥y — 0. Now we show that
the quotient [v}j/}y]l remains bounded as ¥y — 0. Using (14) and (12) to estimate
the numerator we find

Ivl < lg'@mi + ¥l 1B < liyl{M + Bl
where M = Y7, || Vau(a}]]l. Hence
M ¢ M+ eI,
l¥f
so | vil/l¥l remains bounded as y — 0. Using (13) and (16) we obtain the Taylor
formula
h(a + y) — ha) = F(b)[ga)y)] + Uyl E¥),

where E(y) — 0 as y — 0. This proves that I is differentiable at 8 and that its
total derivative at a is the composition £'(l} » g'(@).

12.16 MATRIX FORM OF THE CHAIN RULE

The chain rule states that
b'{a) = '(b) - g'(a), (18)

where b = fog and b = g(a). Since the matrix of a composition is the product
of the corresponding matrices, (18) implies the following relation for Jacobian
matrices:
Dh(s) = Df(b)Dg(). (19)

This is called the matrix form of the chain rule. 1t can also be written as a set of
scalar equations by expressing each matrix in terms of its entries,

Specifically, suppose that a € R®, b = g{a) e R", and f(b) € R™. Then h{a) € R"
and we can write '

gz{gl;:“ngn)t fz(j‘ls""!fm)& h = (..., B
Then Dh(a) is an m x p matrix, Df(b) is an m x » matrix, and Dgla)isann x p




354 Multivariable Differential Calculus Th. 12.8

mafrix, given by

Dh(a) = [DA(0)]7%,  Df() = [D MG,  Dgw) = [Dg@)]i-,.

The matrix equation {19) is equivalent to the mp scalar equations

Djhi(a)=§l).f,{b}ﬂjgt(a), fori=1,2,...,m and j=1,2,...,p. 20)

These equations express the partial derivatives of the components of h in terms of
the partial derivatives of the components of f and g.

The equations in (20) can be put in a form that is easier to remember. Write
y = f(x)and x = g(f). Theny = f{g{)] = h{), and (20) becomes

3y, o~ 8y 0%,
. - bk 21
at). k=1t 6,!:,‘ 3(, ( )
where
dy; ay; x,
= = Doy, st = O £ and X e [hagy,
a‘}' ’ {3}:* kf (3tj ]gi

Exumples. Suppose m = 1. Then both fand k = f- g are real-valued and there are p
equations in (20), one for each of the partial derivatives of &:

Dyh(a) = 3 Df®Dygim),  i=1,2...,p.

=1
The right member is the dot product of the two vectors VF(b) and De(a). In this case
Equation (21) takes the form

»
_ & o
3{,- =1 3&3?,

In particular, if p = 1 we get only one equation,
2
Ky = 3 Df(blgi(a) = V/(d)- Dgfa),
k=1

where the Jacobian matrix Deg(a) is a column vector.

The chain rule can be used to give a simple proof of the foltowing theorem for
differentiating an integral with respect to a parameter which appears both in the
integrand and in the limits of integration.

Theorem 12.8. Let f and D, f be continuous on a rectangle [a, b] x [c,d]. Let p
and ¢ be differentiable on [, d), where p{y) € [a, b] and g(y) € [a, b] for each y in
[e, d}. Define F by the equation

otr) '
F(y) = fle, yydx, ifyeled]
iy
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Then F'(¥) exists for each y in (e, d) and is given by

a(¥} )

F'(y) = J' Dy f(x; yy dx + flg(»), »g'(y) — Fplx) V) (¥}
P

Proof. Let G(xy, X3, x3) = |3 f{r, x;} dr whenever x, and x; are in [a, 5] and

X3 € [c, d]. Then F is the composite function given by F(y) = G{p(3), g(»}, »).

The chain rule mmplies

F'(y) = DyG(p(3), q(3), )8 (0} + DLG(p(3), g3 3)g'(0) + DaG{p(¥), 903, y)-
By Theorem 7.32, we have D,G(x,, x;, x3) = ~f(xy, x3) and D Glx,, x,, X3} =
S{x,, X3). By Theorem 7.40, we also have

X,

3
D,G(x,, X3, x3) = j D, f(s, x;) dr.

X3

Using these results in the formula for 7’3} we obtain the theorem,

12.11 THE MEAN-VALUE THEOREM FOR DIFFERENTIABLE FUNCTIONS

The Mean-Value Theorem for functions from R! to R¥ states that

Sy = Ax) = fzXy ~ %), (22)

where z lies between x and y. This equation is false, in general, for vector-valued
functions from R* to R™, when s > 1. (See Exercise 12.19.) However, we will
show that a correct equation is obtained by taking the dot product of each member
of (22} with any vector in R™, provided z is suitably chosen. This gives a useful
generalization of the Mean-Value Theorem for vector-valued functions.

I[n the statement of the theorem we use the notation L(x, ¥) to denote the line
segment joining two points x and y in R". That is,

x,p={x+( —t)y:0<1t <1}
Theorem 1.9 { Mean-Value Theorem.) Let S be an open subset of R" and assume
that £: 5 — R™ is differentiable at each point of S. Let x ond y be two points in S

such that L(x,¥) = 5. Then for every vector a in R™ there is @ point z in L{x, ¥}
such that

a-{f(y) — fx)} = a - {I'=)0y — %)} (23)

Proof, letuw =y — x. Sinee Sisopen and L(x,y) = S, thercisa d = 0 such
that x 4+ tu = §for all real 7 in the interval {—&, | + 8). Let a be a fixed vector in
R™ and let £ be the real-valued function defined on {—48, 1 + &) by the equation

F(1) = a-f{x + ).
Then F is differentiable on (—48,1 + &) and its derivative is given by
Fy=a-T{x 4+ m;u) = a-{f'(x + ray{uw)}.
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By the usual Mean-Value Theorem we have

F() — F(y = F'{§), where 0 < 0 < 1.
Now
F(@) = a-{{'(x + <)} = a- {0y - x)},

where z = x + fne L{x, ¥). But F(1) ~ F0) = a-{{y) — {(x)}, s0 we obtain
{23). Of course, the point z depends on F, and hence on a.
NOTE. If Sis convex, then L(X, ¥} = S forall x, ¥ in 5 so {23) helds for all x and
¥ in &,
Examples
1. If £ is real-valued {(m = 1} we can take # = 1 in (23} to obtain
iy - & = @y - )= V2-iy - %) (24}

2. If £ is vector-valued and ifa is a unit vector in R™, [aj = 1, Eq. (23) and the Cauchy—
Schwarz inequality give us

i — ()] < '@ - ).
Lising (12) we abtain the inequality
Ifty) — I@] = My — x|,
where M = 35, | VA(z}|- Note that M depends on z and hence on X and ¥.

3. If § is convex and if all the partial derivatives I, f; are bounded on S, then there is a
constant 4 > { such that

1) — £ = 4ly - x.
In other words, f satisfies a Lipschitz condition on S,

The Mean-Value Theorem gives a simple proof of the following result concern-
ing functions with zero total derivative,

Theorem 12.10. Let § be an open commected subset of R®, and let £: 5+ R™ be
differentiable at each point of S. I¥'(c) = O for each ¢ in S, then €is constant on 8.

Proof. Bince § is open and connected, it is polygonally connected . (S¢e Section
4,18.) Therefore, every pair of points x and ¥ in 5 can be joined by a polygonal
arc lying in 5. Denote the vertices of this arc by py, ..., p,, where p;, = x and
p, = ¥. Since each segment L(9;.1, B) = &, the Mean-Value Theorem shows that

- — fpd} =0,
for every vecior 8. Adding these equationsfori = 1, 2,..., ¢ — |, we find
ar{fy) — f(x)} = 0,
for every a. Taking a = f{y) — f{x) we find f(x} = ¥}, sof is constant on 5,
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12.12 A SUFFICIENT CONDITION FOR DMFFERENTIABILITY

Up to now we have been deriving consequences of the hypothesis that a function
is differentiable. We have also seen that neither the existence of all partial deriv-
alives nor the existence of alt directional derivatives suffices to establish differ-
entiability (since neither implies continuity). The next theorem shows that
continuity of all but one of the partials does imply differentiability.

Theorem 12,11, Assume that one of the partial derivatives DX, . .., D Fexists at ¢
and that the remaining n — | partial derivatives exist in some n-ball B{e) and are
continuons ut €. Then § is differentiable at ¢.

Proof. First we note thata vector-valued function f = (fy, .. ., /) is differentiable

at ¢ if, and only if, cach component f; is differcntiable at ¢. (The proof of this is an

easy exercise.} Therefore, it suffices to prove the theorem when f is real-valued.
For the proof we suppose that D, fie) exists and that the continuous partials

are D,f,..., D[
The only candidate for f'(e) is the gradient vector Vf(e). We will prove that

fle + %) —~ fle) = Vfieh-¥ + offvi) asv-+ 0,

and this will prove the theorem. The idea is to express the difference f(e + ¥) — f(c)
as a sum of # terms, where the &th term is an approximation to Dy f{c)s,.

For this purpose we write ¥ = Ay, whete |yl = 1 and A = {v]|. We keep 4
small enough se that ¢ + v lies in the ball Ble) in which the partial derivatives
D.f, ..., D fexist. Expressing y in terms of its components we have

Y=t t+ 0+ v,

where u, is the kth unit coordinate vector. Now we write the difference fle + v) ~
f(&) as a telescoping sum,

f(e +v) = 1) = fle + Ay) — f(o) = Z {fle + iv) = fle + v_,)), (25)

where
Yo 0 v o=y, ¥y o= iy Pl Yy = Nl R 0 Pl

The first term in the sum is f{c + Ay,u;) — f(c). Since the two points ¢ and
¢ + Ay,m, differ only in their first component, and since D, f(c) exists, we can
write
fic + ywy) — f(e) = Ay D f(e) + Ay £,(A),
where Ej{l) = 0as A — 0.
For k = 2, the kth term in the sum is

Jle + vy + Ay — fle + Ivoq) = fib + dpam) — fiby),

where by, = ¢ + Jv,_,. The two points b, and b, + Apw, differ only in their £1h
component, and we can apply the one-dimensional Mean-Value Theorem for
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derivatives to write
SO + Jym) — f(by) = Ay D fla), (26)

where a, lies on the line segment joining b, to by + Ay, Note that b, — ¢ and
hence a; — ¢ as A — 0. Since each D, fis continuous at ¢ for k& > 2 we can wrile

D fing) = Dy f(e) + E(L),- where E{1} - 0asl — Q.
Using this in (26} we find that (25) becomes

S+ 9 10 = 2 3 BS@n + 1 3 nEW
= Vi(©) v + v[E(A),
where
E()) = :; KE(D) = Das |v) — 0,
This completes the proof.

NOTE.  Continuity of at least » — 1 of the partials D,f, ..., DF at ¢, although
sufficient, is by no means necessary for differentiability of f at ¢. (See Exercises
12.5 and 12.6.)

12,13 A SUFFICIENT CONDITION FOR EQUALITY OF MIXED PARTIAL
DERIVATIVES

The partial derivatives D1, ..., D.f of a function from R" to R™ arc themselves |

functions from R” to R™ and they, in turn, can have partial derivatives. These are
called second-order partial derivatives. We use the notation introduoced in Chapter
5 for real-valued functions:

*f
ax,dx,
Higher-order partial derivatives are similarly defined.
The example
f(x, y) = {xy{xl - yz)j(xz + }*2) if (I, }’) # (0: 0)9
0 if(x, y) = (0,0,

shows that D, , f{x, ) is not necessarily the same as D, | f(x, y). In fact, in this
example we have

D,,f = D(Dyf) =

4 2.2 4
+ 4 -
D, f(x, y) = YAV =Y

oF + yP if (x, y) # (0, 0),

sy

- 1%}@" ok
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and D, {0, 0) = 0. Hence, B, f(0, y) = —y for all y and therefore
Dz,lf(O,v}’) = -1, Dy, f0,0) = —1.
On the other hand, we have

4 axty? — Y
Dof(x, y) = M~ dx) .
2f(x, ¥} 2ty
and D,f(0, 0) = 0, 50 that D, f(x, 0} = x for all x. Therefore, D, ,f(x,0) = 1,
D, ,/(0,0) = 1, and we see that D, , /{0, 0) # Dy, f(0, 0}.
The next theorem gives us a criterion for determining when the two mixed
partials D, ,f and D, ,f will be equal,

Theorem 12.12. If both partiaf derivatives DS and DI exist in an n-ball B(z; §) and
if both are differentiable at ¢, then

D, 1(c) = D, £(c). 27
Proof. If £ = (fy, .-, fu) then DI = (Dofy, ..., D fy). Therefore it suffices
to prove the theorem for real-valued f.  Also, since only two components are
involved in {27), it suffices to consider the case n = 2. For simplicity, we assume
that ¢ = (0, 0). We shall prove that
Dm,zf(oq 0) = Dz.lf((?, 0).
" Choose # # 0 so that the square with vertices (0, 0), (&, 0}, (4, &), and (0, &)
lies in the 2-ball B(0; ). Consider the quantity

We will show that AR)/#* tends to both D,  f(0, 0 and D, (0, 0y as f — 0.
Let G(x) = flx, 1) — f{x, 0} and note that

if{x, ¥} # (0,0,

ARy = Gh) — G(O). {28)
By the one-dimensional Mean-VYaluc Theorem we have
Gh) — G(0) = hG'(x,) = F{D\f(x, B) — D Sf(xy, O)}, 29

whére x, lies between 0 and &. Since D, f is differentiable at (0, 0), we have the
first-order Taylor formulas

Dy (e By = D, £(0,0) + Dy o /{0, 0x, + Dy SO, O + (xI + KYE(h),

and
Dy f(x,, 0 = D Jf0, 0) + D, 1 S0, 0x, + {x,] Exih),

where E (k) and E (£} — 0 as & — 0. Using these in (29) and (28} we find
A = D, 10, OB + E(h),
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where E(R) = A(x? + ADY2E((R) + hlx,| £5(8). Since |x,| < 4], we have

0 < (EG) < V2 B2 1) + K [Ey(h),
80

Hm é-({!-) = B, (0,0}

#—+0

Applying the same procedure to the function H()) = flh, v) — /0, ») in
place of &G(x), we find that
A(h)

lm
A=

= D,:/(0, 0),

which completes the proof. -

As a consequence of Theorems 12.11 and 12.12 we have:

Theorem 12,13, If both partial derivatives DX and DI exist in an n-ball B(c) and
i both D, f and D, 1 are contimious at ¢, then

D, f(c) = D, fle).

NOTE. We mention (without proofl) another resolt which states that if Df, D.f and
Dy I are continuous in an a-ball B{c}, then D, f(c) exists and equals D, f{(¢).

If fis a real-valued function of two variables, there are four second-order
partial derivatives to consider; namely, D, ,f, D, . f, D, . f, and D, ,f. We have
just shown that only three of these are distinet if fis suitably restricted.

The number of partial derivatives of order k which can be formed is 2% 1 all
these derivatives are continuous in a neighborhood of the point (x, ¥), then
certain of the mixed partials will be equal. Each mixed partial is of the form
D,s .-, o f where each r; is either | or 2. If we have two such mixed partials,
D, .., Jand D, , ..., f where the k-tuple {#,, ..., #;) is a permutation of
the k-tuple (p,, . ... py), then the two partials will be equal at (x, ) if all 2* partials
are continuous in a neighborhood of (x, ). This statement can be easily proved
by mathematical induction, using Theorem 12,13 (which is the case k = 2). We
omit the proof for general k. From this it follows that among the 2* pantial
derivatives of order &, there are only & + | distinct partials in general, namely,
those of the form D, , . .., , f. where the k-tuple (r,, ..., r,) assumes the following
k + 1 forms:

2,2,...,2, (L22...,2, 0.0.,2,...,2...,
hL...,LLD, (L...., DO

Similar statements hold, of course, for functions of n variables. [n this case,
there are n* partial derivatives of order & that ean be formed. Countinuity of all
these partials at a point x implies that D, , ..., , f{x) is unchanged when the
indices ry, . .., ry are permuted. Each r; is now a positive inteper <n.
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12.14 TAYLOR’S FORMULA FOR FUNCTIONS FROM R* TO R?

Taylor's formula (Theorem 5.19) can be extended to real-valued functions f defined
on subsets of R®. In order to state the general theorem in a form which resembles
the one-dimensional case, we introduce special symbols

G, 70, ",

for certain sums that arise in Taylor’s formula. These play the role of higher-
order directional derivatives, and they are defined as follows:

If x is a point in R* where all second-order partial derivatives of f exist, and if
t = (1, ..., ) is an arbitrary point in R", we write

S =2 ; DS
We also define

S(x;t) = Z E Z Dy FOO0141,

i=1 =1k

if all third-order pariial derivatives exist at x. The symbol f™Nx; ) is similarly
defined if all mth-order partials exist,

These sums are analogous to the formula

fix 0 = ):; D ()

for the directional derivative of a function which is differentiable at x.

)

Theorem 12,14 ( Taplor's formula). Assume that [ and all its partial derivatives of
order <m are differentiable at each point of an open set Sin R, If a and b are twe
points of S such thar L{a, b) < S, then there is a point z on the line segment L(a, b)
such that

w1

Jb) — f(a) - Z f""{a b—2)+ —f‘"’(z b — a)

Proof. Since S is open, there is 2 § > 0 such that a + (b — a) € § for all real
tin the imterval -8 < ¢t < 1 + & Define g on (—8, 1 + 3) by the equation

g(t} = fla + 1(b — &)

Then f(b) — f{a) = g(1) — g(0). We will prove the theorem by applying the
one-dimensional Taylor formula to g, writing

-1

g(1) — g(0) = Z lg""(ﬂ} +— -g™B). where0 <0<l (30
k=

Now g is a compuosite function given by g{l) = f{p1)], wherep(s) = a + t(b — a).
The kth component of p has derivative pi (¢} = & — a,. Applying the chain rule,
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we see that ¢'(f) exists in the interval (— 6, 1 + §) and is given by the formula

g'(t) = E D, IO15; — a) = L' b — a).

. Again applying the chain rule, we obtain

g = E ): D, fTe(E(b; — a.Xb; — a) = f'(B(1): b — ).

Similarly, we find that ") = F*p(r}; b — 2). When these are used in {30)
we obtain the theorem, sinee the point z = a 4+ 6(b — a) e L{a, b).

EXERCISES
Differcatinble fonctions

12.1 Let S be an open subset of R, and let /: § — R be a real-valued function with
finite partial derivatives D, f, ..., D.fon §. If fhas a local maximum or a local minimum
al a point ¢ in 5, prove that D, f{¢) = 0 for each 4.

122 Caiculatej all first-order partial derivatives and the directional derivative /°(x; 1)
for each of the real-valued functions defined on R* as follows:

.a) f(x) = a~x, wherea is a fixed vector in R".
b) f@x) = [x}*.

¢) f(x) = x +L{x), where L:R" — R" is a lingar function.

n L} .
d) f(x} = Z Z ek s, where a;; = ;.
dw] f=1

12.3 Let £ and g be functions with values in R™ sach that the directional derivatives
f{c; u) and g'(c; w) exist. Prove that thesum f + gand dot product f + g have directional
derivatives given by

d+ e, w = g, 0) + g'lc; w
and -
(£~ g)(c; ) = f(e) - g'le; m) + gle) - 1'(e; w)

124 If S = R®, Jet f: § — R™ be a function with values in R™, and write f = (f], ..., /).
Prove that {is differentiable at an interior point ¢ of 5 if, and only if, each f, is differentiable
at ¢.

125 Given a real-valued functions f,. ..., f,, each differentiable on an open interval
{a, ) in R, Foreach x = (x,,..., x,;} in the a-dimensional open inferval

S={xy....x)08<x<h, k=12,.._, a0}

define f(x) = f;(x) + -+« + fi{x,). Prove that fis differentiable at each point of § and
that

Fx)u) = Ef}(x,)ug, whercu = (1,,..., ).
=
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12.6 Given » real-valued functions £, . . ., f, defined on an open set 5 in R”. For each x
in 5, define f(x} = fi{x} + -+ + f(x) Assume that for each & = 1,2,..., s, the
foellowing himit exists:

lim A — Az}

FIX - X
et Xy Y i

Call this limit ag{x). Prove that fis differentiable at x and that

A

S x}w) = E a (X sy ifm = (i, ty)e

k=1
12.7 Let f and g be functions from R® to R™. Assume that £ is differentiable at ¢, that
fic) = 0, and that g is continuous at €. Let i{x) = g(x} - f(x). Prove that i is differen-
tiable at ¢ and that

Ke)u) = g(e) * {f{ey(w)} ifueR",
12.8 Let f: RZ —» R® be defined by the equation
f(x, ¥} = (sin x ¢cos y, sin xsin y, <OS X COS ¥).

Determine the Jacobian matrix DI(x, »).

12.9 Prove that there is no real-valued function £ such that f{c; w) > 0 for a fixed point
¢ in R* and every nonzero vector u in R™. Give an example such that Fle,w) > Ofora
fixed direction u and every ¢ in R
12.10 Let f = u + iv be a complex-vatued function such that the derivative f(c} exists
for some complex c. Write z = ¢ + re'™ (where a is real and fixed) and let » — Oin the
difference quotient [£{z) — feY}{(z — ) w obtain

Fley = e~ (e; 8) + w'e; a)l,

where a = {cos «, sin @), and #(c; a)} and ¢'(c; &) are directional derivatives. Let b =
{cos B, sin B), where § = & + 1, and show by a similar argument that

Fie)y = e~ [ee; b) — ii'(e; 1Y)

Deduce that wic; 8) = (e, b) and v'(c; a) = —«'(e; b). The Cuuchy-Riemann equa-
tions {Theorem 5.22) are a special case.

Gradients and the chain rule

1211 Let f be real-valued and differentiable at a point ¢ in R”, and assume that
|¥fic)} » 6. Prove that there is one and only one umit vector u in R" such that
|£7te; wy = |Vf{c}], and that this is the unit vector for which | f'(e; v} has its muximum
valhie. :

12.12 Compuie the gradient vector ¥f(x, ¥} at those points (x, ¥} in RZ where it exists:

a) fir, ) = xXiog (& + ¥y i ) # 0.0, f0,0) =20

b) fix, ¥) = xysin —2—] —5 if{x, ) #0,0), f0,0=0
Rl i 4
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12.13 Let f and g be real-valued functions defined on R? with continuous second deriva-
tives / and g*, Define

Fix, y) = fx + g(»] for each {x, ) in RZ.

Find formulas for all partials of F of first and second order in terms of the derivatives of
Fand g. Verify the relation

(DyFXD, oF) = (D;FXD, ,F).
12.14 Given a function f defined in R2. Let
F(r, ) = f(r cos &, r sin &).
a) Assume appropriate differentiability properties of f and show that
D Flr, &) = cos 0 D f(x, ¥) + sin 8@ D, f(x, ¥),

Dy, \F(r, 9) = cos® 8D, | f(x, y) + 2sin Boeos 8 D), f(x, ¥) + sin® 6Dy L f(x, p),
where x = rcos 8, p = rsin 8.

b} Find similar formuias for D,F, Dy ,F, and D, ,F.
¢) Verify the formula

I¥/(rcos 8, rsin H]* = [B,F(r, HF + % [D.F(r, ).
r
12.15 If f and g have gradient vectors ¥/ (x) and Vg(x) at a point x in R™ show that the
product function # defined by (x) = f(x)g(x} alsc has a gradient vector at x and that
Vi(x) = [(x)Va(x)} + g(x)¥f(x).

State and prove a similar result for the quotient fig.

1216 Let f be a function having a derivative f* ai each peint in R! and et ¢ be defined
on R? by the equation »

gx, p,2) = x* + ¥ 4 22,
If & denotes the composite function # = f » g, show that
[¥hix, v, 2)1? = 4gtx, p, 2){"{glx, », 221

12.17 Assume £ is diferentiable at each point (x, y) in R?. Let g, and g, be defined on
R? by the equations

gy 2y = +y + 2%, gy y=x+y 42, |
and let ¢ be the vector-valued function whose values (in R} are given by
Blx, poz) = (g)(x, 3 2 golx, p, 2).
Let / be the composite function & = - g and show that
IvRl® = ADy N)g, + D, FXD, g, + WD P

1258 Let fbe defined on an open set § in R®. We say that fis homogeneous of degree p
over § if f(Ax) = A7f(x) for every real A and for every x in S for which ix s §. Ifsucha
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function is differentiable at x, show that
X ¥f(x) = pf(x).

wote, This is known as Euler’s theorem for homogeneous functions. Himt. For fixed x,
define g(4) = f(Ax) and compute g'{L).

Also prove the converse, That is, show that if x- Vf{x) = pf(x} for all x in an open
set S, then £ must be homogeneous of degree p over S.

Mean-Vakhe theorems
12.19 Let £: R — B2 be defined by the equation £{t} = (cos ¢, sin ¢). Then £(){(w) =
w(—sin ¢, cos 1) for every real u. The Mean-Valug formula

() — Hx) = U'(zXy - x)
cannot hold when x = 0, ¥ = 2m, since the left member is zero and the right member is a
vector of length 2. Nevertheless, Theorem 12.9 states that for every vector a in R? there
is & z in the interval (0, 2x) such that

a- {f(y) — fx3} = a - {f')Ny - x)}.
Determine z in terms of a when x = Oand y = 2n.
12.20 Let f be a real-valved function differentiable on a 2-balt B(x). By considering the
function
gty = floy, + (0 = By, w2l + flxg, v + (1 — )x;]
prove that
AW = 1) = {yy — 30 (21, ¥3) + (y2 — x)Df{xy, 72),

where z, € L{x,, y,} and 2, € L(x,, ¥2).

1225 State and prove a generalization of the result in Exercise 12.20 for a real-valued
function differentiable on an #-ball B{x}.

12,22 Let f be real-valued and assume that the directional derivative /(e + fu; u) exists
for each #in the interval 0 < < 1. Prove that for some & in the open interval (0, 1) we
have
Se + w) - f{e) = f{c + fu; ).
12.23 a) If £is real-vatued and if the directional derivative f'(x; u) = 0 forevery x in an
n-ball B{c) and every direction u, prove that fis constant on B{c}.

) What can you cenclude abouf £if £'(x; w} = 0 for a fixed direction u and every
X in B{e)? .

Derivatives of higher order and Taylor’s formaula

12.24 For each of the following functions, verify that the mixed partial derivatives D, , f
and 0, | fare equal.

a) flx, y) = x* + y* — 4y
B fx, ) =logix? + ¥ {x, ;2 (0,00
o) fix, p) = tan {2fy),  y # Q.
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12.25 Let f be a function of (wo variables. Use induction and Theorem 12.13 to prove
that if the 2* partial derivatives of f of order & are continuous in a neighborheod of a point
{x, »), then all mixed partials of the form D, | oSand Dy o Fwill be equal at (x, ¥}
if the k-tuple {ry, . . ., r) contains the same number of ones as the k-tuple (2, . .., p,).

12.26 If fis a function of two variables having continuous partials of order & on some
open set & in R?, show that

13

k
o0 = E (r) r{!ﬁ"Dp,, - oo s g SEX), ifxes, t = (ty, ),

r=0

where in the rthtermwe have p; = - = p. = landp,,, = ¢ = p, = 2. Use this
resubt to give an alternative expression for Taylor’s formula (Theorem 12,14) in the case
when n = 2. The symbof (¥} is the binomial coefficient &'/ [rtik — M.

1227 Use Taylor's formula to express the following in powers of (x — B} and (y — 2):
a) fln ) = X2 + ¥ + 02, by Slx, 3) = x* + xp + %,

SUGGESTED REFERENCES FOR FURTHER STUDY
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CHAPTER 13

IMPLICIT FUNCTIONS
AND EXTREMUM PROBLEMS

131 INTROTAICTION

This chapter consists of two principal parts. The first part discusses an important
theorem of analysis called the implicit function theorem; the second part treats
extremum problems. Both parts use the theorems developed in Chapter 12.

The implicit function theorem in its simplest form deals with an equation of
the form

fix, 1) = 0. (1

The problem s to decide whether this cquation determines x as a function of 2.
If so, we have
x = g(1),

for some function g. We say that g is defined “implicitly” by (1).

The problem assumes a more general form when we have a system of several
equations involving several variables and we ask whether we can solve these
equations for some of the variables in terms of the remaining variables. This is
the same type of problem as above, except that x and ¢ are replaced by vectors,
and fand g are replaced by vector-valued functions. Under rather general con-
ditions, a solution always exists. The implicit function theorem gives a description
of these conditions and some conclusions about the solution.

An important special case is the familiar problem in algebra of solving n lincar
equations of the form

Z aijxj - fi {.P = I, 2, cesa ”). (2}
§=1

where the &;; and ¢; are considered as given nombers and x,, ..., x, represent
unknowns. In tinear algebra it is shown that such a system has a unique solution
if, and only if, the determinant of the coefficient matrix 4 = [a,;] is nonzero.

NOTE. The determinant of a square matrix A = [a;;] is denoted by det 4 or
det [a;;]. If det [a;;] # O, the solution of (2) can be obtained by Cramer’s rule
which expresses each x, as a quotient of two determinants, say x; = 4,/D, where
D = det [a;;] and 4, is the determinant of the matrix obtained by replacing the
kth column of [a;;]} by ¢(, ..., t,. (For a proof of Cramer’s rule, sce Reference
13.1, Theorem: 3.14.) In particular, if each 1, = 0, then each x, = 0.

367
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Next we show that the system (2) can be written in the form (1). Each equation
in (2} has the form ‘

.fi(xlt)=0 Whemxztxl"-'rxn)s t=(’1$---:zu),

and
Jix, 1) = ; ayx; — fo

Therefore the system in (2) can be expressed as one vector equation f{x, t) = 0,
where f = (fy, ..., /). If D,f denotes the partial derivative of f; with respect to
the jth coordinate x, then D fi(x, ) = a;;. Thus the coefficient matrix 4 = [a;]
in (2} is a Jacobian matrix, Linear algebra tells us that {(2) has a unique solution if
the determinant of this Jacobian maltrix is nonzero.

In the general implicit function theorem, the nonvanishing of the determinant
of a Jacobian mafrix also plays a role. This comes about by approximating f by
a linear function, The equation f(x, ) = 0 gets replaced by a system of linear
equations whose coefficient matrix is the Jacobian matrix of f.

NoTATION. If f={fi,...,f) and X = (x;,...,x,), the Jacobian matrix
Dix) = [D;f(x)] is an n x n matrix. Its determinant is called a Jacobian
determinant and is denoted by S{x). Thus,

Jy(x) = det Dfix) = det [D,£i(x)].

The notation
W, --- 5 Jad

a(x,,...,xﬂ),

is also used to denote the Jacobian determinant Ji{x).

The next theorem relates the Jacobian determinant of a complex-valued
function with its derivative.

Theorem 13.1. If f = u + v is a complex-valued function with a derivative af a
point z in C, then J(z) = | f'(2)I.
Proof. We have f'(z} = Dy + iDyw, 50 | f'(2)1* = (D) + (D)™ Also,

J Az} = det [’D‘u Dau

Dlv D;l’

] = D Dw — DDy = (D) + (D,v),

by the Cauchy-Riemann equations.

132 FUNCTIONS WITH NONZERO JACOBIAN DETERMINANT

This section gives some properties of functions with nonzero Jacobian determinant
at certain points, These results will be used Jater in the proof of the implicit function
theorem.

Th. 13.2 Nonzero Jacobian Determinant 369

B
B
Figre 13.1

Theorem 13.2. Let B — B(a; r) be an n-ball in R", let 8B denote its boundary,
8B ={x:Ix —af =r},

and let B = B 2B denote its closure. Let £ = (fy, ..., f) be continuous on B,
and assume that ail the partial derivatives D; f{(x) exist if x € B. Assume further
that 1(x) # (&) if x € 2B and that the Jacobign determinant J(x) # O for each
x in B. Then K(B), the image of B wnder {, contains an n-ball with center at f{a).

Proof. Define a real-valued function g on 88 as follows:
g(x) = if(x) — f@)| ifxedB

Then g(x} > 0foreach x in ¢B because f(x) # f{a}if x € 8. Also, g is continuous
on OB since I is continuous on B. Since 88 is compact, g takes on its absolute
minimum {call it m) somewhere on 2B. Note that m > 0 since ¢ is positive on &5,
Let T denote the n-ball

T= B(f(a); %) .

We will prove that T = f{B) and this will prove the theorem. (See Fig. 13.1.)
To do this we show that ¥ & T implies ¥ € f{B). Choose a point y in T, keep
y fixed, and define a new real-valued function & on B as follows:

Hx) = [fix) — y| ifxe B

Then £ is continuous on the compact set B and hence attains its absolute minimum
on B. We will show that A attains its minimum somewhere in the open #-ball B.
At the center we have h(a) = ||f{a}) — ¥ < mf2sincey € T° Hence the minimum
value of # in B must also be <m/2. But at each point x on the boundary 48 we
have

hx) = %) — yi = IKx) — fa) — (v — )]
> [if(x) — f(a)] — lfa) — y| > g(x) ~ % > g

so the minimum of & cannot occur on the boundary 8. Hence there is an interior
point ¢ in B at which k attains its minisoum. At this point the square of # also has
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a minimum, Since
Bx) = Hx) - ¥)° = E (5 - y1%

and since each partial derivative D, (4#%) must be zero at ¢, we must have

Zﬂj [f(&) — 31D S} =0 fork =1,2,...,n
r=d

But this is a system of linear equations whose determinant J,{c) is not zero, since
¢ e B Therefore fi{c) = 3, for ecach r, or f{c) = y. That is, y € f(B). Hence
T < f{B) and the proof is complete.

