Total number of printed pages— 12

47 (1) BMAT 1.3

2010

BUSINESS MATHEMATICS

Paper: 1.3

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 & 2 and any five from the rest.

- 1. Choose the correct alternative : $1 \times 10 = 10$
 - (a) Which of the following collections can be defined as a set?
 - (i) All long rivers in the world
 - (ii) All books which are fun to read
 - (iii) All odd numbers < 100
 - (iv) None of these.

- (b) If the roots of the quadratic equation $ax^2 + bx + c = 0$ are equal then —
 - (i) $b^2 4ac = 0$
 - $(ii) \quad b^2 4ac > 0$
 - (iii) $b^2 4ac < 0$
 - (iv) Any of the above.
- If two rows (or columns) of a determinant are identical, the value of the determinant becomes —

 - (iv) Can't say.
- (d) If $log_3 27 + log_3 x = 4$; then x is

 - (ii) 2
 - (iii) 3
 - (iv) 4

- (e) In an LPP (i) Only the objective function is linear
 - Only the constraints are linear
 - (iii) The objective function as well as the constraints are linear
 - (iv) None of the above.
 - If TC, MC, AC and x represent the total cost, marginal cost, average cost and output respectively, then which of the following are true?

$$I. \qquad \frac{d}{dx}(TC) = MC$$

$$II. \quad \frac{TC}{x} = AC$$

$$III. \quad \int MC \ dx = TC$$

- (i) I and II
- (ii) II and III
- (iii) I and III
- (iv) I, II and III.

- (g) If f(x) = 3x + 5, g(x) = 2x + 9 and h(x) = 8x + 3, then which of the following is true?
 - (i) f(x) = g(x) at x = 3
 - (ii) f(x) = h(x) at x = 4
 - (iii) g(x) = h(x) at x = 2
 - (iv) None of these.
- (h) Which of the following equations has sum of the roots = $\frac{13}{6}$ and product of the roots = 1
 - (i) $3x^2 \frac{13}{6}x + 3 = 0$
 - (ii) $6x^2 13x 6 = 0$
 - (iii) $12x^2 26x + 12 = 0$
 - (iv) $x^2 + \frac{13}{6}x + 1 = 0$
- (i) Consider the following sets: $A = \{1\}, B = \{0\}, C = \{\}, D = \{1, 2, 3\}$ E[0, 1, 2], F[2, 3] G[3, 2], then which of the following is true?
 - (i) A & B are singleton sets

- (ii) B & C are null sets
- (iii) D & E are equal sets
 - (iv) F is a proper subset of G.
- (j) For the optimum solution of an LPP involving three variables, we can use
 - (i) Graphical method
 - (ii) Simplex method
 - (iii) Either (i) and (ii)
 - (iv) None.
 - 2. Answer the following: (any five) $2\times 5=10$
 - (a) Define odd function and even function with examples.
 - (b) Prove that $log_2 log_2 log_3 81 = 1$
 - (c) Find the middle term in the expansion of $\left(\frac{a}{x} + \frac{x}{a}\right)^{10}$.
 - (d) Prove that

$$\left[\frac{x^m}{x^n}\right]^{m+n} \times \left[\frac{x^n}{x^l}\right]^{n+l} \times \left[\frac{x^l}{x^m}\right]^{l+m} = 1$$

- (e) IF the total profit function is given by $L = Q^2 + 13Q + 78$; where Q is the output find average profit when Q = 3.
- (f) The second term of a GP series is 9 and the fifth term is 243; find the common ratio.
- (g) Solve $2^{x+3} + 2^{x+1} = 320$.
- 3. (a) If $a^x = b^y = c^z$ and $b^2 = ac$ then show that $\frac{1}{x} + \frac{1}{z} = \frac{2}{y}$
 - (b) Find the quadratic equation with $2 \sqrt{3}$ as one of its root.
 - (c) If $a^2 + b^2 = 7ab$ then show that $2\log(a+b) = \log a + \log b + 2\log 3$ 3
- (d) If one root of $x^2 px + q = 0$ is twice the other, show that $2p^2 = 9q$.
- 4. *(a)* Evaluate: . 2×4
 - (i) $\lim_{x \to 2} = \frac{x^2 5x + 6}{x^2 4x + 3}$

(ii)
$$\lim_{x \to \infty} = \frac{4x^3 + 5x - 1}{7x^3 - 3x^2 + 8x}$$

(iii)
$$\lim_{n \to \infty} = \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}$$

(iv)
$$\lim_{x \to 0} = \frac{1 - \sqrt{1 - x^2}}{x^2}$$

(b) The cost function C(x) of a product is given by —

given by
$$C(x) = 2000 - x$$
 when $x < 500$
= 1000 when $x = 500$
= $3000 - 2x$ when $x > 500$

Is C(x) continuous of x = 500.

