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Preface

This book is the outcome of my teaching and research on dynamical systems,
chaos, fractals, and fluid dynamics for the past two decades in the Department of
Mathematics, University of Burdwan, India. There are a number of excellent books
on dynamical systems that cover different aspects and approaches to nonlinear
dynamical systems and chaos theory. However, there lies a gap among mathe-
matical theories, intuitions, and perceptions of nonlinear science and chaos. There is
a need for amalgamation among theories, intuitions, and perceptions of the subject
and it is also necessary for systematic, sequential, and logical developments in the
subject, which helps students at the undergraduate and postgraduate levels.
Teachers and researchers in this discipline will be benefitted from this book.
Readers are presumed to have a basic knowledge in linear algebra, mathematical
analysis, topology, and differential equations.

Over the past few decades an unprecedented interest and progress in nonlinear
systems, chaos theory, and fractals have been noticed, which are reflected in the
undergraduate and postgraduate curriculum of science and engineering. The
essence of writing this book is to provide the basic ideas and the recent develop-
ments in the field of nonlinear dynamical systems and chaos theory; their mathe-
matical theories and physical examples. Nonlinearity is a driving mechanism in
most physical and biological phenomena. Scientists are trying to understand the
inherent laws underlying these phenomena over the centuries through mathematical
modeling. We know nonlinear equations are harder to solve analytically, except for
a few special equations. The superposition principle does not hold for nonlinear
equations. Scientists are now convinced about the power of geometric and quali-
tative approaches in analyzing the dynamics of a system that governs nonlinearly.
Using these techniques, some nonlinear intractable problems had been analyzed
from an analytical point of view and the results were found to be quite interesting.
Solutions of nonlinear system may have extremely complicated geometric structure.
Historically, these types of solutions were known to both Henri Poincaré
(1854-1912), father of nonlinear dynamics, and George David Brikhoff
(1884-1944) in the late nineteenth and early twentieth centuries. In the year 1963,
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viii Preface

Edward Lorenz published a paper entitled “Deterministic Nonperiodic Flow” that
described numerical results obtained by integrating third-order nonlinear ordinary
differential equations, which was nothing but a simplified version of convection
rolls in atmosphere. This work was most influential and the study of chaotic sys-
tems began. Throughout the book, emphasis has been given to understanding the
subject mathematically and then explaining the dynamics of systems physically.
Some mathematical theorems are given so that the reader can follow the logical
steps easily and, also, for further developments in the subject. In this book, con-
tinuous and discrete time systems are presented separately, which will help
beginners. Discrete-time systems and chaotic maps are given more emphasis.
Conjugacy/semi-conjugacy relations among maps and their properties are also
described. Mathematical theories for chaos are needed for proper understanding of
chaotic motion. The concept and theories are lucidly explained with many
worked-out examples, including exercises.

Bankura, India G.C. Layek
October 2015
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About the Book

The materials of the book have been assembled from different articles and books
published over the past 50 years along with my thinking and research experience.
The book contains 13 chapters covering all aspects of nonlinear dynamical systems
at the basic and advanced levels. The book is self-contained as the initial three
chapters cover mainly ordinary differential equations and the concept of flows. The
first chapter contains an introduction followed by a brief history of nonlinear sci-
ence and discussions of one-dimensional continuous systems. Flows and their
mathematical basis, qualitative approach, analysis of one-dimensional flows with
examples, some important definitions, and conservative-dissipative systems are
discussed in this chapter. Chapter 2 presents the solution technique of homogeneous
linear systems using eigenvalue—eigenvector method and the fundamental matrix
method. Discussions and theories on linear systems are presented. The solutions of
a linear system form a vector space. The solution technique for higher dimensional
systems and properties of exponential matrices are given in detail. The solution
technique for nonhomogeneous linear equations using fundamental matrix is also

given in this chapter. Flows in R’ that is, phase plane analysis, the equilibrium
points and their stability characters, linearization of nonlinear systems, and its
limitations are subject matters in Chap. 3. Mathematical pendulum problems and
linear oscillators are also discussed in this chapter. Chapter 4 gives the theory of
stability of linear and nonlinear systems. It also contains the notion of hyperbolicity,
stable and unstable subspaces, Hartman—Grobman theorem, stable manifold theo-
rem, and their applications. The most important contribution to the history of
nonlinear dynamical systems is the theory of nonlinear oscillations. The problem of
constructing mathematical tools for the study of nonlinear oscillations was first
formulated by Mandelstham around 1920, in connection with the study of
dynamical systems in radio-engineering. In 1927, Andronov, the most famous
student of Mandelstham presented his thesis on a topic “Poincare’s limit cycles and
the theory of oscillations.” Subsequently, van der Pol and Liénard made significant
contributions with practical applications of nonlinear oscillations. Chapter 5 deals
with linear and nonlinear oscillations with some important theorems and physical
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applications. Bifurcation is the study of possible changes in the structure of the
orbit of a dynamical system depending on the changing values of the parameters.
Chapter 6 presents the bifurcations in one-dimensional and two-dimensional sys-
tems. Lorenz system and its properties, for example in fluid system, are also given
in this chapter. Hamiltonian systems are elegant and beautiful concepts in classical
mechanics. Chapter 7 discusses the basics of Lagranergian and Hamiltonian sys-
tems and their derivations. Hamiltonian flows, their properties, and a number of
worked-out examples are presented in this chapter. Symmetry is an inherent
character in many physical phenomena. Symmetry analysis is one of the important
discoveries of the ninetieth century. This is based on a continuous group of
transformations discovered by the great Norwegian mathematician Sophus Lie
(1842-1899). Symmetry groups or simply symmetries are invariant transformations
that do not change the structural form of the equation under consideration.
Knowledge of symmetries of a system definitely enhances our understanding of
complex physical phenomena and their inherent laws. It has been presumed that
students must be familiar with symmetry analysis of simple nonlinear systems for
understanding natural phenomena in-depth. With this motivation we introduce the
Lie symmetry under continuous group of transformations, invariance principle, and
systematic calculation of symmetries for ordinary and partial differential equations
in Chap. 8. Maps and their compositions have a vast dynamics with immense
applications. Chapter 9 discusses maps, their iterates, fixed points and their sta-
bilities, periodic cycles, and some important theorems. In Chap. 10 some important
maps, namely tent map, logistic map, shift map, Hénon map, etc., are discussed
elaborately. Chapter 11 deals with conjugacy/semi-conjugacy relations among
maps, their properties, and proofs of some important theorems. In the twenty-first
century, chaos and its mathematical foundation are crucially important. The chaos
theory is an emergent area in twenty-first century science. The chaotic motion was
first formulated by the French mathematician Henri Poincare in his paper on the
stability of the solar system. What kinds of systems exhibit chaotic motion? Is there
any universal quantifying feature of chaos? Chapter 12 contains a brief history of
chaos and its mathematical theory. Emphasis has been given to establish mathe-
matical theories on chaotic systems, quantifying chaos and universality. Routes of
chaos, chaotic maps, Sharkovskii ordering, and theory are discussed in this chapter.
The term ‘fractal” was coined by Benoit Mandelbrot. It appeared as mathematical
curiosities at the end of the twentieth century and its connection with chaotic orbit.
Fractals are complex geometric shapes with fine structure at arbitrarily small scales.
The self-similarity property is evidenced in most fractal objects. The dimension of
a fractal object is not an integer. Chaotic orbit may be represented by fractals.
Chapter 13 is devoted to the study of fractals, their self-similarities, scaling, and
dimensions of fractal objects with many worked-out examples.
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Chapter 1
Continuous Dynamical Systems

Dynamics is a time-evolutionary process. It may be deterministic or stochastic.
Long-term predictions of some systems often become impossible. Even their tra-
jectories cannot be represented by usual geometry. In many natural and social
phenomena there is unpredictability. Unpredictability is an intrinsic property which
is present in the phenomenon itself. It has great impact on human civilization as
well as scientific thoughts. There are numerous questions in human mind e.g., how
can a deterministic trajectory be unpredictable? What are the causes in formation of
symmetric crystals and snowflakes in Nature? How can one find chaotic trajecto-
ries? Can a deterministic trajectory be random? How can one define and explain
turbulence in fluid motion? Is there any local symmetry in chaos? How can one
relate chaotic dynamics with fractal object? For answering these questions we have
no way but to study nonlinear dynamics.

Dynamical systems are generally described by differential or difference equa-
tions. Studies of differential equations in mathematics were devoted mainly of
finding analytical solutions of equations for more than two centuries. But the
dynamical behaviors of a system may not always be determined by analytical or
closed-form solutions. Moreover, analytical solution of nonlinear equations is dif-
ficult to obtain except in a few special cases. The subject dynamical systems had
evolved at the end of nineteenth century and made significant contributions to
understanding some nonlinear phenomena. The dynamics of a system may be
expressed either as a continuous-time or as a discrete-time-evolutionary process.
The simplest mathematical models of continuous systems are those consisting of
first-order differential equations. In first-order autonomous system (explicit in time),
the dynamics is a very restrictive class of system since its motion is in the real line.
In simple nonautonomous cases, on the other hand, the dynamics is very rich.

Nonlinear science and its dynamics have been a matter of great importance in the
field of natural and social sciences. Examples include physical science (e.g., earth’s
atmosphere, laser, electronic circuit, superconductivity, fluid turbulence, etc.),
chemistry (Belousov—Zhabotinsky reaction, Brusselator model, etc.), biology
(neural and cardiac systems, biochemical processes), ecology and social sciences
(spreading of fading, spreading diseases, price fluctuations of markets and stock
markets, etc.), to mention a few. Nonlinear systems are harder (if not sometime
impossible) to solve than linear systems, because the latter follow the superposition
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2 1 Continuous Dynamical Systems

principle and can be divided into parts. Each part can be solved individually and
adding them all provides the final result. However, solutions of linear systems are
helpful for the analysis of nonlinear systems.

In this chapter we discuss some important definitions, concept of flows, their
properties, examples, and analysis of one-dimensional flows for an easy way to
understand the nonlinear dynamical systems.

1.1 Dynamics: A Brief History

The explicit time behaviors of a system and its dependency on initial conditions of
solutions began after the 1880s. It is well known that analytical or closed-form
solutions of nonlinear equations cannot be obtained except for very few special
forms. Moreover, the solution behaviors at different initial conditions or their
asymptotic characters are sometimes cumbersome to determine from closed-form
solutions. In this situation scientists felt the necessity for developing a method that
determines the qualitative features of a system rather than the quantitative analysis.
The French mathematician Henri Poincaré (1854—1912) pioneered the qualitative
approach, a combination of analysis and geometry which was proved to be a
powerful approach for analyzing behaviors of a system and brought Poincaré
recognition as the “father of nonlinear dynamics.” The time-evolutionary process
governed either by linear or nonlinear equations gives the dynamical system.
Dynamics and its representations are inextricably tied with mathematics. The
subject initiated informally from the different views of mathematicians and physi-
cists. Studies began in the mid-1600s when Newton (1643—1727) invented calculus,
differential equations, the laws of motion, and universal gravitation. With the help
of Newton’s discoveries the laws of planetary motions, already postulated by
Jonaesh Kepler, a German astrologist (1609, 1619) were established mathemati-
cally and the study of dynamical systems commenced. In the qualitative approach,
the local and asymptotic behaviors of an equation could be explained.
Unfortunately, the qualitative study was restricted to mathematicians only.
However, the power and necessity of the qualitative approach for analyzing the
dynamical evolution of a system were subsequently enriched by A.M. Lyapunov
(1857-1918), G.D. Birkhoff (1908—1944) and a group of mathematicians from the
Russian schools, viz. A.A. Andronov, V.I. Arnold, and co-workers (1937, 1966,
1971, 1973).

In fact, Poincaré studied continuous systems in connection with an international
competition held in honor of the 60th birthday of King Oscar II of Sweden and
Norway. Of the four questions announced in the competition, he opted for the
stability of the solar system. He won the prize. But the published memoir differed
significantly from the original due to an error. In the study of dynamics he found it
convenient to replace a continuous flow of time with a discrete analog. In celestial
mechanics, Newton solved two-body problems: the motion of the Earth around
the Sun. This is the famous inverse-square law: F(gravitational force) o
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(distance between two bodies)fz. Many great mathematicians and physicists tried
to extend Newton’s analytical method to the three-body problem (Sun, Earth, and
Moon), but three or more than three-body problems were found to be remarkably
difficult. At this juncture the situation seemed completely hopeless. This means that
instead of asking about the exact positions of the planets always, one may ask “Is
the solar system stable forever?” Answering this question Poincaré devised a new
way of analysis which emphasized the qualitative approach. This eventually gave
birth to the subject of ‘Dynamical Systems.” The Russian Schools, viz. Nonlinear
Mechanics and the Gorki (Andronov or Mandelstham Andronov) contributed
immensely to the mathematical theories for dynamical systems. In the dynamic
evolution stability of a system is an important property. The Russian academician
A.M. Lyapunov made a significant contribution to the stability/instability of a
system. The mathematical definition of stability, construction of Lyapunov func-
tion, and Lyapunov theorem are extensively used for analyzing the stability of a
particular class of systems. Also, Lyapunov exponent, assuming the exponential
growth/decay with time of nearby orbits are applied for quantifying in chaotic
motions.

One of the most remarkable breakthroughs in the early nineteenth century was
the discovery of solitary waves in shallow water. Solitary waves are disturbances
occurring on the surface of a fluid. They are dispersive in nature and form a single
hump above the surface by displacing an equal amount of fluid, creating a bore at
the place. Furthermore, these waves spread while propagating without changing
their shape and velocity. The speed of these waves is proportional to the fluid depth,
which causes large amplitude of the wave. Consequently, the speed of the wave
increases with increase in the height of the wave. When a high amplitude solitary
wave is formed behind a low amplitude wave, the former overtakes the latter
keeping its shape unchanged with only a shift in position. This preservation of
shape and velocity after collision suggests a particle like character of these waves
and therefore called as solitary wave or solition, coined by Zabusky and Kruskal
relevant with photon, proton, etc. John Scott Russel, the Scottish naval engineer
first observed solitary wave on the Edinburgh-Glasgow canal in 1834 and he called
it the ‘great wave of translation.” Russel reported his observations to the British
Association in 1844 as ‘Report on waves.” The mathematical form of these waves
was given by Boussinesque in 1871 and subsequently by Lord Rayleigh in 1876.
The equation for solitary wave was later derived by Korteweg and de Vries in 1895
and was popularly known as the KdV equation. This is a nonlinear equation with a
balance between the nonlinear advection term and dispersion resulting in the
propagation of solitary waves in an inviscid fluid.

In the first half of the twentieth century nonlinear dynamics was mainly con-
cerned with nonlinear oscillations and their applications in physics, electrical cir-
cuits, mechanical engineering, and biological science. Oscillations occur widely in
nature and are exploited in many manmade devices. Many great scientists, viz. van
der Pol (1889-1959), Alfred-Marie Liénard (1869-1958), Georg Duffing (1861—
1944), John Edensor Littlewood (1885-1977), A.A. Andronov (1901-1952),
M.L. Cartwright (1900-1998), N. Levinson (1912-1975), and others made
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mathematical formulations and analyzed different aspects of nonlinear oscillations.
Balthasar van der Pol had made significant contributions to areas such as limit
cycles (isolated closed trajectory but neighboring trajectories are not closed either
as they spiral toward the closed trajectory or away from it), relaxation oscillations
(limiting cycles exhibit an extremely slow buildup followed by a sudden discharge,
and then followed by another slow buildup and sudden discharge, and so on) of
nonlinear electrical circuits, forced oscillators hysteresis and bifurcation phenom-
ena. The well-known van der Pol equation first appeared in his paper entitled “On
relaxation oscillations” published in the Philosophical Magazine in the year 1926.
The van der Pol oscillator in a triode circuit is a simple example of a system with a
limit cycle. He and var der Mark used van der Pol nonlinear equation to describe the
heartbeat and an electrical model of the heart. Limit cycles were found later in
mechanical and biological systems. The existence of limit cycle of a system is
important scientifically and stable limit cycle exhibits self-sustained oscillations.

Species live in harmony in Nature. The existence of one species depends on the
other, otherwise, one of the species would become extinct. Coexistence and
sometimes mutual exclusion occur in reality in which one of the species becomes
extinct. Alfred James Lotka (1880-1949), Vito Volterra (1860-1940), Ronald
Fisher (1890-1962) and Nicols Rashevsky (1899—1972), and many others had
explored the area of mathematical biology. The interaction dynamics of species, its
mathematical model, and their asymptotic behaviors are useful tools in population
dynamics of interacting species. Interaction dynamics among species have a great
impact on the ecology and environment. The two-species predator—prey model in
which one species preys on another was formulated by Lotka in 1910 and later by
Volterra in 1926. This is known as the Lotka—Volterra model. In reality, the
predator—prey populations rise and fall periodically and the maximum and mini-
mum values (amplitudes) are relatively constant. However, this is not true for the
Lotka—Volterra model. Different initial conditions can have solutions with different
amplitudes. Holling and Tanner (1975) constructed a mathematical model for
predator—prey populations whose solutions have the same amplitudes in the long
time irrespective of the initial populations. The mathematical ecologist Robert May
(1972) and many other scientists formulated several realistic population models that
are useful in analyzing the population dynamics.

The perception of unpredictability in natural and social phenomena has a great
impact on human thoughts and also in scientific evolutions. The conflict between
determinism and free-will has been a long-standing continuing debate in philoso-
phy. Nature is our great teacher. In the nineteenth century, the French engineer
Joseph Fourier (1770-1830) wrote “The study of Nature is the most productive
source of mathematical discoveries. By offering a specific objective, it provides the
advantage of excluding vague problems and unwieldy calculations. It is also a
means to formulate mathematical analysis, and to isolate the most important
aspects to know and to conserve. These fundamental elements are those which
appear in all natural effects.”

Newtonian mechanics gives us a deterministic view of an object in which the
future is determined from the laws of force and the initial conditions. There is no
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question of unpredictability or free-will in the Newtonian setup. In the beginning of
the twentieth century experimental evidence, logical description, and also philo-
sophical perception of physical phenomena, both in microscopic and macroscopic,
made a breakthrough in science as a whole. The perception of infinity, how we
approach the stage of infinitum, was a matter of great concern in the scientific
community of the twentieth century. In the macroscopic world, studies particularly
in oscillations in electrical, mechanical, and biological systems and the emergence
of statistical mechanics either in fluid system or material body established the role
and consequence of nonlinearity on their dynamics.

The existence of a chaotic orbit for a forced van der Pol equation (nonlinear
equation) was proved mathematically by M.L. Cartwright, J.E. Littlewood about the
1950s. During this period mathematician N. Levinson showed that a physical model
had a family of solutions that is unpredictable in nature. On the other hand, the
turbulence in fluid flows is an unsolved and challenging problem in classical
mechanics. The Soviet academician A.N. Kolmogorov (1903-1987), the greatest
probabilist of the twentieth century and his co-workers made significant contribu-
tions to isotropic turbulence in fluids, the famous Kolmogorov-5/3 law (K41 the-
ory) in the statistical equilibrium range. Kolmogorov’s idea was based on the
assumption of statistical equilibrium in an isotropic fluid turbulence. In turbulent
motion large unstable eddies form and decay spontaneously into smaller unstable
eddies, so that the energy-eddy cascade continues until the eddies reach a size so
small that the cascade is damped effectively by fluid viscosity. Geoffrey Ingram
Taylor (1886—1975), von Karman (1881-1963), and co-workers made significant
contributions to the statistical description of turbulent motion. Yet, till today the
nature of turbulent flow and universal law remain elusive. In nonlinear dynamics
the well-known Kolmogorov—Arnold—-Moser (KAM) theorem proves the existence
of a positive measure set of quasi-periodic motions lying on invariant tori for
Hamiltonian flows that are sufficiently close to completely integrable systems. This
is the condition of weak chaotic motion in conservative systems. In chemistry,
oscillation in chemical reaction such as the Belousov—Zhabotinsky reaction pro-
vided a wonderful example of relaxation oscillation. The experiment was conducted
by the Russian biochemist Boris Belousov around the 1950s. However, he could
not publish his discovery as in those days it was believed that chemical reagents
must go monotonically to equilibrium solution, no oscillatory motion. Later,
Zhabotinsky confirmed Belousov’s results and brought this discovery to the notice
of the scientific community at an international conference in Prague in the year
1968. For the progress of nonlinear science in the twentieth century both in theory
and experiments such as hydrodynamic (water, helium, liquid mercury), electronic,
biological (heart muscles), chemical, etc., scientists believed that simple looking
systems can display highly complex seemingly random behavior. It was Henri
Poincaré who first reported the notion of sensitivity to initial conditions in his work.
The quotation from his essay on Science and Method is relevant here: “It may
happen that small differences in the initial produce very great ones in the final
phenomena. A small error in the former will produce an enormous error in the
later prediction becomes impossible.” Perhaps the most intriguing characteristic of
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a chaotic system is the extreme sensitivity to initial conditions. Naturally, there is a
need to develop the science of the unpredictable. The real breakthrough came from
the computational result of a simple nonlinear system. In the year 1963, Edward
Lorenz (1917-2008) published a paper entitled “Deterministic Non-periodic Flow.”
In this paper he derived equations for thermal convection in a simplified model of
atmospheric flow and noticed a very strange thing that the solutions of the equations
could be unpredictable and irregular despite being deterministic. The sensitive
dependence of the evolution of a system for an infinitesimal change of initial
conditions is called the butterfly effect. Deterministic systems may exhibit a regular
behavior for some values of their control parameters and irregular behavior for
other values. Deterministic systems can give rise to motions that are essentially
random and the long-term prediction is impossible. Another paper from the discrete
system “Differential Dynamical Systems” published by Stephen Smale proved
mathematically the existence of chaotic solutions and gave a geometric description
of the chaotic set, the Smale horseshoe map. Mathematicians/physicists such as Lev.
D. Laudau (fluid dynamics and stability), James Yorke (“Period three implies
chaos”), Robert May (mathematical biology), Enrico Fermi (ergodicity), Stanislaw
Ulam (the growth of patterns in cellular automata, lattice dynamics), J.G. Senai
(ergodic theory), Sarkovskii (ordering of infinitely many periodic points of a map),
Ruelle and Takens (fluid turbulence and ‘strange attractor’), A. Libchaber, and
J. Maurer (intermittency as a route to fluid turbulence) and many others are the
great contributors to the development of nonlinear science and chaos theory. In the
mid-1970s a remarkable discovery was made by Mitchell Feigenbaum: the uni-
versality in chaotic regime for unimodal maps undergoing period doubling
bifurcation.

The concept of fractal geometry or fractal objects is about 50 years old and was
first introduced by the Polish—French—American mathematician Benoit Mandelbrot
(1924-2010) in 1975. Fractals are structures that are irregular, erratic and
self-similarity is intrinsic in most of these objects. Fractal objects consist of self-
similarity between scales, that is, the patterns observed in larger scales repeat in
ever decreasing smaller and smaller scales. In short, a fractal object is made up of
parts similar to the whole in some way but lacks a characteristic smallest scale to
measure. Fractal geometry is different from Euclidean geometry, and finds order in
chaotic shapes and processes. Chaotic orbit can be expressed in terms of fractal
object. Scaling and self-similarity are important features in most natural and
manmade fractal objects. There exist numerous examples of fractals in natural and
physical sciences. One can also find a number of examples of fractals in the human
anatomy. For instance, lungs, heart, and many other anatomical structures are either
fractal or fractal-like. Moreover, in recent years the idea of fractals is being
exploited to find applications in medical science to curb fatal diseases. Mandelbrot
and other researchers have shown how fractals could be explored in different areas
and chaos in particular. The phenomenon of chaos is a realistic phenomenon and
therefore one has to understand and realize chaos in usual incidents happening in
our everyday life. The study of chaotic phenomena has begun in full length
nowadays and is widely applied in different areas. The theory of chaos is now
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applied in computer security, digital watermarking, secure data aggregation and
video surveillance successfully. Thus, chaotic phenomena are not only destructive
as in tsunami, tornado, etc., but can also be effectively utilized for the welfare of
human beings. Chaos has been considered as the third greatest discovery, after
relativity and quantum mechanics in the twentieth century science and philosophy.
In the past 20 years scientists and technologists have been realizing the potential use
of chaos in natural and technological sciences.

1.2 Dynamical Systems

Dynamics is primarily the study of the time-evolutionary process and the corre-
sponding system of equations is known as dynamical system. Generally, a system of
n first-order differential equations in the space R" is called a dynamical system of
dimension n which determines the time behavior of evolutionary process.
Evolutionary processes may possess the properties of determinacy/non-determinacy,
finite/infinite dimensionality, and differentiability. A process is called deterministic
if its entire future course and its entire past are uniquely determined by its state at the
present time. Otherwise, the process is called nondeterministic. However, the
process may be semi-deterministic (determined, but not uniquely). In classical
mechanics the motion of a system whose future and past are uniquely determined by
the initial positions and the initial velocities is an example of a deterministic
dynamical system. The evolutionary process may describe, viz. (i) a continuous-time
process and (ii) a discrete-time process. The continuous-time process is represented
by differential equations, whereas the discrete-time process is by difference equa-
tions (or maps). The continuous-time dynamical systems may be described mathe-
matically as follows:

Let x = x (1) € R", t € ICR be the vector representing the dynamics of a
continuous system (continuous-time system). The mathematical representation of
the system may be written as

— = = f(x.) (1)

where f(x,7) is a sufficiently smooth function defined on some subset U C
R" x R Schematically, this can be shown as

R" x R = Rn+1

(state space)  (time) (space of motions)

The variable ¢ is usually interpreted as time and the function f (x ,7) is generally
nonlinear. The time interval may be finite, semi-finite or infinite. On the other hand,
the discrete system is related to a discrete map (given only at equally spaced points
of time) such that from a point xj, one can obtain a point x; which in turn maps into
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X2, and so on. In other words, x,, . | = g(x,) = g(g(x,—1)), etc. This is also written
in the form x, | = g(x,) = g*(x,_1) = - - -. The discrete system will be discussed
in the later chapters.

If the right-hand side of Eq. (1.1) is explicitly time independent then the system
is called autonomous. The trajectories of such a system do not change in time. On
the other hand, if the right-hand side of Eq. (1.1) has explicit dependence on time
then the system is called nonautonomous. An n-dimensional nonautonomous
system can be converted into autonomous form by introducing a new dependent
variable x, | such that x, ;| = 7. In general, the solution of Eq. (1.1) is difficult or
sometimes impossible to obtain when the function f(x ,) is nonlinear, except in
some special cases. Examples of autonomous and nonautonomous systems are
given below.

(i) Autonomous systems

(a) X+4ox+ fx =0, > 0. This is a damped linear harmonic oscillator. The
parameters o and f§ are, respectively, the strength of damping and the
strength of linear restoring force.

(b) ¥+ w?sinx =0, w=+/g/L. g is the gravitational acceleration, L the
string length. This is a simple undamped nonlinear oscillator (pendulum).

= o — fixy .

© . . This is the well-known Lotka—Volterra predator—prey
y = —yy+oxy }
model, where o, 5, y, 0 are all positive constants.

(d) ¥ —pu(l —x*)x+px=0,u>0. This is the well-known van der Pol
oscillator.

(ii) Nonautonomous systems

(a) x+ox+ fx=f coswt,a, f > 0. This is an example of linear oscillator
with external time-dependent force. f and w are the amplitude and fre-
quency of driving force, respectively.

(b) X+oax+ w%x—i— Bx* = f sinwt. This is a Duffing nonlinear oscillator with
cubic restoring force. o is the strength of damping, g is the natural fre-
quency and f is the strength of the nonlinear restoring force.

(¢) ¥—p(l —x})i+px=f coswt, u > 0. This is a van der Pol nonlinear
forced oscillator.

(d) ¥ — pu(l —x*)x+ w?x+ px* = f coswt. This is a Duffing-van der Pol
nonlinear forced oscillator.

Some examples of dynamical systems

(a) The most common example of a dynamical system is Newtonian systems
governed by Newton’s law of motion. This law states that the acceleration of a
particle is determined by the force per unit mass. The force can be a function
of the velocity () and the position (x) and so the Newtonian systems take the
form
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(b)

©

m¥ = F(x,%), (m = mass, F = force). (1.2)

Equation (1.2) may be written as a system of two first-order differential
equations as

X =y, andy = F(x,y) (1.3)

System (1.3) may be viewed as a dynamical system of dimension two in the
xy-plane and the dynamics is a set of trajectories giving time evolution of
motion.

The simple exponential growth model for a single population is expressed
mathematically as

dx
a:rxwithx:xoattzo, (1.4)

where r > 0 is the population growth parameter. The solution of (1.4) is
x(t) = xpe". This solution expresses the simplest model for population growth
with time in unrestricted resources and the population x(z) — oo as ¢ — oc.
Obviously, this model does not obey realistic population growth of any
species.

The simple population growth model, considering effects like intraspecies
competitions, depletion of resources with population growth is given as

dx

Fre (r — bx)x (1.5)

with the condition x = x at # = 0. The solution of (1.5) is given as

%
(t) = Xo + (i — xo)e‘” (16)

Clearly x — ; as t — oo for both the cases xo > ; and xp < 7.

This growth model is known as the Logistic growth model of population. The
graphical representation of the above solution is shown in Fig. 1.1.

This simple model shows that population x(¢) is of constant growth rate after
some time .

Populations of two competing species (predator and prey populations) could
be modeled mathematically. The predator—prey population model was first
formulated by Alfred J. Lotka (1880-1949) in the year 1910 and later by Vito
Volterra (1860-1940) in the year 1926. This is known as Lotka—Volterra
predator—prey model. In this model the fox population preys on the rabbit
population. The population density of rabbit affects the population density of
fox, since the latter relies on the former for food. If the density of rabbit is
high, the fox population decreases, while when the fox population increases,
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Fig. 1.1 Graphical AX(F)

representation of population
growth model

(d)

» (time)

the rabbit population decreases. When the rabbit population falls, the fox
population also falls. When the fox population drops, the rabbits can multiply
again and so on. The growth or decrease of two populations could be analyzed
using dynamical system principles. The dynamical equations for predator—
prey model are given as

*=o = fry } (1.7)

y=—yy+oxy

where x denotes the population density of the prey and y, the population
density of the predator. The parameter o represents the growth rate of the prey
in the absence of intersection with the predators whereas the parameter )
represents the death rate of the predators in the absence of interaction with the
prey and f3, § are the interaction parameters and are all constants (for simple
model). Using the dynamical principle one can obtain a necessary condition
for coexistence of the two species. In this model the survival of the predators
depends entirely on the population of the prey. If initially x = 0, then y =
—yy, that is, y(#) =y(0)e™ and y(tf) =0 as t— oo (see the book
Arrowsmith and Place [1]).

Suppose we have an LCR circuit consisting of a resistor of resistance R, a
capacitor of capacitance C, and an inductor of inductance L. In a simple
electrical circuit the values of R, C, and L are always nonnegative and are
independent of time 7. Kirchhoff’s current law (the sum of the currents flowing
into a node is equal to the sum of the currents flowing out of it) is satisfied if
we pass a current / to the closed loop as shown in Fig. 1.2.

According to Kirchhoff’s voltage law of the circuit (the sum of the potential
differences around any closed loop in a circuit is zero), we have the equation
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Fig. 1.2 Schematic of an
LCR circuit

Vio+ Vs 4+ V31 =0 (1.8)

Here V;; denotes the voltage difference between node i and node j.
From Ohm’s law, we get the relation

Vs = IR (1.9)

Also, from the definition of capacitance C, we have

dv
c 2

— =1 1.10
p” (1.10)
Again, Faraday’s law of inductance gives
dr
L—=YV, 1.11
=V (1.11)

Substituting (1.8) and (1.10) into (1.11) and writing Vi, =V, we get
dr/
V+L—+1IR=0
dr
or,
(1.12)
Again, from (1.10)

(1.13)
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Thus finally we obtain the following equations

dav I dI R Vv
—=—and — = ——1 — —. 1.14
dr Caln dr L L ( )

These equations represent a dynamical system of dimension two in the VI plane.
This is a simple linear model in LCR circuit. The linear models have undoubtedly
had good success, but they also have limitations. Linear models can only produce
persistent oscillations of a harmonic (trigonometric) type.

A circuit is called nonlinear when it contains at least one nonlinear circuit
element like a nonlinear resistor, a nonlinear capacitor or a nonlinear inductor.
Chua’s diode model equation is a simple example of nonlinear electric circuit (see
Lakshmanan and Rajasekar [2] for nonlinear electrical circuit).

1.3 Flows

The time-evolutionary process may be described as a flow of a vector field.
Generally, flow is frequently used for discussing the dynamics as a whole rather
than the evolution of a system at a particular point. The solution x (7) of a system
X = f(x) which satisfies x (t) = x, gives the past (1<t) and future (¢ > 1)

evolutions of the system. Mathematically, the flow is defined by ¢,(x ) : U — R"
where ¢,(x ) = ¢(z, x ) is a smooth vector function of x € UCR" and r € ICR

satisfying the equation

d
So(x) = £(@(x))
for all 7 such that the solution through x exists and ¢ (0, x ) = x . The flow ¢,(x )
satisfies the following properties:

(a) d)() =1, (b) ¢z+s = d)t o ¢x

Some flows may also satisfy the property
i+, x) =1, ¢(s, x)) = P(s,0(t, x)) = P(s+1,x).

Flows in R: Consider a one-dimensional autonomous system represented by
X = f(x),x € R. We can imagine that a fluid is flowing along the real line with local
velocity f(x). This imaginary fluid is called the phase fluid and the real line is
called the phase line. For solution of the system x = f(x) starting from an arbitrary
initial position xy, we place an imaginary particle, called a phase point, at x, and
watch how it moves along with the flow in phase line in varying time z. As time
goes on, the phase point (x,7) in the one-dimensional system x = f(x) with x(0) =
Xo moves along the x-axis according to some function ¢(z, xo). The function ¢ (¢, xo)
is called the trajectory for a given initial state xo, and the set {¢(#,x0)| 7 €  CR}
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is the orbit of xo € R. The set of all qualitative trajectories of the system is called
phase portrait.

Flows in R : Consider a two-dimensional system represented by the following
equations x =f (x,y), vy = g(x,y), (x,y) € R% An imaginary fluid particle flows in
the plane R, known as phase plane of the system. The succession of states given
parametrically by x = x(r), y = y(¢) trace out a curve through some initial point
P(x(t9),y(t)) is called a phase path. The set {¢(t, §O)|t € I CR} is the orbit of
X in R2. There are an infinite number of trajectories that would fill the phase plane
when they are plotted. But the qualitative behavior can be determined by plotting a
few trajectories with different initial conditions. The phase portrait displays how the
qualitative behavior of a system is changing as x and y varies with time 7. An orbit is
called periodic if x(¢ + p) = x(¢) for some p > 0, for all ¢. The smallest integer p for
which the relation is satisfied is called the prime period of the orbit. Flows in R
cannot have oscillatory or closed path.

Flows in R": Let us now define an autonomous system representing n ordinary
differential equations as

jq Zfl(xl,)cz, . .,xn)
)-C2 :.fZ(-x17-x27 .. '7-xn)
)'Cn :ﬁ,(xl,XZ, .. ';xn)

which can also be written in symbolic notation as X = f(x), where x =
(x1,%2,...,x,) and f = (fi,f2,---,f.). The solution of this system with the initial
condition x (0) = {0 can be thought as a continuous curve in the phase space R"
parameterized by time ¢ € I CR. So the set of all states of the evolutionary process
is represented by an n-valued vector field in R". The solutions of the system with
different initial conditions describe a family of phase curves in the phase space,
called the phase portrait of the system. The vector field f (x ) is everywhere tangent
to these curves and their orientation is directed by the direction of the tangent vector

of f(x)-

1.4 Evolution

Consider a system X = f(x ), x € R" with initial conditions x () = x . Let E C
R" be an open set and J € C (E). For X, € E, let ¢(z, x ) be a solution of the
above system on the maximum interval of existence I (50) C R. The mapping
¢, : R" — R" defined by ¢,(x) = ¢(t, x,)) is known as evolution operator of the
system. The linear flow for the system X = Ax with x (1) = X0 is defined by
¢, : R" — R" and ¢, = ¢, the exponential matrix. The mappings ¢, for both
linear and nonlinear systems satisfy the following properties:
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(i) ¢olx)=1x
(11) ¢s(¢ ( )) = ¢s+t( ) VS re R
(i) i(¢_(x)) = _(d(x)) = x, W €R

In general a dynamical system may be viewed as group of nonlinear / linear
operators evolving as {¢,(x),7 € R,x € R"}. The following dynamical group
properties hold good:

(i) ¢d; € {¢:(x).,1 € R,x €R"} (Closure property)
(i) () = ()9, (Associative property)
(i) ¢o(x) = x, ¢, being the Identity operator.
(v) ¢,b_, = ¢_,d, = ¢y, where ¢_, is the Inverse of ¢,.

For some cases the flow satisfies the commutative property ¢,¢, = ¢, ;.

1.5 Fixed Points of a System

The notion of fixed point is important in analyzing the local behavior of a system.
The fixed point is nothing but a constant or equilibrium or invariant solution of a
system. A point is a fixed point of the flow generated by an autonomous system
X = f({ ), x € R" if and only if ¢(¢,x )= x for all € R. Consequently in
continuous system this gives x =0 = f (x ) = 0. For nonautonomous systems
fixed point can be defined for a ) fixed time interval. A fixed point is also known as a
critical point or an equilibrium point or a stationary point. This point is also
called stagnation point with respect to the flow ¢, in R". Flows on line may have
no fixed points, only one fixed point, finite number of fixed points, and infinite
number of fixed points. For example, the flow x = 5 (no fixed points), x = x (only
one fixed point), x = 22— 1 (two fixed points), and x = sinx (infinite number of
fixed points).

1.6 Linear Stability Analysis

A fixed point, say x 0 is said to be stable if for a given ¢ > 0, there exists a 0 > 0
depending upon & such that for all r>1, || x (1) — ( ) || <e, whenever
| x (to) — x,(t) || <0, where [|.| : R" — R denotes the norm of a vector in R”.
Otherw1se the fixed point is called unstable. In linear stability analysis the quadratic
and higher order terms in the Taylor series expansion about a fixed point x* of a
system & = f(x), x € R are neglected due to the smallness of the terms. Consider a
small perturbation quantity £(z), away from the fixed point x*, such that x(z) =
x* + &(r). We see whether the perturbation grows or decays as time goes on. So we
get the perturbation equation as
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E=i=f(x) =f(x"+9).

Taylor series expansion of f(x* + &) gives

62

E=fO) +&f () + ST+

According to linear stability analysis, we get
E= &) = 0]

Assuming f'(x*) # 0, the perturbation £(z) grows exponentially if f/(x*) > 0
and decays exponentially if f/(x*) <0. Linear theory fails if f/(x*) =0 and then
higher order derivatives must be considered in the neighborhood of fixed point for
stability analysis of the system.

Example 1.1 Find the evolution operator ¢, for the one-dimensional flow & = —x2.

Show that ¢, forms a dynamical group. Is it a commutative group?

Solution The solutions of the given system are obtained as below:

.odx , 1
F=g T T Ty A =

in any interval of R that does not contain the point x = 0, where A is a constant.
If we take starting point x(0) = xo, then A = 1/xy and so we get

X0
1+ xot

x(t) =

s t#—l/XQ.

The point x = 0 is not included in this solution. But it is the fixed point of the
given system, because x = 0 < x = 0. Therefore, ¢,(0) = 0 for all # € R. So the
evolution operator of the system is given as ¢,(x) = 5, for allx € R.

The evolution operator ¢, is not defined for all r € R. For example, if ¢ =
—1/x, x # 0, then ¢, is undefined. Thus we see that the interval in which ¢, is
defined is completely dependent on x.

We shall now examine the group properties of the evolution operator ¢, below:

(i) ¢,¢, € {d,(x),r € R,x € R}Vr,s € R (Closure property)

Now,
9.(y) = - Take y =
’ 1+yr 14 xs
Cx/l4sx X _ X
14+ lfm_ L+xs+xr  1+x(s+7)

= ¢s+r € {¢t(x)7t €ERxe R}
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(i) d(ds0,) = (¢19,), (Associative property)

LHS. = 9((9:6)() = 00) = 7 = 15 2 = T2 1)

(wherey = ¢(2),z2 = ¢,(x) = l —irx)
X

- L.H. -
S= T+ 2t +7+s) =i rssX)

RHS. = ((¢,0,)¢,(x))

Y = by(,(x))

Now,
90y) = 1jy = b =
= ey = fe®
Pl )0) = 9000 = i 2= 00 = 1oy
P80 = Ty = P
Hence, ,(¢h,6,) (%) = (9,6,),(x), v € R
(i) ¢o(x) = 15755 =%, ¢ is the identity operator.
by B0 =00 = ﬁi,y = ¢ ) =1
it Po(x) (p_,is the inverse of ¢,)

Hence the flow evolution operator forms a dynamical group.

V) ¢, =0,

Now,
(68)6) = ) = T2 3 = ) = o
X
= m = ¢t+x(x)
D8, (0) = 6,(2) = . 2= Bl =
- —$.,.)

- I+ox+sx 1+ (s+1)x

So, ¢,¢, = ¢,¢p, (Commutative property).
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Thus, the evolution operator ¢, forms a commutative group.

Example 1.2 Find the evolution operator ¢, for the system X = x> — 1 and also
verify that ¢,(¢,(x)) = ¢, (x) for all 5,7 € R. Show that the evolution operator
forms a dynamical group. Examine whether it is commutative dynamical group.

Solution The solutions of the system satisfy the equation

dx 5, x—1
K2 1= log | =r1aA -1
a " Jlogf | =A< AL
~1
=TT B B=+4e
x+1
(1) Be* + 1
x(t) = ———
1 — B

If we take x(0) = xo, then from the above relation we get B = (xo — 1)/(xo + 1)
and so the solution can be written as

(l‘) (X() — 1)e2f+x0+1
x(r) = .
xo+1—(xg—1)e*

This solution is defined for all # € R and for xy # —1, 1. But the points x =
—1,1 are the fixed points of the system. Therefore, the evolution operator of the
given one-dimensional system is

-1 2t 1
= (x Je" +x+ for allx,t € R.
x+1—(x—1)e*

¢:(x)

Now for all x,#,s € R, we have

B - DeF+y+1
(9, = 60) =T

—1 25 1
where y = ¢,(x) = {7 E

Substituting this value of y into the above expression we get

x — 1)+ fx 41
30,00) = T = )

(i) ¢o(x) = 24 = x, the identity operator
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(x—1)e 2 +x+1
x+1—(x—1)e2

(=D +y+1
y+1—(y— 1)62’7

’+x+1 2 (=D +x+1
( ‘1>e’+(7a+1> “her 1)
°'+x+1 (x—De 2 +x+1
(m S ) - (e 1)
( el 2,)82t+ ((x—l)e’2’+x+l+(x+l)—(x—l)e’2’)
)- (=

7Ur’chlJr x+l) (x 1)e~%
(x+1)—(x—1)e"

2 2x—1)+2(x+1) _
2+1)—2(x—1)

(i) bi(x) = &, (y) = =¢_,x) =

G D-(-De @

2'+x+1 x+1) (x e~
)

N ((x— e’z'+x+lf(x+l)+(x—l)e’2’> ot
(x4+1)—(x—1)e~2 €

Again,

_ _ = De Ayt
_1¢,(x) = ¢_,(y) = yrl—(y— e’

B (= 1er4+x+1
A o gy ey

(x=1)e* + (x+ 1) 2 (=1 + (x+1)
B (m—l) ’Wm“)
e + (x+1) (x=D)e? + (x+1) -
<<)(ch1 e ()(cx mer + 1) o ((};H;f(le)ez‘ N l)e Y

(x=1e* + (x+ 1)—(x + 1)—(x—1)e¥ 72;+ (x=1e* + (x+ 1)+ (x+ 1)—(x—1)e*
G D—(—1)e € G —(—T)e*

((‘c De + (x+ 1)+ (x+1)— (xfl)ez’) _ ((X71)€2'+(X+1)7(X+l)f(xfl)ez")e,zt
(x4 DeX —(x—1)e* (x+1)—(x—T1)e*

2= 1) +2(x+1)
T2+ 1) —2(x—1)

Hence, the evolution operator forms a dynamical group.

(V) ¢,(¢9,) = (d,¢,)¢, (Associative property)

1)e* 1
LHS. ¢,(y) = Lttt
where,

B B C(x— D +x+1

y=¢5z),z= ¢r(X)fx+1_(x_1)ezr
(2= D4zl (x— D0t 4x41
Szt l—(z=1e*  x+1—(x— 1)+

x—1 (r+s+z)+x+1

- ( ) ¢t+r+v(x)
x+1—(x—1)e2lr+s+0

RHS. = (4:¢,)¢,
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Now,
(x—1)e* +x+1

v—1e*+y+1 B
Cox 1= (x—1)e?

B EE R
(x— DX+ x4 1

:x+1 — (X — 1)62(””) = ¢z+s(x)

_ (- +z+l (- D a1

P @) = bisd) = T At = 40 = e

¢,(y)

(x_ 1)62(Z+S+r)+x+l
¢,+S(¢,)(x) :erl —(x— 1)62(1+S+r) = ¢t+s+r(x)

= bi(¢s8,) = (d59,) ¢,

(V) ¢t¢s = ¢s¢t
Now,
_ 2s
6,05) (x—De*+x+1

(=De+y+1 _
Y= (%) x4 1= (x— 1)e?

Tyl (- D

(=1 +x+1 2 (x—1)e® +x+1
(W‘ 1)6 + (w +1)

- ((x71)62‘+x+1 + 1) _ ((xfl)ez'urerl . l)ez’

x4+ 1—(x—1)e* X+ 1—(x—1)e*

2(x — 1)e*6+) £2(x+ 1)
2(x+1) = 2(x — 1)e2ls+0)
(x— D) 4 (x4+1)
GF D) = o et - Pl

o @GP ) o (=D ()
¢s¢t(x) = ¢S(Z) - (Z+ 1) — (Z — 1)€2s , X = (b,(X) = (x+ 1) — (x— 1)eZZ

((X71)€2,+X+1 B 1)€2S+ ((xfl)ez’+x+_1 + 1)

X I-(—De x4+ 1—(x—1)e*
T (=) £ x+1 (x=1)e* +x+1
(m +1) - (m— 1)623

20 = D) 4 2(x+1)  (x+1) + (x — 1)+ b1 ()
= = = (x
2(x+1) —2(x — 1)e2t+s)  (x+1) — (x — 1)e2(+9) s

So, ¢,¢, = ¢,¢, (commutative property).
Hence the flow evolution operator ¢, forms a commutative dynamical group.

Example 1.3 Find the maximal interval of existence for unique solution of the
following systems

() x(t) = x> + cos’t,t > 0,x(0) = 0
(i) & = x%,x(0) = 1
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Solution (i) By maximal interval of existence of solution we mean the largest
interval for which the solution of the equation exists. The given system is nonau-
tonomous and f(¢,x) = x> + cos” t. Consider the rectangle R = {(¢,x) : 0<t<a,
|x| <b,a > 0,b > 0} containing the point (0,0). Clearly, f(¢,x) is continuous and
% =2x is bounded on R. The Lipschitz condition [f(¢,x1) —f(2, x2)]
<K|x; — x2|,¥(t,x1), (t,x2) € R, K being the Lipschitz constant, is satisfied on
R.Since [f(t,x)| = |x* + cos?t| < |¥?| + |cos? | < |¥?| + 1, and M = max|f(t,x)| =
1 + b?% in R. Therefore, from Picard’s theorem (if f (¢, x) is a continuous function in a
rectangle R = {(t,x) : |t — to| < a, |x — xo| <b,a > 0,b > 0} and satisfies Lipschitz
condition therein, then the initial value problem x = f (7, x),x(#y) = xo has a unique
solution in the rectangle R’ = {(z,x): |t — to| <h,|x — xo| <b}, where h=
min{a,b/M}, M = max|f(¢,x)| for all (z,x) € R, see the books Coddington and

Levinson [3], Arnold [4]). Now i = min{a, % = min{a, 1+Lb2}' We now determine

the maximum/minimum value(s) of b/(1+5b?). Let g(b) = Then g'(b) =

1+bZ

a +b2)2 and g"(b) = 2(2°3) For max or min value(s) of g(b), g'(b) = 0. This gives

(

b =1.Since g’ (1) = —1/2<0, g(b) is maximum at b = 1 and the maximum value
is given by g(1) = 1. Now, if a>1/2, then h = 1+b2 <1/2 and if a<1/2, then
h<1/2. Thus we must have i < 1/2. Hence the maximum interval of existence of the
solution of the given system is 0 <t <1/2.

(ii) Here f(t,x) = x*. Consider the rectangle R = {(t,x) : |t| <a,|x — 1| <b,
a > 0,b > 0} containing the point (0, 1). Clearly, f(z,x) is continuous and g—é =2x
is bounded on R. Hence the Lipschitz condition is satisfied on R. Also in R,
M = max|f(r,x)| = (1+b)*. Therefore, h = min{a, 2} = min{a ﬁ} It can
be shown, as earlier, that g(b) = —2— is maximum at » = 1 and the maximum

1+ b)
value is g(1) = 1/4. Now if a>1/4, thenh—( <1/4 and if a<1/4, then

h<1/4. Thus we must have i < 1/4. Hence the maximum interval of existence of
solution of the given system is |¢| <1/4, that is, —1/4 <t <1/4. Note that the
Picard’s theorem gives the local region of existence of unique solution for a system.

Example 1.4 Using linear stability analysis determine the stability of the critical
points for the following systems:
(i) x =sinx, (ii)x = x>

Solution (i) The given system has infinite numbers of critical points. The critical

points are x: =nm,n=0,£1,+2,.... When n is even, f'(x})=cos(x) =
cos(nm) = (—1)" =1 > 0. So, these critical points are unstable. When 7 is odd,
f'(xf) = —1<0, and so these critical points are stable.

(ii) The critical point of the system is at x* = 0. Now, f’(x*) = 0 and f” (x*) =
2 > 0. Hence, x* is attracting when x < 0 and repelling when x > 0. Actually, the
critical point is semi-stable in nature.
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1.7 Analysis of One-Dimensional Flows

As we know qualitative approach is the combination of analysis and geometry and
is a powerful tool for analyzing solution behaviors of a system qualitatively. By
drawing trajectories in phase line/plane/space, the behaviors of phase points may be
found easily. In qualitative analysis we mainly look for the following solution
behaviors:

(1) Local stabilities of fixed points for a system;
(i) Analyzing the existence of periodic/quasi-periodic solutions, limit cycle, re-
laxation oscillation, hysteresis, etc.;
(iii) Local and asymptotic solution behaviors of a system;
(iv) Topological features of flows such as bifurcations, catastrophe, topological
equivalence, transitiveness, etc.