A function f: § — T from one metric space (S5, dg) to another (T, dy) is
called an open mapping if, for every open set A in S, the image f{(A4) is open in T.
The next theorem gives a sufficient condition for a mapping to carry open sets
onto open sets. (See alse Theorem 13.5) -

Theorem 13.3. Let A be an open subset of R® and assume that €. .4 - R" is con-
tinuous and has finite portinl derivatives D f; on A. If 1 is one-to-one on A and if
Ji(x) # O for each x in A, then §(A) is apen.

Proof. If b e f(A4), then b = f(a) for some a in 4. There is an n-ball B(@a; r) = 4
on which T satisfies the hypotheses of Theorem 13.2, so f(B) contains an »-ball
with center at b. Therefore, b is an interior point of f{4), so f{4) is open.

The next theorem shows that a function with continuous partial derivatives is
locally one-to-one near a point where the Jacobian determinant dees not vanish.

Theorem 13.4. Assume that £ = {f,, ..., [} has continuous partial derivatives
D, f, on an open set S in K", and that the Jacobian determinant J(a) # 0 for some
point ain 8. Then there is an n-ball B(a) on which § is one-to-one.

Proof. Lel Z,,...,Z_ be n points in Sand let Z = {Z;...; Z,) denote that
point in R” whose first n components are the components of Z,, whose next 2
components arc the components of Z,, and so on. Define a real-valued function
# as follows: :
HZ} = det [D,F(Z)1.

This function is continuous at those points Z in R" where K Z) is defined because
cach D, f; is continuous on § and a determinant is & polynomial in its n* entries.
Let Z be the special point in R™ obtained by putting

Z,=Z,="=2Z,=a.

Then HZ) = Ji{a) # 0 and hence, by continuity, there is some a-ball B{a) such
that det [ D,f{Z)] # ¢ if each Z; = B(a). Wc will prove that f is one-to-one on
B(a).

Th. 13.5 Nonzero Jacobian Determinant k7i |

Assume the contrary. That is, assume that f{x) = f(y)‘ for some pair of points
X % y in B(a). Since B{a) is convex, the line segment L(x, ¥} & F{a) and we can
apply the Mean-Value Theorem to each component of { to write

0=Ffly) - flx) = VH(Z) (- x) fori=12....,m

where each Z;e L(x, y) and hence Z;¢ A(a). (The Mean-Value Theorem is
applicable because £ is differentiable on 5.} Bat this is a system of linear equations
of the form

“Z (r — xJay =0  with ay, = D, f(Z).
= L

The determinant of this system is not zero, since Z, € #(a). Hence y, — x, = 0
for each &, and this comtradicts the assumption that x # y. We have shown,
therefore, that x # y implies f(x} # Ky} and hence that f is one-to-one on B(a).

NoTE. The reader should be cautioned that Theorem 13.4 is a Jocad theorem and
not & global theorem. The nonvanishing of J(a) guarantees that f is one-to-one
on a neighborhood of a. It does not follow that f is one-to-one on §, even when
Ji(x} # 0 for every x in 5. The following example Hiustrates this point. Let fbe
the complex-valued function defined by f(z) = fifze C. If z = x + iy we have

I(z) = | @) = | = ™.

Thus JAz) # 0 for every z in C. However, f is not one-to-one on C because
[z = f{z,) for every pair of points z; and z, which differ by 2mi.

The next theorem gives a global property of functions with nonzero Jacobian.
determinant.

Theorem 13.5. Let A be an open subset of R" and assume that £: 4 —» R” hay
continuous partial derivatives D, f; on A. If Jyx}y # 0 for all x in A, then { is an
open mapping.

Proof. Let S be any open subset of A. If x € § there is an »-ball B(x} in which f
is ane-to-one (by Theorem 13.4). Therefore, by Theorem (3.3, the image f(B(x))
is open in R". But we can write § = |,z B(x). Applying { we find f(5) =
Usxes f{B(x)), so £(S) is open,

NOTE. If a function f = (f, ..., /) has continuous partial derivatives on a set S,
we say that { is continuously differentiable on 8, and we write f & C* on 5. In view
of Theorem 12.11, continuous differentiability at a point implies differentiability
at that poind,

Theorem 13.4 shows that a continuously differentiable function with a non-
vanishing Jacobian at a point a has a local inverse in a neighborhood of a. The
next theorem gives some local differentiability properties of this local inverss
function.
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133 THE INVERSE FUNCTION THEOREM

Theorem 13.6. Assume £ = (f, ..., f)eC’ on an open set S in R°, and let
T = £(8). If the Jocobian determinant J,(2) ¢ 0 for some point & in 8, then there
are two open sets X = Sand ¥ = T and a uniquely determined function g such that

a) aeXandf(a)e ¥,

b) ¥ = f(X),

¢) f is one-to-ore on X,

d) gisdefinedon Y, g(Y) = X, and g[f(X)] = x for every x in X,
ejgeC’ onY.

Proof. The function J; is continuous on S and, since J(a) # 0, there is an n-ball
B,(a) such that J(x) # 0 for all X in B,;(a). By Theorem 13.4, there is an »n-ball
B(a) = B, (a} on which { is one-to-one. Let B be an n-ball with center at a and
radius smaller than that of B{a). Then, by Theorem 13.2, f(B) contains an #-ball
with center at f{a). Denote this by ¥ and let X = f"*(¥) n B. Then X is open
since both f~!(¥}and B are open. (See Fig. 13.2)

Figare 13.2

The set B {the closure of B) is compact and { is one-to-one and continuous on
B. Hence, by Theorem 4.29, there exists a function g (the invers.: function F~! of
Theorem 4.29) defined on £(B) such that g[f(x)] = x for all x in B. Moreover, g
is continuous on f(B). Since X < B and ¥ < f(B), this proves parts (a}, (b), (c)
and {d). The unigueness of g follows from {d).

Next we prove (). For this purpose, define a real-valued function 4 by the
equation (Z) = det [D;f(Z))], where Z,, ..., Z, are r points in §, and
Z = (Z,; ... ; Z)is the corresponding point in R*". Then, arguing as in the proof
of Theorem 13.4, there is an »#-ball B,(a) such that A{(Z) # 0 if cach Z; & By(a).
We can now assume that, in the earlier part of the proof, the »-ball B(a} was chosen
so that B(a) & B,(a). Then B © B,(a) and #{(Z) # O ifcach Z;c R

To prove (e), write g = (4, ..., 4,). We will show that each g, € C" on Y.
To prove that D,g, exists on Y, assume y € ¥ and consider the difference quotient
[gly + m,) — g{¥3]/1, where w, is the rth unit coordinate vector. {Since ¥ is

Implicit Fusction Theoress s

open, ¥ + fu, € Y if ¢ is sufficiently small.) Let x = g(y) and let x’ = g(y + m).
Then both x and x’ are in X and f(x') — f{x) = m,. Hence f{x'} — fi(x) is O if
§ # r,and is £if i = r. By the Mean-Value Theorem we have

fx) = f®) _ vﬂzt)."'%" fori=1,2....n,
!

where each Z, is on the line segment joining x and x'; hence Z; & B. The expression
on the left is 1 or Q, according to whether i = r or i # r. This is a system of n
linear equations in » unknowns (x; — x>/ and has a unique sclution, since

det [D,f{Z)] = WZ) # 0.

Solving for the kth unknown by Cramer’s rule, we obtain an expression for
[g:ly + m,) — gy{y))ir as a quotient of determinants. As¢ — 0, the pointx - x,
since g is continuous, and hence each Z; — X, since Z; is on the segment joining
x to x’. The determinant which appears in the denominator has for its limit the
number det [D,f(x)] = J{x), and this is nonzero, since x & X. - Therefore, the
following limit exasts:

tm aly + m:) ~ 0 _ p iy,

This esiablishes the existence of D g(y) forecachyin Yandeachr = 1, 2,..., 0.
Moreover, this limit is a quotient of two determinants involving the derivatives
D;f{x). Continuity of the D,f; implies continuity of each partial D.g,. This
completes the proof of (¢). '

note. The foregoing preof also provides a method for computing D,g,(¥). In
practice, the derivatives D.g, can be obtained more easily (without recourse to a
limiting process) by using the fact that, if y = f{x), the product of the two Jacobian
matrices IM(x) and Deg(y) is the identity matrix. When this is written out in detail
it gives the following system of #* equations:
- 1 ifi=j

D D, flx) = ’

2 DDA {0 fie
For each fixed 7, we obifain n linear equations as § runs through the values
1, 2,...,n These can then be solved for the » unknowns, Dy g(y), ..., Dg(¥),

by Cramer’s rule, or by some other method.

134 THE IMPLICIT FUNCTION THEOREM

The reader knows that the equation of a curve in the xp-plane can be expressed
either in an “explicit” form, such as y = f{x), or in an “implicit” form, such as
F(x, ) = 0. However, if we are given an equation of the form F(x, y) = 0, this
does not necessarily represent a function. (Take, for example, x + 32 — 5 = 0.)
The equation F{x, y} = 0 does always represent a refation, namely, that set of all
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pairs (x, y) which satisfy the equation. The following question therefore presents
itself quite naturally: When is the relation defined by F{x, y) = 0 also a function?
In other words, when can the equation F(x, ) = 0 be solved explicitly for y in
terms of x, yielding a unigue solution? The implicit function theorem deals with
this question Jocally. Ittells us that, give a point (x4, yg) such that F(xg, yo) = 0,
under certain conditions there will be a neighborhood of (x,, y,} such that in rhis
neighborhood the relation defined by F(x, ¥) = 0is also a function. The conditions
are that £ and D,F be continucus in some neighborhood of (x,, y,) and that
D, F(xy, yo) % Q. In its more general form, the theorem treats, instead of one
equation in two variables, a system of » equations in # + k variables:

.fr(xi"",xn;rlj‘-‘srt):o (P‘=1,2,..‘,n}.

This system can be solved for x,,..., x, in teems of ¢y, ..., £, provided that
certain partial derivatives are continuous and provided that the » x » Jacobian
determinant 8(f;, . .., £,}/#(x1, ..., x,} is not zero.,

For brevity, we shall adopt the following notation in this theorem: Points in
{n + k)dimensional space R*** will be written in the form (x; t), where

X =(x,...,xJeR" and t=(,...,)eR"

Theorem 13.7 { Implicit function theorem). Let £ = (fy, ..., f) be g vector-valued
Sunction defined on an open set § in R*** with values in R*. Suppose fe C' on S.
Let (x,; to} be a point in S for which {(xy; t;) = 0 and for which the n % n determi.
nant det [D;f(%o; G)] # 0. Then there exists a k-dimensional open set T, con-
taining ty and one, and only one, vector-vaiued function g, defined on T, and having
values in R®, such that

a)geC on Ty,

b) glto) = Xu,
c) Kglt); t) = O for everytin T,.

Proof. We shall apply the inverse function theorem to a certain vector-valued
function F = {F,, ..., F; F,y s ..., Fpy,) defined on § and having values in
R***. The function F is defined as follows: For | < m < n, let F(x; t) = f,(x; 1},
and for 1l <= m < k, let F,, (x; 8 = 1,., We can then write F = (f; I}, where
f = (f,-..,f and where I is the identity function defined by I(t) = t for each t
in R*. ‘The Jacobian Jg{x; t) then has the same value as the n x » determinant
det [D;fi(x; t)] because the terms which appear in the last k rows and also in the
last & columns of Je(x; t) form a k x & determinant with ones along the main
diagonal and zeros slsewhere; the intersection of the first # rows and # columns
consists of the determinant det [ D,f(x; t}], and

DF L x0=0 forl<isn l<j<k

Hence the Jacobian Ju(x,: &) # 0. Also, F(xy; to) = (0; t,). Therefore, by
Theorem 13.6, there exist open sets X and ¥ containing {x,; t,)} and (0; ¢;),
respectively, such that F is one-to-one on X, and X = F~YY). Also, there exists
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a local inverse function G, defined on Y and having values in X, such that

G[F(x; ‘)] = (X; t)a
aod suchthat Ge C'on ¥,

Now G can be reduced to components as follows: G = (v; w) where
¥ = (ty,...,8,) is a vector-valued function defined on ¥ with values in R" and
w = (W, ..., w)isalso defined on ¥ but has values in R%, We can now determine
v and w explicitly. The equation G[F(x; t}] = (x; t), when written in terms of the
components ¥ and w, gives us the two equations

vFx; )] = x and wlF(x; )] =t

But now, every peint (x; t) in ¥ can be written nniquely in the form (x; £ = F(x’; €)
for some (x’; t'} in X, because F is one-to-one on X and the inverse image F~'(¥)
contains X, Furthermore, by the manner in which F was defined, when we write
{x; t} = F(x'; t'), we must have t’ = t. Therefore,

vix; ) = f{Fx; ]} =x' and  wix;t) = wF(x':t})] =t
Hence the function G can be described as follows: Given & point (x; t) in ¥, we

have G(x;t) = (x'; t}, where X’ is that point in R* such that (x; t) = F(x"; t).
This statement implies that

Fivix; t);t] = (x; ) for every (x; f)in Y.
Now we are ready to define the set T, and the function g in the theorem. Let
To={t:teRY, (0;t)e ¥},

and for each t in T, define g(t) = ¥(0; t). The set Ty is open in R®. Moreover,
g e on Ty because G ¢ C" on Y and the components of g are taken from the
components of G. Also,

glto) = ¥(0: 1) = x,

because (0; t,) = Fixp; ty). Finally, the equation Flv(x; €); t] = (x; t}, which
holds for every {x:t) in Y, yields {by considering the components in R") the
equation flv(x; t}; t] = x. Taking x = 0, we ste that for every t in T, we have
f[g(1); t] = 0, and this completes the proof of statements {(a}, (b), and (). It
remains to prove that there is only one such function g. But this follows at once
from the onec-to-one character of 1. If there were another function, say h, which
satistied (c), then we would have [[g(t}; t] = f{k(t); t], and this would imply
{8(1); £} = (h(1); 1), or g(t) = h{t) for every t in T,

135 EXTREMA OF REAI-VALUED FUNCTIONS OF ONE VARIABLE

In the remainder of this chapler we shall consider real-valued functions f with a
view toward determining those peints (if any) at which f has a local extremum,
that is, either a local maximum or a local minimum.
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We bave already obtained one result in this connection for functions of one
variable (Theorem 5.9). In that theorem we found that a necessary condition for a
function f to have a local extremurn at an interior point ¢ of an interval is that
J'(c} = 0, provided that f”(c) exists. This condition, however, is not sufficient, as
we can see by taking f/(x) = x°, ¢ = 0. We now derive a sufficient condition.

Theorem 13.8. For some integer m = 1, let f have a continuous nth derivative in the
open interval (a, b). Suppose also that for some interior point ¢ in (a, b) we have

J@=f@==fMNy=0 bt fOU)#0

Then for n even, f has a local minimum at ¢ i f™(c} > 0, and a local maxinum at
e if f™e) < 0. Ifnis odd, there is neither a local maximum nor a local minimum
at c.

Proof. Since f®c) 3 0, there exists an interval B{c) such that for every x in 8(c),
the derivative f™(x) will bave the same sign as f™(c). Now by Taylor’s formula
(Theorem 5.1%), for every x in B(c) we have

Flx) — fe) = }%Eji)(x - where x; € Blc).

If n is even, this equation jmplies f(x} = fic) when f"e) > €, and A(x) < f(©)
when f®(c) < 0. If # is odd and f™(c) > 0, then f(x) > f{c) when x > c, but
F{x) < flc)y when x < ¢, and there can be no extremum ai ¢, A similar statement
holds if # is odd and f™(c} < 0. This proves the theorem.,

136 EXTREMA OF REAI-VALUED FUNCTIONS OF SEVERAL VARIABLES

We turn now to functions of several variables: Exercise 12.1 gives a necessary
condition for a function to have a local maximum or a local minimum at an interior
point a of an open set. The condition is that each partial derivative Dy f{8) must
be zero at that point. We can also state this in terms of directional derivatives by
saying that f*(s; w) must be zero for every direction u.

The converse of this statement is not true, however. Consider the following
example of a fanction of two real variables:

S, 7y = (¥ — 2Dy — 2x%).

Here we have D, (0, 0) = D, f(0,0) = 0. Now £(0, 1) = 0, but the function
assumes both positive and negative values in every neighborhood of (0, 0), so
there is neither a local maximum nor a local minimum at (0, 0). (See Fig. 13.3)

This example illustrates another interesting phenomenon. If we take a fixed
straight line through the origin and restrict the point {x, y} to move along this ling
toward (0, 0), then the point will finally enier the region above the parabola
¥ = 2x* (or below the parabola y = x*) in which f{x, ¥} becomes and stays
positive for every (x, ¥} # (0, 0). Therefore, along every such line, fhas a minimum
at {0, 0), but the origin is not a local minimum in any two-dimensional neighbor-
hood of {0, 0).

|
4
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y=22 .
Wiz, w) < 0
F fiz, 4 > 0

in unshaded regions Figure 13.3

Definition 13.9. If f is differentiable ot a and if Vf(a) = O, the point a is ca![e:i a
stationary point of f. A stationary point is called a saddle point if every n-ball B(a)
contains poinis X such that {(x) > f(a) and other points such that f(x} < f(#).

In the foregoing example, the origin is a saddle point of the function.

Ta determine whether a function of # variables has a local maximum, a lo::?I
minimum, or a saddle point at a stationary point &, we must f:letermine th::: alge!jraic
sign of f(x) — f(a) for all x in a neighborhood of a. As in the one-dimensional
case, this is done with the help of Taylor’s formula (Theorem 12.14). Take m = 2
andy = a + tin Theorem 12.14. 1f the partial derivatives of f are differentiable

on an n-ball B(a} then
fa+t) — fla) = Vi@ t+ f"@, (3

where z lies on the line scgment joining 8 and & + £, and

f"(z; t) = Z Z D;J,f(z)li‘j‘

sl o g=1k
At a stationary point we have Vf{a) = 0 so (3} becomes
fla 4 ) — fla) = L/"(z; 1)

Therefore, as & + t ranges over B(a), the algebraic sign of f(a + ) — f(a) is
determined by that of /"(z; £). We can write (3) in the form

fin + 0 — fla) = /(a0 + [tI2EW), 4
where
IHI2E(6) = 3/ "(z: 00 — 3/ (s 1)
The inequality .

607 LB < 3 32 32 ID,f@) — D) ek

i=1 =1
shows that E(f) — 0 as t —+ 0 if the second-order partial d_erivatiwfes of [ are
continuous at 4. Since Jt]2E(1) tends 1o zero faster than [¢]%, it seems reasonable
1o expect that the algebraic sign of f(a + ) — f(a) should be determined by that
of f"(a; t). This is what is proved in the next theorem.
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Theorem 13.10 ( Second-derivative test for extremu). Assume that the second-order
partial derivatives D ; f exist in an n-ball B(8) and are continuous at a, where a is a
Stationary point of f. Let

O = 1m0 = % Y. 2 D, ®
=1 =

a) If Ot} > O for all € 3 O, f has a relative minimum al a.

by If QU6 < O for allt # 0, [ has a relative maximum at 9.

©) If Q(t) takes both positive and negative values, then [ has a saddle point at a.

Proof. The function { is continuous at each pointtin R”. Let S = {¢t: [t} = I}
denote the boundary of the n-ball B(0; 1). If Q(t) > O for all t # 9, then Q1) is
positive on S. Since § is compact, { has a minimum on S (call it m), and m > 0.
Now Qet) = e*Q(t) for every real ¢. Taking ¢ = 1/}t] where t # 0 we sce that
ct € S and hence c2Q(t) = m, so Q{t) = m|/t|>. Using this in (4) we find

fla+ 8 — fl@) = QO + IIPEW® > m It + [t)>E).

Since E(t) = 0 as t — 0, there is a positive number r such that [E() < {m
whenever O < [t} < r. Forsuchtwe have 0 < [[t]* {E(0)] < dmft]|?, so

fa + 9 — fa) > mit]® — dmit]* = fmje)? > 0.

Therefore £ has a relative minimum at a, which proves (a). To prove (b) we use a
similar argument, or sitply apply part (a} to —£.
Finally, we prove {c). For each 1 > 0 we have, from (4),

S + i) — fla) = Q0O + PUUPEG) = 2{O(1) + I EG0)}.

Suppose Q{f) # 0 for somet. Since E(y) — Oasy — 0, there is a positive r such
that
MI*EQD) < HOW|  fo<i<r

Therefore, for each such 4 the quantity A2{Q(€) + [[t]*E(1t)} has the same sign as
Q). Thewefore, T 0 < A < r, the difference f{a + At} — f{a) has the same sign
as Qt). Hence, if Q(t) takes both positive and negative values, it follows that £
has a saddle point at &.

NOTE. A real-valued function @ defined on R* by an equation of the type

O(x) = E ; QXX 5

i=1
where x = (xq, ..., x,) and the a;; are real is called a quadratic form. The form is

called symmetric if a;; = a; for all { and j, poesitive definite if x # 0 implies
Xx) > 0, and negative definite if x # 0 implies O(x) < 0.

In general, it is not easy to determine whether a quadratic form is positive or
negative definite.  One criterion, involving eigenvalues, is described in Reference

Th, 13.11 Exirema of Functions of Several Variables 3

13.1, Theorem 9.5, Another, involving determinants, can be described as follows.
Let A = det {a;;] and let A, denote the determinant of the k x k& matrix obtained
by deleting the last {# — &) rows and columns of [¢,,]. Also, put Ay = 1. From
the theory of quadratic forms it is known that a necessary and sufficient condition
for a symmetric form to be positive definite is that the = + 1 numbers
Ag, A, ..., A, be positive. The form is negative definite if, and only if, the same
# + 1 numbers are alternately positive and negative. (See Reference 13.2, pp.
304-308) The quadratic form which appears in (5) is symmetric because the
mixed partials D, ;f(s) and D; ;f(a) are equal. Therefore, under the conditions of
Theorem 13.10, we see that f has a local minimum at a if the (n + 1) numbers
Ag, Ay, ..., A, are ail positive, and a local maximum if these numbers are
alternately positive and negative. Thecasen = 2 can be handled directly and gives
the following criterion.

Theorem 13.11. Lot f be a real-valued function with continuous second-order partial
derivatives at a stationary point a in R%. Let

A = Dy 4 f(m), B =D, ,f(a), C = D, ,f(a),
and let

A=det|d Bl= ac— B2
B C

Then we have !

a) If A > Oand A > 0, f has a relative minimnm al a,
b) JFA > Dand A < 0, f has o relative maximum at a.
¢) If A < 0, f has a saddle poini af a.

Proof- In the two-dimensional case we can write the quadratic form in (5} as
follows:
Qlx, y) = }{Ax* + 2Bxy + Cy*}.

If A # 0, this can also be written as
1
0%, y) = o {Ax + ByY + Ay}

If A > 0, the expression in brackets is the sum of two squares, so Q(x, y) has the
same sign as 4. Therefore, statements (a) and (b) follow at once from parts {a)
and (b) of Theorem 13.10. '

If A < 0, the guadratic form is the product of two linear factors. Therefore,
the set of points (x, y) such that O(x, y) = 0 consists of two lines in the xy-plane
intersecting at (0, 0). These lines divide the plane into four regions; O(x, y) is
positive in two of these regions and negative in the other two. Therefore fhas a
saddle point at a.

note. If A = 0, there may be a local maximum, a local minimum, or a saddle
point at a.
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13.7 EXTREMUM PROBLEMS WITH SIDE CONDITIONS

Consider the following type of extremum problem. Suppose that f(x, y, 2)
represents the temperature at the point (x, y, 2} in space and we ask for the maxi-
mum or minimum value of the temperature on a certain surface. If the equation of
the surface is given expliciily in the form z = A(x, y), then in the expression
JGx, ¥, 2) we can replace z by k(x, §) to obtain the iemperature on the surface as a
function of x and y alone, say F(x, 3} = f[x, », Kx, »)]. The problem is then
reduced to finding the extreme valoes of F. However, in practice, certain difficulties
arise. The equation of the surface might be given in an implicit form, say
g(x, 3, 2} = 0, and it may be impossible, in practice, to solve this equation
explicitly for z in terms of x and y, or even for x or y in terms of the remaining
variables. The problem might be further complicated by asking for the extreme
values of the temperature at those points which lie on a given curve in space. Such
a curve is the intersection of two surfaces, say g,(x, y, z} = 0and g,{x, y, z) = 0.
If we could solve these two equations simultaneously, say for x and y in terms of z,
then we could introduce these expressions into f and obtain a new function of
z alone, whose extrema we would then seek. In general, however, this procedure
cannoi be carried out and a more practicable method must be sought. A very
elegant and useful method for attacking such problems was developed by Lagrange.

Lagrange’s method provides a siecessary condition for an extremum and can be
described as follows. Let f(x,, ..., x,) be an expression whose extreme values are
sought when the variables are restricted by a certain number of side conditions,
say gylxy, -, xd =0, .., 9.x,....x) =10 We then form the linear
combination i

¢(x1”"’x’ =ﬂxl”"’xll) F A g X)) o AgaXes s X,

where 1y, ..., 4, are m constants. We then differentiate ¢ with respect to each
coordinate and consider the following system of » + m equations:

Dyp(xy, ..., x) =0, r=12...,n,
gl(xl"--sxl)zos k=]!2|---!m-

Lagrange discovered that if the point (x,, ..., x,) is a solution of the extremum
problem, then it will also satisfy this system of # + mr equations. In practice, one
attempts to solve this system for the » + m “unknowns,” A,,..., 4, and
Xgs« -y % The points (xy, ..., x,) 30 obtained must then be tested to determine
whether they yield & maximum, a minimum, or neither. The numbers 2,, ..., A,
which are introduced only to help solve the system for x,, ..., x,, are known as
Lagrange’s multipliers. One multiplier is introduced for each side condition.

A complicated analytic criterion exists for distinguishing between maxima and
minima in such problems. (See, for example, Reference 13.3) However, this
criterion is not very useful in practice and in any particular prolem it is usually
easier to rely on some other means (for example, physical or geometrical consider-
ations) to make this distinction.

w
%
4
]
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The following theorem establishes the validity of Lagrange’s method:

Theorem 13.12. Let f be a real-valued function such that f € C* on an open set S
nR". Letg,,...,Hwbe m real-valued finctions such that g = (g, .... g) € C’
on S, and assume that m < n. Let X, be that subset of S on which g vanishes, that is,

X, = {x:xe S, g(x) = 0}.

Assume that X, € X, and assume that there exists an n-ball B(xy) such that f(x) <
(%o) for all X in Xy v B(Xo) or such that f(x) 2 f(xo) for all x in Xo N Bxy).
Assume also that the m-rowed determinant det [D,g(x,)] # 0. Then there exist
m real mumbers Ay, . .. , Ay Such that the following n equations are satisfied:

B J(x0) + i: Al gi(xg) = 0 (r=12...,m (6)
=1

nNoTE. The n equations in (6) are equivalent to the following vector equation:
Vfi{xg) + 4, Vg (xg} + -+ + A V2,(Xg) = 0.

Proof. Consider the following system of m linear equations in the m unknowns

Al:---:"m:

2 AP = —Dftxg) =12, m).

This system has a unique solution since, by hypothesis, the determinant of the
gystem is not zero. Therefore, the first m equations in (6) are satisfied. er must
now verify that for this choice of 24, ..., 4,, the remaining # — m equations in
{6} are also satisfied. )

To do this, we apply the implicit function theorem. Since m < n, every point
x in S can be written in the form x = (x'; f), say, where X’ e R" and te R"™"
In the remainder of this proof we will write x' for (xy, ..., X, and t f‘or
(Xpsgso--s %), S0 that £ = Xpp,  In torms of the vector-vatued function
g = (g1r- - - » G}, WE CAN NOW WIS

g(xpito) = 0 i X, = (X5 &)

Since ge €’ on §, and since the determinant det [D,g,(x;; t)] # 0, all the
conditions of the implicit function theorem are satisfied. Therefore, there exists
an (n — m)-dimensional neighborhood T, of t, and a unique vector-valued
fonction h = {(#,,..., #,), defined on T, and having vajues in R™ such that
he C' on T hity) = xj, and for every t in Ty, we have g{h(t); t] = 0. This
amounts to saying that the system of m equations

gulxn, %) =0, galxy. %) =0

can be solved for x,, ..., X, in terms of Xy 15 - - - » Xy, giving the solut,ions in the
form X, = B(Xps(s---» Xa)s ¥ = 1,2,...,m. We shall now substitute these

expressions for x,, ..., X,, into the expression flx,, ..., x,) and also into each
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expression g,(xy, ..., x,). That is to say, we define a new function F as follows:

F{xm-i»ls“'sxn) =fEﬂl(xu+ll'”!xn)l"”"’m(xu“!-l""’xn); 'xm+h'*-3xn];

and we define m new functions G, ..., G, as follows:

Gp(xnﬂ‘!i LR ] xu} = gp[hl(xm'lrl!" LR ] xl)? LERCR 3 }Iu(xm*}-lr' L ) I_‘); xm+l! LRI In].

More briefly, we can write F(t) = f[H(§)] and G(t) = g [H(t)], where H(t) =
(hit); t). Here t is restricted to lie in the set T,

Each function G, so defined is identically zero on the set T, by the implicit
function theorem. Therefore, each derivative D,G, is also identically zero on T,
and, in particular, D,G(t;) = 0. But by the chain mile (Eq. 12.20), we can com-
pute these derivatives as follows:

DGylte) = 2 Dg, oD Hilte) (= 1,2, n = m),

But Hy(t) = Ih(t)if ] < &k < m, and H,(t) = x, if m + 1 < k£ < »n. Therefore,
whenm + 1l k<nwehave DHMD =0 m + r # &k and DH, () = 1
for every t. Hence the above set of equations becomes

i D,8 (%D (ko) + Dy o) = 0 {P =LZ....m )

r=12,...,n — m

By continnity of b, there is an (n — m)-ball B(t;) = T, such that t e B(i,)
implies (b(t); t) & B(xp), where B(x,) is the a-ball in the statement of the theorem.
Hence, t & B(t,) implies (h{t); t) & X,  B{x,) and therefore, by hypothesis, we
have either F(€) < F(t;) for all t in B(l,) or else we have F(t) = F(1,) for all t in
8(t,). That is, F has a local maximum or a local minimam at the interior point t,.
Each partial derivative D), F(t,) must therefore be zere. If we use the chain rule to
compute these derivatives, we find

D,F(ty) = Z Df(X)DHil(ty)  (r=1,...,0 — m),

and hence we can write

; Dif(x)DAlte) + Doy fx) =0 (r=1,...,n—m). (8

If we now multiply (7) by 4,, sum on p, and add the result to (8), we find

”

> [nkﬂxa) + Z A,D.g,(xo)} Dit(te) + Dy, f(Xo) + 2 AyDos18(X0) = O,

=1

forr =1,...,n —m Inthe sum over &, the expression in square brackets
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vanishes becanse of the way &,, .. ., 1, were defined. Thus we are left with

D,y o f(%0) + El ’oDpir8,Xg) =0 (r=12...,n—m),

and thesc are exactly the equations needed to compiete the proof.

NOTE. In attempting the solution of a particular extremum problem by Lagrange’s
method, it is vsually very easy to determine the system of equations (6) but, in
general, it is not a simple matter to actually selve the system. Special devices can
often be employed to obtain the extreme values of f directly from (6) without first
finding the particolar points where these extremes are taken on. The following
example illustrates some of these devices:

Example. A guadric surface with cenfer at the origin has the equation
Ax* + By? + Cz? + 2Dyz + 2Ezx + 2Fxy = L.
Find the lengths of its semi-axes.

Solution. Let us write (xy, x5, x3) instead of {x, ¥, 2), and introduce the quadratic form

3 kS
g(x) = 3 > apxg, ®
§=1 i=1

where x = {x,, X3, x;} and the g;; = a; are chosen so that the equation of the surface
becomes ¢(x) = 1. {Hence the quadratic form is symmetric and positive definite,) The
problem is equivalent to finding the extreme values of f{x) = Jx* = x? + 22 + x3
subject to the side condition g(x} = 0, where g{x) = ¢{x} — 1. Using Lagrange's methed,
we introduce one multiplier and consider the vecior equation

VAx) + AVq(x) = 0 (L)

{since Wy = Wg). In this particular case, both f and ¢ are homogeneous functions of
degree 2 and we can apply Euler’s theorem (see Exercise 12.18) in (10) to obtain

X - Vfix} + Ax - Vg(x) = 2f/(x) + 24¢(x) = 0.
Since ¢(x) = | on the surface we find 1 = —f(x), and {(10) becomes
1 ¥f{x} — Vg(x) = 0, (11)

where r = 1/f(x). {(We cannot have f(x} = 0 in this problem.) The vector equation {11)
then leads to the following three equatious for x|, xz, x3:

(ay, — thxy + @y3%x3 + ay3xy = 0,
ayyxy + {agy — Dy + az3x3 = 0,
@y Xy + d33X; + (@3 — Hxy = Q.

Since x = 0 cannet yield a solution to our problem, the determinant of this systern must
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vanish. Yhat is, we must have

11— 1 B3 a3
35 dyy — F O3 = O {12)

1 iz @3z — ¢

Equation (12} is called the characreristic equation of the quadratic form in (9). In this case,
the geometrical nature of the problem assures us that the three roots &, £, #5 of this cubic
must be real and positive. [Since g(x) is symmetric and positive definite, the general
theary of quadratic forms also guarantees that the roots of (12) are all real and positive.
(See Reference 13.1, Theorem 9.5)] The semi-axes of the quadric surface are #7'/%

t;l!z’ r;;l."z.

EXERCISES

_Jneobians
13.1 Let f be the complex-valued fonction defined for cach complex z # 0 by the
equation £(z) = 1fz. Show that J{z) = —|z|~* Show that fis one-to-one and compute
F1 explicitly.
132 Let £ = (f1. /2. f3) be the vector-valued function defined (for every point (x;, x2, x3)
in R? for which x, + x, + x3 # —1) as follows:
Xy

— k= 1,23).
Y+ x +x+ x;

Slxys Xz, X3} =
Show that Ji(x,, x4, x3} = {1 + x; + x5 + x3)~% Show that f is one-to-one and
compute £~ explicitly.