Find derivative $\frac{dy}{dx}$: (any three) $2 \times 3 = 6$

(i)
$$y = \log x (3x^2 - 4x + 1)$$

(ii)
$$x = z^2$$
, $y = \frac{2}{z}$

(iii)
$$y = \left(x + \frac{1}{x}\right)^5$$

$$(iv) \quad y = \frac{\sqrt{x} - 1}{\sqrt{x} + 1}$$

A monopolist has a demand curve x = 106 - 2P and the average cost curve $AC = 5 + \frac{x}{50}$, where P is the price per unit output and x is the number of units of output. If the total revenue is TR = xP, determine the most profitable output and the maximum profit.

The average cost function AC for producing x unit of a commodity is $AC = \frac{60}{x} - 12 + 2x$. Find the level of output at which the total cost (TC) is minimum. Also find the minimum total cost.

- What do you mean by LPP? What are the basic assumptions of LPP? 2+4=6
 - Solve the LPP by graphical method Maximise $Z = 10x_1 + 15x_2$

subject to
$$2x_1 + x_2 \le 26$$

 $2x_1 + 4x_2 \le 56$
 $x_1 - x_2 \ge -5$
 $(x_1, x_2) \ge 0$

0

- (a) Find the term independent of x in the expansion $\left(3x^2 - \frac{1}{3x}\right)^9$
 - (b) Determine the coefficient of x^8 in the binomial expansion of $(2-x^2)^6$.
 - (c) Using binomial theorem, find the value of (1.02)⁵ correct to 3 places of decimal. shares of the two companies.

(d) Prove that $C_1 + 2C_2 + 3C_3 + \dots + nC_n = n \cdot 2^{n-1}$

- $4 \times 3 = 12$ Answer any three:
 - (a) Find the inverse of the matrix $\begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \\ 3 & 7 & 2 \end{pmatrix}$
 - Show that

(b) Show that
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{vmatrix} = (a-b)(b-c)(c-a)$$

letd.

- (c) Solve the following system of equations by elementary row operation method x+2y-2z=1, 3x+y+4z=17 5x-3y+z=2.
- of two companies A & B during the month of January and February 1990 and it also gives the amount invested by Mr. X during these two months for the purchase of shares of the two companies.

Month	~		
	Company and value per share		Total amount invested
	A	В	mvested
JAN	10	5	100
FEB	Q		125
F: 1 .		12	150

Find he number of shares of A and B purchased during both the months using Cramer's rule.

9. Answer any three:

4×3=12

(a) Mr. X repays a loan of Rs. 3250 by paying Rs. 20 in the first month and then he increases the payment by Rs. 15 every loan?

- (b) The sum of four terms in A.P. is 40 and the sum of their squares is 480. Find the numbers.
- (c) Find the sum of n terms of the series 4+44+444+...
- (d) If a, b, c are in A.P. and x, y, z are in G.P. then prove that

$$x^{b-c} \cdot y^{c-a} \cdot z^{a-b} = 1$$

10. (a) If
$$\phi(x) = \frac{x-1}{x+1}$$

then show that, $\frac{\phi(a) - \phi(b)}{1 + \phi(a) \cdot \phi(b)} = \frac{a-b}{1+ab}$.

(b) Draw the graph of the following function f(x) = |x|

- (c) In a hostel, out of 110 students, 80 takes tea, 50 takes coffee and 25 takes both tea and coffee. How many students take neither tea nor coffee?
- (d) Verify by using Venn diagram $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

atd.

11. (a) Integrate the following: (any three) $3\times 3=9$

(i)
$$\int \frac{5x^4 - 6x^2 + 7x - 1}{\sqrt{x}} dx$$

(ii)
$$\int x.e^x dx$$

(iii)
$$\int \frac{dx}{\sqrt{7x+2}}$$

$$(iv) \int \frac{3x+5}{x^2+x-12} \, dx$$

(b) If the marginal revenue function is Rs(7x+9) where x denotes the number of units sold, find the total revenue function and the demand function.

(take p to be price per unit).

3