We shall now analyze a simple one-dimensional system as follows.

Consider a one-dimensional system represented as x(¢) = sinx with the initial
condition x(# = 0) = x(0) = xo. The characteristic features of the system are (i) it is
a one-dimensional system, (ii) nonlinear system (iii) autonomous system, and
(iv) its closed-form solution (analytical solution) exists. This is a one-dimensional
flow and we analyze the system on the basis of flow. The analytical solution of the
system is obtained easily

dx
Fri sinx = df = cosec (x)dx

Integrating, we get

t= / cosec(x) dx

= — log|cosec(x) + cot(x)| +c,

where c is an integrating constant. Using the initial condition x(0) = xo, we get the
integrating constant ¢ as

¢ = log|cosec(xy) + cot(xp)].
Thus the solution of the system is given as

cosec (xo) + cot(xp)
cosec (x) + cot(x)

t=1o

From this closed-form solution, the behaviors of solutions for any initial con-
ditions are difficult to analyse. Moreover, the asymptotic values of the system are
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also difficult to obtain. The qualitative approach can give better dynamical behavior
about this simple system.

We consider ¢ as time, x as the position of an imaginary particle moving along
the flow in real line and x as the velocity of that particle. The differential equation
X = sinx represents a vector field on the line. It gives the velocity vector x at each
position x. The arrows point to the right when x > 0 and to the left when x <0. We
shall draw the graph of sin x versus x in xx- plane which gives the flow in the x-axis
(see Fig. 1.3).

We may imagine that fluid is flowing steadily along the x-axis with a velocity x
which varies from place to place, according to equation x = sinx. At points x = 0,
there is no flow and such points are called equilibrium points (fixed points).
According to the definition of fixed point, the equilibrium points of this system are
obtained as sinx =0 = x = nn(n = 0,£1,42,...). This simple looking autono-
mous system has infinite numbers of equilibrium points in R. We can see that there
are two kinds of equilibrium points. The equilibrium point where the flow is toward
the point is called sink or attractor (neighboring trajectories approach asymptot-
ically to the point as ¢ — oo ). On the other hand, when the flow is away from the
point, the point is called source or repellor (neighboring trajectories move away
from the point as t — oo ). From the above figure the solid circles represent the
sinks that are stable equilibrium points and the open circles are the sources, which
are unstable equilibrium points. The names are given because the sinks and sources
are common in fluid flow problems. From the geometric approach one can get local
stability behavior of the equilibrium points of the system easily and is valid for all
time. We shall now re-look the analytical solution of the system. The analytical
solution can be expressed as

t = logltan(x/2)| +c = x(f) = 2tan ' (A¢')

where A is an integrating constant.

Source

Source

Fig. 1.3 Graphical representation of flow generated by sin(x)
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Let the initial condition be xy = x(0) = n/4. Then from the above solution we
obtain

A=tan(n/8) = —1+V2 = 1/(1+\f2).

So the solution is expressed as

x(f) =2tan (ﬁﬁ) .

We see that the solution x(¢#) — = and ¢ — oo.

Without using analytical solution for this particular initial condition the same
result can be found by drawing the graph of x versus . So the solution’s behavior at
any initial condition can be obtained easily by geometric approach. This simple
one-dimensional system also has an interesting application. For a slow motion of a
spring immersed in a highly viscous fluid such as grease or viscoelastic fluid (the
combined effects of fluid viscosity and elasticity for example, synovial fluid in the
joints of human bones), the viscous damping force is very strong compared to the
inertia of motion. So one can neglect acceleration term (that is, inertia) and the
spring-mass system may be governed by the equation ox = sinx, where o > 0
(string constant) is a real number and the dynamics can be obtained using this
approach for different values of « (see the book Strogatz [5] for more physical
examples and explanations).

We shall discuss a few worked out examples presented below.

Example 1.5 With the help of flow concept discuss the local stability of the fixed
points of x = f(x) = (x* — 1).

Solution The fixed points of the given autonomous system are given by setting
f(x) = 0. This gives x = £ 1. So the fixed points of the system are 1 and —1. For
the local stability of the system about these fixed points we plot the graph of the
function f(x) and then sketch the vector field. The flow is to the right direction,
indicated by the symbol ‘—, where the velocity & > 0, that is, where (x> — 1) > 0
and to the left direction, indicated by the symbol ‘<—’, where x<O0, that is,
(x> — 1) <0. We also use solid circles to represent stable fixed points and open
circles for unstable fixed points.

In Fig. 1.4 the arrows indicate the flow of the system. From the figure, we see
that the fixed point x = 1 is unstable, since it acts as a source point and the fixed
point x = —1 is stable, since it acts as a sink point.

Example 1.6 Discuss the stability character of the fixed points for the system
X = x(1 — x) using the concept of flow.
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Fig. 1.4 Graphical x
representation of
fx) =02 =1)
Sink Source
- < X

Solution Here f(x) = x(1 — x). Then for the fixed points, we have
fx)=0=x(1-x)=0=x=0,1.

Thus the fixed points are 0 and 1. To discuss the stability of these fixed points we
plot the system (x versus x) and then sketch the vector field. The flow is to the right
direction, indicated by the symbol ‘—’, when the velocity x > 0, and to the left
direction, indicated by the symbol ‘<—’, when x <0. We also use solid circle to
represent stable fixed point and open circle to represent unstable fixed point.

From Fig. 1.5 we see that the fixed point x = 1 is stable whereas the fixed point
x = 0 is unstable.

Example 1.7 Find the fixed points and analyze the local stability of the following
systems (i) X = x + x> (i) x = x — X°(iii)) x = —x — x°

Solution (i) Here f(x) = x+x>. Then for fixed points f(x) =0 = x+x> =0 =
x =0, as x € R. So, 0 is the only fixed point of the system. We now see that when
x>0, x >0 and when x <0, x<0. Hence the fixed point x = 0 is unstable. The
graphical representation of the flow generated by the system is displayed in Fig. 1.6.
(i) Here f(x)=x—x. Then f(x)=0=>x—-x*=0=x=0,1,-1.
Therefore, the fixed points of the system are 0,1, —1. We now see that

(@) when x< — 1, then x >0
(b) when —1<x<0, x<0
(¢) when O0<x<1,x>0
(d) when x > 1, then x<O0.

This shows that the fixed points 1 and —1 are stable whereas the fixed point O is
unstable (Fig. 1.7).
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Fig. 1.5 Pictorial J.C
representation of
Fx) = (1 x)
0.0)
X
Unstable

Fig. 1.6 Graphical ):,
representation of
fl) = (x+x)

< ) > X

0.0 N
Unstable

(iii) Here f(x) = —x —x>. Then f(x) =0 = —x—x =0=x=0, as x € R.
So x = 0 is the only fixed point of the system. We now see that x > 0 when x <0
and x <0 when x > 0. This shows that the fixed point x = 0 is stable. The graphical
representation of the flow generated by the system is displayed in Fig. 1.8.

Example 1.8 Determine the equilibrium points and sketch the phase diagram in the
neighborhood of the equilibrium points for the system represented as x + x sgn(x) = 0.

Solution Given system is x+xsgn(x) =0, that is, X = —xsgn (x), where the
function sgn(x) is defined as
I, x>0
sgn(x)=¢ 0, x=0
-1, x<O0

For equilibrium points, we have

x=0=>xsgnx=0=x=0.
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Fig. 1.7 Graphical i

representation of the flow

generated by (x — x°)

Stable Stable
X
Unstable
Fig. 1.8 Graphical *
representation of f(x) =
(—x — x*) versus x
Stable
g
X

This shows that the system has only one equilibrium point at x = 0. In flow
analysis we see that the velocity x<O0 for all x # 0. The flow is to the right
direction, when x > 0, in the negative x-axis and to the left direction, when x <0, in
the positive x-axis. This is shown in the phase diagram depicted in Fig. 1.9, which
shows that the fixed point origin is semi-stable.

1.8 Conservative and Dissipative Dynamical Systems

The dichotomy of dynamical systems in conservative versus dissipative is very
important. They have some fundamental properties. Particularly, conservative
systems are the integral part of Hamiltonian mechanics. We give here only the
formal definitions of conservative and dissipative systems. Consider an autonomous
system represented as

¥ =f(x)x €R" (1.15)
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Fig. 1.9 Graphical x’
representation of the flow
X = —xsgnx Semi - Stable
- {] /41‘- X

The conservative and dissipative systems are defined with respect to the diver-
gence of the corresponding vector field, which in turn refers to the conservation of
volume or area in their state space or phase plane, respectively as follows:

A system is said to be conservative if the divergence of its vector field is zero.
On the other hand, it is said to be dissipative if its vector field has negative
divergence. The phase volume in a conservative system is constant under the flow
while for a dissipative system the phase volume occupied by the system is gradually
decreased as the time ¢ increases and shrinks to zero as t — co. When divergence of
vector field is positive, the phase volume is gradually expanding. We shall discuss it
in a later chapter. We state a lemma below which gives the change of volume in a
phase space for an autonomous system.

Sometimes, it is useful to find the evolution of volume in the phase space of a
system X =f(x),x € R". The system generates a flow ¢(z,x). We give
Liouville’s theorem which describes the time evolution of volume under the flow
¢(t, x ). Before this we now give the following lemma.

Lemma 1.1 Consider an autonomous vector field X = f(x ),x € R" and gener-
ates a flow ¢,(x ). Let Dy be a domain in R" and ¢,(Dy) be its evolution under the
Sflow. If V(t) is the volume of Dy, then the time rate of change of volume is given as

drt_—fOVfdx

Proof The volume V(f) can be expressed in the following form using the definition
of the Jacobian of a transformation as

o¢(t,x )
V(t):/ —|dx

Dy
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Expanding Taylor series of ¢(z, x ) in the neighborhood of 7 = 0, we get

d(t,x) =x +f(x)t+0(F)

8¢>_ of
m I+ IHO( %)

Here I is the n X n identity matrix and

90| _ |, O
x|~ I+t +0(r)

9
1+ trace 8_f t+O(*) [Using expansion of the determinant|
x

~

Now, trace (z%) =V -f, so we have

V(t) = V(0) + /tV~fd§ +0(1%).

Dy
This gives ‘ = fV fdx.

Theorem 1.1 (Liouville’s Theorem) Suppose V - f = 0 for a vector field f. Then
for any region Dy CR", the volume V(t) generated by the flow ¢(t,x ) is V(t) =
V(0), V(0) being the volume of D.

Proof Suppose the divergence of the vector field f is everywhere constant, that is,
V - f = c. For arbitrary time fy the evolution equation for the volume is given as
V = cV. This gives V(¢) = V(0)e. When the vector field is divergence free, that
is, c = 0, we get the result V = 0 = V(r) = V(0) = constant. Thus we can say that
the flow generated by a time independent system is volume preserving.

Examples of conservative and dissipative systems are presented below.

(a) Consider a linear and undamped pendulum represented as x +x = 0. This is
an example of a conservative system. Setting x =y, we can write it as a
system of equations
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(b)

The system may also be written in the compact form X = f(x ), where

flx)= ( Y > The divergence of the vector field f is given by V- f =

7x :

~

2 (y)+ £ (—x) = 0. According to the definition, the system is conservative

and the area occupied in the xy-phase plane is constant.

The damped pendulum governed by X+ oax+ fix = 0,0, f > 0 is an example
of a dissipative system. Setting x =y, we can write the system as

x=y
y=—ay—px

The vector field is then expressed as f (x ) = <—rxyy— ﬁx)'

Now, V- f :%(y)—&-%(—ocy—ﬁx) = —a<0, sincea > 0.

This shows that the divergence of the vector field is negative. So the system is
dissipative in nature and the area in the phase plane is decreasing as time goes
on. This is the simplest linear oscillator with linear damping. It describes a
spring-mass system with a damper in parallel. The spring force is proportional
to the extension x of the spring and the damping or frictional force is pro-
portional to the velocity x. The two constants o and f§ are related to the
stiffness of the spring and the degrees of friction in the damper, respectively.
According to the above lemma, the change in phase area is given by

A(t) = cA(0)e™™, o > 0 as t — oo, cbeing a constant.

Example 1.9 Find the phase volume element for the systems (i) x = —ux,
(i1) x = ax — bxy,y = bxy — cy where x,y >0 and a, b, ¢ are positive constants.

Solution (i) The flow of the system x = —x is attracted toward the point x = 0. The
time rate of change of volume element V(z) under the flow is given as

dl
dr

_— / dx = —V/(0)
=0
D(0)

or, V(1)=V(0)e" — 0ast — oco.

Hence the phase volume element V(¢) shrinks exponentially.
(i) The given system is a Lotka-Volterra predator-prey population model. The
rate of change in phase area A(f) is given as
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dv -

—=— [ V. fdxd

dr / f Y
:—/(a—c—by+bx)dxdy

This shows that a phase area periodically shrinks and expands.

1.9 Some Definitions

In this section we give some important preliminary definitions relating to flow of a
system. The definitions given here are elaborately discussed in the later chapters for
higher dimensional systems.

Invariant set A set D C R" is said to be an invariant set under the flow ¢, if for
any pointp € D, ¢,(p) € D forall t € R. The set D is said to be positively invariant
if ¢,(p) € D for t > 0. Trajectories starting in an invariant set remain in the set for
all times. An interval is called trapping if it is mapped into itself and is said to be
invariant if it is mapped exactly onto itself. Moreover, if a bounded interval is
trapping, then all of its trajectories are trapped inside and must converge to a closed,
invariant, and bounded limit set. Basically these limit sets are the attractors of a
system. So the periodic orbits are examples of invariant sets. We now define two
limiting topological concepts which are relevant to the orbits of dynamical systems.

Limit points ( »- and «-limit points)

The asymptotic behavior of a trajectory may be related with limit points/sets or
cycles and are termed as w- and o-limit points/sets or cycles. We now give the
definitions.

A point p € R" is called an w-(resp. a a-) limit point if there exists a sequence
{t;} with #; — oo (resp. t; — —oo ) such that ¢(#;,x) — p as i — oo. The w-limit
set(cycle) is denoted by A(x ) and is defined as

Alx) = {g € R"3{#;} witht; — oo and p(t;,x ) — p asi — oo}.
Similarly, the o-limit set (cycle), u(x ), is defined as
wx) = {{ € R"|3{#}witht; — —oo and¢p(t;, x ) — p asi — oo}.

For example, consider a flow ¢(z,x) on R? generated by the system i =
cr(l —r), 0= 1, ¢ being a positive constant. For x # 0, let p be any point of the
closed orbit C and take {7;};-, to be the sequence of 7 > 0. The trajectory through
x crosses the radial line through p. So, # —ocoasi— oo and
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¢(t;,x) — p asi — oo. If x lies in the closed orbit C, then ¢(z;,x) = p for each i.
Hence every point of C is a w-limit point of x and so A(x) = C for every x # 0.

When |x|<1, the sequence {f};-, with <0 gives the o-limit set
0 for |x| <1
ux) = {({:Io}sed orbit for }x} =1
When |x| > 1, there is no sequence {;};-,, with #; — oo as i — oo, such that
¢(1;,x) exists as i — oo. So, u(x) is empty when |x| > 1. The closed orbit C is
called a limit cycle of the system.
The trajectory of a system through a point x is the set y(x ) = J ¢(#,x ) and
R

the corresponding positive semi-trajectory 7* (x ) and negative semi-trajectory
77 (x ) are defined as follows:

Tx)=J ot x)andy (x) = | ot x

t>0 t<0

We now state two lemmas below. Interested readers can try for proofs (see the
book Glendinning [6]).

Lemma 1.2

(@) The set D is invariant if and only if y(x ) C D for all x € D.

(b) D is invariant if and only if R"\D is invariant.

(c) Let (D;) be a countable collection of invariant subsets of R". Then UD and
ﬂ D; are also invariant subsets of R".

Lemma 1.3 The set A(x )= () cl <y+ (x )) where cl denotes the closure of

the set, is the w-limit set. xex)

Non-wandering point A point p is called a non-wandering point if for any
neighborhood U of p and for any T > 0, there exists some |¢f| > T such that
¢(t,U)NU # ¢. The nonwandering set, denoted by €, contains all such points
p € U and it is closed. Non-wandring points give asymptotic behavior of the orbit.
In the above definition, if ¢(z, U) N U = ¢, then the point p is called a wandering
point.

The examples of non-wandering points are fixed points and periodic orbits of a
system. For the undamped oscillator (X 4+ x = 0), all points are non-wandering in xx
phase plane while for the damped oscillator (¥ + ot +x = 0), origin is the only
non-wandering point.

Attracting set A closed invariant set D C R" for a flow ¢, is said to be an
attracting set if there exists some neighborhood U in D such that V¢ >0, ¢(z,U) C
Uand (- o $(1,U) = D

Absorbing set A positive invariant compact subset BC R" is said to be an
absorbing set if there exists a bounded subset C of R" with C D B such that
tc > 0= ¢(t,C) C BVr>1c (see the book by Wiggins [7] for details).
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Trapping zone An open set U in an invariant set D C R" in an attracting set for
a flow generated by a system is called a trapping zone. Let a set A be closed and
invariant. The set A is said to be stable if and only if every neighborhood of
A contains a neighborhood U of A which is trapping.

Basin of attraction The domain (called as basin of attraction) of an attracting set
D is defined as |J ¢(#,U) where U is any open set in D C R".

1<0
We now give an example from Ruelle [8]. This example is also discussed in the
book by Guckenheimer and Holmes [9]. Consider the one-dimensional system
%= —x*sin(n/x). It has countably infinite set of fixed points at

X =0, +1.n=1,2,3,.... Now,

f(x) = —x*sin(n/x) = f/(x) = —4x° sin(n/x) + nx* cos(n/x)

. T T ,
= f () s = 5 cos(nm) = 5 (~1)".
noon n
The fixed point x* = 0 is neither attracting nor repelling. The interval [—1, 1] is
an attracting set of the given system. The fixed points x* = j:ﬁ, n=12,... are
1

repelling while the fixed points x* = j:m ,n=1,2 ... are attracting.

1.10 Exercises

1.(a) What is a dynamical system? Write its importance.
(b) Discuss continuous and discrete dynamical systems with examples.
(c) Explain deterministic, semi-deterministic and nondeterministic dynamical
processes with examples.
(d) What do you mean by ‘qualitative study’ of a nonlinear system? Write it
importance in nonlinear dynamics.

2.(a) Give the mathematical definition of flow. Discuss the concept related to ‘a
flow and its orbit’. Also indicate its implication on uniqueness theorem of
differential equation.

(b) Show that the initial value problem X = x3, x(0) = 0 has an infinite number
of solutions. How would you explain it in the context of flow?

(c) Consider a system i = |x["/¢ with x(0) = 0 where p and g are prime to each
other. Show that the system has an infinite number of solutions if p < g, and
it has a unique solution if p > g.

3. Find the maximum interval of existence for the solutions of the following
equations
(@ i=x%x0)=xp, (b) x=u02x0)=xy (c) x=x>+x0)=x0,
@) x=x(x—2),x(0) =3
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4.

10.

11.

12.

13.

For what values of 7y and xy does the initial value problem x = \/x, x(ty) = xo
have a unique solution?

Show that the initial value problem & = 3x*/3 with x(0) = 0 has two solutions
passing through the point (0, 0). How do you explain the context of flow in
this?

Show that the initial value problem & = |x|'/?,x(0) =0 has four different
solutions through the point (0,0). Sketch these solutions in the 7—x plane.
Explain this from Picard’s theorem.

Prove that the system x = x> with the initial condition x(0) = 2 has a solution
on an interval (—oo,c),c € R. Sketch the solution x(¢) in the 7 — x plane and

find the limiting behavior of solution x(f) as t — c-. { 0 when x <0
1/n

Prove that the solutions of the initial value problem x =
when x > 0

with x(0) = 0 are not unique for n =2,3,4,....
What do you mean by fixed point of a system? Determine the fixed points of the
system & = x> — x,x € R. Show that solutions exist for all time and become
unbounded in finite time.

Give mathematical definitions of ‘flow evolution operator’ of a system. Write
the basic properties of an evolution operator of a flow.

Show that the dynamical system (or evolution) forms a dynamical group. What
can you say about commutative/non-commutative group of a system? Give
reasons in support of your answer.

Find the evolution operators for the following systems: (i) & =x —x?,
(i) x=x% (ii)) x=xInx,x>0, (iv) x=tanh(x), (V) x=x—x°,
(vi) x = f coswt, (vil) x = f sin wt.

Verify that ¢,(¢,(x)) = ¢, (x) Vx, 1,5 € R for all cases. Also, show that the
evolution operator ¢, for the system x = x> forms a dynamical group.

Define fixed point of a system in the context of flow. Give its geometrical
interpretation. How do you relate this concept with the usual notion of fixed
point in a continuous dynamical system?

14.(a) Define source and sink for a one-dimensional flow. Illustrate them with

15.

examples.

(b) Locate the source and sink for the system & = (x> — 1),x € R.

Consider the one-dimensional system represented as x = ax + b, where b is a
constant and a is a nonzero parameter. Find all fixed points of the system and
discuss their stability for different values of a.

16.(a) Sketch the region of the flow generated by the one-dimensional system

x = 1/x,x > 0 with the starting condition x(0) = xo.

(b) What do you mean by oscillating solution of a system? Explain with

examples. Show that one-dimensional flow cannot oscillate.

17.(a) Find the critical points of the following systems: (i) x=¢e" — 1,

(i) x=x*>—x—1, (i) x=sin(nx), (iv) % =cosx, (v) i = sinhx,

(vi) x = rx — x? for r<0, r =0, r > 0, (vii) x = x — In(1 +x) +r, r > 0,
(viii) X = x — x3/6.
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18.

19.

20.

21.

22.
23.
24.

25.

26.

27.

28.
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(b) Using linear stability analysis determine the stabilities/instabilities of the
following systems about their critical points:
@ r=x(x-1)x-2), G) x=x-2)(x-3), (i) i=Ilogx,
(iv) ¥ = cosx, (v) & = tanx, (vi) X = 2+ sinx, (vii) x = x —x*/6, (viii)
i=1-x/2+x%/24.

Sketch the family of solutions of the differential equation X = ax — bx*, x > 0
and a,b > 0. How does the velocity vector x behave when (a/b) <x<oo?
Find the critical points and analyze the local stability about the critical points of
each of the following systems: (i) =x* —x® —2x?, (ii) & = sinh(x?)
(iii) x=cosx—1, (iv) = (x— a)z, V) x=(x+1)(x+2), (vi) x=tanx,
(vii) ¥ = log x,(viii)) x = ¢* —x — 1.

Classify all possible flows in R of the system & = ag + a1 x + ax*> + x>, where
ap,ai,ar € R.

Consider the one-dimensional system % = ux-+x, u>0. Using geometric
approach find the solution behavior for any initial condition xy(# 0).

When is a flow called conservative? Give an example of conservative flow.
Prove that the phase volume of a conservative system is constant. Is the con-
verse true? Give reasons in support of your answer.

What can you say about time rate of change of phase volume element in a
dissipative dynamical system? Explain it geometrically. Give an example of a
dissipative system.

Prove that the o- and w-limit sets of a flow ¢,(x) are contained in the
non-wandering set of the flow ¢,(x).

Define absorbing set of a flow. Write down the relation between trapping zones
and absorbing sets. Prove that for an absorbing set A, (), ¢(¢,A) forms an
attracting set. -

Give the definition of invariant set of a flow. Write its importance in dynamical
evolution of a system. Prove that the w-limit set, A(x ), is invariant and it is
nonempty and compact if the positive orbit 7 (x ) of x is bounded.

If two orbits p(x) and y(y) of autonomous systems satisfy y(x) Ny(y) # @,
prove that both the orbits are coinciding.
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Chapter 2
Linear Systems

This chapter deals with linear systems of ordinary differential equations (ODEs),
both homogeneous and nonhomogeneous equations. Linear systems are extremely
useful for analyzing nonlinear systems. The main emphasis is given for finding
solutions of linear systems with constant coefficients so that the solution methods
could be extended to higher dimensional systems easily. The well-known methods
such as eigenvalue—eigenvector method and the fundamental matrix method have
been described in detail. The properties of fundamental matrix, the fundamental
theorem, and important properties of exponential matrix function are given in this
chapter. It is important to note that the set of all solutions of a linear system forms a
vector space. The eigenvectors constitute the solution space of the linear system.
The general solution procedure for linear systems using fundamental matrix, the
concept of generalized eigenvector, solutions of multiple eigenvalues, both real and
complex, are discussed.

2.1 Linear Systems

Consider a linear system of ordinary differential equations as follows:

dxp .
9 — S =anxtanyt o+ ank +b
dey .
o 2= aan +anx;+ - +apx,+ b
t (2.1)
dx, .
E = Xp = An1X1 + QX2 + -+ AunXy +bn
where a;,b;(i,j =1,2,...,n) are all given constants. The system (2.1) can be

written in matrix notation as
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i =Ax +b (2.2)

~ ~

where x (1) = (x1(1),x2(2), ..., x(1))", b = (b1, b2, ..., b,)" are the column vectors
and A = [a;j],~, is the square matrix of order n, known as the coefficient matrix of
the system. The system (2.2) is said to be homogeneous if b = 0, that is, if all b;’s
are identically zero. On the other hand, if b #* 0, that is, if at least one b; is
nonzero, then the system is called nonhomogeneous. We consider first linear
homogeneous system as

i =Ax (2.3)

~

A differentiable function x(7) is said to be a solution of (2.3) if it satisfies the
equation X = Ax . Let x(z) and x(¢) be two solutions of (2.3). Then any linear
combination x (1) = ¢1x(t) +c2x2(t) of x1(¢) and x,(z) is also a solution of (2.3).

This can be shown very easily as below.

X =c1Xx1+cx0

~

and so

Ax =A(c1x1 +x2) = ClAX 1+ AXy = c1X 1 + Xy = X .

The solution x = c¢1x1 + ¢2x> is known as general solution of the system (2.3).

Thus the general solution of a system is the linear combination of the set of all
solutions of that system (superposition principle). Since the system is linear, we
may consider a nontrivial solution of (2.3) as

x()=ua e (2.4)

. . t .
where o is a column vector with components ¢ = (o,00,...,0,) and A is a

number. Substituting (2.4) into (2.3) we obtain
Aa = A e

or,(A—Ail)oa =0 (2.5)

where I is the identity matrix of order n. Equation (2.5) gives a nontrivial solution if
and only if

det(A — AI) =0 (2.6)
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On expansion, Eq. (2.6) gives a polynomial equation of degree n in 4, known as
the characteristic equation of matrix A. The roots of the characteristic equation
(2.6) are called the characteristic roots or eigenvalues or latent roots of A. The
vector o, which is a nontrivial solution of (2.5), is known as an eigenvector of
A corresponding to the eigenvalue A. If « is an eigenvector of a matrix
A corresponding to an eigenvalue 4, then x (1) = e"’g is a solution of the system

X = Ax . The set of linearly independent eigenvectors constitutes a solution space

of the linear homogeneous ordinary differential equations which is a vector space.
All properties of vector space hold good for the solution space. We now discuss the
general solution of a linear system below.

2.2 Eigenvalue-Eigenvector Method

As we know, the solution of a linear system constitutes a linear space and the
solution is formed by the eigenvectors of the matrix. There may have four possi-
bilities according to the eigenvalues and corresponding eigenvectors of matrix
A. We proceed now case-wise as follows.

Case I: Eigenvalues of A are real and distinct
If the coefficient matrix A has real distinct eigenvalues, then it has linearly inde-
pendent (L.I.) eigenvectors. Let a1, %2, . . ., &, be the eigenvectors corresponding to

the eigenvalues A, Az, ... A, of matrix A. Then each x ;(1) = gjeif’,j =1,2,...,nis
a solution of x = Ax . The general solution is a linear combination of the solutions

x ;(t) and is given by

(=Y i)

where ¢y, ¢, .. .,c, are arbitrary constants. In R2, the solution can be written as

2
x (1) = E cjou e = cro 1€ + a0 e
J=1

j.zf

Case II: Eigenvalues of A are real but repeated
In this case matrix A may have either n linearly independent eigenvectors or only
one or many (<n) linearly independent eigenvectors corresponding to the repeated
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eigenvalues. The generalized eigenvectors have been used for linearly independent
eigenvectors. We discuss this case in the following two sub-cases.

Sub-case 1: Matrix A has linearly independent eigenvectors
Let a1, %2,...,%, be n linearly independent eigenvectors corresponding to the

repeated real eigenvalue A of matrix A. In this case the general solution of the linear
system is given by

n
x (1) = E cio e
i=1

Sub-case 2. Matrix A has only one or many (<n) linearly independent
eigenvectors

First, we give the definition of generalized eigenvector of A. Let A be an eigenvalue of
the n x n matrix A of multiplicity m < n. Then for k=1, 2, ..., m, any nonzero solution
of the equation (A — A/ )k v =0 is called a generalized eigenvector of A. For sim-
plicity consider a two dimensional system. Let the eigenvalues be repeated but only
one eigenvector, say o | be linearly independent. Let o ; be a generalized eigenvector
of the 2 x 2 matrix A. Then o, can be obtained from the relation
(A- M)g 2=a = Ay = Ao+ a . So the general solution of the system is

given by
x (1) =ca e +cz(tac e —|—oc e ).
~ 2
Similarly, for an n x n matrix A, the general solution may be written as

x (1) = >0 cix (1), where

xo(t) =t 1M + o 2",

2 9 )
%%le‘)’t+t%2€At—|—g3e"[,

=
w
~—
~
=
Il
)

_ ! it [ it At it
Xa(t) = Grp 1€ o g% aae e et

Case III: Matrix A has non-repeated complex eigenvalues

Suppose the real n x n matrix A has m- pairs of complex eigenvalues
a; £ibj,j=1,2,...,m. Let % + lﬂ ,J=1,2,...,m denote the corresponding
eigenvectors. Then the solutlon of the system X ( ) = Ax (1) for these complex
eigenvalues is given by
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x()=> cuj+dy,
=1

where  u ; = exp(a;t){ 2, cos(bjt) — [ij sin(bjt)}, v ;= exp(a;t){a;sin(b;r) + é’j
cos(b;t)} and ¢;,d;(j = 1,2, ...,m) are arbitrary constants. We discuss each of the

above cases through specific examples below.

Example 2.1 Find the general solution of the following linear homogeneous system
using eigenvalue-eigenvector method:

X =5x+4y
y=x+2y.

Solution In matrix notation, the system can be written as g = Ag, where x =

(i) and A = ( ? 3) The eigenvalues of A satisfy the equation

det(A — A1) = 0

F—i 4

= ,

1 2—A

= 5-2)2-1)—-4=0
= 2 —-7.4+6=0.

The roots of the characteristic equation 2> —74+6 =0 are A = 1, 6. So the
eigenvalues of A are real and distinct. We shall now find the eigenvectors corre-
sponding to these eigenvalues.

e . . .
Let e = (;) be the eigenvector corresponding to the eigenvalue 4; = 1.
~ 2

Then

(A-Te =0

= 0 a)E) ()
de; +4de 0
(ate)-(0)

= de;+4ey =0, e +e, =0.
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We can choose e, =1, e, = —1. So, the eigenvector corresponding to the

(1)

) be the eigenvector corresponding to the eigenvalue

eigenvalue 4, =

O~ =~

1is e

Again, let e’ = (z
> = 6. Then

(A—6l)e'=0

56 4 \/¢ 0
- (1 2—6)(e’2):<0>
N (—,6/14-48,2) _ <0>

e\ — 4e) 0
= —e/1+4e'2:Oe’l—4e’2:0.

We can choose ¢ = 4,¢, = 1. So, the eigenvector corresponding to theeigen-

value 1o =6 is e’ = (T) The eigenvectors e, e’ are linearly independent.

Hence the general solution of the system is given as
1 4
x(t)=cie e +cre'e® =c <1>et—|—cz(1>e6’

x(1) = cré' + 4cped! :
or, yEtg lc e_|’——|—c2 o1 where ¢y, ¢, are arbitrary constants.
= —C 2

Example 2.2 Find the general solution of the linear system

a(5)=(3)C)

Solution The characteristic equation of matrix A is

det(A — AI) = 0
3—-2 0
or, =0
0 3-21
or, (3—7)’=0
or, A=3,3.

So, the eigenvalues of A are 3, 3, which are real and repeated. Clearly, e | =

1 0 . . . .
0 and e = | ) are two linearly independent eigenvectors corresponding to

the repeated eigenvalue 4 = 3. Thus, the general solution of the system is
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x (1) =cre1e" + ¢ 2™

> o) ( Joveli)e = (00)
¥(2) 1 Cop
cre

x(1) y(t) = c2¢* , where ¢|, ¢y are arbitrary constants.

Example 2.3 Find the general solution of the system

x=3x—4y
y=x—y
using eigenvalue-eigenvector method.

Solution The characteristic equation of matrix A is

det(A — AI) =0

3—-1 —4

= =0
1 —1-2

= 2-2.4+1=0

= =11

So matrix A has repeated real eigenvalues 1 = 1, 1.

Lete = <51 ) be the eigenvector corresponding to the eigenvalue A = 1. Then
~ 2

(A-Te = 9

3 - (4] 0
= =

-1-1 0
( 261 462 > ( 0 )

N —

e —2e 0
= 2e1 —4e; =0,e; —2e, =0

We can choose e; = 2,e; = 1. Therefore, ¢ = (%)

Let g = (il > be the generalized eigenvector corresponding to the eigenvalue
~ 2

A = 1. Then



44 2 Linear Systems

31 -4 \/a 2
= =
1 —1-1)\ g 1
(281 —4gz> B (2>
g1 —2g 1
= 2g1—4g=2,g1- 28 =1

We can choose g, = 1, g, = 3. Therefore g = (?)

Therefore the general solution of the system is

x (1) clge’Jrcz(g te+g e’)

o ()=o)

x(1) = {2¢1 + (2t 4 3)cz }e’

(1) = {er + (14 Dea)e!

}, where ¢; and c; are arbitrary constants.
Example 2.4 Find the general solution of the linear system

x=10x—y
y=25x+2y

Solution Given system can be written as

. 10 -1 X
X =Ax, whereA = (25 ’ >and§ = (y>

The characteristic equation of matrix A is

det(A — /1) =0
10-24 -1
= =0
‘25 2—1’
= P -124+45=0
= A=6%3i

Therefore, matrix A has a pair of complex conjugate eigenvalues 6 + 3i.

e . . .
Let e = (;) be the eigenvector corresponding to the eigenvalue
~ 2

A =06 + 3i. Then
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(A—(6+3i))e =0
10 -6 —3i —1 er\ 0
25 2-6-3i/\e) \O
( (4—3i)e1 — e ) B (O)
25e; — (4+3i)ea)  \O
= (4 — 3i)€1 —ep; =0,25¢) — (4+ 3i)€2 =0.

A nontrivial solution of this system is

61:17 6224—3i.

1 1 A 0\ . (1
Therefore e = <4—3i)_ (4)+1(_3)—g1+lg2, where o) = <4>
0
andg2—<_3>.

Similarly, the eigenvector corresponding to the eigenvalue 4 = 6 — 3i is

el = ( 1 )gligz- Therefore,

44 3i

u —e‘”(glcosbt— gﬁinbt) —66’{<i> cos 3t — (03> sin3t}
Vi :e‘”<g1sinbt+gzcosbt) :e&{(i) sin 3¢ + (_03) cos3t}.

Therefore, the general solution is

and

x () =cu+dv,

o[ /1 0 ,
=" cj cos3t — c1 sin 3¢
4 -3
(1N . 0
+ e A dy sin 3t + 3 d) cos 3t

_ 6t< ¢y cos 3t +d; sin 3¢ )
B (4cy — 3dy) cos 3t + (3¢; +4dy ) sin 3¢
8 (¢) cos 3t +d; sin 3t),

= x(t)=e
y(t) = €%[(4¢) — 3d,) cos 3t + (3c) + 4d, ) sin 31]

where ¢; and d; are arbitrary constants.
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Example 2.5 Find the solution of the system

x=x—5y,y=x—3y
satisfying the initial condition x(0) = 1, y(0) = 1. Describe the behavior of the
solution as t — ©o.

Solution The characteristic equation of matrix A is

det(A — AI) =0
1-4 =5
1 —3-2
= 242.+2=0
= A=-1+i

= | o

So, matrix A has a pair of complex conjugate eigenvalues (—1 =+ i).

e . . .
Let e = <el) be the eigenvector corresponding to the -eigenvalue
~ 2

= —1 + i. Then

= (2—i)61—582:0761—( +i)e2:O.
A nontrivial solution of this system is

e1 =2+1i,ep = 1.

Therefore e = (21_1): (?)-ﬁ-i(é):gl—i—igz, where o) = (?) and
1
== (o)

Similarly, the eigenvector corresponding to the eigenvalue 4 = —1 — i is

e = 2-i =0 —ia
e’ = | )= iz
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; . » 2 1\ .
= %1 cosht — oy sinbt | =e { cost — 0 sint » and
at : —t 2 : 1
1 =¢""| aysinbt+asrcosbt | =e 1 sint + 0 cost

Therefore, the solution of the system is

U=

14

x (1) =x(0)u 1 +y(0)v 1
e (FYeost— (Db e () s () ost)
= e’{(?)(cost—l— sinr) + (:))(cost— sint)}.

When t — 0, ¢=" — 0. So, in this case x (1) — 0, that is, the solution of the
system is stable in the usual sense.

Example 2.6 Find the solution of the system x = Ax , where

-1 2 3
A= 0 -2 1
0 30

Solution The characteristic equation of A is

det(A — A1) =0

—1-2 2 3
- 0 -—2-7 1|=0

0 3 -
= (O+D)(-1D(A+3)=0
= Ji=-1,1,-3

Therefore the eigenvalues of matrix A are A = —1, 1, —3.
We shall now find the eigenvector corresponding to each of the eigenvalues.
(]
Let ¢ = | e; | be the eigenvector corresponding to the eigenvalue 4 = —1.
e3
Then
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(A+1l)e =0
—1+4+1 2 3 el
= 0 —2+1 1 (4] =
0 3 1 e3 0

= 2ey+3e3=0, —ey+e3=0, 3¢, +e3=0
= e¢p = e3 = 0ande;is arbitrary.

We choose e; = 1. Therefore, the eigenvector corresponding to the eigenvalue

1
A=—lise = | 0 |.Similarly, the eigenvectors corresponding to A =1 and A = —3
0
11/2 1/2
are, respectively, g = 1 and ¢ = 1 | . Therefore the general solution
h 3 -1

is

x()=ciee'+crge +c3u e

1 11/2 1/2
=c| 0 le"+e 1 d+e| 1 e
0 3 -1

where cy,c, and c3 are arbitrary constants.

Example 2.7 Solve the system x = Ax , where

1 -3 3
A=|3 -5 3
6 —6 4

Solution The characteristic equation of matrix A is

det(A — A1) =0
1—-4 -3 3

= 3 —5-4 3 |=0
6 -6 4-

= =42 -2
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So (—2) is a repeated eigenvalue of A. The eigenvector for the eigenvalue 4, = 4

1

is given as | 1 |. The eigenvector corresponding to the repeated eigenvalue
2

=13 =-21s (61 e €3 )T such that

3 =33 el
3 -3 3 e | =
6 —6 6 e

S OO

which is equivalent to
3¢ —3er+3e3 =0, 3e; —3ex+3e3 =0, 6e; —6ey+6e3 =0,

that is, e; — ey +e3 = 0.
We can choose e¢; = 1, e; = 1 and e3 = 0, and so we can take one eigenvector

1
as | 1 |.Again, we can choose e; = 0, e; = 1 and e3 = 1. Then we obtain another
0
0
eigenvector | 1 |. Clearly, these two eigenvectors are linearly independent. Thus,
1

we have two linearly independent eigenvectors corresponding to the repeated
eigenvalue —2. Hence, the general solution of the system is given by

1 1
x()=c |1 Mt 1 e +es| 1 ]e™
1

where cj, ¢; and c¢3 are arbitrary constants.

Example 2.8 Solve the system x = Ax where

-1 -1 0 O
1 -1 0 O
A= 0o 0 0 -2
o 0 1 2



50 2 Linear Systems

Solution Here matrix A has two pair of complex conjugate eigenvalues A; =
—1=+iand A, = 1+ i. The corresponding pair of eigenvectors is

+i 0 1

L"l:g]ilgl: (l) = (1) +i 8 and
0 0 0

0 0 0

wa=g2kifa= —loj:i - —01 =i (1)

1 1 0

Therefore, the general solution of the system is expressed as

sint p + cre' . cost — sin ¢

cost

0
1
0
0
+d1€7t (

+dye’ ( : sinz+ cost
0
e

~(dy cost — ¢y sint)

— o o O © o = _
—_ |
o —~ © ©

—_

e '(cicost+dsint)
e'{(dy — cz) cost — (dy + o) sint}
é'(cy cost+dy sint)

where ¢;,d;(j = 1,2) are arbitrary constants.
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2.3 Fundamental Matrix

Aset {x (1), x2(t),...,x 4(t)} of solutions of a linear homogeneous system 1 =
Ax is said to be a fundamental set of solutions of that system if it satisfies the
following two conditions:
(i) The set {x 1(t), x2(t),..., X 4(r)} is linearly independent, that is, for ci,cz,
ca ER x1F+oxt o Faxa=0 =0 =--=¢=0.
(ii) For any solution x (¢) of the system % = Ax, there exist ci,c2,...,c, €R
such that x (1) = ¢1x (1) +c2x2(t) + - -+ +cpx u(1), Ve €R.
The solution, expressed as a linear combination of a fundamental set of solutions

of a system, is called a general solution of the system.
Let {x 1(¢), x2(?),...,x 4(t)} be a fundamental set of solutions of the system

% =Ax fortel=la,b]; a,b € R. Then the matrix

00) = (110,520 x,0)

is called a fundamental matrix of the system & =Ax, x € R". Since the set
{x1(2),x2(¢),...,x x(2)} is linearly independent, the fundamental matrix ®(z) is

nonsingular. Now the general solution of the system is

x(1) =c1x1(t) +c2x2(t) + -+ +cpxn(1)

€1

x (0) = x o, then
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Thus the solution of the initial value problem x = Ax with the initial conditions

X (0) = X o can be expressed in terms of the fundamental matrix ®(z) as
x (1) = ®()9~(0) x (2.7)

Note that two different homogeneous systems cannot have the same fundamental
matrix. Again, if ®(¢) is a fundamental matrix of % =Ax, then for any constant C,

C®(7) is also a fundamental matrix of the system.

Example 2.9 Find the fundamental matrix of the system % = Ax, where

A= (_13 _22 ) Hence find its solution.

Solution The characteristic equation of matrix A is

|A— I =0

1—1 =2
’3 2-2
= (1-2)2-2)-6=0
= 2-3,-4=0

= Jl=-1,4.

So, the eigenvalues of matrix A are —1, 4, which are real and distinct.

- -0

Let e = (el ) be the eigenvector corresponding to the eigenvalue ; = —1.

€
Then
(A+De =0
1+1 -2 e 0
= =
-3 241 e 0
= 2e; —2e; =0,—-3e;+3e; =0.

A nontrivial solution of this system is ¢; = 1,e; = 1.

Again, let g = <§1> be the eigenvector corresponding to the eigenvalue
~ 2
Ao = 4. Then
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(A—-4hg =0

1-4 =2 81 0
= =
-3 2-4)\g& 0
= 3g1+2¢ =0
2
Choose g; = 2, g» = —3. Therefore, g = <3>

Therefore the eigenvectors corresponding to the eigenvalues 4 = —1, 4 are

respectively (i) and <23), which are linearly independent. So two funda-

mental solutions of the system are

and a fundamental matrix of the system is

D(r) = ({1(0 {2(1)) = (ei 26" )

e —3e

(1 2 S 1 (32
NowCD(O)—<1 _3> and so @ (O)—§<1 _1>.
Therefore the general solution of the system is given by

0 =owo©0xa-1 (< N0 2
W= ~0= e —3eM | -1 )~

1 (36" 426 et — 2e4’>
_ Xo.

T 5\ 3et — 36t Qe + 3¢

2.3.1 General Solution of Linear Systems

Consider a simple linear equation
X =ax (2.8)

with initial condition x(0) = xy, where a and x, are certain constants. The solution
of this initial value problem (IVP) is given as x(f) = xpe®’. Then we may expect that
the solution of the initial value problem for n x n system
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X =Ax with x (0) = x (2.9)

can be expressed in term of exponential matrix function as
x (1) =e"xo (2.10)

where A is an n x n matrix. Comparing (2.10) with the solution obtained by the
fundamental matrix, we have the relation

M =017 (0) (2.11)

Thus we see that if ®(z) is a fundamental matrix of the system ¥ = Ax , then ®(0)
is invertible and e’ = ®(¢)® ' (0). Note that if ®(0) = I, then ®'(0) = I and so,
A =0(1) = O(1).

=3t

4 —
Example 2.10 Does ®(1) = < 2e ¢

Aol Dp—3 > a fundamental matrix for a system
—4e e

x =Ax?

~

Solution We know that if ®(¢) is a fundamental matrix, then ®(0) is invertible.

2¢! —e¥ 20—l
Here (D(t) = <_4et 2@73[ ) SO, (D(O) = (_4 2 >

Since det(®(0)) = 4 — 4 = 0, ®(0) is not invertible and hence the given matrix
is not a fundamental matrix for the system & = Ax.

Example 2.11 Find ¢V for the system X =Ax, where A = (‘1‘ } >

Solution The characteristic equation of A is

|A— 1 =0
1-4 1
4 1-2
= (A-1"—4=0
= 1=3,—-1

= ‘ ‘:O

So, the eigenvalue of A are 4 = 3, —1. The eigenvector corresponding to the
eigenvalues 4 = 3, —1 are, respectively, (;) and <12
independent. So, two fundamental solutions of the system are

xi(t) = (1)e3t7£2(t) = ( 12>e’. Therefore a fundamental matrix of the

>, which are linearly

system is



2.3 Fundamental Matrix 55

2 - 1ol
Now,q;(o):(é _12> and(I)%O):_i(_g 11>:<§ _4%>.

Therefore,

M=o (0)
_ ( e3t e! ) % i _ %(eBz _|_e—t) i(e& _ e—t)
2e3t —Det % _% (631 _ e—t) %(63’ —l—e_’) :

2.3.2 Fundamental Matrix Method

The fundamental matrix can be used to obtain the general solution of a linear
system. The fundamental theorem gives the existence and uniqueness of solution of
a linear system X =Ax, x € R" subject to the initial conditions x o € R". We

now present the fundamental theorem.

Theorem 2.1 (Fundamental theorem) Let A be an n X n matrix. Then for given any
initial condition x o € R", the initial value problem x = Ax with x (0) = x o has

the unique solution x (1) = e*'x .
Proof The initial value problem is

X =Ax, x(0)=uxo (2.12)

~

We have

A2t2 A3t3
eA’=1+At+7+7+-~- (2.13)

Differentiating (2.13) w.r.to ¢,

d d A2 AP
iy 4 (a0 AC
a @) =g A =+

d d d (A*? d (AP
=D+ —A)+ — (= )+ (=) + -
dt()+dt( )ert<2!>+dt(3!)Jr
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The term by term differentiation is valid because the series of e*’ is convergent
for all ¢ under the operator.
AP AP

d t 2
or, a(e‘A):QDJrAJrAZJrTJrTJF

A’ AP
—A<I+At+2!+3!+ )
=AM,
Therefore,

% () = At (2.14)

This shows that the matrix x = ¢! is a solution of the matrix differential
equation x = Ax . The matrix ¢! is known as the fundamental matrix of the system
(2.12). Now using (2.14)

d d
@ <€At£ o) =5 (@) x0=4¢"x0

where x = e?'x .

Also, x (0) = {e’”{ 0} =[e"],_ox0 =Ix0=xo. Thus x (f) = e*x ¢ is a
=0
solution of (2.12). We prove the uniqueness of solution as follows. Let x (z) be a

solution of (2.12) and y (r) = e *'x (1) be its another solution. Then

y (1) = —Ae

(1) +e ™k (1)

~

2=

=—AeMx () +Aex (1) = 0.

2=

This implies y(z) is constant. At t = 0, for # € R, it shows that y(r) = xo.
Therefore any solution of the IVP (2.12) is given as x(r) = ¢*'y(r) = ¢*'x ¢. This
completes the proof.

2.3.3 Matrix Exponential Function

From the fundamental theorem, the general solution of a linear system can be
obtained using the exponential matrix function. The exponential matrix function has
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some interesting properties in which the general solution can be obtained easily. For
an n X n matrix A, the matrix exponential function e of A is defined as

A A2
Z—|—I+A+—+ (2.15)
n=0 2!

Note that the infinite series (2.15) converges for all n x n matrix A. If A = [a], a
1 x 1 matrix, then e = [e“] (see the book by L. Perko [1]). We now discuss some of
the important properties of matrix exponential function e”.

Property 1 If A = ¢, the null matrix, then ¢* = I.
Proof By definition

A’r AP
N =1+At+ o + T

22 3
o @t q’t
—I+(pt+7+7+

=1
So, eA' =1 for A = ¢.
Property 2 Let A = I, the identity matrix. Then

!
M= [% 2] =1

Proof We know that e’ = I + At + A2’2 + A3’3 + - --. Therefore

Il r’e P
et = +l+?+?+
2 Il3

=1+l oy o+

2 '%
1 4 ..
it g

R

Note If A = al, a being a scalar, then

ot
e 0
eAt eodt Ieat |: 0 M:| .
e
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Property 3 Suppose D = {/61 /? } , a diagonal matrix. Then
2

Dt e/L[l 0
e - 0 e/lzt

D D3P
—I+Dt+7+?+

s Shls 2Tae
1 0 A 0 Jp] 2!

1
L0

e o]j{zl O}lef 0
10 1 0 0 73

Proof By definition

2 Linear Systems

2
_ l—‘r/ull-l-z—t""" 0
- 2
0 L+ ot + 22 4.