133 Let £ = (f;,..., /) be a vector-valued function defined in R, suppose 1€ C’
on R*, and let Ji{(x) denote the Jacobian determinant. Let g, ..., g, be » realvalued
functions defined on R' and having continuous derivatives gj, ..., g.. Let h{x) =
Alax), . gl k= 0L2,...,mandputh = {h,,..., &,). Show that

Aulx) = Jelgi(x). ., galxa)1000x0) - - - galra).
134 a) If x(r, &) = rcos 8, p(r, &) = rsin 8, show that

x, ¥y _
a(r, &
by If xr, @, ¢) = rcos Bsin ¢, yr, 6, #) = rsinFsin ¢, z = r cos ¢, show that
a(xy ys Z) = — 2.
————————a(r’ 29 7 sin $.

135 a) State conditions on f and ¢ which will ensure that the equations x = f(x, v),
¥ = glu, v) can be solved for u and v in a neighborhood of (xy, ¥y). If the solu-
tions are & = Fix, 3}, v = G(x, ). and if J = &, gifelu, v), show that

éF _1ldg aF _  1of oC 1dg aG _ 18f

ax Joa 8y  dd  ox Jou' @y Tou
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b) Compute J and the partial derivatives of F and G at (x4, ¥o) = (1, 1) when
S, o) = & — 22, glu, 0} = 2uv.

13.6 Let f and g be related as in Theorem 13.6. Consider the case n = 3 and show that
we have

a1 DUARY DA

D g¥) = 02 D(E) Drfia(x}

b3 Dafa(x) Dyfalx)

where y = f{x} and §;,; = Dor | according as 7 # jor{ =/ Use this to deduce the
formula

=123

Dy g, = Unts) / s f f3)

Hxz, x3)f O(x,, X3, X3} ’
There are similar expressions for the other eight derivatives Dy g,.

13.7 Let £ = u + fv be a complex-valued function satisfying the following conditions:
ke C and ve O onthe opendisk 4 = {z:|z] < 1}; fis continucus on the closed disk
A= (z:]|z] = 13; wlx, ) = x and o{x, y) = y whenever x* + y* = 1, the Jacobian
JAz) > Oifz e A. Let 8 = f{A} denote the image of 4 under fand prove that:

a) If X is an open subset of 4, then (X} is an open subset of B.
b} B is an open disk of radius 1.

¢} For each point &, + fo, in B, there is only a finite number of points z in A such
that f{z) = 1y + v

Extremum problems

13.8 Find and classify the extreme values (if any) of the functions defined by the following
equations:

A fx. =y + 7y + 2,

B A=+t y+ oo,
& fle, ) = (x — 1 +{x - »f,
@) flx, 3) =y — %%

13.9 Find the shortest distance from the point (0, 4} on the p-axiz to the parabola
x? — 4y = 0. Solve this problem using Lagrange’s method and alse without using
Lagrange's method.

13,10 Solve the following geometric problems by Lagrange™ method:
a} Fiod the shortest distance from the point (a,. 45, 43} in R? 10 the plane whose
equation is &, x, + dyx, + byxy 4+ by = 0.
b) Find the point en the line of intersection of the two planes
&)Xy + faXy + Ga¥s + g = 0

and

byxy + bax; + Byxy + by = O

il

which is nearest the origin.
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13.11 Find the maximum value of |Y5.; @), if 5.1 x2 = 1, by using
a) the Cauchy-Schwarz inequality.
b) Lagrange’s method.

13.12 Find the maximum of (x,x; - - - x,)* under the resiriction

Xrxxl=1
Use the result to derive the following inequality, valid for positive real numbers a,, . . ., a,:

al +“'+ﬂ'.
n

(@ --a)" <

B3I = xt + 4+ x5 x = (x,,..., x,), show that a local extreme of f, subject
to the cendition x, + -+ + x, = a, is *u' %

13.14 Show that all points (x,, X3, X3, X4} Where x} + x7 has a local extremum subject
to the two side conditions v + x3 + x3 = 4, x2 + 2x} + 3xf = 9, are found among

0,0, +4/3, £1), (0, £1, +2,0), (+1,0,0, +v3), (+2, +3,0,0).

Which of these yield a local maximum and which yield a local minimum? Give reasons
for your conclusions.

13.15 Show that the extreme vabues of f{x,, Xz, x3) = x% + x% + x2, subject to the two
side conditions

3 3 -
Samx =1 (ay = ay)

Fml f==1}

and

bixy + baxy + byxs = 0, {8y, b2, ba) # (0,0, 03,

are 1Y, £571, where ¢, and ¢, are the roots of the equation

5, b, b, o
g, — ! a3 a3 - by _ o
2T 32 — 1 dp3 by '
T3 1 a5z g — 1 By

Show that this is a quadratic equation in ¢ and give a geometric argument to explain why
the roots ¢, ¢, are real and positive,

13.16 Let & = det [x;;] and let X; = (x;,..., X;»). A famous theorem of Hadamard
states that [A| < d, ---d,, if dy, ..., d, are n positive constants such that |X;|* = &7
(i=1,2,...,4). Prove this by treating A as a function of #2 variables subject to #
constraints, using Lagrange's method to show that, when A has an extreme under these
conditions, we must have
2 0 0 - 0
w0 B0
6 0 0 - 42

$
B

.
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CHAPTER 14

MULTIPLE RIEMANN INTEGRALS

141 INTRODUCTION

The Ricmann integral [5 f(x) dx can be generalized by replacing the interval [a, &]
by an n-dimensional region in which f is defined and bounded. The simplest
regions in R" suitable for this purpose are n-dimensional intervals. For example,
in R? we take a rectangle / partitioned into subrectangles J, and consider Riemann
sums of the form ¥, f(x,, y)A(L), where (x,, ¥,) € 4 and A(ly) denotes the area of
I,. This leads us to the concept of a double imtegral. Similarly, in R? we use
rectangular parallelepipeds subdivided into smaller parallelepipeds I, and, by
considering sums of the form ¥, f(x,, yu. 2V (L), where (x;, ¥, z) € I, and [ (1A
is the volume of 4, we are led to the concept of a triple integral. It is just as easy
to discuss multiple integrals in R”, provided that we have a suitable generalization
of the notions of area and volume. This “generalized volume™ is called measure or
content and is defined in the next section.

142 THE MEASURE OF A BOUNDED INTERVAL IN R”

Let A, ..., 4, denote » general intervals in R’: that is, each 4, may be bounded,
unbounded, open, closed, or half-open in R'. A set 4 in R” of the form

A=A x % Ay =y X)imed fork =12 a,

is called a general n-dimensional interval. We also allow the degenerate case in
which one or more of the intervals 4, consists of a single point.

If each 4, is open, closed, or bounded in R}, then 4 has the corresponding
property in R®,

If each A, is bounded, the n-dimensional measure (or n-measurc} of A4, denoted
by u{A), is defined by the equation

p(dy = u(A) -+ wAd),

where p(4,) is the one-dimensional measvre {length) of 4,. When # = 2, this is
called the areg of A, and when n = 3, it is called the volume of A, Note that
uiAY = Qif p{A,) = 0 for some k.

We turn next to a discussion of Riemann integration in R”. The only essential
difference between the case # = | and the case » > | is that the quantity
Ax, = x, — x,_, which was used to measure the leagth of the subinterval
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[%,-1, %] is replaced by the measure u(f) of an a-dimensional subinterval. Since
the work proceeds on exactly the same lines as the one-dimensional case, we shall
omit many of the details in the discussions that follow.

14.3 THE RIEMANN INTEGRAL OF A BOUNDED FUNCTION DEFINED
ON A COMPACT INTERVAL IN R*

Definition 14,7, Let 4 = 4, x -+
partition of A,, the cartesian product

P=P x-x P,

x A, be a compact interval in R", If P, is a

is said to be a partition of A. If P, divides A, into .m, one-dimensional subintervals,
then P determines a decomposition of A as a union of m, -- - m, n-dimensional
intervals (called subintervals of P). A partition P' of A is said to be finer than P if
P © P‘. The set of all partitions of A will be denoted by P(A).

Figure 14.1 illustrates partitions of intervals in R? and in R*.

Figure 14.1

Definition 14.2. Let f be defined and bounded on a compact interval Fin R If P
is a partition of 1 into m subintervals I, .. ., I, and ift, € 1, a sum of the form

S(P, f) = ; Fitutry),

is called a Riemann sum. We say f is Riemann-integrable on I and we write { € R on
1, whenever there exists a real number A having the following properiy. For every
& 3> O there exists a partition P, of I such that P finer thun P_ implies

[S(P.f) — Al <&

for all Riemann sums S(P, f). When such a number A exists, it is uniguely
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determined and is denoted by
jfdx, jf(x) dx, or by J‘f(x;, ey Xy Xy, L, X
i I T

NOTE. For n > 1 the integral is called a mudtiple or n-fold integral. Whenw = 2
and 3, the terms dowble and triple integral are used. As in R, the symbol x in
I f(x) dx is a “dummy variable” and may be replaced by any other convenient
symbol. The notation [, f(x,,..., x)dx, ---dx, is also used instead of
§rflxy, -, 2} dixy, ..., x,). Double integrals are sometimes written with two
integral signs and triple integrals with three such signs, thus:

JJ Jix, ¥y dx dy, J.J‘J. flx, y, 2) dx dy dz.

H i
Definition 14,3, Let f be defined and bounded on a compact interval I in R*. If P
is a partition of {inte m subintervals I, ..., L, let

m(fy=il{fix):xekh}, M )=sp{f(N:xeck})
The rmumbers

WP, f) = Z M(h)  and  LP.f) = 37 m( R,

are called upper and lower Riemann sums. The upper and lower Riemann integrals
of f over I are defined as follows :

J-fdx

i
fdx

Ji

i

inf {U(P, f}: P e (D)},

sup (L(P. f}: P e #(I}}.

The fimction [ is said 10 satisfy Riemann’s condition on I if, for every & > 0, there
exisis a partition P, of I such that P finer than P, implies U(P, f} — L{P, f} < &

NOTE. As in the one-dimensional case, upper and lower integrals have the following
properties:

a) J‘(f—{-g)dxg.[:fdx+.[:gdx,
i ' I

J(f+ g)dxzj.fdx-kj‘gdx.
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by If an interval 7 15 decomposed into a umion of two nonoverlapping intervals
1, 1, then we have

J:fa'x=J:fdx+‘rfdx and jfdx:jfdx-%-.[fdx,
I n In Jr Jn Jiz

The proof of the following theorem is essentially the same as that of Theorem
7.19 and will be omitted.

Theorem 14.4. Let [ be defined and bounded on a compact interval in R°. Then
the following statements are equivalent: :

i) feRenl
ii) f satisfies Riemann's condition on I.

i) [, fdx = J,fdx.

14,4 SETS OF MEASURE ZERO AND LEBESGUE'S CRITERION FOR
EXISTENCE OF A MULTIPLE RIEMANN INTEGRAL

A subset T of R® is said to be of n-measure zero if, for every & > 0, T can be
covered by a countable collection of a-dimensional intervals, the sum of whose
n-MEAsUres is <s.

As in the one-dimensional case, the union of a countable collection of sets of
n-measure 0 is itself of n-measure 0. If m < n, every subset of R®, when considered
as a subset of R®, has n-measure 0.

A property is said to hold almost everywhere on a s¢t S in R* if it holds every-
where on 5 except for a subset of #-measure 0.

Lebesgue’s criterion for the existence of a Riemann integral in R' has a
straightforward extension to multiple integrals. The proof is analogous to that of
Theorem 7.48.

Theorem 14.5. Let [ be defined and bounded on a compact interval I in K. Then
Fe Ronlif, and only if, the set of discontinuities of f in I has n-measure zero.

14.5 EYALUATION OF A MULTIPLE INTEGRAL BY ITERATED
INTEGRATION

From elementary calculus the reader has learned to evaluate certain double and

‘triple integrals by successive integration with respeet to each vanable. For

example, if fis a function of two variables continuous on a compact rectangle @
in the xp-plang, say @ = {{x,¥):a S x < b, ¢ < y < &}, then for each fixed y
in fe, 4] the function F defined by the equation F(x) = f{x, ) is continucus (and
hence integrable) on [a, 5]. The value of the integral {2 F(x) dx depends on y and
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defines a new function G, where G{(y) = [ f(x, y) dx. This function & is con-
tinuous (by Theorem 7.3R), and hence integrable, on [ ¢, 4]. The integral {¢ G(3) dy
turns out to have the same value as the double integral 4 f(x, y) d(x, y). Thatis,
we have the equation

f f0x, p) dx, 3) = r U"f(x, » dx] . o
7] . « "

(This formulz will be proved later) The question mow arises as to whether a
similar result holds when fis merely integrable (and not necessarily continuous) on
(2. 'We can see at once that certain difficulties are inevitable. For example, the
inner integral {* f(x, v) dx may not exist for certain values of y even though the
double integral exists. In fact, if £ is discontinucus at every point of the line
segment y = yo, @ < x < b, then §b f{x, yo) dx will fail to exist. However, this
line segment is a set whose 2-measure is zero and therefore does not affect the
integrability of f on the whole rectangle 0. In a case of this kind we must use
upper and lower integrals to obtain a snitable generalization of (1).

Theorem 14.6. Let f be defined and bounded on a compact rectangle
Q=[ab] x[c,d] R~
Then we have:

) fofde, ) < §i [J4sGe ) dyl dx < Lo [J e ) dy} dx < o fd(x, )
i) Statement (i) holds with |4 replaced by [¢ throughout.
iii) [ofdx, ) < P[RS ») dxldy < (TS (x, ) dx] dy < [of dix, y).
iv) Statement (iii) holds with [}, replaced by |* throughout.

v} When [, f{x, ¥) dix, y) exists, we have

f £, ) d(x, ¥) = r Tf(x, 9 dy] dx = r’ Udﬂx, 9 d.v] dx
Q a _l' [ 1 T
= J.d :J.bf{x, ¥ d‘x] dy = J‘d Ubf(x, ¥} dx] dy.

Proof. To prove (i), define F by the equation

F(x) = r‘df(x, yvidy, ifxefa bl

e

Then |F(x) < M(d — ¢), where M = sup {|f(x, W :(x, »}e @}, and we can
consider

i for e
I = J Fix) dx =I U Hx » dy] dx.

1
g
1
:
,g
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Similarly, we define

I= r Fx) dx = J' ' U *fx ) dy] dx.

Let Py, = {xq, Xy, - - - , X} be a partition of [a, 5] and let
P.‘l = {yﬂryi,"'lya}!

be a partition of [¢, d].. Then P = P; x P, is a partition of ¢ into ma sub-
rectangles ¢;; and we define

I, = j U 5, 9) dy] dx, Iy = j U 6o ) dy] dx.
Fiwl Y-t Ki=1 ¥-1

Since we have

rf(x, ydy = ,; 7 fx, ¥ dy,

F-1

we can write

[[[[[rena]as [ rmnar]ex

o

>3 '[ U 164 9 dy] dx.

L

That is, we have the inequality

1< 31
J=1 i=1
Similarly, we find
I3 31
F=1 i=1
If we write
m;; = inf {f(x, y): (x, y) € @},
and
M = sup {f{x, y): (x, ) € @y},

then from the inequa]it}' mu = f(x, _}') = Miji {x, }’) € Qu, we obtain

¥,
mfy; = ¥i-1) € J” fx, yydy s My, — ¥;-1)

Fi-k
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This, in wrn, implies

Lt 5%5@; j}

i

LES &7 v
j 9 a*y} dx
»_—}:é'"' 1 .Yé"” 3

P*i w)‘j
j U fx ) fxy] dx < Myu(Qy).
Ky g Fim ks

Summing on { and j and using the above inequalities, we get

eIt UPH

i

Bince this holds for all partitions P of {J, we must have
ff'd{x, Wwelsls f fdts, ).
v Q

This proves statement (i)
It is clear that the preceding proof could also be carried out if the function 7
were originally defined by the formula

)
Flx) = f 7%, vy dy.

and hence (ii) follows by the same argument,

Staternents (i1} and {iv} can be similarly proved by interchanging the roles of
x and p. Finally, statement (v} is an immediate consequence of statements (i)
through {iv}.

As a corollary, we have the formula mentioned earlier:

P Ak 4 4 &
j Hx. ) dix, 3) = j U Jix ) dy} dx = ‘- U o 9 %X} dy,
2 % ¢ mr a

which s valid when / is continuous on @, This is often called Fubini’s theorem,

wotE. The existence of the iterated integrals

7~k i & #h
! [ [ s afy] dx  and j U %, 3) fx] ar,
¥ 4a € r3 &

does not imply the existence of [, f/{x, ¥) d(x, y). A counter example is given in
Exercise 14.7.

Before commenting on the analog of Theorem 14.6 in R, we first introduce
some further notation and terminology. Ik = », the set of x in R® for which
= {3 is called the coordinate hyperplans T],. Given a set § in R, the projection
S, of § on '], is defined 1o be the image of § under that mapping whose value at
each polst £y, 2o o} i SOy, o3 G X, ..., %) Itiseasyto

o

ot e i
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Pigare 14.2

show that such a mapping Is continuous on 5. It follows that if § is compact, cach
projection S, is compact. Also, if S is connected, each §; is connected. Projections
in R? are illustrated in Fig. 14.2,

A theorem entirely analogous to Theorem 14.6 holds for n-fold integrals, &t
will suffice to indicate how the extension goes when 2 = 3. In this case, fis defined
and bounded on a compact interval Q@ = [ay, &,] x [a,. b} % [#5. 55} m B
and statement {1} of Theorem 14.5 is replaced by

fid

RENINIRE
g 2

{ D 1 dix,, M}]dx,, =
Jup Lot 4

where @, is the projection of ¢ on the coordinate plane [1,. When fQ Fix} dx
exists, the analog of part (V) of Theorem 14.6 s the formuls

3 r r
{ﬂx}d‘xm ’ !i( jd“z,”}}d}cw ’ [f !aﬁx,‘jd{x% %3k {3}

W Ll @y P

fdx, (2)

a4

As in Theorem 14.6, similar statements hold with appropriate replacements of
upper integrals by lower integrals, and there are also analogous formulas for the
projections @4 and 5. ‘

The reader should have no difficulty in stating analogous results for m-fold
integrals {they can be proved by the method used in Theorem 14.6). The special
case in which the n-fold integral { f(x) dx exists is of particular importance and
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can be stated as Tollows:
Theorem 14.7. Let [ be defined and bounded on o compact intervel

Q = [a, 5] x o0 % 4, B

in B". Assume that [, fix) dx exists. Then

” by £ Fhy
; Fdx == ! it Fdtx,, ..., x,,}] dx, = } Li- fdxij Hxqe oo, Ko
S 3 @ ) Wiy Lo

Similgr formulas hold with upper integrals replaced by lower iniegrals and with O,
replaced by @, tw profection of O on {1,

4.6 HIRDAN-MEASURABLE SETS IM R”

Up to this point the multiple integral §§ Jix} ofx has been defined only for intervals
1. This, of course, is too restrictive for the applications of integration. ¥ is not
difficult 1o extend the definition to encompass more general sets called Jordan-
measurable sets. These ave discussed in this section. The definition makes use of
the boundary of a set § in R”. We recell that 2 point % in B” is called 2 boundary
point of § i every s-ball B(x) contains & point in S and also a point not in 8. The
set of all boundary points of § s called the bowndary of 5 and is denoted by 75
{See Section 3,163 :

Definition 14.8. Let § be o subser of a compact imrerval in B, For every partition
P of Idefine J(P, 53 10 be the sum of the measures of those subinrervals of P which
contaln only nterior points of 5 and let JUP, 5% be the sum of the measrey of those
subintervuds of P which contain points of § w0 68, The numbers

HS8Y = inf (J(P. S): Pe 231,

are called, respectively, the (n-dimensional) imner and outer Jordon comtent of 5
The ser § is suid 10 be Jordonmemeaswrable i ¢{8Y = H8L in which vase this common
value is called the Jordan coment of 8. devored by o5},

it is gasy to venily that of5) and &5} depend only on § and not on the interval

If $ has content zero, then p(8) = #(5) = 0. Hence, for svery 2z > 6, Scan be
cavered by 'a fintte collection of intervals, the sum of whose measures s < Note
that content zero 15 described in terms of finfre coverings, whereas measure zero is
deseribed in terms of cowmable coverings.  Any set with content zere ales has
measure zero, but the converse is not necessarily true.

Every compact interval @ is Jordan-measurable and its content, (), is equal to
its measure, (@) 1k < »,'the n-dimensional content of every bounded set in B
1% 2870,

Jordan-measurable sets §in R® are also said to have aree o 51, In this case, the
sums JEP, ) and J(P, 5 represent approximations to the area from the “inside”

G i
S “

< %, st
Jrcadi G RRRRE A R EEERR e G
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Figure 14.3

and the “outside” of 5, respecrively. This is tlustrated in Fig. 14.3, where the lightly
shaded rectengles are counted in J{P, 3}, the heavily shaded rectangles in J(P, 5).
For sets in B2, o(8) is also called the volume of S,

The next theorsm shows that a bounded set has Jordan content i, and only i,
its boundary 't too “thick”

Theorem 14.9. Let S be a bounded set in B° and let 285 denote its boundary. Then
we have
HESY = #Sy —~ ¢{3).

Hence, § is Jordan-measurable if, and only if, 25 has content zero,

Proaf. Let f be a compact interval containing 5 and 85, Then for every partition
P of I we have

J(P, 85) = KB, S) — J(P. §).

Therefore, JIP, 85) = #5) — ¢(3) and hence P8 z &5} — ¢l¥). To obiain
the reverse inequality, let & > D be given, choose £, sothat J(P,, 5) < #5) + ¢/2
and choose P, so that JiP,, S} > oS} — 2. Let P = P v P, Since refine-
ment increases the inner sums J and decreases the outer sums J, we find

oSy < P, 8S) = J(F, 8) — J(P, Sy < (P, 5} = J(Py, §)
< HE) - o(§) + =

Since & is arbitrary, this means that &25) £ #8) ~ ¢(8). Therefore, 805} =
#S) — ¢{8) and the proof is complete,

14,7 MULTIPLE INTEGRATION OVER JORDAN-MEASURABLE SETS

Definition 14,16, Let f be defined and bounded on a bounded Jordan-measurable set
Sin R Let I be ¢ compact inrerval containing S and define g on { as follows:

o LX) ifxel,
960 = {gﬁ; fxel -5
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Then f is said to be Riemann-integrable on § and we write f € R on S, whenever the
integral |, g(x) dx exists. We also write

J~ fxydx = J. g{x) dx.

The upper and lower integrals Is fix) dx and !3 f(x} dx are similarly defined.

NOTE. By considering the Riemann sums which approximate {; g(x) dx, it is easy
1o see that the integral {5 f{x) dx does not depend on the choice of the interval £
used to enclose S.

A necessary and sufficient condition for the existence of [ f(x) dx can now be
given,

Theorem 14.11. Let S be a Jordan-measurable set in R™, and let f be defined and
bounded on 8. Then f€ R on S if, and only if, the discontinuitics of f in S form a
se! of measure zery.

Progf. Let I be a compact interval containing § and let g(X) = f(x) when x € .5,
g(x) = 0 when x & 7 ~ S. The discontinuities of f will be discontinuities of g.
However, g may also have discontinuities at some or all of the boundary points of
5. Since §is Jordan measurable, Theorem 14.9 tells us that ¢(85) = 0. Therefore,
g € R on Iif, and only if, the discontinuities of f form a set of measure zero.

J14.8 JORDAN CONTENT EXPRESSED AS A RIEMANN INTEGRAL

Theorem 14.12. Let 8 be g compact Jordan-measurable set in R". Then the integral
{5 1 exists and we have
o(5) = J- 1.
5

Progf. Let Ibe a compact interval containing  and let y; denote the characteristic
function of §. That is, :

H ifxes,

xs(x) = {0 ifxel - §.

The discontinuities of ¢ in [ are the boundary peints of § and these form a set
of content zero, so the integral |, x5 exists, and hence s 1 exists.
Let P be a partition of 7 into subintervals Iy, .. ., I, and let

A = {k: L n § is nonempty}.
If k e A, we have
M(xs) = sup {xsX)ix € i} = 1,

Th 1413 Additive Propeety of the Riemamn Integral »9

and M{ys) = Qif k £ 4, s0

U(P, 1) = ,;1 MOl = gd: wL) = J(P, x5).

Since this holds for all partitions, we have f, xs = (8} = o{S). But

fxs=fxs 50 C(S)=st=.{i-
F) H I M

14.9 ADIMTIVE PROPERTY OF THE RIEMANN INTEGRAL

The next theorem shows that the integral is additive with respect to sets having
Jordan content.

Theorem 14.13. Assume fe R on a Jordan-measurable set § in R'. Suppose
S = Ay B, where A and B are Jordan-measurable but have no interior points in
common. Then fe Ron A, fe R on B, and we have

If(x) dx = f J(x) dx + I f(x) dx. “@
k-9 A B

Proof. Let I be a compact interval containing S and define g as follows:

- f(x) ifxe S,
969 {0 ifxel —§.

The existence of [, f(x) dx and [, f(x) dx is an easy comsequence of Theorem
14.11. To prove (4), let P be a partition of [ into m subintervals [,, ..., I, and
form a Riemann sam

5P, g) = ; g(tou(l).

If S, denotes that part of the sum arising from those subintervals containing
points of 4, and if S is similarly defined, we can write

S(P,g) = 54 + 8¢ ~ S¢,

where 5, contains those terms coming from subintervals which contain both points
of A and points of B. In particular, all points common teo the two boundaries 64
and &B will fall in this third class. But now 8, is a Riemann sum approximating
the intepral [ 4 J(x) dx, and Sy is a Riemann sum approximating [, Jix) dx. Since
o84 n 6B) = (, it follows that |S;| can be made arbitrarily small when P is
sufficiently fine. The equation in the theorem is an easy consequence of these
remarks.

noTe. Formula (4} aiso holds for upper and lower integrals.
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For scts § whose structure is relatively simple, Theorem 14.6 can be used to
obtain formulas for evalpating double integrals by iterated imtegration. These
formulas are given in the next theorem.

Theorem 14,74, Let ¢, and ¢, be two continuous functions defined on [a, b} such
that §,(x) < {x) for each x in [a, b). Let § be the compact set in R? given by

§={{x,p):a<x b ¢x} <y =< P00}

Iffe Ron 5, we have

b $z{x)
J' £33 dix, ) = j [ J £ 1) dy] dx.
< a -11¢ 3]

NOoTE. The set § is Jordan-measurable because its boundary has content zero,

(See Exercise 14.9.) .
Analogous statements hold for n-fold integrals. The extensions are too obvious

to require further comment,

Figure 14.4

Figure 14.4 illustrates the type of region described in the theorem. For sets
which can be decomposed inte a finite number of Jordan-measurable regions of
this type, we can apply iterated integration to each separate past and add the results
in accordance with Theorem 14.13,

14.10 MEAN-VALUE THEOREM FOR MULTIPLE INTEGRALS

As in the one-dimensional case, multiple integrals satisfy a mean value property.
This can be obtained as an easy consequence of the following theorem, the proof
of which is left as an exercise.

Theorem 14,05, Assume fe R and g € R on a Jordan-measurable ser 5 in R I
(X} < g(x) Jor each X in 8, then we have

J‘f(x‘) dx < j. g(x) dx.
5 s
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Theovem 14.16 ( Mean-Value Theorem for multiple integrals). Assume that ge R
and f'e R on a Jordan-measurable set § in R® and suppose that ¢(x) > 0 for each
xinS. Letm = inf f(S), M = sup f(S). Then there exists a real number J. in the
interval m < A < A such that

J' SX)g() dx = "j §(x) dx. )
5 &
In particular, we have »
me{S) < jf[x) dx < Mc(S). {8)
5

NoTE. If, in addition, § is connected and fis continuous on 5, then 1 = f(x,) for
some X, in S (by Theorem 4.38.) and (5) becomes

[ 70990 ax = 130 [ g0y ax )

Ln particular, (7) implies {g f{x) dx = f(x,)e(S), where x, € S.

Proof. Since g(x) z 0, we have mg(x) < f(x) g{x) < Mg(x) for each x in §. By
Theorem 14.15, we can write

m J. g{x) dx < jf(x)g(x} dx < MJ- gix) dx.
s s s

If jsg(x)dx =0, (5) holds for every 5. I [yg(x)dx > 0, (5) holds with
i = [s f00g(x) dx/{s g(x) dx. Taking g(x) = 1, we obtain (6).

We can use (6] to prove that the integrand £ can be disturbed on a set of content
zero withoul affecting the value of the integral. In fact, we have the following
theorem:

Theorem 14.17. Assume that f € R on a Jordan-measurable set S in R”, Let The a
subset of S having n-dimensional Jordan content zero. Let g be a function, defined
and hounded on S, such that g(X) = f(X) when X € S — T. Thengs Ron S and

J‘ffx) dx = J. g{x) dx,
5 &

Progf. Leth = f — g. Then [g A(x) dx = [; h(x) dx + s+ A(x) dx. However,
7 h(x) dx = 0 because of (6), and fs—7 A(x) dx = 0 since K{x) = O for each
xn§ — T.

NOTE. This theorem suggests a way of cxtending the definition of the Riemann
integral {y f(x} dx for functions which may not be defined and bounded on the
whole of S. I fact, let 5 be a bounded set in R* having Jordan content and let 7
be a subset of 5 having content zere. If £is defined and bounded on § — 7T and
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if s r f(X) dx exists, we agree to write
'[ £ dx = _{ £ d,
13 §-T
and to say that fis Riemann-integrable on 8. In view of the theorem just proved,

this is essentially the same as extending the domain of definition of /' to the whole
of $ by defining f on T in such a way that it rernains bounded.

EXERCISES

141 Hf s Ron [a,, 5,)....,/, € Ron [a, b,], prove that

] by
f Fe) £l Ay, -y 1) = (.r' Filxn) dx;) ( J Sl atx,,),
£ [N [

where S = [a;, 5;] x --- % [a, 8,1

14.2 Let f be defined and boundext on a compact rectangle @ = [a, ] x [, 4] in RZ,
Assume that for each fixed y in [e, ], f(x, ¥} is an increasing function of x, and that for
each fixed x in [, #], f(x, ») is an increasing function of y. Prove that fe Ron Q.

14.3 Evaluate each of the following double integrals.

a) J‘J‘sin“ xsin? yde dy, whereQ = [0, 2] x [0, n].
¢ :

b) J'J' lcos G + P dx dy, where @ = [0, 7] x [0, %],
(5

c)jf[x+ y1dx dy, vhere @ = [0,2] % [0, 2], and [1] is the greatest
Q

integer =< ¢,

144 Let Q0 = [0,1] x [, 1] and calcvlate [f, fi(x, ¥) dx dy in each case.
A fx,H=1-x—-y fx+ry=sl, Fix, ¥) = 0 otherwise.
b)Y féx, ) = x2 + ¥ fx2+ ¥ s 1, flx,y) = 0otherwise.
fix,)=x+y fx? <y < 2% fix, ¥} = 0 otherwise.

14.5 Define f on the square (¢ = [0, 1] x [0, 1] as follows:
N if x is rational,
f3) = {Zy if x is irrational.

#) Prove that [} f{x, y) dy exists for 0 = ¢ < 1 and that

J: [J:f(x. ¥) dy] dx = 12,

and

fl [ff(m)dy]dwn
Q 4]

This shows that Is [§3 1¢x, ») dy] dx exists and equals 1.
B) Prove that [} [§2 /(x. ) dx] dy exists and find its value.
<) Prove that the double integral f, f(x, ¥} d(x, ) does not exist,
14.6 Define f on the square @ = [0, 1] x [0, 1] as follows:
S y) = {0 if at least one of x, y is irrational,
1/n if y is rational and x = mfn,

where m and » are relatively prime integers, # > 0. Prove that
X 1 1
f fix, ) dx = J' U f(x.y)dx] dy = jf(x.y)dfx,y) =0
(] o LJo @

but that [} f(x, ¥) dv does not exist for rational x.
14.7 I p, denotes the kth prime number, let
- S(p) = {(i’. E):n =1L,2...,;m-1, m=12_.., p —1},
P Py
let 5=}, S(p), and let Q@ = 10, 1] x [0, 1]

a) Prove that & is dense in  (that is, the closure of S contains () but that any line
parallel to the coordinate axes contains at most a finite subset of S.

b) Define fon 2 as follows:
fx, =0 if{x,)e8 fl,=1 if(x,)eQ - 5.
Prove that [} [j}f(x, ) dyldx = [§ [J3f(x,»)dx]dy = 1, but that the
double integral o f(x, ¥} d(x, ¥) does not exist,
Jordan content

14.8 Let § be a bounded set in R* having at most a finite number of accumulation points.
Prove that {8} = 0,

14.9 Let f be a continuous real-valued function defined on [a, 5). Let § denote the
graphof f, thatis, § = {{x, ¥):y = f(x), a4 < x = b}. Prove that § has two-dimensional
Jordan content zero,

14.10 Let I be a rectifiable curve in R®. Prove that I has a-dimensional Jordan content
ZETC, ’

14.11 Let {be a nonnegative function defined on a set S in R*. The ordinaie set of fover
5 is defined to be the following subset of R**1:

(s s X Xy J X, X0 €S, O Xues S flxy, o0, Xdh

If § is a Jordan-measorable region in R™ and if £ is continuous on §, prove that the ordinate
set of f over § has (# + |)-dimensional Jordan conteni whose value is

ff(x,,...,x,}d(xl,...,x,>‘
&

Interpret this problem geometrically whenn = fandn = 2,
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14.12 Assume that f< R on § and suppose [ f(x) dx = 0. (& is a subset of R"). Let
= {x:x ¢ &, f(x) < 0} and assume that e{A) = Q. Prove that there exists a set B of
measure zero such that f(x) = Oforeachxin § — B.

