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Preface

This book is about dynamical aspects of ordinary differential equations and the
relations between dynamical systems and certain fields outside pure mathematics.
A prominent role is played by the structure theory of linear operators on finite-
dimensional vector spaces; we have included a self-contained treatment of that
subject.

The background material needed to understand this book is differential calculus
of several variables. For example, Serge Lang's Calculus of Several Variables, up to
the chapter on integration, contains more than is needed to understand much of our
text. On the other hand, after Chapter 7 we do use several results from elementary
analysis such as theorems on uniform convergence; these are stated but not proved.
This mathematics is contained in Lang's Analysis I, for instance. Qur treatment of
linear algebra is systematic and selfcontained, although the most elementary parts
have the character of a review; in any case, Lang's Coleulus of Several Variables
develops this elementary linear algebra at a leisurely pace.

While this book ean be used as early as the sophomore year by students with a
strong first year of calculus, it is oriented mainly toward upper division mathematics
and science students. It can also be used for a graduate course, eapecially if the later
chapters are emphasized.

It has been said that the subject of ordinary differential equations is a collection
of tricks and hints for finding solutions, and that it is important because it can
golve problems in physics, engineering, ete. Our view is that the subject can be
developed with considerable unity and coherence; we have attempted such a de-
velopment with this book. The importance of ordinary differential equations
vis d vis other areas of science lies in its power to motivate, unify, and give force to
those areas. Qur four chapters on “applications” have been written to do exactly
this, and not merely to provide examples. Moreover, an understanding of the ways
that differential equations relates to other subjects is a primary source of insight
and inspiration for the student and working mathematician alike.

Our goal in this book is to develop nonlinear ordinary differential equations in
open subsets of real Cartesian space, R*, in such a way that the extension to
manifolds is simple and natural. We treat chiefly autonomous systems, emphasizing
qualitative behavior of solution curves. The related themes of stability and physical
significance pervade much of the material. Many topics have been omitted, such as
Laplace transforms, series solutions, Sturm theory, and special functions.

The level of rigor is high, and almost everything is proved. More important,
however, is that ad hoc methods have been rejected. We have tried to develop



X PREFACE

proofs that add insight to the theorems and that are important methods in their
own right,

We have avoided the introduction of manifolds in order to make the book more
widely readable; but the main ideas can easily be transferred to dynamical systems
on manifolds.

The first. six chapters, especially Chapters 3-8, give a rather intensive and com-
plete study of linear differential equations with eonstant coefficicnts. This subject
matter can almost be identified with linear algebra; hence those chapters constitute
a short course in linear algebra as well. The algebraic emphasis is on eigenvectors and
how to find them. We go far beyond this, however, to the “semisimple + nilpotent”
decomposition of an arbitrary operator, and then on to the Jordan form and its real
analogue, Those proofs that are far removed from our use of the theorems are
relegated to appendices. While complex spaces are used freely, our primary concern
is to obtain results for real spaces. This point of view, so important for differential
equations, is not eommonly found in textbooks on linear algebra or on differential
equations.

Our approach to linear algebra is a fairly intrinsic one; we avoid coordinates
where feasible, while not hesitating to use them as a tool for computations or proofs.
On the other hand, instead of developing abstract vector spaces, we work with|
Linear snbspaces of R or C*, a small concession which perhaps makes the abstraction|
mote digestible,

Using our algebraie theory, we give explicit methods of writing down solutions
to arbitrary constant coefficient linear differential equations. Examples are included.
In particular, the S + N decomposition is used to compute the exponential of an
arbitrary square matrix,

Chapter 2 is independent from the others and includes an elementary account
of the Keplerian planetary orbits.

The fundamental theorems on existence, uniqueness, and eontinuity of solutions
of ordinary differential equations are developed in Chapters 8 and 16. Chapter 8 is
restricted to the autonomous case, in line with our basic orientation toward dynami-
cal svstems.

Chaptors 10, 12, and i4 are devoted to systematic introductions to mathematical
madels of vleetrical eireuits, population theory, and classical mechanics, respectively.
The Tiruyton Moser cireuit theory is presented as a special case of the more general
theory recently developed on manifolds. The Volterra-Lotka equations of competing
species are analyzed, along with some generalizations. In mechanics we develop
the Hamiltonian formalism for conservative systems whose configuration space is
an open subset of a vector space.

The remaining five chapters contain a substantial introduction to the phase
portrait analysis of nonlinear autonomous systems. They include a discussion of
#generic” properties of linear flows, Liapunov and structural stability, Poincaré-
Bendixson theoty, periodic attractors, and perturbations. We conctude with an
Afterword which points the way toward manifolds.

PREFACE xi

The: following remarks should help the reader decide on which chapters to read
and in what order.

Chapters [ and 2 are elementary, but they present many ideas that recur through-
out the book.

Chapters 3-7 form a sequence that develops lincar theory rather thoroughly.
Chapters 3, 4, and 5 make a good introduction to lincar operators and linear differ-
ential equations. The canonical form theory of Chapter 6 is the basis of the stability
results proved in Chapters 7, 9, and 13; however, this heavy algebra might be post-
poned at a first exposure to this material and the results taken on faith.,

The existence, uniquencss, and continuity of solutions, proved in Chapter 8, arc
used (often implieitly) throughout the rest of the book, Depending on the reader’s
taste, proofs could be omitted.

A reader interested in the nonlinear material, who has some background in lincar
theory, might start with the stability theory of Chapter 9. Chapters 12 (ccology),
13 (periodic attractors), and 16 (perturbations) depend strongly on Chapter 9, while
t-he section on dual vector spaces and gradients will make Chapters 10 (clectrical
circuits) and 14 (mechanics) casier to understand,

Chapter 12 also depends on Chapter 11 (Poincaré-Bendixson); and the matorial
in Section 2 of Chapter 11 on local sections is used again in Chapters 13 and i6.

Chapter 15 (nonautonomous equations) is a continuation of Chapter 8 and is
used in Chapters 11, 13, and 16; however it can be omitted at a first reading.

The: logical dependence of the later ehapters is summarized in the following chart ;

?\9/
I,
14 1 )

12

8

10

>

The book owes much to many people. We only mention four of them here. Tkuko
Wor!cman and Ruth Suzuki did an cxcellent job of typing the manuseript. Dick
Palais made a number of uscful comments. Special thanks are due to Jacob Palis,
who read the manuseript thoroughly, found many minor crrors, and suggested
several substantial improvements, Professor Hirsch is grateful to the Miller Institute
for its support during part of the writing of the book.



Chapter 1

First Examples

"The purpose of this short chapter is to develop some simple examples of differen-
tia) equations, This development motivates the linear algebra treated subsequently
and moreover gives in an elementary context some of the basic idess of ordinary
differential equations. Later these ideas will be put into & more systematic exposi-
tion. In particular, the examples themselves are special cases of the class of differen-
tial equations considered in Chapter 3. We regard this chapter as important since
some of the most basic ideas of differential equations are seen in simple form.

§1l. The Simplest Examples

The differential equation

(L) i

is the simplest differential equation. It is also one of the most important. First,
what does it mean? Here z = z({) is an unknown real-valued function of a real
variable ¢ and dx/d! is its derivative (we will also use x’ or 2’ (¢) for this derivative).
The equation tells us that for every value of ¢ the equality

z'(€) = ax(t)

is true. Here a denotes a constant.
The solutions to (1) are obtained from calculus: if K is any constant (real num-
ber), the function f({) = Ke* is a solution since

6y = aKe* = af(l).
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Moreover, there are no other solutions. To see this, let u (¢} be any solution and -
compute the derivative of u(t)e™=!:

2 @) = v (e + u(t) (~ae

= auft}e™t — aqu{t)e = 0.

Therefore u{t)e = is a constant K, so u(t}) = Ke*, This proves our assertion

The constant K appearing in the solution is completely determined if the value —-

un of the selution at a single point 4 is specified. Suppose that a function z(t) satisfy-
ing {17 is required such that z(fy) = ue, then K must satisfy Ke*®* = uy. Thus
equation (1) has a unique solution satisfying a specified initial condition £(t,) = u,.
For simplicity, we often take & = 0; then K = ug. There is no loss of generality
in taking & = 0, for if u({) is a solution with %(0) = u,, then the function (i) =
u{t — f) is a solution with v{f) = u.

It ix common to restate (1) in the form of an initial value problem:

() z = az, 2(0) = K.

A solution z(2) to (2) must not only satisfy the first condition (1}, but must also
take on the prescribed initial value K at ¢ = 0. We have proved that the initial
value problem (2) has a unique solution.

The constant a in the equation ' = ax can be considered as a parameter. If a
changes, the equation changes and so do the solutions, Can we deseribe qualita-
tively the way the solutions change?

The stgn of a is crucial here;

if @ > 0, lim.e Ke** equals © when K > 0, and equals —« when K < 0;

if @ = 0, Ke2t = ¢constant;

if a < 0, limp., Kes* = 0.

§l. THE BIMPLEST EXAMPLES 3

The qualitative behavior of solutions is vividly illustrated by sketching the graphs
of solutions (Fig. A). These graphs follow a typical practice in this book. The
figures are meant to illustrate qualitative features and may be imprecise in quanti-
tative detail.

The equation 2’ = az is stable in a certain sense if a # 0, More precisely, if a
iz replaced by another constant b sufficiently close to a, the qualitative behavior
of the solutions does not change. If, for example, | & — a| < | a |, then b has the
same sign as . But if a = 0, the slightest change in a leads to a radical change in
the behavior of solutions. We may also say that a = 0 is a bifurcation point in the
one-parameter family of equations 2’ = ar, ain R.

Consider next a sysiem of two differential equations in two unknown functions:
{3) = am,

Ti = Gata.

This is a very simple system; however, many more-complicated systems of two
equations can be reduced to this form as we shall see a little later.

Since there iz no relation specified between the two unknown functions x,(?#),
x:(1), they are “uncoupled”; we can immediately write down all solutions (as for
(1)

n(l) = Kiexp(al), K, = constant,

2:({) = K; exp(ast), Ky = constant,
Here K, and K, are determined if initial conditions z,(f) = u1, zz(le) = us Are
specified. (We sometimes write exp a for ¢.)

Let us consider equation (2) from a more geometric point of view, We consider
two functions (1), z:(f) as specifying an unknown curve z(8) = (z:{f), (1)) in
the (z,, z2) plane R® That is to say, x is a map from the real numbers R into R?, z:
R — R The right-hand side of (3) expresses the tangeni vector 2' (1) = (zi(?), z2(t})
to the curve. Uging vector notation,

(3" ' = Az,

where Az denotes the vector (axi, @bz}, which one should think of as being based
at z.

X2

x=(1,1)

\-Ax=(3, a)
\ x,

Ax =(2,-2)

FIG. B
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Xz

FIG. C. Az = (2, — §x,).

initial eonditions are of the form z(t) = u where u = (u;, ;) 5 8 gl'\»'empoint
of R Geometrically, this means that when ¢ = 4, the curve is required to pass
through the given point u. \

The map (that is, function) A: R* — R! (or £ — Az) can be considered a vecior
field on R®, This means that to each point z in the plane we assign the vector Az.
For purposes of visualization, we picture Ax 88 a vector “‘based at z"; that is, we
assign to x the directed line segment from x to z + Az. For example, if gy = 2,
@ = —4,and x = (1, 1), then at (1, 1) we picture an arrow pointing from (1, 1)
to (1, 1) 4 (2, —%) = (3, }) (Fig. B). Thus if Az = (21, —}z,), we attach to
each point z in the plane an arrow with tail at z and head at x + Ax and obtain
the picture in Fig. C.

Solving the differential equation (3) or (3') with initial conditions (u;, us) at
t = 0 means finding in the plane & curve z(t) that satisfies (3') and passes through
the paint w = (uy, ua) when t = 0. A few solution curves are sketched in Fig. D.

The trivial solution (£,(t), z:(t))} = (0, 0) is alse considered a “‘curve.”

The family of all solution curves as subsets of R? is called the “phase portrait”
of equation (3) (or (3)).

The one-dimensional equation =’ = az can also be interpreted geometrically: the
phase portrait is as in Fig. E, which should be compared with Fig. A. It ia clearer
to picture the graphs of (1) and the solution curvea for (3) since two-dimensional
pictures are better than either one- or three-dimensional pictures. The graphs of

§1. THE SIMPLEST EXAMPLES 5

Xz

/r: al
2 L]
FIG. D, Some solution curvesto z’ = Az, A = [0 I] .

solutions to (3) require a three-dimensional picture which the reader is invited to
sketch!

Let us consider equation {3) as a dynemical system. This means that the inde-
pendent variable ¢ is interpreted as téme and the solution curve x(t) could be thought
of, for example, as the path of a particle moving in the plane R!. We can imagine
a particle placed at any point ¥ = (u;, us} in R? at time ¢ = 0. As time proceeds
the particle moves along the sclution curve x{{) that satiafies the initial eondition
2(0) = u. At any later time { > 0 the particle will be in another position z(¢). And
at an earlier time { < 0, the particle was at a position z(t). To indicate the de-
pendence of the position on ¢ and u we denote it by ¢,(u). Thus

d{u) = (w exp(ad), urexp(a)).

We can imagine particles placed at each point of the plane and all moving simul-
taneously (for example, dust particles under a steady wind). The solution curves
are spoken of as trajectories or orbits in this context. For each fixed £ in R, we have
a transformation assigning to each point « in the plane another point é,(u). This
transformation denoted by ¢.: R* — R? is clearly 8 linear transformation, that is,
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FIG. E

sl + 1) = ¢ (u) + &) and ¢(Au) = A, (u), for all vectors u, v, ard all
real numbers X,

As time proceeds, every point of the plane moves simultaneously along the tra-
jectory passing through it, In this way the collection of maps ¢.: R* 2 R4 1 € R, s
& one-parameter family of transformations. This family is called the flow or dynam:-
cal systemt or R? determined by the vector field x — Az, which in turn is equivalent
to the svstem (3). :

The dynamical system on the real line R corresponding to equation (1} is par-
ticularly casy to describe: if @ < 0, all points move toward 0 as time goes to = ; if
a > 0, all points excopt. 0 move away from 0 toward = « ; if a = 0, all points stand
still, A

We have started from a differential equation and have obtained the dynamical
svstem ¢, This process is established through the fundamental theorem of ordinary
differential equations as we shall see in Chapter 8.

Later we shall also reverse this process: starting from a dynamical system ¢, a
differential equation will be obtained (simply by differentiating ¢.(u) with respect
to ).

It is seldom that differential equations are given in the simple uncoupled form
(3). Consider, for example, the system: '

|
(4) 21 = 52, + 3xa,
3; = —bx; — 4z,
or in vector notation

(4) ' = (54, + 322, —6x, — 423) = Bz,

OQur approach is to find a linear change of coordinales that will transform equation

(4) into uncoupled or diagonal form. It turns out that new coordinates (1, y2} do

the job where
th = 211 + T3y

r=x+ 2

{In Chapter 3 we explain how the new coordinates were found.)
Solving for # in terms of ¥, we have

n=n—

n = —y% + 2.

§1. THE BIMPLEST EXAMPLES 7

FIG. F

To find y3, y: differentiate the equations defining y;, y: to obtain
¥ = 21 + 71,

¥ = 21 + 2.
By substitution

=
I

20521 + 322) + (621 — 4z} = 47 + 21y,
(521 + 3:) + (—6xy — dm;) = —xy = 20,
Another substitution yields

¥i= 4 ~ 9 + 2(~p + 2p),

-
W
I

vi=—(n—w) — (~un+ 2m),
or

(5 =2,
vr = 1

The last equations are in diagonal form and we have already solved this class of
systems. The solution (1n(¢), y2{¢t}} such that (11(0}, 1 {(0)) = (&, o) is

n(l) = et'n,
pa(f) = €7'm.
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The phase portrait of this system (5) is given evidently in Fig. D. We can find
the phase portrait of the original aystem {4) by simply plotting the new coordinate
axes y; = 0, ys = 0 in the (z;, z;) plane and sketching the trajectories (¢} in these
coordinates. Thus y; = 0 is the line Ly: 2o = —2z; and y; = 0 is the line Ly: 1y =
—I.

Thus we have the phase portrait of (4) as in Fig. ¥, which should be compared
with Fig. D.

Formulas for the solution to (4) can be obtained by substitution as followa.
Let {u;, u;) be the initial values (x:(0), z2(0)) of a solution (x;(?), x(2)) to (4).
Corresponding to (uy, us} i8 the initial value (3, v) of a solution (3 ({), y(D)) to
{5) where :

vo= 2t + th,
= U+ th
Thus
n(t) = €(2u + w),
pelt) = e (m + w)
and

n(t) = &' (2u; + uy) — ¢ (wm + 1&);
(L) = —*(2uy + ug) + 26wy + ua).

If we compure these formulasto Fig. F, we see that the diagram instantly gives us
the qualitative picture of the solutions, while the formulas convey hittle geometric
information. In fact, for many purposes, it is better to forget the original equation
(4) and the corresponding solutions and work entirely with the “diagonalized”
equations (5), their solution and phase portrait.