[ent 0
- 0 e/lzl :

Property 4 Let P'AP = D, D being a diagonal matrix. Then

At
At _ p,Dip—1 _ e 0 q B i 0
= Pe”'P —P{ 0 eizt]P , where D = {O )vz]'
Proof We have
. AKE
At 1 AT
€= nll»r{olo kl
PDP
= lim Z D = PilAP, SO A = PDP—l]
(Pkafl)tk (PDP?l)k: (PDPil)(PDP’l) S (PDPfl)
:;}i—%lo — k! = PD(P~'P)D(P~'P)---(P~'P)DP!
o = PD*pP!
. n Dktk ,
= P(nll»nolc;—k! )p
= PP p!

et 0
=P p!
0 ™




2.3 Fundamental Matrix 59

Property 5 Let N be a nilpotent matrix of order k. Then € is a series containing
finite terms only.

Proof A matrix N is said to be a nilpotent matrix of order or index k if k is the least
positive integer such that N¥ = ¢ but N*~! £ ¢, ¢ being the null matrix.
Since N is a nilpotent matrix of order k, N*=! £ ¢ but N* = ¢.

Therefore
N2t2 N3t3 Nkfll.kfl thk
Nt
=J]+Nt+ —— - — -
¢ L T T e S R TR
N2t2 N3t3 Nk— 1 lk_ 1
=4+ N+ — 4+ — oy
LR Y YR b

which is a series of finite terms only.

b _ab} then &' = ¢*!'[Icos(bt) + J sin(br)], where I =

1 0 0 -1
[O 1]and1—{l 0].

Proof We have

a —b 1 0 0 —1 1 0
A= =a +b =al+bJ, where [ = ,
b a 0 1 1 0 0 1

[0 ]

Therefore

Property 6 If A =

eAt — eaItJtht

(bJr)*  (bJt)’?
I+th-‘r—2! + 30

:ea“|:1<l—¥+¥+“'> +J<bz—¥+---)}
'...12: {O —1]{0 —1} T
1 0 1 0
-1 0
= [T cos(bt) + T sin(br)] | [ 0 —1} T
PB=RI=(-DJ=-J

JA=Pl=(-N)J=-1=I
Letc....

ealz . eth _ ealt

~
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Property 7 At 8 = 4¢P, provided AB = BA.
Proof Suppose AB = BA. Then by Binomial theorem,

1 n! A/Bk

Therefore

B _ i (A:'B)" _ i > Affk

ik
n=0 ' 11:0j+k:n]' '

It is true that ¢* T8 = ¢ if AB = BA. But in general eA+8 £ ¢4ef.
Property 8 For any n X n matrix A, i (M) = Aet.

Proof By definition

A2 AP
r__
eA—1+Al+T+T+
d d 22 A
M = A+
"dt( ) dt + +2!+3!+

d d d (A2 d (AP
=2 (D+=(A 2= (==
dt()+dz(t>+dt<2!>+dt<3!>+

The term by term differentiation is valid because the series of e*’ is convergent
for all ¢ under the operator.

3 [2 A4 t3

d t 2
or, &(eA)=q7+A+At+T+T+

A% A3
=A<I+Az+—+ +)

21 " 31
= A,

Therefore, & ()= AeM.
We now establish the important result below.
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d
Result Multiplying both sides of o (¢") = Ae™ by ®(0) in right, we have

% (M) D(0) = A D(0)

- %(eA’(D(O)) = A" ®(0)

= & (@0 0)2(0)) =AD" (0)0(0) [since ¢ = D)D" (0]
= (@) = o) = AD(0)

This shows that the fundamental matrix ®() must satisfy the system ¥ = Ax .

This is true for all #. So, it is true for ¢ = 0. Putting 7 = 0 in ®(r) = AD(r), we get
D(0) = AD(0) = A = ®(0)D1(0).

This gives that the coefficient matrix A can be expressed in terms of the fun-
damental matrix ®(z).

et 6721‘
2¢ 3e ¥
X = Ax ?1If so, then find the matrix A.

Example 2.12 Does ®(r) = ( ) a fundamental matrix for the system

Solution We know that if ®(¢) is a fundamental matrix, then ®(0) is invertible.

e e 1 1
Here @(z) = <2e’ 362,). So, ®(0) = <2 3).
Since det(®(0)) =3 —2 =1 # 0, ®(0) is invertible. Hence the given matrix is
a fundamental matrix for the system x = Ax. We shall now find the coefficient

matrix A.

We have ®(0) = (é ;).So <D1(0)<_32 711

. ! _ —2t . _
Also ®(1) = ( iy _§Z2f>’ and ®(0) = ( ; _2).

Therefore the matrix A is

Ad)(O)CDl(O)(é _é)(fz 11>(178 —§>

3.1

Example 2.13 Find ¢ for the matrix A = < 1 3

) . Hence find the solution of the

system ¥ = Ax.
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Solution We see that the eigenvectors corresponding to the eigenvalues A = 2, 4 of

A are respectively e = <11) and g = <}) which are linearly independent.

Therefore, two fundamental solutions of the system are x (7) = (_11 )eZ’ and

xo(t) = ( ! )e‘“ . So a fundamental matrix of the system is

o) = (110 x:0)= (<, <),

—e e

We find ®(0) = <11 i > and @ '(0) =1 (1 _11 > Therefore

B 1 eZt e4t 1 —1 1 €2t + e4t e4t _ eZt
eA’:CD(t)(I) 1(0)2(—62’ oM 1 1 :5 A e SR

By fundamental theorem, the solution of the system x = Ax is
1 2t 41 4r 2t c
x()=e"xo=5 <e4l +ezz ezz 64/ :
~ ~ 2\ e’ —e e +¢ 2

cr . .
where x o = (Cl ) is an arbitrary constant column vector.
~ 2

2.4 Solution Procedure of Linear Systems

The general solution of a linear homogeneous system can be easily deduced from
the fundamental theorem. According to this theorem the solution of ¥ = Ax with

x (0) = x o is given as x (1) = ¢*'x ¢ and this solution is unique.
For a simple change of coordinates x = Py where P is an invertible matrix, the
equation ¥ = Ax is transformed as

x =Ax

= Py = APy
= y =P 'APy

= y =Cy, whereC = P"'AP.
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The initial conditions x (0) = x ¢ become y (0) =P 'x (0) =P 'xo=y,.
So, the new system isy = Cy with y (0) =y, where C = P~'AP.

It has the solution

Hence the solution of the original system is

x (t) =Py (t) =Pe“yo=Pe“P 'x,.

~

We see that ¢!’ = Pe€'P~!. The matrix P is chosen in such a way that matrix
C takes a simple form. We now discuss three cases.

(i) Matrix A has distinct real eigenvalues

Let P= <g1,g2,...,gn) so that, P! exists. The matrix C is obtained as

C = P'AP which is a diagonal matrix. Hence the exponential function of
C becomes

/lltye/lzt ! f)

e = diag(e o).

Therefore we can write the solution of ¥ = Ax with x (0) = x¢ as x (¢) =

eA’go = PeC’P‘lzg 0- So
x (1) = Pdiag(eM?, ™. . e;‘”t)P_lz 0

t . .
where x o = (c1,¢2,...,¢,)" is an arbitrary constant.

(i) Matrix A has real repeated eigenvalues

In this case the following theorems are relevant (proofs are available in the book
Hirsch and Smale [2]) for finding general solution of a linear system when matrix
A has repeated eigenvalues.

Theorem 2.2 Let the n X n matrix A have real eigenvalues 11, 15, ..., A, repeated
according to their multiplicity. Then there exists a basis of generalized eigenvectors
{a1,00,...,00,} such that the matrix P = (o, %2,...,%,) is invertible and

A =S8+ N, where P~'SP = diag(/y, A1, ..., 4,) and N(=A — S) is nilpotent of order
k< n, and S and N commute.
Using the theorem the linear system subject to the initial conditions x (0) = x ¢

has the solution
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Nk— 1 tk_ 1

x (1) = Pdiag(e” )P~ I+ Nt + - + = X o

(iii) Matrix A has complex eigenvalues

Theorem 2.3 Let A be a 2n % 2n matrix with complex eigenvalues a; £ ib;, j =1, 2,
..., . Then there exists generalized complex eigenvectors (o.; +if;),j =1,2...,n

such that the matrix P = (1, 1, f2,%2,..., fn, &) is invertible and A = S + N,
b,

Z{ a-J } , and N(=A — S) is a nilpotent matrix of order
i 4

k < 2n, and S and N commute.

Using the theorem the linear system of equations subject to the initial conditions
x (0) = x o has the solution

where P~'SP = diag[

(it | €OS(BE)  —sin(bit) | . Nk
x (1) = Pdiag(e”") [sin(bjt) cos(byt) P {I+Nt+ -+ | Eo

For a 2 x 2 matrix A with complex eigenvalues (o & if3) the solution is given by

X (1) = Pe%l(cosﬁt _smﬂt>P1§0.

sin it cos fit

Example 2.14 Solve the initial value problem

X=x+y,y=4x—2y

with initial condition x (0) = (23 >

Solution The characteristic equation of matrix A is

A= =0
1—2 1
=
4 —2-2
= (A-1)(+2)-4=0
= P4+1-6=0
= 1=2,-3

=0

So the eigenvalues of matrix A are 2, —3, which are real and distinct.
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Let ¢ = <Zl> be the eigenvector corresponding to the eigenvalue A; = 2.
~ 2
Then
(A=2Ie =0
1-2 1 el 0
= =
4 -2-2 e 0
= —e1t+e=0,4¢; —4e; =0

A nontrivial solution of this system is e; = 1,e; = 1.

()

Again let g = <§1> be the eigenvector corresponding to the eigenvalue
~ 2
Jp = —3. Then

(A+3I)

- (3 2 (@)-6)

= 4g1+g=0,4g,+g =0

=0

209

A nontrivial solution of this system is g; = 1,8, = —4.



66 2 Linear Systems
Therefore by the fundamental theorem, the solution of the system is
x (t)=e"xo=Pe“"P'x,
1 1 e 0 1/4 1
= - X
1 —4)\o e¥)5\1 -1)>°

1/ 4e¥ 4¢3 o2 _ o3t
~3 <4e2’ 4 Y +4e‘3’>£

N x(t) B %621 + %6_31 %eQr _ %6—31 2 B eZt + 6—31
y(t) - %621 _ %e—3t ée2t + %6731 -3 - e — 43
= x(t) = +e Y y(t) = ¥ — de .

Example 2.15 Solve the system

5(1 = —X1 — 3)62,)'62 = 2)(2.
Also sketch the phase portrait.

Solution The characteristic equation of matrix A is

[A—AIl =0
—-1-1 =3
= =0
0 2—4

= (A-+)A-2)=0

= l=-1,2
The eigenvalues of matrix A are —1, 2, which are real and distinct.
Let ¢ = (Zl ) be the eigenvector corresponding to the eigenvalue 4, = —1.

~ 2
Then
(A+I)e =0

(—1+1 —3><e1>_<0)
0 2+1/)\e/ \O
= —3e, =0,3¢, =0

= e, = 0and e is arbitrary.

Choose e; = 1 so that ¢ = ((l))
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Again, let g = < ?) be the eigenvector corresponding to the eigenvalue
~ 2
A» = 2. Then

(A-2Ng =0

- <_1:2212><2>:<8)

= g1+g=0

-1

_ (1 1 (1 1
LaP_(g§>_(O_4>fmmP _(0_4)
Therefore

B 1 1\/-1 =3\/1 1
C=P AP =
0 -1 0 2 0 -1
(—l —1><1 1><—1 0)
~\o —=2)J\o -1/ \o 2

—t
and so e = (eo e%z).

Therefore by fundamental theorem, the solution of the system is

Choose gy = 1,82 = —1. Then g = ( 1 )

x (t) =e"xo=Pe“P 'x,

1 1 et 0 1 1
:<0—4)<0 é)(o<4>f°
et et —e\ [
(% “a)(@)
x1(7) e et — e ) (c14c)e™ — cre
<Xz(t)> a < 0 e ><62) - ( e )
= x(t)=ce'+c (eft — ezt),xz(t) = cye?

where ¢y, ¢, are arbitrary constants. The phase diagram is presented in Fig. 2.1.

Example 2.16 Solve the following system using the fundamental theorem.

x=5x+4y
y=—x+y
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Fig. 2.1 A typical phase
portrait of the system \

Solution The characteristic equation of matrix A is

|A— 21| =0
5-. 4
’—1 1-4
= (A-1)(1-5+4=0
= 2—-6L+9=0

= 1=33.

This shows that matrix A has an eigenvalue 4 = 3 of multiplicity 2. Then

= =0

S = B g} andN=A—S = {_21 _42 ] . Clearly, matrix N is a nilpotent matrix

of order 2. So, the general solution of the system is given by

3t
e
z(l‘) ZeAt)~Co=e<S+N)t{0:eS[eN’)~C(): {O

e’ 0 1+2¢ 4t
X0-
0 e —t 1—2¢|~

Example 2.17 Find the general solution of the system of linear equations

e3t:| [I‘FN[}% 0

X=4x—2y
y=>5x+2y
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Solution The characteristic equation of matrix A is

A= =0

4-) =2

5 2-

= (A—4)(4-2)+10=0

= 12-6,+18=0

6+36—172
2

:>’ =0

So matrix A has a pair of complex conjugate eigenvalues 3 + 3i
Lete = <Zl ) be the eigenvector corresponding to the eigenvalue 1; = 3 + 3i.
~ 2
Then

(4-G+300e =0

(75 ) ()= ()
- (1_531 _1__231-)(2;):(8)
= (1-3i)er —2es = 0,5¢; + (1+3i)er = 0

A nontrivial solution of this system is e; =2, e; = 1 — 3i.

-e_ 2
LT \1-3i )

Similarly, the eigenvector corresponding to the eigenvalue A, =3 —3i is

B 2
§ = \1+3i)
(0 2 o, /1 =2
LetP(_3 1>.ThenP 6<3 0>.
1/1 =2 4 -2 0o 2
_ p-1 _ p-1 _ 1t _
Lo c=ran, e c=rar=(12)(4 2)(Y 2)
3 -3
3 3 )

So,

ct 3 cos3t —sin3¢
e'=e . .
sin3¢r  cos3t
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Therefore, the solution of the system is

x (1) = e"xo = Pe“P ' xg
15,/0 2 cos3t —sin3t 1 -2
= _¢° X X0-
6 -3 1 sin3¢  cos3t 3 0/~
Example 2.18 Solve the initial value problem ’ﬁ =Ax, with X (0) = ( (1)> , where

A= (12 _é)ﬂg = (;) Also sketch the solution curve in the phase plane
R?.

Solution The characteristic equation of matrix A is

|A—AIl=0
—2-1 -1
= =0
1 —2—-7
= (A+27+1=0
= 44i+5=0
—4++16—-20
= )= — 6 =241
So matrix A has a pair of complex conjugate eigenvalues —2 + i
Lete = <21 > be the eigenvector corresponding to the eigenvalue 1; = —2 +1.
~ 2
Then

(A= (=2+i))e =0

- (T L L))
—i -1 el 0

- (1 —i><e2>:(0>

= —ieg—e;=0,e; —ie; =0

A nontrivial solution of this system is e; = 1,e; = —i.

e <1i>' Similarly, the eigenvector corresponding to the eigenvalue 1, =

.. (1 (0 1 (0 -1
—2—11s§—(i).LetP—(_1 0).ThenP _(1 0>and

A A ) -2 -1 0o 1\ _ [-2 -1

c=rwr=(1 (T D)0 0)- (T )
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So,
o 9—2’<095t —smt)
sint  cost
Hence the solution of the system is
x(t)=e"xo=Pe“P 'x,
(0 1 cost —sint 0 -1
=e . X 0.
-1 0 sint  cost 1 0/~
_2t( sint cost) (O -1
=e . X0
—cost sint 1 0/~
_ cost —sint 1
sint  cost 0
_ cost
sint
~.x(t) = e H cost,y(t) = e sint.
Phase Portrait The phase portrait of the solution curve is shown in Fig. 2.2.
Example  2.19 Solve the system X =Ax with x(0)=2xo, where
2 1 3 -1
0 2 2 -1
A= 0 0 2 -5
0 00 2
Fig. 2.2 Phase portrait of the Yy
solution curve
o\ 5

N,
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Solution Clearly, matrix A has the eigenvalue 1 = 2 with multiplicity 4. Therefore,

20 0 0 01 3 —1
020 0 00 2 —1
5=10 0 2 o|™MN=A4=5=145 0 ¢ _s
000 2 000 0

It is easy to check that the matrix N is nilpotent of order 4. Therefore, the
solution of the system is

N2 N3P
{(l) :eSt(I'FNZ-FT"‘T){o.

2.5 Nonhomogeneous Linear Systems

The most general form of a nonhomogeneous linear system is given as

() =A0x (1) +b (1) (2.16)

where A(?) is an n x n matrix, usually depends on time and b (7) is a time dependent

column vector. Here we consider matrix A(f) to be time independent, that is, A
(1) = A. Then (2.16) becomes

$(0)=Ax () +5 () (2.17)

The corresponding homogeneous system is given as

X (1) =Ax (1) (2.18)

~

We have described solution techniques for homogeneous system (2.18). We now
find the solution of the nonhomogeneous system (2.17), subject to initial conditions
x(0) = xo.

As discussed earlier if ®(¢) be the fundamental matrix of (2.18) with x (0) = x o,

then the solution of (2.18) is given by

We assume that

x (1) = DD (0)x o + DD (0) (1 (2.19)
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be the solution of the nonhomogeneous linear system (2.17). Then the initial
conditions are obtained as # (0) = 0. Differentiating (2.19) with respect to 7, we get

5 (1) = D@D (0)x 0 + OO (0)u (1) + O O)i (1) (2.20)

Substituting (2.20) and (2.19) into (2.17),

DD (0)x o+ ()P (0)u (1) + D(1) D (0) i
= AD()D ' (0)x o +AD(t)® ' (O)u (1) + b (1) (2.21)

=

—
~

—

Since ®(7) is a fundamental matrix solution of (2.18),
(1) = AD(1).

Using this in (2.21), we get

u (0 = [ ©0)0 (05 (ar.

Hence the general solution of the nonhomogeneous system (2.17) subject to
x (0) = x ¢ is given by

x (t) = O(t)® ' (0)x o + D(r /(D ! (2.22)
0

Example 2.20 Find the solution of the nonhomogeneous system x = x+y+t, y =
—y+ 1 with the initial conditions x(0) = 1, y(0) =0

Solution In matrix notation, the system takes the form i (1) = Ax (¢) + b (¢),

1 1 t
where A = (O _1) and b (1) = (1>
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The initial conditions become x (0) = x o, where x ¢ = ((1)> Matrix A has

eigenvalues A, = 1, 4, = —1 with corresponding eigenvectors ( é) and (_12)

Therefore

This gives

cp-'(t):%(zgl i;,),fl)(o):<(l) _12)and(1>_1(0):%((2) _11>

Therefore the required solution is

x (1) = D)0 (0)x o+ D(r) / 1 (a)b (o)dor
0

:1@(;) ((2) —11><(1)>+O/t<260_1 i;i)(?)da
_%@(t){<(2)>+<3—<12it?)e')}
(5 SO AR )

Example 2.21 Prove that the flow evolution operator ¢,(x ) = M x satisfies the

NS}

following properties:
M) ¢o(x)=x.
(i) ¢ op(x)=1x,
(iii) @0 ¢(x) =iy s(x)
forall s, € Rand x € R". Is ¢, 0 p; = ;0 ¢,?

Solution We have

(i) ¢o(x)=e"x

=X.
(i) ¢ od(x)=¢ (y)=e™
(i) ¢, 0y (x)=d,(y)=ely =eVebx =Ty =g, (x).

= e’A’eA’g = x, where y = eA’g.

U<
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Now,
b0 di(x)=(y) ="y =My =My = ¢ (2) = do0dy(x)

forall x € R", where z = e““g.

Hence ¢, o ¢, = ¢, o ¢,. This indicates that the given flow evolution operator is
commutative.

2.6 Exercises

1. Prove that for a square matrix 4 of order 7, the set of solutions of the linear
homogeneous system % = Ax in R” forms an » -dimensional vector space.

2. Find the eigenvalues and the corresponding eigenvectors of the following matrices:

11
12 2 (12 (2 7)Y . (o B 13
Oy 7 @ [_1 2] (i) [5 _10) (i) [0 yj ) {ﬁ 3&}
2 2
1 2 5
Vi) |0 6 -1
3 2 1

0
3. (a) Consider the matrix 4 :(117 1]. Find the value(s) of p for which the matrix 4 has
repeated eigenvalues.
(b) Find the 2 x 2 matrix 4 whose eigenvalues are 1, 4 and the corresponding eigenvectors
1 2
are and .
-1 1
(c) Find all 2x 2 matrices 4 whose eigenvalues are 0 and 1.
4.  Consider the linear homogeneous system
X=—4x+y,y=-2x-y.
(a) Write the system as x = 4x.

(b) Show that the characteristic polynomial is A2 +5A+6
(c) Find the eigenvalues and the corresponding eigenvectors of the matrix 4.

(d) Find the general solution of the system.

1
(e) Solve the system subject to the initial condition x(0) = [2 ]
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Find the general solution to each of the following system of homogeneous linear

equations:

(i) x=x+3y,y=x—-y

o [ )

. -4 2
(i) x=Ax where 4= -

(iv)  X(t) = Ax(¢t)where 4= (_51 gj

31
(v)  x=Ax,where 4=
-7 -2 1

(vi) x=-5x,y=-5y

b
(vil) x= [a ])f , where bc>0.

c a
(viil) — =
dt| y(t) 0 Ay

1
(ix) x=Axwhere4=|0
0

(=
W N~

4 x(2) 1 2 —1)(x()
X —|y@®) |=[0 1 1 ¥
z(1) 0 -1 1 J|z@®

xi) X=yy=zi=x+y-z
(xil)) X=x+2y-z,y=y+z,i==y+z

(xiii) x=x, y=2y-3z,z2=x+3y+2z

x(1) 0 1 1)(x(0)
&iv) | 3@ [=|1 0 1 »®n
z(t) 1 1 0|z
1 -1 0 0
. 1 1 0 0
(xv) x=Ax,where 4=
-7 0 0 3 =2
0 0 1 1
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6.  Solve the following initial value problems:

(i) $=9x+5y,7=—6x—2y;x(0)=13(0)=0.

. (31 o[
(i) =, ,)5()—2.
. (10 o[
(iii) =0 , x(0)= 1l

. . 1 -3 2
(iv) x=Ax,x(0)= (_2} where 4 = [ ]

1=

1=

-1 -1

i) (-3 -1)(x0) (0

o Lol 200} ===()
1 2 -1 -1
o) #0=/1 0 1 |x), x(©0)=| 0
4 -4 5 0

2
7.  Find the solution of the IVP = Ax subject to the initial condition 5(0):[4} where

3 9 t
A :[ | 3) andx(¢) = [xzt; J Also draw the diagram for the solution set.
-1 = y

8.  Convert the second order differential equation¥+ax+bx=0to a system of two first
order differential equations. Find all values ofa andb for which the system has real,
distinct eigenvalues. Also find the general solution of the system. Find the solution of the

system that satisfies the initial condition [1 J Draw the diagram for the solution set.

. . x(1) a b\(x@)
9. Find the general solution of the system| = , where a+d #0and
y@0 ) \e d){(¥®

ad —bc=0. Also sketch the diagram.

0 1
10. Consider the system X = [ b}g , whereb>20,k>0.

a) For what values of k and b does the system has
(i) Complex conjugate eigenvalues?
(ii) Repeated real eigenvalues?
(iii) Real and distinct eigenvalues?

b) Find the general solution of the system in each case.
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11.

12.

13.

14.

15.

2 Linear Systems

Solve the following second order differential equation after reducing them into a system
of two first order differential equations:

(i) ¥+x=0withx(0)=1,x(0)=0
(i) ¥ +3x+5x =0with x(0)=1,x(0)=-1.

Find the general solution of the system below and determine the possible values of a3 so

that the initial value problem has a solution that tends to zero as¢ —

. 5 -1 0)= o
&—[7 3}5,5()—[3}

(a) What do you mean by a fundamental matrix of a homogeneous system of linear
equations?

(b) Show that two different homogeneous systems cannot have the same fundamental
matrix.

(c) Let ®(¢) be a fundamental matrix of the system x = Ax. Show that for any non-zero

constant k, k®(¢) is also a fundamental matrix of the system.

Find the fundamental matrix of the following systems and hence find the solution of each
system:

o [1 —2]
»H x= X

-3 2
(XY (3 1)(«x
& v/ lo 2]y
Lo (1
(1) x= 41 X
w3} 20

dt\ y -6 -2 )\y

. 3 —1J
(V) x=Ax,where A=

1 5

(Vi) X=x+y,y=-5x-3y

L. (5 4
i) = 7l

Find the fundamental matrix of the system

. 2 -1
X= X
Y24 o P

1
and use it to find the solution of the system satisfying the initial condition x(0) =( 3 ]
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16.

17.

18.

19.

20.

21.

22.

23.

24.

Exercises 79

Find a fundamental matrix of the system

X=2x—y,y=3x-2y.
Also, find the fundamental matrix @(¢) satisfying ®(0)=/. Find the solution of the
system satisfying the initial condition x(0) =-1,y(0)=1.

203t Q2

Does @(¢)= a fundamental matrix of the system x= Ax? If yes, then
33t 502t = ~

find the coefficient matrix 4.
2e4 -2 . .

Does ®(¢) = a0 a fundamental solution of a system x = Ax ?

Find e4! and then solve the linear system X = Ax for

NN (13 () (1
WA=, 5 a=s 4= 5 ¢ WA=y

Compute the exponentials of the following matrices:

.)01 (..)ab b]R("'aO be R (_20
(100 110a,a,e 111)0b,a,e 1V)32

w2
v
3 4
a -b cosb —sinb
If 4= then prove that e4 = e
b a sinb  cosb

If AB = BA, then show that

()edeB =eBed (i) AeB = Be4 (iii) e(4+B) = oAt Bt |

Ifa is an eigenvector of the matrix A corresponding to the eigenvalue A, then show that
0 is also an eigenvector of the matrix e corresponding to the eigenvalue e’ .

11
Consider the matrix 4 = [0 ) ]

(i) Compute e directly from the expression.

(ii) Compute e4 by diagonalizing the matrix 4.
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25. Find the solution of the following systems using fundamental theorem:

. (01
(1)16—1 o ¥

L 5 3
(i) x = Ax, where 4 = 3

-1
(20
i) =) °

0
(iv) X = Ax,where A=|0 0
10 2 0
2 0 0
(v) x=4x,where A=|{0 0 -2
02 0
[0 -2 -1 -1
) 1 2 1 1
(vi) x=Ax, where 4=
- 0 1 0
10 0 0 1
0 -2 -1 -1
. -2 1 1
(vii) x = Ax, where 4=
- 0 1 0
0 0 0 1

26. Solve the following system and sketch its phase portrait

d(x@) (-1 -1)(x@®
dt\yy) |1 =1y )
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27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Exercises 81

-2 -1 1
Solve the initial value problem X :( L ))5 x(0)= [OJ and sketch the solution curve

in the phase plane R2 .

Find the solution of the problem
Xt+ax+px=f(@), x(0)=1Lx0)=0

where ¢, >0 are constants and f'(¢) is a function of .
Find the solution curve of the system x=x+y+1, y=x+y subject to the initial

condition x(0) =a, y(0)=b, where a,bare some constants.

Consider the non-homogeneous linear system
X(1) = Ax(D) +b(1)

Now apply the co-ordinate transformation x =Py, x,ye R”, where P is a nXn non-
singular matrix. Find the transformed system. Hence show that every non-homogeneous

system in R? can be transformed into a non-homogeneous system with a Jordan matrix.

Does the translation property always hold for non-autonomous system of equations?
Justify your answer.

Show that if the coefficient matrix 4 of a non-homogeneous system x(¢) = Ax(¢)+b(t)

in R? has two real distinct eigenvalues, then the system can be decomposed.

Show that x(#) = x,e' is a trajectory passing through the point x, of a linear vector field

X = Ax where A4 is a constant matrix.

Show that x(t+7)=x,e"*”,¢,7€ R is also a solution of %= Ax subject to the initial
condition x(0) = x,. Does it violate the uniqueness of solution? Justify.

Define a flow in R’. Write the properties of flow ¢(z,x). Show that @(t,x)=e"x

satisfies all properties of flow.
Find the flow evolution operator ¢(z, x) for the following systems:

(i x=-x,y=-2y,
(i)  x=xp,y=y7,
(i) rF=r(-r),0=1,
(iv) ¥+x+x=0,

(v)  x=py=@x-y).
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Chapter 3
Phase Plane Analysis

We have so far discussed one-dimensional systems and solution methods for linear
systems. As we know analytical solutions of nonlinear systems are very difficult to
obtain except for some special nonlinear equations. The essence of this chapter is to
give on finding the local solution behaviors of nonlinear systems, known as local
analysis. We shall emphasize on qualitative properties of linear and nonlinear
systems rather than quantitative analysis or closed-form solution of a system. The
qualitative analysis for two-dimensional system is known as phase plane analysis.
Two-dimensional systems have a vast and important dynamics with enormous
applications and we study now to explore some of them in this chapter.

3.1 Plane Autonomous Systems

We have discussed autonomous and nonautonomous systems in Chap. 1. Consider
an autonomous system of two first-order differential equations in the xy-plane
represented by

X = P(x,y)
yzgww} 3.
where P(x, y) and Q(x, y) are continuous and have continuous first-order partial
derivatives throughout the xy-plane. The solutions (x(¢), y(f)) of (3.1) may be rep-
resented on the xy-plane which is called the phase plane of the system. As time
t increases, (x(f), y(¢)) traces out a directed curve on the phase plane. This directed
curve is known as the phase path or phase trajectory or simply the path of the
system. The phase portrait is the set of all qualitatively different trajectories of the
system drawn in the phase plane.

A point x * = (x*,y*) in a two-dimensional flow ¢(z, x ) is said to be a fixed
point, also known as critical point or equilibrium point or stationary point of the

© Springer India 2015 83
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system (3.1) if and only if ¢(z, x *) = x *. This gives ¥ = 0,y = 0 = P(x*,y*) =0
and Q(x*,y*) =0 hold simultaneously. This implies that the fixed points of a
system are the constant or equilibrium solution of a system.

3.2 Phase Plane Analysis

Consider the plane autonomous system represented by (3.1). Let (xq, yo) be a fixed
point of (3.1). Expanding P(x, y) and Q(x, y) in Taylor series in the neighborhood of
the point (xq, yo), we have

OP OP 1 0 0
P =P il — —(x=4y=—| P+ ---
(x,y) (xo,yo)+X(ax)0+y(ay>0+2! (xaxﬂay)o +

_ 00 00N L1090
00) = 0o +x(52) +3(52) + 5 (xgr +35) @+

Since (xo, Yo) is a fixed point of (3.1), P(xo, ¥o) = 0 and Q(xo,y0) = 0. The lower
suffixes indicate that the quantities are evaluated at the point (xy, yo). Using these
and neglecting square and higher order terms in the above expansions, we have

P(x,y) = ax+ by
Ay G2

where each of the quantities a, b, ¢, and d is evaluated at (xo,yo) as given below:

_ (9P ,_(9P\ ._ (92 _ (92
“ <a>o7b <8y)o’c <ax>0andd <8y)0 (33)

Finally, we get a linear system corresponding to (3.1) as

jczax+by}

y=cx+dy (34)

. . . . . . a b
which can also be written in matrix notation as x =Ax, where A = (c d) and

x = (i) We assume that det(A) = (ad — bc) # 0. Then the solution of (3.4)

can be obtained by finding the eigenvalues and the corresponding eigenvectors of
the coefficient matrix A. By choosing a matrix P such that |P| = det(P) # 0, we
apply the similarity transformation
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x =Py (3.5)

~

Under this transformation the system x = A x reduces to

or, y =P 'APy =Cy (3.6)

where C =P 'AP is a real Jordan canonical form of A (see the books
Arrowsmith and Place [1] and Perko [2]). The system (3.6) is known as the
canonical form of system (3.4). We also see that

|C— M| =|P'AP — P1iIP|
=P (A—IiDP|=|A- A
a—4i b
c d—}v‘
= —tit+A

where T = (a+d) = tr(A) = tr(C) and A = (ad — bc) = det(A) = det(C).

Thus the characteristic equations of matrices A and C are same. So instead of
taking matrix A of the original system, we take matrix C for analyzing of the system
X =Ax, Note that similarity transformations do not change the qualitativeare
properties of the systems. However, the orientations of the solution trajectories not
preserved. It is known from algebraic theory that matrix P can be chosen in such a
way that matrix C takes one of the several canonical forms which, in general are
simpler than A. The particular form depends on the nature of the eigenvalues of
A. We now give a theorem concerning the possible canonical forms of matrix A.

Theorem 3.1 Let A be a real 2 x 2 matrix. Then there exists a real, non-singular
2 x 2 matrix P such that C = P~'AP is one of the following forms:

A 0 A0 A1 o f o —fp
(a) {O /12] (b) [0 )J © {0 ;J, (d) [—[3 oc] or LB o } where
A, 22, Ay, B are all real numbers.

Proof Eigenvalues of matrix A are the roots of the equation
2* —tr(A)A+det(A) =0 (3.7)

where tr(A) and det(A) are, respectively, the trace and determinant of A. Solving the
Eq. (3.7), we get the eigenvalues of A as
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Ag=—A—X— (3.8)
where
D = (tr(A))? — 4det(A) (3.9)

The nature of the eigenvalues depends on the sign of D. If D > 0, the eigenvalues
are real and distinct. If D = 0, they are equal and if D < 0, then the eigenvalues are
complex.

Casel: D>0
In this case matrix A has two real, distinct eigenvalues, say 4, /5. Let X 1, X 2 be the
corresponding eigenvectors. Then from linear algebra, x 1, x> are linearly inde-

pendent and
A{l:/ll{l, A{zz)uzgz (3.10)
We assume that 4; > 1,. Take P = (LC 1 X 2), a real 2 x 2 matrix with the

eigenvectors x ; and x , as columns. Since the eigenvectors are linearly indepen-

dent, matrix P is non-singular and hence invertible. We see that

AP:A({I iz)z(Azl A{2>:<}~1{1 izﬂ)

(=25 2)
=PC

. A1 O
= P 'AP=C~= .
0 A

Casell: D=0

In this case matrix A has two real repeated eigenvalues given by
1 )
M =l= Etr(A) = A(say).

We now have the following two possibilities.
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(i) Matrix A has two linearly independent eigenvectors, say x 1, x » corresponding

to the repeated eigenvalue A. This is possible only when

A= (g ?) I (3.11)

We also have Ax | = Ax ;,andAx > = Ax .

Let P = ({ 1 X2 ) Then P is non-singular. Therefore,

AP:A()NH gz);(Agl A{z):(igl Zgz)

(3 )

=PA

= PIAP_A_C_<i 0)
0 2

(i) The matrix A has only one linearly independent eigenvector, say x corre-
sponding to the repeated eigenvalue 4. Then Ax = Zx. We now choose a

generalized eigenvector y such that the matrix P = ( x Y ) is non-singular.

Then

AP:A(% Z):

N

Ax Ay)
()
P

(;Lf P 'Ay )

= P 'AP= (ig 1 PlAy)

where e | is the first column of the identity matrix [5.

Now the matrices A and P~'AP have the same eigenvalues, and so

—1 o )u k
P AP = (0 1

for some nonzero real k. If we consider the modified matrix
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10
QZP(O k1>’

then using some elementary properties of matrix multiplication and inverse, we

obtain
1 (21

This gives the result (c).
Case III: D <0

In this case matrix A has a pair of complex eigenvalues (o & if§), where o = tr(A)/2

and f=+/(—D)/2. Let A= oa+if . Then the other eigenvalue is 1= o — if,
where ‘—’ denotes the complex conjugate. Let x = u +iy be the eigenvector
corresponding to A= a+if. Then the eigenvector corresponding to A is

X =u—iv. Take P = (% y ) Then P is non-singular. Now,

If we take P(v u ), then it is easy to prove that

_ o —p
PlAP:<ﬁ a)

(See the books Arrowsmith and Place [1], and Perko[2])
This completes the proof.

We discuss four cases in the phase plane case-wise.

Case I: If matrix A has real, distinct eigenvalues A, 4,, then C = (/})1 }O )
12

20 , . A0
Case II: (a)IfA_<O i),whereAlsreal, thenC-(0 )v).
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(b) If A has real repeated eigenvalues 4 and A # I, then C = (8 ; >

Case III: If A has complex eigenvalues 4; = o+iff and 4, = o — iff with
o, f € R, then either C = (_ocﬁ g) or C = <Z _f> depending upon the
choice of the similarity matrix P.

Case IV: One or both eigenvalues of A are zero.

This is the degenerate case.

Case I: The eigenvalues of A are real, distinct, and nonzero

The critical point of the system is (0, 0). Since 4;, 4, are nonzero real, distinct
eigenvalues of A, the canonical form of A is

(M0
C_<0 ;L2>'

Therefore the canonical form of system (3.4) is
=Cx

- -6 00

Aix

or,
= Jay

dy Y _ Ay V)
N 2y
oW g T X Ax (il) ( )

which we can integrate immediately to obtain the trajectories as

tog(s) = (7 ) og() + og(8)

or, y= Bxl%/4)

where B is a positive constant.

There may arise three cases, viz. (i) the eigenvalues 41, 4, are of same sign, say
positive, the critical point origin is called node; (ii) both A;, 4, are negative in sign,
the origin is called node but it is stable; and (iii) when Ay, 4, are of opposite signs,
the origin is called saddle but it is unstable or semi-stable in nature. The saddle has
one incoming trajectory toward the critical point for negative eigenvalue and one
outgoing trajectory away from the critical point for positive eigenvalue. The inte-
gral curves for the first two cases resemble a family of parabolas having the tangent
at the origin. A sketch of the integral curves or phase diagrams for 4, > 4, > 0 and
—1 > —Z; > 0 are, respectively, given in Fig. 3.1a, b.

The directions of arrows are easy to obtain as both |x| and |y| increase with time
(since x(¢) = ke”’, k being a constant). This is called an unstable node (Fig. 3.1a). If
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Fig. 3.1 Phase diagrams for nonzero real, distinct eigenvalues of same sign, a unstable node,

b stable node

Fig. 3.2 Phase diagram for
nonzero real, distinct
eigenvalues of opposite signs
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—A1 > — Jp > 0, we can describe the flow in exactly the same way by reversing
the arrow directions to give a stable node (Fig. 3.1b). The stable node is an
asymptotically fixed point, that is, the trajectories approach to the fixed point as

t — oQ.

When Z;, 4, are of opposite signs, the integral curves resemble a family of
hyperbolas with the axes as asymptotes and the equilibrium point origin is called
saddle. It is shown in Fig. 3.2. This type of equilibrium point is also called

hyperbolic type.

Case II: (a) The matrix A has real repeated eigenvalues
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In this case, the matrix A has either two linearly independent eigenvectors or only
one linearly independent eigenvector corresponding to the repeated real eigenvalue
A. We now discuss two sub-cases below.

Suppose that matrix A has two linearly independent eigenvectors corresponding
to the repeated real eigenvalue /.

The canonical form of (3.4) is then given as

x =Cx

()= 2)C)
or, =
y 0 4/ \y
or, x=/x,y= Ay, where 1 # 0.

= % = 2. This gives the integral curves as y = kx, k being an arbitrary
h

y

constant. The phase diagrams in xy-plane for A<0 and 4 > 0 are presented in
Fig. 3.3.

The flow is toward the origin when A <0. The origin is then called a star node or
a proper node and it is asymptotically stable (see Fig. 3.3a). It is an attracting stable
fixed point and is also called a sink in which flow is coming toward the equilibrium
point as # — co. When 4 > 0, the phase diagram is exactly the same except that the
flow is away from the origin and it is an unstable star node (Fig. 3.3b). In such a
case the equilibrium point origin is known as a source in the context of flow.

dy _
SO, a =

(a) X (b) X

A<O A>0

Fig. 3.3 Phase diagrams for repeated real eigenvalues
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(a) X (b)

f
By N /‘ . e
~)) \{

—_—

o
AN~
K \ e /'/ 3

A=O

A< O

Fig. 3.4 a Phase portrait for 1 <0. b Phase portrait for 2 > 0

(b) The matrix A has only one linearly independent eigenvector corresponding to
the repeated real eigenvalue A. The canonical form of (3.4) is then expressed as

From the second equation, y = Ay = y(¢) = yoe”’, assuming y(0) =y, and
x(0) = xo. Similarly,

k= Jx+y=lx+yee"
or, x— x=ype"
or, (¥—Ax)e™ =y
or, % ()fe’i’) =
or, xe ' =ypt+xp
or, x(t) = (yot +x)e’

So the solution of the system is obtained as

x(1) = (yot +xo)e” }
¥() = yoe*
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When 2 <0, x(f) — 0,y(r) — 0 as t — oo. Also the second equation shows that
y(¢) has the same sign as that of y, for all z. We also see that

b Y0 = — Qast — oo

x (Yot +x0) (H— :_0>
Yo

while remaining positive sign. The phase portrait for 1 <0 is presented in Fig. 3.4a.
In this case the origin is said to be an imperfect node and it is stable.
A separatrix is a line or a curve in the orbit that divides the phase plane into
distinct types of qualitative behaviors of trajectories. The equilibrium point is called
sink and only one separatrix straight line which is the x-axis, the eigen axis of the
system. When A >0, x(#) - 0, y(f) -0 ast— —oo and y/x — 0 as t — —o0
while remaining negative sign. In this case the equilibrium point is called an
imperfect node but it is unstable. The phase diagram is shown in Fig. 3.4b.

Case III: The matrix A has complex eigenvalues

Suppose that matrix A has complex eigenvalues, say (« £ if}),a, f € R. Here the
canonical form of A is expressed either

_ (> P _(* =P
C_(—ﬁ O()orC—(B o )
depending upon the choice of the similarity matrix P. Therefore the canonical form
of (3.4) is expressed as

x =Cx
- = ax+ fy X =ox— fly
either _ —ﬁx+ocy}0rj/:ﬁx+ocy

We now transform the system into polar coordinates (r, ) using the relations
x = rcos0,y=rsin0, where 7> = x> +y* and tan 0 = y/x.
Differentiating 7> = x> + y? with respect to 7, we have

rir = xx+yy
or, riv=x(oxx £ By) +y(FPr+ay) = a(x* +y*) = ar’

or, r=oar
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Similarly, differentiating tan @ = y/x with respect to 7, we get

sec?(0)0 = oo
(1+ tan?0)0 = 9%

(1 + ;é)e — gk

(240 =xy — yi

0 = x(FPx+oy) — y(ox £ By)
’..20 — :Fﬁ(xz _|_y2) — :Fﬂrz

0 = Fp.

LR R R

Thus the system in polar coordinate becomes

r=or
é—il:ﬁ} (3.12)

Solutions of (3.12) are given by
r(t) = r(0)e” (3.13)
0(t) = Fpt+ 0(0) (3.14)

We first consider the case where 6(f) = —f+ 6(0). In this case, when <0, 6
increases linearly, that is, it corresponds to anti-clockwise rotation. When f§ > 0, 0
decreases linearly and it corresponds to clockwise rotation. For the other case,
0(r) = pr+0(0), f<0 gives clockwise motion and f§ > 0 gives anti-clockwise
motion. Remember that similarity transformation does not preserve orientation of tra-
jectory. The two canonical forms will retain their qualitative properties but the orien-
tation will be opposite in directions. We display the phase portraits for first case only.

When o<0, from (3.13) r(¢) — 0 as t — oo. The equilibrium point origin is
then called a stable focus (or a stable spiral). The trajectories wind spirally around
the equilibrium point a number of times before reaching asymptotically at origin.

(a) X (b) /_,_j‘_\
- ™ # N\
T -~
g

T |
™ \ -X / ;

J

G
N\
ol

R\

/ )
/ [
A @<o, B>0

a<o, <0

K

Fig. 3.5 Phase portraits for complex eigenvalues with negative real part
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The stable focuses are basically asymptotically stable equilibrium points. Figure 3.5
displays the phase diagrams for two cases.

On the other hand, when « > 0, r(t) — 0 as t — —oc and the flow becomes
away from the origin and the equilibrium point (0, 0) is known as source. This is
basically a repelling equilibrium point and hence it is an unstable focus. It is shown
graphically in Fig. 3.6.

When o = 0, this case is very interesting and we have r = r(0) = constant. The
trajectories never reach the equilibrium point as + — oo. The equilibrium point (0,
0) is called a center or sometimes called an elliptic equilibrium point and it is
neutrally stable. This gives a closed path of the system and the system exhibits
periodic solution. On the other hand, periodic solution represents the closed path.
The phase path is shown in Fig. 3.7. The direction of motion of the closed path is
determined by the sign of f.

Finally we say that when o # 0, the phase diagrams are spirals and the spiral
toward the equilibrium point origin if o« <0 and the equilibrium point is called stable

(a) X (b) X
el I
/ \\ /'/'_1\
N 2759
‘/ ;’/(:5\ ] \ x t 4 ('6_\\‘ \ \x
\ 7/ \\ T /'l )
\‘E_*/,/ ~d /
)y
a=o0, <0 G’:>0_,ﬁ>0

Fig. 3.6 Phase portraits for complex eigenvalues with positive real part

Fig. 3.7 Phase portraits for purely imaginary eigenvalues
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focus. And it is asymptotically stable. If & > 0, the spiral is winding away from the
origin and the equilibrium point is called unstable focus. When o = 0, the equi-
librium point is called center, representing the closed path which is neutrally stable
but not asymptotically.

Case IV: One or both eigenvalues are zero

We now discuss the degenerate cases where either 4, =0 or 4, =0 or both
A1 = A2 = 0. This case arises when |A| = 0, that is, at least one of the eigenvalues
of A is zero. So the equilibrium point is not isolated so that there are infinitely many
equilibrium points in its neighborhood. In this case the matrix A has a nontrivial
null space of dimension one or two and any vector in the null space is a fixed point
of the system. If the dimension of the null space is two, the matrix A will be a zero
matrix. Let us first consider 4, = 0 and 4, = 4 # 0 as two eigenvalues of matrix
A with ¢ and 8 as the corresponding eigenvectors. Then the canonical form of the

system (3.4) can be written as x = 0, y = Ay. Its solution with x(0) = xo, ¥(0) = yo
is given by

x(1) = x0, ¥(f) = yoe™.

From the solution we see that the exponential term grows or decays depending
on the sign of the eigenvalue A. The phase portrait for different values of 4 is shown
in Fig. 3.8.

The first figure shows that all the trajectories converge to the equilibrium sub-
space for <0 and diverge away from it for A > 0. When 4; = 4 and 4, = 0, all
points on the y-axis are equilibrium points and are stable/unstable depending upon
A<0/4 > 0. We now discuss the case when all eigenvalues of the matrix A are
zero. The linear system (3.4) then becomes x =0, y =0 and the solution is
x(t) = xo, y(t) = yo. The solution is independent of time and is depending on the
initial conditions. As 7 increases, x(¢) and y(¢) remain x(0) and y(0). So every orbit
is an equilibrium point and is shown in Fig. 3.9a.

-
b

=]
=]

A<0 A=0

Fig. 3.8 Phase portraits when only one eigenvalue is zero
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Fig. 3.9 a Phase portrait (a) X

when both eigenvalues are

zero. b A typical phase ee0e e e o 0 * e 2000000
portrait when all eigenvalues

are zero LI I B L N N NN RN

(b) i

Again, a non-singular coordinate transformation of variables reduces the matrix

Aas A= (8 (1)> and the system becomes x = y,y = 0 with the solution

x(t) = yot +x0, ¥(1) =0
where
¥(0) = yo,x(0) = xo.

For given nonzero values of x, and y, we see that y(f) remains as y,, while
x(t) = —oo for yop > 0 and x(f) — —oo for yp<0 as t — co. Trajectories are
parallel to the x-axis. The x-axis is the equilibrium subspace. The phase portrait of
the system is shown in Fig. 3.9b.

3.3 Local Stability of Two-Dimensional Linear Systems

We have drawn phase trajectories for four cases in the neighborhood of the equi-
librium point of a linear system and named equilibrium points geometrically. Their
stability characters are mentioned. Stability near an equilibrium point means that a
small change of a system at some instant gives only a small change of its behavior
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at all future time. The characteristic equation of matrix A associated with the system

. a b .
X 7A£,whereAf <c d) gives

a— 4 b

c d—i’o
or, 2 —(a+d)\+(ad—bc)=0
or, 2—1ti+A=0

where 1 = (a+d) and A = (ad — bc). Let Ay, 4, be two eigenvalues of A. Then
Ao = Ti—”;"m = #, where © = (A; +/42), A = 21/, and D = (7% — 4A). We
can show the types and stabilities of all different fixed points in Fig. 3.10.

When A <0, the eigenvalues are real and have opposite signs. Hence the fixed
point is saddle, the left side in (A — 1) diagram. If A > 0, the eigenvalues are either
real with same sign (node) or complex (spiral or center). Nodes satisfy
(2 —4A) > 0 and for spirals (1> — 4A) <0. Some of the equilibrium points, e.g.,
star and degenerate nodes, satisfy (> —4A) = 0. So the parabola represented by
(> —4A) = 0 in (A — t) plane is the borderline between nodes and spirals. The
stabilities of the nodes and the spirals are determined by the sign of 7. When 7 <0,
both the eigenvalues have negative real parts or both have negative signs and so the
fixed point is stable focus or stable node. For unstable spirals/nodes, 7 is positive.
The fixed point center is neutrally stable and lies on the broadline T = 0 and the
eigenvalues are purely imaginary. If A = 0, at least one of the eigenvalues is zero.
The origin is not isolated fixed point. There is either a whole line of fixed points or a
plane of fixed points. The stabilities of the fixed points depend on the initial con-
ditions of the system as discussed in the earlier section. From Fig. 3.10 it is clear
that the fixed points like saddle, node, and spiral are the major fixed points. These
fixed points occur in large open region of (A, 1) plane. However, the fixed points
center, star, degenerate node, non-isolated fixed points, etc. are borderline cases and
these fixed points are minor fixed points. But the fixed point center occurs in many

Fig. 3.10 Diagramatic
representation of different
types of stabilities

Unstable Nodes_©_~*4=0

Unstable Spirals

Saddle Center

points

Stable Spirals

Non-isolated
fixed points

Stars, Degenerate Nodes
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physical systems particularly in mechanical systems where energy is conserved,
that is, no dissipation. Finally, we summarize the results in the following way:

Classification of fixed points

(a) nodeif A > 0and D >0,

(b) spiral ift # 0and D<0

(c) saddleif A <O,

(d) star/degenerate node if A > OQandD =0
(e) centerif t = 0and A > 0,

Stability criteria

(a) stable and attracting if t<Oand A > 0,
(b) stableif t <0and A > 0,
(c)unstableif T > 0or A<O.
Depending upon the signs of the eigenvalues 4;, 4, of the matrix A, the stability
character of the equilibrium points may be stated as follows:

1. Eigenvalues are real and distinct:

o Saddle if 4;, 4, are of opposite signs,
o Unstable node if 4;, 4, are both positive,
o Stable node if 1, A, are both negative.

