2014

BUSINESS MATHEMATICS

Paper: 1.3

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer Question Nos. 1 and 2 and any five from the rest.

1. Choose the correct alternative : $1 \times 10=10$

- (a) The characteristic of logarithm of the number 45.61 is
 - (i) 1
 - (ii) 2
 - (iii) 0
 - (iv) 3.

Contd.

- The 5th term of the series 1, 3, 9, 27,
 - 81

 - (iii) 27
 - (iv) 2.
- (c) If $log_3 27 + log_3 x = 4$; then x is

 - (ii) 2
 - (iii) 3
 - (iv) 20.
- (d) Which of the following equations has sum of the roots = $\frac{13}{6}$ and product of the roots = 1 ?
 - (i) $3x^2 \frac{13}{6}x + 3 = 0$
 - (ii) $6x^2 13x + 6 = 0$
 - (iii) $12x^2 26x + 12 = 0$
 - (iv) $x^2 + \frac{13}{6}x + 1 = 0$.

- (e) If f(x) = 4x + 8, g(x) = 2x + 10h(x) = x + 2 then which of the following is true? bodioM Isoidas (1)
 - (i) f(x) = g(x) at x = 1
 - (ii) f(x) = h(x) at x = 4
 - (iii) g(x) = h(x) at x = 2
 - (iv) None of the above.
 - If two rows (or columns) of a determinant are identical, the value of the determinant becomes
 - (i) 0 mpr 2 mis 15 mp 24

 - (iii) 2
 - (iv) can't say.

- (g) For the optimum solution of an LPP involving three variables, we can use
 - (i) Graphical Method
 - (ii) Simplex Method
 - (iii) Either (i) or (ii)
 - (iv) None.
- (h) G.M. of 2 and 18
 - (i) 6
 - (ii) 4
 - (iii) 2
 - (iv) 0.
- (i) A pure quadratic equation is of the form
 - $(i) \qquad ax^2 + bx + c = 0$
 - $(ii) \quad ax^2 + c = 0$
 - (iii) $ax^2 + bx = 0$
 - (iv) bx + c = 0.

- (j) The value of $\int_{2}^{3} \log x \, dx$ is
 - (i) $\log \frac{3}{2}$
 - (ii) log 3
 - (iii) log 2 magning that the contraction of the con
 - (iv) $3\log 3 2\log 2 1$.

Answer the following: (Any five)

 $2 \times 5 = 10$

- (a) Define even function and odd function.
- (b) The 3rd and 6th terms of a series in G.P. are 3 and 81 respectively, find the first term and common ratio.
- (c) Find the 7th term is expansion of $\left(4x \frac{1}{25x}\right)^{10}$
- (d) Find the base about which logarithm of 64 is 4.

- (e) The first term of an A.P. is 6 and common difference is 2, find the 15th term.
- The total cost C(x) of a firm is $C(x) = 0.0005x^3 0.7x^2 30x + 3000,$ where x is the output. Determine average cost (AC) and marginal cost (MC).
- 3. (a) The difference between a proper fraction and its reciprocal is $\frac{9}{20}$. Find the fraction.
 - (b) If one root of the quadratic equation $x^2 px + q = 0$ be twice the other, show that $2p^2 = 9q$.
 - (c) If x, y, z be the pth, qth and rth terms respectively of a series in G.P.; show that

$$x^{q-r} \cdot y^{r-p} \cdot z^{p-q} = 1$$

(d) Simplify:

$$\frac{\log\sqrt{27} + \log 8 + \log\sqrt{1000}}{\log 120}$$

(a) Evaluate:

 $2 \times 4 = 8$

(i)
$$\lim_{x\to 2} \frac{x^2 - 5x + 6}{x^2 - 7x + 10}$$

(ii)
$$\lim_{x \to 0} \frac{a - \sqrt{a^2 - x^2}}{x^2}$$

(iii)
$$\lim_{x \to \infty} \frac{2x^2 + 7x + 5}{4x^2 + 3x - 1}$$

(iv)
$$\lim_{x \to 0} \frac{\lim 2x + 2\lim x}{x}$$

(b) A function f is defined by

$$f(x) = \frac{\sin^{-1} x}{x} + e^x \qquad x \neq 0$$

$$= 2 \qquad x = 0$$

Show that f is continuous at x = 0

4

- 5. (a) Find derivative $\frac{dy}{dx}$: (Any three) 2×3
 - $(i) \quad y = \frac{x-1}{x+1}$
 - $(ii) \quad y = 5^x x^5$
 - (iii) $y = (2x+5)^4$
 - (iv) $y = (x-1)^2(x+2)$
 - (b) The total cost of output x given by $C = \frac{2}{3}x + \frac{35}{2}$ Find:
 - (i) cost when output is 4 units
 - (ii) average cost of output of 10 units
 - (iii) Marginal cost when output is 3 units.
- 6. (a) Solve the following L.P.P. graphically Minimize

$$Z = 20x + 40y$$
 Subject to

$$6x + y \ge 18$$

$$x + 4y \ge 12$$

$$2x + y \ge 10$$

$$x, y \ge 0$$
.

47 (1) BMAT 1·3/G

6

- What do you mean by LPP? Give the advantage and disadvantage of LPP.
- (a) In the expansion $\left(3x \frac{1}{x^2}\right)^{15}$ find the term free from x.
- (b) Find the co-efficient of x^8 in $(1+x^2)^{10}$ 3
- (c) Expand the following: $(1+x)^4$ 3
- (d) Prove that the middle term of

$$\left(x + \frac{1}{2x}\right)^{2n} \text{ is}$$

$$\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!}$$

(a) Find the inverse of the matrix

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$

(b) Show that

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (b-c)(c-a)(a-b)(a+b+c)$$

(c) Solve by Cramer's Rule

$$2x+y+z=1$$

$$x-y+2z=-1$$

$$3x+2y-z=4$$

9. (a) Find the sum of n terms of the following series

- (b) The sum of three integers in A.P. is 21 and their product is 280, find them.
- (c) A man borrows Rs. 4,500 and promises to pay back in 30 instalments, each of value Rs. 10 more than the last. Find the 1st and last instalments.

(a) If $f(x) = \frac{3x+2}{3x-2}$ show that

$$\frac{f(x)+1}{f(x)-1} = \frac{3x}{2}$$

(b) Draw the graph of the following function

$$f(x) = |x|$$

- (c) In a class of 100 students, 45 students read physics, 52 students read chemistry and 17 students read both the subjects. Find the number of students who study neither physics nor chemistry.
- (b) For any two sets A and B, prove that

$$(A \cup B)' = A' \cap B'$$

- 1. (a) Integrate the following: $3\times 3=9$
 - (i) $\int xe^x dx$

(ii)
$$\int \frac{\log(\tan^{-1}x)}{1+x^2} dx$$

$$(iii) \int_{2}^{4} \frac{x}{1+x^2} dx$$

(b) The marginal cost of producing x dozens of pencil is Rs. $(5x^2-4x+12)$. If the cost of producing 2 dozens pencil is Rs. 200, find the total cost functions.

47 (1) BMAT 1·3/G