14,13 Assume that f& R on S, where § is a region in R" and f'is continuocus on S. Prove
that there exists an inferior point x, of & such that

j ) dx = fxo)e(S).
5

14.14 Let f be continuous on a rectangle @ = [#, ] = [¢, 4] For each interior point

£x,, X3} in {, define
Flxy, x3) = j (j 65 %) dy) dx

Prove that D, ,F(x,, x3) = D, 1 Fx, x3) = f{xy, x2)
14.15 Let 7 denote the following triangular region in the plane:

- {(x,y):05’5+’5’51}, where @ > 0, b > 0.
a

Assume that f has a continuous second-order partial derivative D, ; fon 7. Prove that
there is a point {xy,, ¥¢) on the segment joining (a, 0) and (0, b) such that '

J' Dy 1f(x, ¥) d(x, ) = F©,0) — fa, 0 )+ aDyf(xq, o).
T

SUGGESTED REFERENCES FOR FURTHER STUDY
14.1 Apostol, T. M., Calcudus, Vol. 2, 2od ed, Xerox, Waltham, 1965,
14.2 Kestelman, H., Modern Theories of Integration, Oxford University Press, 1937,
14.3 Rogosinski, W. W., Volume and Iniegral, Wiley, New York, 1952.

CHAPTER 15

MULTIPLE LEBESGUE INTEGRALS

5.1 INTRODUCTION

The Lebesgue integral was described in Chapter 10 for functions defined on subsets
of R!, The method used there can be generalized to provide a theory of Lebesgue
integration for functions defined on subsets of a-dimensional space R”. The
resulting integrals are called multiple integrals. When n = 2 they are called double
integrals, and when n = 3 they are called triple integrals.

As in the one-dimensional case, multiple Lebesgue integration is an extension
of multiple Riemann integration, It permits more general functions as integrands,
it treats unhounded as well as bounded functions, and it encompasses more
general sets as regions of integration.

The basic definitions and the principal convergence theorems are complctely
analogous to the one-dimensional case, However, there is one new feature that
does not zppear in R'. A multiple integral in R” can be evaluated by calculating
a succession of # one-dimensional integrals. This result, called Fubini’s Theorem,
is one of the principal concerns of this chapter,

As in the one-dimensional case we define the integral first for step functions,
then for a larger class (called upper fimctions) which contains limits of certain
increasing sequences of step functions, and finally for an even larger class, the
Lebesgue-integrable functions. Since the development proceeds on exactly the
same lines as in the one-dimensional case, we shall omit most of the details of
the proofs.

We recall some of the concepts introduced in Chapter 14. Iff =1, x ++- x [,
is a bounded interval in R”, the n-measure of / is defined by the equation

ul) = p(Iy} - p(l),

where u(l,} is the one-dimensional measure, or length, of /.

A subset T of R” is said to be of n-measure 0 if, for every ¢ > 0, 7 can be
covered by a countable collection of n-dimensional intervals, the sum of whose
n-measures is < g,

A property is said to hold almost everywhere on a set § in R” if it holds every-
where on .S except for a subset of n-measure 0. For example, if {£,} is a sequence
of functions, we say f, — falmost everywhere on $ if Him,_ 1(x) = f(x) for all
x in § except for those x in a subset of s-measure 0.

405
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152 STEP FUNCTIONS AND THEIR INTEGRALS
Let I be a compact interval in R”, say

I=Ix--x1,

where each , is a compact subinterval of R, If P, is a partition of f, the cartesian
product P = P, x --- x P, is called a partition of I If P, decomposes [ into
m, one-dimensional subintervals, then P decomposes [ inte m = m; - m
n-dimensional sabintervals, say J,, ..., Ja
A function s defined on Jis called a step function if a partition P of I exists such
- that s is constant on the interior of each subinterval J;, say

3(X) = ¢ if X € int Jy.

The integral of 5 over [ is defined by the equation

J 5 = f: el F ). (N
. =1

Mow let G be a general n-dimensional interval, that is, an interval in R” which
need not be compact. A function s is cailed a step function on @ if there is a
compact #-dimensional subinterval 7 of G such that s is a step function on 7 and
Kx) = 0if x & G — L The integral of s over G is defined by the formula

(-

where the integral over Fis given by {1). As in the one-dimensional case the integral
is independent of the choice of L.

153 UPPER FUNCTIONS AND LEBESGUE-INTEGRABLE FUNCTIONS

Upper functions and Lebesgue-integrable functions are defined exactly as in the
one-dimensional case.

A real-valued function fdefined on an interval 7 in R is called an upper function
on I, and we write f & U{0), if there exists an increasing sequence of step functions
{5,} such that

a) s, - falmost everywhere on J,
and

b) lim,., |, s, exists.

The sequence {s,} is said to generate f. The integral of £ over [ is defined by the

equation
J. f=lim J Spe {2)
I s Jgr

Moessurable Fusctions and Measwrable Sets in R" 447

We denote by L{J) the set of all functions f of the form f = u — », where
u € U(l} and v e U(l). Each function fin L(f) is said to be Lebesgue-integrable
on [, and its integral is defined by the equation

J:f=J;u—J;v.

Since these definitions are completely analogous to the one-dimensional case,
it is not surprising to learn that many of the theorems derived from these definitions
are also valid. In particular, Theorems 10.5, 10.6, 10.7, 10.9, 10.10, 10.11, 10.13,
10.14, 10.16, 10.17¢a) and (c), 10.18, and 10.19 are all valid for multiple integrals.
Theorem 10.17{b), which describes the behavior of an integral under cxpansion or
contraction of the interval of integration, needs to be modified as follows:

If f& L{I) and if g(x) = f(x/c), where ¢ > O, then g € L{cf) and

[oee]s
«f I

In other words, expansion of the interval by a positive factor ¢ has the effect of
multiplying the integral by ¢*, where » is the dimension of the space.

The Levi convergence theorems (Theorems 10.22 through 10.26), and the
Lebesgue dominated convergence theorem (Theorem 10.27) and its consequences
{Theorems 10.28, 10,29, and 10.30) are also valid for multiple integrals.

NOTATION, The integral [, fis also denoted by
j fix) dx or If(x,, coes XXy, .., x 1
! i

The notation {;f(x,..., x,) dx,---dx, is also used. Double integrals are
sometimes written with two integral signs, and triple integrals with three such signs,

thus:
f j fix, 3} dx dy, H 6 v, 2) dx dy d.

I

154 MEASURABLE FUNCTIONS AND MEASURABLE SETS IN R"

A real-valued function f defined on an interval f in R* is called measwrable on I,
and we write f € M(I), if there exists a sequence of step functions {5,} on 7 such
that

Em s (x) = f(x} a.e, on f,

e

The properties of measurable functions described in Theorems 10.35, 10.36, and
10.37 are also valid in this more general setting.
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A subset 5 of B is called measurable if #s characieristic function v is measur-
able. If, in addition, ¥y &5 Lebesgue-integrable on B”, then the n-measure 4(S) of
the set 5 3 defined by the equation

»

#S) = } is.
ﬁ%

If y is messurable but not in LR™, we define p(5) = 4+ oo, The function g 50
defizred is called s-dimensional Lebesgus measure,

The properties of measure described in Theorems 10.44 through 1047 are also
valid for n-dimensional Lebesgue measure, Also, the Lebesgue integral can be
defined for arbitrary subsets of B by the method wwed in Section 10.1%.

We emphasize in particular the couptably additive property of Lebesgue
mensure described in Theorem 1047:

If {4, 4,5, ...} Is 8 countable disioint collection of measurable sets in R,
then the union {J72, 4, is measurable and

u( = ‘é“f u{dn

The pext theorem shows that every open subset of B® is measurable.

Theorem 15.1. Every open set S In R” can be expressed as the wiion of a countable
disjnint collection of bownded cubes whose closure is comtaiued in 8. Therefore 5 is
measurable. Moreover, if 5 is bournsded, then p(8) is finkte,

Proof. Fixan integer m = 1 and consider all halfopen intervals in B* of the form

I 2
(if"‘ T k=0 1, 42

All the intervals are of length 277, and they form a countable disioint collection
whase union is BY. The cartesian product of » such intervals is an s-dimensional
cube of edge-length 277, Let £, devote the collection of all these cubes, Then 7,
is % countable disiointcollection whose union is B, MNote that the cobes in %W 5
are obtained by bisecting the edges of those in £, Therefore, ¥ 0 s a cubein F
and # Q,., 18 & cube in Fp., then either 0,., € G, or @u., and O, are
disioin.

Now we extract 8 subcoliection &, from F, a5 follows. 8 m » 1, &, consists
of all cubes in F, whose closure lies in S Ifm = 2, €, consists of all cubes in 7,
whose closure lies in § but not in any of the cubes in G, Hm = 3, G, consists
of all cubes in F, whose closure Hes m 5 but not in any of the cubes in G or G,
and so on. The construction s Mustrated in Fig. 15,1 where 5 15 a quarter of ap
open disk in R®. The blank square is in G, the lghtly shaded ones are in G,.
and the darker ones are in Ga.

Mow lot
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Figure 18,1

That s, 7 is the union of all the cubes in &), G, ... We will prove that § = 7
and this will prove the theorem because 7 is a countable disioint collection of
cubes whose closure Hles iIn & Mow 7 5 § because each ¢ in G, is 2 subset of §
Henceweneed only show that 5 ¢ 7

Letp = {p, . .,p0 beapoint in 5§ Since 5 is open, there i 2 cube with
center p and edge-length & > O, which les in S0 Choose m 5o that 277 < §/2.
Then for each { we have

[N

‘?4’ - o e

2}% S A _NZW‘
and let @ be the Uartesian product of the fmtervals (227", (k, + 127 for
fab,2,....n Thenpe @ forsome cube (in F,. Womis the wmi?ea% integer
with this property, then Qe G, so pe 7. Hence é % 7. The statements about

the measurability of § follow at once from the countably additive property of
Lebesgue measure,

ot I 5 is measurable, so is B — § because ygo.g = 1 -y Thesfors,
every closed subset of B is measurabip,

5.5 FUBING'S REDUCTION THEOREM ¥OR THE DOUBLE INTEGRAL OF
A BTEP FUNCTION

Up o this point, Lebesgue theory in 8 s complessly waiagma to the one-

dimensional case. Mew idess are reguired when we come to Fubint's theorem for

calelating o muliples fntegral in R® by Herated lower-dimensional integrals, To
better understand what is needed, we consider first the two-dimensional case,

Lot us recall the corresponding result for rmétiyi Riemann integrals. If

I = [a, b) = {e, 41 is a compact interval in B® and if /' Is Riemann-integrable
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on I, then we have the following reduction formula {from part (v) of Theorem

14.6):
d B
ff(x, ¥ dix, ¥) — j U £%, ) a'x] . @)
I e ]

There is a companion formula with the lower integral [% replaced by the upper
integral ]'ﬁ, and there are two similar formulas with the order of integration re-
versed. The upper and lower integrals are needed here because the hypothesis of
Riemann-integrability on 7 is not strong enough to ensure the existence of the
one-dimensional Riemann integral |2 f(x, y) dx. This difficulty does not arise in
the Lebesgne theory. Fubini’s theorem for double Lebesgue integrals gives us the
reduction formulas

r
If(x, ») dix, y) = j [rf(x. » dx] dy = j[ ‘o dy] dx,
¥ '3 '] ] e

under the sole hypothesis that fis Lebesgue-integrable on . We will show that the
inner integrals always exist as Lebesgue iniegrals. This is another example illus-
trating how Lebesgue theory overcomes difficulties inherent in the Riemann theory.

In this section we prove Fubini’s theorem for step functions, and in a later
section we extend it to arbitrary Lebesgue integrable functions.

Theorem 15.2. (Fubini’s theorem for step functions). Let 5 be a step function on
R?. Then for each fixed y in R' the integral [g: s(x, y) dx exists and, as a function
of y, is Lebesque-integrable on R'. Moreover, we have

f J s(x, ¥) d(x, y) = f U s{x, y} dx:l dy. @)
nt wt
(]

Similarly, for each fixed x in R' the integral ]‘.1 x(x, y) dy exists and, as a function
of x, is Lebesgue-integrable on R'. Alvo, we have

j j s(x, y) dix, y) = f U s{x, ¥} dy] dx. )
» »t
| 3

Proof. This theorem can be derived from the reduction formula (3) for Riemann
integrals, but we prefer to give a direct proof independent of the Riemann theory.

There is a compact interval J = [a, 5] x [, d] such that 5 is a step function
on { and s(x, ) = 0 if (x, ) e R* — £ There is a partition of 7 into mna sub-
rectangles f;; = [x,.;, x;] x [¥;-; ¥;] such that s is constant on the interior of
Iy, say

s(x,3) = e;  if(x,y)eint Iy

Def. 154 Some Properties of Sets of Mensure Zero 411

Then

” $G6 ) d05 1) = €yxi — Xy XFy — Fyoy) = f J sCx. 9) a'x] d
¥i=1 Ti-t

Summing on i and f we find

\ _
” s(x, ) d(x, y) = j“U' s(x, ) dx | dy.

Since ¥ vanishes outside I, this proves (4), and & similar argument proves (5).

To extend Fubini’s theorem to Lebesgue-integrable functions we need some
further results concerning sets of measure zero. These are discussed in the next
section.

156 SOME PROPERTIES OF SETS OF MEASURE ZERO

Theorem 15.3. Let 8 be a subset of R". Then 8 has n-measure 0 if, and only if, there
exists a coumtable collection of n-dimensional intervals {J,, J,, .. ), the sum of
whose n-measures is finite, such that each point in § belongs to J, for infinitely
many k.

Proof. Assume first that S has #-measure 0. Then, for every m 2 1, § can be
covered by a countable collection of n-dimensional intervals {f, ,, I, ,, ...}, the
sum of whose n-measures is <2™", The set A4 consisting of all intervals I, for

=1,2,...,and &k = 1,2,..., is a couniable collection which covers §, and
the sum of the »-measures of all these intervals is < 3%_, 27 = |. Moreover,
if aeS§ then, for each m, acl,, for some k. Therefore if we write
4 = {1}, 5, ...}, we see that a belongs to J, for infinitely many k.

Conversely, assume that there is a countable collection of nr-dimensional
intervals {J,, J,, ... } such that the series 5., u{S) converges and such that ecach
point in § belengs to J, for infinitely many &, Given ¢ > 0, there is an integer &
such that

DI AR
k=X

Each peint of § lies in the set |J2., /i, so S € [y Ji. Thus, S has been
covered by a countable collection of intervals, the sum of whose n-measures is
<g, s0 5 has p-measure 0.

Defivitton 15.4. If' S is an arbitrary subset of R*, and if (x, ¥) € R?, we denote by
S, and S the jollowing subsets of R*:

S,={x:xeR' and (x,y)eS},
= {y:yeR and (x, y)e S}
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Figure 152

Examples are shown in Fig. 152 Geometrically, 8, & the projection on the
x-axis of @ horizontal cross section of $: and 3% is the projection on the y-axis of »
vertical cross section of 8

Theovem 15.5. I 5 is a subser of B® with Demeasure 0, then 8, has Lmeasure O for
almost off v in BY, and §% hos L-measure O for almost ol x in RY,

Proof. We will prove that 5, has 1-measure 0 for almost all y in R'. The proof
rakes use of Theorem 153,

Since 5 has Z-measure U, by Theorerm 15.3 there it g countable collection of
rectangles {7, such that the series

4
Z wly CONVErges, {6}
Py

and such that every point {x, ¥ of 5 belongs o /4, Tor infinttely many &, Wi
I, = X, = Y, where X, and ¥, are subintervals of R, Then

Iy = plX oY) = p(X,) Ly, = i‘ wX v
Ja

b
where y,, s the characteristic function of the interval ¥, Let g = w1y,
Then {8} implies that the series

-

P

e

s CONYErEes.
w B

Now {g} i 8 sequence of nonnegative functions in L{R*) such that the series
Py jw g, converges, Therefore, by the Levi theorem { Theorem 10.23), the serigs
; &, converges almost everywhere on B, In other words, there 18 8 subser
T of B of l-measure § such that the series

k2
}: X e A5 converges forall yin B9 — 10 {7
%=

i
.
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Take apoint y in B — T, keep y fined and consider the set &, We will prove that
&, has -mwasure zero.
We can assume that §, is nonempty; otherwise the resull is trivial, Let

Alyi e (X, ve ¥, k=1,2,...%

Then Ay} is a countable collection of one-dimenstonal intervals which we relabel
a8 44y, J5, ... 3. The sum of the lengths of all the imervals J, converges because of
{72 Hxw b, then (v, ¥ie Ssoix, e fy = ¥, x ¥, for infinitely many k, and
hence x & J, for infinitely many k. By the one-dimensional version of Theorem
15.3 it follows that §, has I-measure zero. This shows that S, has l-measure zero
for almest all ¥ in BY, and o similar argument proves that 5% has l-measure zero
for almost all x in RY

187 FUBINDS REDUCTION THEOREM FOR DOUBLE INTEGRALS
Theorem 15.6. Assume §is Lebesgue-integrable on B>, Then we have:

a) There is a set T of l-measure O such that the Lebesgue integral g fix, y} dx
exsits for all v in B* — 1.

by Fhe function G defined on B by the couation

“t foo, pydx fyeR - T,
SR

t\{) fyeT,

iv Lebesgue-imregrable on RY.

Gly) ==

o j [ F= % G(y) dy. That is,
¢ w8
xl
é Flx, vy dlx, vy = g { Flx, 3 4"} dy.

were. There is a corresponding resub which concludes that

po :
i fix, vy dix, v = '{ { Six, vid y} dx.,
Jy % | Jus

Proof. We have slady proved the theorem Tor step functions. We prove it next
for upper functions. If fe U(RY) there Is an increasing sequence of step functions
{5, such that 5%, ¥} — f{x. v for all {x, ¥} in B — 5, where § is 3 set of 2-
measure §; also,

im % sdx, yyd(x. ) = 1 flx 0 dix, ).
LRSI I J o
'Y #i
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Now (x, y) e B> — §if, and only if, x e R! — §,. Hence
5(x, 3) = flx, ) ifxeR' -5, @®

Let £,() = [us 8,(x, ¥) dx. This integral exists for each real y and is an integrable
function of y. Moreover, by Theorem 15.2 we have

j (v dy = J‘ U 5% ¥) dx] dy = ” 50, ) dx, 9) < ”f
§ 1 [ 13 } 23 X .

Since the sequence {¢,} isiricreasing, the lastinequality shows that im,., ,, {x« 7,(3) d¥
exists, Therefore, by the Levi theorem (Theorem 10.24) there is a function 1 in
L(RY) such that t, — ¢ almost everywhere on R!. In other words, there is a set
T, of 1-measure 0 such that £,{y} — #(3) if y ¢ R* — T;. Morcover,

N

j ) dy = tim [ 1) dy.
Again, since {f,} is increasing, we have
1{y) = I sdx, ) dx < 1(y) ifyeR' — T,.
)

Applying the Levi theorem to {s,} we find that if y e R — T, there is a function,
g in L(RY) such that 5.(x, y) — g(x, ») for x in R — 4, where 4 is a set of 1-
measure . (The set 4 depends on ».} Comparing this with {8) we see that if
yeR' — T, then

g%, y) = fix,y) ifxeR —(4uS) ©)
But 4 has l-measure 0 and 5, has 1-measure 0 for almost all y, say for all y in
R' — T, where T, has l-measure 0. Let 7 = T, u T,. Then T has 1-measure 0.
If y e R* — T, the set 4 u S, has I-measure 0 and (8) holds. Since the integral

j.l gix, ¥ dx exists if y € R‘ — T it follows that the integral {5, f(x, ) dx also
exists if y € R* — 7. This proves (2). Also, if y & R — T we have

j e, ) dx = j o(x, ) dx = sx P dx = 1), (10)

e fgl

Since t € I{R"), this proves (b). Finally, we have

f (dy = | lim 10y dy = nmj 0y dy
Y TR LY al

L g ]

lim I U 5,0x, ¥) dx] dy = lim IJ 5(x, y) d(x, ¥)
nog -3 -1 Limd: 1}

5
” fx, y) d(x, y).

i
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Comparing this with (1U) we obtain {¢). This proves Fubini’s theorem for upper
functions,

To prove it for Lebesgue-integrable functions we write f = # — », where
u € L{R?} and v € L(R?) and we obtain

Preffe[e= Llln o= [, wna]o
- L [L (utx, ¥) — o{x, )} dx] dy = L Upf(x’ » dx] dy.

As an immediate corollary of Theorem 15.6 and the two-dimensional analog
of Theorem 16.11 we obtain:

Theorem 15.7. Assume that [ is defined and bounded on a compact rectangle
I = [a, 8] x [e, d), end that f is continuous almost everywhere on 1. Then fe L(I
and we have

[ ) ) &
f fﬂx, ) dx, y) = j U £ ¥) dx} dy = j [ 5, ) dy] dx.

NOTE. The one-dimensional integral % f(x, ¥} dx exists for almost all y in [c, ]
as a Lebesgue integral, It need not exist as a Riemann integral. A similar remark
applies 1o the integral J¢ f(x, ) dy. In the Riemann theory, the inner integrals
in the reduction formula must be replaced by upper or lower mitegrals. (See
Theorem 14.6, part {v).)

There is, of course, an extension of Fubini’s theorem to higher-dimensional
integrals. If f is Lebesgue-integrable on R™** the analog of 'l"heorem 15.5
concludes that

J f:f U fix; y)dledy ——rJ. U fix:y) dY:Id"~

Here we have written a point in R™** as (x; ¥), where x € R™ and ¥y ¢ R*, This
can be proved by an extension of the method used to prove the two-dimensional
case, but we shall omit the details,

15.8 THE TONELLI-HOBSON TEST FOR INTEGRABILITY

Which functions are Lebesgue-integrable on R?? The next theorem gives a useful
sufficient condition for integrability. Its proof makes use of Fubini's theorem.

Theorem 15.8. Assume that [ is measurable on R* and assume that ot least one of
the two iterated integrals

L U 1t 9 dx]dy or j U 15 9 dy] dx
1 '] "8 1
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exists, Then we have:

a) fe L(R?).

o (=Ll

Proof. Part (b) follows from part {a) because of Fubini’s theorern. We will also
use Fubini’s theorem to prove part {a). Assume that the iterated integral
fx [fas 1fCx, 331 dx] dy exists. Let {5} denote the increasing sequence of nonneg-
ative step fanctions defined as follows:

B ifjxt £ n and }y| < n,
1] otherwise.

sdxs ¥y = {

Let fiix, ¥} = min {5(x, ¥}, | f(x, y}|}- Both s, and |f| are measurable so f, is
measurable. Also, we have 0 < f.(x, ¥} € 5.(x, 3}, so f, is dominated by a
Lebesgue-integrable function, Therefore, £, € L(R*). Hence we can apply Fubini's
theorem to £, along with the mequality 0 < f(x, y) < | f(x, 3} to obtain

.”ﬂ=j[JLmﬂM}W£I[[mmmw}h
| ! n! »t

Rz

Since {£,} is increasing, this shows that the limit lim, ., [[p2 7, exists. By the Levi
theorem (the two-dimensional analog of Theorem 10.24}, {f,} converges almost
everywhere on R? to a limit function in L{R?). But £(x, y) - | f(x, )l asn - <0,
so |f] € L{R?). Since f is measurable, it follows that f'e L(R?). This proves (a).
The proof is similar if the other iterated integral exists.

15.9 COORDINATE TRANSFORMATIONS

One of the most important resolts in the theory of muitiple integration is the
formula for making a change of variables. This is an extension of the formula

s1d) o
ﬂ@n=jfmmﬂna
g} ¢
which was proved in Theorem 7.36 for Riemann integrals under the assumption
that ¢ has a continuous derivaiive ¢’ on an interval T = [¢, 4] and that fis
continuous on the image g(T).

Consider the special case in which ¢’ is never zero (hence of constant sign) on
T. X g’ is positive on T, then g is increasing, so g(c) < g(ly, g(T) = [g{c), g{d)],
and the above formula can be writien as follows:

j ﬂﬂﬁ=ffmmﬂﬂﬂ
«r T
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On the other hand, if g’ is negative on T, then g{T) = [¢(d), g{c)] and the above
formula becomes

| ﬂﬂﬂ=—ffMMMOﬂ
T} T
Both cases are included, therefore, in the single formula

j ﬂmm=ffmmmen (an
HTr T

Equation (11} is also valid when ¢ > ), and it is in this form that the result will be
generalized to multiple integrals. The function g which transforms the variables
must be replaced by a vector-valued function called a coordinate transformation
which is defined as follows.

Definition 15.9. Let T be an apen subset of R*. A vector-valued functiong: T — R"
is called a coordinate rronsformation on T if it has the following three properties:

ajgeC’'onT.
b) g is one-to-one en T.
¢} The Jacobian determinant J{t) = det Dg{t) # O for alit in T.

NOTE. A coordipate transformation is sometimes called a diffeormorphism.

Property (a) states that g is continuously differentiable on 7. From Theorem
13.4 we know that a continuously differentiable function is locally one-to-one
near each point where its Jacobian determinant does not vanish. Property (b)
assumes that g is globally one-lo-one on 7. This guarantees the existence of a
global inverse g~ * which is defined and one-to-one on the image g(7). Propertics
(a) and (c) together imply that g is an open mapping (by Theorem 13.5). Also, g™!
is continuously differentiable on g(7’) (by Theorem 13.6),

Further properties of coordinate iransformations will be deduced from the
following multiplicative property of Jacobian determinants.

Theorem 15.10 { Multiplication theorem for Jacobian determinants). Assume that g
is differentiable on an open set T in R" and that b is differentiable on the image g(T).
Then the composition k = he g is differentiable on T, and for every t in T we have

At = Algt)/ (0. (12)

Proof. The chain rule (Theorem 12.7) tells us that the composition k is differen-
tiable on T, and the matrix form of the chain rule tells us that the corresponding
Jacobian matrices are related as follows:

Dk{t) = Dh[g(t}]Dg(t). (13

From the theory of determinanis we know that det (48) = det A det B, so (13)
implies (12).
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This theorem shows that if g is a coerdinate transformation on Tand if his a
coordinate transformation on g(7), then the compasition k is a coordinate trans-
formation on 7. Also, if h = g, then

) ki) =t foralitin7, and J(t) =1,
so (g1 (6) = [ and g™' is a coordinate transformation on g(7).

A coordinate transformation g and its fnverse ™% set up a one-to-one corre-
spondence between the open subsets of T and the open subsets of g(77), and also
between the compact subsets of T"and the compact subsets of g(7T"). The following
examples are commonly used coordinate transformations.

Example 1. Polar coordinates in R?. In this case we take

T={(,1):4 > 0,0 < t; < 2},
and we let g = (g, g») be the function defined on T as follows:
g8 = 1 Cos ty,  ga(1) = £y sin£5,

It is customary to denote the components of t by {r, ) rather than {#;, ;). The co-
ordinate transformation g maps each point (r, 8) in 7 onto the point (x, 3) in g{T) given
by the familiar formulas

x = rcos @, ¥ = rsinf.

The image g(T) is the set RZ — {{x, 0): x = 0}, and the Jacobian determinant is

cos 8 sin 8
~-rsnf@ rceoséd

I =

Example 2. Cylindrical coordinates in R®. Here we wrile t = (r, 8, z) and we take
F={{r,8,2:r>0 0<8<2n —owt << o}

The coordinate fransformation g maps each point {r, &, ) in T onto the point (x, ¥, 2)
in g(F) given by the equations

x =rcos @, ¥ = rsin @, z=2z

r(z. ¥ 2)
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The image g(7T) is the set R* — {(x,0,0):x = 0}, and the Jacobian determinant is
given by
cos 6 sin &
Sty = |=rsm@ rcosd O =r
Y] 1] 1
The geometric significance of r, 8, and z is shown in Fig. 15.3.
Example 3. Spherical coordinates in R®. In this case we write t = {p, §, #) and we take
T={p.0e:p>0, 0<8<2n 0<gp<al

The coordinate transformation g maps each point (g, 6, @) in 7 onto the point (x, y, z)
in g(F) given by the equations

x = pcos §sin @, y = psin &sin g, zZ = pcos ¢

The image g(T} is the set R — [{{x, 0,0 :x = 0} L {{0,0,z):z¢ R}], and the
Jacobian determinant is s
cosdsing  sinfsin g cos ¢
Jt) = —psinfsin g poosfsing 0 = —p? sin g
peosBeos g psinBoos e —psing

The geometric significance of p, 8, and ¢ is shown in Fig. 15.4.

P\\y"/ :F,rp S @
P |
// ' -
R f ¥  Figure 154
%gr" “‘/’7‘&_“:
Ve 8 i @

Example 4. Lincar transformations in B". Let g:R* > R" be a linear transformation
represented by a matrix (@) = mi(g), 50 that

n &
gt) = (Z i s Z “ru"i) .
i= 1 i=1
Then g = (g5...., g0 where g{) = 3_, a,,t;, and the Jacobian matrix is
- Dg(ﬂ == {ngi(t}) = (aiJ}*

Thus the Jacobian determinant J{t) is constant, and equals det (g, 4}, the determinant of
the matrix (a;;). We also call this the determinunt of g and we write

det E = det (ﬂ'u)»
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A linear transformation g which is one-to-one on R" is called wonsingular.
We shall use the following elementary facts concerning nonsinguiar transforma-
tions from B to R®. (Proofs can be found in any text on linear algebra; see also
Reference 14.1.)

A linear iransformation g is nonsingular if, and only if, its matrix A = m(g)
has an inverse A1 such that 44~! = I, where I is the identity matrix {the matrix
of the identity transformation}, in which case A is also called nonsingular. An
r x nmatrix A is nonsingular if, and only if, det 4 # 0. Thus, a linear function
g is a coordinate transformation if, and only if, det g # 0.

Every nonsingular g can be expressed as a composition of three special types
of nonsingnlar transformations called efementary transformations, which we refer
to as types a, b, and ¢. They are defined as follows:

Typea: gy, o sy 1y = (11, ..., 4, ..., 1), where 1 % 0. In other
words, g, multiplics one component of t by a nonzero scalar 4. In particutar, g,
maps the unit coordinate vectors as follows:

gfe,) = Ju, tor somek, gfu) =u; foralli+# k.

The matrix of g, can be oblained by multiplying the entries in the kth row of the
identity matrix by . Also, det g, = 1.

Type b: gty oot dd = o oo by + 15 ..., 1), Where j # k. Thus,
g, replaces one component of ¢ by itself plus another. In particular, g, maps the
coordinate vectors as follows:

gm) = u, + u, forsome fixed k and j, & # j,
gm) = w forali# k.

The matrix g, can be obtained from the ideatity matrix by replacing the &th row
of f by the kth row of [ plus the jth row of . Also, det g, = 1.

Tvpec: glb, . vt ol B = (T oty by, ), Where § & ]
That is, g, interchanges the ith and jth components of t for some { and j with
i # j. In particular, g(u;) = n;, g(n,) = u;, and glo,) = w forall & # i, &k % .
The matrix of g, is the identity matrix with the /th and jth rows interchanged. In
this case det g, = — I,

The inverse of an elementary transformation is another of the same type. The
matrix of an elementary transformation is called an elementary matrix. Every
nonsingular matrix A can be transformed to the identity matrix 7 by multiplying
A on the left by a succession of elementary matrices. {This is the familiar Gauss—
Jordan process of linear algebra.) Thus,

=TT, - TA,
where ¢ach T, is an elementary matrix Hence,

A= T o TPAT L
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If 4 = mig), this gives a coresponding factorization of g as a composition of
clementary transformations.

15.10 THE TRANSFORMATION FORMULA FOR MULTIPLE INTEGRALS

The rest of this chapter is devoted 1o a proof of the following transformation
formula for multiple integrals.

Theorem 15,51, Let T be an open subset of R® and let g be a coordinate rransfor-
mation on T. Let [ be a real-valued function defined on the image g(T) and assume
that the Lebesgue integral [, m J(X)dx exists. Then the Lebesgue integral
F+ /T8 |V () dt also exists and we have

£(x) dx = f FTa(0] 140 dt. (14)
¥

2T

The proof of Theorem 15.11 is divided into three parts. Part 1 shows that the
formula holds for every linear coordinate transformation 2. As a corollary we
obtain the relation

ule()] = idet af u(A),

for every subset A of R" with finite Lebesgue measure. In part 2 we consider a
general coordinate transformation g and show that {14) holds when f is the
characteristic function of a compact cube, This gives us

w(K) = J (0] dt, (15)
2Ky

for every compact cube X in g(T). This is the lengthiest part of the proof. In part
3 we use Equation (15) to deduce {14) in its general form.

15.11 PROOF OF THE TRANSFORMATION FORMULA FOR LINEAR
COORDINATE TRANSFORMATIONS

Theorem 15.12. Let w: R" — R™ be a linear coordinute transformation. If the
Lebesgue integral {ga f(x) dx exists, then the Lebesgue integral [g- f{a(ty] [/.(t}] dt
also exists, and the two integrals are equal.

Proof. First we note that if the theorem is true for @ and B, then it is also true for
the composition y = « « § because

J Fx) dx
xn

J. Fla(t)] 1, (0] d1 :J S[BOD) L] 170 dt
b 4 § 1

i

J O] ] db,
.

since Jo(0) = JLB(0] Jy(0).
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Therefore, since every nonsingular linear transformation « is a compostiion
of elementary transformations, it suffices to prove the theorem for every elemen-
fary transformation, It also suffices to assume /' 2 0.