2. Eigenvalues are real and repeated (4, = 4, = 4, say):

¢ Unstable star node if 4 > 0.

o Stable star node if 1<0.

e Unstable improper node if 1 > 0.
e Stable improper node if 1<0 .

First two cases occur when A = 11, I being the identity matrix.
3. Complex eigenvalues (o +if5), o, p € R:

¢ Unstable spiral or focus if o > 0
o Stable spiral or focus if 2 <0
¢ Neutrally stable center if « =0

3.4 Linearization and Its Limitations

Consider a two-dimensional autonomous system (3.1) and let (x*,y*) be a fixed
point of this system so that P(x*,y*) = 0 and Q(x*,y*) =0.Let £ = (x —x*), n =
(y — y*) denote the components of a small disturbance from the fixed point (x*, y*).
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We need to derive the differential equations for the perturbation variables ¢ and 7.
We proceed as follows:

E=x=P" + &y +0n)

= P(x*,y") + 68—1; + ng +0(&, 1, én) [Taylor's series expansion]
oP oP . B
= &g Ty TO(E 0, dn)  [Since P(x",y") = 0]

where the partial derivates are evaluated at the fixed point (x*,y*). Similarly, we
obtain ) = 5%—8 —&-11% +0(5277727~f’l)-
Hence the perturbation variables (&,7) evolve according to the following

equation:
- op op
(5) — (g_é %) (f}) + quadratic terms.
ox Oy (x*,y")
op 9P
The matrix J = ( gé gé) is called the Jacobian matrix of the nonlinear
% %
(o)

system (3.1) evaluated at the fixed point (x*,y*). Assuming the quadratic and higher
order terms are small and if we neglect them, then we obtain a linearized system for
two-dimensional nonlinear autonomous system (3.1). This mathematical technique
is known as linearization of a nonlinear system about a fixed point.

3.4.1 Limitations of Linearization

First of all we see what we did in the name of linearization. One should know it
clearly. In the linearization process the quadratic and higher order terms are being
neglected due to their smallness with respect to the equilibrium point. It is well
known from matrix theory that the eigenvalues of a matrix depend continuously on
its perturbation quantity. However, some of the eigenvalues remain unchanged their
characters under arbitrarily small perturbation, but some of them will change their
positions under small perturbation. We can say that if the equilibrium point x =0
of the system ¥ = Ax is a node, focus, or saddle types, then they will remain their
same characters for sufficiently small perturbations. However, the situation is
different if the equilibrium points are center/star node/imperfect nodes, that is, all
minor or border line equilibrium points. These will go either a stable focus or an
unstable focus under small perturbation of the system. So, the node, focus, and
saddle equilibrium points are said to be structurally stable equilibrium points
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because they maintain the same qualitative behaviors under small perturbation, that
is, these equilibrium points have similar behavior both in the nonlinear system and
its linearization (see the book of Andronov, Leontovich, Gordon and Maier [3] for
proof). On the other hand, the equilibrium points of center/star/imperfect nodes are
not structurally stable, in general. More specifically, a hyperbolic fixed point (real
(4) # 0) will retain the same stability/instability characters for small perturbations
in the neighborhood of the fixed point. We shall now illustrate an example for this
limitation. Consider the following two-dimensional system represented by

X = —y+pux(x® + )
y=x+uy(x* +5%)

where u is a parameter. This is a nonlinear system and the linearized form of the
system about the equilibrium point (0, 0) is

xX=-y
y=x

This can also be written in matrix notation as

X =Ax, whereA = 0 -l andx = (7).
~ ~ 1 0 ~ y

The characteristic equation of A is

-4 -1

_ 2 _ o
‘ L =0=A"+1=0=A==41i

Eigenvalues are purely imaginary. Hence, the equilibrium fixed point (0, 0) of
the linearized system is a center for all values of the parameter i and it represents a
closed path near the equilibrium point. We find analytical solution of the given
system by converting (x, y) into polar coordinates (r, ). So x = rcos 0,y = rsin0,
where 72 = x? +y? and tan 0 = y/x. Differentiating above relations with respect to
t, we get

riv=xi+yy = x{ =y + (¥ +37) } +y{x+wy (¥ +5°) }

_ ,Lsz(x2+y2) +,uy2(x2+y2) =t
or, i=ur (3.15)
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77\

>0

Fig. 3.11 Phase trajectories for different values of the parameter p

and
1 Xy — yx
TR R e+ v (2 +57) = y{ =y + (2 +37) 1]
1
:x2+y2 (x2+y2) =1
or, H=1 (3.16)

Solutions of (3.15) and (3.16) are obtained as

#:_m+ﬁ} (3.17)
0(1‘) =t+0y

where ry, 0y be the given initial conditions.

If £ <0, r(t) approaches to 0 monotonically but spirally as # — oo. Therefore in
this case, the origin is a stable spiral. If 4 = 0, then r(¢) = ry for all 7 representing a
closed path. The equilibrium point origin is then a center. If x4 > 0, then r(f) moves
away from O spirally as t — — co. The equilibrium point origin is an unstable
spiral. The phase trajectories are displayed in Fig. 3.11. Hence the linearizion gives
the equilibrium point as center whereas the original system has stable or unstable
focus.

3.5 Nonlinear Simple Pendulum

A simple pendulum consists of a bob of mass m suspended from a fixed point O by
a light string of length L, which is allowed to swing in the vertical plane. In the
absence of frictional forces the equation of motion is given by
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Fig. 3.12 Sketch of simple
pendulum

mg cosg@

(mL)0 = —mg sin 0 (3.18)

where 6 denotes the angular displacement, measured in anti-clockwise sense
(Fig. 3.12).
The equation of motion can be written as

é:—(%) sin0 = —w*sin0, 0 = \/(g/L) > 0 (3.19)

This is a second-order nonlinear autonomous differential equation. We set 6 = x
and 0 = v. Then Eq. (3.19) can be written as

xX=y
y = —w?sinx } (3.20)

The equilibrium points of (3.20) are given by x =nn, n =0,+1,+2,..., and
y = 0. The system has infinite number of fixed points (n7, 0). We now calculate the
Jacobian matrix of the given nonlinear system about the equilibrium points. So we

have
o  of
e 0 1
J(x,y) = [@ 6_4 = |:—w2C0SX 0]'

The Jacobian matrix J(x, y) at the equilibrium points (0, 0) and (+7,0) are

J(0,0) = [_2}2 (1)} and J(£=w,0) = [(SZ (1)} . The eigenvalues of J(0, 0) are the

roots of the equation

‘ _)'2 _1 1 ‘ =0= 2>+’ =0= A== iwwhich are purely imaginary.
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Therefore the fixed point (0, 0) is a center, and the neighboring orbits are all
closed. Similarly it can be shown that the fixed points (2n7,0) are centers. The
eigenvalues of J(+m,0) are the solutions of the equation

‘_f ! ’:O:>/12—w220:>2:iw.
o —A

The eigenvalues of J(+m,0) are real but opposite in signs. So the equilibrium
points (7,0) and (—=,0) are saddle. In general, ((2rn+ 1)7,0) are saddles. The
eigenvectors corresponding to the eigenvalues (+w) of J(£m,0) are

0 1 €l (4]
=+dw
602 0 ()] ()]
or,e, = +we; and wre; = +we,

The eigenvector for o is (1,)" and (1,—w)" for (—w). Here (1,w)" is a
repelling eigen axis corresponding to the eigenvalue w, while (1, —w)T is an
attracting eigen axis corresponding to (—w). The phase diagram for the undamped
nonlinear pendulum is shown in Fig. 3.13.

The saddle connection that is the tangent to the eigen axes, connecting two
saddle points formed separatrix loops in which the orbits are closed curve encircling
the equilibrium point. The closed orbit corresponds to oscillatory motion of the
pendulum. Orbit outside the separatrix is unbounded curve corresponding to
whirling motion of the pendulum. Connecting the whole of these separatrix loops
and the closed curves is agreed with physical behavior of the pendulum problem.
Pendulum has two distinct vertical equilibrium states, one is stable and the other is
unstable. The points O, A, B represent states of physical equilibrium positions of
the pendulum and are called equilibrium points of the system. The points at (+=, 0)
correspond to the unstable equilibrium points in which the pendulum is sliding up

._|'

NN NN

Fig. 3.13 Phase portrait for the undamped pendulum
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in vertical positions. The pendulum problem is conservative. The energy function
can be calculated easily as follows:

Multiplying the pendulum equation by 0 and then integrating, we get
- 5 . 1., 5
00+ " sinf) =0 = 59 — w” cos 0 = constant.
The energy function E is given by
L, 2 /
E:EV —wcosl, (- 0=v).

It has local minimum at the origin. For small angle approximation it gives the
close orbits (ellipses for w # 1) given as

(00)* +1* ~ 2(E+ 0?)

This agrees the results of phase plane analysis. The pendulum problem is also
reversible. A system in R? is said to be reversible if the system is invariant under
the transformation x — —x and y — —y. In other way, the dynamics looks the
same in forward or backward times (see the book of Strogatz [4] for more physical
examples). What can we get from the flow evolution operator of the pendulum

problem? Consider the linear case, so that the equation of motion is 0+ w260 = 0.
The flow evolution operator ¢(z, 0 ) is deduced as follows:

The solution of the above equation is 0(¢) = A cos wr + Bsin wt, where A, B are
constants. This implies

0(1) = —Aw sin ot + B cos ot

Let the initial condition be at =0, 0 = 0, and 0 = 90. Using it in the above two
equations, we obtain A = 0y and B = 0y /w. Therefore, 0() = 0 cos wr + (0p /)
sin wt. Now, setting x = 0 and y = 9, we have

x(1) = 0(r) = xo cos ot + 2 sin wr
and  y(t) = 0(t) = yo cos ot — xow sin ot

where xo = x(r = 0) = 0(t = 0) = 0 and yo = 0p.
Therefore the evolution operator ¢, for the simple pendulum is

Vo
¢i(x) :q’)t(x) = ( X Cos @ A 781N o )forall§ = (;C) € R*andr € R.

y Yy Cos wt — xm sin wt

We shall now verify that ¢,(¢,(x)) = ¢, ,(x) forall x € R* and #,5 € R.
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Fig. 3.14 A typical phase
portrait of damped pendulum

We have for all X € R?, and t,s € R,

B(da(x)) = ¢,<

x0s ms + (y/m) sin ws)} cos mt 4 LEBUXOINOS Gy 1y
_ { (/) }

xcos ws + Zsin ws )

yCosws — X sin @s

w

(ycos ws — xw sin ws) cos wt — {xcos ws + (y/w) sin ws}w sin wt

_ (xcos o(t+s)+ (y/w) sinw(t—l—s))
yeosw(t+s) — xwsin(r+s)

—bes(1) = ) = bt

The flow evolution operator satisfies the property ¢(z, x 0) =X, which gives the

equilibrium point of the flow generating by the system. The flow evolution operator
forms a commutative dynamical group. Interested readers can try for finding the
closed-form solution of nonlinear pendulum problem using elliptic integral (see
Jordan and Smith [5]) and also try to find evolution operator for this case.

The damping case is important physically. We now see what happen in adding a
small amount of linear damping to the pendulum equation. The equation of motion
for linear damping becomes

0+00+w?sinh =0

where o > 0 is the damping strength. The energy of this dissipative system is
calculated easily and obtained as E = %02 — @” cos 0. Therefore, the rate of change
of energy is
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(il—lf =00+ *0sin0 = 0(0+ *sin0) = —al?* <O .- > 0].

Hence, the energy in the dissipative pendulum decreases monotonically along
the path of the pendulum, except at the equilibrium point of the pendulum while the
energy of the undamped pendulum (no dissipation) is constant. It can be shown
easily that the centers become spirals while the saddles remain the same. A typical
sketch of phase portrait is displayed in Fig. 3.14.

One can find the flow evolution operator for this system easily. For simplicity we

give the evolution operator ¢(, x ) for the dissipative linear system 0+ 200 +

@*0=0. The flow evolution operator is expressed as ¢z, x) =
{(1+ wt)x+1ty}e

{—?tx+ (1 — wt)y}e "

¢(t+s, x) = ¢(s+1,x),Vt,s € R. This implies that linear dissipative flow forms

), which satisfies all flow properties. Moreover,

a commutative dynamical group. Interested readers can try to establish the prop-
erties of damping pendulum problem.

3.6 Linear Oscillators

Linear system in two dimensions admits oscillatory motion and the linear super-
position principle is valid. In case of nonlinear system this principle is no longer
valid and the frequency of oscillation, in general, amplitude-dependent. When a
system has sustained oscillations of finite amplitude, then it is usually referred to as
a harmonic oscillator. This is a model for the linear LC circuit or pendulum
problem. We can see that the physical mechanism resulting in these oscillations is a
periodic exchange (without dissipation) of the energy stored in the system. There
are two fundamental problems in linear oscillator. First, we have seen that a small
perturbation will destroy the oscillation, and the linear oscillator is not structurally
stable. The amplitude of oscillation is dependent on the initial conditions. The two
fundamental problems of a linear oscillator can be overcome in nonlinear oscillator.
Nonlinear oscillators have the following important properties, viz.,

(i) the nonlinear oscillator is structurally stable;
(i1) the amplitude of oscillation at steady state is independent of initial conditions
or insensitive of initial conditions.

The properties of nonlinear oscillator are very important in practical applications
particularly in electrical, electronic devices and mechanical systems. The linear
oscillators are predictable and their oscillations change stability characters for the
small change of initial conditions. Generally, the oscillations are represented by an
inhomogeneous linear second-order differential equation of the following standard
form
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5&+oc)’c—|—w§x:fsinwt,oc,w,f>0

Here oux is the linear damping force and f, @, and w are, respectively, the forcing
amplitude, the natural frequency, and angular (forcing) frequency. Let x = x(¢) be
the displacement of the body from the rest of mass m with the force of inertia mx.
Linear oscillator may be in different types, viz., (i) free oscillator, (ii) damped
oscillator, and (iii) damped and forced oscillators.

When the damping and forcing terms are absent, then the oscillator is called free
and executes a harmonic oscillation. The solutions subject to the initial conditions
x(0) = A, x(0) = 0is given by x(z) = A cos wot, with period T = 27/w,. Note that
the period is independent of the amplitude A. The trajectory plot in x versus
t (Fig. 3.15a) and the phase portrait in the x — x plane are shown in the following
figures for the initial conditions x(0) = 2,%(0) = 0. In Fig. 3.15b the motion is
characterized by closed-curves where the phase point (x, X) moves continuously on
the closed curves as time goes on. The different closed curves correspond to the
slightly different initial conditions.

The figure indicates that the amplitude of oscillation is constant.

When the damping force is present, the equation is represented by
%+ ok + wix = 0. The solution is obtained as x(f) = Ae™’ + Be™', where A and

B are arbitrary constants and m;, = % [—oc + /o2 — 464%} The three possibilities
may arise:
(i) Strong damping (o2 — 4w3) >0
(i) Weak damping (o> — 4wj) <0
(iii) Critical damping (o> — 4w3) = 0.
We shall discuss these three cases using dynamical system principle and

closed-form solutions.
The given second-order system can be written as

|

10

‘x (h} T B TR R R

{a}/\
Y 10 s

=10 =05 0.0 0.5 1.0

Fig. 3.15 a Flow trajectory x versus ¢, b phase portrait x versus x
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Fig. 3.16 Typical flow 0
trajectories for strong
damping force

x=y } (3.21)

y=—ay— wix

Clearly, (0, 0) is the only fixed point of the system. In matrix notation the system

(3.21) can be expressed as
x 0 1 X
.= 3.22
<y) (—wﬁ —°<>(y> 322)

Therefore, T = a+d = —o, A= f and D = (1> — 4A) = (¢ — 403).
(i) Strong Damping (D > 0)

In this case, the eigenvalues, say 11, 4, are real, distinct, and negative, since o > 0.
The solution of the system is x(z) = Ae*'" 4+ Be™! where A, B are arbitrary con-
stants. Figure 3.16 displays two typical phase trajectories of the system. The phase
path of the system is given by

x = x(t) = Ae"' + Be™' |y = kx = J, A" + ), Be’!

The set of points (x, y) can be treated as a parametric representation of the phase
path with parameter 7, for fixed values of A and B. The phase path is shown in
Fig. 3.17.

From this figure it is clear that the equilibrium point origin is a stable node. In
the strong damping force all trajectories, starting at some initial condition, terminate
at the origin as t — oo.

(i) Weak Damping (D < 0)

Eigenvalues for this weak damping case are complex with negative real part. The
solution is obtained as

1
x(f) = Ae ¥ cos {2 vV —Dt+ 6}
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Fig. 3.17 Phase portrait for

strong damping \ \ y\\ \
RS

ARV
\
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\\
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Fig. 3.18 A typical flow x(f)
trajectory for weak damping

where A and € are real and arbitrary constants with A > 0. The graphical repre-
sentation of a typical solution is shown in Fig. 3.18 which represents an oscillation

with decreasing amplitude (Ae‘%‘”> and the oscillation decays more rapidly for

large values of «. The phase diagram is shown in Fig. 3.19.
The equilibrium point origin is a stable focus and the trajectory spiral moves
toward the equilibrium point.

(iii) Critical Damping (D = 0)

In the phase plane analysis,, the eigenvalues are equal and negative:
A = A2 = —(a/2), a > 0. The equilibrium point is therefore stable. The solution is
given by x() = (A4 Bt)e ™. For o > 2wy, the solution is non-oscillatory and
exponentially approaches toward the origin. Figure 3.20 depicts the phase diagram.
It indicates that all trajectories of the oscillator reach asymptotically to the origin as
t — o0, staring from different initial conditions.

Damped and forced oscillator: The equation of motion for a damped-forced
oscillator is expressed as
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Fig. 3.19 Phase portrait A = y
l,a=1,wy=1,€= 0.1in \

(x — %) plane
P ____H‘\ \

Fig. 3.20 Phase portrait for y

critical damping \ \ \
N \

¥+ ok + wfx = fsinwt

where « > 0, wy and o are the original and forcing frequencies of the oscillator.
The equation is linear and its solution is given by

—ot/2

x(t) = Ajwo/ce”™/ cos(ct — ) + A, cos(wt — )

where

f

[0 — o
> 3 ,Y = tan — .
(wf — w?)” 4+ o?2w? 10

The constants A, and f are determined from initial conditions and ¢ can be

obtained from the relation ¢ = \/w3 — (o2/4). Note that if o > 0, the first term of
the solution (independent of f and ) decreases exponentially fast while the

A, =
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second term oscillates periodically with time. So the first term gives the transient
behavior of the oscillator. For large time, the frequency of oscillation is w/2n and
the amplitude of oscillation is A,. At the resonance value /wj— (a2/2)
(approximately g for sufficiently small damping) the amplitude of oscillation takes
a maximum value. Since the system is linear, its motion is insensitive to initial
conditions (see Lakshmanan and Rajasekar [6] for linear and nonlinear oscillators).

Example 3.1 (a) Find the value(s) of k € R such that zero equilibrium will be a
stable focus for the system x =y, y = —x+ ky, (b) determine the nature and sta-
bility property of the equilibrium point of the system x = x,y = ky for k > 0 and
k<O.

Solution (a) Obviously the origin is an equilibrium point of the system. Here the
coefficient matrix A is
0 1
=44

The eigenvalues of A are

-4 1
|A—/11|_0:>‘_1 i

k+Vkr—4

=0=>2—ki+1=0= 1= 5

Thus the zero equilibrium point is a focus if k2 —4<0, that is, if —2<k<?2.
This focus is stable if the real parts of the eigenvalues are negative. This gives k < 0.
Thus the zero equilibrium point is a stable focus if —2 <k <0.

(b) Clearly, the origin is the only equilibrium point of the system. The eigen-
values of the matrix A are A = 1, k. If k > 0 but k # 1, then the eigenvalues are real,
distinct, and positive. So in this case, the origin is an unstable node. If £ <0, then
the eigenvalues are real and distinct but they are of opposite signs. So in this case,
the origin is a saddle point. If k = 1, then the eigenvalues are equal and positive in
sign. Hence, the equilibrium point (0,0) is a star node and it is unstable.

Example 3.2 Locate the critical point and find its nature for the system
xX=x+4+y,y=x—y-+ 1. Also find the phase path of the system.

Solution For the critical points, we have
x=0andy =0.

Thatis, x+y =0 and x — y+ 1 = 0. Solving, we get x = —1/2, y = 1/2. So,
the critical point of the system is (—1/2, 1/2). We now translate the origin (0, 0) at
the critical point (—1/2, 1/2) using the transformation
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1 1
xzé—iandy:n—&—i.

Under this transformation the equations become

; 1 1
fzrf—i-i-n—i—E:f-i-?]
. 1 1

and fj=E—3—n-3+1=E—n

me (3)-0 400

The characteristic equation of the coefficient matrix gives

(I1-A)(-1-4)—-1=0
or, 1-2+1=0
or, 22=2
or, J=+v2.
So, the characteristic roots are of opposite signs. Thus the critical point (f %, %)
is a saddle. We now find the phase paths of the system. The differential equation of
the phase path is

dy y x—y+1

dx & x4y

= xdy + ydx = xdx — ydy + dx
= d(xy) = xdx — ydy + dx

Integrating, we get

2 y2
=——= k
Xy 5 2+x+

or, 2xy=x*—y'+2x+c,

where c is an arbitrary constant. This is the required equation for the phase path of
the system.
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Example 3.3 Indicate the nature and stability of the fixed point of the linear system

x=10x —y
y=25x+2y

Solution The system has only one fixed point (0, 0). The system can be written as

X =Ax, where x = (i) and A = < ég _21 > The characteristic equation of

A is
10-4 -1
25 2—1

= P -12/+45=0
- J= 121\/144717 12:!:1\/_ 6j:l‘/_

o

Thus, the eigenvalues of A are complex with positive real part. Hence, the fixed
point (0, 0) is an unstable focus.

Example 3.4 Find the nature and stability of the fixed points of
X=—ax+y,y=—-x—ay

for different values of the parameter a.

Solution The only fixed point of the system is (0, 0). The system can be written as
X =Ax, where x = (;) and A = <:61l _la). The eigenvalues of A are
obtained as follows:

—a— 2 1
’ —a— A

= 1+ ) +1=0
= A=-—-a#i

When a > 0, the eigenvalues are complex with negative real parts. So, the fixed
point (0, 0) is a stable spiral.

If a < 0, then the eigenvalues are complex with positive real parts. So, the fixed
point (0, 0) is an unstable spiral.

If @ = 0, then the eigenvalues are purely imaginary and the fixed point is center
which is neutrally stable.

=0

Example 3.5 Draw the phase diagrams for linear harmonic undamped oscillators
represented by (i) ¥+ w?x = 0, (ii) ¥ — w?x = 0.
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il
v

Fig. 3.21 Phase portrait for case (i)
Solution Both the systems can be written as

xX=y
)')::szx

The only equilibrium point of the systems is (0, 0). We can easily find the phase
path of the systems as follows:

2

@_i_:wa_ 2 x
=iy — Ty
or, ydy+ w’xdx=0

Integrating, we get y* + w*x*> = ¢, ¢ being the integrating constant.

In the first case the phase portrait (Fig. 3.21) is the family of ellipses with center
at (0, 0). This implies that all solutions of the system are periodic. The equilibrium
point (0, 0) is a center.

Fig. 3.22 Phase portrait for

case (i) Lo %y

0.5t

¥

0.0

—0.5}¢

-1.0 -05 0.0 0.5 1.0

X
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While the phase portrait of a second equation is a family of hyperbolas with
asymptotes y = Fwx, the equilibrium point (0, 0) is a saddle (Fig. 3.22).

Example 3.6 Linearize the nonlinear system

|
y=—x(1-»

about the fixed point (0, 0) and then classify the fixed point.

Solution The linear approximation of the system about (0, 0) is x =1+ (—x —
3y) -1l =—x—3yand y = —x.
We write the system as x = Ax where

=0

Now, t=tr(A)=a+d=—-1 A=det(A)=(ad —bc)=—-3<0 and D= (> —4A)=13>0

Hence, the fixed point (0, 0) is a saddle.

2

Example 3.7 Draw the phase portraits of x+x = ax” for the three values

a=0,—1,1.

Solution We can write the second-order equation as x = y,y = ax? — x. The fixed
points are obtained by solving the equations y = 0 and ax?> —x = 0. For a = 0, the
system has only one fixed point at (0, 0), for a = 1, it has two fixed points at (0, 0),
(1, 0) and for a = —1, the fixed points are (0, 0) and (-1, 0). We now discuss the
stabilities of these fixed points.

For a = 0, the system has only one fixed point at the origin. The Jacobian matrix

. 0 1

J(0, 0) is J(0,0) = (_1 0
Hence, the fixed point origin is a center which represents closed paths in its
neighborhood. The phase portrait is shown in Fig. 3.23.

For a = 1, the system has two fixed points (0, 0) and (1, 0). The Jacobian
matrices at these fixed points are given by

J(0,0) = (_01 (1)) and J(1,0) = (? (1))

The eigenvalues of J(0, 0) are (£i), which are purely imaginary. Therefore, the
fixed point (0, 0) is a center. The eigenvalues of J(1, 0) are (+1), which are of
opposite signs. Hence the fixed point (1, 0) is a saddle. The phase diagram is
depicted in Fig. 3.24.

) which has purely imaginary eigenvalues 4 = =+ i.
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Fig. 3.23 Phase portrait for
a=0

Fig. 3.24 Phase diagram for
a=1

117

The center and saddles are clearly depicted in the figure.
For a = -1 the fixed points of the system are (0, 0) and (—1, 0). Now,

7(0,0) = (_01

> and J(—1,0) = ((1)

o)

The eigenvalues of the matrix J(0, 0) are (+ i), which are purely imaginary. So,
the fixed point (0, 0) is a center. The eigenvalues of J(—1, 0) are (£1), which are of
opposite signs. Hence, the fixed point (—1, 0) is a saddle. The phase diagram is

represented in Fig. 3.25.
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Fig. 3.25 Phase diagram for X
a=-1 ~—

Example 3.8 Show that the equilibrium point is a stable focus for the damped linear
pendulum x 4 x4+ x = 0. Draw the phase diagram of the system.

Solution The system can be written as

y
—x—y

G)-(5 00)

or, x =Ax, whereA = < 0 ! )

2o <. =

or,

-1 -1
The system has only one equilibrium point (0, 0). The eigenvalues of A are given
by

A=l =0
-2 1
or, _1 _l_l‘_o
or, Z242+1=0
or, /l:—’lizvl"‘:—%j:i%g

Eigenvalues are complex with negative real part. Therefore the equilibrium point
origin is a stable focus, that is, all orbits are spirals converging to the origin. The
phase diagram is shown in Fig. 3.26.
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Fig. 3.26 Phase portrait for X
the given system

Example 3.9 Obtain all critical points of the system x = siny,y = cos x. Linearize
the system about the critical point (% , O). Find the equation of the phase path.

Solution For critical points we set

siny=0=y=nn,n=0,%£1,£2,...
1
and cosx=0=x= (2m+1)g: <m+ E)n,m:O,il,iZ,...

Thus we obtain the critical points
+1 n=0,+£1,£2,...
MER)EIT ) = 0,41,42, ...

Consider the critical point (%,0). We translate the origin (0, 0) to the critical
point (%,0). Then we have

x:éJrgandy:nJrO.

The system becomes

3
i
ﬁ—i—"'
3
ﬁzcos(f—l—g) :—sinéz—tf—&—%—k...

E=sin(n+0)=sinnp=n—

Neglecting higher order terms, we get the linearized system as
¢ =mn and 77 = —¢&. In matrix notation we write it as
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()= 0)6)

The characteristic equation of the coefficient matrix is

The critical point (%,0) is a center which is neutrally stable but not
asymptotically.
The differential equation of the phase path is

Q_i_cosx
dx ™ & siny
or, sinydy—cosxdx=20

or, sinx+ cosy=c,

¢ being an arbitrary constant. This is the required phase path of the system.
Example 3.10 Classify the equilibrium points of the system

X=x—-y

y=x—1

Solution Let f(x,y) = x —yand g(x,y) = x*> — 1.
For fixed points of the system, we have

f(x,y) =0andg(x,y) =0
NOW,f(X,y) :0:>X_y:0:>)6:y
andg(x,y)) =0= x> - 1=0=x=+1.So,x =y = £1.

Thus the fixed points of the system are (1, 1) and (-1, —1).
The Jacobian matrix of the system is

Goa)_(1 -1
Jy) =\ o ae :< )'
a_ia_i 2x 0

At the critical point (1, 1),
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whose eigenvalues are (1 + z\ﬁ) /2, which are complex conjugate with positive
real part. Therefore, the critical point (1, 1) is an unstable focus.
Again at the equilibrium point (—1, —1), the Jacobian matrix is

J(=1,-1) = (_11 _01>

which has two real, distinct eigenvalues with opposite signs. Hence the equilibrium
point (—1, —1) is saddle.

Example 3.11 Consider a nonlinear system

¥=1—(a+1)x+bxy
y = ax — bx’y

where a and b are positive parameters.

(i) Show that (1,a/b) is the only critical point of the system,
(i1) linearize the system about this critical point.

Solution Let f(x,y) = 1 — (a+ 1)x+bx*y and g(x,y) = ax — bx’y
(i) For critical points, we have f(x,y) = 0 and g(x,y) =0
Now,

fr,y)=0=1—(a+Dx+bx*y =0
Again, g(x,y) = 0 = ax — bx’y = 0 = either x = 0 or xy = a/b. But x cannot
be zero, which implies xy = a/b. From above, we get

l-—(a+1)x+ax=0=>1-x=0=x=1.

Using this value of x, we get y = a/b. This shows that (1, a/b) is the only critical
point of the system.
(i) We calculate

of Og

of , Og 2
P (a+ 1)+ 2bxy, 9 bx B =4 bxy, D bx
At the fixed point (1,%),
of o . 0Og dg
I (a+1)+2a=a By b7ax a—2a @5y b

So, the linearized system about the fixed point (1, a/b) is
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()-(= %)C)

or, x=(a—1)x+by,y=—ax—by

Example 3.12 Find all fixed points of the system

x=x(y—1)
y=3x—2y+x> -2

Linearize the system about the fixed point (0, 0). Comment about the stability
around this fixed point.

Solution Let P(x,y) = x(y — 1) and Q(x,y) = 3x — 2y + x> — 2?
For fixed points, we have

P(x,y) =0and O(x,y) =0
Now,P(x,y) =0=x(y— 1) =0=x=0ory =1
and, Q(x,y) =0 = 3x — 2y +x* —2y* =0

When x =0, we get y> +y=0=y=0,—1. Similarly, when y = 1, we get
x =1,—4. So, the fixed points of the system are (0,0), (0, —1),(1,1), and (—4, 1).
At the fixed point (0,0), %’; =—1,2-0,%=39%_ _3 So, the corresponding

'y s ox aa -
linearized system about the fixed point (0, 0) is
X=—x
y=3x—-2y
. . . -1 0 ..
which can also be written as X =Ax, where A = 3 o) The characteristic

equation of A yields

-0
3 —2—1“0
S ()42 =0= A= 1,2

The eigenvalues of A are 1y = —2,1; = —1. Since 4; <1, <0, the fixed point
(0, 0) is a node which is asymptotically stable.
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1. Locate the equilibrium points and find the equations for phase paths of the

following two-dimensional systems:

(@ x=x+y,y=x—y+1
(b) x:y375’:x3
© t=1-yjy=x*—)

2. Find the Jordan forms of the following matrices:

o2 o% ols el 2ok ]

3. Find the nature of the critical points of the following linear systems:

@ x=-3x+y,y=x-3y
b)) x=—x—2y,y=4x— 15y
() x=5x+2y,y=—17x— 5y
(d) x=-3x+4y,y=—2x+3y
) x=—-4x—y,y=x—2y
) x=3x—-4y,y=x—y

4. Solve the linear system X + %x = 0. Find trajectories and sketch some of them.
5. (a) Show that the improper node for the system x = ax-+by,y = cx+dy
becomes a star node if a = d, b = ¢ = 0; (b) give an example with justification
of a critical point which is always stable but neither a positive attractor nor a

negative attractor.

6. Obtain the equilibrium points of the following nonlinear systems and classify

them according to their linear approximations.

(@) x=siny,y =x+x°,

(b) ¥=-2x—y+2,y=xy

© x=l-xyy=x—)

(@ ¥=x(5-x—-2y),y=y(1—-x—y)
() x=—6y+2xy—8y=» —x
() i+sgn(x)+x2=0

(g) X+ sinx=0

(h) i+x*=0

(i) ¥+x7=0

G) F+m+x2=0peR

k) ¥+mx+x=0,ucR

7. Draw the phase path of the following systems:

(@) X+ Jsgn(X)|x[+x=0
(b) i+ 1iii+x* =0
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8

9

10

11

12.

13.

14.

() ¥+(2%+#—2)x+2x=0
d) x=—-x+y—x>+xy,y=x+y—x> —xy.

. Obtain three consecutive equilibrium points and their stabilities for the non-

linear simple pendulum ¥ — w?

different values of w.

sinx = 0. Hence, draw the phase diagram for

. Define evolution operator in R?. Find the evolution operator for the simple

harmonic oscillators:

(@) ¥+w*x=0
b) ¥—w*x=0

.(a) Find the evolution operators of the following linear systems and find the

intervals of the time ¢ for which each operator is defined. Also, verify that

Di(Bs(x)) = b s(x)

Lx=x,y=x+y
ii. Xx+ax+b=0,a,b>0.

(b) Find the evolution operator for the nonlinear pendulum problems
@) 0+ w?sinf = 0, (i1) 0+ 0b + w?sin = 0,0, > 0.

. Convert the nonlinear system

i=—y+x{l - (C+y)}, y=x+y{1-(+y")}

into a polar form and then find the flow evolution operator of the system.
Consider the linear system

x =Ax,wherex = <x) andA = (a b)
~ ~ ~ y c d

where the eigenvalues /41, 4, of the matrix A are real and satisfy the condition
A1 <43 <0. Draw the phase diagram. Also, mention the nature of the critical
point.

Find the nature of the critical point (0, 0) for the linear system X =Ax, where

A= (é 2>7£ = (i) and 4 # 0, the eigenvalue of the matrix A. Also,

sketch the phase diagrams for A > 0 and A<0.
Transform the following system of equations

X =oax+ Py
y=—px+oy
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15.

16.

17.

18.

19.

20.

21.

22.

into the polar form and hence solve it, where o, f§ are real numbers. Draw the
phase diagram for different signs of o, f and mention the geometrical
interpretations.

Find the nature and stability property of the equilibrium points of the system

X=—ax+y,y=—x—ay

for different values of the parameter a.
Consider the system

x=x(a+14y)—2a
y=yla+4—-2x)+a

where a is a real parameter.

(i) Show that (2, —1) is a critical point of the system.
(i) Show that for some b, the Jacobian matrix for the system at the critical
. . a b
point is (2,—1)isJ(2,—1) = [b a} .
(@iii) For what values of a and b is (2, —1) stable for the linearization?

Find all equilibrium points of the system
x=x(l —x—ay),y=by(x—y)

where a, b are positive constants. Determine their stabilities and also sketch the
phase portraits.

Show that the system 0 + (g/L) sin § = 0 is a conservative in (6 — ) plane and
study the stability of its critical points. Also, find o-, w-limits for the system.
Find the solutions of the forced harmonic oscillator problems

(i) x+x=fcoswt (i) X+x+x=fcoswt, (iii) X+x+x =f;cosw;+
frcosmpt iv) X+x+ € xcoswt =0, €K 1, where f, fi,f, are constants and
w, wy, wy are forcing frequencies.

Find all critical points of the system

k= —x+y—x+xy
y=xt+y—-x—xy )

Also, sketch a phase portrait that includes all critical points of the system.
Find all equilibrium points of the system & = 2x — xy,y = 2x*> — y and discuss
their qualitative behaviors. Also, draw the phase portrait of the system.

Show that the plane autonomous system X = x —y,y = 4x> +2y*> — 6 has
critical points at (1, 1) and (-1, —1). Also, show that they are unstable.
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23. Is the equilibrium point (0, 0) of the system of equations

x=3x
y=x+2y

stable? Justify your answer.
24. Consider the system

k= —xtoy—fry+y
y=—(o+ B)x+p* —xy

where o« > 0 and f # 0.

(a) Find all critical points of the system.

(b) Determine the type of each isolated critical point, for all values of the
parameters a( > 0) and S(5£0).

(c) Draw the phase portrait of the system for & = 1, § = —2 and discuss the
qualitative behavior of the system.

25. Consider the system x = ax + by, y = cx+ dy with ad — bc = 0. Show that the
system has infinitely many non-isolated equilibrium points. Also, determine the
phase paths of the system.

26. Consider the system x = y,y = a, where the control parameter a can take the
values +1.

(a) Draw the phase portraits for a = 1 as well as for a = —1.

(b) Superpose the two phase portraits and develop a strategy for switching the
control between *1 so that any point in the phase plane can be moved to the
origin in finite time.

27. What do you mean by linearization of a nonlinear system? State its limitations.
Consider the Brusselator system which represents the mathematical model for a
chemical reaction & = a +x%*y — (1 +b)x,y = bx — x>y, where a, b are nonzero
parameters. Show that (a, b/a) is the only critical point of the system. Linearize
the system about the critical point. Discuss stability behaviors at the critical
point when a = 1, b = 2. Sketch the phase portraits.

28. Consider the system

Y . x*

nverr /ey

X=—x-

(a) Linearize the system about the equilibrium point origin of the system and
show that the origin is a stable node.

(b) Find the phase portrait of the nonlinear system near the origin and then
show that the portrait represents a stable focus.

(c) State reason for this.
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29. Define o and  limit sets in R%. Find o and o limits for 0+ ? sin 6 = 0,
w > 0.

30. Prove that the nonlinear equation 2f"” = —ff” is transformed to x =
x(1+x+7y), y = y(2+x — y) using the transformation x = ff' /f",y = £ /",
t = log |f’|. Find the fixed points and draw the phase diagram of the trans-
formed system (this equation is known as Blasius (Hermann Blasius 1908)
equation for boundary layer flow of an incompressible fluid over a flat plate).
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Chapter 4
Stability Theory

Stability of solutions is an important qualitative property in linear as well as non-
linear systems. The objective of this chapter is to introduce various methods for
analyzing stability of a system. In fact, stability of a system plays a crucial role in
the dynamics of the system. In the context of differential equations rigorous
mathematical definitions are often too restrictive in analyzing the stability of
solutions. Different kinds of methods on stability were developed in the theory of
differential equations. We begin with the stability analysis of linear systems.
Stability theory originates from the classical mechanics, the laws of statics and
dynamics. The ideas in mechanics had been enriched by many mathematicians and
physicists like Evangelista Torricelli (1608-1647), Christiaan Huygens (1629—
1695), Joseph-Louis Lagrange (1736-1813), Henri Poincaré (1854—1912), and
others. In the beginning of the twentieth century the principles of stability in
mechanics were generalized by the Russian mathematician A.M. Lyapunov (1857-
1918). There are many stability theories in the literature but we will discuss a few of
them in this chapter which are practically the most useful.

4.1 Stability of Linear Systems

This section describes the stability analysis of a linear system of homogeneous
first-order differential equations. The systems with constant coefficients can be
written as

n
k=Y ayg; i=1,2,...n (4.1)
j=1
where a;(i,j = 1,2, ...,n) are constants. In matrix notation, (4.1) can be written as
x=Ax (4.2)
© Springer India 2015 129
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. . t .
where A is an n x n matrix and x = (x1,x2,...,%,) is a column vector. The char-

acteristic equation of (4.2) is det(A — AI) = 0. Depending upon the roots of the
characteristic equation the following cases may arise for stability of solutions of (4.2):

(i) If all the roots of the characteristic equation of (4.2) have negative real part,

then all solutions of (4.2) are asymptotically stable. Moreover, the solutions
tend to the equilibrium point origin as ¢t — 00;

(i) If at least one root of the characteristic equation has a positive real part, then
all solutions are unstable;

(iii) If the characteristic equation has simple roots, purely imaginary or zero and
the other roots exist and have a negative real part, then all solutions of the
system are stable, but not asymptotically.

In case of nonhomogeneous linear systems we prove the following theorem for
stability.
Theorem 4.1 The solutions of the nonhomogeneous linear system — X; =
> @)+ bi(t); i = 1,2,...,nare all simultaneously either stable or unstable.
Proof Let f(t) = (fi(?),£2(f),....fu(t)) be any particular solution of the nonho-

mogeneous linear system
Y=Y ai(x+bit), i=1,2,...n (4.3)
=1

Consider the transformation y;(¢) = x;(z) — fi(¢),i = 1,2,...,n, which trans-
forms the particular solution f(¢) of (4.3) into a trivial solution. Applying this

transformation to (4.3), we get the homogeneous linear system
yi= Y ay()y(t), i=1,2,...,n (4.4)
=1

Thus any particular solution of (4.3) has the same stability behavior as that of the
trivial solution of (4.4). Suppose that the trivial solution of (4.4) is stable. Then by
definition of stability, for any ¢ > O there is a 0 = (&) > 0 such that for every other
solution y;,i = 1,2,...,n of (4.4),

[vi(to) — 0| <0 = |yi(r) — 0] <& Vt > 1.

Substituting y;(¢) = x;(¢) — fi(¢t),i = 1,2,...,n, we see that for every solution
x(1),i=1,2,...,n of (4.3),
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xi(t0) — fi(to)| <0 = |xi(2) — fir)| <& Vi >1q.

This implies that the particular solution f;(¢),i = 1,2,...,n of (4.3) is stable.
One can prove the instability of the particular solution similarly. This completes the
proof.

4.2 Methods for Stability Analysis

There does not exist a single method which will suffice for stability analysis of a
system. We begin with the Lyapunov stability analysis.

(D Lyapunov method

First, we shall explain Lyapunov method with respect to equilibrium points of a
system. Let x * be the equilibrium point of a nonlinear system x * = f(x ), x € R".

If any orbit that passes close to the equilibrium point stays close to it for all time, then
we say that the equilibrium point x * is Lyapunov stable. Mathematically, it is defined

as follows:
An equilibrium point x * of a system ¥ = f(x ), x € R" is said to be Lyapunov

stable if and only if for any ¢ > 0 there exists a d(¢) > 0 such that the orbit

¢ (t, X > of the system satisfies the following relation:

[x —x"<d=[lgp(t,x) — x"[[<e, Ve>0.

(Starts near x *) (Stayed nearby orbit)

The equilibrium point x * is said to be asymptotically stable if

(i) it is stable, and
(ii) the orbit ¢ (z, x ) approaches to x * as t — oo.

Thus, for asymptotically stable equilibrium point we can find a 6 > 0 such that
lx =x"l<o=1l¢(1,x) = x| = 0ast — oo.

For an asymptotic stable equilibrium point x *, the set D(x *) = {x € R"| lim

~ ~ ~ 1—00

l¢(t,x)— x| =0} is called the domain of asymptotic stability of x *. If

D =TR", then x * is globally stable (asymptotically).
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An equilibrium point x * which satisfies only the condition (ii) of the definition

of asymptotic stability is called quasi-asymptotically stable. An equilibrium point
which is not stable is said to be unstable. The diagrammatic representations of
Lyapunov, asymptotic, and quasi-asymptotic stabilities about the equilibrium point
are shown in Fig. 4.1a—c.

The solution u(f) of a system is said to be uniformly stable if there exists a
0(¢) >0 for all ¢>0 such that for any other solution v(z), the inequality
|u(to) — v(t0)| <0 implies |u(t) — v(¢)| <& for all > #y. The solution u(¢) is said to
be unstable when no such J exists. Again, a stable solution u(7) is said to be
asymptotically stable if |u(t) — v(¢)| — 0 as  — oo. From this stability criterion we
see that the Lyapunov stability condition is quite restrictive. The two neighboring
solutions remain close to each other at the same time. We now discuss few less
restrictive stability methods below.

(II) Poincaré method

This stability criterion is related with different time scales, say #' and 7. Let " and I be
two orbits represented by x () and y (7), respectively, for all 7. The orbit I'is orbitally

stable if for any & > 0, there exists d(¢) > 0 such that if || x (0) — y (7)|| < for some
time 7, then there exists #/(7) such that || x (1) — y ()|| <&, V¢ > 0. The orbit is said to

be asymptotically stable if the orbit I'" tends toward I' as t — oo. This is the most
significant test for stability analysis but it is very difficult to establish mathematically.

(IlT) Lagrange method
This is a simple criterion for stability analysis. The solutions of the system x =
f (x ,1) are said to be bounded stable if || x (#)|| <M < oo, Vz. This is also known as

~

bounded stability.

B(x.€)

Fig. 4.1 a Lyapunov stability, b asymptotic stability, and ¢ quasi-asymptotic stability of an
equilibrium point x *
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(IV) Lyapunov’s direct method

The Russian mathematician A.M. Lyapunov generalized the stability conditions
which are used in analyzing the stability of a system, in particular the stability in the
neighborhood of equilibrium points of a system. This is known as Lyapunov’s
second method or direct method for stability. He nicely introduced a scalar function,
L(x ) later called it the Lyapunov function, such that L(x *) = O and L(x ) > 0 when
x # x " in the neighborhood of x *, the equilibrium point of the system ¥ = f(x ).
The function L = L(x1,x,, . . ., x,) is said to be positively (resp. negatively) definite
in a domain D C R" if L(x ) > 0 (resp. <0) for all x € D,x # 0. Similarly, L is
called positively (resp. negatively) semi-definite in D if L(x ) >0 (resp. < 0) for all
x € D. When the function L(z, x ) depends explicitly on time 7, these definitions can
be redefined as follows:

The function L(z, x ) is said to be positively (resp. negatively) definite in D if
there exists a function G(x ) in D such that G(x ) is continuous in D, G(0 ) = 0 and
0<G(x)<L(t,x) (resp.L(t,x ) <G(x )<0) for all x €D\{0}, t>1.
Similarly, the semi-definite functions can be defined. The total derivative or orbital
derivative of L in the direction of the vector field f (x ) is defined as

dL oL

Let D CRR" be an open neighborhood of the equilibrium point x *. Then the
function L : D — R, satisfying the following properties:

(i) L is continuously differentiable,

(i) L>0forall x € D\{x*} and L({ *) =0,

is called a Lyapunov function. Moreover, if de <0 in D, then X * is stable. This
condition implies that the point x () moves along a path where L(x ) does not
increase. Hence, x () will remain close to the point x * and come to x * if d—f =0.
There is no systematic procedure to deduct the Lyapunov function L(x ). However,
in case of conservative system it L is the energy of the system. In fact, Lyapunov
constructed this function on the basis of the principle of energy in mechanics.

Theorem 4.2 (Lyapunov theorem) Suppose that the origin is an equilibrium point
of x = f(x),x €R"and let L = L(x,x2,...,%,) be a Lyapunov function in a

neighborhood D of the origin. If

(i) the orbital derivative L<0 in D, that is, if L is negative semi-definite in D ,
the origin is stable,
(i) L<O0 in D\{0}, that is, if L negative definite in D, then the origin is
asymptotically stable,
(iii) L >0, that is, positive definite in D, the origin is unstable.
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For proof see Hartmann [1].

For an application of the theorem we illustrate the stability of pendulum
problem.

Simple undamped pendulum: Consider the simple pendulum problem gov-
erned by the equation

mll = —mgsin 0,

that is, 6 = — (%) sin 0 (4.5)

in which a bob of mass m is suspended from a light string of length /, where 6
represents the angle between the string and the vertical axis at some instant #, and g

is the acceleration due to gravity. With x =60 and y = 0, we can rewrite the
Eq. (4.5) as a system of equations

;:C z y—(%) sin x } (4.6)

Consider the function L(x,y) = 1mi?y? +mgl(1 — cosx), (x,y) € R?, which is
simply the total energy of the system. Let G = {(x, y) €eR?: —2n<x<2n}. We
see that L(0,0) = 0 and L > 0in G\{(0,0)}. Therefore, L is positive definite in
G. We now calculate the derivate L of L along the trajectory of (4.6) as

. dL oL oL
L= i aijr ay = [mglsinx]y + ml’y {f (%) sinx} =0
Thus, conditions of Theorem 4.2 are satisfied. Hence, the fixed point origin is

stable. Note that the origin is not asymptotically stable, since L = 0.
Damped pendulum: Consider the damped pendulum governed by the equation

ml0 = —mg sin 0 — pl0 (4.7)

which is simply obtained by taking into account the effect of damping force
(frictional force) ,ul@, 1 > 0 being the coefficient of friction. As previous, with x = 0
and y = 9, we can rewrite Eq. (4.7) as

xX=y

=g s ) 9

The origin O(0,0) is a fixed point of the system. We now determine its stability.
As earlier, consider the function
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1
L(x,y) = Emlzy2 +mgl(1 — cosx), (x,y) € R?.

Then L is positive definite in G, as defined earlier. Now calculate L along the
trajectory of (4.8) as follows:

(:1_1; = ZI; + gsy = [mglsinx]y + ml*y {— (%) sinx — (%))’} = —ul’y*.

Now, in G we can find points, in particular (x,y) = (r/2,0), such that L = 0.
So, L <0 in G. Therefore, by Theorem 4.2 the fixed point origin is stable. However,
the phase portrait near the origin gives some other picture: the origin is asymp-
totically stable (see Fig. 3.14). So, we discard this particular choice of L and
consider a more general form of L as

1
L(x,y) = 3 ml* [ax* 4 2bxy + cy*] +mgl(1 — cosx)

We shall now determine the values of a, b, and ¢ for which the origin are
asymptotically stable, that is, L is positive definite and L is negative definite in some
neighborhood of the origin. It can be shown that the first right-hand member in the
expression of L is positive definite if and only if @ > 0, ¢ > 0, ac — b*> > 0. The
orbital derivative L of the Lyapunov function L is given by

L= oL, X+ oL —y=mP {ax+by+ (‘j) sinx]ermlz(bercy) [f (%) sinx — (%)y]

o2 (0 (e -}

The right-hand side of the above expression contains two sign indefinite terms,
xy and y sin x. We need to discard them in our problem and it leads to the following

relations:
a-b(%) =0 1-c=0=p=a("). c=1
m u

With this choice, L takes the form

L= | () (B)awsina+ {(£) - (2)al?]