PROBLEMS

1. Each of the “matrices”

o[ 2

On

given below defines a vector field on R?, assigning to z = (z,, ) € R? the
veetor Ax = (Gum + Gu%s, onZi + Gnvs) based at z. For each matrix, draw
enough of the vectors until you get a foeling for what the vector field looks

§2. LINEAR SYSTEMB WITH CONSTANT COEFFICIENTS 9

like. Then sketch the phase portrait of the corresponding differential equation
1’ = Arx, guessing where necessary.

LY LY O
S I i I
2] UL oL

2. Consider the one-parameter family of differential equations
3; = 211!
Tr=an; —®= <a< ®,

(a) * Find all solutions (z:(f), z2(1)).
{b) Sketch the phase portrait for a equal to —1, 0, 1, 2, 3. Make some guesses
about the stability of the phase portraits,

§2. Linear Systems with Constant Coefficients

This section i8 devoted to generalizing and abstracting the previous examples.
The general problem is stated, but solutions are postponed to Chapter 3.
Consider the following set or “system’ of n differentisl equations:

(1) l=611151+ﬂulz+ “rr 4 G1aTa,

o
duy
'&?=aﬂxl+%+ “ + G,
%=a.1xn+m:+ *o + Ganta.
Here the a;; (t = 1,...,n;5 = 1,..., n) are n* constants (real numbers), while

each z, denotes an unknown real-valued function of a real variable {. Thus (4) of
Section 1 is an example of the system {1) withn = 2, ay = 5,83 = 3, an = —8,
G = —4,
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At this point we are not trying to solve (1); rather, we want to place it in a geo-
metrical and algebraic setting in order to understand better what a solution means,

At the most primitive level, a solution of (1) is a set of n differentiable real-
valued functions z.(t) that make (1) true.

In order to reach a more conceptual understanding of (1) we introduce real n-di-
mensional (‘artesian space R*. This is simply the set of all n-tuples of real numbers.

An elemient of Rrisa “point” £ = (x4, ..., &) ; the number z. is the ith coordinate
of the point &, Points z, y in R are added coordinatewise:
Ty = (o ) Wy W) = @ Te ot Ya)

Also, if A is n real number we define the product of X and z to be
A = (Ary, ..., AZa).
The distance between points z, ¥ in R* is defined to be

lz—yl=[m—y)+ -+ (3. — ya) "
The length of z is

|z} = (22 + -+ + zJ)e,

A vector based at z € R~ is an ordered pair of points z, ¥ in R, denoted by z7.

We think of this as an arrow or line segment directed from z to y, We say £ is
based at x.

A vector 0z based at the origin

0=1(0,...,00c R

is identified with the point £ € R*.

To & vector £ based at z is associnted the vector y — z based at the origin 0.
We call the vectors 7 and y — z translates of each other.

From now on a vector based at 0 is called simply a vector. Thus an element of

R" can be considered either as an n-tuple of real numbers or as an arrow issuing
from the origin,

It is only for purposes of visualization that we consider vectors based at points
other than 0. For computations, all vectors are based at 0 since such vectors can
be added and multiplied by real numbers.

We return to the system of differential equations (1). A candidate for a solution
is & curve in R

(* z(t) = (z(D), ..., z(8)).
By thiz we mean a map
‘ z:R— R~

Such 2 map is described in terms of coordinates by (#). If each function z.(f) is

§2. LINEAR SYSTEMB WITH CONSTANT COEFFICIENTS 11
differentiable, then the map z is called differentiable; its derivative is defined to be

dr

E = x'(t) = (1;“)1 ey I:(t)).

Thus the derivative, as a function of ¢, is again a map from R to R,
The derivative can also be expressed in the form

Z()) = lim i (2t + k) — 2(1)).
Ao

It has a natural geometric interpretation as the vector v(f) based at z(f), which is
s translate of x'(¢}. Thia vector is called the tangent vector to the curve at ¢ (or at
z(0)).

If we imagine ¢ as denoting time, then the length | 2’ (¢) | of the tangent vector is
interpreted physically as the speed of a particle describing the curve x(¢).

To write (1) in an abbreviated form we call the doubly indexed set of numbers
a;; an n X n matriz A, denoted thus:

G Gz Gia

a’ an - "
A=[a,-.']= ' &

Gul Gaz ***  Gua
Next, for each x € R* we define a vector Ax € R* whose ith coordinate is

Gty + -0 4 GiZa;

note that this is the ith row in the right-hand side of (1). In this way the matrix 4
ig interpreted as a map
A:R"— R~
which to r assigns Az.
With this notation (1) is rewritten

(2} x = Az

Thus the asystem (1) can be considered as a single “‘vector differential equation”
{2). (The word equation is classically reserved for the case of just one variable; we
shall eall (2) both a system and an equation.)

We think of the map 4: R* — R® as a veclor field on R*: to each point £ € BR*
it assigns the vector based at x which is a translate of Az. Then a solution of (2)
is a curve r: R — R™ whose tangent vector at any given ¢ is the vector Az(t) (trans-
lated to z({)). See Fig. D of Section 1.

In Chapters 3 and 4 we shall give methods of explicitly solving (2}, or equiva-
lently {1). In subsequent chapters it will be shown that in fact (2) has & unique..
solution z(t) satisfying any given initial condition (0} = uws € R*. This is the
fundamental theorem of linear differential equations with constant coefficients; in
Section 1 this was proved for the special case n = 1.
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PROBLEMS (b) Let A = ['_+] Find solutions u(t), v({) to 2’ = Az such that every

solution can be expressed in the form au(t) + Bu{t) for suitable con-

stants «, 8.
1. For each of the following matrices A sketch the vector field z — Az in R*.
{Missing matrix entries are 0.)
- Notes
(ay 1 by |1 {e) 1
1 -2 —2
| 0 9 The background needed for a reader of Chapter 1 is a good first year of college
L calculus. One good source is 8. Lang’s Second Course in Calculus [12, Chapters 1,
_ I1, and IX7]. In this reference the material on derivatives, curves, and vectors in
(d To (e} {0 -1 M | -1 R* and matrices is discussed much more thoroughly than in our Section 2.
-1 1 ] 1 1
i 0 =t | 11

2. For A asin (a), (b), (¢) of Problem 1, solve the initial value problem
1 = AI, 1(0) = (kb kl: kl)

3. Let A be aa in (e), Problem 1. Find constants a, b, ¢ such that the curve { —
(acost, bsint, ce¥") is a solution to ' = Az with z{(0) = (1, 0, 3).

4. Find two different matrices A, B such that the curve
z(ty = (e, 2e, 4e*)
satisfies both the differential equations
= Ax and ' = Bz.

5. Let A = [ay]be an n X n diagonal matrix, that is, a;; = 0 if { # j. Show that
the differential equation

z' = Az

has a unique solution for every initial condition.
6. Let A be an n X n diagonal matrix. Find conditions on A guaranteeing that
limz(t) =0
[ Rl

for all solutions to 2’ = Azx.

7. let A = [ai;] be an n X n matrix. Denote by — A the matrix [ —a,;].
{a8) What is the relation between the vector fields z — Az and 2 — (—A)2?

(b} What is the geometric relation between solution curves of z’ = Az and
of ' = —Az?

8. (a) Let u(t), v(t) be solutions to z' = Ax. Show that the curve w(l) =
au(t) + Ae(l) is & solution for all rt_eai numbers «a, 8.



Chapter 2

Newton’s Equation and Kepler’s Law

We develop in this chapter the earliest important examples of differential equa-
tions, which in fact are connected with the origins of calculus. These equations were
used by Newton to derive and unify the three laws of Kepler. These laws were
found from the earlier astronomical observations of Tycho Brahe. Here we give &
brief derivation of two of Kepler's laws, while at the same time setting forth some
general ideas about differential equations. ) .

The equations of Newton, our starting point, have retained importance .through-
out the history of modern physics and lie at the root of that part of phy\swa lt:gl,led
classical mechanics. T

The first chapter of this book dealt with linear equations, but Newton's equa-
tions are nonlinear in general. In later chapters we shall pursue the subject of non-
linear differential equations somewhat systematically. The examples here provide
us with concrete examples of historical and scientific importance. Furthermore, the
case we consider most thoroughly here, that of a particle moving in a central force
gravitational field, is simple enough so that the differential eq_uations can be ‘solved
explicitly using exact, classical methods (just calculus!). This is due to the existence
of certain invariant functions called integrals (sometimes called “first integrals”;
we do not mean the integrals of elementary caleutus). Physically, an integral is a
conservation law; in the case of Newtonian mechanics the two integrals we find
correspond to conservation of energy and angular momentum. Mathematically
an integral reduces the number of dimensions. .

We shall be working with a particle moving in a field of force F. Mathematicaily
F is a vector field on the (configuration) space of the particle, which in our case We
guppose to be Cartesian three space R®. Thus F is & map F: R? — R? that assigns
to & point = in R3 another point F(z) in R3, From the mathematical point of view,

F(z) is thought of as a vector based at x. From the physical point of view, F(z)

is the force exerted on & particle located at z. )
The example of a force field we shall be most concerned with is the gravitational

ficld of the sun: F(z) is the force on a particle located at z attracting it to the sun.
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We shall go into details of this field in Section 6. Other important examples of force
fields are derived from electrical forces, magnetic forces, and so on.

The connection between the physical concept of force field and the mathematical
concept of differential equation i8 Newion’s second law: F = ma. This law asserts
that & perticle in a force field moves in such a way that the force vector at the loca-
tion of the particle, at any instant, equals the acceleration vector of the particle
times the mass m. If z(f) denotes the position vector of the particle at time ¢, where
z: R-» R! is a sufficiently differentiable curve, then the acceleration vector is the
second derivative of z{t) with respect to time '

al{l) = £().
{We follow tradition and use dots for time derivatives in this chapter.) Newton's
second law states
F(z(ly) = m#(0).

Thus we obtain a second order differential equation:
1
#=—F(z).
m

In Newtonian physics it is assumed that m is a positive constant. Newton's law of
gravitation is used to derive the exact form of the function F(z). While these equa-

tions are the main gon! of this chapter, we first discuss simple harmonic motion
and then basic background material.

§1. Harmonic Oscillators

We consider a particle of mass m moving in one dimension, its position at time
¢ given by a function { — z(¢), z: R — R. Suppose the force on the particle at &
point x € R is given by —mp*z, where p is some real constant. Then according
to the laws of physics (compare Section 3} the motion of the particle satisfies

n £+ pix = 0.
This model is ca]le:;::ifnrmonic cscillator and (1) is the equation of the harmonie

oscillator (in one di ion),

An example of the harmonic oscillator is the simple pendulum moving in a plane,
when one makes an approximation of sin z by x (compare Chapter 9). Another
example is the case where the force on the particle is caused by a spring,

It is easy to check that for any constants 4, B, the function

(2) z{t) = A cospt + Bsinpt

is a solution of (1), with initial conditions z{0) = A, (0) = pB. Infact, asis proved
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often in caleulus courses, (2) is the only solution of (1) satisfying these initial condi-
tions. Later we will show in a systematic way that these facts are true.
Using basic trigonometric identities, (2) may be rewritten in thé form

(3) z(f) = acos {pt + &),

where ¢ = (A? 4 BY)V* is called the amplitude, and cos i, = A{A? + B

In Section 6 we will consider equation (1) where a constant term is added (repre-
senting a constant disturbing force) :
(4) 2+ pz = K.

Then, similarly to (1), every selution of (4) has the form

. K
(5) ' z(1) = acos (pt + t) + ;,

The two-dimensional version of the harmonic oscillator concernsamapz: R — R
and & force F(z) = —mkz (where now, of course, z = (1, x;) € R*). Equation
(1) now has the same form

(1) i+ k=0
with solutions given by
(27 x:(t) = A cos ki + Bein ki,

23(8) = Ccoskt + Dain ki
See Problem 1.
Planar motion will be considered more generally and in more detail in later sec-
tions. But first we go over some mathematical preliminaries.

§2. Some Calculus Background

A path of a moving particle in R* (usually n < 3) is given by a map f: [ — R~
where I might be the set R of all real numbers or an interval (g, b) of all real num-
bers strictly between a and b. The derivative of f (provided f is differentiable at
each point of I) defines & map f': I — R~. The map f is called ', or continuously

differentiable, if f is continuous (that is to say, the corresponding coordinate func- -

tions f7(1) are continuous, i = 1, ..., »). If f/: I — R* iz itself C', then f is said
to be €. Inductively, in this way, one defines a map f: 7 — R~ to be (", where r =
3, 4,5, and so on.

The inner produet, or “dot product,” of two vectors, z, y in R* is denoted by
{x, ¥’ and defined by

{x,y) = }E‘.z.-y.-.
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Thus {z, 2z} = [z ). If z, y: I — R" are " functions, then a version of the Leibnis
product rule for derivatives ia

e, yy =& )+ (&, ¥),

as can be easily checked using coordinate functions.

We will have occasion to consider functions f: R* -+ R {which, for enmple,
could be given by temperature or density}. Such a map f is called C* if the map
R* — R given by each partial derivative z — 3f/3z:(x) is defined and continuous
(in Chapter 5 we discuss continuity in more detail). In this case the gradient of
f, called grad £, is the map R* — R~ that sends z into (af/9z(z), ..., 3f/az.(2)).
Grad f is an example of & vector field on R*. (In Chapter 1 we considered only
linear vector fields, but grad f may be more general.)

Next, consider the composition of two C* maps as follows:

! [
I—-R*—> R
The chain rule can be expressed in this context as

d
Z9U®) = @Ead (), £ 0));

using the definitions of gradient and inner product, the reader can prove that this
is equivalent to

T2 g %

i—la

§3. Conservative Force Fields

A vector field F: R* —R'is called a force field if the vector F(z) assigned to the
point z is interpreted as a force acting on a particle placed at z.

Many force fields appearing in physics arise in the following way. There is o O
function

V:RR—=>R
such that
F(z) = — —( ). (z),—(z))
= —grad V(x).

(The negative sign is traditional,) Buch & force field in called: conservative. The
function V is called the polential energy function. (More properly ¥ should be called
a potential energy since adding a constant to it does not change the force field
—grad V(z).) Problem 4 relates potential energy to work.
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The planar harmonic oscillation of Section 1 corresponds to the force field
F:R2—> R, F(z) = —mkzx.
This field 1= conservative, with potential energy

Vix) = gmk |z |?
as s casily verified,
For any moving particle x(f} of mass m, the kinelic energy is defined to be

T = §m | 2(t) 1

Here (1) is interpreted as the velocity vecfor at time {; its length | 2(¢). | is the speed
at time £. If we consider the function z: R — R as describing a curve in R?, then
(1) is the tangent vector to the curve at x(t).

Tor a particle moving in a conservative force field F = —grad V, the potential
energy at r is defined to be V(x). Note that whereas the kinetic energy depends on
the velocity, the potential energy is a funetion of position.

The (otal energy (or sometimes simply energy) is

E=T+V.

This has the following meaning. If z(1) is the trajectory of a particle moving in
the conservative force field, then £ is a real-valued function of time:

E() = §[ma() P+ Vi(a(®).

Theorem (Conservation of Energy) Let x(t) be the trajectory of a particle moving
in a conservative force field F = —grad V. Then the tolal energy E is independent of

fime.
Proof. 1t needs to be shown that E(x(¢)) is constant in { or that
d
—(T+V)=0,
7 (T+ V)
or cquivalently,
ZGmizw F+vEm) =0
a\ami z0) ) =0
It follows from caleulus that
d
Szt =2,
i bz | (£, £)
(a version of the Leibniz product formula}; and also that
d
& (V(#)) = {grad V(z), 2)

(the chain rule),
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These facts reduce the proof to showing that
m{E, £} + (grad V, ) = 0

or {mi+ grad V, ) = 0. But this is so since Newton’s second law is mi +
grad V(z) = 0 in this instance,

§4. Central Force Fields

A force field F is called central if F(x) points in the direction of the line through
x, for every z. In other words, the vector F(x) is always a scalar multiple of z, the
coefficient depending on z:

F(x) = Moz

We often tacitly exclude from consideration a particle at the origin; many central

force fields are not defined (or are “infinite”) at the origin.

Lemma Lel F be a conservative force field. Then the following stalemenls are
equivalent:

(a) F s central,

(b Flz) = f{|z s,

(¢) F{z) = —pgrad V() and V(z) = g(jx1).

Proof. Suppose (¢) is true. To prove (b) we find, from the chain rule:

av d
—=g{lz]}) — (z? + = + )
dzy ar;
EACES
ET

this proves (b) with f(|z1) = ¢’(} 2 |}/) z|. It is clear that (b) implies (a). To
show that {a) implies (¢) we must prove that V is constant on each sphere.