Suppose « is of fype a. For simplicity, assume that « multiplies the fast
component of t by a nonzero scalar A, say

N(Il,..., tn) = (fIS"‘i n— 1 Atn)'

Then (0] = |det a] = |A|. We apply Fubini’s theorem to write the integral of £
over R” as the iteration of an (n — 1)-dimensional integral over R"~! and a one-
dimensional integral over R!. For the integral over R' we use Theorem 10.17(b)
and {c), and we obtain

r [ e
f fx) dx = j - %) dx,,] dx, - v,
L R hald

= [ Jm FOtns e Xy, ) dr{ldxlw-dx“_l
SR - '
l’ [ "o

= J Flat] |40 d!{l dt, - dt,_,
SR -

= | fl=®)] 7.0 dt,
x

-

where in the last step we use the Tonelli-Hobson theorem. This proves the theorem
if & 15 of type a. 1T« is of type b, the proof is similar except that we use Theorem
10.17(a) in the one-dimensional integral. In this case |/, (t)] = 1. Finally, if & is
of rype ¢ we simply use Fubini’s theorem to interchange the order of integration
over the /th and jth coordinates. Again, |J,{t)] = ] in this case.

As an immediate corollary we have:
Theorem 15.13. If a: R - R" is a finear coordinate tronsformation and if A is
any subset of R" such that the Lebesque integral [, 4 f(X) dx exists, then the
Lebesgue integral {4 fla(t)] |7 (6)) dt also exists, and the two are equal.

Proof. Let f{x) = fix) if x & a(4), and let f{x} = 0 otherwise. Then
| sovax - [ Jo0ax = f L1001 at = [ et 0l e
Ay Re x A

As a corollary of Theorem 15.13 we have the following relation between the
measure of A and the measure of a(4).

N
g
]
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Theorem 15.14. Let a:R* — R be a linear coordinate transformation. If A is a
subset of R* with finite Lebesque measure 1{A), then a(A) also has finite Lebesgue
measure and

pla(A)] = |det af p(A). (16

Proof. Write A = a (B), where B = a(4). Since &™! is also a coordinate
transformation, we find

HA) = J‘ dx = I dx = J‘ jdet a™?| dt = |det o« *| p(B).
] &) ]

This proves (16) since B = a{4) and det fa™ ') = {det )"

Theorem 15.15. If 4 is a compact Jordan-measurable subset of R®, then for any
linear coordinate transformation o : R* — R the image a(A} is a compact Jordan-
measurable set and its content ix given by

c[2(A4)] = |det a] c(A).

Proof. The set a(A) is compact because a is continuouvs on 4. To prove the
theorem we argue as in the proof of Theorem 15.14. In this case, however, all the
integrals exist both as Lebesgue integrals and as Riemann integrals.

1512 PROOF OF THE TRANSFORMATION FORMULA FOR THE
CHARACTERISTHC FUNCTION OF A COMPACT CUBE

This section contains part 2 of the proof of Theorem 15.11. Throughout the -
section we assume that g is a coordinate transformation on an open set 7 in R™
Our purpose is to prove that

WK) = J AT db,
e MK

for every compact cube K in 7. The auxiliary results needed to prove this formula
are labelled as lemmas.

To help simplify the details, we introduce some convenient notation, Instead
of the usual Euclidean metric for R® we shall use the metric J given by

d(x, ¥) = max |x; — yl.
1xisgn
This metric was introduced in Example 9, Section 3.13. In this section conly we
shall write |x — y| for d{x, ¥)-

With this metric, a ball B(a; #) with center a and radius r is an #-dimensional
cube with center a and edge-length 2r; that is, B(a; r) is the cartesian product of
# one-dimensional intervals, each of length 2r. The measure of such a cube is
{2ry", the product of the edge-lengths.
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Ha:R* — R"is a linear transformation represented by a matrix (a,;), so that

» L]
00 = (Z e 2 as).
J=1 i=1

then

Z @,

=1t

lalx}i = max

1sisn

< x| max }L‘ a1 an

Lsign j=1
We also define
) = max Z lagl. (18
15igx

This defines a metric fla — B on the space of all lincar transformations from
R" to R”. The first lemma gives some properties of this mettic.

Lemma 1. Let o and B denote inegr transformations from R* to R*. Then we have:

8) flafl = lla(x)l| for some x with [x] =
b) fle(x)| < [« Ix)| for alf x in R"
) Jao Bl = jall |B1-

d) I} = 1, where 1 is the identity transformation.

Proof. Suppose that max, ¢, 27-1 ja, is attained for i = p. Take x, = | if
a,; =0, x, = ~lifa,, <0,and x; = 0if f % p. Then [x}| =1 and |z| =
Jax}|, which proves (a).

Part (b) follows at once from (17) and (18). To prove (c) we use (b} to write

e o BYR)| = (BN < llell 1B < Vall BB Hx.

Taking x with jixjl = 1 so that {{a - S{x}| = [i= - B|, we obtain {c).
Finally, if X is the identity transformation, then each sum ¥}., la; | = lin
(18} so I =

The coordinate transformation g is differentiable on T, so for each t in T the
total derivative g'(t) is a linear transformation from R® to R* represented by the
Jacobian matrix Dg(t) = (D;g4t)). Therefore, taking & = g'(6) in (18), we find

IO = max ZJ 1D;g ).

We nole that ||g’(t)|| is a continnous function of ¢ since all the partial derivatives
D;g, are continuous on T.

If @ is a compact subset of T, each function D,g, is bounded on ¢; hence
Ig'(®)| is also bounded on @, and we define

1 5icn o=

@ = sup g (0] = sup{ max Es g,{t)r} (19

AR+

i

e ol IR e
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The next lemma states that the image g(0) of a cube @ of edge-length 2r lies
in another cube of edge-length 2ri (Q).

Lemma 2, Let Q = {x:[x — a] < r} be a compact cube of edge-length 2r
lying in T. Then for each x in Q we have

lglx) — (@) < ri Q). (20)
Therefore g(Q)} lies in a cube of edge-length 2ri ().

Proof. By the Mean-Value theorem for real-valued functions we have

aix) — g/a) = Vg(z) (x — a) = ;‘ Dgfz)x; — a),

where z; lies on the line segment joining x and a. Therefore

lgdx) — g@)| < ;3 1Dz Ix; — a)f < Ix — }: IDg ) < rA(Q),

and this implies (20).
NOTE. Inequality (20) shows that g(Q) lies inside a cube of content
(2rA (0 = {2 (D)"AQ)-

Lemma 3. If A is any compact Jordan-measurable subset of T, then g(A) is a com-
pact Jordan-measurable subset of g(T).

Proaf. The compactness of g(4) follows from the continuity of g Since A is
Jordan-measurable, its boundary 84 has content zero. Also, 6(g{A}} = g(dd)},
since g is one-to-one and continuous. Therefore, to complete the proof, it suffices
to show that g(d4) has content zero.

Given £ > 0, there 1s a finite number of open intervals 4, ..., 4, lying in
T, the sum of whose measures is < &, such that 34 < {JL, 4, By Theorem 15.1,
this union can alse be expressed as a union U{e) of a countable disjoint collection
of cubes, the sum of whose measuares is < £. If ¢ < I we can assume that each
cube in U(e) is contained in U(I). (If not, intersect the cubes in {/(g) with /(1) and
apply Theorem 15.} again.) Strce ¢4 is compact, a finite subcollection of the cubes
in” U(e) covers 84, say @y, ..., €. By Lemma 2, the image g({) lies in a cube of
measure {A(@N"(Q). Let 2 = ALU(D)). Then A(@) < 4 since Q; <
Thus p(dA) is cuvercd by a finite number of cubes, the sum of whose measures
does not exceed ° 5, o(Q,) < ¢4". Since this holds for every ¢ < |, it follows
that g{d4) has Jordan content 0, so g{4) is Jordan-measurable.

The next lemma relates the content of a cabe @ with that of its image g(().
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Lemma 4. Let O be a compact cube in Tand leth = a<g, where g . R" - R is
any nonsingular linear transformation. Then

[e(@] = (det o {A(D)}"AQ). @1

Proof. From Lemma 2 we have c[g(@)] < {1 (D)} c(0). Applying this inequality
to the coordinate transformation h, we find

[W(@)] < {W(D) Q)
But by Theorem 15.15 we have c[b(Q)] = ¢[=(g(0))] = |det 2| <[g(@)], so
[a(@)] = |det a| ™" [W(@)] < {det «| " {A(O)}'AQ).

Lemma 5. Let O be a compact cube in T, Then for every e > 0, there isa d > 0
such that if t € Q and a € Q we have

lg@ tog®f <1+ &  whenever ||t — a] < &, @)

Proof. The function |g’(®)~ ') is continnous and hence bounded on @, say
lg'® Y < M for all tin @ where M > 0. By the continuity of ||g(t}]], there i3
a & > 0 such that

ig'(t) — g(a} < f; whenever ||t — af| < 4.

If T denotes the identity transformation, then
g leg(t) — Kt = g'a)~ "o {g'(0) - g'(a)),

soif |t — all < & we have

fe@™" - g(t) — Kl < lg'@7'I Ig® - gl@)] < M

ME =

M

The triangle inequality gives us fJa]] < |§| + ll« — Bf. Taking
a=g@ log® and p=10),

we obtain (22).

Lems.'m: 6. Let Q be a compact cube in T. Then we have

c[el@)] < J 1401 dt.
Q

Proof. The integral on the right exists as a Riemann integral because the inte-
grand is continuous and bounded on Q. Therefore, given & == 0, there is a partition
P, of @ such that for every Riemann sum S(P, |J{) with P finer than P, we have

S(P, 1,1} —v[ (0] dt| < &
2

Take such a partition P into a finite number of cubes @y, ..., @y, cach of which
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has edge-length <3, where 4 1s the number (depending oa &) given by Lemma 5.
Let a; denote the center of @; and apply Lemma 4 to @, with & = 2'(a)}"! to
obtain the inequality

c[a(@)] < det g'(a)| {AlQ)})" (20, 23)

where b = z - g. By the chain rule we have h'(f) = a'(x) - g'(f), where x = g(t).
Bui &'(x) = & since a is a linear function, so

Wt} = zag'(t) = g'(a)™! - g'1).
But by Lemma 5 we have ['(t)l < 1 + £ifte O, s0
| M) = sup W] < 1+
Thus (23) gives us
c[&(@)] < ldet g'a)l (1 + &) o(Q)).
Summing over all f, we find

cfeg@] s (1 + ¢ Z [det g'(a))| <(0,).

Since det g'(a) = J (a), the sum on the right is a Riemann sum S(P, {,]), and
since S(P, 7,1} < [o W 4t)] dt + &, we find

[5@] < (1 +oF {j O] dt + s}.
Q

But ¢ is arbitrary, so this implies c[g(@)] < [, I/,(0)i dt.
Lemma 7, Let K be a compact cube in )(TY. Then

KK < J W0l de 24
g HK)
Progf. The integral exists as a Riemann integral because the integrand is con-

tinuous on the compact set g~ '(K). Also, by Lemma 3, the integral over g~ 4(K)
is equal to that over the interior of g~ '{K 3. By Theorem 15.1 we can write

intg " (K) = U A,
where {A,, 4,,...} is a countable dlSjomt collection of cubes whose closure lies
in the interior of g YK). Thus, int g~ '(K) = [, @, where each @, is the

closure of 4, Since the integral in (24) is also a Lebesgue integral, we can use
countable additivity along with Lemma 6 to write

f sorae =3 [ ugnate 3 )] = ;f(_('jl g(@.-}) - WK).
Lt o2 e i=
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Lemma 8, Let K be a compact cube in g(T). Then for any nonnegative upper
Sfunction § which is bounded on K, the integral j’._im Fle@] (O] dt exists, and
we have the ineguality

J ) dx < J' FTa6] 150 . 25)
K F 3 7.

Proof. Let s be any nonnegative step function on XK. Then there is a partition of
K into a finite number of cubes X, ..., X, such that s is constant on the interior
of each K, say s(x) = a; = O if x eint K;. Apply (24) to each cube X, multiply
by a; and add, io obtain

J‘ s(x) dx < J. s[glty} 14,4t} Jt. {26)
K e~ HK)

Now let {5} be an increasing sequence of nonnegative step functions which
converges almost everywhere on K to the upper function £ Then (26) holds for
each 5, and we let k — oo lo obtain (25). The existence of the integral on the
right follows from the Lebesgue bounded convergence theorem since both
Fle0] and |7 (1)] are bounded on the compact set g~ (K.

Theorem 15.16. Let K be a compact cube in g{T). Then we have

HK) = I ) dt. 2N

K

Progf. In view of Lemma 7, it suffices to prove the inequality

f U401 dt < u(K). @)

EUEY
As in the proof of Lemma 7, we write
intg '(Ky=U 4, = | ¢,
i=1 i}

where {4y, 4,,...}is 2 countable disjoint collection of cubes and (3, is the closure
of A, Then

I gt de = 3 | (0] dt. (29)
- 1K) =1 o,

Now we apply Lemma 8 to each integral j'ai W {t)] dt, taking f = |J,| and using
the coordinate transformation b = g™, This gives us the inequality

L W (0] dt < f W [W(0)]] My} du — f du = alg(@)],
; Q)

O}
which, when used in {29} gives (28).
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15.13 COMPLETION OF THE PROOF OF THE TRANSFORMATION
FORMULA

Now it is relatively easy to complete the proof of the formula

Sf(x) dx = J Sle0)] Lol de, {30)
el T

under the conditions stated in Theorem 15.11. That is, we assume that T is an
open sebset of R", that g is a coordinate transformation on T, and that the integral
on the left of (30) exists. We are to prove that the iniegral on the right also exists
and that the two are equal. This will be deduced from the special case in which the
integral on the left is extended over a cube K.

Theorem 15.17. Let K be a compact cube in g{T) and assume the Lebesgue integral
§x J(x) dx exists. Then the Lebesgue integral [, f{g(0)] [V (0! dt also exists,
and the two are egual.

Froof. It suffices to prove the theorem when / is an upper function on K. Then
there is an increasing sequence of step functions {5} such that 5, — f almost
everywhere on K. By Theorem 15.16 we have

j si{x) dx = j si{gt)] |7 (1)) dt,
K 1K)

for each step function 5. When & ~ oo, we have J 5,(x) g% — [, f(x) dx. Now
let

Silt) = {Sa[gfﬂ] [EEU] ?f‘ e g (K),
a ifte R™ — g "(K).
Then '
-[ Al dt = I s[a(t)] (0] dt = J 5(x) ofx,
" £ 1K) K
S0

lim j. fi(8) dt = lim J. s[(x)dx = [ Jix) dx.
el K X

ke ks

By the Levi theorem (the analog of Theorem 10.24), the sequence {f,} converges
almost everywhere on R" to a function in L{R"). Since we have

lim f(t) = %J{: [g(t)] 1/ (0)

ke

ifteg "(K),
ifee R — g~ K},

almest everywhere on R, it follows that the integral [, -, FI8(0)] |/,(®)] 4t exists
and equals [, £(x) dx. This completes the proof of Theorem 15.17.
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Proof of Theorem 15.11. Now assume that the integral {4y £(X) dx exists. Since
(T is open, we can write

L
g(T) = U Ah
i=1
where {4, 4,,...} is a countable disjoint collection of cubes whose closure lies

in g(T). Let K, denote the closure of 4,. Using countable additivity and Theorem
1517 we have

f(x) dx = Z:; I f(x) dx

(T}

=3[ rsoni o

[ty

= j Fle®] (0] de.

EXERCISES

15.1 If f'& L{T), where T is the triangular region in R? with vertices at (0, 0), (1, 0),
and (0, 1), prove that

fffx,y)d(x,y)=f U‘ffx.y)dy]dwf [J"f(x,y)dx] .
T o (1] 1] i

152 For fixed ¢, 0 < ¢ < 1, define fon R? as follows:

A —2Hx— ) 0y x,0<x<],
S = {0 e
Prove that [« LR?) and calculate the double integral [p: f(x, ¥) d(x, y).

15.3 Let 5 be a measurable subset of R with finite measure 2(S). Using the notation of
Definition 15.4, prove that

-

(S) = f ) dx = J' " s, dy.

154 Let flx,)) = e“¥sinxsiny if x 2 0, y = 0, and Jet Jix, ¥) = 0 otherwise,
Prove that both iterated integrals

f [ f(x.y)dx] dy and f U f(x,y)dy]fir
(1] [ | | 3

exist and are equal, but that the double integral of fover R? does not exist. Also, explain
why this docs not contradict the Tonelli-Hobson test (Theorem 15.8).

FIPEN

L s g £ e LT

o ot S o e

Exescises 431

15.5 Let f(x, ) = (x2 — ¥y + P for0 = x < 1,0 <y < 1, and let /(0, 0) =
0. Prove that both iterated integrals

J:[L'f(x,y)dy]dx and ﬁl[ff(x,y}dz]dy

exist but are not equal. This shows that fis not Lebesgue-integrable on [0,1] x [0, 1].

156 Let £ = [0,1] x [0, 1], let fix, ) = (x — pMx + ¥ f (e, 3 el (x, ) #
(0, 0), and let £{0, 0) = 0. Prove that £ ¢ L(I) by considering the iterated integrals

1 I 1 i h
f [ J' fx, ) dy] dr  and f { f £, ) dx| .
a o Q 113 i

15,7 Let F= [0, 1] » [1, +e0) and let f(x, y) = e=® — 272 if (x, e {. Prove
that f'¢ L({) by considering the iterated integrals

Jq Umf{x, ¥) dy] dx  and r) Ulf(x.y) x| dy.
] 1 1 1} B

15.8 The following formulas for transforming double and triple integrals occur in ele-
mentary calculus. Obtain them as consequences of Theorem 15.11 and give restrictions
on Fand T for validity of these formulas,

aj} J.ff(x,y)dx dy = fjf(rom‘-@. r 8in 8y dr 49,
T T

b} ffff(x, ¥, Dde dy dz = j.J‘ flreos O, rsin @, 2)r dr d? dz.
T T ’

c} -[ff fix, y, z)dx dy d=
T

- jJ- fipcos 8 sin ¢, psin #sin @, p cos ¢) p° sin ¢ dp 49 dp.
ra

15.9 a) Prove that [g: e~ d(x, ) = 7 by transforming the integral to polar
ceordinates.

b} Use part (a) to prove that [©, e~ * dx = .

¢} Use part (b} to prove that fe. e~ 1P g(x, ..., x,) = a2,

d} Use part (h) to calculate {,, e~ dr and [©, x> e~ dx, t > 0.
15.10 Let V() denote the ~-measure of the n-ball B(0; o) of radius ¢. This exercise
outlines a proof of the formula

g

S ran+
a} Use a linear change of variable to prove that V(a) = 2"V, (1).

¥ya)
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b) Assume z = 3, express the integral for V(1) as the iteration of an (# — 2-fold
integral and a double integral, and use part (8) for an (¢ — 2xball to obtain the
formula

2p 1 2
V(1) = V.-ng‘ [f (1 — P2yi=ty dr] a8 = ¥, 1) .
O [V] n

c) From the recursion formula in (b} deduce that

i3
Vil) = L
s + 1)
15.1% Refer to Exercise 15.10 and prove that
J. IE d(xl,-"?xn)= Vtil)
Bo:1} n+ 2

foreach &k = 1,2,...,n
15.12 Refer to Exercise 15.10 and express the integral for ¥, (1) as the iteration of an
{nt — Jfold iniegral and a one-dimensional integral, to obtain the recursion formula
1
K1) = ZV.-I(I)J‘ a4 - I gy,
o]

Put x = cos 7 in the integral, and use the formula of Exercise 15.10 to deduce that

Jﬁdz cos" ¢ df = i; DGn + 3
o 23+ 1

1513 Ifa > 0, fet S)@ = {(x4,-.-, %05 5} + - + x| = a}, and let ¥ (e) denote
the m-measure of S,{m). This exercise outlines a proof of the formula ¥{e) = 2%"a!.

a) Use a linear change of variable to prove that K (@) = a"¥,(1}.

b) Assumen 2 2, express the integral for V(1) as an iteration of a one-dimensional
integral and an (r ~ 1)}fold integral, use (a) to show that

vl = V,_lcnj (0 — [~ de = 2%, ,(yfn,
-1

and deduce that ¥ (1) = 2"/n!.
15,14 If 2 > Oand n = 2, let §5,(a) denote the following set in R*;
Sfa) = {x;,....,xJ x| + Ix,| 2 @ foreachi= 1,..., 5 — 1}
Let V() denote the n-measure of 5,(a). Use a method suggested by Exercise 15.13 fo
prove that Via) = 2%a%/n.
15.15 Let @ (a) denote the “first quadrant” of the #-ball B(@:a) given by
Oha) = {x,...,x): x| =@ and O<x,sa foreachi= 1,2,...,n.

Let f{x) = x;--- x, and prove that
a.Zn
ax =
Qufe) fe 2°n!
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GHAPTER 16

CAUCHY’S THEOREM
AND THE
RESIDUE CALCULUS

16.1 ANALYTIC FUNCTIONS

The concept of derivative for functions of a complex variable was introduced in
Chapter 5 (Section 5.15). The most important functions in complex variable theory
are those which possess a continuous derivative at each point of an open set.
These are called analytic functions.

Definition 16.1. Let f = u + v be a complex-valued function defined on an open
set S in the complex plane C. Then f is said o be analytic on 8§ if the derivative [*
exists and is comtinuous® at every point of S.

NOTE. If T is an arbitrary subset of C (not necessarily open), the terminology
“f is analytic on 7™ is used to mean that f is analytic on some open set containing
T. In particular, fis analytic at a point z if there is an open disk about z on which
JFis analytic,

It is possible for a function to have a derivative at a point without being
analytic at the point. For example, if f{z} = [z}?, then fhas a derivative at O but
at no other point of C.

Examples of analytic functions were encountered in Chapter 5. If f{z) = 2"
(where » is a positive integer), then f'is analytic everywhere in € and its derivative
is f'(z) = nz"~'. When » is a negative integer, the equation f(z) = 2" if z # 0
defines a function analytic everywhere except at 0. Polynomials are analytic
everywhere in C, and rational functions are analytic everywhere except at points
where the denominator vanishes. The exponential function, defined by the formula
¢ = e%(cos y + isiny), where z = x + iy, is analytic everywhere in € and is
equal to its derivative. The complex sine and cosine functions (being linear
combinations of exponentials) are also analytic everywhere in C.

Let f{z) = Log z if z # 0, where Log z denotes the principal Jogarithm of
z (see Definition 1.53), Then f is analytic everywhere in C except at those points
z = x + iy for whichx < 0 and y = 0. At these points, the principal logarithm
fails to be continuous. Analyticity at the other points is easily shown by verifying

* It can be shown that the existence of /7 on § automatically implies continuity of £ on
& (a fact discovered by Goursat in 1900). Hence an analytic function can be defined as
one which merely possesses a derivative everywhere on 5. However, we shall include
continuity of f* as part of the definition of analyticity, since this allows some of the proofs
to run more smoothly.
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that the real and imaginary parts of f satisfy the Cauchy-Riemann equations
{Theorem 12.6).

We shall see later that analyticity at a point z puts severe restrictions on a
function. It implies the existence of all higher derivatives in & neighborhoed of z
and also goarantees the existence of a convergent power series which represents
the function in a neighborhood of z. This is in marked contrast to the behavior of
real-valued functions, where it is possible to have existence and continuity of the
first derivative without existence of the second derivative.

162 PATHS AND CURYES IN THE COMPLEX PLANE

Many fundamental properties of analytic functions are most easily deduced with
the help of integrals taken along curves in the complex plane. These are called
contour integrals (or complex Iine imtegralsy and they are discussed in the next
section. This section lists some terminology used for different types of curves,
such as those in Fig. 16.1.

wm@%

Jordan grc Jordan curve
Figure 16,1

We recall that a path in the complex plane is a complex-valued function v,
continuous on a compact interval [a, ¥]. The image of [a, b] under y (the graph
of 7) is said to be a curpe described by y and it is said to join the points y{a)
and y(&).

1If y(a) # y(b), the curve is called an arc with endpoints p(a) ard ¥(b).

If ¥ is one-to-one on [, b], the curve is called a simple arc or a Jordan arc.

If ¥{@) = y{P), the curve is called a closed curve. If ya) = y(b) and if 7 is
one-to-one on the half-open interval [a, b), the curve is called a simple closed curve,
ot a Jordan curve.

The path y is called rectifiable if it has finite arc length, as defined in Section
6.10. We recall that y is rectifiable if, and only if, ¥ is of bounded variation on
[a. 5]. (See Section 7.27 and Theorem 6.17.}

A path 7 is called piecewise smooth if 1t has a bounded derivative y' which is
continuous everywhere on [, B] except (possibly) at a finjite number of points.
At these exceptional points it is required that both right- and left-hand derivatives
exist. Every piecewise smooth path is rectifiable and its arc length is given by the
integral 5 1y'($)] dt.

A piecewise smooth closed path will be called a circuir.
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Definition 16,2, If a ¢ Cand r = 0, the path y defined by the equation
WO =a+re, 0<0 <2
is called a positively sriented circle with venter at u and radius r.

NOTE. The geometric meaning of ¥(9) is shown in Fig. 16.2. As 0 varies from 0
to Zn, the point &) moves counterclockwise around the circle.

163 CONTOUR INTEGRALS

Contour integrals will be defined in terms of complex Riemann-Stieltjes integrals,
discussed in Section 7.27. :

Definition 16.3. Let 7 be a path in the complex plane with domain [a, 5], and let f
be a complex-valued fumction defined on the graph of 3. The contour integral of f
along y, denoted by |, f, is defined by the equation

jf=rﬁmnwm,

whenever the Riemann-Stieltjes integral on the right exists.
NOTATION, We also write

pit] .
Azydz or Fizydz,
¥ ¥le}
for the integral. The dummy symbol z can be replaced by any other convenient
symbol. For example, |, f(z} dz = [, f(w} dw.

If y is rectifiable, then a sufficient condition for the existence of |, fis that £ be
continous on the graph of y (Theorem 7.27).

The effect of replacing y by an equivalent path (as defined in Section 6.12) is,
at worst, a change in sign, In fact, we have:

Theorem 16.4. Let v and & be equivalent paths describing the same curve r. Fid
§, fexists, then [, f also exists. Moreover, we have

[r=]r

Th, 16,6 Contour Integrals 437

ify and & trace out I in the same direction, whereas

[r=-{s

if y and & trace owt I in opposite directions.

Proaf, Suppose 6{t) = y[t{t)] where u is sirictly monotonic on [¢, &]. From
the change-of-variable formula for Riemann-Stieltjes integrals (Theorem 7.7) we
have )

wid} )
fmmwm=ffwmﬁm=fﬁ M
(e} & ¥ i

If u is increasing then u(e) = a, w{d) = & and (1) becomes {, f = [, /.
If u is decreasing then u(c) = &, u(d) = @ and (1) becomes — [, f = [, £

The reader can easily verify the following additive properties of contour
integrals.
Theorem 16.5. Let y be a path with domain [a, b].

i} If the integrals {, f and §{, g exist, then the integral [, (af + Pyg) exists for every
pair of complex numbers a, B, and we have

j}q+ﬁm=ajf+ﬁfg

iy Let y, and y, denotfe the resirictions of v to [a, c] and [e, b}, respectively,
where a <. ¢ < b. If two of the three integrals in (2) exist, then the third also exises

and we have _
[s=[se] s ®
¥ LW T2

In practice, most paths of integration are rectifiable. For such paths the
following theorem is often used to estimate the absolute value of a contour integral.

Theorem 16.6. Let y be a rectifiable path of length Aly). If the integral {, f exists,
and if | /$z)| < M Jor alf z an the graph of v, then we have the inequality

[+

Proof. We simply observe that all Riemann-Sticltjes sums which occur in the
definition of |2 f[y(r)] &y{t) have absolute value not exceeding MA(y).

Contour integrals taken over piecewise smooth curves can be expressed as
Riemann integrals. The following theorem is an easy consequence of Theorem 7.8.

< MA(Y).
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?"I;eewm 6.7, Lety be a piecewise smooth puitk with domain tw Bl I the contour
integral |, [ exists, we have

£ b
| 7= oo

.4 THE INJEGRAL ALONG A CIRCULAR PATH AS A FUNCTION OF
THE RADIUS

Consider a ciroudar path y of radivs » = 0 and center g, given by
B e a4 re®, D x B < O

In this section we study the integral {, £ as a function of the radius r.
Leto(r) = [, /. Since y(8) = ire”, Theorem 16.7 gives us

L

piry = Fla 5 reird® do, 3
(3

As rvaries over an interval [ry, ], where 0 < 7, < r,, the points 90} trace out
an ganubus which we dencte by Alg: r,, 1) {See Fig. 16.3) Thus,

Alarryy={z:ir, €jz - d < 290

ifr, =»€} the annulus is a closed disk of radius 7,. If fis continuous on the annulus,
?:hm'z @ is continuous on the interval [r,, r,]. If fis analvtic on the anpulus, then ¢
is differentiable on [, 7,]. The next theorem shows that @ 15 constant on ‘[rz, 751
z%‘ ['is analytic everywhere en the annuhus except possibly op a finite subset prg«
vided that /is continuous on this subser, ’

Figure 16.3

Yﬂ’kwmm 16.8. Assume f is analytic on the annulus Afa; ¥y, #2), except possibly at
Jintte number of points. At these exceptionul points assume thut f iv continuous.
Then the function @ defined by (3) is constant on the interval fri. v} Moreover
if' ¥y = G the constant is 1), o ~,

f’rmj Let Zisees 2y (%fm;mze the exceptional points where f fails to be analytic.
Label these points according to increasing distances from the center, 53y
5 —el <l ~al< gz, ~ 4,

and let Ry = [z, ~ al. Also,let Ry = r, R, = r,.

.

e

N

%

N

Th 16,9 Homotopic Curves Ex

The union of the intervals (R, Bl for k=0, 1,2, .., »nis the interval
[ 725 We will show that o i3 constant on each interval [R,, R, | We write
{3y in the form

A4

wlry = j

k4
gir, 0y 48, where gir, ) = fla + r&%ire?
6]

Awn easy apphcation of the chain rule shows that we have

Lo jp L, {4
el £r -

{The reader should verify this formula) Coptimuty of /7 implies continuity of the
partial derivatives Cg/8r and Og/é0. Therefores, on each open inlerval (R, &, .}
we can caleulate o'(r) by differentiation under the integral sign (Theorem 7.40)
and then use (4} and the second fundamental theorem of caloulus (Theorem 7.34)
1o obiain

Fa 2 a5 “im )
oy = | Dy { Wé 48 = * {g(r, 27) — glr, 0} = O.
%

Jo ir ) vl ir

Applving Theorem 12,10, we see that ¢ is comslant on each open subinterval
(R, R,y By continaity, ¢ is constant oneachclosed subinterval [ B, R, ] and
hence on their union [r,, ro]. From (3) we see that o(r) — 0 as ¥ — 0 50 the
constant valoe of @ 80, = 0.

.5 CAUCHY'S INTEGRAL THEOREM FOR A CIRCLE

The following special case of Theorem 168 is of particular importance.

Theovem 16.9 {Capchy's integral theorem for a civele), Jf 7 is analytic on g disk
B{a; B except possibly for a finite number of points at which it Is contimious, then

&
f=0

Sfor every civeular path y with center at a and radiuz v < R,
Progf, Choose ry, 30 that r < 7y < K and apply Theorem 168 with v, = 0,

worey. There is o more genera! form of Cauchy's inlegral theorem in which the
circular path v is replaced by 4 more general dlosed path. These more genersl paths
will be introduced through the concept of homotopy,

16 HOMOTOPIC CURVES

Figure 16.4 shows three ares having the same endpoinis 4 and # and lying in an
open region D, Are | can be costinuously deformed into arc 2 through a collection
of intermediate arcs, each of which hies in B, Two arcs with this property are said
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Figure 16.4

to be hemotopic in D, Arc | cannot be so deformed into arc 3 {hecanse of the
hole separating them) so they are not bomotopic in 13

In this section we give a formal definition of homotopy, Then we show that, if
Jis analytic in D, the contour integral of f from A to & has the same value ahong
any two homotopic paths in D, In other words, the value of 2 contour integral
{57 is unaltered under a continuous deformation of the path, provided the -
termediate confours remain within the region of analyticity of /. This property
of contour integrals is of wmost importance in the applications of complex
integration.

Definition 16,10, Let v, and v, be two paths with o common domain la, b). Asnume
that either ‘

a} yo and y, have the same endpoints: yoa) = v4(a) and valb) = 9,48, or

b} o and y, are both closed paths: v (a) = v,(b) and yda) = v (&
Let D be a subset of C containing the graphs of v, and ¥y Lhen yy and v, are said

to be homotopic in D if there exists a function h, continuous on the rectangic
[0, 1] % La, b, and with values in D, such that

1) B0, 1) = yolt) if tefa b],

il 1) = pilt) rela bl

In addition we require that for each s in [0, 1] we have

Ja) Ms, oy = yola) and Bz, B) = y0BY s case {a};
2

by As, ay = s, by, in cose (b

T'he function h is ealled a komotapy.

The concept of homotopy has a simple geometric mterpretation.  For each

ﬁxe@ s [0 1] let v1) = Az, 1) Then ¥e Can be regarded as an intermediate
moving path which starts from y, when 5 = 0 and ends at 7, when 5 == |,

Example 1. Homoropy io a point. I 3, is a vonstant function, 5o that its graph s a single
point, and if 34 s homotopic to ¥, in I, we sav that Yo 18 homiapie to a point i D,

E;zmpﬁe 2. Linear homoropy. 18, for ench ¢ in la, 5], the line scoment Jointng vole) and
yihty Bes in D, then y, and ¥, are homotopic in D because the funcrion

Hs, 1y = gy, ey A L siyde)

Fh. 31641 Hometople Curves 443

serves a5 8 homotopy. In this case we say that v, and v, are Suearly howwitopic m D, In
particular, any two paths with domain g, #1 are lisearly homotopic in € {the complax
wlans} or, oore generally, o aoy convex sgt coniaining their graphs,

~ore. Homotopy is an equivalence relation.