To make L negative definite, we must have
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(£) = (%)a>0=0<a<(2)"

Then O<b < (,’n—’) Now, the term xsinx > 0 if all x : —w<x <7 with x # 0. Let
N = {(x, y) €ER*: —n <x<7t}. Then L is positive definite and L is negative
definite in N. Therefore, by Theorem 4.2 the fixed point origin is asymptotically
stable, as required.

Theorem 4.3 Consider a nonautonomous system x = f(t,x ) with f(1,0) =
0, x € DCR", and t > ty. The Lyapunov function L(t, x ) is defined in a neigh-
borhood of the origin and positively definite for t > ty. Then

(1) if the orbital derivative is negatively semi-definite, the solution is stable;
(i) if the orbital derivative is negative definite, the solution is asymptotically
stable; and
(iii) if the orbital derivative in positive definite, the solution is unstable.

Example 4.1 Show that the solution of the autonomous system x =y, y = —x with
x(0) =0, y(0) = 0 is stable in the sense of Lyapunov.

Solution The solution of the system with x(0) = xo, y(0) = yo is given as
x(t) = xocost+ygsint, y(t) = —xpsinz+ yocost

and the solution subject to the given initial condition is x(r) =0, y(r) =0.
Choose an arbitrary real ¢ > 0. We have to find a J(¢) >0 such that for
|X0—0‘<(§ and |y0—0|<5,

|x(¢) — 0] = |xg cost+ysint| <e, and |[y(¢) — 0] = |—xpsinz + yg cost| <&
hold for all > 0. We see that
|0 cos £+ yg sin ] < |xg cos #] + |yo sin 7] < |x0| + |-
Similarly, |—xosinz+ ygcos#| <|xo|+ |vo|. Take 6 = ¢/2. This gives

for |xo| <9 and |yo| <o
= |xpcost+ypsint|<e/2+¢/2 =¢, Vt>0.

Hence, the solution x(z) =0, y(¢) = 0 is stable in the sense of Lyapunov but
the stability is not asymptotic.

Example 4.2 Prove that each solution of the equation x+x = 0 is asymptotically
stable.
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Solution The general solution is given by x(#) = Ae™’, where A is an arbitrary
constant. The solutions x;(7) and x, () of the equation that satisfy the initial con-
ditions x; (o) = xY and x,(t9) = ) are x;(f) = % ) and x,(r) = xJe~ (1),

respectively. We see that
b2 (t) — x1(2)] = |25 —x|e” ") — 0 as r — oo.

This implies that every solution of the equation is asymptotically stable.

2

Example 4.3 Prove that all solutions of the system x = sin“x are bounded on

(=00, + 00) but the solution x(z) = 0 is unstable as t — oco.

Solution Clearly, x =nn; n =0,£1,+2,... are the obvious solutions of the
given equation. Other solutions are obtained as

cosec’xdx = df = cotx = cotxp — ¢ [assuming x(0) = xo]

= x = cot ' (cotxy — 1), Xo # nm.

All above solutions are bounded on (—oco, 4 oc0). The solution x(¢f) =0 is
unstable as 1 — oo, because for any xo € (0,7) we have lim,_, x(¢) = 7. So,
boundedness of solution does not imply that it is stable. Similarly, stability of a
solution does not ensure that it is bounded. Thus, bounded and stability of solutions
are independent properties of a system.

Example 4.4 Using suitable Lyapunov functions, examine the stabilities for the
following systems: (i) Xx+x =0, (ii) x =x, y = —y at the origin.

Solution (i) The given system can be written as X =y, y = —x. The origin is the
equilibrium point of the system. We take Lyapunov function as L(x,y) = x> +y?,
which is positive definite in the neighborhood of the origin and L(0,0) = 0. The
orbital derivative of L is given by

dL 0L oL
— = i Ty = 2y — 20y = 0,
dr 8xx+ 8yy ey

L
Hence, & is semi-negative definite. So, the system is stable at (0, 0). The phase

paths of the system are obtained as

dy X 2 2 2
—=——-= =k k#0.
% 5 X4y , k#

which represent concentric circles with center at the origin. Hence, the system is not
asymptotically stable at the origin.
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(ii) We take Lyapunov function L(x,y) = x> — y?, in the neighborhood of origin,
which is positive definite in arbitrarily close to (0, 0) (L > O along the straight line
y =0) and L(0,0) = 0. The orbital derivative of L is

dL oL OL
— =i+ —y=2(x*+y*) >0.
dr 8xx+ ayy 4y
So the equilibrium point origin is unstable. In this case, the origin is a saddle
point. The path of the system is xy = k, k being an arbitrary constant, which is a
rectangular hyperbola.

Example 4.5 Examine different stability criteria satisfied by the linear harmonic
oscillator X +x = 0.

Solution The harmonic oscillator can be written as a system of differential equa-
tions as

X=y,y=—x
The solution of the system is given by
x(r) = Acost+ Bsint,y(t) = —Asint + Bcost,

where A and B are constants. Let ¢ > 0 be given. Assume u(#) = A; cosz+ B sint
and v(t) = Ay cost+ By sint are two solutions of the equation, where A? + A2 # 0
and B? + B3 # 0. Then we get

lu(t) —v(r)| = |(A; — Az) cost+ (By — By) sin |
<|A; — Az||cost| +|By — By||sint|
§|A1 7A2|+|Bl 7Bz|<8

if [A; —Az|<e/2 and |By — By|<¢/2. Take 6 =¢/2. Then, 6 = d(¢) > 0 and
[u(0) —v(0)] <|A; — Az] <. Thus, the solution is uniformly stable.

Now, take L(x,y) = x> +y? as Lyapunov function, which is the energy of the
harmonic oscillator. Then

dL
i 2xx+ 3yy = 2xy — 2xy = 0.

Hence, the origin of the harmonic oscillator is stable in the sense of Lyapunov
but it is not asymptotically stable. This can be shown easily that the system is
orbitally stable in the sense of Poincaré but not asymptotically stable.

The solutions of the system x = y,y = —x are given by
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x(t) = Acost+ Bsint, y(t) = —Asint+ Bcost,

where A, B € R are arbitrary constants. Then
lx (1)]| = VA2 + B*> < oo for all .

Hence, the solutions of the harmonic oscillator have bounded stability in the
sense of Lagrange.

1/2

Example 4.6 Show that the system i = —y(x? erz)l/z,j) = x(x* +y?)"/* is orbi-

tally stable but not Lyapunov stable.

Solution Convert the system into the polar coordinates (r,0) using
x=rcosl,y=rsin0. In (r,0) coordinates, the system becomes

i=0,0=r,
which has the solution

r:ro,9:r0t+00,

where rg = r(0) and 6, = 6(0), the initial condition of the system. Therefore, the
solution of the original system is given by

x(t) = rocos(rot + 6y), y(t) = rosin(rot + 6y).

This shows that the amplitude and frequency of the solutions depend upon ry.
Hence, the system is orbitally stable. The solutions represent concentric circles with
center at the origin. Consider two neighboring points (ry,0) and (ro + ¢, 0) on the
concentric circles as two initial solutions, where ¢ is very small. After some time ¢,
these two points move to (ry, rof) and (7o, (ro + ¢€)). This yields the angle difference
between the solutions as

AO = (r0+8)[ — rot = ¢&t.

Hence, when 7 = (2n+ 1)n/e, A = (2n+ 1), that is, the solutions are dia-
metrically opposite to one another and in this case, the distance between them is
2ry +¢&. So, there always exists a time at which the solutions move further away
from each other. Hence, the solution is not stable in the sense of Lyapunov.

Example 4.7 Investigate the stability of the system

dx
Fre —(x—2y)(1 —2* = 3y%)

dy (1 — 2 — 32
af (y+ )(1 )C2 3y)
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at the fixed point origin.

Solution Take the Lyapunov function L(x,y) = x*> + 2y*. Then L is positive definite
in the neighborhood of (0, 0) and L(0,0) = 0. The orbital derivative is calculated as

L oL oL . 2 42 B 2 a2
dtfaxerayy—Zx[ (x —2y)(1 — x> — 3y )}+4y[ (y+x)(1—x 3y)]

= —2(x*+2y*)(1 — x* — 3y*) <0, in the neighbourhood of (0, 0)

and is equal to zero only when x = y = 0. So, L is negative definite, and hence the
fixed point origin is asymptotically stable.

Example 4.8 Using a suitable Lyapunov function shows that the origin is an
asymptotically stable equilibrium point of the system

i=-2y4yz—x

y=x—xz—y

t=xy—2
Solution Obviously, (0, 0, 0) is the equilibrium point of the system. We take
L(x,y,z) = x> + 2y* + 7% as a Lyapunov function for which we can test the stability
of the equilibrium point origin. The orbital derivative of L is given by

L = 2xi + dyy + 222
= 2x(—2y—|—yz — x3) —|—4y(x —xz— y3) + 2z(xy — z3)
= —dxy + 2xyz — 2x* + 4xy — dxyz — 4y* + 2xyz — 22*
= —(2x* +4y* +22*) <0, and L = 0 only at (0,0,0).

This implies that L is negative definite for (x,y,z) # (0,0,0). Hence, by
Lyapunov theorem on stability, the origin is an asymptotically stable.

4.3 Stability of Linearized Systems

Let us consider a nonlinear system represented as

= f(x)x eR". (4.9)

~

Without loss of generality we assume that x = 0 is an equilibrium point of the

system. So when || x || < 1, we can expand f (x ) in the form of a Taylor series in
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a neighborhood of x = 0. Neglecting second- and higher order terms. we get a

linear system as

i =Ax (4.10)

where A = J(0), the Jacobian of the system evaluated at the origin. The linear system
(4.10) is known as the linearization of the nonlinear system (4.9). An equilibrium
point of a system is hyperbolic if the corresponding Jacobian matrix evaluated at the
point has eigenvalues with nonzero real part. If not, then it is said to be
non-hyperbolic. The flows in the neighborhood of hyperbolic fixed point retain the
character under sufficiently small perturbation. On the other hand, non-hyperbolic
fixed points and corresponding flows are easily changed under small perturbation.
The non-hyperbolic fixed points are weak, whereas hyperbolic fixed points are
robust in the context of flows. The phase portrait near a hyperbolic fixed point of a
nonlinear system is topologically equivalent to the phase portrait of the corre-
sponding linear system. This means that there is a homeomorphism which maps the
local phase portrait onto the other preserving directions of trajectories.
A homeomorphism is a continuous map with a continuous inverse. The flow near a
hyperbolic fixed point is structurally stable. A phase portrait is said to be struc-
turally stable if its topology does not change under an arbitrarily small perturbation
to the vector field of the system. For example, the phase portrait of a saddle point
(hyperbolic type) is structurally stable, whereas the center (non-hyperbolic type) is
not structurally stable. By adding a small amount of damping force to the undamped
pendulum equation makes, the center becomes a spiral. For hyperbolic fixed points
and their flows we discuss some important theorems.

Theorem 4.4 (Hartman—Grobman) Let x = 0 be a hyperbolic equilibrium point

of the nonlinear system (4.9) with f € C' (continuously differentiable of order
one). Then the stability type of the equilibrium point origin for the nonlinear system
is same as that of the linear system x = Ax , which is the linearization of (4.9) in
the neighborhood of || x || < 1. Also, there exists a homeomorphism H (x ) which
maps the orbits of the nonlinear system (4.9) onto the orbits of the cr)rrevanding
linear system in the neighborhood of the origin.

The Hartman—Grobman theorem gives a very important result in the local
qualitative theory of a dynamical system. This theorem shows that near a
hyperbolic-type equilibrium point, the nonlinear system has the same qualitative
behavior (locally) as the corresponding linearized system. Also, one can find the
local solution of the nonlinear system through homeomorphism.
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Example 4.9 Using Hartman—Grobman theorem discuss the local stability of the
equilibrium point for the system x = x — y>,y = —y. Also, find the homeomorphic
mapping.

Solution Clearly, the origin is the only equilibrium point of the system. At the
origin, the Jacobian matrix of the nonlinear system is given by

1 0
=5 &)
The matrix has nonzero real eigenvalues 1, —1. The origin is of hyperbolic type
and it is a saddle. According to Hartman—Grobman theorem, it is a saddle-type
equilibrium point of the given nonlinear system. We shall now find the homeo-

morphic mapping H. The solutions of the nonlinear system and the corresponding
linearized system with the initial conditions x(0) = xo,y(0) = yo are given by

2
x(1) = o€ + 22 (e = ¢),¥(1) = yoe

and  x(r) = xoe', y(t) = yoe
respectively. Therefore, the flow of the nonlinear system is

y2
xet+ ?(6721 _et)

ye™!

@, (x,y) =

and the flow of the linear system is

Now consider the map

Clearly, H is continuous, and H~!(x,y) = (X+ 73 ) exists and also continuous,
y
that is, the mapping H is a homeomorphism. Now, for all (x,y) € R? and for all
t >0, we see that
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2
xe + 2L (e —¢')

H(p,(x,y)) =H 3
ye !
2 2
_ xe’—l— y?(efm _ et) _)’?efzt
ye !
2
xet — ¢
= 3
ye!

I
N
o N,
m‘ o
~_
/N

=

< |
w5,
~

= e"H(x,y).

Therefore, H o ¢, = e o H ¥t > 0. This relation shows that the two flows are
connected by the mapping H.

4.4 Topological Equivalence and Conjugacy

Two autonomous systems are said to be topologically equivalent in a neighborhood
of the origin if there exists a homeomorphism H : U — V, where U and V are two
open sets containing the origin, such that the trajectories of nonlinear system (4.9)
in U are mapped onto the trajectories of the corresponding linear system (4.10) in V
and preserve their orientation by time in the sense that if a trajectory is directed

from x tox in U, then its image is directed from H({l) to H(zz) in V. If the

homeomorphism H preserves the parameterization by time, then the systems (4.9)
and (4.10) are said to be topologically conjugate in a neighborhood of the origin.

The following theorem is very useful for topologically equivalent of two linear
systems.

Theorem 4.5 Two linear systems x = Ax and y = By, whose all eigenvalues

have nonzero real parts, are topologically equivalent if and only if the number of
eigenvalues with positive (and corresponding negative) real parts are the same for
both the systems (see Arnold [2]).

Example 4.10 Show that the systems X =Ax and y =By where A=

~

-2 =5 3 0 . .
(_ 5 _2) and B = ( 0 _7> are topologically conjugate.
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Solution Consider the map H(x ) = Cx , where

=5t )

Clearly, the matrix C is invertible with the inverse

(4 )

Also, it is easy to verify that B = CAC™!, that is, A and B are similar matrices.
Then

P = ceMc.

Let y =H(x)=Cx.Then x =C 'y and

~ ~

Q

y =Ck =CAx =CAC"'y =By.

Let x (1) = eA’% be the solution of the system ¥ = Ax with the initial con-
dition x (0) = x . Then y (1) = Cx (1) = CeAtg0 = eB’C)NcO. This shows that if
x (1) = eA’)NcO is a solution of the first system through X then y(¢) = eB’Cg0 is a

solution of the second system through Cgo. Thus the mapping H maps the tra-

jectories of the first system onto the trajectories of the second and since
Ce'' = €P'C, and H also preserves the parameterization. The map H is a homeo-
morphism. Therefore, the given two systems are topologically conjugate. Note that
the map H(x ) = Cx is simply a rotation through 45° as shown in Fig. 4.2.

4.5 Linear Subspaces

The dynamics of a system may be restricted to manifolds which are embedded in
the phase space. We give very formal definition of manifold below.

Manifold: The concept of manifold is very important in dynamical system,
especially in stability theory, bifurcation, etc. A manifold in the n-dimensional
Euclidean space R”" is defined as an m(m < n)-dimensional continuous region
embedded in R" and is represented by equations, say fi(x ) =0,/ =1,2,...,n —m

in x = (x1,%2,..,%,) € R". In other words, an n-dimensional topological
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Fig. 4.2 Topologically equivalent flows

manifold is a Housdroff space (topological space such that any two distinct points
possess distinct neighborhoods) such that every point has an open neighborhood N;
which is homeomorphic to an open set of E". If the functions fj(x ) are differen-

tiable, then the manifold is called a differentiable manifold. More specifically, let
M be a differentiable manifold. We may consider simply an open set of an
Euclidean space, or a sphere or a torous as examples. A function on a differential
manifold M is a diffeomorphism iff it is smooth, invertible, and its inverse is also
smooth. On the other hand, an endomorphism of M is a smooth function from M to
itself. A curve is an example of a one-dimensional manifold, and a surface is a
two-dimensional manifold (see the book Tu [3] for details on manifolds). Our next
target is to find the manifolds for some dynamical systems. First, consider the
simple linear harmonic oscillator represented by the equation mx = —kx. With

X =y we have the system
. : (k)
X=yy=—|— X
m

This is a conservative system and its phase space is the two-dimensional Euclidean
plane R It is easy to show that the Hamiltonian of the harmonic oscillator is constant
and is given by H(x,y) = %my2 + %lcx2 = constant. The Hamiltonian represents a
one-dimensional differential manifold in R? and all solutions of the system lie on this
manifold. The manifold is a system of ellipses in the phase plane. All these ellipses are
topologically equivalent to the unit circle S = {(x,y) € R* : x> +y* = 1} under the

homeomorphism A(x,y) = ( \/2-11—~ \/2.Hw ) Since dH =0 for all (x,y) € R?, ¢

Hamiltonian H is an integral of motion (this notion will discuss in later chapter) and
the manifold H is also known as an integral manifold. All these manifolds for dif-
ferent values of constants are topologically equivalent to the unit circle S.
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Linear Subspaces: Consider the linear system represented by (4.2), where A is a
matrix of order n x n with real entries. The subspaces spanned by the eigenvectors
of the corresponding eigenvalues of A can be categorized into three different sub-
spaces, namely, stable, unstable, and center subspaces. These subspaces are defined
as follows:

Let /; = a; £ ibj;i = v/—1 be the eigenvalues and wi=u £ivi;j=1,2,.. .k
be the corresponding eigenvectors of the matrix A. Depending upon the sign of a;,
the real part of /;, the three subspaces of the system (4.2) are defined as follows:

Stable subspace: The stable subspace E* is generated by the eigenvectors of 4;
for which a; <0. That is, E* = span{u;,v;la;<0}.

Unstable subspace: The unstable subspace E" is spanned by the eigenvectors of
ij with a; > 0. That iS,

E" = span{u;, vj|a; > 0}.

Center subspace The center subspace occurs when the eigenvalues are purely
imaginary. It is defined as E° = span{u;,v;la; = 0}.

Example 4.11 Find the linear subspaces for the system ¥ = Ax with x (0) = x ,

~0
where
-3 0 0
A=| 0 3 =2
0 1 1
Solution The characteristic equation of A has the roots 1 = —3, 2 +i. So, the
fixed points are hyperbolic type. The eigenvector corresponding to 4; = —3 is
(1,0,0)", and that for d; =24 is
0 0 0 0
wy=\|14+i|=1]+il 1] =u+iva,whereu, = | 1 | and v,
1 1 0 1
0
=11
0

Therefore, the stable and unstable subspaces are given by

E* = span{u;, vj|a;<0}

= span{(1,0,0)'} = x-axis in the phase space

and
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E" = span{u;, vjla; > 0} = span[(0, 1,0)", (0, 1,1)"] = yz-plane.

There is no center subspace EC, since no eigenvalue is purely imaginary.

Example 4.12 Find all linear subspaces of the system x = Ax, where

0 0 1
A=11 0 1 0
-1 0 O

Solution Clearly, the origin is the unique equilibrium point of the system. The
eigenvalues of the matrix A are 1, &i. It can be easily obtained that the eigenvectors

0
corresponding to A =1 is w;=|1 and that for J,=1i s
0
1 1 0 1 0
w,=10]1=(0|4+il 0| =u+iv,whereup =0 ] andvy, = 1| 0
i 0 1 0 1

Since the system has positive and purely imaginary eigenvalues, it has unstable
and center subspaces, given by

E" = span{u;, vj{a; > 0} = span[(0, 1, O)t] = y-axis in the phase space
and

E° = span{u;,vjla; = 0} = span[(1,0, 0)", (0,0, 1)']
= xz-plane in the phase space

These two subspaces are presented in Fig. 4.3. Note that the system has no stable
subspace, since it has no negative eigenvalue.

Theorem 4.6 Consider a system x = Ax, where A is an X n matrix with real

entries. Then phase space R" can be decomposed as
RV! :Eu@ES@EC

where E*, E°, and E° are the unstable, stable, and of the system, respectively.
Furthermore, these subspaces are invariant with respect to the flow.
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Fig. 4.3 Unstable and center ‘ y
subspaces of the given system
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4.6 Hyperbolicity and Its Persistence

The flow in the neighborhood of hyperbolic fixed point has some special charac-
teristic features. The special flow characteristic around the hyperbolic fixed point is
called hyperbolicity. There are two important theorems, namely (i) Hartman—
Grobman theorem and (ii) Stable manifold theorem for hyperbolic fixed points. The
first theorem proves that there exists a continuous invertible map in some neigh-
borhood of the hyperbolic fixed point which maps the nonlinear flow to the linear
flow preserving the sense of time and the second theorem implies that the local
structure of hyperbolic fixed points of nonlinear flows is the same as the linear
flows in terms of the existence and transversality of local stable and unstable
manifolds. We now define the local stable and unstable manifolds as follows:

Let U be some neighborhood of a hyperbolic fixed point x *. The local stable

manifold, denoted by W}, .(x *), is defined as
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W%QW={{Gw%Q)Hz%MﬂawmweUW>%.

Similarly, the local unstable manifold is defined as
W) = {x € Vo) " a5t = o0, (x) € Um0},

The stable manifold theorem states that these manifolds exist and have the same
dimension as the stable and unstable manifolds of the corresponding linear system
X = Ax, if x ™ is a hyperbolic equilibrium point, and that they are tangential to the

manifolds of linear system at x *. This notion is known as hyperbolicity of a

system.
Hyperbolic flow: If all the eigenvalues of the n x n matrix A are nonzero, then
the flow ¢ : R" — R" is called a hyperbolic flow, and the linear system X =Ax

is then called a hyperbolic linear system.

Invariant manifold: An invariant set D C R" is said to be a C"(r > 1) invariant
manifold if the set D has a structure of a C" differentiable manifold. Similarly, the
positively and negatively invariant manifolds are defined. In other words, a sub-
space D C R" is said to be invariant if any flow starting in this subspace will remain
within it for all future time.

The linear subspaces E°, E*, and E¢ are all invariant subspaces of the linear
system X = Ax with respect to the flow e,

Theorem 4.7 (Stable manifold theorem) Let x * = 0 be a hyperbolic equilibrium
point of the system X = f(x),x € C', and E* and E* be the stable an unstable
manifolds of the corresponding linear system x = Ax . Then there exists local

stable and unstable manifolds W}, .(0) and W}' .(0) of the nonlinear system with the
same dimension as that of E* and E", respectively. These manifolds are tangential
to E* and E“, respectively, at the origin and are smooth as the function f .

Let X be a hyperbolic fixed point of the nonlinear system. Then X, is called a

sink if all the eigenvalues of the linear system have strictly negative real parts, and a
source if all the eigenvalues have strictly positive real parts. Otherwise, X, is a

saddle. A sketch of stable and unstable manifolds is given in Fig. 4.4.

Example 4.13 Find the local stable and unstable manifolds of the system
k=x—y,y=—y

Solution The system has the unique equilibrium point at the origin, (0, 0). Also,

the origin is a saddle equilibrium point of the corresponding linearized system
X = x,y = —y with the invariant linear stable and unstable subspaces as
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Fig. 4.4 Stable and unstable manifolds at the origin

£°(0,0) = {(x,y) : x = 0} and E%(0,0) = {(x,y) : y = 0},

respectively. Therefore by stable manifold theorem, the system has local stable and
unstable manifolds

W;.(0,0) = {<x,y> =50, 2 0) = o} and

Wi 0.0 = {(x) -5 = U0, 5 0) =0 .

respectively. We now find these manifolds.
Stable manifold: For the local stable manifold, we expand S(y) as a power series
in the neighborhood of the origin as follows:

S(y) = Zsiyi = S0+S1y+S2y2+s3y3+

i>0
Since at y = 0,5 = 0 and g—i =0, we have so = s; = 0. Therefore,

X = S()’) = Z Siyi = szy2 + S3y3 + s4y4 + S5y5 R .

i>2
Now,

k=x—y = ()" +s3y + sy 5557+ -) =

= (52— 1)y +s537° +say 559" + -+

A
x=8@y) =>x= ay = (2507 + 3s3y% + 454> + 555y 4+ ) (—y)

= _(252y2 + 3S3y3 —|—4—S4y4 + 5S5y5 + )
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Therefore, we have
(52— 1)y* 539" +say* 4+ 559" + - = —(252)% + 353> +dsyy* + 555" + ).

Equating the coefficients of like powers of y from both sides of the above
relation, we get

S2:1/3,S3=S4:-'~:O.

Therefore, x = y;, and hence, the local stable manifold of the nonlinear system in
the neighborhood of the equilibrium point origin is

32
w;.(0,0) = {(x,y) X = 3}.
Unstable manifold: For the local unstable manifold we expand U(x) as

Ux) = Zuixi = M0+u1x+u2x2+u3x3+

i>0
As previous, ug = u; = 0. Therefore,

y=U(x) :Zuixi:u2x2+u3f—|—u4x4+u5xs+

i>2
Now,
y=—y = —(upx* +usx® + ugx* +usx® + - ).
But
. ouU,
Y= = (2upx + 3usx® 4 4ugx® + Susx* + - ) (x — %)

= (Qupx+ 3usx® + dugx® + Susx* + - - ){x — (uzx2 + s 4 uax* + usx + - )2}

Therefore, we must have
(upx® + uzx® + ugx® 4+ usx® + -+ -) =(2upx + 3uzx® + dugx® + Susx* + - )

2
{(M2x2+u3x3+u4x4+u5x5+ ) ,x}

Equating the coefficients of like powers of x from both sides of the above
relation, we get
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Fig. 4.5 Local stable and 1.0
unstable manifolds at the 4

equilibrium point origin
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Therefore, y = U(x) = 0. Hence, the local unstable manifold of the nonlinear
system in the neighborhood of the origin is (Fig. 4.5)

WII:JC(Ov 0) = {(X,y) 2y = 0} - EU(O,O)

4.6.1 Persistence of Hyperbolic Fixed Points

In the previous section, we have seen important features of hyperbolic fixed points
that near a hyperbolic fixed point the nonlinear and its corresponding linear systems
have the same qualitative features locally. In this section, we study another
important feature that hyperbolic equilibrium points persist their character under
sufficiently small perturbation. Let the origin be a hyperbolic fixed point of the
linear system X = f(x );x € R". Consider the perturbed system

= flx)+eg(x) (4.11)

~

1=

where g is a smooth vector field defined in R” and ¢ is a sufficiently small per-

turbation quantity. The fixed points of (4.11) are given by

f(x)+eg(x)=0.

~

Expanding in Taylor series about x = 0 and using f(0) =0, we get
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DF(0)x +2|¢ (0)+Dg (0)x] +0 2)=

;{DI(Q)HDg(Q)}X”g )

Since the origin is hyperbolic, the eigenvalues of D f (0 ) are nonzero and so the

eigenvalues of {D f(0)+eDg (0 )] are nonzero for sufficiently small . Hence,

- -1
det [Df(g )+eDg (0)] # 0, that is, [Df(g )+eDg (0 )} exists. Therefore the

fixed points of (4.11) are given by

3]

~

5= _Df(9)+8D§(Q)}15(9)+0<|£I2>~

We now determine whether the point is hyperbolic or not. Since ¢ is small, we
can find a neighborhood of ¢ = 0 in which the eigenvalues of {D f(x)+eDg (x )}

have nonzero real part for sufficiently small x . So, for sufficiently small ¢, the

eigenvalues of the perturbed equation do not change. So, the equilibrium points
retain their character, that is, they are of hyperbolic type. This proves that the
character of hyperbolic fixed point remains unchanged when the system undergoes
small perturbation.

~

Theorem 4.8 (Center manifold theorem) Consider a nonlinear system x = f(x)
where f € C"(E),r> 1, E being an open subset of R" containing a non-hyperbolic

fixed point, say x* =0 of the system. Suppose that the Jacobian matrix,

J =Df(0), of the system at the origin has j eigenvalues with positive real parts, k

eigenvalues with negative real parts, and m(=n — j — k) eigenvalues with zero
real parts. Then there exists a j-dimensional C"-class unstable manifold W"(0), a
k-dimensional C"-class stable manifold W*(0), and an m-dimensional C’-class
center manifold W¢(0) tangent to subspaces E", E*, E¢ of the corresponding linear
system X = Ax at the origin, respectively. Furthermore, these manifolds are

invariant under the flow ¢, of the nonlinear system. The manifolds W*(0) and
W"(0) are unique but the local center manifold W¢(0) is not unique.

Example 4.14 Find the manifolds of the system & = x,y = y’.

Solution The system has a non-hyperbolic fixed point at the origin. The unstable
subspace E"(0,0) of the linearized system at the origin is the x-axis and the center
subspace is the y-axis. No stable subspace occurs for this system. Using the
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technique of power series expansion, discussed in Example 4.13, we see that the
unstable manifold at the origin is the x-axis and its center manifold is the y-axis, that
is, the line x = 0. However, there are other center manifolds of the system. From the
equations, we have

dy _y
dx  x’

which have the solution x = ke~ !/ for y # 0. Thus, the center manifold of the
origin is

w;.(0,0) = {(x,y) eER*:x=ke 'V fory>0,x= 0f0ry§0}.

It represents a one-parameter (k) family of center manifolds of the origin. Note
that if we use the technique of power series expansion for the center manifold, we
only get x = 0 as the center manifold. This example also shows that the center
manifold is not unique.

4.7 Basin of Attraction and Basin Boundary

Let x * be an attracting fixed point of the linear system (4.2). We define the basin of

attraction in some neighborhood of x * subject to some initial condition x (0) = X

*

to be the set of points such that x (1) — x* as t — oo. The boundary of this

attracting set is called the basin boundary, also known as separatrix, separating the
stable and unstable regions.

We discuss the basin of attraction and basin boundary with the help of the model
for two interacting species. The well-known Lotka—Volterra model is considered
which exhibits the basin of attraction and basin boundary for some situations.
Consider the Lotka—Volterra model represented by the system of equations as

X=x(3-x—-2y),y=y3—-2x—y)
where x(¢) and y(¢) are the populations the two interacting species, say rabbits and
sheep, respectively, and x,y > 0. We shall first find the fixed points of the system,
which can be obtained by solving the equations

x(3—x—2y)=0and y(3—2x—y) =0.

Solving we get four fixed points, (0,0), (0,3), (3,0), (1, 1). The Jacobian matrix
of the system is given by
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_(3—-2x—-2y —2x

0 3
which are positive. So, the fixed point origin is an unstable node. All trajectories

At the fixed point (0, 0), J(0,0) = (3 0) . The eigenvalues of J(0, 0) are 3, 3,

leave the origin parallel to the eigenvector (0, 1)T for A = 3 which spans the y-axis.
The phase portrait near the origin is shown in Fig. 4.6.

At the fixed point (0, 3), J(0,3) = (_2 1)3

So, the fixed point (0, 3) is a stable node. Trajectories approach along the eigen

>, which has the eigenvalues —3, —3.

direction with the eigenvalue 1 = —3 spanning the eigenvector (0, l)T. The phase
portrait near the fixed point (0, 3) which is a stable node looks like as presented in
Fig. 4.7.

At (3, 0), we have J(3,0) = < -3 - ) . The eigenvalues of J(3,0) are —3, —3.

0 -3
So, as previous the fixed point (3, 0) is also a stable node. Trajectories approach
along the eigen direction with the eigenvalue A = —3 spanning the eigenvector

(1, O)T. The phase portrait near the fixed point (3, 0) is depicted in Fig. 4.8.

Fig. 4.6 Local phase portrait

y
near the fixed point origin V
———
(0,0)

Fig. 4.7 Local phase portrait
near the fixed point (0, 3)

y
(0,3)

Fig. 4.8 Local phase portrait y
near the fixed point (3, 0)

=\

(3,0)
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Fig. 4.9 Local phase portrait y
near the fixed point (1, 1)
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Fig. 4.10 Phase trajectories of the given system

-1
-2
eigenvalues, 1, —3, with opposite signs. Therefore, the fixed point (1, 1) is a saddle.
The phase portrait near (1, 1) is shown in Fig. 4.9.

The x and y axes represent the straight line trajectories because x = 0 when
x=0 and y =0 when y=0. All trajectories of the system are presented in
Fig. 4.10. This figure also clearly depicts the attracting points and the basin
boundary of the model. The attracting points of the system are (3, 0) and (0, 3). The
basin boundary of the two attracting points is the straight line y = x, which is also
the separatrix of the system.

At (1, 1), we calculate J(1,1) :( :?), which gives two distinct

4.8 Exercises

1. Examine Lyapunov, Poincaré, and Lagrange stability criteria for the following
equations:

i x=0,
(i) x+x=0,
(i) x=y,9=0.
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1
2. Find the general solution of the nonlinear oscillator i = —y(x> +y?)?,

y = x(x*+ yz)%. Also, examine whether it is Lyapunov or orbitally stable.
3. Define Lyapunov function and Lyanupov stability. Examine the stability in the
Lyapunov sense for the following equations:

() x+x=2, x(0) =1,
(i) x—x=2, x(0)=—1,
(i) x=35, x(0)=0

4. Using a suitable Lyapunov function, prove that the system x = —x+4y, y =
—x —y° has no closed orbits.

5. Examine asymptotic stability through the construction of suitable Lyapunov
function L for the system % = 2y(z — 1), = —x(z — 1),z = xy.

6. Using suitable Lyapunov functions examine the stability at the equilibrium
point origin for the following systems:

i) ¥=y+x, y=x—y

(i) x=y—xg(x,y), y=—x—yg(x, y) where the function g(x, y) can be
expanded in a convergent power series with g(0, 0) =0,

(i) ¥ =2xy+x>, y=2>—)°,

(iv) xi=y—x, y=—x—)

7. Investigate the stability of the system ¥ = —5y — 2x>, y = 5x — 3y® at (0, 0)
using Lyapunov direct method.

8. State Hartman—Grobmann theorem and discuss its significance. Using theorem
describe the local stability behavior near equilibrium points of the following
nonlinear systems (i) X =)> —x+2,y=x> —y>. (i) ¥ =—y, y=x—x.
Also, draw the phase portrait.

9. Find the stable, unstable, and center subspaces for the linear system X =Ax

when the matrix A is given by

vi) A=
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10 -1 0
i) A=1[(25 2 0
0O 0 -3
0 -2 o0
(viii) A=11 2 0
0o 0 -2
10. Obtain the local stable and unstable manifolds for the system x = —x, y =

y+x? and give a rough sketch of the manifolds.
11. Obtain the stable and unstable manifolds for the system

< x2 . 2 .
X=—X+0+ Ty = —y+x~,where ¢ is a parameter.

12. Find the fixed point and investigate their stability for the system
x=x(3-2x—y)

y=y2-x-y)
Also, draw the basin of attraction and basin boundary.
13. Find the basin of attraction and basin boundary for the following systems:

(i) ¥=x(1-x-2y),y=y(1—-2x—y)
() x=x(1—-x—-2y),y=y(1 =3x—y)
(i) x=x(1—-x-3y),y=y(1—-2x—y)
(v) x=x(1—x—15y),y=2y(1 —3x—y)
V) ¥=x3-x-2y),7=y2—-x—y).
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Chapter 5
Oscillations

It is well known that some important properties of nonlinear equations can be
determined through qualitative analysis. The general theory and solution methods
for linear equations are highly developed in mathematics, whereas a very little is
known about nonlinear equations. Linearization of a nonlinear system does not
provide the actual solution behaviors of the original nonlinear system. Nonlinear
systems have interesting solution features. It is a general curiosity to know in what
conditions an equation has periodic or bounded solutions. Systems may have
solutions in which the neighboring trajectories are closed, known as limit cycles.
What are the conditions for the existence of such limiting solutions? In what
conditions does a system have unique limit cycle? These were some questions both
in theoretical and engineering interest at the beginning of twentieth century. This
chapter deals with oscillatory solutions in linear and nonlinear equations, their
mathematical foundations, properties, and some applications.

5.1 Oscillatory Solutions

In our everyday life, we encounter many systems either in engineering devices or in
natural phenomena, some of which may exhibit oscillatory motion and some are
not. The undamped pendulum is such a device that executes an oscillatory motion.
Oscillatory motions have wide range of applications. It is in fact that no system in
macroscopic world is a simple oscillator because of damping force, however small
present in the system. Of course, in some cases these forces are so small that we can
neglect them in respect to time scale and treat the system as a simple oscillator.
Oscillation and periodicity are closely related to each other. Both linear and non-
linear systems may exhibit oscillation, but qualitatively different. Linear oscillators
have interesting properties. To explore these properties, we begin with second order
linear systems. Note that the first-order linear system cannot have oscillatory
solution.

© Springer India 2015 159
G.C. Layek, An Introduction to Dynamical Systems and Chaos,
DOI 10.1007/978-81-322-2556-0_5
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Consider a second-order linear homogeneous differential equation represented as
¥+a(t)x+b()x=0 (5.1)

where a(z) and b(#) are real-valued functions of the real variable #, and are con-
tinuous on an interval I C R, that is, a(z), b(¢) € C(I).

A solution x(¢) of the Eq. (5.1) is said to be oscillating on , if it vanishes there at
least two times, that is, if x(¢) has at least two zeros on I. Otherwise, it is called
non-oscillating on /. For example, consider a linear equation

2

x—mx=0, x,meR.

Its general solution is given by

_Jae™ +be™™ ifm #0
x(t) = {a+bt,ifm =0

which is non-oscillating in R. On the other hand, the general solution
x(t) = acos(mt) + bsin(mt) = A sin(mt + J)

of the equation ¥ +m’x = 0, m € R, m # 0 is oscillating, where A = /(a2 + b?)
and 6 = tan"!(a/b) are the amplitude and the initial phase of the solution,
respectively. All solutions of this equation are oscillating with period of oscillation
(2n/m). The distance between two successive zeros is (m/m). The above two
equations give a good illustration of the existence/nonexistence oscillatory solutions
for the general second-order linear equation

i+pHx=0, pecC() (5.2)

The Eq. (5.2) can be derived from (5.1) by applying the transformation

1
x(t) = z(t) exp —E/a(r)dr , ot el

fo

with p(r) = — @ - @ +b(r). The transformation preserves the zeros of the
solutions of the equations. We now derive condition(s) for which the Eq. (5.2) has
oscillating and/or non-oscillating solutions. We first assume that p(f) = constant. If
p > 0, every solution

x(t) = acos(y/pt) + bsin(\/pt) = Asin(/pt + 9)
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of (5.2) has infinite number of zeros and the distance between two successive zeros
is (n/ \/ﬁ) So the solution is oscillating. On the other hand, if p < 0, we cannot
find any nonzero solution of (5.2) that vanish at more than one point. The solution
is called non-oscillating.

5.2 Theorems on Linear Oscillatory Systems

Theorem 5.1 (On non-oscillating solutions) If p(r) < 0 for all t € I, then all
nontrivial solutions of (5.2) are non-oscillating on 1.

Proof If possible, let a solution X(z) # 0 of (5.2) has at least two zeros on I and let
fo, h (fo < 1) be two of them. We also assume that the function X(¢) has no zeros in
the interval (fy,#). Since X(7) is continuous and have no zeros in (fo,# ), it has
same sign (positive or negative) in (o, 1) .

Without loss of generality, we assume that X(¢) > 0 in (f,#). Then from
(Fig. 5.1), it follows that X(¢) is maximum at some point, say c¢ € (f,#) and
consequently, X(7) < 0 in some neighborhood of c. Now, if p(r) < 0 on I, then
from (5.2) it follows that X(r) > 0 on I, that is, X(z) > 0 in the neighborhood of c.
This gives a contradiction. So, our assumption is wrong, and hence the solution
X(1) of (5.2) cannot have two or more than two zeros on /. Consequently, X() is
non-oscillating on I. Since X(¢) is arbitrary, every nontrivial solutions of (5.2) are
non-oscillating on /. This completes the proof.

Corollary 5.1 Ifp(t) > 0onl, all nontrivial solutions of (5.2) are oscillating on I.

Lemma 5.1 Zeros of any nontrivial solution of Eq. (5.1) in I are simple and
isolated.

Corollary 5.2 Any nontrivial solution of (5.1) has a finite number of zeros on any
compact interval 1.

Theorem 5.2 (Sturm’s separation theorem) Let 1y, t| be two successive zeros of a
nontrivial solution x,(t) of the Eq. (5.1) and x,(t) be another linearly independent
solution of that equation. Then there exists exactly one zero of x,(t) between ty and
t1, that is, the zeros of two linearly independent solutions separate each other.

x(1) x=X(t)

to c 2

Fig. 5.1 Graphical representation of solution X ()
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Proof Without loss of generality, we assume that 7y < ;. If possible, let x,(¢) has
no zeros in the interval (7o, #1). Also, since x; () and x,(¢) are linearly independent,
and x (¢) has two zeros #y and #; in I, x,(¢) does not vanish at r = #y, ;. Then the
Wronskian

W(xy, 1) = ‘?1(’3 ’.‘2“; — (D) — (O () (5.3)

X1 (l )CQ(I

does not vanish on [t,#;]. We assume that W(x;,x2;¢) > 0 on [to,#]. Dividing
both sides of (5.3) by x3(1), we get

W(xl,xz;t) xl(l)jCz(l) —)Q(l‘)jq(l)

IO x5(1)

Integrating (5.4) with respect to ¢ from 7 to 7y,

[
e i)

_xl(to X1

B 2(t0) Xz(fl)

I
o &

(Since x,(¢) does not have zeros at #, #1, that is, x3(#) # 0 and x,(#;) # 0.)
This gives a contradiction, because

W (x1,x2;51)

x5(1)

So, our assumption is wrong, and hence x,(¢) has at least one zero in the interval
(to,t1). To prove the uniqueness, let #,,t3 be two distinct zeros of x,(¢) in (to, 1)
with 1, < 3. That is, x,(t2) = x(#3) = 0, where #p < 1, < t3 < 1. Since x;(¢) and
x2(t) are linearly independent, x; (¢) must have at least one zero in (#,,#3), that is, in
(to,11). This is a contradiction, which ensures that x,(f) has exactly one zero
between 7y and #;. This completes the proof. In the same way, one can also prove it
when W(x;,x2;¢) < 0 on [fo, 11].

> 0Vre [t t].

Corollary 5.3 If at least one solution of the Eq. (5.2) has more than two zeros on I,
then all the solutions of (5.2) are oscillating on 1.

Theorem 5.3 (Sturm’s comparison theorem) Consider two equations ¥+ p(t)y = 0
and 7+ q(t)z = 0 where p(t),q(t) € C(I) and q(t) > p(t), t € L. Let a pair 1y, 1,
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(to < t1) of successive zeros of a nontrivial solution y(t) be such that there exists
t € (to, 1) such that q(t) > p(t). Then any nontrivial solution z(t) has at least one
zero between ty and t,.

Proof Let y(r) be a solution of the first equation such that y(fy) = y(#;) = 0 and
y() > 0 in 7 € (to,1;). If possible, let there exist a solution z(z) such that
z(t) > 0 Vt € (to,11). Note that if there exists a solution z(#) < 0 we may consider
the solution —z(¢) instead of z(¢). Multiplying the first equation by z(z) and the
second by y(¢) and then subtracting, we get

y(@)z(1) — 2()y(t) = (q(t) — p(t))y(1)z(1)
= %(&(I)Z(t) — 2(t)y(1)) = (q(t) — p(1))y(1)z(r)

Integrating this w.r.to # from £y to #; and using y(#y) = y(#;) = 0, we get

3|

$e0)2(n) — 2)y(to) = / (4(1) — p()y(D)2(0)dr (5.5)

fo

The right-hand side of (5.5) is positive, since y(7), z(¢) are positive on (fy, #;) and
q(t) > p(t) Vr € (t,11). But the left-hand side is nonpositive, because y(ty) > 0,
y(r1) < 0and z(#;) > 0. So, we arrive at a contradiction. This completes the proof.

Sturm’s comparison theorem has a great importance on determining the distance
between two successive zeros of any nontrivial solution of (5.2). Let us consider
three equations X+ ¢(¢)x = 0, ¥y +my = 0 and Z + Mz = 0, where ¢(¢) > 0 for all
t, m = min,cp, ;1 q(t), and M = maxc(;, ., q(t). We also assume that M > m so
that ¢(¢) is not constant over the interval. Applying Sturm’s comparison theorem for
first two equations, we see that the distance between two successive zeros of any
solution of ¥+ g(¢)x = 0 is not greater than (n/+/m). Similarly, taking the first and
the third equations and then applying Sturm’s comparison theorem, we see that the
distance between two successive zeros of X+ ¢g(f)x =0 is not smaller than
(n/vVM).If lim,_., q(t) = g > 0, then any solution of the equation  + ¢(z)x = 0
is infinitely oscillating, and the distance between two successive zeros tends to
(n/\/q). From this discussion, we have the following theorem.

Theorem 5.4 (Estimate of distance between two successive zeros of solutions of
the Eq. (5.2)) Let the inequality

O<mz§p(t)§M2

be true on [ty,t,] C I. Then the distance d between two successive zeros of any
nontrivial solution of (5.2) is estimated as
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<d<

<[ =
Ila

We illustrate two examples as follows:

() Estimate the distance between two successive zeros of the equation

P25 +1(28 +3)x =0
on [1,2].

Solution Consider the transformation x(r) = z(r)e™"/3. It transforms the given
equation into the equation

i+ +1)z=0.
Comparing this with (5.2), we get
p(t) =t*+1.

Since 1 <t < 2,0 <2 < p(t) < 18. Therefore by Theorem 5.4, we estimated
as

E
IN
<
IN

:
=

(I) Transform the Bessel’s equation of order n into the form X + p(¢)x = 0. Show
that if 0 < n < 1/2 the distance between two successive zeros of x(z) is less
than 7 and tends to = when the number of oscillating solutions increases.

Solution The Bessel’s equation of order n is given by

Py+1y+ (> —nty=0,1> 0.

Taking y(¢) = x(t)t~'/2, we obtain the transformed equation as

2_1/4
X+<1—£——L>x:0

12

Therefore, we have
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Now, if 0 < n < 1/2, then p(r) > 1 and the distance between two successive

zeros of x(1) is
d<T=n
0 .

If the number of zeros increases, for a sufficiently large #, p(f) can be made
arbitrarily close to 1, and so, the distance between two successive zeros of x(¢) will

tend to w. In general, the Bessel’s equation of order n the expression (1 — "_Z—ZIM)

can be made arbitrarily to unite a sufficiently large ¢. Therefore, for sufficiently large
values of ¢, the distance between two successive zeros of the solutions of Bessel’s
equation is arbitrarily close to 7.

We now give a lower estimate of the distance between two successive zeros of
the Eq. (5.1) without reducing it into the Eq. (5.2).

Theorem 5.5 (de la Vallée Poussian) Let the coefficients a(t) and b(t) of the
Eq. (5.1) be such that

|Cl(t)| < M17 |b(l)| < M27 rel.

Then the distance d between two successive zeros of any nontrivial solution of
(5.1) satisfies

4~ VAT +8My — oM,
iy M2 .

See the book of Tricomi [1].

Remark 5.1 The lower estimate of the distance d between two successive zeros of
the Eq. (5.1) can be determined using one of the followings:

(1) Use directly the statement of Theorem 5.5;
(2) First, apply the transformation given earlier to reduce (5.1) into (5.2) and then
use the left part of the inequality of the Theorem 5.4.

In general, we cannot say which one is a better estimation for the distance
between two successive zeros. In some cases, Theorem 5.5 gives better estimation.
Let us consider two examples for this purpose.

(I) Consider the equation

F420% 4128 +3) =0, r€1,2].

(1) Applying Theorem 5.4

p(t):t4+t,1§t§2:>2§p(t)§18:>dzi

3V2
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(2) Applying Theorem 5.5

la(t)| = |26 < 8 = My, |b(1)| = |1(2 +3)| < 38 = M,.

Therefore, the distance d is given by

< \/4><82—|—8><38—2><8N
= 38 -

d 0.2.

Therefore, Theorem 5.4 gives a better result for approximate distance between
successive zeros.
We now give our attention on nonlinear oscillating systems.

5.3 Nonlinear Oscillatory Systems

Linear oscillators follow the superposition principle and the frequency of oscillation
is independent of the amplitude and the initial conditions. In contrast, nonlinear
oscillators do not follow the superposition principle and their frequencies of
oscillations depend on both the amplitude and the initial conditions. Nonlinear
oscillations have characteristic features such as resonance, jump or hysteresis, limit
cycles, noisy output, etc. Some of these features are useful in communication
engineering, electrical circuits, cyclic action of heart, cardiovascular flow, neural
systems, biological and chemical reactions, dynamic interactions of various species,
etc. Relaxation oscillations are special type of periodic phenomena. This oscillation
is characterized by intervals of time in which very little change takes place, fol-
lowed by short intervals of time in which significant change occurs. Relaxation
oscillations occur in many branches of physics, engineering sciences, economy, and
geophysics. In mathematical biology one finds applications in the heartbeat rhyme,
respiratory movements of lungs, and other cyclic phenomena. We illustrate four
physical problems where nonlinear oscillations are occurred.

(1) Simple pendulum: The simplest nonlinear oscillating system is the undamped
pendulum. The equation of motion of a simple pendulum is given by
0+ (g/L)sin @ = 0, where g and L are the acceleration due to gravity and
length of the light inextensible string, respectively. Due to the presence of the
nonlinear term sin 6, the equation is nonlinear. For small angle approximations,
that is, sin0 =0 — % + 0(05 ), the equation can be written as
0+ (g/L)0 — (g/6L)0> = 0. This is a good approximation even for angles as
large as /4. The original system has equilibrium points at (n7,0),n € Z. The
equilibrium solutions (7,0) and (—=,0) are unstable whereas the equilibrium
solution (0, 0) is stable. Consider a periodic solution with the initial condition
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0(0) = a,0(0) = 0 where 0 < a < 7. We now calculate the period of the
periodic solution. The equation 0 + (g/L) sin 0 = 0 has the first integral

[N A W |
59 — Z) sm()——zcosa
= ‘é_f = +[2(g/L)(cos 0 — cos a)]'/*

satisfying the above initial condition. The period T of the periodic solutions is then
given by

a

do
= 40/ [2(g/L)(cos 0 — cosa)]'/*

The period T can be expressed in terms of Jacobian elliptic functions. So, the
period T depends nontrivially on the initial condition. On the other hand, the linear

pendulum has the constant period T = 27+/g/L.