S.=(z€ R||z]=a}, a>0

Since any two points in 8, can be connected by a curve in S, it suffices to show that
V is constant on any curve in S,. Hence if / C R is an interval andu: /> 8, is
a C! map, we must show that the derivative of the composition V « u

v

J—= 8, CRoSR

is identically 0. This derivative is

d
- Viu(n) = {grad V(u()), w' (1))
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as in Section 2, Now grad V(z) = —F(z) = —A(z)z gince F is central:
d
av(u(i)) = —n{u(®)){ul), wi)
= M Et_ ]
=— vl
=10

because | u(f) | = a.

In Section 5 we shall consider a special conservative central force field obtained
from Newton's law of gravitation.

Consider now a central foree field, not necessarily conservative.

Suppose at some time t, that P C R? denotes the plane containing the particle,
the velocity vector of the particle and the origin. The force vector F(z) for any
point z in P also lies in P. This makes it plausible that the particle staya in the plane
P for all time. In fact, this is true: a particle moving in a central force field moves
in a fixed plane.

The proof depends on the eross product (or vector product) u X v of vectors u,
v in R2. We recall the definition

u X v = (taty — usde, Uty — ugth, thts — taty} € R?

and that u X v = —tv X & = | u||v| N sin 8, where N is a unit vector perpendicu-
lar to u and v, (U, #, N) oriented as the axes (‘‘right-hand rule”), and 8 is the angle
between u and v.

Then the vector u X ¢ = 0 if and only if one vector is a scalar multiple of the
other; if u X ¢ # 0, then « X v is orthogonal to the plane containing u and v. If
u and v are functions of ¢ in R, then a version of the Leibniz product rule asserts
(as one can check using Cartesian coordinates) :

d
a(u)(v) =uXe+uXi

Now let z(Z) be the path of a particle moving under the influence of a central
force ficld. We have

%(:x:‘:) =itXit+z X2t
=z X

=0

because # is a scalar multiple of 2. Therefore z(1) X £{f) iz a constant vector y.
If 4 # 0, this means that z and # always lie in the plane orthogenal to y, as asserted.
If y = 0, then (1) = g()z(?) for some scalar function g({). This means that the
veloeity vector of the moving particle is always directed along the line through the
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origin and the particle, as is the force on the particle. This makes it plausible that
the particle always moves along the same line through the origin. To prove this let

(za(f), xa(t), 24(1)) be the coordinates of z(t). Then we have three differential
equations

‘i;_' = gn®), k=123

By integration we find

2 = don), ko) = [ o) da

Therefore x(t} is always a scalar multiple of z{t) and so z(f) moves in a fixed line,
and hence in a fixed plane, as asserted.

We restrict attention to s conservative central force field in A plane, which we
take to be the Cartesian plane R?. Thus z now denotes & point of R?, the potential
energy V is defined on R? and

P = —gd Vi) = - (2,2
dr; Jxa
Introduce polar coordinates (r, 8), with r = {z|.
Define the angular momentum of the particle to be
h = mr'g,

where 8 is the time derivative of the angular coordinate of the particle.

Theorem (Conservation of Angular Momentum) For a particle moving in a
central force field:

dh

i 0, where h = mr¥.

Proof. Let i = i(t) be the unit vector in the direction z(f) so z=7i. Let j =

J{(t} be the unit vector with a 90° angle from 1 to j. A computation shows that di/dt =
#j, dj/dt = —é and hence

Z = ri -+ ;.
Differentiating again yields

- 1d
£ = — i+ - ]
{r ﬁ+Mﬂﬂn

If the foree is central, however, it has zero component perpendicular to z. There-
fore, since £ = m~'F(z), the component of £ along j must be 0. Hence

d
a (r’a) = 0:

proving the theorem.
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We can now prove one of Kepler's laws, Let A(!) denote the area swept out by
the veetor x({) in the time from i, to {. In polar coordinates d4 = }r* 46, We define
the areal velocity to be

A =1,

the rate at which the position vector sweeps out area. Kepler observed that the
line segment joining & planet to the sun sweeps out equal areas in equal times, which
we interpret to mean A = constant. We have proved more generally that this is
true for any particle moving in a conservative central force field; this is a con-
sequence of conservation of angular momentum.

§5. Statgs

We recast the Newtonian formulation of the preceding sections in such a way
that the differential equation becomes first order, the states of the system are made
explicit, and energy becomes a function on the space of states,

A state of 8 physical system is information characterizing it at a given time. In
particular, a state of the physical system of Section 1 is the position and velocity
of the particle. The space of states is the Cartesian product R* X R? of pairs (z, v},
z, v in R?; z is the position, v the velocity that a particle might have at & given
moment.

We may rewrite Newton's equation

(1) mE = F(z)

as & first order equation in terms of x and v. (The order of a differential equation
is the order of the highest derivative that oceurs explicitly in the equation.) Con-
sider the differential equation

dz
]' ! -——=
{ ) at ¥,
dv
ma = F(x).

A solution to (1°) is a curve ¢ — {z(t), v({}) in the state space R? X R?such that
(1) = v(i) and o(t) = m~F(z(t)) forallt

It can be seen then that the solutions of (1) and (1') correspond in a natural
ashion. Thus if x(1) is a solution of (1), we obtain a selution of (1) by setting
v(¢) = i(t}, The map R? X R®~ R3 X R that sends (z, v} info (v, m"\F(z)) isa
vector fteld an the space of slates, and this veclor field defines the differential equation,
(1.
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A solution (x(t), v{))} to (1"} gives the passage of the state of the system in time.

Now we may interpret energy as a function on the state space, R* X R* 2 R,
defined by E(x, v) = &m|v |+ V(z}. The statement that “the energy is an
integral” then means that the composite function

E— (z(f), o(t)) — E(z(t), v(1))

is constant, or that on a solution curve in the stale space, E 18 constant.

We abbreviate R? X R* by 8. An inlegral (for (1')) on § is then any function
that is constant on every solution curve of (1°). It was shown in Section 4 that in
addition to energy, angular momentum is ajso an integral for (1'}. In the nineteenth
century, the ides of solving a differential equation was tied to the construction of a
sufficient number of integrals. However, it is realized now that integrals do not exist
for differential equations very generally; the problems of differential equations have
been considerably freed from the need for integrals.

Finally, we observe that the force field may not be defined on all of R?*, but only
on some portion of it, for example, on an open subset I/ C R In this case the path
x(f) of the particle is assumed to lie in {/. The force and velocity vectors, however,
are still allowed to be arbitrary vectors in R?, The force field is then a vector field
on U/, denoted by F: U — R3. The state space is the Cartesian product 7 X R?, and
{1’} is a first order equation on U/ X R2.

§6. Elliptical Planetary Orbits

We now pass to consideration of Kepler’s first law, that planets have elliptical
orbits. For this, a central force is not sufficient. We need the precise form of V as
given by the “inverse square law.”

We shall show that in polar coordinates (r, 8), an orbit with nonzero angular
momentum h is the set of points satisfying

r(l 4+ ecos @) =1= constant; & = constant,

which defines a conic, as can be seen by putting rcos# = z, r* = 27 + A

Astronomical observations have shown the orbits of planets to be (approxi-
mately) ellipses. ‘

Newton’s law of gravitation states that a body of mass m, exerts a force on a
body of mass m,;. The magnitude of the force is gmum:/r?, where r is the distance
between their centers of gravity and g is a constant. The direction of the force on
My i8 from miz to my.

Thus if m; lies at the origin of R? and m, lies at x € R?, the force on my is

x

— omams %
o

The foree on my 18 the negative of this.
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We must now face the fact that both bodies will move. However, if m, is much
greater than my, its motion will be much less since acceleration is inversely propor-
tional to mass, We therefore make the simplifying assumption that one of the
bodies does not move; in the case of planetary motion, of course it is the sun that
is assumed at rest. (One might also proceed by taking the center of mass at the
origin, without making this simplifying assumption.)

We place the sun at the origin of R?® and consider the force field corresponding
to a planet of given mass m. This field is then

x

r‘x"'];-

where ( is a tonstant. We then change the units in which force is measured to obtain
the simpler formula

F(z) = —=C

x_
|z

It is clear this foree field is central. Moreover, it is conservative, since

F(z) = -

where

Ohserve that F(z) is not defined at 0.

As in the previous section we restrict attention to particles moving in the plane
R?; or, more properly, in R? — (. The force field is the Newtonian gravitational field
inRY F{z) = —z/|z ]~

Consider a particular solution curve of our differential equation 2 = m'\F{z).
The angular momentum A and energy E are regarded as constants in time since
they are the same at all points of the curve. The case B = 0 is not so interesting; it
corre=ponidds to motion along a straight line toward or sway from the sun. Hence
we assume e #Z 0,

Introduce polar coordinates (r, 8); along the solution curve they become func-
tiens of time (r(¢}, 8(£) ). Since r* is constant and not 0, the sign of 4 is constant
aleng the curve, Thus 6 is always increasing or always decreasing with time, There-
fore r is a funclion of 8 along the curve,

Let u(t) = 1/r(t); then u is also a function of 8{f). Note that

u= -V

We have n convenient formula for kinetic energy T.
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1 k2] fdu\?
SEER

Proof. I'rom the formula for # in Section 4 and the definition of T we have

T = ymli* + (r)?]

Lemma

Also,

F o=

_—_1@3._ h du
u? df m daé

by the chain rule and the definitions of « and A; and also

o

mr m

Substitution in the formula for T proves the lemma.

Now we find a differential equation relating u and ¢ along the solution curve.
Obsgerve that T = E — V = E + u. From the lemma we get

du\? 2m
(1) ('&;) +u’='h—2(b+u).
Differentiate both sides by ¢, divide by 2 du/d8, and use dE/d8 = 0 (conservation
of energy). We obtain another equation
. diu m
(2) d_ﬂg +u = ’_t;r
where n/h? is & constant,

We re-examine the meaning of just what we are doing and of (2). A particular
orbit of the planar central force problem is considered, the force being gravitational.
Along this orbit, the distance r from the origin (the source of the force) is a function
of 8, asis 1/r = 4. We have shown that this function u = u(8) satisfies (2), where
h ig the constant angular momentumn and m is the mass.

The solution of (2) (as was seen in Section 1) is

(3) u=’£+ccos (6 + b),
where C and 8 are arbitrary constants.
To obtain a solution te (1), use (3) to compute du/df and d*u/dé*, substitute

the resulting expression into (1) and sclve for €. The result is

C=x ’1; (2mhE + m2yua,
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Putting this into (3) we get

N 12
u= E[1:&(1 +2&) cos (3+q)],
h? m

where ¢ is an arbitrary constant. There is no need to consider both signs in front
of the radical since cos(@ + g + ) = —cos{¢ + ¢). Moreover, by changing the
variable 6 to 8 — g we can put any particular solution in the form

m ER\V?
(4 u=—|14+}{1+4+2— cos @ |.
h? m

We recall from analytic geometry that the equation of a conic in polar coordinates
is

(5 u=

)

(1 4 ecos 8), u=

B

Here 1 is the latus rectum and ¢ > 0 is the eccentricity. The origin is a focus and the
three cases € > 1, e = 1, « < 1 correspond respectively to a hyperbola, parabola,
and ellipse. The case ¢ = 0 is a circle,

Sinee (4) is in the form (5) we have shown that the orbil of a particle moving under
the influence of a Newtonian gravitational force is a conic of eccentricily

2ER\V?
= (1+50)

m

Clearly, € > 1if and only if E > 0. Therefore the orbit is a hyperbola, parabola, or
ellipse aecording to whether E > 0, E = 0, or E < 0.
The quantity « = 1/r is always positive. From (4) it follows that

ERT\1?
(1 +2—h) cos @ > —1.
m

But if # = 4+ radians, cos# = —1 and hence
2ERN\
(1 + — <1
m
Thi= 1= equivalent to # < 0, For some of the planets, including the earth, complete
revolutions have been observed ;) for these planets cos # = —1 at least once a year.
Therefore their orbits are ellipses. In fact from a few observations of any planet it

cutt by =hown that the orbit is in fact an ellipse.
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PROBLEMS

1. A particle of mass m moves in the plane R? under the influence of an elastic
band tying it to the origin. The length of the band is negligible. Hooke's law
gtates that the force on the particle is always directed toward the origin and
ia proportional to the distance from the origin. Write the force field and verify
that it is conservative and central. Write the equation F = ma for this case
and solve it. (Compare Section 1.) Verify that for “most” initial conditions the
particle moves in an ellipse.

2. Which of the following force fields on R! are conservative?
(8) F(z,y} = (—=', -2
(b) F(z,y) = (z* — ¢, 2zy)
() F(z,9) = (£,0)

3. Consider the case of a particle in a gravitational field moving directly away
from the origin at time { = 0. Discuss its motion. Under what initial conditions
does it eventually reverse direction?

4. Let F(r) be a force field on R?. Let o, x; be pointa in R? and let y(#) be a path
in R3, & < 8 < &, parametrized by arc length s, from z, to 1,. The work done
in moving a particle along this path is defined to be the integral

[ @@, v @),

where ' (s) is the (unit) tangent vector to the path. Prove that the force field
is conservative if and only if the work is independent of the path. In fact if
F = —grad V, then the work done is V(z:) — V(z,).

5. How can we determine whether the orbit of {a) Earth and (b) Pluto is an
ellipse, parabola, or hyperbola?

6. Fill in the details of the proof of the theorem in Section 4.

Prove the angular momentum k, energy E, and mass m of a planet are related
by the inequality
m

> =
E2- o

Notes

Lang's Second Course tn Calculus [12] is a good background reference for the
mathematics in this chapter, especially his Chapters 3 and 4. The physics material
is covered extensively in a fairly elementary (and perhaps old-fashioned) way in
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Prineiples of Mechanics by Synge and Griffith [23]. One can also find the mechanies
discussed in the book on advanced caleulus by Loomis and Sternberg [ 15, Chapter
13].

The unsvetematic ad hoc methods used in Section 6 are successful here because
of the relative simplicity of the equations, These methods do not extend very far
into mechanies. In general, there are not enough “‘integrals.”

The mndel of planetary motion in this chapter is quite idealized; it ignores the
gravitational effect of the other planets.

Chapter 3

Linear Systems with Constant
Coefficients and Real Eigenvalues

The purpose of this chapter is to begin the study of the theory of linear operators,
which are basic to differential equations. Seetion 1 i3 an outline of the necesssry
facts about vector spaces. Sinee it is long it is divided into Parts A through F. A
reader familiar with some linear algebra should use Section 1 mainly as a reference.
In Section 2 we show how to diagonalize an operator having real, distinet eigen-
values, This technique is used in Section 3 to solve the linear, constant coefficient
system ' = Az, where A is an operator having real distinct eigenvalues, The last
section is an introduction to complex eigenvalues. This subject will be studied
further in Chapter 4,

§1. Basic Linear Algebra

We emphasize that {or many readers this seetion should be used only as a refer-
ence or a review.,

A. Matrices and operators

The setting for most of the differential equations in this book is Cartesian space
R*; this space was defined in Chapter 1, Section 2, as were the operators of addition
and scalar multiplication of vectors. The following familiar properties of these
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operations are immediate consequences of the definitions:
Vil c+y=y+a
r+0=uz,

r+ (—1) =0,
r+y)4+z=x+ (y+2).

Here 2, y, 2 € R, —z = (~1)z,and 0 = (0,...,0) € R~

V&2 (N4 plx = hxr + ax, Q \ on . .
_ e on et e pray N
Mz v} = Az Ay, \)TO“S contue con t s A
lr = =z, ) .(\zn,e a4

0xr = 0 (the first § in R, the second in R*).

These operations satisfying V81 and V52 define the vector apace structure on R»,
Frequently, our development relies only on the vector space structure and ignores
the Cartesinn (that is, coordinate) structure of R, To emphasize this idea, we may
write E for R* and call £ a vector apace. 3

The standard coordinates are often ill suited to the differential equation being
studied; we may seek new coordinates, as we did in Chapter 1, giving the equation
a simpler form. The goal of this and subsequent chapters on algebra is to explain
this process, Tt is very useful to be able to treat vectors {and later, vperators) as
objects independent of any particular coordinate system.

The reader familiar with linear algebra will recognize V81 and V52 as the defining
axiums uf an abstract vector space. With the additional axiom of finite dimen-
sionality, abstract yector spaces could be used in place of R* throughcut most of
this book. e R wot .

Let A = [a;;] be some n X m matrix % in Section 2 of Chapter 1. Thue each
ai; is a real number, where (7, j) .ranges dér all ordered pairs of integers with 1 <
i <n, 1 <j< n The matrix A can be considered as a map A: R" — R" where
the th coordinate of Az is Y.}y ax;, for each z = (21, ..., z.) in R* It is easy
to ehieck that this map satisfies, forx, y € R, X € R:

SN op‘(.\E [1v) LLZ’

11 it 4+ ) = Ar + Ay,

P20 Jiax) = MArx.
These are ealled {inearity properties. Any map A: R* — R~ satisfying 1.1 and L2
is called o finear map. Even more generally, & map A: R* - R™ (perhaps different

domain and range) that satisfies L1 and L2 is called l#near. In the case where the
dornain and range are the same, A is also called an operator. The set of all operators
on R7 is denoted by L(R").