Fhe next theorem shows that between any two homotopic paths we can inter.
polate a finlte number of intermediate polyponal paths, sach of which is Hnearly
homotopis 10 its neighbor,

Fheorem 1601 (Polvgonal interpoletion theorem). Lei vy ond 3, be homotopic
paths in an open set B Then there exist ¢ finite number of paths vy, #,, .., 3, s6ch
that:
a) g = ppand 2, = 7,
by w; is a polygonal path for | < f =0 ~ 1,
o} «; is lingarly homutopic in D to ., for 0 £ 7 £ n — L
Froof. Since v, and 7, are homotopic in D, there is 8 homotopy & satisfying the
conditions in Definition 16,10, Counsider partitions
{80, 81, o0 85t of [0, 1] and {0, 85, 0., 00 of [, b],
into # equal parts, choosing 7 so large that the image of each rectangle {50 8,.,0 x
th, 8. ) under b is contained in an open disk D, contained in £ (The reader
should verify that this is possible becavse of uniform continuity of 2.)
On the intermediate path v, given by
Vo, (£} = A5y 8) ford < j < n,
we inscribe & polygonal path #; with vertces at the points M, 4). That is,
a2ty = s, 1) fork =0, 1,... .8
and o, 35 linear on each subinterval [r. 1,0 Jfor 0 < k < n — 1. We also define
2, = 7o and 4, = v, {An example is shown in Fig 16.5)

The four vertices w{8), adt, ) 95,8 and o, ({7, ) il le in the disk Dy,

Since Dy is convex, the line segments joining them also le in Dy and hence the

points
stpe (1) + £ — she{e) (5}

T /(z‘j ((\"»

%, G { v Fi &

i\x \ _;%%”}/% Figure 16.5
N

ay Ty
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lie in Iy for each (s, £) in [0, 1] x {4, £, ;] Therefore the points {5 lie in D
for all (s, t}in [0, 1] x [a, b], 50 ;4 is linearly homotopic to a; in D.

157 INVARIANCE OF CONTOUR INTEGRALS UNDER HOMOTOPY

Theorens 16.12. Assume f is analytic on an open set D, except possibly for a finite
rumber of points where it is continuons. If y, and y, are piecewise smooth paths
which are homotopic in D we have

Jo=1

Proof. First we consider the case in which yo and y, are finearly homotopic. For
each s in {0, 1] let

) = oy, () + (1 — sipelt) il zes, ]
Then v, is piecewise smooth and its graph lies in D. Write

Ps(r) = polf} + su(t),  where a{f) = ¢, (1} — (1),
and define

ols) = j f= j ST dyel®) + s .[ " Tvio)] dato),
P a A .

for 0 < s < 1. We wish to prove that ¢(0) = @(1). We will in fact prove that ¢
is constant on [0, 1]. '

We use Theorem 7.40 to caleulate ¢'(5) by differentiation under the integral
sign. Since

d

this gives us

»

Y]
o) = | It dyole) + s f P IO de) + rf[?s(tll] da1)

b ]
= [ ety v dngo) + j FId0] dato)
b

= [« o de + rf[ms:-] dat)
b

= | atyd{fIyd0)]} + rf [yd0)] dx(r)

e

1

(B} [r 0} — ala) fTvda)].

by the formula for integration by parts (Theorem 7.6). But, as the reader can easily
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verify, the last expression vanishes because v, and 7y, are hamompib, 50 ¢'(s) = 0
for all sin [0, 1]. Therefore ¢ is constant on [0, 1]. This proves the theorem when

"yo and 7, are lincarly hometopic in D.

If they are homotopic in D under a general homotopy 4, we interpolate poly-
gonal paths a, as described in Theorem 16.11. Since each polygonal path is piece-
wise smooth, we can repeatedly apply the result just proved to obtain

(- Lo Lo L

16.8 GENERAL FORM OF CAUCHY'S INTEGRAL THEOREM

The general form of Cauchy’s theorem referred to earlier can now be easily deduced
from Theorems 16.9 and 16.12. We remind the reader that a circuwit is a piecewise
smooth closed path.

Theorem 16.13 (Cauchy's imtegral theorem for circuits homotopic to a point). Assume
Jis anglytic on on open set D, except possibly for a finite mumber of points at which
we assume f is continvous. Then for every circuit y which is homotopic to a point in

D we have
J f= 0
.

Proof. Since y is homotopic to a point in D, y is also homotopic to a circular
path § in D with arbitrarily small radius. Therefore [, f = [, f, and [,/ = 0 by
Theorem 16.9.

Definition 16.14.  An apen connected set D is cailed simply connected if every elosed
patk in D is homotopic to a point in D,

Geometrically, a simply connected region is one without holes. Cauchy’s
theorem shows that, in a simply connected region D the integral of an amalytic
Junction is zero around any circuit in D.

16.9 CAUCHY’S INTEGRAL FORMULA

The next theorem reveals a remarkable property of analytic functions. It relates
the value of an analytic function at a point with the values on a closed curve not
containing the point.

Theorem 16.15 (Cauchy's integral formala). Assume fis analytic on an open set D,
and let y be any circuit which is homotopic to a point in D. Then for any point z in
D which is not an the graph of v we have

J I 4w = 1) —i dw. (6)

w - Z
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Progf. Define a new function ¢ on D as follows:
f (HP) - f{z) if w # z

gw) =3 w-~—z
F'(z) ifw=z

Then g is analytic at cach point w # zin D and, at the point z itself, ¢ is continuous.
Applying Cauchy’s integral theorem to g we have J+9 = 0 for every circuit y
homotopic te a point in D. But if z is not on the graph of y we can write

J‘Q=J.«f_(_‘!}:_f.(f_)dw=f~f—@-dw—f(ﬂj‘ v,
y y 7“’—2 ¥

w— 2z W -z

which proves (6).

NOTE. The same proof shows that (6) is also valid if there is a finite subset T of
D on which fis not analytic, provided that fis continuous on T'and zis notin 7'

The integral {, (w — z)~ ! dw which appears in (6) plays an important role in
complex integration theory and is discussed further in the next section. We can
easily calculate its value for a circular path.

Exumple, if y is a positively oriented cirenlar path with center at z and radius 7, we can
write X6) = z + 1", 0 < @ < 2n. Then y'(8) = ire*® = ifN0) — z}, and we find

[0 b [raesa
y W—z 1] 7(9}—: £

NOTE. In this case Cauchy’s integral formula (6) takes the form

Wmif(z) = f T e

wW -z

Again writing w@) = z + re”, we can put this in the form
1 2n
foy =L f Sz + reé®) db. | %)
2z 1,

This can be interpreted as a Mean-Value Theorem expressing the value of £ at the
center of a disk as an average of its values at the boundary of the disk. Fhe function
fis assumed to be analytic on the closure of the disk, except possibly for a finite
subset on which it is continuous.

16.10 THE WINDING NUMBER OF A CIRCUIT WITH RESPECT TO A POINT

Theorem 16.16. Let y be a circuit and let z be a point not on the graph of y. Then
there is an integer n (depending on ¥ and on z) such that

J' W_ _ nin, (8)
¥

W -z
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Progf. Suppose y has domain [a, ). By Theorem 16.7 we can express the integral
in (8) as a Riemann integral,

dw Py dr
s W—z . Wi}~z
Define a complex-valued function on the interval [a, 5] by the equation
Foo= | Y04 e x <
a }'(t) 4
To prove the theorem we must show that F(b) = 2nin for some integer #. Now F
is continuous on [, 5] and has a derivative
. 7'(x)
Frxy = L2
(x) 0 — 2
at each point of continuity of 3. Therefore the function G defined by
G@) = e Oy(t) - z}  ifte[ab],
is also continucws on {4, 1. Moreover, at each point of continuity of 7 we have
G'(1) = e "N @) — F(n)e"™™y(t) — z} = 0.

Therefore G'(t) = O for each ¢ in [a, 5] except (possibly) for a finite number of
points. By continuity, G is constant throughout [a, 5]. Hence, G(5) = G(a). In
other words, we have

e PO ) — 2z} = y(a) — =
Since () = ¥(a) # z we find
e~F® — 1
which implies F(8) = 2nin, where # is an integer. This completes the proof.

Definition 16.17. If v is a circuit whose graph does not contain z, then the integer n
defined by (8) iz called the winding mumber (or index) of y with respect to z, and is
denoted by n(y, z}. Thus,
1 dw
wm=~f
r

2ni ),w— z

NOTE. Cauchy’s integral formula (6) can now be restated in the form

1 fw) d
m o |20 g,
@) =5 | S
The term “winding number” is used because ny, z) gives a mathematically
precise way of counting the number of times the point () wmds aroum:!” the
point z as ¢ varies over the interval [4, ). For example, if y is a positively oriented
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circle given by y(8) = z + re®, where 0 < 8 < 2n, we have already seen that the
winding number is 1. This is in accord with the physical interpretation of the
point y(f) moving once around a circle in the positive direction as & varies from
Oto 2z, If @ varies over the interval [0, 2nn], the point y(8) moves » times around
the circle in the pesitive direction and an easy calculation shows that the winding
number is 2. On the other hand, if 5(8) = z + re ®for 0 < 6 < 2nn, then o6
meoves # times around the circle in the opposite direction and the winding number
is —n. Such a path & is said to be aegatively oriented.

1611 THE UNBOUNDEDNESS OF THE SET OF POINTS WITH WINDING
NUMBER ZERO

Let T denote the graph of a circuit y. Since I is a compact set, its complement
C — T is an open set which, by Theorem 4.44, is a countable union of disjoint
open regions (the components of C — I'). If we consider the components as
subsets of the extended plane C*, exactly one of these contains the ideal point co.
In other words, one and only one of the components of C — T is unbounded.
The-next theorem shows that the winding number n(y, 2) is O for each z in the
unbounded component.

Theorem I6.18. Let y be a circnit with graph T'. Divide the set C — T into two
subsers

E = {z:n{y, 2) = 0} and I= {z:n(y, 2} # 0},
Then both E and I are apen, Moreover, E is unbounded and I is bounded.
Proof. Define a function g on € — I" by the formula

g(z) = n{y, z} = L v
2mi ), w—z
By Theorem 7.38, g is continuous on C — T and, since g(z) is always an integer,
it follows that g7 is constant on each component of C — I'. Thercfore both E and
{ are open since each is a union of components of C — T,

Let U denote the unbounded component of € ~ [, If we prove that E con-
tains U/ this will show that £ is unbounded and that 7 is bounded. Let X be a
constant such that |y{1)] < X for all 7 in the domain of y, and let ¢ be a point in
U7 such that |e] > K + A(y) where A(y) is the length of y. Then we have

i 1 1
€ — -« »
W) — o el ~ I el — K
Estimating the integral for a(y, ¢} by Theorem 16.6 we find
Aly)
0 lgle)] £ 20 2
lg(e)l = K

ol e g

9
=
&
4
B
%
%

;
&
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Since glc) is an integer we must bave g(c} = 0, so g has the constant value G on U,
Hence £ contains the point ¢, so E contains all of U,

There is a general theorem, called the Jordan curve theorem, which states that
if I' is a Jordan curve (simple closed curve) described by v, then each of the sets
E and Iin Theorem 16.18 is connecied. In other words, a Jordan curve I" divides
C — T into exactly two components E and I having T as their common boundary.
The set [ is called the inner (or interior) region of T', and its points are said 1o be
inside ['. The set E is called the outer {or exterior) region of T, and its points are
said to be owrside .

Although the Jordan curve theorem is intuitively evident and easy to prove for
certain familiar Jordan curves such as circles, triangles, and rectangles, the proof
for an arbitrary Jordan curve is by no means simple. (Proofs can be found in
References 16.3 and 16.5.)

We shall not need the Jordan curve theorem to prove any of the theorems in
this chapter. However, the reader shounld realize that the Jordan curves eccurring
in the ordinary applications of complex integration theory are usually made up of
a finite number of line segments and circular arcs, and for such examples it is
usually quite obvious that C — I” consists of exactly two components. For points
z inside such curves the winding number n{y, z}is +1 or —1 because y is homo-
topic in f to some circular path & with center z, so n(y, z) = n(3, z), and n(3, z) is
+1 or —1I depending on whether the circular path & is positively or negatively
oriented. For this reason we say that a Jordan circuit y is positively oriented if,
for some z inside I we have aly, 2} = +1, and negatively oriented if n{y, z) = —1.

16.12 ANALYTIC FUNCTIONS DEFINED BY CONTOUR INTEGRALS

Cauchy’s integral formula, which states that
1 w
n(y, z)f(z) = —~ j L) g,
2ni J,w =2
has many important consequences. Some of these follow from the next theorsm
which treats integrals of a slightly more general type in which the integrand
Jw)/(w — z) is replaced by @(w)/(w — z), where ¢ is merely continuous and not
necessarily analytic, and y is any rectifiable path, not necessarily a circuit.
Theorem 16.19. Let y be a rectifiable path with graph I". Let ¢ be a complex-valued
Junction which is continuous on T, and let f be defined on C — I" by the equation

f(z)=Jde ifz¢T.
rW—Z

Then f has the following properties:
a) For gach point a in C — T, f has a power-series representation

@

Az) =2 ez — a), (%)

»=0
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where
(W)
€ = | — "t dw orn=0,12,...
ol sy forn=0,1,2, (10)
b) The series in (a) has a positive radius of convergence = R, where
R=1inf{lw —al:weTl} (11)
¢} The function f has a derivative of every order non C — T given by
(), _ P{w) :
f {Z) = nl '[’m;‘l’ dw . I_f2¢r. (12)

Proof. First we note that the number R defined by (11) is positive because the
function g(w) = |w ~ a} has a minimum on the compact set T, and this minimum
is not zero since @ ¢ . Thus, R is the distance from a to the nearest point of T,
{See Fig. 16.6.)

r Figare 16.6
To prove (a) we begin with the identity
i d . FLig
Rt T (3)

validforall f # 1. Wetaket = {z — a)/{w — a) where |z — a| < Randwe I
Then 11 — &) = (w — @)f{w — z). Multiplying (13) by e(w){w — a) and
integrating along y, we find

f(2}=J-M-dw
?W—Z

= E(Z - a)’-‘. (W (p(w?}'ﬂ'l dw + J- ﬂ)- (—Z ht a)‘k-‘—] dw
a ¥

W o I \W -3

where ¢, is given by (10) and E, is given by

E, = J‘ p#) (U)Hl dw. (14)
W z\w —a

£ 5
3
:
=
5
&

#
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Now we show that E, —+ 0 as k —» oo by estimating the integrand i (14). We have

<lz=a L. ! < L .
R w—-z] w—a+a—zf R~—|a—z|

esus {lo(w)] : we '}, and let A(y) denote the length of y. Then (14)
gives us
— k+1
B < o MA® (u) .
s la - zl B

Since |z — 4| < R we find that E;, — 0 as £ — oo. This proves (a) and (b).

Applying Theorem 9.23 to (9) we find that f bas derivatives of every order on
the disk H{a¢; R) and that /"(g) = alc,. Since a is an arbitrary point of C -~ T
this proves (c).

NOTE. The series in (9) may have a radius of convergence greater than R, in which
case it may or may not represent f at more distant peints.

16.13 POWER-SERIES EXPANSIONS FOR ANALYTIC FUNCTIONS
A combination of Cauchy’s integral formula with Theorem 16,19 gives us:

Theorem 16.26. Assume f is analytic on an open sei § in C, and let a be any point
of 8. Then all derivatives { ™(a) exist, and f can be represented by the convergent
power series '

= ¢in)
f@) = 26— ay, (15)
in every disk B(a; R) whose closure liex in 8. Moreover, for every n > 0 we have

f™Yay = nt mf ) dw, (16}

i ), (w — ay™t!
where v is any positively oriented circular path with center af a and radivs r < R.

NOTE. The series in (15} is known as the Taplor expansion of fabout . Equation
(16) is calied Cauchy's integral formula for f™{g).

Proof. Let v be a circuit homotopic to a point in 5, and let I' be the graph of
y. Define g on C — I by the equation

y(z):!mdu’ ifzg¢l.
s Wz

If ze Blg; R), Cauchy’s integral formula tells us that g{z) = 2xin(y, 2)f(z).
Hence,

a(y, 2)f(z) = l_J.-‘—@’-}—dw if |z — a] < R.
2 J,w—z
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Now let pf) = g + re®, where [z — gl < r < R and 0 < 8 = 2r. Then
a(y, z) = 1, so by applying Thecrem 16.19 to @(w) = f{w)/(2ni} we find a series
representation

fz) = ; ez — af,

convergent for |z — a| « R, where ¢, = f®(a)/n). Also, part (¢} of Theorem
16.19 gives (16).

Theorems 16.20 and 9.23 together tell us that a necessary and sufficient con-
dition for a complex-valued function £ to be analytic at a point & is that f be
representable by a power series in some neighborhood of a. When such a power
scries exists, its radins of convergence is at least as large as the radius of any
disk B(a) which lies in the region of analyticity of f. Since the circle of convergence
cannot contain any points in its interior where f fails to be analytic, it follows that
the radius of convergence is exactly equal to the distance from a to the nearesi
point at which f fails to be analytic.

This observation gives us a deeper insight concerning power-series expansions
for real-valued functions of a real variable. Forexample, let f(x} = 1/(1 + X2 if
x is real. This function is defined everywhere in R* and has derivatives of every
order at each point in R!. Also, it has a power-series expansion about the origin,
namely,

1

1+ x
However, this representation is valid only in the open interval {— 1, I). From the
standpoint of real-variable theory, there is nothing in the behavior of f which
explains this. But when we examine the sitnation in the complex plane, we see at
otice that the function f{(z) = /(1 + z7) is analytic everywhere in C except at
the points z = +i Therefore the radius of convergence of the power-series
expansion about 0 must equal I, the distance from 0 to 7 and to —i.

=1 —x4xt— x5 +---

Examples. The following power series expansions are valid for all z in C:

. © -z: . : o L_l}nzmnl
a}e—“o”!, b)mzm';(zn—+l)!,
RN e Vet
c}cos z = ; an!

1614 CAUCHY’S INEQUALITIES. LICUVILLE'S THEOREM
If fis analytic on a closed disk B{a; R), Cauchy's integral formula (16) shows that

W) = _ﬂ_l f(W)
f( (@) 2mi L dw

w—ayt

where y is any positively oriented circular path with center ¢ and radius r < R.

e
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We can write W) = & + re®, 0 < 8 < 2x, and put this in the form
2%
™) = I fla + re®) e do. an
2ar* 0

This formula expresses the ath derivative at a as a weighted average of the values
of fon a circle with center at a. The special case # = 0 was obtained earlier in
Section 16.9.

Now, let M(r) denote the maximuom value of |f] on the graph of y. Estimating

‘the integral in (17), we immediately obtain Cauchy’s inequalities:

M(rin!

IFo%a)| = n=2012..) (18)

The next theorem is an easy consequence of thecase a = 1.

Theorem 16.2] { Liowville's theorem). If | is analytic everywhere on C and bounded
on C, then [ is constomt, '
Progf. Suppaose |f(z)] < M forall z m C. Then Caunchy’s inequality with n = 1
gives us |f"(a)| < M/r for every r > 0. Letting r -+ + 00, we find f'(g) = 0 for
every a in € and hence, by Theorem 5.23, fis constant.

NOTE. A function analytic everywhere on C is called an entire function. Examples

are polynomials, the sine and cosine, and the exponential. Liouville’s theorem
states that every bounded entire function is constant.

Liouville’s theorem leads to a sirﬁple proof of the Fundamental Theorem of
Algebra.
Theorem 16,22 (Fundamental Theorem of Algebraj, Every polynomial of degree
n 2 1 has a zero,

Proof. Let P(z) = ap + &z + << + a,2", wheren > land g, # 0. We assume
that P has no zero and prove that P is constant. Let f{z) = 1/P(z). Then fis
analytic everywhere on C since P is never zero. Also, since

P(z}=z'(:—:’+%+'“+‘%+a,),

we see that {P(2)] - +a0 as |z] - +w, 50 f(z) - D as {z{ - -+oo. Therefore
fis bounded on C se, by Liouville’s theorem, f and hence P is constant.

16,15 ISOLATION OF THE ZEROS OF AN ANALYTIC FUNCTION

If f is analytic at @ and if f(a) = 0, the Taylor expansion of f about & has constant
term zero gand hence assumes the following form:

&£

fizy =3 ez — ay.

=1
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This is valid for cach z in some disk B(g). If fis identically zero on this disk [that
is, if f(z) = 0 for every z in B(a)], then each ¢, = 0, since e = f™a)n!. Iffis
not identically zero on this neighborhood, there will be a first nonzero coefficient
¢ in the expansion, in which case the point « is said to be a zero of order k. We
will prove next that there is a neighberhood of @ which contains no further zeros
of . This property is described by saying that the zeros of an analytic function are
isolated.

Thearem 16.23. Assume that f is analytic on an open set S in C. Suppose fa@) = 0
for some point a in S and assume that f is not identically zera on any neighborhood
of a. Then there exists a disk B{a) in which f has no Jurther zeros.

Proaf. The Taylor expansion about 2 becomes Jz) = (z — a¥g(z), where k = 1,
ga)=1c, # 0.

Since g is continuous at g, there is a disk B(g) < S on which ¢ does not vanish,
Therefore, f(z) # 0 for all z # a in B(a).

This theorem has several important consequences, For example, we can use
it to show that a function which is analytic on an open region S cannot be zero
on any nonempty open subset of § without being identically zero throughout S.
We recall that an open region is an open comnected set. (See Definitions 4.34
and 4.45)

Theorem 16,24, Assume that f is analytic on an open region 5 in C. Let A denote the
set of those points z in S for which there exists a disk B(z) on which S is identically
zero, and let B = S — A. Then one of the two sets A or B is empty and the other
one is S itself.

@) =6 + 6iyfz —a) -+, and

Progf. Wehave § = 4 u B, where 4 and B ate disjoint sets. The set £ is open
by its very definition, If we prove that B is also open, it will follow from the
connectedness of § that at least one of the two sets £ or B is empty.

To prove B is open, let a be a point of B and consider the two possibilities;
Ha) # 0, fla) = 0. If f{a) # O, there is a disk B{a) & § on which £ does not
vanish. Each point of this disk must therefore belong to B. Hence, ¢ is an interior
point of B if f(a) # 0. But, if f{@) = O, Theorem 16.23 provides us with a disk
H{a) containing no further zeros of £ This means that B(a) = B. Hence, in either
case, @ is an interior point of B. Therefore, B is open and one of the two sets A or
B must be empty.

16,16 THE IDENTITY THEOREM FOR ANALYTIC FUNCTIONS

Theorem 16.25. Assume that f is analytic on an open region S in C. Let T he g
subset of S having an accumulation point a in S, If f(z} = O for every z in T, then
fzy=0foreveryzin &

Proof. There exists an infinite sequence {2,}, whose terms are peints of T, such
that lim,.,. z, = a. By continuity, f{a) = lim,,, f{z,) = 0. We will prove
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next that there is a neighborbood of @ on which f is identically zero. Suppose
there is no such neighborhood. Then Theorem 16.23 tells us that there must be a
disk A{(a) on which f(z) # 0ifz # a. But this is impossible, since every disk Bla)
contamns points of 7 other than a. Therefore there must be a neighborhood of e
on which f vanishes identically. Hence the set A of Theorem 16.24 cannot be
emply. Therefore, 4 = §, and this means f{z) = 0 for every z in §.

As a corollary we have the following important result, sometimes referred to
as the identity thearem for analptic functions:

Theorem 16.26. Let f and g be analytic on an open region S in C. I T is a subset
of 8 having an accumulation point a in S, and if f(z) = g(z) for every z in T, then

fz) = g(2) for every z in S,
Proof. Apply Theorem 16.25 to f — g.

16.17 THE MAXIMUM AND MINIMUM MODULUS OF AN ANALYTIC
FUNCTION

The absclute value or modulus [f] of an analytic function £ is a real-valued non-
negative function. The theorems of this section refer to maxima and minima of

1f1-

Theorern 16.27 { Local maxipum modulus principle). Assume | is analytic and not
constant on an open region S. Then |f| has no local maxima in S. That is, every
disk B(a; R) in S contains paints z such that | f(2)| > |f{a)l.

Proof. We assume there is a disk 8(e; R) in S in which |f(2)] < |f(a)| and prove
that f"is constant on S. Consider the concentric disk B(a; r} with 0 < r < R.
From Cauchy's integral formula, as expressed in (7), we have

=
@ < ) J' \ft@ + re®) ds. (19)
27 Jo
Now |fla + re®)| < |f(a)] for all . We show next that we cannot have strict
ineqﬂaliiy [fla + re®)] < |f(a)| for any 0. Otherwise, by continuity we would
have | f{a + re®)| < [f(a)] — efor some ¢ > 0and all § in some subinterval 7 of
[0, 2] of positive length 4, say. Let J = [0,2z] — . Then J has measure
2 — h, and (19) gives us

2ulfla) = I {fla + re®y df + j |fle + ré%)| db
I F

< B{lf@) — e} + @r — By /@] = 2n|f(@)] — he < 2z |f{a)].

Thus we get the contradiction [f(a)} < 1f{a)]. This shows that if r < R, we
cannot have strict inequality [ f{a + re™)| < |f{a)| forany 8. Hence |/(z)] =|f(a)]
for every z in B(a; R). Therefore | f| is constant on this disk so, by Theorem 5.23,
Jitself is constant on this disk. By the identity theorem, fis constant on §.
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Theorem 16,28 ( Absolute maximum modulus principle}. Let T be a compact subset
of the complex plane C. Assume f is continuous on T and analytic on the interior of
T. Then the absolute maximum of |f| on T is attained on 3T, the boundary of T.

Proof. Since T is compact, |f] attains its absolute maximum somewhere on T,
say at a. If g € 97 there is nothing to prove. If a ¢ int 7, let § be the component
of int T containing a. Since | f{ has a local maximum at @, Theorem 16.27 implies
that f'is constant on 5. By continuity, £ is constant on 45 < 7, so the maximum
value, | f(a)l, is attained on 45. But 88 & 3T (Why") so the maximum is attained
on 8T

Tkeorem‘1'6.‘29 ( Minimam modulus principle). Assume f is analytic and not constant
on an open region S. If | f| has a local minimum in 8 al a, then f(a) = 0.

Proof. If fla) # 0 we apply Theorem 1627 tog = 1jf. Thengis analytic in some
open disk B(a; R) and {g| has a local maximum at a. Therefore g and hence s
comstant on this disk and therefore on S, contradicting the hypothesis.

16.18 THE OFEN MAPPING THEOREM

Nonconstant analytic functions are open mappings; that is, they map open sets
onto open sets. We prove this as an application of the minimum modulus
principle,

Theorem 16.30 (Open mapping theorem). If f is analytic and not constant on an
open region S, then f is open.
Proof. Let A be any open subset of S. We are to prove that f(4) is open. Take
any b in f{A) and write b = f{a), where g € A. First we note that ¢ is an isolated
point of the inverse-image /™ '({b}). (If not, by the identity theorem / would be
constant on §.) Hence there is some disk B = B{a; r) whose closure B lies in A4
and contains no point of /' ~'({5}) except a. Since f(B) = £(4) the proof will be
complete if we show that f{B) contains a disk with center at b.

Let 4B denote the boundary of B, 8B = {z:|z — a| = r}. Then f(3B) is a
compact set which does not contain 5. Hence the number m defined by

m = inf {|f(z) — b|:z e 28},

is positive. We will show that f/(B) contains the disk B(b; m/2). To do this, we
take any w in B(b; m/2) and show that w = f(z,) for some z, in .

Let g(z) = f(z) — wif ze B. We will prove that g(zo) = 0 for some z, in B.
Now |g] is continuous on B and, since B is compact, there is a point z, in B at
which |g] attains its minimum. Since a ¢ B, this implies

[9zo)l < 1g(@) = |f(@) — wl = [b — w| < ?
But if z € B, we have

|g(z)f=|f(z)—b+b-—wiarf(z>-b|—|w-b|>m-§=§.
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Hence, z, ¢ 9B 50 2, is an interior point of B. In other words, |g| has & local
minimuim at z;. Since g is analytic and not constant on B, the minimum modulus
principle shows that g(z,) = 0 and the proof is complete.

16.19 LAURENT EXPANSIONS FOR FUNCTIONS ANALYTIC IN AN
ANNULUS

Consider two functions f; and g,, both analytic at a point 2, with g,{a) = 0. Then
we have power-series expansions

gz} = Z b{z — ay, for |z — a] < ry,
r=1 .
and

£

fiz) = Do ez —af, forfz—al <r, (20)

n=0

Let f, denote the composite function given by

1) = g,( LI a)-

Z -a

Then £, is defined and analytic in the region |z — 4] > r, and is represented there
by the convergent series

fiz) = i bz — @)  for|z —a| > r,. (21)
ne= ]

Now if r; < r;, the series in (20) and (21) will have a region of convergence in
common, namely the set of z for which

ro<jz—a <y

1o this region, the interior of the annulus A(e; r,, r,), both £; and £, are analytic
and their sum f; + f; is given by

a0

[@) + fol2) = D ez — a) + 2. bz — @)

n=(
The sum on the right is written more briefly as

w0

E ez — af,
wheree_, = b, forn = 1,2, ... A series of this type, consisting of both positive
and negative powers of z — &, is called a Laurent series, We say it converges if
both parts converge separately.

Every convergent Laurent series represents an analytic function in the interior
of the annulus A{a; r(, r). Now we will prove that, conversely, every function
fwhich is analytic on an annulus can be represented in the interior of the annulus
by a convergent Laurent series,
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Theorem 16,31, Assume that [ is analytic on an annulus Ala; r,, r)). Then Jor
every interior point z of this anmulus we hape

J@) = filz) + fil2), 3

where

@) =2ez~a  and  f(2) = Yz~ a7
h= a=1
The coefficients are given by the formulas

t oy

[ p— -

vl ety (n =0, 1, +2,...), (23)
¥

where y is any positively oriented circular path with center at a and radius r, with
ry < r < r,. The function f, (called the regular part of f at a) is analytic on the
disk B(a; r;). The function f; (cailed the principal part of f at a) is analvtic outside
the closure of the disk B(a; r,).

Proof. Choose an interior point z of the annulus, keep z fixed, and define a function
g on A(a; ry, ;) as follows:

Sw) — f(z)
glw) = w =z
Fi(=) ifw = z

Then g i» analytic at w if w # z and g is continuous at z. Let

ifw# =z

o(r) =J' o) dw,
¥r

where y, is a positively oriented circular path with center @ and radius », with
r, £ r < ry. By Theorem 16.8, ¢lr,) = o(r,) so

f g(w) dw =I g(w) dw, 24

wherey, =y, andy, = y,,. Since z is not on the graph of y, or of 7, in each of
these integrals we can write

W) = S f=m)
w

- Z w— Z

Substituting this in (24) and transposing terms, we find

f(z){.l. LI J ! dw}= FiC R
nW—Z nW—Z n¥% 2z
5

But J,, (w — z)™! dw =0 since the integrand is analytic on the disk B(a; r,),

iGN

nW—z
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and f,, (w — z)"! dw = 2xi since nfy,, z} = 1. Therefore, {25} gives us the
eguation
Jz) = fi(2) + fo(2),

where

=0 2 0 ad so=-" [ Y a
2ni J,,w—z 2ni ), W~z
By Theorem 16.19, f; is analytic on the disk B(a; r;) and hence we have a Taylor
¢Xpansion

fil2) = 2 ez — ay

=0

for |z — a| < ry,

where

o= L f S (26)

" 2mi ), (w— eyt
Moreaver, by Theorem 16.8, the path y, can be replaced by y, for any r in the
intervatry £ r < r,.
To find a series expansion for f,(z), we argue as in the proof of Theorem 16,19,
using the identity (13) with ¢ = (w — a)/(z — ). This gives us

] _k w— a\" w—a\ttl 2 —a
l—(w~a),.’(z—“_§'j_.;a<z—a)+(z—a> (z—W)' @n

If wis on the graph of y,, wehave jw — g| = r; < 1z — 4|, s0 J#] < 1. Now we
multiply (27} by —f(w)/(z — a), integrate along y;, and let kK — <o to obtain

Fal2) = E biz — ay " for |z — a] > ry
. =1

where

1 f(w)

dw. 28
i J,, (w—a)' " @8

"
By Theotem 16.8, the path y, can be replaced by y, for any rin [r, r,}. If we take
the same path y, in both (28) and (26) and if we write c_, for 5,, both formulas
can be combined into one as indicated in (23). Since z was an arbitrary interior
point of the annulus, this completes the proof.

nNoTE. Formula {23} shows that a function can have at most one Laurent ex-
pansion in a given annulus.

16.26 1SOLATED SINGULARITIES

A disk B(a; r) minus its center, that is, the set B(a; r) — {a}, 1s called a deleted
ne;:qf;borhood of a and is denoted by B'(a; r) or B'(a).
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Definition 16.32. A point a is called an isolated singularity of f if

a) [ is analytic on a deleted neighborkoed of a,
and
b) fis nor analytic at a.

NOTE. £ need not be defined at a.

If a is an isolated singularity of f, there is an annulus A(@; ry, r,} on which fis
analytic. Hence f has a uniquely determined Laurent expansion, say

sl a0

fiz) = ”z; chz — ay + El e fz - a)y " (29)
= B=

Since the inner radius ry can be arbitrarily small, {29} is valid in the deleted

neighborhood B'(a; r;). The singularity « is classified into one of three types

(depending on the form of the principal part} as follows:

If no negative powers appear in (29), that is, if ¢ _, = Oforeveryn = 1,2,.. .,
the point g is called a removable singularity. In this case, f{ (z) 2 csa5z — g and
the singularity can be removed by defining f at a to have the value f{a) = Co-
(See Example 1 below.)