(ii) Nonlinear electric circuits: As we know that electric circuits may be analyzed
by applying Kirchoff’s laws. For a simple electric circuit, the voltage drop
across the inductance is L%, L being the inductance. But for an iron-core
inductance coil, the voltage drop can be expressed as d¢/dz, where ¢ is the
magnetic flux. The voltage drop across the capacitor is Q/C, where Q is the
charge on the capacitor and C the capacitance. The current in the circuit is
followed by I = %—? The equation of the current in the circuit for an iron-core

inductance coil connected parallel to a charged condenser may be expressed
by equation

For an elementary circuit, there is a linear relationship between the current and
the flux, that is, 7 = ¢/L. It is known that for an iron-core inductance the rela-
tionshipis I = A¢ — qu3, where A and B are positive constants, for small values of
magnetic flux. This gives the equation of the current in the circuit as

2
1t (o (o

It is a nonlinear second-order equation which may exhibit oscillatory solutions
for certain values of the parameters A, B and C (see Mickens [2], Lakshmanan and
Rajasekar [3]).
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(iii) Brusselator chemical reactions: It is a widely used model for chemical
reactions invented by Prigogine and Lefever (1968). The following set of
chemical reactions were considered

A—X

B+X —-D+Y
Y+2X — 3X
X —F

The net effect of the above set of reactions is to convert the two reactants A and B
into the products D and E. If the initial concentrations of A and B are large then the
maximum rate concentrations of X and Y are expressed by the following equations

§::a— (1—|—b)x—|—x2y}
Ef:bx—xzy

The constants a and b are proportional to the concentrations of chemical reac-
tants A and B and the dimensionless variables x and y are proportional to the
chemical reactants X and Y, respectively. The nonlinear equations may have a
stable limit cycle for certain values the parameters a and b. This system exhibits
oscillatory changes in the concentrations of X and Y depending upon the values of a
and b.

(iv) Glycolysis: 1t is a fundamental biochemical reaction in which living cells get
energy by breaking down glucose. This biochemical process may give rise to
oscillations in the concentrations of various intermediate chemical reactants.
However, the period of oscillations is of the order of minutes. The oscillatory
pattern of reactions and the time period of oscillations are very crucial in
reaching the final product. A set of equations was derived by Sel’kov (1968)
for this biochemical reaction. The biochemical reaction process equations may
be expressed by

¥ = —x+ay+x?y
y=b—ay—xy

where x and y are proportional to the concentrations of adenosine diphosphate
(ADP) and fructose-6-phospate (F6P). The positive constants a and b are kinetic
parameters. The same nonlinear term (x%y) is present in both the equations with
opposite signs. A stable limit cycle may exist for certain relations of a and b. The
existence of the stable limit cycle for the glycolysis mechanism indicates that the
biochemical reaction reaches its desire product finally.
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5.4 Periodic Solutions

The existence of periodic solutions is of great importance in dynamical systems.
Consider a nonlinear autonomous system represented by

b= )
yzg(x,y)} (56>

where the functions f(x,y) and g(x,y) are continuous and have continuous
first-order partial derivatives throughout the xy-plane. Global properties of phase
paths are those which describe their behaviors over large region of the phase plane.
The main problem of the global theory is to examine the existence of closed paths
of the system (5.6). Close path solutions correspond to periodic solutions of a
system. A solution (x(¢),y(¢)) of (5.6) is said to be periodic if there exists a real
number 7 > 0 such that

x(t+T) =x(t)andy(t +T) = y()Vr.

The least value of T for which this relation is satisfied is called the period (prime
period) of the periodic solution. Note that if a solution of (5.6) is periodic of period
T, then it is periodic of period nT for every n € N. The periodic solutions represent
a closed path which is traversed once as ¢ increases from 7y to (f + T') for any fo.
Conversely, if C = [x(¢),y(?)] is a closed path of the system, then (x(z),y(¢)) is a
periodic solution. There are some systems which have no closed paths and so they
have no periodic solutions. We now discuss the existence/nonexistence criteria for
closed paths.

5.4.1 Gradient Systems

An autonomous system X = f(x) in R" is said to be a gradient system if there
exists a single valued, contintously differentiable scalar function V = V(x) such
that x = —VV. The function V is known as the potential function of the system in
compare with the energy in a mechanical system. In terms of components, the
equation can be written as

ov

Xi=——=—:i=12,...n.

Every one-dimensional system can be expressed as a gradient system. Consider a
two-dimensional system (5.6). This will represent a gradient system if there exists a
potential function V = V(x,y) such that
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o VoV

T T T Oy

that is, f:—g—v,g:—g—v.
X y

Differentiating partially the first equation by y and the second by x and then
subtracting, we get

o g, _ O

dy ox  dy ox
This is the condition for which a two-dimensional system is expressed as a
gradient system.

Theorem 5.6 Gradient systems cannot have closed orbits.

Proof 1f possible, let there be a closed orbit C in a gradient system in R". Then
there exists a potential function V such that x = —VV. Consider a change AV of
the potential function V in one circuit. Let T be the time of one complete rotation
along the closed orbit C. Since V is a single valued scalar function, we have
AV = 0. Again using the definition, we get

T T
dv dv.  ov ov ov
AV = [ =dr = Voi)dt| o = 4 o 4 oy = VV - &
/dl /(V £) [ dr 8X1xl+aX2x2+ + ~ v x
0 0

T
— [ G-
0
T
—- [ 1ilrar
0

where || x| is the norm of x in R”. This is a contradiction. So, our assumption is

wrong. Hence there are no closed orbits in a gradient system. This completes the
proof.
We give few examples as follows:

(I) Consider the two-dimensional system & = 2xy +y*, y = x> 4+ 3xy?> — 2y. Here
we take f(x,y) = 2xy+y° and g(x,y) = x* + 3xy* — 2y. Now, calculate the
derivatives as

g: 2x + 3y, %: 2x+3y2.

Oy Ox
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o _ O
dy — ox°

given system does not exhibit periodic solution. We now determine the potential
function V = V(x,y) for this system. By definition, we get

Since the system is a gradient system, and so it has no closed path. The

ov )%
5= =Y oy 87 —x* = 30% +2y.

From the first relation,

ov
T = 20— = V= -t h0)
X
where A(y) is a function of y only. Differentiating this relation partially with respect

to y and then using the value of %—Z, we get

dh
— =32y = —xz—Ebcyz—&-ﬂ
dy
dh
R }
dy Y

= h(y) = y* [Neglecting the constant of integration.]

Therefore, the potential function of the system is V(x,y) = —x%y — xy* + 2.
() Let V:R" — R be the potential of a gradient system x = f(x), x € R".

Show that V(x) <0 Vx and V(x) =0 if and only if x is an equilibrium

point.

Solution Using the chain rule of differentiation, we have

V(x) " 8_Vx
~ =1 8)61'
=VV-x

=VV.-(=VV) [Since x = —VV]
=—|VV]* <o.

Now, V =0 if and only if VV = 0, that is, if and only if x = 0. Hence x is an

equilibrium point.
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5.4.2 Poincaré Theorem

Given below is an important theorem of Poincaré on the existence of a closed path
of a two-dimensional system.

Theorem 5.7 A closed path of a two-dimensional system (5.6) necessarily sur-
rounds at least one equilibrium point of the system.

Proof If possible, let there be a closed path C of the system (5.6) that does not
surround any equilibrium point of the system. Let A be the region (area) bounded
by C. Then f2 +g? # 0 in A. Let 0 be the angle between the tangent to the closed
path C and the x-axis. Then

%d@ =2n (5.7)

C

But tan 0 = % = =. On differentiation, we get

~ 00

fdg —gdf
f2
= (1 +§—j)d9 = Lgf_z it
fdg —gdf
f+¢

sec” 0d0 =

= df =

Substituting this value in (5.7),
f (fdg - gdf) e
f+e
C
f g
~ 7{ { (fz+g2>dg - (/2 +g2>df} -
C

Using Green’s theorem in plane, we have

[ 45w (o) jrs = f () - (et oy

=27
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But

o o 2 2 2 52
9 2f 2t o, 2g 2 :gz fz +fz g2:O
oA \fP+g2) g \fP+g) [f+g [t
So, finally we get 0 = 27, which is a contradiction. Hence a closed path of the
system (5.6) must surround at least one equilibrium point of the system. This
completes the proof.

This theorem also implies that a system without any equilibrium point in a given
region cannot have closed paths in that region.

5.4.3 Bendixson’s Negative Criterion

Bendixson’s negative criterion gives an easiest way of ruling out the existence of
periodic orbit for a system in R?. The theorem is as follows.

Theorem 5.8 There are no closed paths in a simply connected region of the phase
plane of the system (5.6) on which (gi; + g—i) is not identically zero and is of one

sign.

Proof Let D be a simply connected region of the system (5.6) in which (% + g—f:)

is of one sign. If possible, let C be a closed curve in D and A be the area of the
region. Then by divergence theorem, we have

//A@;*gi)dx@:z{(ﬂg)-gdz
—0[(f.9)Ln)

where d/ is an undirected line element of the path C. This is a contradiction, since
(g—’; + %g) is of one sign, that is, either positive or negative, and hence the integral

cannot be zero. Therefore, C cannot be a closed path of the system. This completes
the proof.
We now illustrate the theorem through some examples.

Example I Show that the equation X+ f(x)x+ g(x) =0 cannot have periodic
solutions whose phase path lies in a region where f is of one sign.
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Solution Let D be the region where f is of one sign. Given equation can be
written as

Therefore,

This shows that ( + %G) is of one sign in D, since f is of one sign in D. Hence

by Bendixson’s negative criterion, there is no closed path of the system in D.
Therefore, the given equation cannot have periodic solution in the region where f is
of one sign.

Example II Consider the system x = p(y) +x", y = q(x), where p,q € C! and
n € N. Derive a sufficient condition for n so that the system has no periodic solution.

Solution Let f(x,y) = p(y) +x" and g(x,y) = g(x). Then

8f ag 0 _ n—1
T+ R = L0+ + ) =

This expression is of one sign if n is odd. So, by Bendixson’s negative criterion
the given system has no periodic solutions, if # is odd. This is the required sufficient
condition for n.

Example I1I Show that the system
k= —y4x(x+y = 1), y=x+y(+y - 1)
has no closed orbits inside the circle with center at (0,0) and radius \/%
Solution Let f(x,y) = —y +x(x> +y* — 1) and g(x,y) = x+y(x* +y* — 1). Now

1
g+%—3x2+y2—1+x2+3y2—1:4 Pyt —=
Ox Oy 2

Clearly, (% + g—i) is of one sign inside the circle x> +y? = %, which is a simply

connected region in R2. Hence by Bendixson’s negative criterion, the given system
has no closed orbits inside the circle with center at (0, 0) and radius ! N2 We also see

that (% + g—i) is of one sign outside the circle x> +y> = % But it is not simply

connected. So, we cannot apply Bendixson’s criterion on this region.
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5.4.4 Dulac’s Criterion

There are some systems for which Bendixson’s negative criterion fails in ruling out
the existence of closed paths. For example, consider the system
X=7v, y=x—y+y>. Using Bendixson’s negative criterion, one cannot be
ascertained the ruling out of the closed path of the system. However, the gener-
alization of this criterion may give the ruling out of the closed path and this is due to
Dulac, who made the generalization of Bendixon’s negative criterion. The criterion
is given below.

Theorem 5.9 Consider the system x = f(x,y), y = g(x,y), where f(x,y), g(x,y)
are continuously differentiable functions in a simply connected region D of R*. If
there exists a real-valued continuously differentiable function p = p(x,y) in D such
that

Ox Jy
is of one sign throughout D, then the system has no closed orbits (periodic solu-
tions) lying entirely in D.
Proof If possible, let there be a closed orbit C in the region D on which
( o) | (0) >> is of one sign. Let A be the area bounded by C. Then by divergence

Ox

theorem, we have

// ( y)>dXd —f(Pf,Pg)ﬂdl_z{p(f,g).,ldl

where n is the unit outward drawn normal to the closed orbit C and dl is an

elementary line element along C (Fig. 5.2).
Since (f, g) is perpendicular to n, we have

fp(f,g)-gdlzo.

C

ox

So, [, (d(”f )>dxdy:0. This yields a contradiction, since

(ag(f) + (’(OL;?)) is of one sign. Hence no such closed orbit C can exist.
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Fig. 5.2 Sketch of the
domains

Remarks

(i) The function p = p(x,y) is called the weight function.
(i) Bendixson’s negative criterion is a particular case of Dulac’s criterion with
p=1
(iii)) The main difficulty of Dulac’s criterion is to choose the weight function p.
There is no specific rule for choosing this function.

Example Show that the system x = x(a —ax — by), y = y(f — cx —dy) where
a,d > 0 has no closed orbits in the positive quadrant in R>.

Solution Let D = {(x,y) € R?:x,y > 0}. Clearly, D is a simply connected
region in R?. Let f(x,y) = x(a — ax — by), g(x,y) = y(f — cx — dy). Consider the
weight function p(x,y) = 1. Then

o) o) D (b, 9 () ex o)
Ox dy  Ox y ady X

d
= —<C—l + —) <0 Y(x,y) € D.
y x
Again, the functions f, g and p are continuously differentiable in D. Hence by

Dulac’s criterion, the system has no closed orbits in the positive quadrant x,y > 0
of R%.



5.5 Limit Cycles 177

5.5 Limit Cycles

A limit cycle (cycle in limiting sense) is an isolated closed path such that the
neighboring paths (or trajectories) are not closed. The trajectories approach to the
closed path or move away from it spirally. This is a nonlinear phenomenon and
occurs in many physical systems such as the path of a satellite, biochemical pro-
cesses, predator—prey model, nonlinear electric circuits, economical growth model,
ecology, beating of heart, self-excited vibrations in bridges and airplane wings,
daily rhythms in human body temperature, hormone secretion, etc. Linear systems
cannot support limit cycles. There are basically three types of limit cycles, namely
stable, unstable, and semistable limit cycles. A limit cycle is said to be stable (or
attracting) if it attracts all neighboring trajectories. If the neighboring trajectories are
repelled from the limit cycle, then it is called an unstable (or repelling) limit cycle.
A semistableLimit cycle:semistable limit cycle is one which attracts trajectories
from one side and repels from the other. These three types of limit cycles are shown
in Fig. 5.3.
Scientifically, the stable limit cycles are very important.

5.5.1 Poincaré-Bendixson Theorem

So far we have discussed theorems that describe the procedure for the nonexistence
of periodic orbit of a system in some region in the phase plane. It is extremely
difficult to prove the existence of a limit cycle or periodic solution for a nonlinear
system of n > 3 variables. The Poincaré—Bendixson theorem permits us to prove
the existence of at least one periodic orbit of a system in R? under certain condi-
tions The main objective of this theorem is to find an ‘annular region’ that does not
contain any equilibrium point of the system, in which one can find at least one
periodic orbit. The proof of the theorem is quite complicated because of the
topological concepts involved in it.

(b)

Fig. 5.3 a Stable, b unstable, ¢ semistable limit cycles
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Theorem 5.10 Suppose that

(1) R is a closed, bounded subset of the phase plane.
(i) X = f(x) is a continuously differentiable vector field on an open set con-

taining R.

(iii) R does not contain any fixed points of the system.
There exists a trajectory C of the system that lies in R for some time t,, say,
and remains in R for all future time t > t.
Then C is either itself a closed orbit or it spirals towards a closed orbit as time
t — oo. In either case, the system has a closed orbit in R.

For explaining the theorem, we consider a region R containing two dashed
curves together with the ring-shaped region between them as depicted in Fig. 5.4.
Every path C through a boundary point at # = 7, must enter in R and can leave it.
The theorem asserts that C must spiral toward a closed path Cy. The closed path Cy
must surround a fixed point, say P and the region R must exclude all fixed points of
the system.

The Poincaré—Bendixson theorem is quite satisfying from the theoretical point of
view. But in general, it is rather difficult to apply. We give an example that shows
how to use the theorem to prove the existence of at least one periodic orbit of the
system.

Example Consider the system x = x —y — x(x> +2)y?), y = x +y — y(x> +2y?).
The origin (0,0) is a fixed of the system. Other fixed points must satisfy
x =0, y=0. These give

x=y+a(? +29%), x = —y+y(d +20%).

A sketch of these two curves shows that they cannot intersect except at the
origin. So, the origin is the only fixed point of the system. We now covert the

Fig. 5.4 Sketch of the o A
annular region _ i / .

/(,\

P S ’/ ? / \I
- ‘ Co AN
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system into polar coordinates (r,0) using the relations x = rcos @, y = rsin0
where 2 = x* +y? and tan 0 = y/x. Differentiating the expression 7> = x* +y?
with respect to ¢, we have

i = xx—+yy
= xfx —y = x( +2")] + ¥l +y — (o +2y°)]
=24y = (P ) +2y7)
= — P2(r* +*sin® 0)
= r? — (1 + sin 0)r*
=i =r—(1+ sin’0)r.

Similarly, differentiating tan 6 = y/x with respect to 7, we get 0=1.

We see that i > 0 for all 0 if (r —2/°) > 0, that is, if ¥ < 1/2, that is, if
r< 1/\/5 and i < O for all 0 if (r — r*) <0, that is, if #> > 1, that is, if » > 1.
We now define an annular region R on which we can apply the Poincaré—Bendixson
theorem. Consider the annular region

R={r0): s <r <1},

Since the origin is the only fixed point of the system, the region R does not
contain any fixed point of the system. Again, since 7 > 0 for r < 1/4/2 and 7 < 0
for r > 1, all trajectories in R will remain in R for all future time. Hence, by
Poincaré—Bendixson theorem, there exists at least one periodic orbit of the system
in the annular region R.

Again, consider another system below

&= —y+x(x*+y*)sin

1
VAR
1

The origin is an equilibrium point of the system. In polar coordinates, the system
can be transformed as

y= )c—i—y(x2 —|—y2) sin

1 .
F=rsin—, 0=1.
r

This system has limit cycles I',, lying on the circle r = 1/(nz). These limit
cycles concentrated at the origin for large value of n, that is, the distance between
the limit cycle I';, and the equilibrium point origin decreases as n increases, and
finally the distance becomes zero as n — oo. Among these limit cycles, the limit
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cycles Iy, are stable while the other are unstable. The existence of finite numbers of
limit cycles is of great importance physically. The following theorem gives the
criterion for a system to have finite number of limit cycles.

Theorem 5.11 (Dulac) In any bounded region of the plane, a planar analytic
system % = f(x) with f(x) analytic in R* has at most a finite number of limit
cycles. In other words, any polynomial system has at most a finite number of limit
cycles in R

Theorem 5.12 (Poincaré) A planar analytic system (5.6) cannot have an infinite
number of limit cycles that accumulate on a cycle of (5.6).

5.5.2 Liénard System

Consider the system

x=y—-F(x) }

. 5.9

y=—8W) 59)

This system can also be written as a second-order differential equation of the
form

i+f(x)x+gx)=0 (5.10)

where f(x) = F'(x). This equation is popularly known as Liénard equation,
according to the the French Physicist A. Liénard, who invented this equation in the
year 1928 in connection with nonlinear electrical circuit. The Liénard equation is a
generalization of the van der Pol (Dutch Electrical Engineer) oscillator in con-
nection with diode circuit as

S+ u(x® = Di+x=0

u > 0 is the parameter. The Liénard equation can also be interpreted as the motion
of a unit mass subject to a nonlinear damping force (—f(x)x) and a nonlinear
restoring force (—g(x)). Under certain conditions on the functions F and g, Liénard
proved the existence and uniqueness of a stable limit cycle of the system.

Theorem 5.13 (Liénard Theorem) Suppose two functions f(x) and g(x) satisfy the
following conditions:

(i) f(x) and g(x) are continuously differentiable for all x,
(i) g(—x) = —g(x) Vx, that is, g(x) is an odd function,
(iii) g(x) > Oforx > 0,

(iv) f(=x) =f(x) Vx, that is, f(x) is an even function,
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X
(v) The odd function, F(x) = [f(u)du, has exactly one positive zero at x = a,
0

say, F(x) is negative for 0 < x < o, and F(x) is positive and nondecreasing
Jor x > o and F(x) — 0o as x — oo.

Then the Liénard equation (5.10) has a unique stable limit cycle surrounding the
origin of the phase plane.

The theorem can also be stated as follows.

Under the assumptions that F,g € C'(R), F and g are odd functions of x,
xg(x) > 0forx#0, F(0) =0, F'(0) <0, F has single positive zero at x = o, and
F increases monotonically to infinity for x > o as x — oo, it follows that the
Liénard system (5.9) has a unique stable limit cycle.

The Liénard system is a very special type of equation that has a unique stable
limit cycle. The following discussions are given for the existence of finite numbers
of limit cycles for some special class of equations. In 1958, the Chinese mathe-
matician Zhang Zhifen proved a theorem for the existence and the number of limit
cycles for a system. The theorem is given below.

Theorem 5.14 (Zhang theorem-I) Under the assumptions that a <0 < b,
F,g € C'(a,b), xg(x) > 0 for x#0, G(x) » 00 as x —a if a= —oco and
G(x) — 0o as x — b if b = o0, f(x)/g(x) is monotone increasing on (a,0) N (0,D)
and is not constant in any neighborhood of x = 0, it follows that the system (5.9)
has at most one limit cycle in the region a < x < b and if it exists it is stable, where

G(x) = 0j‘g(u)du.

Again in 1981, he proved another theorem relating the number of limit cycles of
the Liénard type systems.

Theorem 5.15 (Zhang theorem-II) Under the assumptions that g(x) = x,
F € C(R), f(x) is an even function with exactly two positive zeros ay, az(a; < ay)
with F(a;) > 0 and F(ap) <0, and f(x) is monotone increasing for x > ay, it
follows that the system (5.9) has at most two limit cycles.

If g(x) = x and F(x) is a polynomial, then one can ascertain the number of limit
cycles of a system from the following theorem.

Theorem 5.16 (Lins, de Melo and Pugh) The system (5.9) with g(x) =x,
F(x) = aix + ax* + a3x3, and ayaz < 0 has exactly one limit cycle. It is stable if
a; < 0 and unstable if a; > 0.

Remark The Russian mathematician Rychkov proved that the system (5.9) with
g(x) = x and F(x) = ajx + azx’ + asx® has at most two limit cycles.

See Perko [4] for detail discussions.

The great mathematician David Hilbert presented 23 outstanding mathematical
problems to the Second International Congress of Mathematics in 1900 and the
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16th Hilbert Problem was to determine the maximum number of limit cycles H,, of
an n th degree polynomial system

n
x= g agx'y’

i+j=0

n
=2 by

i+j=0

For given (a,b) € R"* V42 the number of limit cycles H,(a, b) of the above
system must be finite. This can be ascertained from Dulac’s theorem. So even for a
nonlinear system in R?, it is difficult to determine the number of limit cycles. In the
year 1962, Russian mathematician N.V. Bautin proved that any quadratic system
has at most three limit cycles. However, in 1979 the Chinese mathematicians S.L.
Shi, L.S. Chen, and M.S. Wang established that a quadratic system has four limit
cycles. It had been proved by Y.X. Chin in 1984. A cubic system can have at least
11 limit cycles. Thus the determination of the number of limit cycles is extremely
difficult for a system in general.

5.5.3 van der Pol Oscillator

We now discuss van der Pol equation which is a special type nonlinear oscillator.
This type of oscillator is appeared in electrical circuits, diode valve, etc. The van der
Pol equation is given by

¥4 u(® - Di+x=0, u > 0.
Comparing with the Liénard equation (5.10), we get f(x) = u(x> — 1) and

g(x) = x. Clearly, the conditions (i) to (iv) of the Liénard theorem are satisfied. We
only check the condition (v). So we have

F(x) = /Xf(u)du: /x,u(uz— 1)du
0 0

5

= F() = g —3)

The function F(x) is odd. F(x) has exactly one positive zero at x = v/3. F(x) is
negative for 0 < x < V3, and it is positive and nondecreasing for x > V3 and
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F(x) — oo as x — 0. So, the condition (v) is satisfied for x = v/3. Hence, the van
der Pol equation has a unique stable limit cycle, provided u > 0. The graphical
representation of the limit cycle and the solution x(¢) are displayed below taking
initial point x(0) = 0.5, x(0) =0 and p = 1.5 and 0.5, respectively.

The behavior of solutions for large values of the parameter i can be understood
from the figures. The graph of ¢ versusx for u = 1.5 (cf. Fig. 5.5a) is characterized
by fast changes of the position x near certain values of time ¢. The van der Pol
equation can be expressed as ¥ + px(x* — 1) = é (x+u(%x3 - x)) Now, we put

f(x) = —x+x*/3 and uy = x + pf(x). So, the van der Pol equation becomes

k= puly —f(x))
y=—x/u
Therefore,
dy _y_ x _ dy  x
oy ) I A e 3

(b) X

Fig. 5.5 a van der Pol oscillator for g = 1.5. b van der Pol oscillator for u = 0.5
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For u > 1, the right-hand side of the above equation is small and the orbits can
be described by the equation

d
(v —f(x)) d_z = 0 = either y = f(x) ory = constant.

A sketch of the function y = f(x) = —x+x*/3 indicates that the variable x(¢)
changes quickly in the outside of the curve, whereas the variable y(7) is changing
very slow. Using the Poincaré-Bendixson theorem in the annular region R =
{(x,y) : 2 <x<2, -1 <y <1P\{(x,y) : =1 <x<1,-05 <y <0.5},
which does not contain the equilibrium point origin of the system, the limit cycle
must be located in a neighborhood of the curve y = f(x), as shown in Fig. 5.6.
Now, the relaxation period T is given by

dy dy dy

ABCDA AB BC

where the first integral corresponds with the slow motion and so it gives the largest
contribution to the period T. With y = f(x) = —x+x7/3, we see that

-1
fzu/—:fz/ +# dv = (3 — 2log2)u

dy
dx

dy 2 / by
-2 — | ———dx
% y—f(x)
BC

BC

and with the equation (y — f(x))— %, the second integral is obtained as

Vv
” x(f
it K(7)

B quick C “
osf / ® !
=3
s
2 il 1 2 ¥ 10 a00l
-05} -1p

ick D :
quic ik 2

slow,

>

Fig. 5.6 Relaxation oscillation of the van der Pol equation for u = 90
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d
For u > 1, we get approximately the equation (y — f(x)) d—i = 0. The orders of

d
(y — f(x)) and d—z depend upon the parameter u and they are inversely proportional
to each other. One can obtain the orders of x and y. From Fig. 5.6, it is easily found
~ 0 ~ O ) i
that for u > 1,y , and so y — f(x) . Therefore, the integral
d
—2u [ Y must be of order O(u='73) for u > 1. Hence the period T of the
Bc X

periodic solution of the van der Pol equation is given by
T=(3—-2log2)u+0(u ") whenpu > 1.

Relaxation oscillation is a periodic phenomenon in which a slow build-up is
followed by a fast discharge. One may think that there are two time scales, viz., the
fast and slow scales that operate sequentially.

We now discuss another consequence of nonlinear oscillations. Weakly non-
linear oscillations have been observed in many physical systems. Let us consider
the van der Pol equation X+é&(x> — 1)i+x=0 and the Duffing equation
¥4+ x+ex’ = 0 where ¢ < 1. The phase diagrams for the two nonlinear oscillators
with the initial condition x(0) = a,x(0) = 0 are shown in Fig. 5.7.

The phase trajectories for the van der Pol oscillator are slowly building up and
the trajectories take many cycles to grow amplitude. The trajectories finally reach to
circular limit cycle of radius 2 as shown in Fig. 5.7a. In case of Duffing oscillator,
the phase trajectories form a closed path and the frequency of oscillation is
depending on ¢ and a. The Duffing equation is conservative. It has a nonlinear

(a) y (b) Y

Fig. 5.7 Limit cycles of the a van der Pol oscillator and b duffing oscillator for ¢ = 0.1,a = 0.5
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center at the origin. For sufficiently small &, all orbits close to the origin are periodic
with no change in amplitude in long term. The mathematical theories such as
regular perturbation and method of averaging are well-established and can be found
in Gluckenheimer and Holmes [5], Grimshaw [6], Verhulst [7], and Strogatz [S§].
We present few examples for limit cycles as follows:

Example 5.1 Show that the equation X+ u(x* — 1)+ x = 0 has a unique stable
limit cycle if u > 0.

Solution Comparing the given equation with the Liénard equation (5.9), we get
f(x) = p(x* = 1), g(x) = x. Let u > 0. Clearly, the conditions (i) to (iv) of the
Liénard theorem are satisfied. We now check the condition (v). We have

F(x) = O/f(u)du = O/M(u“ — 1)du
FIEEE:
()
1

The function F(x) is odd. F(x) has exactly one positive zero at x = v/5, is
negative for 0 < x < v/5, is positive and nondecreasing for x > v/5 and F(x) —
00 as x — 0. So, the condition (v) is satisfied for x = v/5. Thus the given equation
has a unique stable limit cycle if u > 0.

Example 5.2 Find analytical solution of the following system

k= —y+x(1—x*—y)
y=x+y(1—x =)

and then obtain limit cycle of the system.
Solution Let us convert the system into polar coordinates (r,f) by putting
x=rcosf, y=rsinb,
rir = xx+yy
=al-y+x(l = =)+l +y(1 =2 —y?)]
= (@ +y")(1 = =)
= rz(l — r2)

=i=r(l—-r%
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Similarly, differentiating tan 0 = y/x with respect to 7, we get

sec’(0)0 = i _2 2

X
N (Hyz)- _ A y(1 - —y?)] —zy[—yH(l — 2 —y)]
X X
= (2 +)2)0 =22 +)?
=0=1
So, the system becomes
i=r(l—r?)
0—1 } (5.11)

We now solve this system. We have

. dr
=

1
_E:r(l—rz):> (——‘,—;)dr:dt

Integrating, we get
logr — llog(l - =1— 1logc = 1_ 1+ce™
2 2 r?
where ¢ is an arbitrary constant. Similarly
. do

0=",=1=00)=1+0,

where 6y = 0(¢t = 0). Therefore, the solution of the system (5.11) is

— 1
r= V14 ce
0=1+0q

Hence, the corresponding general solution of the original system is given by

__ sin(t+0p)

cos(7+ 0,
x(r) = %}
(1) = N =

Now, if ¢ =0, we have the solutions r =1, 0 = ¢+ 0y. This represents the
closed path x> 4+-y? = 1 in anticlockwise direction (since  increases as ¢ increases).
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Ifc <O,itisclearthat7 > 1andr — 1 ast — oco. Again, if c > 0, we see that
r<1 and r — 1 as t — oo. This shows that there exists a single closed path
(r = 1) and all other paths approach spirally from the outside or inside as t — co.
The following figure is drawn for different values of ¢ (Fig. 5.8).

The important point is that the closed orbit or isolated closed orbit of the system
solely depends on some parameters.

From Fig. 5.9, we see that all solutions of the equation tend to the periodic
solution (limit cycle) S = {(x,y) : x* +y* = 1}.

Example 5.3 Show that the system

(1= 2+, 5=t

{1-(+y")}

xX=y+

* _r

has a stable limit cycle.

Fig. 5.8 Solution curves for AY
different values of ¢

Fig. 5.9 Sketch of the limit
cycle of the system
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Solution Let us convert the system into polar coordinate (r,0)

x=rcosl, y=rsin(. Then
r* =x*+y*, tan0 _?
X
Then the system can be written as

jc:y+)—:(1—r2)7j/:—x+§(l—r2)

Differentiating r> = x> +y*> with respect to ¢, we have

rr = xx+yy
=af+ 2 (=) e[ (- 2]
_ (sz;yz) (1=
=r(l- r2)
=i=1-7

Similarly, differentiating tan 0 = y/x with respect to 7, we get

200\ _x)"—yfc
sec”(0)0 = 2

(oA e )

So, the system becomes

i.zl—r2
0=—1

We now solve this system. We have

d
é:f:1—#:><

1
— |dr = 2dt
1+r+l—r> d

189

using
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Integrating, we get
log(147) —log(l —r) =2t+ logA

1
= log (1—+r> = 2t+ logA
r

l—l—r:Aez,

1—r
Ae* — 1

y=——
Ae? + 1

1+7rg

where A = 72,
p——

ro # 1 being the initial condition.

5 Oscillations

Now, r — 1 as t — oo and the limit cycle in this case is a circle of unit radius.
If rp > 1, the spiral goes itself into the circle » = 1 from outside in clockwise

direction (as 6 = —1) and if ry < 1, it goes itself onto the unit circle » = 1 from the

inside in the same direction. Therefore, the limit cycle is stable.

Example 5.4 Find the limit cycle of the system

=4y = Dx—yV/2 )%, 5= (F+y = Dy+xy/a2 +)?

and investigate its stability.

Solution Let us convert the system into polar coordinates (r, 0) putting

x=rcosl, y=rsinf

where 7> = x> +y? and tan 0 = y/x. Then the system can be written as

X = (r2 —Dx—yr, y= (r2 — Dy+xr.

Differentiating 7> = x? + y? with respect to ¢
rir = xx+yy
= x{(r? = Dx = yr] +y[(* = 1)y + 7]
=@ +y)0? = 1) =0~ 1)
=i=r-1)

Differentiating tan § = y/x with respect to ¢

2 XY T YE
sec”(0)0 = 2

_ (1 N )yc_z)g _ X[ = D)y+r] ;Zy[(rz — Dx — yr]

= (+y)0 = (@ +y")r
= 9 =r
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Therefore, the given system reduces to

i’:;;(rz—l)}

Now,

Integrating, we have

1
V1 —ce?

where ¢ = (rj — 1)/r3, ro # 0 being the initial condition. This gives an unstable
limit cycle at r = 1 as presented in Fig. 5.10.

log(r* — 1) —2logr =2t + loge = r =

Example 5.5 Show that the system

k= —y (Ve - 1) (2= VAT H),
j=xty(V e —1) (2= Ve £y

has exactly two limit cycles.

Fig. 5.10 Graphical
representation of the unstable
limit cycle for the given
system
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Solution Setting x = rcos 0,y = rsin 0, the given system can be transformed into
polar coordinates (r, 0) as

F=r(r—=1)2-r), 0=1.

It has limit cycles when r(r — 1)(2 — r) = 0, that is, » = 0, 1,2. But the point
r = 0 corresponds to the unique stable equilibrium point of the given system. So the
system has exactly two limit cycles at r = 1 and » = 2. The limit cycle at r = 1 is
unstable, while the limit cycle at » = 2 is stable. A computer generated plot of the
limit cycles is presented in the Fig. 5.11.

Example 5.6 Show that the system

i=—y+x(x*+)%) Sin(log(ﬁ))’
¥ =x+y(+y?) sin(log(\/m>>

has infinite number of periodic orbits.

Solution The given system can be transformed into polar coordinates as follows:

3sin(logr), 0 = 1.

r=r

It has periodic orbits when sin(log r) = 0, that is, log r = +n7n. Hence there is an
infinite sequence of isolated periodic orbits with period e™"*, n = 1,2,3,.. ..

Fig. 5.11 Plot of the limit y
cycles of the given system

C
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5.6 Applications

In this section, we discuss two dynamical processes viz., the biochemical reaction
of living cells and the interaction dynamics of prey and predator populations. Both
the dynamical processes have limit cycles under the fulfillment of certain conditions
among parameters of the model equations.

5.6.1 Glycolysis

Every animate object requires energy to perform their daily activities. This energy is
produced through respiration. We all know that our daily meals contain hues
amount of Glucose (C¢H,Og¢, 12H,0). Glycolysis is a process that breaks down the
glucose and produce Pyruvic acid and two mole ATP. Through Craves cycle, the
Pyruvic acid is finally converted to energy, which is stored in cells. So, glycolysis is
a fundamental biochemical reaction in which living cells get energy by breaking
down glucose. It was observed that the process may give rise to oscillations in the
concentrations of various intermediate chemical reactants. A set of equations for
this oscillatory motion was derived by Sel’kov (1968). In dimensionless form, the
equations are expressed by

X=—x+ay+x>y
y=b—ay—xy

where x and y are proportional to the concentrations of adenosine diphosphate
(ADP) and fructose-6-phospate (F6P). The positive constants a and b are kinetic
parameters of the glycolysis process. The same nonlinear term is present in both
equations with opposite signs. The system has a unique equilibrium point

b
(x",y%) <,a+w)

At this equilibrium point, the Jacobian matrix is

7o fi}fﬁ a+b?
_azfzb2 _<a+b2) .

Therefore, A = det(J) = (a+5b*) > 0 and the sum of diagonal elements of the
(ks (2”_;%;’”(1 +4) S0, the fixed point is stable when t < 0,

and unstable when t > 0. A bifurcation may occur when 7 = 0, that is, when

5 (1-2a)£+/(1-8qa)
b= A
Fig. 5.12.

Jacobian matrix, T = —

plot of (a, b) plane representing a parabola is presented in
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Fig. 5.12 Representation of
the stable fixed point and limit
cycles in the (a,b)-plane

Fig. 5.13 Limit cycle of the
Glycolysis problem for a =
0.07 and b = 0.8

5 Oscillations
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The figure shows that the region corresponding to t > 0 is bounded. The unique
stable limit cycle has been obtained for particular values of a and b satisfying above
relation of @ and b. A typical limit cycle for a = 0.07 and b = 0.8 is shown in

Fig. 5.13.

5.6.2 Predator-Prey Model

Volterra and Lotka were formulated a model to describe the interaction of two
species, the prey and the predator. The dynamical equation for predator—prey model

are given by
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&= x(o = By)
¥ =y(5x—v)} 5:12)

where «, 5,7, and 0 are all positive constants. x(¢), y(¢) and t represent the popu-
lation density of the prey, the population density of the predator and time,
respectively. Here o represents the growth rate of the prey in the absence of
intersection with the predators, whereas y represents the death rate of the predators
in the absence of interaction with the prey and /3,  are the interaction parameters
and are all constants (for simple model). Note that the survival of the predators
completely depends on the population of the prey. If x(0) =0 then y(r) =
v(0) exp(—y?) and lim,_,, y(t) = 0. We now study the model under dynamical
system’s approach. First we calculate the fixed points of the system, which are
found by solving the equations x = y = 0. This gives the following fixed points of
the system:

*

o
xX'=0,y"=0;andx* ==,y :B.

D™=

The Jacobian of the linearization of the model Eq. (5.12) is obtained as

J(x,y) = (a gyﬁy 5;[?;).

It is easy to show that the matrix J(0,0), at the fixed point origin, has the
eigenvalues o and (—7), which are opposite in sign, and therefore the fixed point

origin is a saddle point. Now, at the fixed point (g,%) the Jacobian matrix is

-]
73 0

which yields the purely imaginary eigenvalues (+i,/ay). Therefore, fixed point

calculated as follows:

(3 ) %) always forms a center which gives a closed path in the neighborhood of the

fixed point. This fixed point is nonhyperbolic type, so the stability cannot be
determined from the linearised system. The phase path of the system can be
obtained easily as

dy y(éx—7)

de  x(a—By)’
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which gives the solution curves f(x,y) = X'y~ + /) = k where k is a constant.
For different values of k we will get different solution curves. The solution curves
can also be written as f(x,y) = g(x)h(y) =k, where g(x) =x"e¢"* and
h(y) = y*¢~P. Linearisation of the system gives periodic solutions in a neighbor-
hood of the equilibrium point. Using the solution f(x,y), this result can be verified
easily for the nonlinear original system. Note that each of the functions g(x) and
h(y) have the same form; they are positive x,y € (0, 00). Also, they attain a single
maximum in this interval. It is easy to verify that the functions g(x) and h(y) attain

their maximums at the points x = g and y = %, respectively. Therefore, the function

IR

f(x,y) has its maximum at the fixed point ( , %) and the trajectories surrounding
this point are closed curves, since the point (3,%) is a center. Figure 5.14 depicts
the function g(x) and h(y) for some typical values of the parameters involved in the
system.

The graphical representations of two solutions curves are explained as follows.
The number of preys is increasing when there is less number of predators. The prey
population approaches its maximum value at o/ ff. Thereafter, suddenly the number
of predators increases explosively at the cost of the preys. As the number of preys
decreases the number of predators has to decrease. These features clearly depict in
the figure.

The phase portrait of the system is presented in Fig. 5.15. This shows close
curves in the neighborhood of the equilibrium point.

The equations of Volterra and Lotka are too simple model to represent the
populations of prey predator in real situations. However, the equations model a
crude approximation for two species living together with interactions.

Y
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Fig. 5.14 Graphs of g(x) and h(x) for some typical values of o, f8,7, and J
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Exercises

What do you mean by oscillation of a system? Give examples of two systems
in which one is oscillating and the other is non-oscillating.

Prove that one-dimensional system cannot oscillate.

Prove that zeros of two linearly independent solutions of the equation
¥+p()x =0, p(r) € C(I) separate one another.

Prove that if at least one solution of the equation X + p(#)x = 0 has more than
two zeros on an interval /, then all solutions of this equation are oscillating
on /.

Find the relation between oo > 0 and k € N, sufficient for any solution of
¥+ (asinz)x = 0 to be non-oscillating on [0, 2k7].

Find the relation between A > 0 and n € N, sufficient for any solution of
%+ (e cost)x = 0 to be non-oscillating on [0, 2n7].

For which @ > 0 and n € N all solutions of the equation x+ oxe™ =0
oscillate on [0, 2n7], where o is a nonzero real.

Discuss nonlinear oscillation of a system with example. Give few examples
where nonlinear oscillations are needed for practical applications.

Consider the system x = siny, y = xcosy. Verify that the system is a gra-
dient system. Also find the potential function. Show that the system has no
closed orbits.

Show that the system % = 2xy +y*, ¥ = x> + 3xy? — 2y has no closed orbits.
Determine the critical points and characterize these points for the system
¥— it — (1 —w)(2—pux=0,u < R. Sketch the flow in x — & phase plane.
Show that the system & = x(2 — 3x — y), y = y(4x — 4x*> — 3) has no closed
orbits in the positive quadrant in R2.
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13)

(14)
15)

(16)

a7
(18)

19)

(20)

2y

(22)

(23)

5 Oscillations
Show that there can be no periodic orbit of the system
o L 2 3
xX=y,y=ax+by—xy—x

if b <O.
Verify that the system x = y, y = —x +y + x> 4+ y? has no periodic solutions.
Consider the system

i=y(l+x—y"), y=x(1+y—x)

where x > 0, y > 0. Does periodic solution exist?
Consider the system x = f(y), y = g(x) +y" !, where f,g € C' and n € N.
Derive a sufficient condition for n so that the system has no periodic solu-
tions in R2.
An example is given to show that the requirement that in Dulac’s criterion D
is simply connected is essential.
Show that the system x = ax — ax? + bxy, y = By — cy> +dxy witha,c > 0
has no periodic orbits in the positive quadrant of R
Consider the system x = —y +x> — xy, ¥ = x + xy. Show that Bendixson’s
negative criterion will not give the existence of closed orbits and but Dulac’s
criterion will be useful for taking the function p(x,y) = —(1+y) (1 4x) "
Show that the following systems have no periodic solutions

@ i=y+x, y=x+y+y.

b) x=y, y=x"+(1+x)y.

(¢) x=sinxsiny+y’, y =cosxcosy+x’ +y.

) & =x(1+y*)+y, y=y(1+2).

© I=x(’+1)+y, y=xy+ux.

M i=—-x+y* y=—y +x~

(@ 1=y, 7=-y+x.

h) x=x>—y—1, y=xy—2y.

() x=—xe* +y*, y=x—x*y.

G) x=x+y+x> =y, y=—x+2y -2y +y.

& xi=x(y—1), y=x+y— 2%

Show that the system

d=—y+x(?+y* —2x—3), y=x+y(*+)y* —2x—3)
has no closed orbits inside the circle with center (3 , 0) and radius @.
Show that the system x = x+y* — xy?, = 3y +x> — x?y has no periodic
orbit in the region {(x,y) € R: x? +y* < 4}.
Consider the system % =y —x’+ux, y = —x. For what values of the
parameter u does a periodic solution exist? Describe what happens as ¢ — 0 ?
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(24)

(25)

(26)

27

(28)

(29)

(30)

€2V

Consider the system x = f(x,y), ¥ = g(x,y), where f, g € C!(D), D being a
simply connected region in R?. If ?)—i = % in D, show that the system has no
closed orbit in D. Hence show that the system X = 2xy +y, y = x + x> — y?
has no closed orbits.

Define ‘limit cycle’ and ‘periodic solution’. Give few physical phenomena
where limit cycles form. Find the limit cycles and investigate their stabilities
for the following systems:

@ =+ —x—y/2+y%, 5= (24— Dy+xy/x2+)2
b) x=—y+x(2+y*—1), y=x+y(*+y* - 1)

©) x=—y+x(v/2+y =17 y=x+y(/22+y> —1)

@) k=y+x(2+?) 7 = x4y +y?)

() x=y+x(1—x7y), y=—x+y(1 —x*—)?)

Show that the system

. 3,\ . 1
x—x—y<x2+5y2>, y—x+y—y<x2+ Eyz)

has a periodic solution.
Show that the system

F=x—y—x(x*+57%), y=x+y—y(*+y*)

has a limit cycle in some ‘trapping region’ to be determined.
State Poincaré-Bendixson theorem. Prove that the system given by

F=r(1—r¥)+urcosh, 6 =1

has a closed orbit for u = 0.

Show the system & = —y+x(1 — x> —y?), y = x+y(l —x> —y?) has at
least one periodic solution.

Consider the system i = y+ax(1 — 2b — 1), y = —x+ay(l — r?), where
?=x*+y* and a and b are two constants with 0 < b < 1/2 and
0 < a < 1. Prove the system has at least one periodic orbit and if there are
several periodic orbits, then they have the same period P(b,a). Also prove
that if b = 0, then there is exactly one periodic orbit of the system.
Consider the system
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(32)

(33)

(34)
(35)
(36)

37

(38)

(39)
(40)

(41

5 Oscillations

i = —y+x( Fy* =3 2% -3y 1),
y=x+y0*t+yt =30+ 2% - 3yP + 1)

(a) Determine the stability of the fixed points of the system.

(b) Convert the system into polar coordinates, using x = rcosf and
y = rsin 6.

(c) Use Poincaré—Bendixson theorem to show that the system has a limit
cycle in an annular region to be determined.

Consider the system
= —y+x(1—2x% =3y, y=x+y(1 —2x* —3y%).

(a) Find all fixed points of the system and define their stability.

(b) Transfer the system into polar coordinates (r, 0).

(¢c) Find a trapping region R(a,b) = {(r,0):a <r < b} and then use
Poincaré-Bendixson theorem to prove that the system has a limit cycle in
the region R.

Show that the system given by

i=r(1 —r*) +urcos0

0=1
has a closed orbit in the annular region /T —pu <r < +/T+u for all
u < 1
Consider the system ¥ = x —y — x> /3, y = —x. Show that the system has a
limit cycle in some annular region to be determined.
Show that the system represented by ¥+ u(x> — 1)k + tanhx =0, for
w > 0, has exactly one periodic solution and classify its stability.
Show that the equation % +x = u(1 — #*)x, u > 0 has a unique periodic
solution and classify its stability.
Show that the equation

X —X

x+x2—|—l

Xx+x=0

has exactly one stable limit cycle.

Show that the system i = 2x+y+x>, y = 3x — y +y* has no limit cycles
and hence no periodic solutions, using Bendixson’s negative criterion or
otherwise, while the system x = —y, ¥ = x has periodic solutions.

Show that the system i = r(r? — 2rcos ) — 3),9 = 1 contains one or more
limit cycles in the annulus 1 < r < 3.

Show that the Rayleigh equation ¥+x — p(l —%*)x=0,u > 0 has a
unique periodic solution.

Show that the system x =y +x(x> +y* — 1), y = —x+y(x* +y*> — 1) has
an unstable limit cycle.
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(42) Show that the system
i=y+x/ (2 +2) 2+ — 1) = —x+ 3/ (2 +y2) (P 4y — 1)
has a semistable limit cycle.

(43) Find the limit cycle of the system z = —iz+ (1 — |z*), z € C, where « is a
real parameter. Also investigate its stability.

(44) Find the radius of the limit cycle and its period approximately for the
equation represented by ¥ +e(x> — Di+x—ex’ =0,0<e < 1.

(45) Find the phase path of the Lotka—Volterra competating model equations
X =ox — fxy, y = fxy — yy with x,y > 0 and positive parameters o, f3,7.
Also, show that the solution represents periodic solutions in the neighbor-
hood of the critical point (y/f,a/p).

(46) Consider the following Lotka—Volterra model taking into account the satu-
ration affect caused by a large number of prey in the prey—predator popu-
lations X = ax — fxy/(1 +dx), y = fxy/(1+0x) —yy with x,y > 0 and
o, f,y,0 > 0. Determine the critical points and sketch the flow in the lin-
earized system. Explain the saturation affect of the prey for the cases 6 — 0
and 0 — oo.

(47) Discuss the solution behaviors of the two populations x(¢) and y(¢) in the
Lotka—Volterra model x = ax — fxy, ¥y = fixy — yy when the birth rate o of a
prey is much smaller than the death rate y of the predator, that is, a/y =€ a
small quantity.

(48) Find the creeping velocity of the system with large friction
X+ uk+f(x) =0, u > 0. Also, show that for a creeping motion the solu-
tion x(¢) follows approximately x = —i (x) which is called gradient flow.

(49) Find the period of oscillation 7'(¢) for the Duffing oscillator ¥ + x + &x® = 0
with x(0) = a,%(0) = 0, where 0 < ¢ < 1.

(50) Obtain the frequency of small oscillation (amplitude < 1) of the equation
+x—x/6=0.
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Chapter 6
Theory of Bifurcations

Bifurcation means a structural change in the orbit of a system. The bifurcation of a
system had been first reported by the French mathematician Henri Poincaré in his
work. The study of bifurcation is concerned with how the structural change occurs
when the parameter(s) are changing. The structural change and the transition
behavior of a system are the central part of dynamical evolution. The point at which
bifurcation occurs is known as the bifurcation point. The behavior of fixed point and
the nature of trajectories may change dramatically at bifurcation points. The
characters of attractor and repellor are altered, in general when bifurcation occurs.
The diagram of the parameter values versus the fixed points of the system is known
as the bifurcation diagram. This chapter deals with important bifurcations of one
and two-dimensional systems, their mathematical theories, and some physical
applications.