Note that if ex € R~ is the vector

a=1(0...,010,...,0),
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with a 1 in the kth place, zeros elsewhere, then

(l) Aﬁk = (alh Tk, o o0y ani) = Z A,

Thus the image of ¢, is the kth column of the matrix A.

Let M. be the set of all # X n matrices. Then from what we have just described,
there is a natural map

(2) M.— L(R")

that asscciates to each matrix the corresponding linear map. There is an inverse
process that associates to every operator on R™ a matrix. In fact let T: R* = R~
be any operator. Then define a.; = the ith coordinate of T¢;. The matrix A = [a;;,]
obtained in this way has for its kth column the vector Te., Thus

Ter = Aes; k=1,...,n

It follows that the operator defined by A is exactly T, For let £ € R* be any
vector, x = (¥, ..., zx). Then

T =6+ - + zeea.
Hence

Az = A(L e) = 2 ni{de) {by L1 and L2)
= 3 z(Ter)
= T(X zeer)
= Tz

In this way we obtain a natural correspondence between operatefs on R*and n X n
matrices,

More generally, 1o every linear map R» — R™ corresponds an m X n matrix,

and conversely. In this book we shall usually be concerned with only operators and
n X n matrices.

Let 8, T be operators on R*. The composite map TS, sending the vector z to
T(S(x)), is again an operator on R". If § has the matrix [a,;] = A and T has the
matrix [b;;] = B, then TS has the matrix [¢;;] = €, where

n
Cij = E b.’tdt,.
b1

To see this we compute the image of e; under TS:
(T8)e; = B(Ae;) = B(Y arer)
k

= X a;(Bes)
1]

= E ﬂt;(): b.ﬂ.).
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Therefore
(TS)e; = X (F bat;) e
ik

This formula says that the ith coordinate of (T'8)e; 18
Z b.‘kau.
k

Since this ith coordinate is ¢.;, our assertion follows,

We call the matrix € obtained in this way the product BA of B and A {in that
order). .

Since composition of mappings is associative, it follows that C(BA) = (CB)A
if A, B, C are n X n matrices. ’

The sum S + T of operators 8, T € L(R") is defined to be the operator

r— 8z + Tz,

It is easy to see that if A and B are the respective matrices of S and T, then the
matrixof § + Tis A + B = [a;; + bis)
Operators and matrices obey the two distributive laws

P(Q+ R) = PQ + PR; (@ + R)P = QP + RP,

Two special operators are 0: x — 0 and I: z — z. We also use O and I to denote
the corresponding matrices. All entries of O are 0 € R while I = [8;;] where &;
is the Kronecker function:

{0 if {#4,
Yl oi=g

Thus f has ones on the diagonal (from upper left to lower right} and zeros elsewhere.
Itixchenrthat A + 0 = 0+ A = A, 04 = A0 = 0,and Al = IA = A, for
hoth operators and matrices,
If 7 i un vperator and A any real number, a new operator T is defined by

(ATYz = r(Tx).

If 4 = [a,,] is the matrix of T, then the matrix of AT is A4 = [Aa,;], obtained by
multiplving each entry in A by A [t is clear that

oT = 0,
1IT=T,

and similatly for matrices. Here 0 and 1 are real numbers.

The set LR~} of all operators on R~ like the set M, of all n X n matrices, satis-
fies the veetor space axiom V31, VS2 with 0 as O and z, ¥, 7 as operators (or ma-
trices). If we consider an n X n matrix as a point in R, the Cartesian space of
dimension n?, then the vector space operations on L(R") and M, are the usual
DN,
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An operator T is called invertible if there exists an operator § such that ST =
TS =1 Weecall § the tnverse of T and write S = T-1, T = $1. If A and B are
the matrices corresponding to S and T, then AB = BA = I. We also say A is
invertible, B = A1, A = B-1,

It i3 not easy to find the inverse of a matrix (supposing it has one) in general;
we discuss this further in the appendix. The 2 X 2 case is quite simple, however.

Ihe mverse ﬂf
[ ]
c d

d b

D D
; D = ad — b,

¢ a

D D

provided the deferminant D # 0. If D = 0, A is not invertible. {Determinants are
considered in Part E.)

B. Subspaces, bases, and dimension

_ Let E = R* A nonempty subset F C E is called a subspace (more properly, a
linear subspace) if F is closed under the operations of addition and scalar multi-
plication in E; that is, forallz € F,y € F,» € R;

r+y€F, MePF.

It follows that with these operations F satisfies VSI and V32 of Part A,

If F contains only 0, we write F = 0 and call F the trivial subspace. If F » E, we
call F a proper subspace.

If F, and F, are subspaces and Fy C F, we call F, a subspace of .

Since a subspace satisfies V81 and V32, the concept of a linear map T: Fy, — Fy
between subspaces Fy C R*, F; C R*, makes sense: T is 2 map satisfying L1 and
L2 in Part A. In particular,if m = nand F, = F,, T is an operalor on a subspace.

Henceforth we shall use the term vector space to mean “subspace of a Cartesian
space.” An element of a vector space will be called a vector (also a point). To dis-
tinguish them from vectors, real numbers are called scalars.

Two important subspaces are determined by a linear map

A: E]_ —% E,,
where E, and E. are vector spaces. The kernel of A is the set
Kerd = {z € E;| Ax = E}i\= A0}
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The image of A is the set

ImA = |y € Ey| Az = y for some z € E\}
= A(E).
Let F be a vector space. A set § = la, . .., @} of vectors in F is said to span F

if every vector in F is a linear combination of ay, ., ., a; that is, forevery x € F
there are scalars &y, . . ., iy such that

§ = hay+ - + hae
The set S is called independent if whenever 4y, . . ., £ are scalars such that

f101+ ok +tkak=0',

then £, = - = fy = Q. )

A basts of Fis an ordered set of vectors in F that is independent and which spans
F.

The following basic fact is proved in Appendix 1.

Proposition 1  Every veclor space F has a baste, and every basis of F'has the same
number of elements. If {ey, ..., e} C F is an independent subset that is not a basis,
by adjoining to it suitable veclors ey, . . . , €m One can form o basis {e, .. ., em).

The number of elements in 2 basis of F is called the dimension of F, denoted by
dim F. 1 ley, ..., en} is & basis of F, then every vector € F can be expressed

r = }:t.-e.—, i € R,
dm=]

since the ¢, span F. Moreover, the numbers &, ..., tw are unique. To see this,
suppose also that

L
x = E 8i€i.

=l
Then
O=z—2=2 (i — a)es;
i

by independence,

ti— 8= 10, i=1,...,m
These numbers &, . . - , tn are called the coordinates of z in the basis {ey, . . ., em].
The standard basis e, . . ., em of R* is defined by
= (0,...,0,1,0,...,0: i=1...,n

with 1 in the ith place and 0 elsewhere. This is in fact a_basis; for 3 te; =
ity ..., 1), 50 e, ..., e  spans B*; independence is immediate.
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It is easy to check that Ker A and Im A are subspaces of E, and E, respectively,

A simple but important property of Ker A is this: A iz ene-to-one if and only if
Ker A = 0. For suppose A is one-to-one, and x € Ker 4. Then Az = 0 = AQ,
Hence x = 0; therefore 0 is the only element of Ker A. Conversely, suppose Ker A =
0, and Ar = Ay. Then A(z —y) =0,80 z ~ y € Ker A. Then A(z —y) =0,
s0z —y € KerAd. Thusz —y =0s0z = y.

The kernel of & linear map R" — R~ is connected with linear equationa {algebraie,
not differential) as follows. Let A = [a;,] be the m X n matrix of the map. Then
z = (&, ..., %) is in Ker 4 if and only if

anZi + - + ainztn = 0,
BTt + -+ GuaZa = O

In other words, (£, ..., z.) i8 a solution to the above system of m linear homo-
geneous equations in n unknowns. In this case Ker 4 is called the solution space of
the system. ‘‘Solving” the system means finding a basiz for’Ker A.

If a linear map T: E -+ F is both one-to-one and onto, then there is a unique
map S: F -+ F such that ST{x}) = z and TS(y) = y forall x € E, y € F. The

map 3§ is also linear. In this case we call T an isomorphism, and say that E and F
are isomorphic vector spaces.

Proposition 2 Two veclor spaces are isomorphic if and only if they have the same
dimension. In parlicular, every n-dimensional veclor space is isomorphic to R=,
Proof. Suppose E and F are isomorphic. If e, . .., e,} is & basis for E, it is
easy to verify that T'e, ..., Te. span F (since T is onto) and are independent
{since T is one-to-one). Therefore E and F have the same dimension, n. Conversely,

suppose {e, ..., &} and {fi, ..., fu} are bases for £ and F, respectively. Define
T: E — F to be the unique linear map such that Te, = f;, i =1, ..., n:if gz =

Xz € E, then Tz = 3 ... Then T is onto since the f, span F, and Ker T = 0
sinee the f; are independent.

The following important proposition is proved in Appendix 1.

Proposition 3 Let T: K — F be a linear map. Then
dim(im T} 4+ dim(Ker ) = dim E.

In particular, suppose dim E = dim F. Then the Jollowing are equivalent statements:
(a) KerT =0,

(b) ImT = K
{c) T iz an fsomorphism.
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C. Changes of bases and coordinates

To every basis [e, ..., e.] of a vector space E we have associated a system of
coordinates as follows: to each vector z € E we assign the unique n-tuple of real
numbers (zi, . .., Za) such that z = ¥ z.e:.. If we consider z; as a function of z,
we may define a map

¢ E— R, elz) = (xf2), ..., z(2)).

Thix is a linear map; it is in fact the unique linear map sending each basis vector
e, of £ inty the corresponding standard basis vector of R", which we denote here
by &,

It is easy to see that ¢ is an isomorphism (see Proposition 2 of Part B). The
isomorphism ¢ sends each vector z into its n-tuple of coordinates in the basis
Iéh LR EnL

Conversely, let ¢: E — R* be any isomorphism. If {#, ..., &} is the siandard
basis of R, then define ¢; = ¢ '(&;),3=1,...,n Then le, ..., €} i& & basis of
E, and clearly,

e(X ze) = (21, ... 2a).

I this way we arrive at the following definition: A coordinale syslem on a vector
space £ 1 an isomorphism ¢: £ — R* (Of course, n = dim E.) The coordinates
of 2t F oare (24, ..., za), where ¢(z) = (21, ..., 2.}. Each coordinate z, is &
huear funetion z,; £ — R.

We thus have three equivalent concepts: a basis of E, a coordinate system on E,
and an isomorphism E — R»,

Readers familiar with the theory of dual vector spaces (see Chapter 9) will
recognize the coordinate functions z, as forming the basis of £* dual to {ey, ..., €x};
here £* is the “‘dual space” of E, that is, the vector space of linear maps £ — R.

The coordinate functions z; are the unique linear functions E — R such thag

I.‘(e,‘)=5¢,', i=l,...,n;j=l,...,n,

where é;; = 0ifi = jand 1if i = j,

Now we investigate the relations between two bases in E and the two correspond-
ing courdinate systems,

Lt e, ..., ea} be a basis of E and (z,, . .., za) the corresponding coordinates.
Let ¢: & — R* be the corresponding isomorphism. Let {fy, . .., fu} be a new basis,
with evordinates (i, ..., ya}. Let ¥: E — R* be the corresponding isomorphism.
Each vector f, is a linear combination of the ¢;; hence we define an n X n matrix:

(3) P={py); fi= ZPM}-

Each of the new coordinates y.: E — R is a linear map, and so can be expreased
in terms of the old coordinates (zi, ..., x.). In this way another n X n matrix is
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defined :
(4) Q="[g.]; m=2Xaqur

H

In fact, @ is the matrix of the linear operator y¢™': R* — R~
How are the matrices P and @ related? T'o answer this we first relate the bases
with their corresponding coordinates:

(5} zi(e) = &y, Li=1,...,n;
(6} nl(f) = 8,y kLi=1,...,n
Substituting (4) and (3) into (6):

o = Z': thii(zj: pise;)-

Since z, is a linear function, we have
by = };, (Ej quipiTi(e;))
= Zl: (% qerpifdi)
by (5)}. Each term of the internal sum on the right is 0 unless [ = j, in which case

it i8 qup.;. Thus
b = 2 QP
i

To interpret this formula, introduce the matrix ® which is the transpose P* of
P, by

R = [f.‘,‘], Tij = Py
Each row of R is the corresponding column of P. Then,
bei = X quj rye
i

tells us that the (%, ¢)th entry in the matrix QR is 8::; in other words,

I=QR.
We finally obtain
I=gqP
Thus
Q= (PYt = (P
The last equality follows from the identities I* = [, and (AB)* = B*A* for any
n X n matrices A, B. Hence

1= (PP)* = PP,
s (PY~ = (P,
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We have proved:

Proposition 4 The mairix expressing new coordinales in lerma of the old is the in-
verse (ranspose of the malriz expressing the new basis in lerms of the old.

D. Operator, bases, and matrices

In Part A we associated to an operator T on R* a matrix {a.;] by the rule

(N Te,-gaue‘; i=1,,..,m

where {e, ..., €] is the standard basis of R* Equivalently, the sth coordinate

of Tz, z = (Z1, ..., Tu), I8

(8 Z,‘, aifZs.

It ix use-ful to represent (8) as the product of ann X n matrix and ann x 1 matrix:

@) fou - ala
(T2l =|an - B
(T)n) Lom - aw]lz

We carry out exactly the same procedure for an operator T: E — E, where E
is any vector space and [ei, ..., e} is & given basis of E. Namely, (7} defines a
matrix [a.;]. The coordinates of T'x for the basis {e,, .. ., e} are computed by (8}).

It is helpful to use the following rules in constructing the matrix of an operator
in a given basis:

The jth column of the matrix gives the coordinates of the image of the jth basis
vector, a3 in (7).

The ith rew of the matrix expresses the ith coordinate of the image of = ax'a linear
function of the coordinates of x, as in (B),

If we think of the coordinates as linear functions z,: E ~— R, then (7) is expressed
succinetly by

)] 2T =Y amy; 1=1,...,n

This looks very pretty when placed next to (7) ! The left side of (9) is the composi-
tion
r i

E—-E—>R.

The right-hand side of (9) iz a linear combination of the linear functions xy, . . . , Ta.
The meaning of (9) is that the two linear functions on E, expressed by the left and
right sides of (9}, are equal.
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Now suppose a new system of coordinates (g, ..., ya) 18 introduced in E, cor-
responding to a new basis {fi, ..., f.}. Let B be the matrix of T in the new coordi-

nates. How is B related to A?

The new coordinates are related to the old ones by an invertible matrix @ = [g.;],
as explained in Part C. If z€ E is anyv point, its two sets of coordinates
x={x), ..., z) and ¥y = (31, ..., y») are related by

y=Qz; x=

(Here we think of z and y as points in R~.) The image Tz also has two sets of co-
ordinates, Ax and By, where B is the matrix of T in the new coordinates. Therefore

By = QAz,
Hence
By = QAQ Yy
for all y ¢ R". Tt follows that
(10) B = gAQ.

This is a basic fact. It is worth restating in terms of the matrix P expressing the
new basis vectors f; in terms of the old basis {e, ..., ea}:

P=1[pyl fi=Zpsti

In Part C we saw that @ is the inverse transpose of P, Therefore
(11) B = (PY) AP

The matrix Pt can be described as follows: the ith column of P* consista of the co-
ordinates of the new basis vector f, in the old basis [e, ..., e.}. Observe that in
(10} and (11} the inverse signs -1 appear in different places.

Twon X n matrices B and A related as in (10) by some invertible matrix Q are
called similar. This is a basic equivalence relation on matrices. Two matrices are
similar if and only if they represent the same operator in different bases. Any matrix
property that is preserved under similarity is a property of the underlying linear
transformation. One of the main goals of linear algebra is to discover criteria for
the similarity of matrices.

We also call two operators S, T € L(E) similarif T = Q8! for some invertible
operator @ € L(E). This is equivalent to similarity of their matrices. Similar
operators define differential equations that have the same dynamical properties.

E. Determinant, trace, and rank

We recall briefty the main properties of the determinant function

Det: M, — R,
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where A, s the set of 71 X n matrices:
D1 Det{AB) = (Det A){Det B),
D2: Detf =1, -
D3: Det A # 0if and only if A is invertible.

There is a unique function Det having these three properties; it is discussed in more
detail in the appendix, Fora I X 1 matrix A = [e¢], Det A = a. For a2 X 2 matrix
(23] =4,
Det A = ad — be.
From Il and D2 it follows that if A~! exists, then

Det(A—Y) = (Det A),
From D1 we then obtain
Det(RAR™Y) = Det A.

In other words, similar matrices have the same determingni. We may therefore define
the determinant of an operator T: E — E to be the determinant of any matrix
representing T

For n = 1, the determinant of T: R' — R? is the factor by which T' multiplies
lengths, except possibly for sign. Similarly, for R? and areas, R* and volumes.

1f A is a triangular matrix (a;; = Qfori > j,ora; = Ofori < j),then Det A =
@y - -+ Gun, the product of the diagonal elements.