If only a finite number of negative powers appear, that is, if e_, # 0for some
rbutc_, = 0forevery m > n, the point z is said to be a pole of order n. In this
case, the principal part is simply a finite sum, namely,

C.y Lz €n

z—a (z - a)? +(z—a)"'

A pole of order | is usually called a simple pole. 1f there is a pole at a, then
/iz)l > wasz - a

Finally, if ¢_, # O for infinitely many values of #, the point « is called an
essentiol singularity. In this case, f(z) does pot tend to a limitas z — a.

Example 1. Removable singularity, Let f(z) = (sin z){z if z # 0, /{0) = 0. This func-
tion is analytic everywhere except at 0. (It is discontinuous at 0, since (sin z){z — 1 as
z = 0.) The Laurent expanston about 0 has the form
. z : 4 -
s 2 F4 z
_:]_..+__+...
2 31 5t
Since no negative powers of z appear, the point (@ is a removable singularity. If we re-
define f to have the value 1 at 0, the modified function becomes analytic at 0.

Example 2. Pole. Let f{z) = (sin 2)/z° if z # 0. The Laurent expansion about 0 is

Mz _ e 1z'z—kl—lzz

P 31 51071

In this case, the point O is 2 pole of order 4. Note that nothing has been said about the
value of far 0.
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Example 3. Essenticd singularity. Let j{z) = e'2if z £ 0. The point 0 is an essential
singularity, since

et = 4 z7l & _l_z“z ot lz"ﬂ_;..,.
2! al
Theorem 16.33. Assume that [ is analytic on an open region S in C and define g by
the equation g(z} = Vif(z) if f(z) # 0. Then fhas a zero of order k at ¢ point a in
S if, and only if, g has a pole of order & at a.

Proof. If f has a zero of order k at g, there is a deleted neighborhood B'(a) in
which £ does not vanish. In the neighborhood B(@) we have f{z) = {(z — a)f'h{z),
where h(z) # 0if z € B(a). Hence, 1/k is analytic in B(@) and has an expansion

1

1
— =by+ bz —a) + -, where by = = # 0
z) o il ) 0 ha)
Therefore, if z ¢ B'(a), we have
9(z) = I o Aoy

G- k) G-af (-

and hence a is a pole of order & for ¢. The converse is similarly proved.

1621 THE RESIDUE OF A FUNCTION AT AN ISOLATED SINGULAR POINT

If & is an isolated singular pomt of f, there is a deleted neighborhood B'(a) on
which f has a Laurent expansion, say :

f(z) = Z; efz — af + 2. ez — @y (30)
I'E) 'y
The coefficient ¢, which multiplies (z — &)™ ! is called the residue of f at 2 and
is denoted by the symbol
¢_y = Res f(z}.

Formula (23) tells us that
J J(z) dz = 2nmi Res f{z), 31
¥ r=a

if y is any positively oriented circular path with center at a whose graph lies in the
disk B{a).

In many cases it is relatively easy to evaluate the residue at a point withont
the use of integration. For example, if 4 is a simple pole, we can use formula (30)
to obtain ‘

Res f(z) = lim {z — &) f(z). {32)
r=a

A}
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Similarly, if a is a pole of order 2, it is easy to show that
Res f(z) = g'(a), where g(z) = (z — a)¥f(z).

In cases like this, where the residue can be computed very easily, (31) gives us a
simple method for evaluating contour integrals around circuits.

Cauchy was the first to exploit this idea and he developed it into a powerful
method known as the rexidue calculus. 1t is based on the Cauchy residue theorem
which is a generalization of (31).

1622 THE CAUCHY RESIDUE THEOREM

Theorem 16.34. Let f be analytic on an open region S except for a finite number of
iselated singularities z,,...,z, In §. Let vy be a circuit which is homotopic 1o a
pomt in §, and assume that none of the singuiarities lies on the graph of v. Then we
have

J. fizydz = 2xi 3, n(y. z,) Res f(z), ‘ 33)
¥

k=1 =y
where n(y, 2,) is the winding mumber of v with respeci to z,.

Proof. The proof is based on the following formula, where m denotes an integer
{positive, negative, or 2er0):

n 2min(y, z)  ifm= —1,
z—zNdz = 34
L( o {0 if m# —1. 34
The formula for m = —1 is just the definition of the winding number a(y, z,).

Let [&, b] denote the domain of y. 1 m % — 1, let g(#) = {p(t} — z, V™" for fin
[a, B]. Then we have

: . & b
f (¢ - ) dz = J Bt — 2y dt = m{;——;j g(0) di

a

1 )
e {g(b) — gy} = 0,

since g(b) = g(a). This proves (34).

To prove the residue theorern, let 7, denote the principal part of f at the point
z. By Theorem 16.31, f, is analytic everywhere in C except at z,. Therefore f — f,
is analytic in S except at z,, . .., z,. Similarly, f — f; — f; is analytic in § except
at zy,. .., Z, and, by induction, we find that £ — 377, fi is analytic everywhere
in S. Therefore, by Cauchy’s integral theorem, [, (f — ¥7_, £) = 0, or

Lf= 3 jf

Now we express f; as a Laurent series about z, and integrate this series term by
term, using (34} and the definition of residue to obtain (33).
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NotE. If y is a positively oriented Jordan curve with graph T, then x(y, z,) = 1
for each z; inside I', and n{y, 2,) = 0 for each z, outside I'. In this case, the
integral of along y is 2z times the sum of the residues at those singularities lying
inside I".

Some of the applications of the Cauchy residue theorem are given in the next
few sections.

1623 COUNTING ZEROS AND POLES IN A REGION

If fis analytic or has a pole at 4, and if f is not identically 0, the Laurent expansion
about & has the form
w0y

f@) = 2 cfz — a),
where ¢, £ 0. If m > 0 there is a zero at 2 of order m; if m < 0 there is a pole
at ¢ of order —m, and if m = 0 there is neither a zero nor a pole at a.

NOTE. We also write m{f; &) for m to emphasize that m depends on both fand a.

Theorem 16.35. Let [ be a function, not ideutiéaﬂy zero, which is analytic on an
open region S, except possibly for a finite number of poles. Let v be a circuit which is
homotopic to a point in 5 and whose graph conlging no zero or pole of f. Then we
have

A e, .
2mi ), Fioy B = g i ), (33

where the sum on the right contains only a finite number of nonzero terms.

noTe. If y is a positively oriented Jordan curve with graph T, then ny, a) = |1
for each a inside I' and (35) is usually written in the form

LI A P @6
2ai ], f(z)
where N denotes the number of zeros and P the number of poles of f inside I,
each counted as often as its order indicates,

Proof. Suppose that in a deleted neighborhood of a point ¢ we have f{z) =

{z — ay"g(z), where g is analytic at @ and g(a) # 0, m being an integer {positive

or negative). Then there 15 a deleted neighborhood of 2 on which we can write
fz) m_ gz

f@)  z~a ¢’
the quotient g'/g being analytic at a. This equation tells us that a zero of f of
order m is a simple pole of f'ff with residue m. Similarly, a pole of f of order m
is a simple pole of f*/f with residue —m. This fact, used in conjunction with
Cauchy's residue theorem, yields (35).
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16.24 EVALUATION OF REAL-VALUED INTEGRAIS BY MEANS OF
RESIDUES

Cauchy’s residue theorem can sometimes be used to evaluate real-valued Riemann
integrals. There are several techniques available, depending on the form of the
integral. We shall describe briefly two of these methods.

The first method deals with integrals of the form [2* R{sin 0, cos §) 8, where
R is a rational function® of two variables.

Theorern 16.38. Let R be a rational function of two variables and les

22 -1 22 +1
z} = R , »
i@ ( 2iz 2z )

whenever the expression on the right is finite. Let y denote the positively oriented
unit circle with center at 0. Then

Jm Resin 6, cos 6) 6 = f 2, (7
v 1z

o
provided that | has no poles on the graph of y.

Proof. Since (8} = & with 0 < 0 < 2n, we have

ﬁ)z, __]_ = 5in B }_,{?)i._.tl = cos 0
2iv(f) ’ ’

and (37) follows at once from Theorem 16.7,

Y(0) = iy{8),

NOTE. ‘To evaluate the integral on the right of (37), we need only compute the
residues of the integrand at those poles which lie inside the unit circle.

Example. Evaluate { = [Z* d8fa + cos 6), where a is real, ja] > 1. Applying (37), we
find
dz

= —2i [ — -
2224+ 2az + 1

The integrand has simple poles at the roots of the equation z2 + 24z + 1 = 0. These are
the points

7, = —a+ Va* - 1,

P4 = - - \laT—_l

* A function P defined on € x C by an equation of the form

) L]

P(zy, 2,) at z O nZ123

el s

is called a polynomial in two variables. The coefficients g,, , may be real or complex. The
quotient of two such polynomials is called a rational funcrion of two variables.

=
s

*
3
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The corresponding residues R, and R, are given by

R, = lim — 2= L

z-+2¢ 22+ 2azr + 1 Zy — 2y

1

Ry=1tm-2-% 1
!-‘8122‘!‘23&!"‘] Iy — 4

Ifa > 1, z, is inside the unit circle, z, is outside, and I = dnf(z, — z,) = 2n/va® — 1.
Ifa < —1, 2, is inside, 7, is outside, and we get / = —2a/v/a® — 1.

Many improper integrals can be dealt with by means of the following theorem:

Theorem 16.37. Let T = {x + iy 1y > O} denote the upper holf-plane. Let S be
an open region in C which contains T and suppose f is analytic on S, except, possibly,
Jor a finite number of poles. Suppose further that none of these poles is on the real
axis. If

lim | f(Re®) Re® b = 0, (38)
R=+x 0
then
R "
lim J JGO) dx = 271 3, Res f(2). 39
R~+w J_p A=l oy

where 7y, .. ., Z, are the poles of f which lie in T

Proof. Lety be the positively oriented path formed by taking a portion of the real
axis from — R to R and a semicircle in T having [ — R, R] as its diameter, where R
18 taken large enough to enclose all the poles z;, .. ., z,. Then

=] rw

2;::‘;": Res f(z) = .[ J(z)dz = j ) F) dx + !'JA* f(Re'Y Re® dp.
¥ —R L]

When R — + oo, the last integral tends to zero by (38) and we obtain (39).

NoTE. Equation (38) is automatically satisfied if £ is the quotient of two poly-
nomials, say f = P/Q, provided that the degree of  exceeds the degree of P by
at Jeast 2. (See Exercise 16.36,)

Example. To evaluate [2, dx/(l + x%), let fiz) = 1{{z* + 1). Then P(z) =1,
O(z) = 1 + 2*, and hence (38) holds. The poles of £ are the roots of the equation
1 + 2* = 0. Theseare z,, z,, z,, z,, where

7= SHTIE = 1,2,3,9)
Of these, only z; and z, lie in the upper bali-plane, The residus at z, is
1 e~

R = lm (z -~ e =
x:: 7@ BTy ==/ {2y — 52y — 23025 — 24) 4
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Similarly, we find Res, ., f(z) = (1/4)e/*. Therefore,

-] 2 —
dx _ 2ni (e 4+ ") = zcos T =T /2.
e 1+ x* 4 4 2

1625 EVALUATION OF GAUSS'S SUM BY RESIDUE CALCULUS

The residue theorem is often wsed to evaluate sums by integration. We illustrate
with a famous example called Gawss's szn G(n), defined by the formula

n—1
G(m) = Zﬁ g2, (40)

where » 2z 1. This sum occurs in various parts of the Theory of Numbers. For
small values of n it can easily be computed from its definition. For example, we
have

G =1, G =0 GG =iV3 G@ =20+

Although each term of the sum has absolute value 1, the sum itself has absolute
value 0, Jﬁ, ot +/2n. In fact, Gauss proved the remarkable formula

G(n) = 3Vn(l + it + e ™%, @D

for every n = 1. A number of different proofs of (41) are known, We will deduce
(41) by considering a more gencral sum S(a, ») introduced by Dirichlet,

n—=1
S(a, n) = Zo giariin
Foe

where » and a are positive integers. If g = 2, then S(2, n) = G(n). Dirichlet
proved{41} as a corollary of a reciprocity law for S(a, #} which can be stated as
follows:

Theorem 16,38, If the product na is even, we hove

, Sta, n) = \/;’E- (—%——‘) S @), (42)

where the bar denotes the complex conjugate.

NoTE, To deduce Gauss's formula {41), we take 2 = 2 in (42), and observe that
S, 2) = 1 + g~=2,

Proof. The proof given here is particularly instructive because it illustrates several
techniques used in complex analysis. Some minor computational details are left
as exercises for the reader.

Let g be the function defined by the equation

ne
g(z) = E ez (43)
r=1
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Then g is analytic everywhere, and ¢(0) = S(a, n). Since na is even we find
a=1
g(z + l) — g(z) = e"‘“’:"“{e““’ - 1) = g""‘}i"‘(ezﬁz — 1) Z £2til!l2,
=k

{Exercise 16.41). Now define / by the equation
f(z) = glz))(e?™* — 1).

Then f is analytic everywhere except for a first-order pole at each integer, and f
satisfies the equation

Jz + 1) = fizy + o(2), {44)
where
o(z) = e 3 et %)

The function ¢ is analytic everywhere.
At z = ( the residue of fis g(0)/(2n1) (Exercise 16.41), and hence

S(a, n) = §(0) — 2ni Res f(z) = f fiz) dz, (46)
=0 ¥
where y is any positively oriented simple closed path whose graph contains only the

pole z = 0 in its interior region. We will choose y 50 that it describes a paral-
lelogram with vertices 4, 4 + 1, B + 1, B, where

= —} ~ Re**  and B = -1+ Re*,

B+1

'/ | Figure 16.7
v

as shown in Fig. 16.7. Integrating f along y we have
A+1 B+ B A
[r=]Tae [ se [l
+ A A+1 B+1 B

In the integral [31] f we make the change of variable w = z + 1 and then use (44)
to get

#+1 B B B
J Slwydw = I Az + 1) dz = j f(z)dz + j @{z) dz.
A+l A A

A
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Therefore (46) becomes
B A+ +
Sa, n) = f ofz) dz + f Jz)dz ~ r l fAzyd:z. 7
A A B

Now we show that the integrals along the horizontal segments from 4 to 4 + 1
and from Bto B + 1tend toOas R — + oo, To do this we estimate the integrand
on these segments. We write

) = o

: , 48
‘82"1 - 1] ( )

and estimate the numerator and denominator separately.
On the segment joining B to B + | we let
W) =t + Re™™*,  where -} <t < L

From (43) we find
x—1

lolW O]l < 2

re=q)

exp

; xijd 2
{ma(t +wR: + r) } ’ 49)

where exp z = ¢*. The expression in braces has real part (Exercise 16.41)

—ma(WUR + R* + V2rR)n.

Since |¢** 7] = ¢ and exp {—nav2rR/n} < 1, each term in {49) has absolute

value not exceeding exp {—maR*/n} exp {v-ﬁMin::}. But -4 <1t < {,80
we obtain the estimate

gl < n PRAFLLIE IR SP
For the denominator in (48) we use the triangle inequality in the form
€2 — 1] 2 | {27 — 1)
Since [exp {2ni(1}}| = exp {—2xR sin (n/d)} = exp {-\/ E?IR}, we find
Jélﬂ'}'{tl — 21— gV
Therefore on the line segment joining B to 8 + { we have the estimate

neﬁ‘jzckﬂgk} e xaRin

= o1} as B —+ +o0.

A2 =

— e-—‘\.-f Ten
Here o{1} denotes a function of & which tends to 0 as R —» 4 .
A similar argument shows that the integrand tends to 0 on-the segment joining

AtoA + 1as R » 4o, Since the length of the path of integration is 1 in each
case, this shows that the sccond and third integrals on the right of (47) tend to 0

L
3
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// Figure 16.8

as B — + oo, Therefore we can write (47} in the form

S(a, n) = J.s o(z) dz + ofl) as R — +om. (30)
A

To deal with the integral {§ ¢ we apply Cauchy’s theorem, iniegrating ¢ around
the parallelogram with vertices 4, B, @, —a, where z = 8 + £ = Re™¥*. (Sec
Fig. 16.8.) Since ¢ is analytic everywhere, its integral around this paraliclogram

is 0, so
. u ' - A
J¢+J‘w+J\ qo+j ¢ =0 {81
A B o - .

Because of the exponential factor €52°’/ in (45), an argument similar to that given
above shows that the integral of @ along each horizontal segment =0 as R » + o0,
Therefore (51} gives us

B &3
jm=f @ + o(l) as R — + oo,
A s 3
and (50} becomes

Sa, n) = r wlz)dz + ofl) as R - +oo, (32)

where & = Re™*. Using (45) we find

m=0

: 2
Ha,m, n, R} = 'r exp {EE (z + @) }dz.
: e n a

Applying Cauchy’s theorem again to the parallelogram with vertices —a, 4,
o — nmja, —o — nmfa, we find as before that the integrals along the horizontal

o o1 ™ a—1
j ‘p(z) dz = Z J‘ glinzzfn eZnimz dz = Z e-xinm‘)’n I(a, m, n, R),
e —a m=0

where
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sepments +0as R - 4w, so
—mm/a : 2 '
Ha, m,n, B) =r exp{ﬂa(z+ﬂ)}dz+o(l) as R - 4-co.
—a-mmia n a

The change of variable w = +/ %{z + nmfa) puts this into the form

n xvasn .
Ka,m,n, R) = ;J. ™ v a'w_ +0(1) asR o 4.
—ENain

Letting R — + oo in (52), we find

RV ajwem/

a—1
S(a, n) = 3, e minmie \/3 lim I e dw, 53)
T e

d R~t+m |_ RYainemirt
By writing T = <JafnR, we see that the last limit is equal to
TemifA .
lim e dw = I.
Tw+w J_raerira

say, where 7 is a number independent of # and n. Therefore {53) gives us

S(a, n) = \/g i15Tm, a). (54)

To evalvate f we take a = 1 and # = 2 in (54). Then S(1,2) = 1 + § amd
S2, 1Y = 1, s0 (54) implies I = (1 + i)N"i, and (34) reduces to (42).

16.26 APPLICATION OF THE RESIDUE THEOREM TO THE ]NVEﬁSION
FORMULA FOR LAPLACE TRANSFORMS

The following theorem is, in many cases, the easiest method for évaluating the
limit which appears in the inversion formula for Laplace transfor:1s. (See Exercise
11.38.)

Theorem 16.39. Let F be g function analytic everywhere in C except, possibly, for
a finite mumber of poles. Suppose there exist three positive constants M, b, ¢ suck that

M
IF(z} < —
fzd
Let a be a positive mumber such that the vertical line x = a contains no poles of F
and let z,, . . ., z, denote the poles af F which lie to the left of this line. Then, for
each real t > 0, we have

whenever [z} = b.

T+ o k= ko=

r n
lim j et Ba 4 )dp = 2 ) Res {'F(z)}. (55)

\

I

Proof. We apply Cauchy’s residue theorem to the positively oriented path I
shown in Fig. 16.9, where the radius T of the circular part is taken largs enough
to enclose all the poles of F which lie to the left of the line x = g, and also T > b.
The residue theorem gives us

k=1 z=xx

B C B f 4 4
SRS
r A B L D 4
where A, B, C, D, E are the points indicated in Fig. 16.9, and denote these integrals
byl, 5L, 51,1, Wewillprovethatl;, +0as 7 — 4+ oo whenk > 1.
First, we have
Me™ Me” . fa
— Tt rdd e — = — )= -1.
< w(; o) = e T )
Since Taresin (#f/T) > aas T —» +oo, it follows that I, 2 0as T+ 4. In
the same way we prove I; — Oas T — 4 co.
Next, consider J;. We have

® L ]
M e;'.!‘ens r dB = h{
Tc-—- 1 f2 Tc

J & F(z) dz = 2=i E Res {¢'F(z)}. (56)

Now write

[ < eI oy

But sin ¢ = 20/rif 0 < ¢ < =nf2, and hence

I «c:w—— ey = P (T L0 as T oo
i J‘ e ZT‘*( )

Similarly, we find J, + 0as T — +o0. Butas T — +oo the righthand side of
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(56) remains unchanged. Hence limy, . 7, exists and we have

lim I, = lLim j N B b i) ido = 2mi Z Res {e"F(z)}.
Tt T+ kel g=zxy

Example. Let F(z} = z{z* + o), where o is real. Then F has simple poles at + fa.

Simee z/(z2 + &) = $[1f(z + in) + 1}z — )], we find

Res {(F(2)} = 3 ¢™,  Res {("F(r)} = 1™
F=ia z=—iz

Therefore the limit in (55) has the value 277 cos . From Exercise 11.38 we see that the
function £, continuous on (0, +o), whose Laplace transform is F, is given by f{2} =
COs af,

1627 CONFORMAL MAPPINGS

An analytic function f will map two line segments, intersecting at a point ¢, into
two curves intersecting at f(c). In this section we show that the tangeny lines to
these curves intersect at the same angle as the given line segments if /'(c). # 0.

This property is geometrically obvious for linear functions. For example,
suppose f(z) = z + . This represents a translation which moves every line
parallel to itself, and it is clear that angles are preserved. Another example is
f(z) = az, where g # 0. If [a| = 1, then @ = e** and this represents a rotation
about the origin through an angle a. If |a| # 1, then @ = Re™ and f represents
a rotation compesed with a stretching (if R > 1) or a contraction {if R < 1)
Again, angles are prescrved. A general linear function f(z) = az + b with g # 0
is & composition of these types and hence also preserves angles.

In the general case, differentiability at ¢ means that we have a linear approx-
imation near ¢, say f(z} = fle) + f'(chz — ¢) + olz — ¢), and if F'(c) # 0 we
can expect angies to be preserved near ¢.

To formalize these ideas, let ¥, and y, be two piecewise smooth paths with
respective graphs I, and T, intersecting at ¢. Suppose that y, is one-to-one on
an interval containing ¢,, and that y, is one-to-one on an interval coniaining #,,
where y,(t,) = 'h{tz} = ¢, Assume also that y)(¢,) # 0 and y;(¢,) # 0. The
difference

arg [¥3(1;)] — arg [yi(1)]),

is called the angle from I', to T, at c.
Now assume that f*(¢) # 0. Then (by Theorem 13.4) there i is a disk B(c) on
which f is one-to-one. Hence the composite functions

wit) = fIn)]  and  wy(0) = flr.(0)],

will be locally one-to-one near ¢, and ¢;, respectively, and will describe arcs C,
and C, intersecting at f{c). (See Fig. 16.10.) By the chain rule we have

wilt)) = feni(6) # 0 and  wilt) = fleyi(ty) # 0.

Conformal Mappings o

Figure 16.10

Therefore, by Theorem 1.48 there exist integers n, and #; such that
arg [wi(r))] = arg [f'(0)] + arg [¥i(1)] + 2mny,
arg [w3(t))] = arg [f(0)} + arg [v2(6:)] + 27my,

s0 the angle from C, to €, at f{c} is equal to the angle from Ty 1o T, at ¢ plus
an integer multiple of 2r. For this reason we say that f preserves angles at ¢. Such
a function is also said 10 be conformal at ¢

Angles are not preserved at points where the derivative is zero. For example,
if f(z) = 2%, a straight line through the origin making an angle & with the real axis
is mapped by f onto a straight line making an angle 2« with the real axis. In general,
when f(c} = 0, the Taylor expansion of /" assumes the form

f(z) _f(c) = (2 - c)"[a,, -+ ax+1(2 — C} + ...]’

where &k = 2. Using this equation, it is easy to see that angles between curves
intersecting at ¢ are multiplied by a factor & under the mapping f.

Among the important examples of conformal mappings are the Mabius
transformations, These are functions f defined as follows: If 4, b, ¢, 4 are four
complex numbers such that ed — bc # 0, we define

. az_ + b (57}

whenever ¢z + d # 0. It is convenient to define f everywhere on the extended
plane C* by setting f{—dje) = o and flew) = afe. (I ¢ = 0, these last two
equations are to be replaced by the single equation f(c0) = .} Now (57} can be
solved for z in terms of f{z) to get
—df{z) + b

f(zy — a
This means that the inverse function f ! exists and is given by

—dz + b

cZ - a ?

@)=
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with the understanding that £~ "(g/c) = oo and ™ Y(c0) = —dje. Thus we see
that Mdbius transformations are one-to-one mappings of C* onto itself. They are
also conformal at each finite z # — dfc, since

-~ ad
L = # 0
1@ = (cz + dy
Ope of the most important properties of these mappings js that they map circles
onto circles (including straight lines as special cases of circles). The proof of this
is sketched in Exercise 16.46. Further properties of Mdbius transformations are
also described in the exervises near the end of the chapter,

EXERCISES

Complex integration; Caachy’s integral formmlas 2

16.1 Eet ¥ be a piecewise smooth path with domain [a, 4} and graph I'. Assnpme lhat the
integral {, fexists. Let § be an open region containing T and let g be a fanction sich that
2'(2) exists and equals £{z) for each z on I'. Prove that

j!= jy = o(B) — g{A), where A = pa)and B = u(b).
? b4

In particular, if y is a gircuit, then 4 = B and the integral is 0. Hine. Apply Theorem 7,34
to each interval of continuity of ¥

162 Let y be a positively oriented circular path with center 0 and radius 2. Verify each
of the following by using one of Cauchy’s integral formulas.

Mf - dz = i, mf%ﬁaﬂ

F4
c)f——d L—. d)f | 42 = dnie
e}J;mdz=2;ri{e-l). f)f »ia-_——l)dz-—hx(e—-Z)

16.3 Let f = u -+ iv be analytic on a disk 8(a; R). If0 < r < R, prove that
1 2z
ra@=1 f Wa + ree db.
ar o

164 a) Prove the following stronger version of Liouville’s theorem: if f is an entire
Sunction swch that B, .. 1 f(2)z| = 0, them fis a constanr,

b} What can you conclude about 2n entire function which satisfies an inequality of
the form | fiz)| < Mz|° for every complex z, where ¢ > 07
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165 Assume that fis analytic on B(0; R). Let y denote the positively oriented circle
with center at 0 and radivs r, where 0 < r < R. If a is inside y, show that

1

z—~ @ z—rgiﬁ

flay =L ff(z){

If @ = Ae™ show that this reduces to the formula
1 J‘?.z i (rz — Az)f(n,in}

@ = ] P zAcs -0t A

By equating the real parts of this equation we obtain an expression known as Peisson's
integral formula,

16.6 Assume that £ is analytic on the closure of the disk B(0; 1). If |a] < 1, show that
a - jaa) = - J'f(z:o Yoy,
2ni f, z—a
where 7 is the positively orienied unit circle with ceater at 0. Deduce the inequality
1 (=
a - P f@) = o j 1)) a0

0

167 Let f(z) = T2 2% if |z| < 3/2, and let g(z) = %, (22)" if |z] > 3. Let
y be the positively oriented circular path of radius T and center 0, and define A{g) for

lal # 1 as follows:
_ 1 f(z) a’g(z) d
) = ZJEiJ;(z— a+z’— az)

Prove that

Taylor expansions

16.8 Define fon the disk B(0; 1) by the equation f{z) = 3., z". Find the Taylor
expansion of fabout the point ¢ = 1 and also about the point 2 = — 4. Determine the
radius of convergence in each case.

16.9 Assume that £ has the Taylor expansion f{z) = Y0, a(n)z", valid in B(O; B). Let
1 r—1
#(z) = = Y (27,
P =0

Prove that the Taylor expansion of g consists of every pth term in that of £ That ig, if
z & B{); R) we have

o =3 alpmz
=0
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16.10 Assume that f has the Taylor expansion F(z} = 32, &,2", valid in 8(0; R). Let
5(2) = Y omzt. If0 < r < Rand if [z] < r, show thai -
1 +1 +1
1At -t
2ni J, Wt w— 2
where y is the positively oriented circle with center at 0 and radius r.

16.11 Given the Taylor expansions f{z) = 37 a,z" and g(z} = 3%, b.z", valid for
lz| < R, and Jz| < Rj, respectively. Prove that if [z| < R, R, we have

1 ffw) {2 =
a2 g = »
mij, w g w) ;;:oa,,b,z,

where y is the positively oriented circle of radius R, with center at .
16.12 Assume that fhas the Taylor expansion f(z) = T4 a,{z — &', valid in B(z; R).
a} If 0 = r < R, deduce Parsevals identity: - '

s(z) =

1 2x a«
P J; |z + re"™? df = E |ayl? #3*

"=

b) Use (a) to deduce the inequality 3%, [a,? 72" < M(r)?, where M{;)usthz
maximum of |f] on the circle Jz — a] = +.

c} Use(b) to give another proof of the local maximum modulus principle (Theorerm
16.27),

16,13 Prove Schwarz's lemuna; Let fbe analytic on the disk B(O;1). Sy
1 ; i 1). Suppose that f(0} = 0
and |f(z)] = 1if|z| < 1. Then

ol s1 ad A2 2,  iflz] < L.
O] = 1or i |f(zo)] = |zo] for at least one =, in B(O; 1), then
fiz) = &%z, where o is real, .
f:.ﬁ”‘- z:;pply the maximum-modulus theorem to g, where g0} = £(0) and g(z) = Sz
iz 0
Lamrent expansions, singolarities, residues

16.14 Let fand g be anaiytic on an open region S. Let 7 be a Jordan circuit with graph I

such that both I and its inner region lie within §. Suppose that [g(2)} < |ftz) for every
zonTl,

a} Show that
L (f@a@, 1 1@,
2xi J, (2} + g(2) i J, f(z)
Hint.  Let m = inf {|f(z)| — lg(z)}{: ze T}. Then m > 0 and hence
Gy + tg(z)| = m > 0
for each ¢in [0, 1] and each z on I". Now let
_ 1 £+ wgiz) :
)= — § 12227 YR
) 2:ri£-f(z}+ pors dz, ifo< g,
Then ¢ is continuous, and hence constant, on [0, 1]. Thus, ¢(©) = #1).
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b} Use {a) to prove that f and £+ g have the same number of zeros inside I
{Rouché’s theorem}.

16.15 Let p be a polynomial of degree n, say p(z) = @y + a2 + -+ + az2", where
a, # 0. Take f(z) = a,2" g{z} = p(z) — f(z) in Rouché’s theorem, and prove that p
has exactly » zercs in C.
16.16 Let / be analytic on the closure of the disk B(0; 1) and suppose |f{z)] < 1 if
Iz] = 1. Show that there is one, and only one, point z, in B(0; 1) such that f(zp) = z,.
Hint. Use Rouché’s theorem.
16.17 Let p{z) denote the nth partial sum of the Taylor expansion * = 3.2 ¢ 2"/nl.
Using Rouché's theorem {(or otherwise}, prove that for every » > 0 there exists an N
{depending on r) such that n = N implies p,(z} # 0 for every z in B(0; r).
16.18 If @ > &, find the number of zeros of the function f{z) = ¢* — az” which lie inside
the circle {z| = 1.
16.19 Give an example of a function which has ali the following properties, or else explain
why there is no such fanction: f is analytic everywhere in C except for a pole of order
2 at 0 and simple poles at i and —i; f(z) = f{—z) for all z; f{1) = |; the function
#(z) = f(1/z) has a zero of order 2 at z = (; and Res,_, f(z) = 2,

16.20 Show that each of the following Laurent expansions is valid in the region indicated:

1 o z" |
_ _ 1 i 2
2) -12-20 L+ * ,.;z" i< el <
1 1 — 21
0 if 2.
DT iflel >

16,21 For each fixed s in C, define J,{#) to be the coefficient of z" in the Laurent expansion

e(z—l[z)tvm; f: J,((t)z".

A==
Show that for n = 0 we have

J,(£)=1f‘cos(rsin9— ndy df
% Jo

and that J_{f) = (—1¥J(#). Deduce the power series expansion

&1
) = ; s BEO

The function J, is called the Besse! fimction of order n.

16.22 Prove Riemann's theorem: If z, is an isolated singularity of f and if' | f| is bounded
on some delered neighborhood B'(zp), then ry is @ removable singularity. Hint. Estimate
the integrals for the coefficients a, in the Laurent expansion of fand show that 2, = 0 for
each n < 0.

1623 Prove the Casorati-Weierstrass theorem: Assume that z, is an essential singularity of
fand let ¢ be an arbitrary complex mumber. Then, for every & > 0 and every disk B(z,),
there exists a poine z in B{zp) such that | f(z) — ¢| < & Hinr. Assume that the theorem is
false and arrive at a contradiction by applying Exercise 16.22 to g, where g(z) =
VY — ¢}
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16.24 The point af infinity. A function fis said to be analytic at o if the function g defined
by the equation g(z) = f(1/z) is analytic at the origin. Similarly, we say that fhas a zero,
a pole, a removable singularity, or an essential singularity at oo if g has a zero, a pole, sic.,
at 9. Liouville’s theorem states that a function which iz analytic everywhere in C* must
be a constant. Prove that

a} fis a polynomial if, and only if, the only singularity of fin C* is a pole at w0,
in which case the order of the pole is equal to the degree of the polynomial.

b) fis a rational function i, and only if, f has no singularities in C* other than
poles.

16.25 Derive the following “short cuts™ for computing residues;
a) If a is a first order poke for f, then

Res f(z) = lim (z — a)f{z}.

xwa B8

b} If a is a pole of order 2 for f, then
Res f(z) = g'(@),  where g{z} = (z — a)’f(z). -

Tl

¢} Suppose fand g are both analytic at a, with f(g) # 0 and a a first-order zero for
&g. Show that

1@ _S@  p S _ flag@ - f@)g'te)

w=a g(z) g  s=a [g(2)] g’ @}
d) If fand g are as in {¢), except that a is a second-order zero for g, then

Res 7C2) _ 10)d'@) — 2(@g" (@)

=5 g(z) 3[g(a)
16.26 Compute the residues at the poles of f'if
o Pl -
D) = 5, A=
_ sinz 1
c)f(z)— ZWSZ' d}f(z) l—e"
e} flz) = ; _1 = {where n is a positive integer).