6.1 Bifurcations

The dynamics of a continuous system X = f(x,u) depends on the parameter
i € R. Itis often found that as u crosses a critical value, the properties of dynamical
evolution, e.g., its stability, fixed points, periodicity etc. may change. Moreover, a
completely new orbit may be created. Basically, a structurally unstable system is
termed as bifurcation. The bifurcation diagram is very useful in understanding the
dynamical behavior of a system. Bifurcations associated with a single parameter are
called codimension-1 bifurcations. On the other hand, bifurcations connected with
two parameters are known as codiemension-2 bifurcations. These bifurcations give
many interesting dynamics and have a wide range of applications in biological and
physical sciences. Various bifurcations and their theories are the integral part of
nonlinear systems. We discuss some important bifurcations in one- and two-
dimensional systems in the following sections.

© Springer India 2015 203
G.C. Layek, An Introduction to Dynamical Systems and Chaos,
DOI 10.1007/978-81-322-2556-0_6
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6.2 Bifurcations in One-Dimensional Systems

The dynamics of a vector field on the real line of a system is very restricted as we
have seen in the preceding chapters. However, the dynamics in one-dimensional
systems depending upon parameters is interesting and have wide applications in
science and engineering. Consider a one-dimensional continuous system

() =f(x,p); xpeR (6.1)

depending on the parameter u, where f : R x R — R is a smooth function of x and
u. The equilibrium points of (6.1) are the solutions of the equation

f(x,u) = 0. (6.2)

The Eq. (6.2) clearly indicates that all the equilibrium points of the system (6.1)
depend on the parameter p, and they may change their stabilities as u varies. Thus,
bifurcations of a one-dimensional system are associated with the stabilities of its
equilibrium points. Such bifurcations are known as local bifurcations as they occur
in the neighborhood of the equilibrium points. Such types of bifurcations are
occurred in the population growth model, outbreak insect population model,
chemical kinetics model, bulking of a beam, etc. In the following subsections, three
important bifurcations, namely the saddle-node, pitchfork, and transcritical bifur-
cations are discussed in depth for one-dimensional systems.

6.2.1 Saddle-Node Bifurcation

Consider the one-dimensional system
i(t) =f(x, ) =pu+x* xeR (6.3)
with u as the parameter. Equilibrium points of (6.3) are obtained as
f)=0=pu+x*=0=x> = —u (6.4)

Depending upon the sign of the parameter p, we have three possibilities. When
<0, the system has two fixed points, x] , = &,/—pu. They merge at x* = 0 when
1 =0 and disappear when p > 0. We shall now analyze the system’s behavior
under flow consideration in the real line. The system x = f(x, i) represents a vector
field f(x, 1) on the real line and gives the velocity vector X at each position x of the
flow. As we discussed earlier, arrows point to the right direction if x > 0 and to the
left if x<0. So, the flow is to the right direction when x > 0 and to the left when
Xx<0. At the points where x = 0, there are no flows and such points are called fixed
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(@) - (b) ; (¢) i

\S.raé le Unsta M/
P s
/ N, 5

Se;n i-stable X

H=0 H# =0

H=0

Fig. 6.1 Phase portraits fora u<0, b u=0,and ¢ £ >0

points or equilibrium points of the system (6.3). The graph of the vector filed f(x, 1)
in the x — x plane represents a parabola, as shown in Fig. 6.1.

When p <0, there are two fixed points of the system and are shown in Fig. 6.1a.
According to the flow imagination, the figure indicates that the fixed point at
x = /=W is unstable, whereas the fixed point at x = —,/—pu is stable. From the
figure, we also see that when p approaches to zero from blow, the parabola moves
up and the two fixed points move toward each other and they merge at x = 0 when
w = 0. There are no fixed points of the system for u > 0, as shown in Fig. 6.1c.
This is a very simple system but its dynamics is highly interesting. The bifurcation
in the dynamics occurred at u = 0, since the vector fields for u <0 and p > 0 are
qualitatively different. The diagram of the parameter u versus the fixed point x* is
known as the bifurcation diagram of the system and the point u = 0O is called the
bifurcation point or the turning point of the trajectory of the system. The bifurcation
diagram is shown in Fig. 6.2.

This is an example of a saddle-node bifurcation even though the system is
one-dimensional. Actually, it is a subcritical saddle-node bifurcation, since the fixed
points exist for values of the parameter below the bifurcation point u = 0. Consider
another simple one-dimensional system

Fig. 6.2 Saddle-node t .
bifurcation diagram for the — l Unstable | X
one-dimensional system (6.3) " —
N :
| ™\

Point of bifurcation

Stable
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i=pu—x* x,ucR (6.5)

with parameter p. This system can be obtained from (6.3) under the transformation
(x, ) — (—=x,—p). So, the qualitative behavior of the system (6.5) is just as the
opposite of (6.3). Hence the system (6.5) has two equilibrium points xb =+/u
for u > 0, they merge at x* =0 when p = 0 and disappear for u<0. Thus, the
qualitative behavior of (6.5) is changing as u passes through the origin. Hence
w =0 is the bifurcation point of the system (6.5). This is an example of a
supercritical saddle-node bifurcation, since the equilibrium points exist for values of
u above the bifurcation point ¢ = 0. The name ‘saddle-node bifurcation’ is not
properly given because the actual bifurcation that occurred in this one-dimensional
system is inconsistent with the name “saddle-node.” The name is coined in com-
parison to the bifurcation pattern in two-dimensional systems in which a saddle and
a node coincide and then disappear as the parameter exceeds the critical value. The
saddle-node bifurcation in a one-dimensional system is connected with appearance
and disappearance (vice versa) of the fixed points of the system as the parameter
exceeds the critical value.

6.2.2 Pitchfork Bifurcation

We now discuss pitchfork bifurcation in a one-dimensional system which appears
when the system has symmetry between left and right directions. In such a system,
the fixed points tend to appear and disappear in symmetrical pair. For example,
consider the one-dimensional system

(1) =f(,p) =px—x; xueR (6.6)

Replacing x by —x in (6.6), we get

k= —pr4 o = —(ux - x)
=i=px—x
Thus the system is invariant under the transformation x — — x. The equilibrium
points of the system are obtained as

f, ) =0=px—x =0=x=0,+/1

For f(x, ) = px — 27,

0 0 19)
a_i(xa ,U) = Uu—= 3x278_‘£(07:u) =M, af (j:\/,a, ,U) = —2/1

X
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(a) i (b) : (c)
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- X
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Fig. 6.3 Phase diagram fora u<0,b y=0,and ¢ ¢ >0

When u =0, the system has only one equilibrium point x* =0 and it is a
equilibrium point in nature, since Z(0,0) = 0. For u > 0, three equilibrium points
occur at x* = 0,4/, in which the equilibrium point origin (x* = 0) is a source
(unstable) and the other two equilibrium points are sink (stable). For u<0, the
system has only one stable equilibrium point at the origin. The phase diagram in the
x — x plane is depicted in Fig. 6.3.

From the diagram we see that when u increases from negative to zero, the
equilibrium point origin is still stable but much more weakly, because of its non-
hyperbolic nature. When p > 0, the origin becomes unstableequilibrium point and
two new stable equilibrium points appear on either side of the origin located at
x = —,/uand x = ,/u. The bifurcation diagram of the system is shown in Fig. 6.4.
From the pitchfork-shape bifurcation diagram, the name ‘pitchfork’ becomes clear.
But it is basically a pitchfork trifurcation of the system. The bifurcation for this
vector field is called a supercritical pitchfork bifurcation, in which a stable equi-
librium bifurcates into two stable equilibria. Transforming (x, ) into (—x, —u), we
can directly obtain another pitchfork bifurcation, the subcritical pitchfork bifurca-
tion, described by the system

i(t) = e+, (6.7)
Fig. 6.4 Pitchfork '
bifurcation diagram for the . e
one-dimensional system (6.6) Stable
Stable
"

\ /}lnslable )

P

Bifurcating Point

_» Stable
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This system has three equilibrium points x* = 0, £,/—pu for <0, in which the
equilibrium point x* = 0 is stable and the other two are unstable. For y > 0, it has
only one equilibrium point x* = 0, which is unstable.

6.2.3 Transcritical Bifurcation

There are many parameter-dependent physical systems for which an equilibrium
point must exist for all values of a parameter of the system and can never disappear.
But it may change its stability character as the parameter varies. The transcritical
bifurcation is one such type of bifurcation in which the stability characters of the
fixed points are changed for varying values of the parameters. Consider the
one-dimensional system

i=flx,u)=uwx—x* xeR (6.8)
with u € R as the parameter. The equilibrium points of this system are obtained as
fo,p)=0=mxx—x>*=0=x=0,pu

Thus the system has two equilibrium points x* = 0, u. We calculate

%(x,u) = pt— 2x,50, %(0#) = #7%(##) = i

This shows that for ;1 = 0 the system has only one equilibrium point at x* = 0,
which is nonhyperbolicequilibrium points. For p # 0, it has two distinct equilib-
rium points x* = 0, u, in which the equilibrium point origin is a source (unstable)
for u > 0 and it is a sink (stable) for 4 <0. The other equilibrium point x* = p is
unstable if 4 <0 and stable for y > 0. The phase diagrams for the above three cases
are shown in Fig. 6.5.

X X x

u>0 u=0 #<90

Fig. 6.5 Phase portraits of the system (6.8)
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Fig. 6.6 Bifurcation diagram A 2
of the system (6.8) ( Fixed point )
Stable
b N
Stable
T o }_{ (Parameter)
————————————— —
e /
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This type of bifurcation is known as transcritical bifurcation. In this bifurcation,
an exchange of stabilities has taken place between the two fixed points of the
system. The bifurcation diagram is presented in Fig. 6.6.

6.3 Bifurcations in One-Dimensional Systems:
A General Theory

So far we have discussed bifurcations based on the flow of vector fields. We now
derive a general mathematical theory for bifurcations in one-dimensional systems.
Consider a general one-dimensional system

() =f(x,p); xpeR (6.9)

where f : R x R — R is a smooth function. If y, be the bifurcation point and x( be
the corresponding equilibrium point of the system, then x is nonhyperbolic if

a
Y (v0.10) =0. (6.10)

We first establish the condition for the saddle-node bifurcation.

6.3.1 Saddle-Node Bifurcation

We assume that
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0
a—ﬁ(xO,uo) #0 (6.11)

Then by the implicit function theorem, there exists a unique smooth function
u = p(x) with u(xg) = g, in the neighborhood of (xo, to) such that f(x, u(x)) = 0.
Differentiating the equation f(x, (x)) = 0 with respect to x, we have

= ) = )+ ) ) (6.12)

Therefore, at (xo, 1), we get

0 19)
5‘]; (x07 ﬂo) + % (X(), :u())

af
gfx('an #0) (613)
();z('x()? MO)

Again, differentiating the equation f (x, pt(x)) = 0 with respect to x twice, we get

d’f

0= S ) = g (o) + 7 (o) 22 9
= O 9) 2 ) B0+ 2 o) ()
2 ) S5 o)
(6.14)
Therefore, at (xo, fig),
2 o+ 2 ) S ) =0 (6.15)

Now, recall the saddle-node bifurcation diagram of the system (6.3). In this
diagram, the unique curve x = u? of fixed points, passing through (0,0), lies
entirely on only one side of the bifurcation point ¢ = 0. This will be possible only if

d’u
a0
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in the neighborhood of (x, u) = (0,0). Compared to this, we take

2
jx—f (x0) # 0.

Therefore from (6.15), we see that

0f

o2 o Ho) 7 0- (6.16)

We state the result in the following theorem.

Theorem 6.1 (Saddle-node bifurcation) Suppose the system x(t) = f(x, p), x, pu €
R has an equilibrium point x = xo at |t = W, satisfying the conditions

0
f(xo0, 1) = 078_£(x0’ Ko) = 0.

If

5 &
8_{1()%’ Ho) # Oya_xj;(x(b:“o) 70,

then the system has a saddle-node bifurcation at (xg, ).

Similarly, one can easily derive the conditions under which the system
x(t) =f(x, 1), x,u € R possess transcritical and pitchfork bifurcations. In this
book, we only state the following theorem for these two bifurcations. See Wiggins
[1] for proof.

Theorem 6.2 (Transcritical and pitchfork bifurcations) Suppose the system
x(t) =f(x, 1), x, pt € R has an equilibrium point x = xo at [t = L, satisfying the
conditions

f(x(),,u.o) = 0»@()50,#0) =0.

ox
O I
of Of 0*f
8_/1 (x0, ) = 0>@ (x0, 1) # Oand 8x—8,u (x0, 1) # 0,

then the system has a transcritical bifurcation at (xo, ly)-
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G If

of o*f 0 O o’f

%(Xo,ﬂo) =0, @(xo,,uo) Do (x0, g) # Oand = B 5 (X0, 19) # 0,

then the system has a pitchfork bifurcation at (xo, l)-

We now derive the normal forms of these bifurcations in one-dimensional
systems. By normal form of a system we mean the most simplified mathematical
form from which one can easily understand the type of bifurcations occurred in the
system.

(a) Normal form of saddle-node bifurcation:

Suppose the system (6.9) has an equilibrium point at x = xo for u = p, for which
all the saddle-node bifurcation conditions are satisfied, that is,

0 0 o?
F 50, 10) = 0,2 (30, 10) = o7a—{l<xo, o) # 0and L (0, 1) £0, (6.17)

Expanding f(x, i) in a Taylor series in the neighborhood of (xo, 1), we have

jc:f(x,,u)

0 0 1 0?
= (i) + = 30) (s )+ (1= ) 5 (5 )+ 37 = 30)” 5.5 (. o)
o 1 0?
6= 0) 0 = ) )+ 35— o) 5 )+ -+

*f
5 2@(x07#0)+~~

= (= ) + Bl = o) 4 - (6.18)

=(N*uo)g—{t(muo)+ (x — x0)

where o = Z(xo, ) and f = 424(xo, o) are nonzero real. The Eq. (6.18) refers to
as the normal form of the saddle-node bifurcation. This is a great advantage for
determining the bifurcation which a system undergoes.

(b) Normal form of transcritical bifurcation:

Suppose that the system (6.9) has an equilibrium point x = xy at 4 = y, for which
the transcritical bifurcation conditions are satisfied as given in Theorem 6.2(i).
Using the Taylor series expansion of f(x, u) in the neighborhood of (xg, tt,), we
have
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x :f(x7 u)

9 a 1 &
= (i 1)+ 5 = 30) - (s o)+ (1= ) e (5 )+ 3¢ = 30)” 5.5 (s o)
? 1 ?
(6= 0 0 = ) (3 )+ 51— o) 5 )

2!
Pf 1 Pf
= (x —x0) (1 — Ho)m(xoaﬂo) + E(X —Xo)zﬁ(xoaﬂo) + -
= a(x — x0) (1 — pg) + Blx — x0)> + -+
(6.19)
where o = 2L(x0, 19) and = 154 (xo, 1y) are nonzero real. The Eq. (6.19) refers to

the normal form of the transcritical bifurcation.
(¢) Normal form of pitchfork bifurcation:

Suppose that the system (6.9) has an equilibrium point x = xy at it = p, satisfying
all the pitchfork bifurcation conditions given in Theorem 6.2(ii). We now expand
the function f(x, u) in the neighborhood of (xo, i) in Taylor series expansion as
presented below.

¥ =f(x,p)
= 000+ (50 2 o )+ 0 ) )+ 0 20 o s )
+ (o = x0) (1 = o) ;x_;ﬂ (%o, ko) + %(u - No)zg_;]; (x0. o)
+ é(x — %)’ g%{ (%0, o) + %(x —x0)* (1t = o) % (x0. o)
by ) ) o ) + g ) o Gt + -
= (e )0 ) () + 30 O s )
= a(ox — x0) (1t — o) + Blx — x0)* + - - (6.20)

where o = 2L (xo, 1t9) and f§ = 19%(xo, s9) are nonzero real. This is the normal form
of the pitchfork bifurcation.
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Example 6.1 Show that the system

F=x(1-x) —a(l —e™)
undergoes a transcritical bifurcation at x = 0 when the parameters a and b satisfy a
certain relation to be determined.

Solution Clearly, x = 0 is an equilibrium point of the given system for all values of

the parameters a and b. This indicates that the system will exhibit a transcritital
—bx

bifurcation. For small x, the expansion of e~** gives
b2 2
e =1—bx+ 2—)'6 —0(x).
Therefore,
i =x(1 —x%) —a(l —e™™)
b*x?
= x(1 —x*) — a(bx — S +0(x*))

1
= (1l —ab)x+ 3 ab*x*.  [Neglecting cube and higher powers of x]

For transcritical bifurcation at x =0, 1 — ab = 0, that is, ab = 1. Hence the
system undergoes a transcritical bifurcation at x = 0 when ab = 1.

Example 6.2 Describe the bifurcation of the system & =x’ —5x> — (u—8)
X+ u—4.

Solution Let f(x, 1) = x> — 5x*> — (u — 8)x+ u — 4. The equilibrium points are
given by

-5 —(u—8)x+u—4=0

= k-1 —4x—u+4)=0

Clearly, x = 1 is a fixed point of the system for all values of p. The other two
fixed points are x; = 2 & ,/u, which are real and distinct for u > 0. They coincide
with the fixed point x = 2 for ¢ = 0 and vanish when u<0. Therefore, the system
has a saddle-node bifurcation at x = 2 with u = 0 as the bifurcation point. We can
also verify this using Theorem 6.1. Take xop = 2 and u, = 0. Now, calculate

of of o’f

a(x,,l) =3x* — 10x+8 —u,a—#(x,u) = forl,@(x,,u) = 6x — 10.

We see that

0 0 0
Fl0,10) = 0.5 (50.10) = 0.5 o) = =1 # 0.5 (50.0) =2 20

Therefore, by Theorem 6.1 the system has a saddle-node bifurcation at (xo, 1),
where xo = 2 and u, = 0.
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Example 6.3 Consider the system & = x> — u; x, u € R. Does the system has any
bifurcation in neighborhood of its fixed points? Justify.

Solution Here f(x, ) = x* — u. The fixed points are given by

fu)=0=x—u=0=x=pu'3
Calculate

of of

5o (6 =30 50 o (1! ) = 32,

The qualitative behavior of the system does not change with the variation of the
parameter u. So, bifurcation does not occur in the neighborhood of its fixed points.

6.4 Imperfect Bifurcation

Consider the system represented by the Eq. (6.3). Suppose this system exhibits a
saddle-node bifurcation at the point (x, u) = (0,0). If we add a quantity ¢ € R in
this equation and then apply Theorem 6.1, we see that the system also has a
saddle-node bifurcation at (x, ) = (0, —¢). Thus an addition of the term ¢ in (6.3)
does not change its bifurcation character. In similar way, addition of the term ex in
the Eq. (6.3) will not produce any new bifurcation pattern, provided that the
parameter u # 0. This bifurcation is structurally stable. The other two bifurcations,
mentioned earlier, are not structurally stable. They can alter under arbitrarily small
perturbations and produce new bifurcations. These bifurcations are called imperfect
bifurcations and the parameter (perturbation quantity) is known as the imperfection
parameter. For example, consider the system

W(t) = e+ ux — ¥ (6.21)

where ¢, u € R are parameters. If ¢ = 0, it reduces to the system (6.8) and so, it has
a transcritical bifurcation. We shall now analyze the system for ¢ # 0. The equi-
librium points of (6.21) are the solutions of the equation

i=0=¢et+u—x*=0

I ERVATE
=t

=X

If <0, then (6.21) has two distinct equilibrium points

wE A/ +4e
2

* p—
XL =
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when the parameter x lies in (—oco, —2y/—¢) U (2/—¢,00) in which x*_ is stable
and x* is unstable. These two equilibrium points merge at x* = p/2 when u =
+2./—¢ and disappear when u lies in (—2+/—¢,2+/—¢). Thus, for ¢<0, the tran-
scritical bifurcation for ¢ =0 perturbs into two saddle-node bifurcations at
(—v/—¢&,—2y/—¢) and (v/—¢,2y/—¢) with bifurcation points u = —2,/—¢ and
u = 2+/—¢, respectively.

Again, if ¢ > 0, then (,u2 +4¢) > 0 for all u. Therefore, in this case, the system
has two distinct (nonintersecting) solution curves, one is stable and the other is
unstable, and so no bifurcations will appear as u varies. In conclusion, the addition
of small quantity in a system will change the bifurcation character when the
bifurcation pattern is not structurally stable.

6.5 Bifurcations in Two-Dimensional Systems

Dynamics of two-dimension systems are vast and their qualitative behaviors are
determined by the nature of equilibrium points, periodic orbits, limit cycles, etc.
The parameters and their critical values for bifurcations are highly associated with
system’s evolution and have physical significances. The critical parameter value is a
deciding factor for a system undergoing bifurcation solutions. We shall now for-
mulate a simple problem where the critical value for qualitative change in the
system can be obtained very easily. Consider a circular tube suspended by a string
attached to its highest point and carrying a heavy mass m, which is rotating with an
angular velocity w about the vertical axis (see Fig. 6.7).

The angular motion of the mass m is determined by the following equation
without taking into account the damping force,

mat) = maw? sin 0 cos 0 — mg sin 0

or, 0= (wz cos 6 — g) sin 6,

where a is the radius of the circular tube and g is the acceleration due to gravity and
i = w’a/g. The right-hand side of the above equation may be denoted by
8 :
f(0,1) == (rcosB — 1)sin6.
a
The equilibrium positions are given by f(6,u) = 0. Thus, there exist two
positions of equilibrium and are given by

sinf =0 = 0 = 0,7, —n according to the problem and cos 0 = i =4

If @? <g/a, that is, if u<1, then cos @ > 1 and so 0 = 0 is the only position of
equilibrium of the system, and it is stable for small 6,
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Fig. 6.7 Sketch of a rotating
circular tube carrying a mass
m

w? cos(@)

(1= w0

d*0 g
a

dr?

Any small displacement, say 0 = 0y with 0 = 0 will result in small oscillations
about the lowest point 6 = 0.

As o increases beyond the critical value w. > \/g, the equilibrium at 6 = 0
loses its stability and a new position of equilibrium 0 = cos™!(g/aw?) is created.
This is a position of stable equilibrium. Thus, we see that a bifurcation occurs when
the angular velocity w crosses the critical value w. = \/g, that is, u = 1. The
bifurcation diagram is presented in Fig. 6.8.

This simple example illustrates how bifurcation occurs and how the behavior of
the system alters before and after the bifurcating point. In the following subsections,
we shall discuss few common bifurcations that frequently occur in two-dimensional
systems, viz., (i) saddle-node bifurcation, (ii) transcritical bifurcation, (iii) pitchfork
bifurcation, (iv) Hopf bifurcation, and (v) homoclinic and heteroclinic bifurcations.

6.5.1 Saddle-Node Bifurcation
Consider a parameter-dependent two-dimensional system
i=p—xy=—-y;uck (6.22)

The fixed points of the system are the solutions of the equations
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Fig. 6.8 Bifurcation diagram (2]
of the system

x=0,y=0

which yield
p—x>=0,y=0.

For i > 0, the Eq. (6.22) has two distinct fixed points at (,/z,0) and (—/&,0).
These two fixed points merge at the origin (0,0) when y = 0 and they vanish when
u<0. This is a same feature as we have seen in one-dimensional saddle-node
bifurcation. We shall now determine the stabilities of the fixed points. This needs to
evaluate the Jacobian matrix of the system for local stability behavior and is given

by
waz(ffo.

We first consider the case u > 0. Here the system has two fixed points (,/z,0)
and (—,/1,0). The Jacobian

o = (0
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at the fixed point (,/zz,0) has two eigenvalues (—2,/z1) and (—1), which are real
and negative. Hence the fixed point (,/z,0) is a stable node. Similarly, calculating
the eigenvalues of J(—,/i, 0) we can show that the fixed point (—,/,0) is saddle.

Consider the second case, ¢ = 0. In this case, the system has a single fixed point
(0,0). The Jacobian matrix at (0,0) is

J(0,0) = (8 _01)

with eigenvalues 0, (—1). This indicates that the fixed point (0, 0) is semi-stable. For
1 <0, the system has no fixed points.

Thus we see that the system (6.22) has two fixed points, one is a stable node and
the other is a saddle point, when p > 0. As u decreases, the saddle and the stable
node approach each other. They collide at u = 0 and disappear when u<0. The
phase portraits are shown for different values of the parameter in Fig. 6.9.

From the phase diagram we see that when the parameter is positive, no matter
how small, all trajectories in the region {(x,y) : x > — ,/u} reach steadily at the
stable node origin of the system. As soon as u crosses the origin, an exchange of
stability takes place and this clearly indicates in the phase portrait of the system.
When u is negative, all trajectories eventually escape to infinity. This type of
bifurcation is known as saddle-node bifurcation. The name ‘“saddle-node” is
because its basic mechanism is the collision of two fixed points, viz., a saddle and a
node of the system. Here ¢ = 0 is the bifurcation point. The bifurcation diagram is
same as that for the one-dimensional system.
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Fig. 6.9 Phase portrait of the system for different values of the parameter u
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6.5.2 Transcritical Bifurcation

Consider a two-dimensional parametric system expressed by
k= =22y =y (6.23)

with parameter p € R. This system has always two distinct fixed points (0,0) and
(u,0) for u # 0. For u = 0, these two fixed points merge at (0, 0). This is why this
bifurcation is called as transcritical bifurcation. The Jacobian matrix of the system

(6.23) is given by
Lo -2x 0
ox Oy

At the point (0, 0),

7(0,0) = (g _01>

which has eigenvalues u and (—1). Therefore, the fixed point (0,0) of the system
(6.23) is a stable node if ;<0 and it is a saddle point if ¢ > 0. For y = 0, the fixed
point is semi-stable. Again, at (u,0),

J(1,0) = (‘O" 01>.

The eigenvalues of J(u,0) are (—u) and (—1), showing that the fixed point
(u,0) is a stable node if u > 0, and a saddle point if 4 <0. The phase diagrams for
different signs of u are shown in Fig. 6.10.

From the diagram, we see that the behavior of the system changes when the
parameter u passes through the origin. In this stage, the saddle becomes a stable

AN | 4
N Y,
__ f«’k.\;\\f_g; — Ty = ‘\EJ..,.\
N A— T ~ VA
~\/ /1 ARTIARN 7

NV I IR \/// \

Fig. 6.10 Phase portrait of the system for different values of the bifurcation parameter p
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node and the stable node becomes a saddle. That is, when u passes through the
origin from left, the fixed point origin changes to a saddle from a stable node and
the fixed point (p,0) changes from a saddle to a stable node. This type of bifur-
cation is known as transcritical bifurcation. Here y = 0 is the bifurcation point. The
feature is same as in one-dimensional system where no fixed points are disappeared.

6.5.3 Pitchfork Bifurcation

There are two types of pitchfork bifurcations, namely supercritical and subcritical
pitchfork bifurcations. In the present section, we deal with these two bifurcations
scenario, first the supercritical pitchfork bifurcation and then the subcritical pitch-
fork bifurcation will be illustrated.

Consider a two-dimensional system represented by

R g (6.24)

where u € R is the parameter. For p <0, the system (6.24) has only one equilibrium
point at the origin. The Jacobian matrix at this fixed point is given by

J(0,0):<’(; 01>.

The eigenvalues of J(0,0) are u, (1), showing that the fixed point origin is a
stable node. For u > 0, the system has three fixed points (0, 0), (\/x,0), and
(—/11,0). The Jacobian matrix of (6.24) calculated at these fixed points are given
by

J(0,0) = (g 01>,J(\/,7,0) (‘é“ 01>,J(\/,7,0) (‘g“ Ol>.

The eigenvalues of J(0,0) are u, (-1), which are opposite in signs. So, the
equilibrium point (0, 0) is a saddle for u > 0. Clearly, the eigenvalues of Jacobian
matrix show that the other two fixed points are stable nodes. The phase diagrams for
different values of the bifurcation parameter u are presented in Fig. 6.11.

The diagram shows that as soon as the parameter u crosses the bifurcation point
origin, the fixed point origin bifurcates into a saddle point from a stable node. In
this situation, it also gives birth to two stable nodes at the points (\/ﬁ, 0) and
(—\/,177 0). The amplitudes of the newly created stable nodes grow with the
parameter. This type of bifurcation is known as supercritical pitchfork bifurcation.
We shall now discuss the subcritical pitchfork bifurcation. Consider a
parameter-dependent two-dimensional system represented by
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Fig. 6.11 Phase portrait for different parameter values of the system

X =pux4x,y = —y; (6.25)

with the parameter u € R. When <0, the system (6.25) has three distinct fixed
points, namely (0,0), (y/£,0), and (—/x,0). The Jacobians of the system eval-
uated at these fixed points are given by

J(0,0) = (’O‘ _01>,J(\/ﬁ,0): (45‘ _01>7J(—\/ﬁ,0): (4(;‘ _01>.

The eigenvalues of J(0,0) are u, (—1), which are of same sign. Thus, the fixed
point origin is a stable node for ¢ <0. Similarly, calculating the eigenvalues of the
other two Jacobian matrices of the system one can see that the fixed points
(£+4/1,0) are saddle points. For > 0, the system has a single fixed point at the
origin, which is saddle. If we draw the phase portrait of the system, then we can see
that as soon as the parameter crosses the bifurcation point u = 0, the stable node at
the origin coincides with the saddles and then bifurcates into a saddle. This type of
bifurcation is known as subcritical pitchfork bifurcation.

6.5.4 Hopf Bifurcation

So far we have discussed bifurcations of systems with real eigenvalues, either
positive or negative, of the corresponding Jacobian matrix evaluated at the fixed
points of the corresponding system. We shall now discuss a very interesting peri-
odic bifurcation phenomenon for a two-dimensional system where the eigenvalues
are complex. This type of bifurcating phenomenon in two-dimensional or higher
dimensional systems was studied by the German Scientist Eberhard Hopf (1902—
1983) and it was named Hopf bifurcation due to the recognition of his work. This
type of bifurcation was also recognized by Henri Poincaré¢ and later by A.D.
Andronov in 1930. Hopf bifurcation occurs when a stable equilibrium point losses
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its stability and gives birth to a limit cycle and vice versa. There are two types of
Hopf bifurcations, viz., supercritical and subcritical Hopf bifurcations. When stable
limit cycles are created for an unstable equilibrium point, then the bifurcation is
called a supercritical Hopf bifurcation. In engineering applications point of view,
this type of bifurcation is also termed as soft or safe bifurcation because the
amplitude of the limit cycles build up gradually as the parameter varies from the
bifurcation point. On the other hand, when an unstable limit cycle is created for a
stable equilibrium point, then the bifurcation is called a subcritical Hopf bifurcation.
It is also known as a hard bifurcation. In case of subcritical Hopf bifurcation, a
steady state solution could become unstable as parameter varies and the nonzero
solutions could tend to infinity. We shall now illustrate the supercritical and sub-
critical Hopf bifurcations below.

6.5.4.1 Supercritical Hopf Bifurcation
Consider a two-dimensional system with parameter p € R,

k= —y —x(F +y7),5 = x4 uy — y( +57). (6.26)

The system has a unique fixed point at the origin. In polar coordinates, the
system can be written as

i:yr—r3,9:1,

which are decoupled, and so easy to analyze. The phase portraits for ¢ <0 and
u > 0 are shown in Fig. 6.12.

9 0.5 10X
-os-/
-10

H =-0.5 H=0.5

0.5 1.0

Fig. 6.12 Phase portraits of the system for 4 = —0.5 and u = 0.5, respectively
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When p <0, the fixed point origin (r = 0) is a stable spiral and all trajectories
are attracted to it in anti-clockwise direction. For u = 0, the origin is still a stable
spiral, though very weak. For u > 0, the origin is an unstable spiral, and in this
case, there is a stable limit cycle at r = /u. We are now interested to see how the
eigenvalues behave when the parameter is varying. The Jacobian matrix at the fixed

point origin is calculated as
(1
o= (1 1)

which has the eigenvalues (u £ ). Thus origin is a stable spiral when <0 and an
unstable spiral when p > 0. Therefore as expected the eigenvalues cross the
imaginary axis from left to right as the parameter changes from negative to positive
values. Thus we see that a supercritical Hopf bifurcation occurs when a stable spiral
changes into an unstable spiral surrounded by a limit cycle.

6.5.4.2 Subcritical Hopf Bifurcation
Consider a two-dimensional system represented by

k= — y+x(2 +y?) — x(® +y?) (627)

V= x Ay +57) =y 47 '
where p € R is the parameter. In polar coordinates, the system can be transformed
as

i‘:yr+r3—r5,0: 1.

This system has a unique fixed point at the origin. The phase portraits for ¢ <0
and p > 0 are presented in Fig. 6.13.

From the phase diagram it is clear that when u > 0, the fixed point origin
(r=0) is a stable spiral and all trajectories are attracted to it in anti-clockwise
direction, and for u <0, it is an unstable spiral. The diagram also exhibits that the
system has two limits cycles when u<0, one of which is stable and other is
unstable. For u > 0, it has only a stable limit cycle. All these cycles can be
determined from the equation 4 r> — r* = 0. For <0, the system (6.27) has two
limit cycles at

r2:1:|:\/1+4,u
2 )

and for p > 0, the unique limit cycle occurs at
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(a) B 4 (b)

Fig. 6.13 Phase portraits of the system for a 4 = —0.1 and b ¢ = 0.5
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Fig. 6.14 A sketch of i versus (ur+r> —r°) for u = —0.1, and 0.5

2 l—l—\/l+4,u.
2

A sketch of # versus (ur+r> —r°) for two different values of u is shown in
Fig. 6.14.

From this figure it is clear that when <0, the limit cycle at 2 = LvIE3 jg
stable, while the limit cycle at ? = '=YI=% s unstable, and for x> 0, the limit
cycle at r? = VI3 g stable.

Theorem 6.3 (Hopf bifurcation) Let (xo,yo) be an equilibrium point of a planer
autonomous system

x=f0y, 1), vy=gbyn

depending on some parameter u € R, and let
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the Jacobian matrix of the system evaluated at the equilibrium point has purely
imaginary eigenvalues A (1) = iw, A_(u) = —iw;w # 0 at u = wy. If

(i) & (Rei(n) =4 >0au=0,

(i) (fix+8&u) =17#0,and
(iil)) a= —%# Oforu # 0.

where the constant a is given by

1
a=1 (Focr + ey + Favy + 8oy)

1
¥ o U ) — 8080+ 80) — e )

evaluated at the equilibrium point, then a periodic solution bifurcates from the
equilibrium point (xo,yo) into u<py if a(fux+guw) >0 or into p>y, if
a(fux + 8uy) <O. Also, the equilibrium point is stable for u> u, (respectively
U< o) and unstable for p< i (respectively p > ) if (fux + guy) <O (respectively
> 0). In both the cases, the periodic solution is stable (respectively unstable) if the
equilibrium point is unstable (respectively stable) on the side of 1 = i for which
the periodic solutions exist.

We now illustrate the Hopf bifurcation theorem by considering the well-known
van der Pol oscillator. The equation for van der Pol is given by ¥+ u(x* — 1)x +
x =0, u>0. Setting x =y, the equation can be written as

i=y=f(xyp }
y=—x+u(l —x*)y=g(x,y,p)

The system has the equilibrium point (xo,y0) = (0,0), and the corresponding
Jacobian matrix at (0, 0) has the eigenvalues

+./i2—4
;”:l:(:u) :%7

which are complex for 0 < <2 and real for > 2. For u = 0, the eigenvalues are
purely imaginary: A, (¢) =i, A_(u) = —i. Now, at the equilibrium point
(i) & (Rea(w) =4 >0atn=0,

(i) (fu+gu) =10, and
(i) a=—&+0 for u+#0.
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Also, at this point, we see that a(fix+gu) = —§ <0 for u>0. So, by
Theorem 6.3, the system has a periodic solution (limit cycle) for u > 0. The sta-
bility of the limit cycle depends on the sign of (fx + g4y), Which is positive (equal
to 1) at (0, 0). Hence for p > 0 the equilibrium point origin must be unstable and
the limit cycle must be stable.

6.5.5 Homoclinic and Heteroclinic Bifurcations

A separatrix is a phase path which separates distinct regions in the phase plane. This
could be the paths which enter from a saddle point or a limit cycle or a path joining
two equilibrium points of a system. There are paths which have special interest in
context of dynamical systems. When a phase path joins an equilibrium point to
itself, the path is a special form of separatrix known as a homoclinic path. On the
other hand, any phase path which joins an equilibrium point to another is called
heteroclinic path. In R? homoclinic paths are associated with saddles while hete-
roclinic paths are connected with hyperbolic equilibrium points such as
saddle-saddle, node-saddle, and spiral-saddle. Phase paths which join one saddle to
itself or two distinct saddles are known as saddle connections. The graphical rep-
resentations of homoclinic and heteroclinic paths are shown in Fig. 6.15.

For an example, consider the equation % +x> —x = 0. With x =y, it can be
written as

xX=y
j=x—x
The equilibrium points are given by (0, 0) and (£1,0). The equilibrium point

origin is a saddle and the other two are centers. Homoclinic paths can be formed
through the origin. The equation of the phase paths is given by

(a) (b) (c)

% ¥, Heteroclinic path

Fig. 6.15 Graphical representations of homoclinic and heteroclinic paths
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which on integration gives

where C is some constant. For homoclinic paths, the curve must pass through the
saddle point origin and so we have C = 0. Therefore,

6
X
yzzxz—g

This equation represents two homoclinic paths, one in the interval 0 < x < 3'/4
and the other in —3'/4 <x<0. Figure 6.16 represents the phase diagram of the
system in which the trajectory (red marked curve) represents the two homoclinic
paths through the origin.

We now study the system with respect to some perturbations. Consider the
above equation with a damping term e&x, that is, consider the equation
¥+ et +x° —x = 0, where ¢ is a small perturbation quantity. Setting ¥ = y, we can
re-write the equation as

xX=y
y=—ey+x—x

which has the equilibrium points (0,0), (£1,0), same as the unperturbed equation.
The Jacobians at the equilibrium points indicate that the origin is always a saddle
point, and the other two equilibrium points, (1, 0), are stable spirals if ¢ > 0 and
unstable spirals if ¢<0. The phase diagrams for ¢<,=, > 0 are presented in
Fig. 6.17, from which we see that as ¢ passes through the origin from left a
heteroclinic spiral-saddle connection is appeared for ¢<0 and changes to a

Fig. 6.16 Phase trajectories
and homoclinic paths of the
system
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Fig. 6.17 Phase diagrams of the system for a e<0,b&e¢=0,and ce >0

homoclinic saddle connection for ¢ = 0 and then to a heteroclinic saddle-spiral
connection for ¢ > 0. So, the system has undergone a bifurcation in the neigh-
borhood of ¢ = 0, the bifurcation point of the system. This type of bifurcation is
known as homoclinic bifurcation (see Jordan and Smith [2] for details).

6.6 Lorenz System and Its Properties

The Massachusetts Institute of Technology (M.L.T.) Meteorologist Edward Norton
Lorenz (1917-2008) in the year 1963 had derived a three-dimensional system from
a drastically simplified model of convection rolls in atmospheric flow. The sim-
plified model may be written in normalized form as follows:

¥=o0(y—x)
y=rx—y—xz (6.28)
z=xy—Dbz

where o, r, b > 0 are all parameters. The system (6.28) has two simple nonlinear
terms xz and xy in the second and third equations, respectively. Lorenz discovered
that this simple looking deterministic system could have extremely erratic or
complicated dynamics over a wide range of parameter values o, r, and b. The
solutions oscillate irregularly in a bounded phase space. When he plotted the tra-
jectories in three dimensions, he discovered a new concept in the theory of
dynamical system. Moreover, unlike stable fixed points or limit cycle, the strange
attractor appeared in the phase space is not a point neither a curve nor a surface. It is
a fractal with fractional dimension between 2 and 3. We shall study this simple
looking system thoroughly below.

Consider a fluid layer of depth A, confined between two very long, stress-free,
rigid and isothermal, horizontal plates in which the lower plate has a temperature T
and the upper plate has a temperature 7| with Ty > T|. Let AT = Ty — T be the
temperature difference between the plates. As long as the control parameter the
temperature difference AT is small, the fluid layer remains static and so it is stable.
As AT crosses a critical value, this static fluid layer becomes unstable and as a result
a convection roll appears in the fluid layer. This phenomenon is known as thermal
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Fig. 6.18 Thermal convection pattern in a bounded rectangular

Fig. 6.19 Phase trajectory of
the Lorenz system in the xz-
plane

convection. We take the x-axis in the horizontal direction and the z-axis in the
vertical direction. From the symmetry of the problem, all flow variables are inde-
pendent of the y-coordinate and the velocity of the fluid in the y-direction is zero.

Under Boussinesq approximations (the effects of temperature is considered only
for body force term in the equation of motion), the governing equations of motions
for incompressible fluid flows viz., the continuity equation, momentum equations,
and thermal convection may be written for usual notations as (Batchelor [3],
Chandrasekhar [4]) (Fig. 6.18).

V-V =0 (6.29)

~

o¥ 1 2 P
— +(V -V)V =——Vp+ywWV ——pgz 6.30
otV Po Y o (630)
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% +(V - V)T =xV°T (6.31)

where p = p(T) is the fluid density at temperature T as given by

p(T) = po{l — (T — To)} (6.32)

po = p(Ty) is the fluid density at the reference temperature Ty, v(=u/p) the
kinematic viscosity of the fluid, u being the coefficient of dynamic fluid viscosity, «
the coefficient of thermal expansion, k the coefficient of thermal diffusion, g the
acceleration of gravity acting in the downward direction, Z the unit vector along the
z-axis, v = (u,0,w) is the fluid velocity at some instant ¢ in the convectional

motion, and T = T(x, z, ) is the temperature of the fluid at that time.
The boundary conditions are prescribed as follows:
T=Typatz=0andT =T atz = h.
Consider the perturbed quantities (when convection starts) 77, p'and p’ defined as
T =Ty(2) +T'(x,2,1), p=ps(2) +p'(x,2,1) and p = p,(2) + p'(x, 2, 1).

where T,(z) = To — (To — T1)? is the temperature at the steady state, p,(z) =
po{1 — a(Ts(z) — To1)} is the corresponding fluid density, and p,(z) is the corre-
sponding pressure given by dp,/dz = —gp,,(z), which is obtained in the conduction
state and by putting v = 0 in the equation of motion (6.30).

Substituting these in the Eqgs. (6.30)—(6.32), we get

~ 1 p'
— - (V-V)V = ——Vp' + W2V — gt 6.33
ot (¥ Y Po R ) ( )
or’ Ty — T,
o T (V. -IT' - (0}171) = kV2T (6.34)
p' = —pooT’ (6.35)
Using (6.35) into (6.33), we have
ov 1
a5 (V-V)V = —p—vp’+vv2y — agT'z. (6.36)
0

The boundary conditions become



232 6 Theory of Bifurcations

T'=0atz=0,h (6.37)
Consider the dimensionless quantities

T/
T T, —T,

ok R
Y?t :ﬁtap :ﬁpve

*

s«
X =

V=

2 =

s

S o=
S

where 0" represents the temperature deviation. Then Egs. (6.29), (6.36), and (6.34),
respectively, become (omitting the asterisk (*) for the dimensionless quantities)

V-V=0 (6.38)
ov |
— +(V-V)V = —~—Vp+3aV?V — 6ROz (6.39)
ot ~ ~ 00 ~
% +(V -V)0=V?0 (6.40)

where ¢ = v/k is the Prandtl number measuring the ratio of fluid kinematic vis-
cosity and the thermal diffusivity and R = og(Ty — T1)h* /v is the Rayleigh
number characterizing basically the ratio of temperature gradient and the product of
the kinematic fluid viscosity and the thermal diffusivity. Again, the boundary
conditions become

0=0atz=0,1. (6.41)

This is known as Rayleigh-Benard convection in the literature. Let =
W (x, z,t) be the steam function which is a scalar function representing a curve in the
fluid medium in which tangent at each point gives velocity vector and satisfying the
following relations for two-dimensional flow consideration

o

78_Z’W7 8)('

(6.42)

Then the continuity equation (6.38) is automatically satisfied. Also, in this case, the
vorticity vector has only one nonzero component o in the y-direction expressed by

Ou Ow Py Y 2
S oy (6.43)

Taking curl of the Eq. (6.39) and then projecting the modified equation in the
y-direction, we have
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ow o0

- . — 2 _ -
% +(V - Vo =0dV-0 aRax (6.44)

But,

Ow 0w
o O do

0z Ox | Ox 0z
_ 0w, ¥)
d(x,z)

:J(wa W)

Similarly, (V - V)0 = J(0,). Therefore, the Egs. (6.40) and (6.44), respec-

tively, reduce to

% +J(0,%) —w = V30 (6.45)
do L 90
B +J(w,¥) =V — aRa (6.46)
where
w=-V*. (6.47)

We assumed that the boundaries z = 0, 1 are stress-free, an idealized boundary
conditions. So we have other boundary conditions as given by

2
np:%:owz:o,l. (6.48)

We shall now convert the above set PDEs (6.45) and (6.46) into ODEs using
Galerkin expansion of  and 6. Let the Galerkin expansions of y and 6 satisfying
the boundary conditions be

W(x,z,t) = A(#) sin(nz) sin(kx). (6.49)
0(x, z,t) = B(t) sin(nz) cos(kx) — C(z) sin(2nz). (6.50)
where k is the wave number and A(?), B(t), and C(¢) are some functions of time ¢. Then

0=V = (1 +iW, Vo = -V = —(2* +k*)*y and J(w, ) = 0.
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Therefore, the Eq. (6.46) gives
2 2 da . . . .
(n*+k )Esm(nz) sin(kx) = kRoB(t) sin(nz) sin(kx)
— o(n® 4+ k?)*A(1) sin(nz) sin(kx).
This is true for all values of x and z. Therefore, we must have

(n* + k%) % = kRoB(t) — o(n® + k*)*A(r)

. (6.51)
= G G O oA

Similarly, from the Eq. (6.45), we get

% — KA(t) — (72 +K2)B(r) — TkA(1)C(1) (6.52)
dC nk
5 = 5 AWB() — 4TC(1) (6.53)

Rescale the variables ¢, A(?), B(¢), and C(¢) as follows:

_ 7'[2 2 7) = k/kC
©= (8 R X(E) = A,
Y(7) = (k/k:)R <B(t) and Z(7) = V2(k/k)R :

= g7 — e
k},{2+(k/kc)2} k§{2+(k/kc)2}
where k. = % is the wave number corresponding to the convection threshold.

Substituting these in the Egs. (6.51)-(6.53), we finally obtain the Lorenz equations
as

&Koy —x)
%:rX— Y —XZ (6.54)
&z xy - bz

where r = R/R, is known as the reduced Rayleigh number, b = 8 / 2+ (k/ke)?),

and R, = (n* + kz)3 /K. Using the wave number corresponding to the convection
threshold, that is, using k = k., we get R. = 27n*/4 and b = 8/3. The system
(6.54) is an autonomous system of dimension three. The system, although looks
very simple, is very complicated to solve analytically, because the system repre-
sents a set of nonlinear equations in R? with the nonlinear terms XZ and XY in the
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Fig. 6.20 Time solution (x, 1)
of the Lorenz system

x({)

second and third equations, respectively. Lorenz studied the system for the
parameter values ¢ = 10, b = 8/3 and r = 28. Numerical solutions (Runge—Kutta
integration) of the (6.54) for these values are obtained and shown graphically
below. It clearly indicates from the figure that the solutions never settle down to any
simple periodic orbit or limit cycle, that is, they never repeat; it is an aperiodic
motion wandering in a random manner (see the time series solution graphically,
Fig. 6.20). With these parameters values and the initial conditions
(X,Y,Z) = (0,1,0), the trajectory of solutions of the Lorenz system in the phase
plane (XZ-plane) looks like a butterfly (Fig. 6.19).

From the above orbit diagram for Lorenz system, the following qualitative
features can be drawn:

(a) The orbit is not closed;

(b) The orbit diagram or the set of trajectories do not depict a transition stage but a
well-organized regular structure;

(c) The orbit describes a number of loops on the left and on the right without any
regularity in the number of loops and the loops on both sides are in opposite
directions of rotations;

(d) The number of loops on the left and on the right depends in a very sensitive
way on the infinitesimal change of initial conditions. Transient solution does
not exhibit any periodic pattern.

(e) This is an attracting set with a dimension greater than two and was named
“strange attractor” by Ruelle and Takens.

We now derive some characteristics of the Lorenz system below.

6.6.1 Properties of Lorenz System

(1) Lorenz system is symmetric with respect to x and y axes.

If we replace (x, y, z) by (—x, —y, 2) in (6.54), it remains invariant. Thus, if (x(¢), y
(1), z(1)) is a solution of the Lorenz system, then (—x(#), —y(¢), z(¥)) is also a solution
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of the system. So, all solutions of the Lorenz system are either symmetric them-
selves or have symmetric pairs. We can also verify the symmetry of the Lorenz
system under the transformation (x,y,z)— (—x, —y,2).

(1) z-axis of the Lorenz system is invariant.
If we initially take x = y = 0 in the Lorenz system (6.54), we see thatx =y =0
for all future time ¢. In this case, the system (6.28) gives
7= —bz = z(r) = z(0)e ™ — 0 as r — 0.
Therefore the z-axis, that is, x =y =0 is an invariant set and all solutions
starting on the z-axis will tend to the origin (0,0,0) as t — oo.
(iii) Lorenz system is dissipative in nature.

In the dissipative system, the volume occupied in the phase space decreases as
the system evolves in time. Let V(¢) be an arbitrary volume enclosed by a closed
surface S(¢) in the phase space and let S(r) changes to S(¢ + dr) in the time interval
dz. Let 71 be the outward drawn unit normal to the surface S. f is the velocity of any
point, then the dot product (f - i) is the outward normal component of velocity.

Therefore, in time dz, a small elementary area dA sweeps out a volume ( f - 71)dAdr.

Therefore, V(¢ + dr) = V(¢) 4+ (volume swept out by small area of surface which is
integrated over all such elementary areas).
Hence we get

V(t+dr) = // n)dAdr

(t—|—dt / / A)dA = / (V - f)dV [Divergence Theorem]

(6.55)
So for the Lorenz system, we have

V- f = gl =)+ gy =)+ g Gy ba)

—(6+1+Db).
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Therefore, from (6.55)
vki/—w+1+bmvzf@+1+MV
v
which gives the solution V(r) = V(0)e~(1*7+2" V(0) being the initial volume.
This implies that the volumes in the phase space decreases (shrink) exponentially

fast and finally reaches an attracting set of zero volume. Hence, Lorenz system is
dissipative in nature.