From D3 we deduce:

Proposition 5 Let A be an operator. Then the following stalements are equivalen:

(a) Detd #0,
{by kerd =0,
(¢} A is one-to-one,
(d) A 1is ondo,

(e} A is invertible.

In particular, Det A = 0 {f and only of Ax = 0 for some veclor x # 0.

Another important gimilarity invariant is the irace of a matrix A = [a,,]:
Trd = Z Giiy

the sum of the diagonal elements. A computation shows that

Tr{AB) = Tr({BA)
and hence
Tr(RAR™") = Tr(R'RA)

= Tr{4).
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Therefore we can define the trace of an operator to be the trace of any matrix repre-
senting it. It is not easy to interpret the trace geometrically.
Note that
Tr{A + B} = Tr{A) + Tr(B).

The rank of an operator is defined tobe the dimension of its image. Since every
n X nmatrix defines an operator on R, we can define the rank of a matrix 4 to be
the rank of the corresponding operator T. Rank is invariant under simiarity,

The vector space Im T is spanned by the images under T of the standard basia
vector, €, . . ., &. Since Te; is the n-tuple that is the jth column of A, it follows that
the rank of A equals the mazimum number of independent columns of A.

This gives a practical method for computing the rank of an operator T. Let A
be an n X n matrix representing T in some basis. Denote the jth column of 4 by
¢j, thought of as an n-tuple of numbers, that iz, an element of R*. The rank of T
equals the dimension of the subspace of R* spanned by ¢y, . . ., ca. This subepace is
also spanned by ¢, ..., ¢, ¢j + Aer, €y - - ., € A € R. Thus we may replace
any column ¢; of A by ¢; + Aca, for any X € R, k # ;. In addition, the order of
the columne can be changed without altering the rank. By repeatedly tranaform-
ing A in these two ways we can change A to the form

[ o]

B = ,

cC o

where D is an r X r diagonal matrix whose diagonal entries are different from-sero

and C has n — r rows and r columns, and all other entries are 0. It is easy to see
that the rank of B, and hence of 4, ia r.

From Proposition 3 (Part B) it follows that an operator on an n-dimensional
vector space is invertible if and only if it has rank n.

F. Direct sum decomposition

Let E,, ..., E, be subspaces of E. We say F is the direct sum of them if every
vector z in E can be expressed uniquely:

r=on+---+mx, ©n€E, i=1,...,r
This is denoted

E=E10"' OE,=®E|-
-l
Let T: E—+FEand Ti: E;—E, i=1,..., nbe operators. We say that T is
the direct sum of the T if E = E} @ --- o E., each E; is invariant under T, that
is, T(E,) CE;, and Tz = Tz if z € E;. We denote the situation by T =
Tie - - @ T. If T, has the matrix A; in some basis for each E;, then by taking
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the union of the basis elements of the E; to obtain a basis for £, T has the matrix
A,
A = diagf{Ai, ..., A.} =
An
Thi= means the matrices A, are put together corner-to-corner diagonally as indi-
eated, all other entries in 4 being zero. (We adopt the convention that the blank

entries in a matrix are zeros.)
For direct sums of operators there is the useful formula:

Det(Ti@--- @ Ta) = (Det Th) -+ (Det T.),
and the equivalent matrix formula:

Det diag{d,, ..., Aa} = (Det A;) -+ (Det A.).
Also:
Tr(Ti@--+ & Ta) = Te(T)) + -+ + Tr(T.),
and
Tr diag(A4y, ..., 4a) = Tr(A) 4+ -+ + Tr(4.).

We identify the Cartesian product of R™ and R* with R+ in the obvious way.
If £C R™ and F C R~ are subspaces, then E X F is a subspace of R™** under
this identification. Thus the Cartestan product of two vector spaces is a vector space.

§2. Real Eigenvalues

Let T be an operator on a vector space E. A nonzero vectur x € E is called a
(real) eigenvector if Tz = ez for some real number a. This « is called & real etgen-
value; we say x belongs o a.

Figenvalues and eigenvectors are very important; Many problems in physics
and other sciences, as well as in mathematics, are equivalent to the problem of
finding eigenvectors of an operator. Moreover, eigenvectors can often be used to
find an especially simple matrix for an operator.

The condition that « is a real eigenvalue of 7 means that the kernel of the operator

T—~eal: E—E

is nontrivial. This kernel is called the a-eigenspace of T'; it consists of all eigen-
vectors belonging to o together with the 0 vector.
To find the real eigenvalues of 7' we must find all real numbers A such that

1 Det(T — M) = 0.
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(See Part E of the previous section.) To do this let A be a representative of T. Then
(1) is equivalent to

(2) Det{d — rxI) = 0.

We consider A as an indeterminate (that is, an “unknown number”) and compute
the left-hand side of (2) (see Appendix 1}. The resuit ia a polynomial p()) in A,
called the characteriatic polynomial of A. Thus the real eigenvalues of T are exactly

the real roots of the p(A). Actually, p(\) is independent of the basis, for if B is
the matrix of T in another basis, then

B = QAQ!
for some invertible n X n matrix @ {Section 1, Part D). Hence
Det(B — A} = Det(QAQ™" — Al)
= Det(Q(4 — \)@)
= Det(A — M)

(Section 1, Part E). We therefore call p(\) the characieristic polynomial of the
aperator T. Note that the degree of p(}) is the dimension of E.

A complex root of the characteristic polynomial is called a complex eigenvalue
of T'. These will be considered in Section 4.

Once a real eigenvalue o has been found, the eigenvectors belonging to « are
found by solving the equation

{3) (A -\Dz=0.

By (2) there must exist a nonzero solution vector x. The solution space of (3) is
exactly the a-eigenspace.

Example. Consider the operator 4 = [_} _{]on R?, used to deacribe a differen-
tial equation {4) in Chapter 1. The characteristic polynomial is

5 — A 3
Det ]=A‘—J\-—2
-6 —-4-2

=(A—=2)(A+1).

The eigenvalues are therefore 2 and — 1. The eigenvectors belonging to 2 are solu-
tions of the equations (T — 20Dz = 0, or

[ i)
=0,

-6 =61Lzx,
3z + 3z, = 0,
—6z, — 6ay = 0,

which, in coordinates, is
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The solutions are
Thus the vector

fi=(, ~1) € R?

is a husis for the eigenspace belonging to the real eigenvalue 2.
The —1 eigenspace compriges solutions of

(A4+ DNz =0,

[ SIE]-e

This matrix equation is equivalent, to the pair of scalar equations

or

6-'51 + 33‘! = 01
—6z, — 3x9 = 0.

It is clear that (—1, 2) is a basis for the solution space. Therefore the vector
fi = (—1,2) € R?is a basis for the {—1)-eigenspace of 7.
The two vectors
fl= (l: "l)r f!= (_1:2)

form a new basis {f), fi] for R In thiz basis T has the diagonal matrix

o -]
0 —1J
Note that any vector z-= {21, z2) in Rt can be written in the form yi 4+ ws;

then z = (} — ¥, —th + 2y2) using the definition of the f. Therefore (3, ) are
the coordinates of x in the new basis. Thus

B B [l—l]
z = By, =1_ 2l

This is how the diagonalizing change of coordinates waa found in Section 1 of Chap-
ter 1,

Example. Let T have the matrix [] “}]. The characteristic polynomial is

-x =1
Det[ ] = M4 1
I —a

Hence T has no real eigenvalues.
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If a real eigenvalue a is known, the general procedure for finding eigenvectors
belonging to o are found as follows. Let A be the matrix of T in a basis ®. The matrix
equation (A — al)z = 0 is equivalent to the system of linear equations

(au — a)1; + anpt: + -+ + ainZa = 0,

anti + (@n — @)z + - + ara2a =0,

GuTr + 7 F GpaiZacg + (Ban — a)za = 0.

The vanishing of Det{A — al) guarantees a nonzero solution z = (x,, ..., &.).
Such a solution is an eigenvector for a, expressed in the basis &,

A very fortunate situation oceurs when E has a basis {f), . . ., f.} such that each
f+1s an eigenvector of T'. For the matrix of T in this basis is just the diagenal matrix
D = diag{e, ..., oa}, that is,

all other entries being 0. We say T is diagonalizable.

It is very easy to compute with D. For example, if £ € £ has components
(xy, ..., x.), that is, £ = X z;fi, then Tz = (a2, ..., asz.). The kth power
Dt = D ... D (k factors) is just diagla?, ..., o}}.

An important criterion for diagonalizability is the following.

Theorem 1  Let T be an operator for an n-dimensional veclor space E. If the charac-
teristic polynomial of T has n distinet real roots, then T can be diagonalized,

Proof. Jet ¢, ..., ¢ be eigenvectors corresponding to distinct eigenvalues
ay, ..., an If &, ..., € do not form a basis for E, order them so that e, .. . , &a
is a maximal independent subset, m < n. Then e, = 3T, {#;; and

0= (T —ad)ea =2 (T — aud)ey
)
-

= 3 1;(Te; — auey)
i

= z [,-(a,- —_ ﬂn)ej.
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Rinee ¢, . . ., em are independent,
ti{a; — an) =0, i=L...,m

Since a, * w, by assumption, each t; = 0. Therefore, e, = 0, contradicting e.
being an ecigenvector. Hence {ey, . .., .} i3 a basis, so T is diagonalizable.

The following theorem interprets Theorem 1 in the language of matrices,

Theorem 2 Lef A be an n X n mairix having n distinct real etgenvalues M, vy Ans
Then there exists an tnveritble n X n malriz Q such that

QAQ! = diag{y, ..., A}

Proof. Let {e, ..., e} be the standard basis in R" with corresponding co-
ordinates (2, . .., Za}. Let T be the operator on R* where the matrix in the stand-
ard basis is A. Suppose {fy, . .., f.} is a basis of eigenvectors of T, so that Af; =
Md =1, ..., n Pat f; = (fa, ..., fi). If Q is the matrix whose jth column is
f;, then @QAQ-1 is the matrix of T in the basis {fy, ..., fa}, a8 shown in Part D of
Section 1. But this matrix is diag{h, ..., -

We will often use the expression *“A has real distinct eigenvalues” for the hypothesis
of Theorems 1 and 2.

Another useful condition implying diagonalizability is that an operator have a
symmelric matrix (a;; = a;) in some basis; see Chapter 9.

1t us examine a general operator T on R? for diagonalizability. Let the matrix
be [* 4]; the characteristic polynomial pr(A) is

a— M\ b
Det[ ]
¢ d— X
=M — (@ + d)) 4 {ad — be).

Notice that a + d is the trace Tr and ad — bc is the determinant Det. The roots
of pr(2), and hence the eigenvalues of T, are therefore

{a—-MN{d—X\ —bc

${Tr + (Tr* — 4 Det)"?).

The roots are real and distinet if Tr* — 4 Det > 0; they are nonreal complex con-
jugates if Tr — 4 Det < 0; and there is only one root, necessarily real, if Tr —
1 Dot = 0. Therefore T is diagonalizable if Tr* — 4 Det > 0. The remaining case,
Tr? — 4 Det = 0 is ambiguous. If T is diagonalizable, the diagonal elements are
eigenvectors, If pr has only one root «, then T has a matrix [§ 2]. Hence T = al.
But this means any matrix for T is diagonal (not just diagonalizable) ! Therefore
when Tr? — 4 Det =0 either every matrix for T, or no matrix for T, is diagonal.
The operator represented by [} 1] cannot be diagonalized, for example.-
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§3. Differential Equations with Real, Distinct Eigenvalues

We use the results of Section 2 to prove an important result.

Theorem 1 Let A be an operalor on R* having n distinet, real eigenvalues. Then
Jor all 2y € R*, the linear differeniial equafion

(1) ' = Az;  z(0) = o,
has a unique solulion.

Proof. Theorem 2 of Section 2 implies the existence of an invertible matrix ¢
such that the matrix QAQ! is diagonal:

QAQ™ = diag{h, ..., M} =B

where Ay, . . . ; An ate the eigenvalues of A. Introducing the new coordinates y = @z
in R~, with z = @'y, we find

¥y =0z = QAz = QA(Q™'y)

80

(2) y' = By.

Since B is diagonal, this means

(29 v =y i=1,...,n

Thus (2) is an uncoupled form of {1). We know that (2’) has unique solutions for
every initial condition y;(0):

yi(t) = :(0) exp(tr).

To solve (1), put y(0) = Qxy. If (1) is the corresponding solution of (2), then
the solution of (1) is

z(t) = ¢'y(9).
More explicitly,

z(t) = @ (11(0) exp(Mt), . . ., ¥ (0) exp(rat)).

Differentiation shows that

=Q7 = Q'By
= @ QAQ )y
= AQ7y;

= Az,
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Moreover,
z(0) = @'y(0) = @G7'Qx = 2o
Thus x(t} really does solve (1).

To prove that there are no other solutions to (1), we note that z{¢} is a solution
to (1) if and only if Qz(?) is a solution to

3 v =By, y(0) = Qx.

Hence two different solutions to (1)} would lead to two different solutions to (3),
which is impossible since B is diagonal. This proves the theorem.

It is important to observe that the proof is constructive; it actually shows how
to hind solutions in any specific case. For the proof of Theorem 1 of Section 2
shows how to find the diagonalizing coordinate change Q@ {or @~'). We review this
procedure.

First, find the eigenvalues of A by finding the roots of the characteristic poiy-
nomial of A. (This, of course, may be very difficult.} For each eigenvalue X; find a
corresponding eigenvector f; by solving the system of linear equations corresponding
to the vector equation

(A - xDf: = 0.

(This is purely mechanical but may take a long time if n js large.) Write out each
eigenvector f; in coordinates:

fn' = (Pih DRI pl'ﬂ):
obtaining a matrix P = [p.]. Then the y; are defined by the equation
(4) T=Xpys J=LlL...m
or
r = Py,

Note the order of the subscripts in (4) ! The ith column of P* consists of the coordi-
nates of fi. The matrix Q in the proof is the inverse of P. However, for some pur-
poses, it is not necessary to compute @,

In the new coordinates the original differential equation becomes

(5) ¥ = Ay i=1...,n
so the general solution is
#:{l) = a;exp(I\;); i=1,...,n,
where ay, . . ., @. are arbitrary constants, a; = ¥:(0). The general solution to the

vriginal equation is found from (4}:

(6 () = Lpoacexp(ih);  j=1...,n
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This substitution is most easily done by matrix multiplication
z(t) = Py(0),

writing x(2) and y(¢) as column vectors,

i (t) a; exp(in)
z(t) = P oy = : .
Tnl(t) an eXp(iha)

To find a solution z(1} with a specified initial value
z(0) = u = (uy, ..., ta),

one substitutes t = ¢ in (8), equates the right-hand side to u, and solves the result-
ing system of linear algebraic equations for the unknowns (a;, ..., Ga):

(7 Tpogi=u; Jj=1...,n
i

This is equivalent to the matrix equation
Pla = u; a= (..., q).

Thus ¢ = (P*)~'u. Another way of saying this is that the initial values z(0) = u

corresponds to the initial value y(0) = (P*)~'u of (5). If one isinterested only ina

specific vector u, it is easier to solve (7) directly then to invert the matrix Pt
Here is a simple example. Find the general solution to the system

(8) T =1,
i =1, + 2m,

Xy = — Ix
The corresponding matrix is

e

I
e
o N <

Since 4 is triangular,
Det{Ad — X) = (I — M) (2 — A}{(—1 — 1),

Hence the eigenvalues are 1, 2, —1. They are real and distinet, so the theorem
applies.
The matrix B is
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In the new coordinates the equivalent differential equation is From z = Pty we have
=1 ot} 2 00 ae'
¥t = 21, () |=}—-2 1 0] ber|;
y; = —14, () 1 01 ce*
which has the solution hence
n(t) = ae, ) z (1) = 2ae’,
wlt) = be*, : 23(t) = ~2aet + be,
nit) = ce, a, b, ¢ arbitrary constants. (1) = ae* + ce,
To relate the old and new coordinates we must find three eigenvectors fi, fy, fs where a, b, ¢ are arbitrary constants.
of A belonging respectively to the eigenvalues 1, 2, —1. The second column of 4 The reader should verify that (9) is indeed & solution to (8).
shows that we can take To solve an initial value problem for (8), with
f! = (Or 1: 0)! I.‘(O) = Ui, 1= 1: 21 3;
and the third column shows that we may take we must select a, b, ¢ appropriately.
From (9) we find
fi=1(0,0,1). 7:(0) = 2a,
To find f; = (2, va, vs) We must solve the vector equation 2(0) = —2a + b,
o (4-Dfh=0, o a0 =ate
or Thus we must solve the linear system
00 1L E I (10} 2a = u,,
1 1 Ol ]=0; —2a8+b =,
1 0 =2f|mn a+c=u,
this leads to the numerical equation for the unknowns a, b, c. This amounts to inverting the matrix of coefficients of the
nt+on=0 left-hand side of (10), which is exactly the matrix P*. For particular values of uy, 1,
' Uz, it is easier to solve (10) directly.
n — 205 = 0. This procedure can, of course, be used for more general initial values, £(t) = u.
The following observation is an immediate consequence of the proof of Theorem 1.
Any nonzero solution will do; we take ty = 2, = —2, 1 = 1, Thus
h=(2 -21). Theorem 2 Lel the n X n malriz A have n distinct real eigenvalues )y, . . ., Aa

. Then every solution to the differential 10
The matrix P* has for its columns the triples f;, fy, fi: y Jif equation

' = Az, z(0} = u,

200 18 of the form
pr=1-210; zi{l) = caexp({th) 4+ -+ +cnexp{iia); i=1,...,n,
1 01

Jor unigue consignls ci, . . . , ¢ depending on u.
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By using this theorem we get much information about the general character of
the solutions directly from the knowledge of the eigenvalues, without explicitly
solving the differential equation. For example, if all the eigenvalues are negative,
cvidently

Iimz(t) =0

(S
for every solution xz{{}, and conversely, This aspect of linear equations will be
investigated in later chapters.