1627 I pa; r} denotes the positively oriented circle with center at & and radius r, show
that

2) J‘ Al— dz = b6xi, b) 2z dz = 4ni,
WD) {Z + 1)(2 - 3) P02 22 + 1
23 et
g} - dz = i, d) e gy Ympfe?,
woim Z° — 1 wan (2 — 2
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Evaluate the integrals in Exercises 16.28 through 16.35 by means of maidues.
2z dr 2na

16.28 G T om oy = (@ _ piyra if0 < b= a
16.29 2% cos 2t dt = 2w ifa? <1
) o 1 —2eeost+a* 1 - a° ’
16.30 ** (1 +cos3t)dt _me® —a+ B f0<a<t
o 1 — 2acost + a* 1—-a ’
2x gin® ¢ dt Inla - V&t - &) .
e R
waz [° 1 dx:zmﬁ
X+ x + 1 3
16 [T g TV2
_w {1 + x4 16

x’ kil

w6x [T =X
fa o + 4P+ 9 200

-+
16.35 2) X e ="{sin 2.
e Trxs T 5/

Himt. Integrate zf(1 + z%) around the boundary of the circular sector
S={re®:0<sr<s R 0=60s 2n/5),andlet R — oo,

L] xzm .
b} ey = —fein {5 —m ), m, n integers, 0 m<
o 1+ x* 2n p
16.36 Prove that formula (38) holds if fis the quotient of two polynomials, say [ = P/Q,

where the degree of Q exceeds that of P by 2 or more.

16.37 Prove that formula (38) holds if f(z) = ™ P{z){{z), where mt > G and P and
are polynomials such that the degree of (F exceeds that of P by 1 or more, This makes it
possible to evaleate iniegrals of the form

J‘w eirx P 4
—o (x)

by the method described in Theorem 16.37.

16.38 Use the method suggested in Exercise 16.37 to evaluate the following integrals:

gy [ _same L T (Q—e™ ifm=0a>0
s x(a® + x%) 2a

® cos mx T oomayE . TG W .
b SR gy = D prmapd sm(——+~) ifm>8,a>0
)Lx‘-i-a‘ 28° V2o 4
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16.3% Let w = ¢2*/* and let ¥ be a positively oriented circle whose graph does not pass
through 1, w, or w?. (The numbers 1, w, w? are the cube roots of 1.) Prove that the integral

J’ (23 + 1) dz

20 -1

is equal to Zni{m + #w){3, where m and n are integers. Determine the possible values of
m and » and describe how they depend oa 3.

16.40 Let y be a positively oriented circle with center 0 and radivs <2x. Ifais complex
ard # is an integer, let .

dz.

Prove that

I,y =93 - a Lay= -1, and o) =0 ifg> 1.
Calculate I{—n, @) in terms of Bernoulli polynomials when n = 1 (see Exercise 9.38).
16.41 This exercise requests some of the details of the proof of Theorem 16.38., Joet

n—1

glz) = 3 &I f(2) = g)fe™ - 1),

r=0
where @ and # are positive integers with na even. Prove that:
a) glz + 1) — glz) = e™eine2®iz _ 33y a1 20l
by Res;_; f(2) = gl0)/(2xi),
€} The real part of i(t + Re™* + r)¥ is —(V2UR + R® + V2rR),

One-to-one analytic functions
16.42 Let § be an open subset of C and assume that f is analytic and one-to-one on 5.
Prove that:

a) f(z) # Oforeach z in S. (Hence f'is conformal at each point of 5.)

b) If g is the inverse of /, then g is analytic on f(S) and g'w) = U {g(w)) if

w e f(5).

1643 Let f: C — C be analytic and one-1c-one on C. Prove that #/{z) = az + 5, where
2 # 0. What can you conclude if /'is one-to-one on C* and analytic on C* except possibly
for a fnite namber of poles?

16,44 If f and g are Mobius transformations, show that the composition - g is also a
Mobius transformation,

16.45 Describe geometrically what happens o a point z when it is carried into f(2) by the
following special Mobius transformations:

ayfizy=z+ b {Translation).

b) f(z) = az, where a > O (Stretching or contraction),
) fiz) = e*z, where g isreal  (Rotation).

d} fz) = 1)z {Inversion).

16.46 If ¢ # O, we bave
aztb_a,  bc-ad

cz+d- ¢ elez + d)'

Hence every Mibius transformation can be expressed as a composition of the special cases
described in Exercise 16,45, Use this fact to show that M&bius transformations carry
circles into circles (where straight lines are considered as special cases of circles).

16.47 a) Show that all M&bius trapsformations which map the vpper half-plane T =
{x + i:y = 0} onto the closure of the disk B(0; 1) can be expressed in the
form f(z) = 'z — a){z — &), where xisrealand g€ T

b) Show that @ and « can always be chosen to map any three given points of the
real axis onto any three given points on the unit circle.
16.48 Find all M8bius transformations which map the right haif-plane
S=fx+p:x= 0}
onto the closure of B{0; 1).
16.49 Find all MGbius transformations which map the closure of B{0; 1) onto itseif.
16.50 The fixed points of 2 M&bius transformation

azt b
f&)-cs+d

are those points z for which f(z)} = z. Let D = {d — a¥® + 4bec.
2) Determine alt fixed points when ¢ = 0,

b) If ¢ # 0 and D 3 0, prove that / hag exactly 2 fixed points z, and z, (both
finitej and that they satisfy the equation

(ad — be # 0)

f(Z}—zl=Re“z"z’, where R > 0 and # is real,
f(z) — z» Z— Iz
c) If ¢ # 0 and D = 0, prove that f has exactly one fixed point z, and that it
satisfies the equation
1 i

+ C for some C # 0.

f(z)—zl— z— 1z
d) Given any Mdbius transformation, investigate the successive images of a given
point w. That is, let
wy = f{w}), Wa =.f{wl)s cemy Wy S_{{W,_.l}, ceny
and study the behavior of the sequence {w,}. Consider the special case 4, b, ¢, &
real, ad — be = 1.

MISCELLANEOUS EXERCISES

16.51 Determine all complex z such that

z= i i eltllzfn.
A= k=t
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1652 I Az) = 37014 a,2" is an entire function such that | f{re')| = Me™ forall r > 0,
where M > 0 and & > 0, prove that

eqlk
4l = ey
16,53 Assume [ is analytic on a deleted neighborhood B(0; a). Prove that lim,_,o F(2)

exists (possibly infinite) if, and only if, there exists an integer 7 and a function g, analytic
on B(0; a), with g{0) ¥ 0, such that f(z) = z%({z) in B(D; ).

16.54 Let p(z) = 3 j.; a,2* be a polynomial of degree n with reai coefficients satisfying

forn > 1,

Qg > 8y > voa > Ay > a8, » 0
Prove that p(z) = 0 implies |z] > 1. Hinr. Consider (1 — 2)p(z).

16.55 A function £, defined on a disk B(a; r), is said to have a zéro of infinite order at 2 if,
forevery integer k > 0, there is a function g,, analytic at g, such that f(2) = (z — a¥g (=)
on Bla: r). If fhas a zero of infinite order at a, prove that / = 0 everywhere in Biz; r).

16.56 Prove Morera's theorem: Jf [ is continuous an an apen region S in € and if I, f=0
Jor every polygonal circuit v in S, then f is analytic on . rim
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INDEX OF SPECIAL SYMBOLS

€, £, belongs to (does not belong to), 1, 32

<, is a subset of, 1, 33

R, set of real numbers, 1

R*, R, set of positive (negative) numbers, 2

{x: x satisfies 7}, the set of x which satisfy property P, 3, 32
{a, b), [a, b, open (closed) interval with endpeints 2 and b, 4
[a, 8), {a, ], half-open intervals, 4

(2, + ), [a, + o}, (— o, a), {— w, a], infinite intervals, 4
ZY, set of positive intepers, 4

Z, set of all integers (positive, negative, and zere), 4

{), set of rational numbers, 6

max §, min §, largest (smallest) element of S, 8

sup, inf, supremum, (infimumy), 9

[x], greatest integer <x, 11

R*, extended real-number system, 14

C, the set of complex numbers, the complex plane, 16
C*, extended complex-number system, 24

A x B, cartesian product of 4 and B, 33

F(S), image of § under F, 35

F: 8 = T, function from S to T, 35

{F.}, sequence whose nth term is F,, 37

U, v, union, 40, 41

N}, n, intersection, 41

B — A, the set of points in B but not in A4, 41
F(Y), inverse image of ¥ under £, 44 (Ex. 2.7), 81

R*, n-dimensional Euclidean space, 47

{X¢s . -« y X} point in R7, 47

lx}, norm or length of a vector, 48

o, kth-unit coordinate vector, 49

B(a), B(a; r), open n-ball with center a, {radius r), 49
int §, interier of S, 49, 61

{a, b), [a, b}, n-dimensional open (closed) interval, 50, 52
8, closure of §, 53, 62

§’, set of accumulation points of §, 54, 62

{M, d), metric space M with metric d, 60

481



482 Index of Special Symbols Index of Speein) Symbols
d(x,y), distance from x to y in metric space, 60 det [a,;], determinant of matrix [a,,], 367
By la; r}, ball in metric space M, 61 J;, Jacobian determinant of f, 368 )
d8, boundary of & set S, 64 f e ', the components of f have continuous first-crder partials, 371
Jim.» Jim , right- (left-Jhand limit, 93 J' Fx) dx, multiple integral, 389, 407
J(c+), f(e—), right- (left-Yhand limit of f at ¢, 93 ‘ f re
Q,(T), oscillation of £ on a set T, 98 (Ex. 4.24), 170 ' £(S), €(5), inner (outer) Jordan content of S, 396

F'(e), derivative of fat ¢, 104, 114, 117 J £, contour integral of f along y, 436
Y

,{x), oscillation of fat a point x, 98 (Ex. 4.24), 170 | «(5), Jordan content of §, 356
D, 1, partial derivative of f with respect to the 4th coordinate, 115 |
! Afa; ry, ry), annulus with center &, 438

DB, . 7, second-order partial derivative, 116

Pla, b], set of all partitions of [a, &}, 128, 141 n(y, z), winding number of a circuit y with respect to z, 443
Vy» total variation of /, 129 : B'(a), B'(a; r), deleted neighborhood of 2, 457

A, length of a rectifiable path f, 134 ; Res f(z), residue of f at a, 459

S(P, f, a), Riemann-Sticltjes sum, 141 -

f& R(@) on [a, b], fis Riemann-integrable with respect 1o o on {a, b] 141
fe Ron[a, b], fis Riemann-integrable on [a, 4], 142 B
w / on [a, b, o is increasing on [a, &], 150 ' ;
U(P, £, o), L(P, f, o), upper (lower) Stieltjes sums, 151

lim sup, lirait superior (upper limit), 184

lim inf, limit inferior {lower limit), 184

a, = ), u, = o(b,), big oh {little oh) notation, 192

Lim. f, = £, {£.} converges in the mean to f, 232

"=

f& C=, fhas derivatives of every arder, 241

a.e., almost everywhere, 172

F 7 fae on §, sequence {f,} increases on § and converges to f a.e. on §, 254
S(I), set of step functions on an interval Z, 256

U1, set of upper functions on an interval 7, 256

L(F), set of Lebesgue-integrable functions on an interval 7, 260

It F, positive (negative) part of a function £, 261

M(I}, set of measurable functions on an interval 7, 279

Xg, characteristic function of §, 289

#(8), Lebesgue measure of $, 290

(f, g), inner product of functions fand g, in L), 294, 295

|71, £2-norm of £, 294, 295

L3(F), set of squarc-integrable functions on 7, 294
f#* g, convolution of fand g, 328 :
f’{c; 1), dircctional derivative of £ at ¢ in the direction u, 344 ,
T, f'{c}, total derivative, 347

V7, gradient vector of f, 348

m{T), matrix of 2 linear fimction T, 350
DA(c), Jacobian matrix of f at ¢, 351

L{x, y), line segment joining x and y, 355




Abel, Neils Henrik, (1802-1829), 194, 745,
248
Abel, limit theoremn, 245
partial summation formula, 94
test for convergence of scries, 194, 248
{Ex. 9.13}
Absolute convergence, of prodacts, 208
of series, 139
Absolate value, 13, 13
Absolutely continwowms fanction, 139
Accumulation point, 52, 62
Additive function, 45 (Ex. 2.22)
Axtditivity of Lebesgue measare, 291
Adbeyent point, 52, 62
Alpebeaic mumber, 45 (Ex. 2.15)
Almost everywhere, 172, 393
Analytic function, 434
Annulus, 438
Approximation theorem of Weierstrass,
an
Arc, 88, 435
Archtmndean property of real nunbers, 10
Arz length, 134
Arcwise connected set, 88
Area (content) of a plane region, 396
Argand, Jean-Robent  (1768-1822), 17
Argument of mmplex number, 23
Arithmetic mean, 205
Arzeld, Cesare (1847-1912), 228, 273
Arzeld’s theorem, 228, 273

Associative law, 2, 16

Axioms for real nombers, 1, 2, 9

Ball, in a metric space, 61
in R", 49
Basis vectors, 4%
Bernonlli, James (1654-1705), 251, 338,
478
Bernoulli, pumbers, 231 (Ex. 9.38)
periodic fanctions, 338 (Ex_ H1.I8)
polynomials, 251 (Ex. 9.38), 478 (Ex.
16.40)

INDEX

mw;zésam Natanovic (1880~ ),

Bemstein's theovem, 242
Bessel, Friedrich Wilbelm (1784-1846),
X9, 475
Besse] function, 475 {Ex. 16.21)
Bessel incquality, 309
Beta fomction, 331
Bimary system, 225
Binomial sexies, 244
Bolzzao, Bermard  (1781-1848), 54, 85
Bolzano’s theorem, 85
Bolzano-Weserstrass theorem, 54
Bonnet, Ossisn  (1819-1892), 165
Bonnet's theorem, 165
Borel, Emile (1871-1938), 58
Bound, greatest lower, 9
feast uppes, 9

Cantor, Georg  (1845-1918), 8, 32, 56, 67,
18, 112

Cantor intersection theorem, 56

Cantor-Bendixon thearem, 67 (Ex. 3.25)

Cantor set, 180 (Ex. 7.32)

Cardiral number, 38

Carleson, Lennart, 312

Cartesian product, 33

Casmaﬁégt;imm theorem, 475 (Ex.
1

Cauchy, Augmstin-fous  (1789-1857), 14,
73, 118 177, 183, 207, 222



486 Index

Cauchy condition,
for products, 207
for sequences, 73, 183
for series, 186
for uniform convergence, 222, 223
Cauchy, inegualities, 451
integral formula, 443
integral theorem, 439
principal value, 277
product, 204
residue theorem, 460
sequence, 73
Cauchy-Riemann equations, 118
Cauchy-Schwarz  inequality, for inner
products, 294
for imtegrals, 177 (Ex. 7.16), 294
for sums, 14, 27 (Ex. 1.23), 30 (Ex, 1.48)
Cesaro, Emeste  {1859-1906), 205, 320
Cesaro, suwm, 205
summability of Fourier series, 320
Chain rule, complex functions, 17
real functions, 107
matrix form of, 353
vector-valved functions, 114
Change of variables, in a Lebesgue integral,
262
in a multiple Lebesgue integral, 421
in a Riernann integral, 164
in a Riemann-Stieltjes integral, 144
Characteristic function, 289
Clircuit, 435
Closed, ball, 67 (Ex. 3.31}
curve, 435 -
interval, 4, 52
mapping, 99 (Ex. 4.32)
regiom, 90
set, 53, 62
Closure of a set, 53
Commutative law, 2, 16
Compact set, 59, 63
Comparison test, 190
Complement, 41
Complete metric space, 74
Complete orthonormal set, 336 (Ex. 11.6)
Completeness axiom, 9
Complex number, 15
Complex plane, 17
Component, interval, 51
of a metric space, 87
of a vector, 47
Composite function, 37

Condensation paint, 67 {Ex. 3.23)
Conditional convergent series, 189
rearrangement of, 197
Conformal mapping, 471
Conjugate complex number, 28 (Ex. 1.29)
Connected, metric space, 86
set, 86
Content, 3196
Continuity, 78
uniform, 90
Continuously differentiable function, 371
Contour integral, 436
Contraction, constant, 92
fixed-point theorem, 92
mapping, 92
Convergence, absolate, 189
bounded, 227
conditional, 189
in a metric space, 70
mean, 232
of a product, 207 5
of a sequence, 183
of a series, 185
pointwise, 218
uniform, 221
Converse of a relation, 36
Convex set, 66 (Ex, 3.14)
Convolution integral, 328
Convolution theorem, for Fourier trans-
forms, 329
for Laplace transforms, 342 (Ex. 11.36)
Coordinate transformation, 417
Countable additivity, 291
Countable set, 39
Covering of a set, 56
Covering theorem, Heine-Rorel, 58
Lindelsf, 57
Cramer’s rule, 367
Curve, closed, 435
Jordan, 435
piecewise-smooth, 435
rectifiable, 134

Daniell, P, J. (1889-1946), 252
Darboux, Gaston (1842-1917), 152
Decimals, 11, 12, 27 (Ex. 1.22)
Dedekind, Richard (1831-1916), 8
Deleted neighborhood, 457

De Moivre, Ham  (1667-1754), 20
De Moivre’s theorem, 29 (Ex. 1.44)

Imdex . 487

Dense set, 68 (Ex. 3.32)
Denumergble set, 39
Derivative(s), of complex functions, 117
directional, 344
partiaf, 115
of real-valued functions, 104
total, 347
of vector-valued funciions, 114
Derived set, 54, 62
Determinant, 367
Difference of two sets, 41
Diifferentiation, of integrals, 162, 167
of sequences, 229
of series, 230
Dini, Ulisse  {1845-1918), 248, 312, 319
Dini’s theorem, on Fourier series, 319
on wniform convergence, 248 (Ex. 9.9}
Directional derivative, 344
Dirichlet, Peier Gustav Lejeune {(1805-
1859), 194, 205, 213, 230, 317, 464
Dirichlet, integrals, 314
kernel, 317
product, 205
serfes, 215 (Ex. 8.34)
Dirichlet’s test, for convergence of series,
194
for uniform convergence of series, 230
Disconnected set, 36
Discontinuity, 93
Discrete metric space, 61
Disjoint sets, 41
collection of, 42
Disk, 49
of convergence, 234
Distance function (metric), 60
Distribuative law, 2, 16
Divergent, product, 207
sequence, 183
series, 185
Divisor, 4
greatest commen, 5
Domain (open region), %0
Domain of a function, 34
Dominated convergence theorem, 270
Dot product, 48
Double, integral, 390, 407
Double sequence, 199
Double series, 200 .
D Bois-Reymond, Paul (18311889}, 31
Doplication formula for the Gamma
function, 341 (Ex. 11.31)

e, irrationality of, 7
Element of a set, 32
Empty set, 33
Ecuivalence, of paths, 136
relation, 43 (Ex. 2.2}
Essential singularity, 458
Euclidean, metric, 48, 61
space R*, 47
Euclid’s Jemma, 5
Euler, Leomard (1707-1783), 149, 192,
209, 365
Euler’s, constant, 192
product far {(s), 209
summation formuls, 149
theorem om homogeneous functions, 365
(Ex. 12.18)
Exponential form, of Fourier integral
theorem, 325
of Fourier series, 323
Exponential function, 7, 19
Extended complex plane, 25
Extended real-number system, 14
Extension of a function, 35
Exterior (or outer region) of a Jordan curve,
447
Extremum problems, 375

Fatou, Pierre  (1878-1929), 299
Fatou's lemma, 299 (Ex. 10.8)
Fejér, Leopold  {1880-1959), 179, 312, 320
Fejér's theorem, 179 (Ex. 7.23), 320
Fekete, Michel, 178
Field, of complex numbers, 116

of real numbers, 2
Finite set, 38
Fischer, Emst  (1875-1954), 297, 311
Fixed poiat, of a function, 92
Fixed-point theorem, 92
Fourier, Joseph (1758-1830), 306, 309,

312, 324, 326
Fourier coefficieat, 309
Fourier integral theorem, 324
Fourier series, 309
Fourier transform, 326
Fubini, Guido  (1879-1943), 405, 410, 413
Fubini's theorem, 410, 413
Function, definition of, 34
Fundamental theorem, of algebra, 185, 451,
475 (Ex. 16.15)
of integral calculus, 162



438 Index

Gaimina funiction, continuity of, 282
definition of, 277
derivative of, 284, 303 (Ex. 10.2%9)
duplication formula fox, 341 (Ex. 11.31)
functional equation for, 278
series for, 304 (Ex, 10.31)

Gauss, Karl Friedrich ({1777-185%5), 17,

454

Gaussian sum, 464

Geometric series, 190, 19§

Gibbs’ phenomenon, 338 (Ex, 11, 19)
Global property, 79

Goursat, Bdouard  (1858-1936), 434
Gradient, 348

Gram, Jergen Pedersen (18501916}, 335
Gram-Schmidt process, 335 (Ex. 11.3)
Greatest lower bound, 9

Hadamatd, Jacgues  (1865-1963), 386
Hadamard determinant theorem, 386 {Ex.

13,16)

Half-open interval, 4

Hardy, Godirey Harold (1877-1947), 30,
206, 217, 251, 312

Harmonic seriex, 186

Heine, Eduard (18211881}, 58, 91, 312

Heine-Borel covering theorem, 58

Heine's theorem, 91

Hobson, Ernest William (1856-19313),
312, 415

Homeomorphism, 34

Homogepeous function, 364 (Ex. 12,18)

Homotopic paths, 440

Hyperplane, 394

Identity theorem for analytic functions, 452
Image, 35
Imaginary part, 15
Imaginary unit, 13
Implicii-function theorem, 374
Improper Riemann integral, 276
Increasing function, 94, 150
Increasing sequence, of functions, 254
of numbers, 71, 185
Independent set of functions, 335 (Ex. 11.2)
Induction principle, 4
Inductive set, 4
Inequality, Bessel, 309
Cauchy-Schwarz, 14, 177 (Ex. 7.18), 294
Minkowski, 27 (Ex. 1.25)
triangle, 13, 294

Infimum,
Infinite, dcmrahve, IOB
produm, 206
series, 185
set, 38
Infinity, in C*, 24
R*, 14
Inner Jordan content, 396
Inner product, 48, 294 :
Integers, 4
Integrable function, Lebesgue, 260, 407
Riemann, 141, 389
Integral, equation, 151
test, 191
transform, 326
Integration by parts, 144, 278
Integrator, 142
Interior (or inner region) of a Jordan curve,
M7

Interior, of a set, 49, 62

Interior point, 49, 61 A
Intermediate-value theoreny, fm' continuous
functions, 85

for derivatives, 112
Intersection of sets, 41
Interval, in R, 4
in R%, 50, 52
Inverse function, 36
Inverse-function theorem, 372
Inverse image, 44 (Ex. 2.7), 8}
Inversion formula, for Fourier transforms,
327
for Laplace transforms, 342 (Bx, 11.38),
468

Irrational mumbers, 7
Isolated point, 53
Isolated singularity, 458
Isolated zero, 452
Isometry, 84

Iterated integral, 167, 287
Iterated limit, 199
Tterated series, 202

Jacobi, Cart Gustav Jacob (1804-1851),
351, 368
Jacobian, determinant, 368
matrix, 35
Jordan, Camille (1838-1922), 312, 319,
396, 435, 447
Jordan, arc, 435
content, 396

S el
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curve, 435

curve theorem, 447

theorem on Fourier series, 319
Jordan-measurable set, 396
Jump, discontinuity, 93

of a function, 93

Kestelman, Hyman, 165, 182
Kronecker delta, 4y, 385 (Ex. 13.6)

L2anorm, 293, 295
Lagrange, Joseph Louis (1736-1813), 27,
30, 330
Lagrange, identity, 27 (Ex. 1.23), 3¢ (Bx.
1.48), 380
multipliers, 380
Landay, Edmond (1877-1938), 31
Laplace, Pierre Simon  (1749-1827), 326,
342 468
Laplace transform, 326, 342, 468
Laurent, Pierre Alphonse (1813-1854),
455
Laurent expansion, 455
Least upper bourd, 9
Lebesgue, Henri (1875-1941), 141, 171,
260, 270, 273, 290, 292, 312, 391, 405
bounded convergence theorem, 273
criterion for Riemann integrability, 171,
m
dominated-convergence theorem, 270
integral of complex fanctions, 292
integral of real functions, 260, 407
measure, 290, 408
Legendre, Adrien-Marie (1752-1833), 336
Legendre polynomials, 336 (Ex. 11.7)
Leibniz, Gotifried Wilhelm (1646-1716),
121
Leibniz’ formula, 121 {(Ex. 5.6)
Length of a path, 134
Levi, Beppo (1875-1961), 265, 267, 268,
407

Levi monotone convergence theorem, for
sequences, 267
for series, 268
for step functions, 265
Limit, inferior, 184
in a metric space, 71
superior, 184
Limit function, 218
Limit theorem of Abel, 245
Lindetof, Emst  (1870-1946), 56

Lindelof covering theorem, 57

Linear function, 345

Linear space, 48

of functions, 137 (Ex, 6.4)

Line segment in R”, §8

Lincarly dependent set of functions, 122
{Ex. 5.9)

Liouville, Joseph (1809-1882), 451

Liouville's theorem, 451

Lipschitz, Rudolph  (1831-1904), 121,137,
312, 316

Lipschiiz condition, 121 (Ex. 5.1}, 137 (Ex.
6.2), 316

Littlewood, John Edensor (1885- %
312

Local extremum, 98 (Ex. 4.25)

Lacal property, 79

Localization theorem, 318

Logarithm, 23

Lower bound, &

Lower integral, 152

Lower limit, 184

Mapping, 35
Matrix, 350
product, 351
Maximum and minimum, 83, 375
Maximum-modulus principle, 453, 454
Mean convergence, 232
Mean-Value Theorem for derivatives,
of real-valued functions, 110
of vectorvalued functions, 355
Mean-Value Theorem for integrals,
imultiple integrals, 401
Riemann integrals, 160, 165
Riemann-Sticltjes integrals, 160
Measurable function, 279, 407
Measurable set, 290, 408
Measure, of a set, 290, 408
zero, 169, 294, 391, 405
Mertens, Franz  (1840-1927), 204
Mertens' theorem, 204
Metric, 60
Metric space, )
Minimum-modulus principle, 454
Minkowski, Hermann {1864-1909), 27
Minkowski’s inequality, 27 (Ex. 1,25}
Miibins, Augustus Ferdinand {1790~
1868), 471
Misbius transformation, 471
Modutus of a complex number, 18
Monotonic function, 94
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Monotonic sequence, 185
Multiple integral, 389, 407
Multiplicative function, 216 {Ex. 8.45)

Neighborhood, 49

of infinity, 15, 25
Niven, Ivan M. (1915~

7.33)

n-measurs, 408
Nonempiy set, 1
MNonmeasurable function, 304 {Ex. 10.37)
Nonmeasurable set, 304 (Ex. 10.36)
Nonnegalive, 3
Norm, of a function, 102 (Ex. 4.66)

of a partition, 141

of a vector, 48

), 180 (Ex.

@, o, oh notation, 192
One-to-one function, 36
Onto, 35
QOperator, 327
Open, covering, 56, 63

interval in R, 4

mterval in R”, 50

mapping, 370, 454 -

mapping theorem, 371, 454

set in a metric space, 62

set in R", 49
Order, of pole, 458

of zero, 452
Ordered a-tuple, 47
Ordered pair, 33
Order-preserving function, 38
Ordinate set, 403 (Ex. 14.11}
Orientation of a circuit, 447
Orthogonal system of functions, 306
Orthonormal set of functions, 306
Oscillation of a function, 98 (Ex, 4.24), 170
Outer Jordan content, 396

- Parillddogram law, 17
Parseval, Mark-Antoine (circa 1776~
1835), 308, 474
Parseval’s formula, 309, 474 (Ex. 16.12)
- Partial derivative, 115
of higher order, 116
Partial sum, 185
Partial summation formula, 194
Partition of an interval, 128, 141
Path, 88, 133, 435
Peano, Giuseppe (1858-1932), 224

Perfect set, 67 (Fx. 3.25)
Periodic function, 224, 317
Pi, =, irrationality of, 180 (Ex. 7.33)
Piecewise-smooth path, 435
Point, in a2 metric space, 60
in R*, 47
Pointwise convergence, 218

Poisson, Siméon Denis {1781-1840), 332,

413 .

Poisson, integral formula, 473 (Bx. 16.5)

samimation formula, 332
Polar coordinates, 20, 418
Polygonal curve, 89
Polygonally connected set, 89
Polynomial, 80

in two variables, 462

ZET0S of, 451, 475 (Ex. 16.15)
Power series, 234
Powers of complex numbers, 21
Primye number, §
Prime-number theorem, 175 (E:x. ? 10}
Principal part, 456
Projection, 394

Quadratic form, 378

Quadric: surface, 383

Quotient, of complex numbers, 16
of real numbers, 2

Radius of convergence, 234

Range of a function, 34

Ratio test, 193

Rational function, 81, 462

Rational nymber, 6

Real number, 1

Real part, 15

Rearrangersent of series, 196

Reciprocity law for Gauss sums, 464

Rectifiable path, 134

Reflexive relation, 43 (Bx. 2.2}

Region, 89

Relation, 34

Removable discontinuity, 93

Removable singularity, 458

Residue, 459

Residue theorem, 460

Restriction of a function, 35

Riemann, @Georg Friedrich Berpard
(1826-1866), 17, 142, 153, 192, 209,
312, 313, 118, 389 475

condition, 153

T P

Index -
integral, 142, 389 Subsequence, 38
localization theorem, 318 Subset, 1, 32
sphere, 17 Substntunon theorem for power m 233

theorem on singularities, 475 (Ex, 16.22)
zeta function, 192, 209
Riemann-Lebesgue lemma, 313
Riesz, Frigves (1880-1956), 252, 297, 305,
3
Riesz-Fischer theorem, 297, 311
Righthand derivative, 108
Righthand limit, 93
Rolle, Michel {1652-1719}, 110
Rolle’s theorem, 110
Root test, 193
Roots of complex numbers, 22
Rouché, Eugéne (1832-1910), 475
Rouché’s theorem, 475 {(Ex. 16.14)

Saddle point, 377
Scalar, 48
Schmidt, Erhard (1876-1959), 335
Schoenberg, Isaac J., (1903- ), 224
Schwarz, Hermann Amandus (1843-1921),
14, 27, 30, 122, 177, 294
Schwarzian derivative, 122 (Ex. 5.7)
Schwarz’s lemma, 474 (Ex. 16.13)
Second-derivative test for extrema, 378
Second Mean-Value Theorem for Riemann
integrals, 165

Semimetric space, 293
Separable metric space, 68 (Ex. 3.33)
Sequence, definition of, 37,
Set algebra, 40
Similar (equinumercus} sets, 38
Simple curve, 435
Simply connected region, 443
Singularity, 458

essential, 459

pole, 458

removable, 458
Slobbovian integral, 249 (Ex. 9.17)
Space-filling curve, 224
Spherical coordinates, 419
Square-integrable functions, 294
Stationary point, 377
Step function, 148, 406
Stereographic projection, 17
Stieltjes, Thomas Jan {1856-1894), 140
Stieltjes integral, 140
Stone, Marshall H.  (1903— ), 252
Strictly increasing function, 94

Sup norm, 102 (Ex. 4.66)
Supremum, 9

Symmetric guadratic form, 378
Symmettic relation, 43 (Ex. 2.2}

Tannery, Jules (1848-1910), 299 .
Tannery’s theorem, 299 (Ex. 107~
Tauber, Alfred (1866-circa 1947), 346
Tauberian theorer, 246, 251 (Ex, 8.37)
Taylor, Brook (1685-1731), 113, 241,
361, 449

Taylor's formula with remainder, 113

for functions of several variables, 361
Taylor’s series, 241, 449
Telescoping series, 185
Theta function, 334
Tonelli, Leonida (1885-1946), 415
Tonelli-Hobson test, 415
Topological, mapping, 83

property, 84
Topology, point set, 47
Total variation, 129, 178 (Ex. 7.20)
Transformation, 35, 417
Transitive relation, 43 (Ex. 2.2)
Triangle mequahty, 13, 19, 48, 60, 294
Trigonometric series, 312
Two-valued function, 36

Uncountable set, 39

Uniform bound, 221

Uniform continuity, 90

Uniform convergence, of sequences, 221
of series, 223

Uniformly bounded sequence, 201

Union of sets, 41

Unigue factorization theorem, 6

Unit coordinate vectors, 49

Upper bound, 8

Upper half-plane, 463

Upper function, 256, 406

Upper integral, 152

Upper limit, 184

Vallée-Poussin, C. J. de 1a  (1866-1962),
312
Value of g function, 34



97 Kndex

Varialion,. bounded, 128 Wronski, J. M. H. (1773-1833), 122

total, 129 Wronskian, 122 (Ex. 5.9)
Vector, 47
VYector-valued function, 77 Y, i 1
Volume, 388, 397 . oungagﬂlmm Henry (1863-1942), 252,
Well-ordering principle, 25 (Ex. 1.6) Zero measure, 169, 391, 405
Weierstrass, Karl (1815-1897), 8, 54,223,  Zero of an analytic fumction, 452

322, 4758 : . Zero vector, 48

approximation theorem, 322 Zeta function, Evler product for, 209

M-test, 223 integral representation, 278
Winding number, 445 series represeniation, 192
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