(iv) Lorenz system shows a pitchfork bifurcation at origin when r — 1.

The fixed points of the Lorenz system are obtained by solving the equations
oy—x)=0, m—y—xz=0, xy—bz=0.
These give
x=y=z=0andx=y==2/b(r—1),z=(r—1).

Clearly, the origin (0, 0, 0) is a fixed point for all values of the parameters. The
system has another two fixed points for » > 1, which are given by

X=y =+b(r—1),7 =(r—1).

Lorenz called these fixed points as

a*:(¢mr—1%¢mr—n4r—n)md
¢ = (—\/b(r— 1), —/b(r—1),(r— 1))

Clearly, these two fixed points are symmetric in x and y coordinates. As r — 1,
they coincide with the fixed point origin, which gives a pitchfork bifurcation of the
system. The fixed point origin is the bifurcating point. It is impossible for the
Lorenz system to have either repelling fixed points or repelling closed orbits.

(v) Linear stability analysis of the Lorenz system about the fixed point origin.

The linearized form of the Lorenz system about the fixed point origin is given by

x=o0(y—x)
y=rx—y
7= —bz
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Now, the z-equation is decoupled so it gives
= —bz=z(t) =7(0)e™” — 0 as 1t — oo.

The other two equations can be written as

(-7 0()

Hence sum of the diagonal elements of the matrix, 1= —g — 1 = —(6+ 1) <0
and its determinant A = (—¢)(—1) —or =0(1 —r). If » > 1, then A<0 and so
the fixed point origin is a saddle. Since the system is three dimensional, a new type
of saddle is created. This saddle has one outgoing and two incoming directions. If
r<1, then A > 0 and all directions are incoming and the fixed point origin is a sink
(stable node).

(vi) The fixed point origin of the Lorenz system is globally stable for 0 <r<1.

Let us consider the Lyapunov function for the Lorenz system as

x 2, 2
V(x,y,Z):;ﬂ +27°.

Then the directional derivative or orbital derivative is given by
. 2xx . .

V  xx . .

=5 =—+tw+tx

2 o
= x(y = x) +y(rx =y — xz) +2(xy — bz)
= x>+ (1+r)xy—y* —bZ?

1+ 1+r)° 1+r\°
— _|¥_2 2 2 2 32
[ X > xy + 2 V| + > vy =y —bz
B 1+r\ | Lo (Lt g
- 2 ) 2
Thus we see that V<0 if r<1 for all (x,y,z) # (0,0,0) and V =0 iff

(x,¥,2) = (0,0,0). Therefore, according to Lyapunov stability theorem, the fixed
point origin of the Lorenz system is globally stable if the parameter » <1.

y: — b2

(vil) Linear stability at the fixed points c*.

Eigenvalues of the Jacobian matrix at the critical points ¢* of the Lorenz system
satisfy the equation
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P4 (o+b+1)22+b(c+r)A+20b(r—1) =0.

For 1 <r<ry, the three roots of the above cubic equation have all negative real
parts, where

. _d(3+b+o0)
e —b—1"

If » = ry, two of the eigenvalues are purely imaginary, and so Hopf bifurcation
occurs. This bifurcation turns out to be subcritical for » <rg, where two unstable
periodic solutions exist for two critical values of fixed points. At r = ry these
periodic solutions disappeared. For r > ry each of the two critical points have one
negative real eigenvalue and two eigenvalues with positive real part, gives the
unstable solution.

(viii)) Boundedness of solutions in the Lorenz system:

There is a solid ellipsoid E given by
w4 oy’ +a(z— 2r)2 <c<o0

such that all solutions of the Lorenz system enter E within finite time and therefore
remain in E.
To prove it we take

o(x,y,2) = w4 oy + a(z — 2r)2 =c.

We shall show that there exists ¢ = c., such that for all ¢ > ¢, the trajectory is
directed toward to the ellipsoid E at any point on the E. We have

Ve .1 {&o. 9 . 8@.}

R R 7] KT TR

— ﬁ 2rxa(y — x) +20y(rx — y — xz) +20(z — 2r)(xy — bz)]

2
= — |V(:D| [rx2 +y* +b(z — r)2 — br2} <0

So, the trajectory is directed inward to E if (x,y,z) lies inside of the ellipsoid
D=rl+y +b(z— r)2 =br’.

Now, for the ellipsoid D we have



240 6 Theory of Bifurcations

x2 n y? (z—r)2
Wiy

whose center is (0, 0, r) and the length of the semi-axes are Vbr, rV/b, r
respectively. Similarly, the center of the ellipsoid E = rx*> + 6y + (7 — 2r)2 =c

is (0,0,2r) and the length of semi-axes are \/m, \/c/7, and \/c/_a, respectively.
Since the x and y coordinates of the centers of both the ellipsoids are 0, 0
respectively, the extent of the ellipsoid E in the x and y directions exceed the extent
of the ellipsoid D in the same direction if

Velr>vbry yefo> r/b

that is, ¢ > br?; ¢ > bor?.
Next, along the z-axis the ellipsoid D is contained

O=r—r<z<r+r=2r

while for the ellipsoid E,

2r —y/c/o<z<2r++/c/o.

But 2r<2r+ +/c/o for all c. So, the lowest point (0, 0, 0) of the ellipsoid D lies
above the lowest point (o, 0, 2r — /c/o) of the ellipsoid E if

2r — \/c/a <0, that is, c > 4r%a.

Let c =cor = max{br2 , bar2,4r2a}. Then the ellipsoid D lies entirely within
the ellipsoid E,,. Hence for any point (x, y, z) exterior to D, the trajectory is directed
inward E. All such trajectories must enter E., after some finite time and remain
inside as 71, - ¥ can never be positive (Fig. 6.21).

Fig. 6.21 Graphical z
representation of bounded
solutions of Lorenz system E 0,027+ \éle )

(0,0,2r-\cjo)
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6.7 Applications

In this section, we discuss few important mathematical models which can be
analyzed using dynamical principles.

6.7.1 Interacting Species Model

When two or more species (large in numbers) compete for a limited common food
supply, naturally one will inhibit others growth. This interaction between the
species can be studied mathematically by models, first time introduced by
Alfred J. Lotka and Viot Volterra. Consider two species, say rabbits and sheep in a
grassy field with limited grass supply. Let x(¢) and y(¢) be the normalized popula-
tions of the rabbits and the sheep, respectively. Then their growth rates x/x and y/y
will decreasing functions of x and y, respectively. Assuming that they decrease
linearly, we have the following equations

X =x(a—bx —cy)
. (639

where a, b, ¢, d, e, and f are all positive constants, and x(z) > 0, y(z) > 0. We now
nondimensionalize these equations by setting

b d d
xl(f) :Exvy/(r) :gyvrzatvazz_faﬁzgak:;~

Then from (6.56), we have (after removing the dashed)

x=x(l —x—ay)
e ) (637

Let f(x,y) = x(1 —x —ay) and y = ky(1 — fx —y). We now find all the fixed
points of the system (6.57), which are the solutions of the equations x(1 — x —
ay) = 0 and ky(1 — fx — y) = 0 simultaneously. Solving these two equations, we
obtain the following four fixed points:

xX'=0,y"=0;
xX'=0,y" =1,
xX'=1,y"=0;

. 11—« 1-p
Y=

l—ocﬁ’y :1—ocﬁ'
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The last fixed point is relevant with our discussion if «f £ 1 withx* > 0and y* > 0.
Stability of these fixed points requires the Jacobian matrix of the system, given by

(1 =2x—ay —ox
J(x,y) = (—kﬁy k—kﬁx—2ky>'

1 0
0 &
are 4y = 1,4, =k, which are positive. This implies that the fixed point (0,0) is
unstable. At the fixed point (x*,y*) = (0, 1), we have J(0,1) = <l_;ﬂoc _Ok),
which has eigenvalues 1; = (1 — o) and 4, = —k. So, the fixed point (0,1) is
stable if o > 1 and unstable if ¢ <1. For the third fixed point, namely (x*,y*) =
-1 —o
(1,0), we have J(1,0) = ( 0 k1-p
and A, = k(1 — ). So, the fixed point (1,0) is stable if § > 1 and unstable if f<1.

We now consider the last fixed point (x*,y*) = (11:10;57 11__0(/2). The Jacobian matrix

o—1 ac(oc—l))
kp(p—1) k(B—1) )

At the fixed point x* = y* =0,J(0,0) = ( ) The eigenvalues of J(0,0)

) ) , which gives the eigenvalues 1; = —1

at this fixed point is calculated as J(x*,y*) :(l—laﬁ)<

which has the eigenvalues

(@—1)+k(p—1)+ \/{(0C — 1) +k(B — 1)} —4k(1 — af)(x = 1)(f— 1)
2(1 = ap) '

Ay =

Depending on the values of the parameters k, o, and f3, the eigenvalues are either
real or complex conjugate. We now determine the sign(s) of the eigenvalues for
different values of the parameters. Note that all these parameters are positive. We
now have the following four possible cases:

W) a<l, <1, @) a<l,p>1, Gii)a>1,<1,and (iv) a > 1,5 > 1.

Note that

(=1 +k(p—1)+ \/{(Oc — 1) = k(B = 1)} +4ketf(o = 1)(f — 1)

o 2(1 = af)
i
andA, A = k((x(_ll_)ffﬂ)_l)
Case L.

Let x<1 and < 1. Then aff <1. So, in this case the system has four fixed points as
mentioned earlier. The fixed points (0, 1) and (1, 0) are unstable. We now see that
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Fig. 6.22 Phase portrait for
=05 f=05and k=1

243

LT, )
H ‘L ‘+ H +| | f'llj;f."'f,‘i'(’// / / / ,%
lh\ III" Illll\llllH ll". ll ‘ | |III !I;iffff//////// %
X ==
|///: 7 ‘\’,//,A‘//}// =
| //// N

osh | [ f‘// //'7‘ ;‘h_:‘_;‘_—'f‘::;:‘_‘:
I INe=
||' f/f/é Z /J/f‘/’; x%:;_____“ f-k_:—_:

/—<0 and A4 A_ > 0. Therefore, 2, <0. Thus, the fixed point (((1 —a)/(1 —
af), (1 — B)/(1 —ap)) is stable, and all trajectories approach to this fixed point

(see Fig. 6.22).
Case II.

Let <1 and § > 1. Then (1 — «f) cannot be of same sign. So, in this case the
system has only three fixed points (0,0), (1,0),and (0, 1), among which the fixed
point (1,0) is stable, and (0, 1) is unstable. All trajectories approach to the stable

fixed point (1,0) (see Fig. 6.23).
Case III.

Let o > 1 and f<1. Then (1 — f8) cannot be of same sign. Therefore, as previous,
the system has only three fixed points, (0,0), (1,0) and (0, 1). The fixed point
(1,0) is unstable, while the fixed point (0, 1) is stable. All trajectories approach to
the stable fixed point (0, 1) as time goes on (see Fig. 6.24).

Case IV.

Leto > 1 and f§ > 1. Then aff > 1. Therefore, the system contains all the four fixed
points mentioned previously. The fixed points (1,0) and (0, 1) are stable. In this
case we also see that A, <0 and A, A_ <0. Therefore, we must have A_ > 0. So,
the eigenvalues are of opposite signs. Therefore, the fixed point (((1 —o)/(1 —
of), (1 —B)/(1 —ap)) is a saddle point, which is unstable. The phase portrait is

shown in the Fig. 6.25.

The figure shows that the fixed points (1, 0) and (0, 1) are sink. It also shows that
some trajectories starting from the unstable fixed point (0,0) must go to the stable
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Fig. 6.23 Phase portrait for ' Y T Y T
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node (1,0) on the x-axis and other must go to the stable node (0, 1) on the y-axis.
There are also some trajectories that will go to the saddle point (((1 —a)/
(I =ap), (1 =p)/(1 —ap)). These trajectories are a part of the stable incoming
trajectory of the saddle. This incoming trajectory divides the whole domain (pos-
itive quadrant of the xy plane) into two nonoverlapping domains with different
qualitative features. This separating stable incoming trajectory is called separatrix of
the system which indicates in Fig. 6.25.
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AN 77 /

6.7.2 Convection of Couple-Stress Fluid Layer

In this section we study the convectional motion of couple-stress fluid layer heated
underneath. When we mix some additives with a fluid, the forces present in the fluid
and in the additives oppose one another. This opposition produces a couple-force,
which in result generates a couple-stress in the fluid medium. These types of fluids
are known as couple-stress fluids. Some examples are flowing blood, synovial fluid
in the joints, the mixture of sugar in water, etc. Couple-stress fluids play a sig-
nificant role in medical as well as in engineering sciences. In general, couple-stress
fluids are non-Newtonian fluids, that is, they do not satisfy Newton’s law of vis-
cosity (stress is linearly proportional to the rate of strain). We are interested to study
the convection of couple-stress fluid layer. The convection of Newtonian horizontal
fluid layer had been studied extensively, see Chandrasekar [4], Drazin and Reid [5].
Consider the convection of a rectangular layer of couple-stress fluid of depth A,
confined between two stress-free boundaries. The fluid layer is heated from below.
We take the x-axis along the lower boundary, and the z-axis vertically upward. The
lower surface is held at a temperature T, and the upper is at 7y with Tp > T;. Let
AT =Ty — T be the temperature difference between the boundaries. The gov-
erning equations of motion of an incompressible couple-stress fluid in the absence
of body couple are given by

V-V=0 (6.58)

~
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14 1 1 P .
— + (V- V)V =——Vp+ —(u—puV)V?V — g2 6.59
ot (V- V)Y Po ,00( VY Po (6.59)
T
% +(V - V)T =«xV°T (6.60)

where p = p(T) is the fluid density at temperature T and is expressed by

p(T) = po{1 — (T — Tp)} (6.61)

po = p(Tp) is the density at the reference temperature Ty, p is the dynamical
coefficient of viscosity, p. is the couple-stress viscosity, o is the coefficient of
thermal expansion, x is the coefficient of thermal diffusion, g is the acceleration of
gravity in the downward direction, Z in the unit vector along z-axis, V = (u,0,w) is

the fluid velocity at some instant # in the convectional motion, and T = T(x, y, ) is
the temperature of the fluid at that time.
The thermal boundary conditions are prescribed at the boundary surfaces as

T=Toatz=0and T =T, at z=h.
Consider the perturbed quantities 7”7, p’ and p’ defined by
T=T,(2)+T'(x,2,1), p=pp(z) +p'(x,2,1) and p = p,(2) + ' (x,2,1)

where Tj,(z) = To — (To — T1) £ is the temperature at the steady state, p,(z) =
po{l — o(Ts(z) — To1)} is the corresponding fluid density and p,(z) is the corre-
sponding pressure given by dp;,/dz = —gp,,(z), which is obtained by putting V = 0

in the Eq. (6.59). Substituting these in Eqgs. (6.58)—(6.60), we get

%X 1 1 2\y72 P
(VY ==V + —(u— u VOVEY —Lgp 6.62
o TV = =V (= VVIY =g (6.62)
! J—
or +(V V)T — Mw = k2T’ (6.63)
ot ~ h
o' = —poaT’ (6.64)

Using (6.64) in (6.62) we get the following equation

ov

X 1 1
(VY = —— VP + — (u— p VAV — ogT's (6.65)
ot - ~ Po Po ~

The boundary conditions become
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T'=0atz=0,h. (6.66)
Consider the dimensionless quantities

T/
T, -1,

h k 1 n?
Vi=-V.r=—tp'=—=p.,0
~ kN7 h2 7p p0k2p7

*

E
h7

where 6" represents the temperature deviation. Then the Egs. (6.58), (6.62), and
(6.63), respectively, become (omitting the asterisk (*) for the dimensionless
quantities)

V-V=0 (6.67)

a4
5 TV V)V ==Vpto(l - CV*)V?V — 6ROz (6.68)
%Hy V)0 —w=V?0 (6.69)

where ¢ = v/K = p/Kp, is the Prandtl number, R = ag(Ty — T1)h*/vi is the
Rayleigh number, and C = p, / ph? is the couple-stress parameter. Actually, the
parameter C is the ratio of the coefficient couple-stress fluid viscosity and the
coefficient of fluid viscosity. The boundary conditions are represented by

0=0atz=0,1. (6.70)
Let = Y/(x,z,¢) be the steam function satisfying the relation as

o

U=——,w= . 6.71
oz’ Ox ( )
Then the continuity Eq. (6.67) is automatically satisfied and the vorticity vector
has only one nonzero component @ in the y-direction given by

_Ou ow Y 321//7 2
=% T ap eV (6:72)

Taking curl of the Eq. (6.68) and then projecting the modified equation in the y-
direction, we have

Jw B I 00
E—I—(Y-V)w—a(l—cv v w—aRa. (6.73)

But we have a relation
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0w Jw
(V-Vo = L +W8_z
W ow O dw

0z Ox + ox 0z
)

d(x,2)
= J(wa W)

Similarly, (V - V)0 = J(0,y). Therefore, the equations for heat transfer and the

equation of motion, respectively, reduce to

a0 o
Eﬂ‘](@ﬂ//)—W—v 0
oo - s 20

where
o=V

Since the boundaries z = 0, 1 are stress-free, so

Py
lﬁ:a—ZZZOatZ:O,l.

Let

W(x,z,1) = A(t) sin(nz) sin(kx).

0(x,z,t) = B(¢) sin(nz) cos(kx) — D(¢) sin(2nz).

(6.74)

(6.75)

(6.76)

(6.77)

(6.78)

(6.79)

be the Galerkin expansions of y and 6 satisfying the above boundary conditions.

Then

o=V = (P +i), Vo = —(n* + k)% and J(w, ) = 0.

Therefore, the equation of motion becomes

(® + &%) %Sin(nz) sin(kx) = kRoB(t) sin(nz) sin(kx)

— (14 C(7® + &)) (n* + k*)*A(2) sin(nz) sin (kx).
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which is true for all x and z. Therefore,

(m® +k2) % = kRoB(1) — o(1 + C(n® + k2))(n® + k*)*A(7)

G = B — 1+ CE N D) (680

Similarly, the heat transfer equation reduces to

%‘: — KA(t) — (2 + I2)B(r) — TkA(1)D(1) (6.81)
dD 7wk
= 7A(t)B(t) — 47°D(r) (6.82)

Rescaling the variables ¢, A(¢), B(¢), and D(¢) as

k/k,

B o) =
P (R X(0) = 5 A,
Y(t) = MB(,) and Z(t) = M
k{24 k/k)} k{2+ k/k)}

where k. = \/li is the wave number corresponding to the convection threshold, we

finally obtain the Lorenz-like system at the convection threshold

&= ofy — (1+C1)X}
&r—rx-Y-X2 (6.83)
&= XY - bZ

where r=R/R., R.=(n®+k) /2, b:8/(2+(k/kc)2), and € =

72 2
w C. Using the wave number corresponding to the convection threshold

we get R. = 27n*/4 and b = 8/3. Note that if C = 0, then it gives the Lorenz
system Newtonian incompressible fluid.

We shall now illustrate the role of couple-stress parameter in the evolution of the
system. This system is also dissipative in nature and the rate of dissipation depends
upon the Couple-stress parameter C. The fixed points of the system (6.83) are given by

b(rflfCl)

*y5,27) =1(0,0,0), |
(3",2) <,,>,< e

=V (1+C)b(r—1—Cy),r—1 —C1>,
in which the equilibrium point (0, 0, 0) exists for all values of the parameter r

whether the other two fixed points ¢t = (j: b(’%ac'), +/(A+C)b(r—1-Cy),
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r — 1 — Cy) exist when r > (14 C;) and these two equilibrium points correspond to
the convective solutions of the system. They coincide with the origin when
r = (14 C}). As in the previous case, one can easily verify that the equilibrium point
origin is stable for 0 <r <rp = (1 4+ C;) and unstable when r > rp. On the other side,

a5l 15
5 10}
305'
o st
ty | k-4
0| 1
| 0
e =5t
s : 0 10 0 30 40 50 60
10 =% 1] 5 ]
¥ t
(©)
w0l
I 15
30 | 10
tay 5
20| <
[ o oop
| .
[ -10
oL 0 10 20 i0 40 50 60
=18 = o § 1w 15
x t

Fig. 6.26 Phase trajectories and transient behaviors of the system fora C; = 0.1, b C; = 0.2,
¢C =054dC =10,eC, =50, with o =10, b=28/3 and r = 28
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e

Fig. 6.26 (continued)

the equilibrium points ¢t are stable for (14 Cy)<r<ry and unstable for r > ry,

2
where ry = o1+ C:;zl{ﬁ al;fb‘i(i +C} S0 the critical values of r are at r = rp for stable

fixed points and r = ry for unstable fixed points, and the system exhibits pitchfork
bifurcation first and then Hopf bifurcation. This is same as Lorenz system but the
contribution of C in dynamics is important. Figure 6.26 depicts the phase trajectories
and transient behaviors of the system for different values of the parameter C;. From the
figure we see that the convective motion is delayed with increasing values of C for a
fixed value of r.

With the increase of couple-stress parameter the butterfly structure of the phase
trajectories and the aperiodic transient behaviors are significantly reduced. This
implies that chaotic motion generated by the Lorenz system for the above values is
suppressed with increasing values of C;. So, the couple-stress parameter of the fluid
inhibits the convection in the horizontal fluid layer heated underneath. From the
figure it clearly indicates that the flow trajectory approaches an attractor toward the
fixed points. The attractor moves to the fixed point ¢~ at the value C; = 0.2.
Further increase values of C; the attractor approaches toward the fixed point ¢ .



252

6 Theory of Bifurcations

Table 6.1. Values of r, and q r -

ry for various values of C; 0 1 247368
0.1 1.1 27.5
0.2 1.2 30.528
0.3 13 33.8
04 14 37.3032
0.5 1.5 41.0294
0.6 1.6 44.973
0.7 1.7 49.13
0.8 1.8 53.4977
0.9 1.9 58.0739
1.0 2.0 62.8571
2.0 3.0 121.899
5.0 6.0 419.645
10.0 11.0 1316.21

Table 6.1 presents the values of 7, and ry for different values of couple-stress
parameter C.

6.8

Exercises

What do you mean by ‘bifurcation’ of a system?

Formulate one physical system in which bifurcation occurs for changing values of the

parameter. Draw also bifurcation diagram.

Find the critical value of  in which bifurcation occurs for the following systems:

@) x=pux+xt, (i) x=l+ux+x?, (i) x=px+x>, (iv) x=px—x>, (V)
i=x*—p, peR, V) i=px+x’—x+x*, (vi) )'c=—p,x~p2x2.

Determine the bifurcation point (,,x,) for the system x= ux—cx®,(c #0). Sketch

the phase portraits for u <ty and u > u,.

Determine the bifurcation points for the system x =t —Acos(x). Sketch the flow in

the (x,u) plane.

Draw the bifurcation diagram for the following systems when the parameter pe R

varies:

(i)  rF=r(u+r),6=-1

(i)  F=r(u-ru-r?),6=-1

Discuss Hopf bifurcation for the system 7= (g —r* ),0 = -LueR.

Plot phase portraits and also sketch the bifurcation diagrams for the following systems

() i=xy=p-y'ueR
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10.

12

13.

14.
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(i1) F=r(u-r)(u+r),0=LueR
(i) F=urr-pP,0=LucR.
A biochemical reaction model for certain chemical reactions, known as Brusselator
model had been modeled. The model is described mathematically given by
i=a-(b+Dx+x%y
y=bx-x’y
where a,b>0 and x and y are concentrations (x,y =0). Discuss bifurcation of the
model. In what criterion the Brusselator model admits Hopf bifurcation.
What do you mean by ‘separatrix’ of a system? What does it signify physically ? Find

the fixed points of the systems and plot the separatrix and also the basin of attractions
of the stable fixed points for the following systems:

O x=x(4-x-y), y=y(3-x-y),

(i)  x=xG-x-2y), y=y2-x-y),
(i)  x=x(4-x-2y), y=y(3-x-y),
iv) x=x(4-x-2y), y=y(B-2x—-y).

. Plot the phase portrait for the following system

. x . y
=x{1-Z-y | y=y[x-1-2 |
U R R )

Indicate the stable and unstable manifolds of the fixed points.

. Consider the Holling-Tanner model for predator-prey interaction

. x 6xy . Ny
=x|1-= |- , =02y 1-——|,
! x[ 7] (7+7x) “ y[ x J

where N is a constant with x(#) #0 and y(¢) representing the populations of prey

and predators respectively. Sketch the phase portraits for (i) N=2.5, and (ii)

N=05.

An age-dependent population can be modeled by the differential equations
X=y+x(a-bx),y=y(c+(a—bx)),

where x is the population, y is the birth rate, and a,b, and c¢ are all positive

constants. Find the equilibrium points of the systems and determine the long-term

solution. Also draw the phase portrait.

Consider a simple model equations which are used in laser physics as

X=xy—x,y=a+by—xy. Determine the fixed points and draw the phase portraits

around the fixed points. Draw the bifurcation diagram when the parameters a and b

vary.
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Chapter 7
Hamiltonian Systems

It is well known fact that Newton’s equation of deterministic motion correctly
describes the motion of a particle or a system of particles in an inertial frame. In
Newtonian set up there is no chance for unpredictable nature of motion. On the
other hand, sometimes the particle may be restricted in its motion so that it is forced
to follow a specified path or some forces may act on the particles to keep them on
the surface. Thus it is out of question to treat such cases using the Newtonian
formalism. Besides, if the forces of constraints acting on a system are unknown to
us in advance then the Newton’s equation of motion remains undefined. To get over
such situation, Lagrangian mechanics, introduced by renowned Italian mathe-
matician Joseph Louis Lagrange in 1788, provides a technique of two kinds. In the
first kind of Lagrange’s formulation, Newton’s equation of motion is solved by
evaluating the forces of constraints using the constraint relations. But it is a tedious
procedure. Moreover, Newton’s equation of motion is applicable in an inertial
frame only. The forces of constraints operating on a dynamical system regulate
some of these coordinates to vary independently this means that all the coordinates
which describe the configuration of a dynamical system moving under the forces of
constraints may not necessarily be independent. Consequently, the resulting
equations of motion are not independent. So, to describe the configuration of the
dynamical system and also to obtain a general equation of motion valid in any
coordinate system, a set of independent coordinates is required. This gives a general
equation of motion which is known as Lagrange’s equation of motion. It is valid in
any coordinate system, and the knowledge of constraint forces is not necessary for
its derivation instead the knowledge of work, energy and principle of virtual work
are needed. Thus, Lagrangian’s method can provide a much fresher way of solving
some physical systems compared to Newtonian mechanics, in particular for the
system moving under some constraints. Thus Lagrangian mechanics is a refor-
mulation of classical mechanics in terms of arbitrary coordinates.

In Lagrangian mechanics, the Lagrange’s equation of motion is a second order
differential equation, where the Lagrangian variables are the generalized coordi-
nates and generalized velocities with time ¢ as parameter. Apart from Lagrangian
formulation there is another formulation in terms of Hamiltonian function. The
corresponding dynamics is called Hamiltonian dynamics named after the famous
Scottish mathematician Sir William Rowan Hamilton (1805-1865). Hamilton

© Springer India 2015 255
G.C. Layek, An Introduction to Dynamical Systems and Chaos,
DOI 10.1007/978-81-322-2556-0_7
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originated this formulation of classical mechanics in 1833 which is applicable to a
holonomic system described by a set of generalized coordinates. Hamiltonian
mechanics is founded on the basis of Lagrangian formulation where the basic
variables are the generalized coordinates and the generalized momenta. This
reformulation provides a deeper understanding of the equations of motion of a
dynamical system compared to the Lagrangian formulation and makes possible to
write the equation of motion in a very stylish, yet simple way. The main beneficial
thing about this formulation is that rather than providing a more convenient way of
solving a particular problem, Hamiltonian mechanics gives a deeper understanding
of the general structure of classical mechanics. Also, it makes clear its relationship
with the quantum mechanics and other related areas of science. In this chapter we
shall learn the basics of Lagrangian and Hamiltonian mechanics, and also
Hamiltonian flows in the phase space, symplectic transformations and Hamilton—
Jacobi equation.

7.1 Generalized Coordinates

The position of a point in space is generally specified by its position vector with
respect to a fixed set of coordinate system or by the help of three Cartesian coor-
dinates (x,y,z) of that point. Generally, the positions of N points are determined by
N vectors or by 3N Cartesian coordinates. But the position of a system can be
determined not only by using Cartesian coordinates, but there also exists alternative
coordinates systems or alternative parameters by which one can determine the
position of a system completely at any time ¢. These coordinates are called the
generalized coordinates. Therefore generalized coordinates are the independent
coordinates which completely specify or describe the configuration of a dynamical
system at any given time. Now if we consider a set of quantities say, g1, g2, - - -, qn,
defining the position of a dynamical system as generalized coordinates of the
system then the set of their first order derivatives ¢q; ,q ,...,q, are called as
generalized velocities. Any set of parameters which gives the representation of the
configuration of a dynamical system without any ambiguity can serve the purpose
of generalized coordinates. So one can use angles, axes, moments or any set of
parameters as the generalized coordinates. But one should be careful while making
choice of generalized coordinates as it is totally dependent on skill. Correct choice
of generalized coordinates; make the problem look easy while the problem becomes
difficult to handle for a wrong choice of the generalized coordinates. Some
examples of generalized coordinates are as follows:

(i) For a simple pendulum of length /, the generalized coordinate is the angular
displacement 6 from the vertical.

(i) For a spherical pendulum of fixed length I, the generalized coordinates are
0, ¢; 0, ¢ being the spherical polar coordinates.
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(iii) Consider a rod lying on a plane surface. The generalized coordinates are
X, Y, 0, where (x,y) are the coordinates of one end of the rod and 0 is the angle
between x-axis and the rod.

(iv) Consider a lamina lying in a plane. For this case, the generalized coordinates
are x,y, 0, where (x,y) are the coordinates of the centroid and 0 is the angle
made by a line fixed in the plane.

So far we have defined the generalized coordinate and the generalized velocities.
The generalized momentum is the product of mass and the generalized velocity. If
pj is the generalized momentum of the jth particle whose mass is m; and generalized
velocity is g; then p; = m;g;.

7.1.1 Configuration and Phase Spaces

The configuration of a dynamical system is described instantaneously by the gen-
eralized coordinates. The n-generalized coordinates g1, gz, .. .,q, correspond to a
particular point in the n-dimensional space. The n-dimensional space spanned by
these n-generalized coordinates of a dynamical system is called the configuration
space of that system. The state of the system changes with time and the system
point traces out a curve in moving through the configuration space. The curve traces
out by the system point is known as trajectory or the path of the motion of the
dynamical system. On the other hand phase space is generally a 2n-dimensional
space spanned by n generalized coordinates and n generalized momenta where the
qualitative behavior of a dynamical system is represented geometrically. A 2n-di-
mensional space spanned by n generalized coordinates and n generalized momenta
of a dynamical system is called the phase space of that dynamical system. At any
instant of time a point in a phase space is called the phase point. As the dynamical
system evolves with time the phase point moves through the phase space thereby
traced a path, known as phase curve. When one additional dimension in terms of
time ¢ is added to the phase space then the phase space is a (2n + 1)-dimensional
space which is called as state space.

For instance, Hamiltonian system which does not depend on time ¢ explicitly is a
2n-dimensional phase space. The axes of a Hamiltonian system give the values of
generalized coordinate g and generalized momentum p. Hamiltonian of such sys-
tems are conserved quantities and gives the energy of the system. The trajectories of
Hamiltonian system therefore can go only to those regions of phase space where the
energy of the system remains same as to the initial point of the trajectory. The
trajectories of a Hamiltonian system are thus confined to a 2n — 1-dimensional
constant energy surface.
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7.2 Classification of Systems

A dynamical system is said to be holonomic if it is possible to give arbitrary and
independent variations to the generalized coordinates without breaching the con-
straint relations. Otherwise it is called nonholonomic system. In mechanics the
constraint is very important and can be found in Sommerfeld [1], Goldstein [2] and
Arnold [3].

More specifically, a system is said to be holonomic if it contains only the
holonomic constraints. If there is any nonholonomic constraint then the system is
called nonholonomic. For instance, if 1, g2, . . ., g, be the n generalized coordinates
of a dynamical system then for a holonomic system it is possible to change g, to
(g + 0q,) without changing the other coordinates.

Again consider two particles of masses m; and m, connected by a string of
length ! moving in space. If 7| and 7, are the position vectors of masses at time

-

t then clearly we have |7, — 7| <lor ? — (%, — ?1)2 > 0. In this case the system is a
holonomic system with unilateral constraint. If the conditions of the constraints are
expressed by means of non-integrable relations of the following form
andt + Y aimdg; = 0 for m = 1,2, ..., k(< n) where a’s are functions of gener-
alized coordinates then the system is called a non-holonomic dynamical system.

Example 7.1 Examine whether the motion of a vertical wheel on a horizontal plane
is holonomic or non holonomic.

Solution Consider the motion of a vertical wheel of radius a rolling on a perfectly
rough horizontal plane specified by the coordinate axes Oy, O,. The contact point P
traces out some curve C on the xy-plane. If 6 be the angle of rotation of the wheel
when the contact point P has travelled a distance s (measured from P,) along the
curve then s = a0 (assuming that the wheel rolls without sliding). Now, ds = a 60
(Fig. 7.1).

Fig. 7.1 Motion of a vertical Y
wheel on a horizontal plane
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If the coordinates of P are (x, y) and if the tangent at P makes an angle y with O,
then

O0x = cos Y s = a cos Y 60
and
d0y = sin Y s = a sin 60

The coordinates (x,y, 0, y) form a nonholonomic system.

7.2.1 Degrees of Freedom

The degrees of freedom of a system are the minimum number of generalized
coordinates needed to describe the configuration of a system or to specify the exact
position of an object of that system. In other words, the minimum number of
independent parameters necessary to describe the configuration of the dynamical
system at any time is called the degrees of freedom.

We shall now give some examples of degrees of freedom which will help in
understanding the idea more clearly.

Example 7.2 If a system is made up of N particles, we need 3N coordinates to
specify the positions of all the particles of the system. If a system of N particles are
subjected to C constraints (i.e. if some of the particles are connected by C relations),
there will be (3N-C) number of independent coordinates only. So, the number of
degrees of freedom is (3N-C).

Example 7.3 If a point mass is constrained to move in a plane (two dimensions) the
number of spatial coordinates necessary to describe its motion is two. So the
degrees of freedom in this case are two.

Example 7.4 Consider a particle moving on a surface x> + > 4 z> = a?. In this case
the degrees of freedom is 2, though the degrees of freedom in 3-dimensional
Cartesian coordinate system is 3. Again if the particle is inside the sphere (i.e.,
x? +y*+ 7% — a®> <0), then the degrees of freedom is 3.

Example 7.5 Consider a system of three free objects. The system has 9 degrees of
freedom. If by imposing some constraints the free spaces between the objects are
fixed, then the number of degrees of freedom of the system will be 9 — 3 = 6. These
six degrees of freedom can be chosen in any way. For example, the three coordi-
nates of the centre of mass with the 3 angles of their inclinations to a fixed frame of
reference.



260 7 Hamiltonian Systems

The set of coordinates used to describe a system can be selected freely, keeping
in mind that, the number of coordinates minus the number of constraints must give
the number of degrees of freedom for that system.

7.2.1.1 Some Important Features of the Degrees of Freedom
of a System

1. The number of degrees of freedom is independent of the choice of coordinate
system.

2. The number of coordinates and number of constraints do not have to be the
same for all possible choices.

3. There are freedoms of choices of origin, coordinate system.

7.3 Basic Problem with the Constraints

The most fundamental problem associated with the forces of constraints is that they
are unknown beforehand. So, in the absence of knowledge of the total force acting
on the system, it is impossible to solve Newton’s equation of motion which is a
relation between the total force and the acquired acceleration. The total force is the
sum of the externally applied force and the force of constraints. Let us try to
overcome this situation.

Consider the motion of a particle of mass m under the velocity dependent
(nonholonomic) constraint

g(?,;", r) =0 (7.1)

Let f@ andf be the externally applied forces and constraint forces respectively
acting on the particle. So, the total force acting on the particle is given by F=
f(”> —l—f. The Newton’s equation of motion therefore becomes

mi=F=f4+f (7.2)

The numbers of equations are four whereas the numbers of unknowns are six.
Therefore, the problem does not possess unique solution. To obtain a unique
solution one needs additional constraint relations. The search for additional rela-
tions gives rise to Lagranges’s equations of motion of the first kind. We shall now
give the derivation of Lagrange’s equation of first kind.
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7.3.1 Lagrange Equation of Motion of First Kind

Consider a holonomic, bilateral constraint given by
g(r,1) =0 (7.3)
Differentiating Eq. (7.3) with respect to time ¢t we get,

dg  Og

at—|—8r-r=O (7.4)

Again differentiating Eq. (7.4) with respect to time ‘#” we get,

Pg  Pg . d[(dg\ . 9
g gq_(g).urg

SL
I
o

o T T a\er) Tt o 7-3)

The above constraint relation on the total acceleration (7) is therefore directly
affected by the vector g—ii. Only the component of acceleration (hence the force)

parallel to the Vector g§ enters the above constraint relation due to scalar nature of

the product g . In other words, f must be parallel to g‘;, that is
. og
= 7.6
or 7:6)

where / is a scalar.

Let us consider a nonholonomic, bilateral constraint of the form g(?, ?, t) =0

and taking time derivative we get, %f +3 ag F+2F=0.
oF

Arguing as above, one can get,

0g
oF

f=2 (7.7)

Since, g(¥,t) = 0 or, g(?, 7, t) = 0 is given, hence f is known except for A.

Now there are four unknowns and four independent equations which can give

simultaneous solution for 7. Hence f can be uniquely specified along with /.
Newton’s equations of motion now take the following form:
For holonomic one particle system

and for nonholonomic system
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mit — fl@) — AM =0. (7.9)

The Eq. (7.8) or (7.9) is sometimes called Lagrange’s equation of motion of the
first kind and / is called Lagrange’s multiplier.

This can easily be generalized for the motion of a system of N particles having
k bilateral constraints, viz.

gi(F,1)=0, i=1,2,..,k (for holonomic system)

and
gi (?, 7, t) =0,i=1,2,...,k (for nonholonomic system).

Thus Lagrange’s equations of motion of the first kind for the jth particle having
mass m; become

k -
s 0gi(7, ¢ .
mir; —];a) - Z }viLj_) =0,j=12,...,N (forholonomic system)

i=1 8?/
(7.10)
. o k 881 (7]’ ;:}a t)
m;7; —];(a) — Z liT =0,j=1,2,...,N (fornonholonomic system)
i=1 J
(7.11)

f}(“) being the total externally applied force on the jth particle of the system.

These vector equations for holonomic and nonholonomic systems can be applied
to the systems containing scleronomic or rheonomic bilateral constraints forms. The
total number of scalar equations is 3N + k (3N equations for motion and k& number
of constraints). The total number of unknowns are 3N + k (3N components for 7 and
k number of unknown A). Since these equations are coupled, so obtaining solutions
of these equations become rather complicated. So, Lagrange’s equations of motion
of the first kind are of little help and find a few applications in practice. But if
solved then the solution provides the complete description of the dynamical
problems of diversified nature.

Let us now show that the order of differentiation is immaterial in Lagrange’s
equation of motion.

Suppose that the dynamical system be comprised of N particles of masses
m;(i=1,2,...,N). Let 7; be the position vector of the ith particle having mass m;.
The position of the system at time ¢ is specified by n generalized coordinates
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denoted by ¢1, q2, - - -, . Then each 7; is a function of ¢, g2, . . ., g, and time ¢, that

is 7 =7 (91,92, -, qn)-
Time derivative of the generalized coordinate g; is called the generalized
velocity of the ith particle. The velocity of the ith particle is given by

5 \~OF . | OF
r_Zl:a_qjqj—’—E
J=

Differentiating again this equation with respect to generalized coordinate ‘g;” we
have,

oF,_ oF,

—=—forj=1,2,...,n
8qj qu

d (or\ _ o
dr 8q] o aqj
This proves that the order of differentiation with respect to ‘¢’ and ‘g;’ are
immaterial.

Again,

7.3.2 Lagrange Equation of Motion of Second Kind

Let the system contains N particles of masses m;(i = 1,2,...,N). The position of
the system at time ¢ is specified by n generalized coordinates g1 gz.. . .,q,. If 7; be
the position vector of the ith mass then

ri=7(q1,q2- - qn)(i=1,2,..,N)
From the generalized D’Alembert’s principle we have
N

3 (ﬁi - mi#i) o7 =0 (7.12)

i=1
where F’s being the external forces acting on the system and 67;’s are the small

instantaneous virtual displacements consistent with the constraints.
From Eq. (7.12) we have,

N . N
> miFi. o = FioF (7.13)
i=1 i=1
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. . . - OF;
Since = Vi(CIhf]Zy cey qn), 5}’1‘ = Z:—l ﬁé%

Then ow = ¥, Frofi = Y, B (S0, 92 ) oae = S0, (S0 B ) da. = X0, Qb
where Q, = g—; being the generalized force associated with the generalized

coordinates ¢., (e = 1,2,...,n).
Now,

i=1 i=1 e=1

S
| e

|
N
I B
‘gla’
N 7
T
. B
3. 3 N
[&5)
S
[

o
Il
_
o
-~

Il
=
&l
N
=
E:
-
D
NS

e=1

N 2 O N2 O (e O OF;
Therefore, 2 ?q Yo miT. 9= Do mitis - (since, = aqe).

OF;
8qe Zm’r' dq.

i=1

N 5 oo n d
Thus, > i, miri.0F; =Y [dz (ng;) — 8%] 8Ge.
Substituting the above expression into Eq. (7.13) and transferring all the terms in

one side we have,
L d /0T or
D Bl Bl = .14
> le {6 (5) ~afose =0 (714)

e=1

Case (i) System with n degrees of freedom
In this case the coordinates are free coordinates and can be varied arbitrarily. So,
the coefficients of each dg, must vanish separately, giving
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d /or or
— J— — = f :12...
o (i () df =0 o sz

or,

d/oT\ orT
d _ 0, for e=1,2,... 7.15
dz(&g) bg, Qe for e " (7.15)

These equations are second order differential equations and are called as the
Lagrange’s equations of motion of a dynamical system with n degrees of freedom.

If in addition, the system is conservative then Q, = — 37‘/ where V = V(q.,1) is

the potential function.
Substituting the value for Q. in Eq. (7.15) we have,

d /0T or  ov
dr\9q.) 0q.  0q.
If we assume that V is independent of the generalized velocity ¢., then we can
write the above equation as g{a(g_—v)} — a(g_—v) =0.
t e qe

If we set L=T —V, known as Lagrangian of the system then Lagrange’s
equations of motion can be written as

d (OL oL
— (=) -==0,e=1,2,...
dr <8q6> 8q() 07 e Pt , 1

Note that if the system contains some forces derivable from a potential function
and some other forces not derivable from a potential function then the Lagrange’s
equation of motion can be written as

d /OL oL
—a=) —2—=0le=1,2,... 7.16
() - s =he=120m (716
where all the potential forces have been included in the Lagrangian L and the
non-potential forces are given by Qé.

Case (ii) Holonomic dynamical system with k bilateral constraints
For a holonomic dynamical system with & bilateral constraints, the generalized
coordinates are connected by k independent relations of the following form:

]3'(%742a--~a%ut):07j:1727~~-7k(k<”) (717)

Let us now consider a virtual change of the system at time ¢ consistent with the
constraints in which the coordinates ¢j,q>...,q, are changed to
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g1+ 0q1,92 +90q2,...,q,+90q,. Therefore, from Eq. (7.17) we have,
filg1 +96q1,q2 +0q2, . . ., qu + 0gy, 1) = 0, this can be expanded in a series like

" of
JS'(CII,QL -« {qn, t) + Zaf 5% + 0(5%)2 =0
e=1 ¢

Since changes dq, are small we have

Zaﬁé =0 for j=1,2,... k(k<n) (7.18)

It is evident from (7.18) that the changes dq1, d¢>, . . ., dgx are not independent.
We now introduce k arbitrary parameters Aj,4z,..., 4. We now multiply the

Eq. (7.18) by these k parameters and sum up to obtain Z A gg’ oq. = 0 or,

ZZ(A, f’)éqe—O (7.19)

Adding Eq. (7.19) to the Eq. (7.14), we get

Sl (o) -y Sasn o

e=1

Now choose the parameters A1, 45, ..., A4 in such a way that the coefficients of
441,942, . . ., 0qx vanish separately. This gives

d [or - 8]?
Qe—{$<8q€) 3%} Z} =0 for e=1,2,...,k(<n)

j=1

or,

5(%) 0q. _Q€+ZAJ 2, k(<n) (7.21)

Now Eq. (7.19) takes the following form

- d /or\ or koo
> [Qe—{dt(aq>—8q}+zﬁjaﬂaqe_o (7.22)

e=k+1 Jj=1
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Since the variations 0gx 4 1,0qk+2,---,0q, are arbitrary and independent we
must have

d /or 3}3 _
Q"_{dr(aq) aqe} Z’ TO B em iR

or,

d /oT\ oT Lof
— — =0, A=l f =k+1,k+2,....n. 7.23
dr(aq) 9. Q‘*,;faqe or eskrbiaz e (723)

The Egs. (7.20) and (7.22) together give

d /0T oT of;
hd o, 2y, — 1,2,k k1, k42,
& < aq) 94, 0.+ Z D4, or e Sk + + n

(7.24)

These are the Lagrange’s equations of motion for a holonomic dynamical system
with k bilateral constraints.

These equations have (n + k) unknown quantities gy, g2, - - ., qn; A1, 42, - -, 4. In
order to solve the n number of equations given by (7.24) we have to supply
k equations of constraints.

Case (iii) Nonholonomic dynamical system
In this case the changes dqi,dqz,...,0q; are connected by k-nonintegrable
relations of the following form

ajdt+ Y aidge =0 for j=1,2,.. k(<n) (7.25)

e=1

where a;’s are the functions of the coordinates.
For virtual changes at time ¢,

> adg. =0 forj=1,2,... . k(<n) (7.26)

e=1

From Eq. (7.25) it is clear that the changes dq1, d¢q>, . . ., dg; are not independent.
We now multiply Eq. (7.25) by k arbitrary parameters 4;(j =1,2,...,k) and sum
up to obtain

k

n n k
D 4D aedg. =0 or Y (Z iﬂje) g =0 (7.27)
e=1 e=1 \ j=I1

=

Adding Eq. (7.27) with the (7.14), we get
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Sl )T Sonfue om

e=1 j=1

Let us choose A, 4z, ..., 4 such that the coefficients dqy,dq, ..., dg; vanish
separately.

This gives Qo — {$ (2) = 22} + Xb, e = 0 for e = 1,2,.

d /0T oT k
dr <8qe> Tog %t ;iﬂfe for e=1,2,...,n (7.29)

Equations (7.29) are the Lagrange’s equations of motion for nonholonomic
dynamical system.
The equations of constraints are added in the modified form:

aj+ Za]eqe—o for j=1,2,....k(<n) (7.30)

e=1

Ier:_% and L = T — V then we have,

d /oL
dr(@g) B4, Z} ie

j=1

7.3.2.1 Physical Significance of /’s

Let us suppose that we remove the constraints of the system and instead of con-
straints let us apply external forces (0, in such a manner so as to keep the motion of
the system unchanged. Clearly, the extra applied forces must be equal to the forces
of constraints. Then under the influence of these forces Q/, the equations of motion

d(a
area(ﬁ)—@ 0, fore=1,2,.

But this must be identical with ((jj (qu) - g_qI; = Z}‘:l Aiaje fore =1,2,...,n

Hence one can identify ijl Ajaje with 0, the generalized forces of constraints.

7.3.2.2 Cyclic Coordinates (Ignorable Coordinates)

If a coordinate is explicitly absent in the Lagrangian function L of a dynamical
system then the coordinate is called a cyclic or ignorable coordinate. Thus if g is a
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cyclic coordinate, then the form of the Lagrangian is L = L(¢y,?) and E%k = 0. The
cyclic co-ordinate is very important in deriving Hamilton’s equations of motion.

Example 7.6 Find the Lagrange’s equation of motion of a simple pendulum

Solution The generalized coordinate of a simple pendulum of length / is the angle

variable 6. The velocity of the ball is 10 where [ is the length of the string of the
pendulum. A simple pendulum oscillating in a vertical plane constitutes a conser-
vative holonomic dynamical system with one degree of freedom.

Here, Kinetic Energy =T = %mlzbz, m is the mass of the ball.

Potential Energy = V = mgh = mgl(1 — cos 6).

Therefore, Lagrangian of the system = L = T — V = 1m0 — mgl(1 — cos 0).

Lagrange’s equation of motion is ((li (dL> 00 =0 or, ml*0 +mgl sin 0 =

or, mi2) = —mgl sin 0 or, 0=— 7 sin 0 ~ —& 0 (if the amplitude of oscillation
is small then 0 is small and so sin 0 ~ 0).

Time period is given by Zn\/g, g is the acceleration due to gravity.

Example 7.7 For a dynamical system Lagrangian is given by L = 1 (i* +3* 4+ 2%) —
V(x,y,z) +Ax+By+ Cz where A,B,C are functions of (x ¥,2). Show that
Lagrange’s equations of motion are X +y(‘7—A - —) +z<aA ) + %X 0 and

similar ones.

Solution The generalized coordinates for the given dynamical system are x,y, z.
Now the Lagrange’s equation of motion corresponding to x-coordinate is

d oy _o_,
dr \ 9x ox

Or,dg(chrA) [ + P54+ By 95 =0

da , ov_9A; 0B _ OC
OI‘X—|—d—|— _axx_axy_de—O

or, x—|—y(a"‘——)+z(a—“——)—|— Osince((jiA x—|—aAy—|—

In an analogous way one can obtain the other two Lagrange S equatlons of
motion corresponding to y and z coordinates.

Example 7.8 Obtain the Lagrangian and also the Lagrange’s equation of motion of
a harmonic oscillator.

Solution A harmonic oscillator consists of a single particle of mass m moving in a
straight line which can be taken as x-axis (see Fig. 7.2). The particle is attracted
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F
0 < {m)
X

Fig. 7.2 Sketch of a harmonic oscillator

towards the origin by a force which varies proportionally with the distance of the
particle from the origin.

Then the Kinetic Energy of the harmonic oscillat