Theorem 2 leads to another method of solution of (1). Regard the coefficients ¢,,
as unknowns; set

z2:{t) = 3 ci;explir;); i=L...,n
i

and substitute it into
' = Azx, x{0) = u

Then equate coefficients of exp(fA;) and solve for the ¢;; There results a system

of linear algebraic equations for the ci; which can aslways be satisfied provided

M« . . , A are real and distinet. This is the method of “undetermined coefficients.”
As an example we consider the same aystem as before,

n =xn
z; = + 231,

T =x — Ty
with the initial condition
2{0) = (1,0,0).
The cigenvalues are oy = 1, s = 2, Ay = —1, Our solution must be of the form
i {l) = cue' + cue® + et
na(t) = cne' + ome™ + one™;
7(f) = cene’ + cne™ + Cne".
Then from zi(t) = z; we obtain
cuet + 2o — cpe™t = cue' + cue™ + cue
for all values of t. This is possible only if
ty=o¢y =0
(Differentiate and set { = 0.) From z; = x; + 212 we get
ene' + 2em6* — cme™ = (cn + 2en)e! + (cuZem)e® + (cu + 2om)e".
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Therefore
e = tn + Zen,
2er = cu + 2om,

—en = ty + 2¢nm,
which reduces to

en = —¢n,

cn = 0.
From 23 = z, — z; we obtain

cne’ + 2epe® — ene = (en — n)e' + (e — cn)e* + (¢ — en)et.
Therefore
n = ¢y — Oy,
2en = oy — Cm,

—Cn =y — Cn,
which boils down to

on = keu,
e =0.
Without using the initial condition yet, we have found
() = e,
za(t) = —cue' + cnett
nalt) = deue' + cue™,
which is equivalent to {9). From (z:(0), 2:(0), 2,(0)) = (1, 0, 0) we find
ey =1, o =1, tm= —4%
The solution is therefore
z{t) = (¢!, —¢' - &, ket — 1),

We remark that the conclusion of Theorem 2 is definitely false for some operators
with real, repeated eigenvalues. Consider the operator A = [} 1], whose only eigen-
value is 1 and the system 2’ = Az;

(1]) 33; = Iy,
i = 1, + s

Ob\:'iously, z;(t) = ae', a = constant, but there is no constant b such that z:(2) =
bet is a solution to (11). The reader can verify that in fact a solution is

(1) = ael,
nal) = e'(at + b),
a and b being arbitrary constants, All solutions have this form; see Problem 3.
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PROBLEMS

1. Solve the following initial value problems:
{(a) ¥ = —z, (b) =z{ = 2x + 1y

Y =z + 2y; 15 = 1+ o
z(0) =0, y{(0) = 3. (1) = L, z(1) = L
(e 2’ = Azx; (d) z = A=,
.‘1:(0) = (3’ 0): I(ﬂ) = (Or —b: b))
0 3 0 0
0] 2
1 =2 A=lo -1 ol
¢ 2 -3

2 Tind a2 X 2 matrix 4 such that one solution to z’ = Az is
() = (e — e, e + 27},
3. Show that the only solution to

'T'l; = Ty
T3 = I+ Ir;
n(0) = e,
552(0) = bl
is
I[(l’) = aet,

(Hint: If (u(t), 3:(8)) is snother solution, consider the functions e~'ui (¢},
e 'p(t).)

1. Let an operator A have real, distinct eigenvalues. What condition ?n the e.':gen-
values is equivalent to lime.o | 2(8) | = o« for every solution x(l) to 2" = Az?

5. Suppose the n X n matrix A has real, distinct eigenvalues. Let £ — (¢, o)
be the solution to ' = Az with initial value ¢(0, o) = 2o
{a) Show that for each fixed {,
Lim ¢('! yll) = ¢(tl xo).
- .
This means solutions are continuous in initial conditions. (Hint: Suppose
A is diagonal.)
(b} Improve (a) by finding constanta A 2 0,k > 0 such that

| olt, yo) — d(t, 20) | < At | o — Zo .
- (Hint: Theorem 2.)
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6. Consider a second order differential equation

() " + bx' + cx = 0; b and ¢ constant.

(a) By examining the equivalent first order system

=y,
’

v m-—c:c—by,

show that if 4 — 4¢ > 0, then (+) has a unique solution z(¢) for every
initial eondition of the form

z(0) = u, z'{0) = v
{b) If B — 4c > 0, what assumption about b and ¢ ensures that
lim z(t) = 0

t=oe
for every solution z(f)?
{¢) Sketch the graphs of the three solutions of
- -3 +2x=0
for the initial conditions

-’C(D) = 1) r'(o) = —1,0, L

Let a 2 X 2 matrix A have real, distinct eigenvalues A, . Supposé an eigen-

vector of A is (1, 0) and an eigenvector of 4 is (1, 1}. Sketch the phase portraits
of ¥ = Ax for the following cases:

(8) D <Xy (b) 0<u<)

(¢) A< <0
d) » <O <y; () x=0;2>0.

§4. Complex Eigenvalues

A class of operators that have no real eigenvalues are the planar operators T, ,:

R* — R? represented by matrices of the form A,, = [* 7], b = 0. The charac-
teristic polynomial is

A — 2ax + (a® + BY),
where roots are

a ~ 1h, a— tb; = +/—1,
We interpret T., geometrically as follows. Introduce the numbers r, 8 by
r= (a + b)),

a a
# = arc cos (—), cosf = —.
r r
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Then: Providing b > 0, T.s 18 6 counterclockwise rotation through 8 radians followed
by a stretching (or shrinking) of the length of etu.:h vector by a faclor of .
That is, if Ry denotes rotation through 6 radians, then

Toslz) = rRa(x) = Ra(rz).
To see this first observe that
a = rcos#, b=rsind

In the standard basis, the matrix of R,y is

[cosa —sin 0]_
gingé cosel

the matrix of scalar multiplication by r is rI = [ !]. The equality
a —b] [r 0] [cosa —sin 9]
[b al Lo rllsine coss
vields our assertion.

There is another algebraic interpretation of T.,. Identify the plane R* with the
field of compler numbers under the identification

(z, y) &z + .
Then with this identification, the operator T.. corresponds to mulliplication by
a+ ib: '
(z,y) —r 2z + iy

operate by T, ., multiply by a + i

—

(ax — by, bz + ay) +——— (ax — by) + i(bx + ay)

Notice also that r is the norm {absolute value) of @ + bi and 4 is i.ts argu_ment..
Readers familiar with complex functions will recall the formula a + ib = re¥ (see
Appendix I). ' )

The geometric interpretation of T, makes it easy to compute with. For example,
to compute the pth power of T,,:

(Tan)? = (r)*(Re)* = (1) (Rw)
rPcoapd —r*gin p&]
- [r' sin pd * coe poJ

Next, we consider the operator Ton R* where the matrix is{} 73] . The char-
acteristic polynomial is ¥ — 2 + 2, where roots are

144, 1=t
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T does not eorrespond to multiplication by a complex number since its matrix
ig not of the form A, . But it is possible to introduce new coordinates in R*—that
i8, to find a new basis—giving T a matrix 4, s.

Let (zi, 22) be the standard coordinates in R2. Make the substitution

o=+ b,
: = —¥,
80 that the new coordinates are given by
hn=—unmn
— =1 + za

The matrix of T in the y-coordinates is [} "}] = A;,. For this matrix r = V2,
6 = x/4, Therefore in the (3, y)-plane T is rotation through =/4 followed

with stretching by V2. In the original coordinates (z,, 71), T is a kind of “elliptical

rotation” followed by the V2-stretch. If vectors in R? are identified with complex
numbers via the y-coordinates—the vector whose y-coordinates are (3, y2) becomes
3 + yr—then T corresponds to multiplication by 1 + 1.

This shows that although T is not diagonalizable, coordinates can be introduced
in which T has a simple geometrical interpretation : a rotation followed by a uniform
stretch. Moreover, the amount of the rotation and stretch can be deduced from
the roots of the characteristic polynomia), since »/4 = arg(1 + 1}, V2 = 144

We shall explain in Chapter 4, Section 3 how the new coordinates were found.

We show now how the complex structure on R? (that is, the identification of

R? with C) may be used to solve a corresponding class of differential equations.
Consider the system

(l) ;‘f:u"byr
dy
I = bz + ay

We use complex variables to formally find a solution, check that what we have
found solves (1), and postpone the uniqueness proof (but see Problem 5).
Thus replace (z, y) by z + iy = z, and [{ ?] by a + bi = 1. Then (1) becomes

(2) 2 = pe

Following the lead from the beginning of Chapter 1, we write a solution for (2),
2(t) = Ke'. Let us interpret this in terms of complex and real numbers. Write
the complex number K 88 u + ivand set z(t) = z(t) + iy(t), &% = e™e® A stand-
ard formula from complex numbers (see Appendix 1) says that e® = cos tb +
isin tb. Putting this information together and taking real and imaginary parts we
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obtain
(3) (£} = uet cosib — ve sin b,

y(f) = ue* gin tb + ve' cos tb.

The reader who is uneasy about the derivation of {3) can regard the pref:eding
paragraph simply as motivation for the formulas (3); it is easy to verify directly
by differentiation that (3) indeed provides a solution to (1). On the other hand,
all the steps in the derivation of (3) are justifiable. o )

We have just seen how introduction of complex variables can be an aid in solving
differential equations. Admittedly, this use was in a very special case. However,
many systems not in the form (1) can be brought to that form through a chanse
of coordinates (see Problem 5). In Chapter 4 we shall pursue this idea systemati-
cally. At present we merely give an example which was treated before in the Kepler
problem of Chapter 2.

Consider the system

(4) z' =y
y=—-bz; bH>0

[ o]
A= \
- 0
whose eigenvalues are bi. It is natural to ask whether A can be put in the form
B [0 —~b]
"L o
through a coordinate change. The answer is yes; without explaining how we dis-

covered them (this will be done in Chapter 4), we introduce new coordinates (u, v}
by setting = v, ¥ = bu. Then

The corresponding matrix is

u = %y‘ = —bn,
v =32 = bu.
We have already solved the system
v = —by,
v = bu,

the solution with (% (0), v(d)) = (0, ) is
u{l) = uycosth — vosin th,
vt} = wgsiti & 4 wcostd.
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Therefore the solution to (4) with initial condition

) (z(0), ¥(0)) = (z0, ¥}
18

z(l) = % sin th 4+ x cos tb,}

¥(t) = yocosth — brysin th,

ag can be verified by differentiation.
We can put this solution in a more perspicuous form as follows. Iet € =

[{yo/b)? + z*]* and write, assuming C = 0,
- = —uf, Zo = oC.
Then u? + #* = I, and
z(t) = Clvcosth — usinth].
Let t; = b7 arc cos v, 80 that
cos bly = v, sinbly = u.

Then z(t) = C(cos bt cos bto — sin bt sin bly), or

(5) z(t) = Cceos b(t — &);
and
(6) y(t) = bCsin b(t — &)

a8 the reader can verify; C and t, are arbitrary constanta,
From (5) and (6) we see that

T, ¥
e (be)t

Thus the solution curve (x(t), y{1)) goes round and round an ellipse.

Returning to the system (4), the reader has probably recognized that it is equiva-
lent to the second order equation on R

(7) z'" 4+ bx =0,
obtained by differentiating the first equation of (4) and then substituting the

second. This is the famous equation of “‘simple harmonic motion,” whose general
solution is (5).
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PROBLEMS 6. LetA = [§}] The solutions of 2’ ;
’ wd = Az depend cont initi
{Bee Problem 5, Section 3.) pend continucusly on initial values.
1. Solve the following initial value problems, 7. Bolve the initial value problem
{(a8) ' = -y (b) zf = —2x, ,
¥ =1z zi = 23y 7 = —4y,
z(0) =1, y(0) = L 21(c) = 0, 2,(0) = 2, ¥ =z
() ' = (d) 2 = Az, _
¥ = —z; z(0) = (3, —9); z(0) =0, y(0) = -7,
2(0) = 1,4(0) = 1. 1 —2
T
2 1

9. Sketch the phase portraits of each of the differential equations in Problem 1.

3. Let A = [3 '] and let z(¢) be a solution to 2’ = Az, not identieally 0. The
curve z () is of the following form:
() acircleif ¢ = 0;
(b) @ spiral inward toward (0, 0) if e < 0, b = 0;
(¢) & spiral outward away from (0, 0) ifa > 0, b = 0.
What effect has the sign of b on the spirals in (b} and (¢}? What is the phase
portrait if b = 0?

4. Sketch the phase portraits of:
{a) 2’ = —2z; by 2'=—z+z
¥ =2z vV =3y
2 = —2y. g = —xz—uz
Which solutions tend to 0 as £ — «?

5. Let A be a 2 X 2 matrix whose eigenvalues are the complex numbers o & 1,
8 = 0. Let B = [5 “4]. Show there exists an invertible matrix Q with QAQ~* =
B, as follows:
ia} Show that the determinant of the following 4 X 4 matrix is 0:

[A-—-al -ﬁI]
gl A—aI !
where I = [} 1].

{b) Show that there exists & 2 X 2 matrix Q such that AQ = QB.
{Hint: Write out the sbove equation in the four entries of ¢ = [g]
Show that the resulting system of four-linear homogeneous equations in
the folr unknowns g;; has the coefficient matrix of part (a).)

(¢} Show that  can be chosen invertible. :

Therefore the system ' = Az has unique solutions for given initial conditions.



Chapter 42‘

Linear Systems with Constant

Coefficients and Complex Eigenvalues

As we saw in the last section of the precedi_ng cha;?ter, co.mplex m{mber;s en;zr-
naturally in the study and solution of real ordinary dll‘!!e'rentml }:aqualu?ngs,of:;iﬁem
' tor spaces facilitates the solvin
eral the study of operators of complex vec _ solving of e
i i i this chapter is devoted to the linear alg
differential equations. The first part of o
tly, methods are developed to study )
of complex vector spaces. Subsequ?n , e . oy o ing
y i i i tions with constant coefficients, 3
first order linear ordinary differential equa ‘ :
tk::):e whose associated operator has distinet, though perhaps nonreal, eigenvalues.
The meaning of “aimost all” will be made precise in Chapter 7.

§1. Complex Yector Spaces

understanding of linear operators (and hence of ll‘near

differential equations) we have to find the geometric significance of comple; etlgg)e:r;

values, This is done by extending an operator T on a {real) vectio;‘ sp:cc ;o o

aperator Te on a complex vector space ‘Ec. Complex eigenvalues o :Zesass

with conpiex cigenveetors of Te. We first develop complex vector sp . o v
The definitions and clementary properties of R an(! (real) vect.or sptt:ces g} over

dirvetly to € and cumplex vector spaces by syf'stcmatlcally replacing the real

bwrs R with complex numbers C. We make this more prec»se\now. J of complex
¢omples Cartesian space C™ is the set all n-tuples z = (zy ... ,vz‘? 0 e if e

numbers (see Appendix I for the definition of complex numbets). We cal

i int in C~ , re added exactly
' ometimes a point in C. Complex vectors &
e one Oy " if A is a complex number and

In order to gain a deeper

a complex ve :
like vectors in R* (see Chapter 1, Section 2). Also,
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z = (2, ..., za) isin C~, then Az is the vector (Az, ..., Az,); this is scalar multi-
plication. Note that R~ is contained naturally in C" as the set of all (21, ..., 24),
where each z; is real.

The axioms V81, VS2 of Section 1A of Chapter 3 are valid for the operations
we have just defined for C~. They define the compler vector gpace structure on C»,

As in Section 1B, Chapter 3, a nonempty subset F of C* is called a subspace or a
(complex) linear subspace if it is closed under the operations of addition and scalar
multiplication in C*. The notions of trivial subspace, proper subspace, subspace
of a (complex) subspace are defined as in the real case; the same i3 true for the
concept of linear map 7: Fy — F, between subspaces F,, Fy of C*. One replaces
real scalars by complex scalars (that is, complex numbers) everywhere. A complex
vector space will mean a subspace of C».

The material on kernels and images of linear maps of complex vector spaces
goes over directly from the real case as well as the facts about bases, dimension,
coordinates. Propositions 1, 2, and 3 of Section 1B, Chapter 3, are all valid for the
complex case. In fact, all the algebraic properties of real vector spaces and their
linear maps carry over to complex vector spaces and their linear maps. In par-
ticular, the determinant of a complex operator T, or a complex n X n matrix, is
defined (in C). It is zero if and only if 7" has a nontrivial kernel,

Consider now an operator on C*, or more generally, an operator T on a complex
vector space F C C~. Thus T: F — F is a linear map and we may proceed to study
its eigenvalues and eigenvectors as in Section 2 of Chapter 3. An eigenvalue X\ of
T is a complex number such that T = av has a nonzero solution v € F. The vector
v of F is called an eigenvector belonging to X. This is exactly analogous to the real
case. The methods for finding real eigenvalues and eigenvectors apply to this com-
plex case.

Given a complex operator T as above, one associates to it a polynomial

p(A} = Det(T — Al

(now with complex coefficients) such that the degree of p()) is the dimension of
F and the roots of p are exactly the eigenvalues of T.
The proof of Theorem I of Section 2 in the previous chapter applies to yield:

Theorem Let T: F — F be an operalor on an n-dimensional compler vector space
F. If the characteristic polynomial has distinct roots, then T can be diagonalized.

This implies that when these roots are distinet, then one may find a basis (e, . . . , €a)
of ewgenvectors for T 20 that if z = 3 5u, 2, 45 in F, then Tz = Yi=i Aaje;; ¢, i the
eigenvector belonging lo the (complex) eigenvalues i,

Observe that the above theorem is stronger than the corresponding theorem
in the real case. The latter demanded the further substantial condition that the
roots of the characteristic polynomial be real.

Bay that an operator T on & complex vector space is semisimple if it is diagonal-
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izahle, Thus by the theorem above T is semisimple if ita characteristic polynomial
has distinet roots (but not conversely as we ghall see in Chapter 6).

A we have noted, R C €. We consider now more generally the relations be-
{ween vector spaces in R and complex vector spaces in Cn. Let F be & complex
subspace of C*. Then Fa = F R~ is the set of all n-tuples (z, ..., z.) that are
in F and are real. Clearly, Fx is closed under the operations of addition as well
as scalar multiplication by real numbers. Thus Fg is a real vector space {subspace
of R*).

C'onsider now the converse process. Let E C R~ be a subspace and let Ec be the
subset of C~ obtained by taking all linear combinations of vectors in E, with complex

coefficients. Thus
4
Ec=[z€C 2= hzy2 € E NeEC)
-]

and Ec is 2 complex subspace of C". Note that (Ec)a = E. We call Ec the com-
plecification of E and Fg the space of real vectors in F.

In defining Ec, Fg we used the fact that all the spaces considered were subsets
of C». The essential element of structure here, besides the aigebraic structure, is
the operation of complex conjugation.

Recall if z = z + ¢y is a complex number, then £ = z — iy. We often write
Z = o(2) 5o that ¢: C — C as a map with the property o? = ¢ <o = identity. The
wet of fixed points of o, that is, the set of z such that o(2) = 2, is precisely the set
of reul numbers in C.

I'hix aperation ¢, or conjugation, can be extended immediately to C° by defining
o C» — C" by conjugating each coordinate. That is,

G(Zl,...,ZA) = (21,...,2u)-

For this extension, the set of fixed poinis is R”.

Note also that if F is a complex subspace of C*, such that ¢F = F, then the set
of fixed points of « on F is precisely Fg. This map « plays a crucial role in the rela-
tion between real and complex vector spaces.

et F C C*be a g-invariant linear subspace of C*, Then it follows that forv € F
Ao G, ata) = gl e(2) or if we write o{w) = & for w € F, Az = Af. Thus ¢ is
nof complex linear. However, ¢ (v + w) = o(2) 4+ o(w).

[t follews that for any subspace F C €n,

Fr=1{z€ F|lo(z) = 2}.

In terms of o it is easy to sce-when a subspace F C C~.can be decomplexified,
that is, expressed in the form F = E¢ for some subspacilb' C R*; F can be de-
complexified if and only if o(F) C F. For if a(F) C F, then z — iy € F whenever
rt fy¢ Fwithz, y € R"; 50z € F because

zoe }{(z+iy) + (z~ )]
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Bimilarly, y € F. It follows easily that F = Fgc, that is, F is the complexification
of the space of real vectors in F. The converse is trivial.

Jt{st as every subspace £ C R* has a complexification £¢ C C*, every operator
T: E — E has an extension to a eomplex lincar uperator

Tc: Ec — Ec,
called the complezification of T. To define T, z € Ec, let
(n z=2Nz;; MeC, ;e E
Then
Tez = 3 7Tz,

it is t;,:;.a;,y to see that this definition does not depend on the choice of the representa-
ion (1}.
Iffey, ..., e} = Bisabasisfor K, it i i
Ec; and the @-matrix for T'¢ is the samelrlts}]?eamti:ft;?: :(})lre ;'(.)mplex vector space
In particular, if T € L{R") is represented by an n X n matrix A (in the usual
way), then T¢ € L{C*) is also represented by A.
The question arises as to when an operator Q: Ec — E¢ is the complexification
of an operator T: E - E.

Proposition Let E C R~ be a real vector space and E 4 ficali
" ¢ C C» its complezification.
IfQ € L(E) then Q = T¢ for some T € L(L) if and only if

QU = aQr

where a: E¢ — E¢ iz conjugation.
Proof. Ii@Q = Tg, we leave it ta the reader to prove that Qo = o0, Conversely,
sssume { commutes with ¢. Then Q(E) C E; for if z € E, then oz = z, hence
oQr = Qoxr = Qx

80
Qrcly€ Eclay = y] = Ecr = E.
Let Q| E = T ¢ L{E); it is clear from the definition of T that Tec = Q.

We close this section with a property that will be very important in later chapters.
A.n opera_stor T on a real vector space E is semtsimple if its complexification T'¢ is a
dm.go.na.lwab]e operator on E¢. Then the theorem proved earlier implies that a
sufficient {but not necessary) condition for semisimplicity is that the characteristic
polynomisal sheuld have distinct roots. )

PROBLEMS

1. Let F C C® be the subspace spanned by the vector (1, 7).
(s} Prove t.l.mt F is not invariant under conjugation and hence is not the
complexification of any subspace of R2.
(b} Yind Fg and {Fg)c.
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9 Let £ C R"and F C C be subspaces. What relations, if any, exist between
dim  and dim Ec¢? Between dim F and dim Fg?

4. If ¥ ¢ C~is any subspace, what relation s there between F and Fgc?

£ Lot E be a real vector space and T € L(E}. Show that (Ker T)c = Ker{Tc),

(Im The = Im(Te), and (T )¢ = (Te) ' if Tis invertible.

§2. Real Operators with Complex Eigenvalues

We move toward understanding the linear differential equation with constant

coctlicients

dx

N

dt o
where T is an operator on R~ For this purpose, we study further the eigenvalues
and eigenveetors of T, This was done thoroughly in Chapter 3 assuming that all
the cipenvalues were distinet and real. Now we drop the hypothesis that the eigen-

values must be real.

Proposition. If T is an operalor on a real veclor space E, then the set of it:i eigen-
values is preserved under complez conjugation. Thus if ) is an eigenvelue s0 ig A, Con-
sequently, we may write the eigenvalues of T as

Ay - oo Ary ali Teﬂl,
g1y By o v oy Bay By all nonreal.

Proof. First, obscrve that the eigenvalues of T coincide with the eigenvalues
of its complexitication Te¢ beeause both T and Tc¢ have the same characteristic
polviomial, Let A be an cigenvalue of T'e and ¢ a corresponding eigenveetor in
Eeo e Teg = Ag. Applyving the conjugation operation o to bath sides, we find

o(Tee) = Ap.
But, by the propesition of Section 1,

a(Tee) = Tealw) = Telo).
Henee
Tep = Ao.

In other words, X is an eigenvalue of T¢ with correspohﬁing cigenvector . This
proves the proposition. (Another proof is based on the fact that the characteristic
polvnoniial of T has real cocfficients, so the roots occur in conjugate pairs.)

The basie properties of real operators are contained in the following three
theorems
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Theore.m 1 Let T E — E be a real operator with distinct eigenvalues listed as in
the previous proposition. Then E and T have a direct sum decomposilion (see Section
1F of Chapler 3),

F = Ea @® E&, T = Tn -] Tb, Tn: Eu —* Em Th: Eb_‘Eb-
where T, has real eigenvalues and T, nonreal eigenvalues.

For \the proof we pass to the complexification T'¢c and apply the theorem of the
preceding section together with the above proposition. This vields a basis for Ee
(er, ...y en fo, f1v - oo £y J) of eigenvectors of Te corresponding to the eigenvalues
ooy Ay iy Ay - ooy ey @)

Now let F, be the complex subspace of Ec spanned by e, ..., &} and F, be
the subspace spanned by [fi, f2, . . ., [, f.]. Thus F, and F; are invariant subspaces
for Tc ori Ec and form a direct sum decomposition for Eg,

Ec = F,, @Fb.

Morcover F, and F, are invariant under complex conjugation. Set E, = ENnF, and
-Eo = E i Fy; thon F,, F, are the complexifications of E,, By, and E = E, @ l.i';. It
1s easy to sce that E, and E, have the required properties.

| 'i‘ge;)‘rem I reduces the study of such 7 to 7, and T,. The previous chapter ana-
yzed T,.

We remark that Theorem 1 provides an “uncoupling” of the differential equation

A
a0 T

mentioned at the beginning of the section. We may rewrite this equation as a pair
of equations

de. _
d.t - aTa,
d;l‘b

& = Tyrs,

where T,, T, are as above and z, € E,, 7, € £,
We proceed to the study of the aperator T,

Theo‘rem 2 Let T: E — E be an operalor on a real veclor space with distine! non-
real f:’lgenvalws (b By o ooy ey Ba). Then there is an invariani direct sum decom position
Jor £ and a corresponding direct sum decom position for T,

E=Fe---ok,
T=T1@"' QT,,

such that each K 13 tiwo dimensional and T; € L(E,) has eigenvalues K, i
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For the proof of Theorem 2, simply let F; be the complex subspace of E¢ spanned
by the eigenvectors, f;, f: corresponding to the eigenvalues u;, A:. Then let E; be
F:n E. The rest follows.

Theorems 1 and 2 reduce in prineiple the study of an operator with dmtmct eigen-
values to the case of an operator on a real two-dimensional vector space with nonreal

eigenvalues.

Theorem 3 Lethe.anoperatoronatwo-dimcmiomlvedormerCR'M
nonreal eigenvalues u, B, p = 6+ ib, Then there ts ¢ malriz represeniation A for T

)
A= X
b a
The study of such a matrix A and the corresponding differential equation on
R!, dz/dt = Az, was the content of Chapter 3, Section 4.

We now give the proof of Theorem 3. )
Let Tc: E¢ — Ec be the complexification of T'. Since T¢ has the aame eigenvalues

an T, there are eigenvectors ¢, $ in Ec belonging to u, 8, respectively. '
Let ¢ = u + v with u,v € R*. Then = u — . Note that u and v are in E¢, for

u=Hetp), v=ie—9)

Hence u and ¢ are in Ecn R* = E. Moreover, it is easy to see that u and v are
independent (use the independence of ¢, ¢). Therefore {v, u} is & basia for E.
To compute the matrix of T in this basia we start from

Telu + i) = (a+ W) (u + @)
= (—bv + ou) + i(ar + bu).

Also,
Tefu + @) = Tu + iTv.
Therefore
Tv = av + bu,
Tu = —bv + ou.

This means that the matrix of T in the basis {v, u} is (3 ~2], completing the proof.

In the course of the proof we have found the following interpretation of a complex
eigenvalue of a real operator T € L(E), E C R~

Corollary ~Let ¢ € E.be an eigenvector of T belonging toa 4 ib, b » 0. If v = u +
iv € C, then |v, | is a basis for E giving » the matriz [3 JJ.

Note that % and v can be obtained directly from ¢ and ¢ {without reference to
C*) by the formulas in the proof of Theorem 3.
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PROBLEM

For each of the following operators T on R? find an invariant two-dimensional
£ C R? and a basis for E giving T | E & matrix of the form [} }]:
8 10 1 b [o 0 15

00 -2 1 0 -17

01 0 01 7

§3. Application of Complex Linear Algebra to Differential Equations

Consider the linear differential equation on R»

(1) ix = Tz,

where T is an operator on R* (or equivalently, an n X n matrix}. Buppoee that
T has n distinct eigenvalues. Then Theorems 1, 2, and 3 of the previous section
apply to uncouple the equation and, after finding the new basis, one can obtain
the solution. Letting E = R, we first apply Theorem 1 to obtain the following sys-
tem, equivalent to (1): :

dx
(2) T _
(23) dt TJ..
dx
(2b) ‘Jf = Tyzy.

Here
T=T‘°Tiv x=(3-1ﬁ)eE.0Ey=E,

T, has resl eigenvalues, and 7 nonreal eigenvalues,

Note that (2a) and (2b) are equations defincd not on R*, but on subspaces £,
and E,. But our definitions and discussion of differential equations apply just as
well to subapaces of R*. T find explicit solutions to the original equations, bases
for these subspaces must be found. This is done by finding eigenvectors of the
complexification of T, as will be explained below.

) If we obtain solutions and properties of (2s) and (2b) separstely, corresponding
n_lforma-.tiou is gained for (2) and (1). Furthermore, (2a) received a complete
discusgion in Chapter 3, Section 3. Thus in principle it is sufficient to give AD analysis
of (2b). To this end, Theorem 2 of Section 2 applies to give the following system,
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equivalent to (2b):

dy: -
(3) :ly?=Tl'yi: '=1|-'-’3:
where T=Ti @ -~ oTs, y=(y, ..., %) € Ex=E; 8 --- o E, and each E:

has two dimensions.
Thus (Zh) and hence {2), (1) are reduced to the study of the equation

(4 d—:t-‘ = Ty on two-dimensional -E;,

where each T has nonreal eigenvalues. Finally, Theorem 3 of Section 2 applies
to put (4 in the form of the equation analyzed in Section 4 of Chapter 3.

Example 1 Consider the equation

I; = —'2.'52,
Z; = + 2%’
or
’ 0 —2
r = Az, z = (;, oo}, A= [1 2].

'Fhis is the matrix considered in Chapter 3, Section 4. The eigenvalues of A are
A=1+dA=1—1
A complex eigenvector belonging to 1 + i is found by solving the equation

(A-(1+Dw=0

[—1 -7 2 ][wl]
. =0
1 1 -1 1 .
(—1 — Dw, — 2ws = 0,
w+ (1 —Dws =0,
The first equation is equivalent to the second, as is seen by multiplying the second
by (—1 — i}. From the second equation we see that the solutions are all {complex)
multiples of any nonzero complex vector w such that wy, = (—1 + )ws; for exam-
ple, wry = —1, uy = 1 + 7. Thus N
w=(l+1 —4) =(,0) +4i1, —1) =u+
is & complex eigenvector belonging to 1 + 4.
We choose the new basis {v, ) for R2 C €, with v = {1, —1), u = (1, 0).
To find nrew coordinates 3, ys corresponding to this new basis, note that any »
can be written v
z = 2(1,0) + 200, 1) = v + pau = (L, —1) + (1, 0).

for w € C?,

or
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or x= Py, P=[ i{l)]

Thus
I =+ ¥

Ty = =

The new coordinates are given by

or y=PFPru Pl= [0 _l].
The matrix of A in the y-coordinates is
-1 - -
e ] | I B R
t 1dhy 2dl-1 0 1 1 ’

or B = A, in the notation of Section 4, Chapter 3.
Thus, as we saw in that section, our differential equation

Vi = —Iy,

Y2 =3+ T

4 _ A

a7
on R?, having the form

dy

a - By

in the y-coordinates, can be solved as
yil{t) = uecost — vetsind,
¥e(f) = ue'sin{ + ve'cos i
The original equation has as its general solution
() = (u+ viecost + (u — v)e'sint,
z:(1)

Example 2 Consider on R* the differential equation

*

~uef cost + ve'sin L.

10 0
R
dt - zl - 0 _3 -
1 3 2

The .characteristic equation Det(Ad —tI) = 0is (1~ ({2—1)*4+9) = 0. Its
fmlutlons, the eigenvalues for 4, are A = 1, u = 2 + 31, g = 2 — 3i. Eigenvectors
in C* for the complexified operator are found by solving the homogeneous systems
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of three linear equations,

00 0|l e
(A—Ne=0 10 1 =3lie)=0;
1 3 1]1e

this vields e = (—10, 3, 1). Likewise

-1 -3 0 0 ||
0 -3 -3 ||wm}=0
1 3 —3i|lua

(A —ww =0,

. . sy s —i1).
jelds w = (0, 7, 1). A third eigenvector 18 w {0, —4, . ~
g We now wish to find the matrix P that gives a change of coo'rdmates z = Py,
y = P-ir where z is in the original coordinate system on R? and y cqrresponds to the
hasis of cigenvectors. Proposition 4 of Section 1C, Chapter 3, applies.
T'hus ‘

u + i

Here the columns of P are (e, v, u) where w = (0,0, 1) + (0, 1, 0)
Then

-4 00
P = 5 10
d 01
and
1 0 0
B=P1 AP =10 2 31|
03 2

Now we have transformed our original equation z' = Az following the outline
given in the beginning of this section to obtain

10 0
!J'=By. B=|0 2 -3| y-__Pﬂlx‘
0o 3 2

This can be solved explicitly for y as in the previous example and from this solution
one obtains solutions in terms of the original z-coordinates by = = Py.
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A related approach to the equation (1) is obtained by directly complexifying it,
extending (1) to a differential equation on C»,

dz
(1c) T Tez, z € Cn

One can make sense of (1¢) as a differential equation either by making definitions
directly for derivatives of curvea R — C~ or by considering C as R*, that is,

R —Cr,

(3l, v -’In:yh---)yl) = (z,y)—bz-{-iy =z
Application of the theorem of Section 1 diagonalizes T¢, and one may correspond-
ingly rewrite (1c)} as the set of differential equations,

s Y =1 ;
o = Mo i=1...,r
i=}l:'2p+|' i=l... 8,
dt 2 + 1 8,
dw, _ .
dt”ﬂ.w., t1=1...,8

{Sometimes Z,,. is written in place of w,.) Here z;, z,,., w; are all in one-dimensional
complex vector spaces or can be regarded as complex numbers, and n = r + 2s.
These complex ordinary differential equations may be solved using properties of
complex exponentials, as in Section 4 of the previous chapter, obtaining as the
general solution: :

2(‘) = (zl(t)l ey z'-HU); wl(‘): BN w,(t))

(crexp(ht), .. ., ¢ exp(Ad),

i €Xplmt), .. ., Crransexp(Mt), ..., Couns exp(AL)).

Now it can be checked that if 2(0) € R", then z(¢) € R* for all ¢, using formal

properties of complex exponentials. This can be a useful approach to the study of
(1.

PROBLEM

Bolve ' = Tz where T is the operator in (a) and (b) of Problem 1, Bection 2.



Chapter 5

Linear Systems and Exponentials
of Operators

The objeet of this chapter is to solve the linear homogenecus system with con-
stant cocthicients
(1) z = Az,
where A is an operator on R* (or an n X n matrix). This is accomplished with
exponentials of operators,

"This method of solution is of great importance, although in this chapter we can
compute solutions only for special cases. When combined with the operator theory
of Chapter 6, the exponential method yields explicit solutions for every system (1.

Y¥ar every operator A, another operator e4, called the exponential of A, is defined
in Section 4. The function A — e4 has formal properties similar to those of ordinary
exponentials of real numbers; indeed, the latter is a special case of the former.
Likewisc the function { — e (f € R) resembles the familiar et*, where a € R. In
particular, it is shown that the solutions of (1) are exactly the maps z: R —R"
given by

z(t) = e4K (K € R").
Thus we establish existence and uniqueness of solution of (1); “uniqueness’ means
that there is only one solution z(¢) satisfying a given initial condition of the form
x(fo) = K.

Exponentials of operators are defined in Section 3 by means of an infinite series
in the operator space L{R"}; the series is formally the same as the usual series for
. Convergence is established by means of a special norm on L{R"), the uniform
norm. Norms in general are discussed in Section 2, while Section 1 briefly reviews
some basie topology in R*,

Sections & and 6 arc devoted to two lesscentral types of differential equations.
One is a simple inhomogeneous system and the other a higher order equation of one
variable. We do not, however, follow the heavy emphasis on higher order equations
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of some texts. In geometry, physics, and other kinds of applied mathematics, on

seldom encounters naturally any differential equation of order higher than ’t,w Y
Often even the second order equations are studied with more insight after reduci .
to a first order system (for example, in Hamilton's approach to mechanics) e

§1. Review of Topology in R»

The inner product {*dot product”) of vectors z and yinR"is
(Z, ¥y =2+ - + Zoyn

The Euclidean norm of z is |z ] = Basi
. ={z, z 1/ — 2 R 1
erties of the inner product are o ) @ M © pror

Symmetry: {(z, y) = {y, z);
Bilinearity: {(z+y,2) = (z,z) + (y, 2),
@z, y) = alz, 4), a€R;
Posgitive definiteness: {z,z) > 0 and
(x, 2} = 0if and only if z = 0.
An important inequality is
Cauchy's inequality: {z,y) < |z]iy|.

To see this, first suppose z = 0 P o ,
that for any A or ¥ = 0; the inequality is obvicus. Next, observe

A
N @+ r,z4+2y) 20

(@, z) + My, y) + 20z, ) 2 0.

Writing —.(:c, ¥)/ (v, y) for A yields the inequality.
The basic properties of the norm are:

(1) ||z 0and|z| =0if and only if z = 0

@ lz+yl <z + |yl

(3) lexl=lallzl|;

where | ¢ | is the ordinary absolute
\ X value of th .
inequality (2}, it suffices to-prove e scalar a. To prove the triangle

lz+ylE<|zP+lyl+2|2]]yl

L]

Since
lz+ylt=l+yz+y)
) =|t|,+|y|’+2(~tly>:
this follows from Cauchy’s inequality.
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Geometrically, | z | is the length of the vector z and
z,y)=|z|ly|cosb,

where § is the angle between z and . .
The distance between two points z, y € R” is defined to be |z — y| = d(z, ¥).

1t is easv to prove:

(41 |r—y|>0and|z—y|=0ifand only if z = y;
(3 -zl <lz—yl+Hly—zl
T'he Jast inequality follows from the triangle inequality applied to
r—2=(z—g + {y— 2
If ¢ > O the e-neighborhood of x € R* i8
B.(z) = fyc R [[y—z| <el

A neighborhood of = is any subset of R* containing an eneighborhood _0? z, )
A set X (C R* is open if it is & neighborhood of every z € X Explicitly, X is
open if and only if for every z € X there exists ¢ > 0, depending on z, such that

Bz} CX.
A sequence {z:} = i, o1, - . . in R= converges lo the limil y € R~ if

lim|z: —y| =0

ko0

Equivalently, every neighborhood of y contains all but s finite number of the points

of the sequence. We denote this by y = limy., z T 22 — . .If Iy = {(Zagy ooy .’lf;.)
and ¥ = (41, ..., Us), then [z:} converges to y if and only if lime.. 22 = Y1 7 =
1, ..., n. A sequence that has a limit is called convergent.

A sequence {z:} in R~ is 8 Cauchy sequence if for every ¢ > O there exists an
integer ko such that

lz;—ml<e ifk2k and j2 ke
The following basic property of R* is called metric completenesa:
A sequence converges to a limit if and only if il is a Cauchy sequence.

A subset ¥ C R~ ig closed if every sequence of points in Y that is convergent
has its limit in Y. It is easy to see that this is equivalent to: Y is closed if the com-
plement R* — Y is open. .

Let X C R~ be any subset. A map f: X — R™ is condinuous if it takes c?nvergt?nt
sequences to convergent sequences. This means: for every sequence {z:} in X with

limze = y € X,

ksw
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it is true that
Iim f(z) = f().
ke
A subset X C R~ is bounded if there exists a > 0 such that X C B.(0}.

A subset X is compact if every sequence in X has a subsequence converging to a
point in X. The basic theorem of Bolzano—W eierstrass says:

A subset of R™ 13 compact if and only if it is both closeqd and bounded.

Let K C R" be compact and f: K — R~ be a continuous map. Then f(X) is
compact,

A nonempty compact subset of R has a maximal element and a minimal element.
Combining this with the preceding statement proves the familiar result:

Every continugus map f: K — R, defined on a compact set K, takes on @ mazimum
value and a mintmum value.

One may extend the notions of distance, open set, convergent sequence, and other
topological ideas to vector subspaces of R». For example, if E isa subspace of R*, the
distance function d: R* X R~ — R restricts to a function ds: E X E — R that also
satisfies (4} and (5). Then eneighborhoods in E may be defined via dg and thus
open gets of E become defined.

§2. New Norms for Old

It is often convenient to use functions on R~ that are similar to the Euclidean
norm, but not identical to it. We define a norm on R* to be any function N: R* — R
that satisfies the analogues of (1), (2), and (3) of Section 1:

(1} N{z) 20and N{z) = 0ifand only if z = 0;
(2) N(z+y) < N(2) + Ny);
(3) N(ax) = |a|N{z).

Here are some other norms on R~:

lzlmnx'-'maxz,zl}x--'r!‘zﬂJL
|2 loom = f2a |+ --- + [ 2]
Let ® = {f;, ..., fu} be a basis for R and define the Euclidean ®-norm:

fzla = (874 -+ if x=iz,f,.

In other words, | z | is the Euclidean norm of z in ®-coordinates (b, ..., L),
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The ® max-norm of z i8
fzfﬂ.mlt = max”‘l lr Taey I t"”'

The basic fact about norms is the equivalence of norms:

Proposition 1 Let N: R" — R be any norm. There exist constanis A > 0,B>0
such that

(4) Alz|<N(z) <Blz}
for all z, where | x| i the Euclidean norm.

Proof. First, consider the max norm. Clearly,

(max | z; ) € X z/# < nimax | z; [)*;
]

taking square roots we have
[ % ]max €12} SN faxe

Thus for the max norm we can take 4 = 1/¥n, B = 1, or, equivalently,
1
ﬁlzl S !x‘mn‘.S i:l‘-l.

Now let N: R* — R be any norm. We show that N ¢z continuous. We have
N(z) = N(Z ze;) < 2|z | Nley),
where €, . . ., e is the standard basis, If

mu[N(el);--.:N(cﬂ)} =M|
then
N@) <M I |20 S M52 |on

< Mn|z|
Bv the triangle inequality,
[N{z) — N | <Nz~ )
<Mnlz—yl
This shows that N is continuous; for suppose lim 2z = ¥ in R*:
[N(@) = Ny | < Mn)z — ¥,

so lim N(x,) = N(y) inR, .
Since N is continuous, it attains a maximum value B and & minimum value 4
on the closed bounded set

(zeR||z| =1}
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Nowlet z € R~ If x = 0, (4) is obvious. If |z | = a # 0, then
N(z) = aN{ax).
Since | a1z | = 1 we have
A < N(a2) < B.
Hence
4 <a'N(z) < B,
which yields (4), since a = | z|.
Let E C R" be a subspace, We define a norm on E to be any function

N:E—R

that satisfies (1), (2}, and (3). In particular, every norm on R* restricts to a8 norm
on E. In fact, every norm on E is obtained from a norm on R* by restriction. To
see this, decompose R* into a direct sum

R~=EeF.
{For example, let {e], ..., €] be a basis for R* such that {ey, ..., ¢} iz a basis
for E; then F is the subspace whose basis is {€m41, . . ., €&}.) Given a norm ¥ on

E, define a norm N’ on R* by

N(z) =N + 12|,
where

z=y+zy€ E zcF,

and ] z | is the Eueclidean norm of z. It is easy to verify that N is a norm on R* and
N'|E =N.

From this the equivalence of norms on E follows. For let N be a norm on E. Then
we may assume N is restriction to E of & norm on R~, slso denoted by N. There
exist A, B € R such that {4) holds for all x in R~, so it holds a fortiors for all z
in E.

We now define a normed vector space {£, N) to be a vector space E (that is, a
subspace of some R*) together with a particular norm N on E.

We shall frequently use the following corollary of the equivalence of norms:

Proposition 2 Let (E, N) be any normed veclor space. A sequence {2i) in E con-
verges to y if ond only if

(5) mN{z: — ) = 0.

k-—»u

Proof. Let A > 0,B > 0beasin (4). Suppose (5) holds. Then the inequality
0<|z—y[<A'N(n -y
shows that lims., | z: — ¥ [ = 0, hence z: — . The converse is proved similarly.

Another useful application of the equivalence of norms is:
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Proposition 3 Lef {F, N) be a normed vector space. Then the unit ball
D=|{ze E|N(z} <1}

s compacl.

Proof. Let Bhbeasin (4). Then D is & bounded subset of R~, for it is contained
in

fe € R*l|z| < B
it follows from Proposition 2 that D is closed. Thus D is compact.

The Cauchy convergence criterion (of Section 1) can be rephrased in terms of
arbitrary norms:

Proposition 4 Let (E, N) be a normed veclor space. Then o sequence |Tx] in E
converges to an element in E tf and only if:

(6) for every ¢ > D, there exists an tnieger ne > 0 such that if p > n 2> no, then

Nz, — za) <«

Proof. Suppose E C R*, and consider {z.) a8 a sequence in R*. The condition
{6) is equivalent to the Cauchy condition by the equivalence of norms. Therefore
(6) is equivalent to convergence of the sequence to some € R But y € E because
subspaces are closed sets.

A sequence in R* {or in a subspace of R") is often dencted by an infinile series
32 o zx. This is merely a suggestive notation for the sequence of partial sums {u},
where

s=n+ - + T

If i, o 8¢ = ¥, We write

-
Zn=y
el
and say the series 3. x, converges to y. If all the x, are in a subspace E C R*, then
also y € E because E is a closed set.

A series 3 14 in 8 normed vector space (E, N) is absolulely convergent if the seriea
of real numbers Y r— N(z:) is convergent. This condition implies that Yoo is
convergent in E. Moreover, it iy independent of the norm on E, as follows easily
from equivalence of norms. Therefore it is meaningful to spesk of absolute con-
vergencee of a series in a vector space E, without reference to a norm.

A useful criterion for ahsolute convergence is the comparison tesl: a series X
in 2 normed veetor space (E, N) converges absolutely provided there is a conver-
gent series 3 a; of nonnegative real numbers ax such that

N(x) <a; k=1,2,....
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For

0< i N(z) < z’: a;

=n41 J——

hence 3io N (2:) converges b i -
y applying the C .
sequences of 3" N(zy) and 3" . i e Cauchy criterion to the partial sum

PROBLEMS

1. Prove that th i i inni i
prove e norms described in the beginning of Section 2 actually are

2. [z, is a norm on R", where
2]y = (a7, 1<p< w.
=1

Sketch the unit balls in R* and R* under the norm lzl,forp=1,23
3. Find the largest A > 0 and smaliest B > 0 such that

A1z {2 wm < Bz}
forall z € R~

4. Compute the
“omp: norm of the vector (1, 1} € R? under each of the following

{a} the FEuclidean norm;

{b) the Euclidean ®-norm, where ® is the basi

(© the max mem. e basis {(1, 2), (2, 2}};
(d) the ®-max norm;

(e) the norm | z |, of Prablem 2, for ali p.

An inner product on a vector space E is any map R* X R~ — R, denoted

by (z, y} — i ic. bili S
Section 1). {z, y), that is symmetrie, bilinear, and positive definite (see

(g) ](;‘uiven any inner product show that the function {z, z)V? ia a norm.
(b) rove t'hat a norm N on E comes from an inner produet as in (&) 1f and
only if it satisfies the “parallelogram law":

Nz+y)l+Naz—-y)?=2N@z)1+ Ny

(¢) Leta, , @ be positi . .
. positive numbers. I'ind an inner prod .
corresponding norm is product on R* whose

N(z) = ( awns®).
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(d) Let {e, ..., en} be a basis for E. Show that there is a unique inner
product on E such that

{eir ;) = 8 forall 4,j.

6. Which of the following formulas define norms on R*? (Let (x, y) be the co-
ordinates in R%)
(8) (@+ay+ )y (b) (2 =3z + )"
(e U=zl+1yD%: () ¥l=zl+yh +3E+ M0

7. Let I/ C R~ be a bounded open set containing 0. Suppose U is convez:if z € U
and y € U, then the line segment {iz + (1 — )y |0 <t < 1] is in U. For
each = € R* define

o(z) = least upper bound of [A > 0| Az € U}.

Then the function

is a norm on R=,

8. Let M, be the vector space of n X n matrices. Denote the transpose of 4 € M,
by At Show that an inner product (see Problem 5) on M, is defined by the

formula
{4, B) = Tr{A'B).

Express this inner product in terms of the entries in the matrices 4 and B,

9. Find the orthogonal complement in M, (see Problem 8) of the subspace of
diagonal matrices.

10. Find a basis for the subspace of M. of matrices of trace 0. What is the ortho-
gonal complement of this subspace? '

1“

§3. Exponentials of Operators

The set L(R*) of operators on R” is identified with the set M, of n X n matrices.
This in turn is the same as R** since & matrix is nothing but a list of n! numbers.
{One chooses an ordering for these numbers.) Therefore L{R*) is a vector space
under the usual addition and scalar multiplication of operators (or matrices). We
may thus speak of norms on L{R*), convergence of series of operators, and so on.

A frequently used norm on L(R*) is the uniform norm. This norm is defined in
terms of a given norm on R* = E, which we shall write as {z|. iff T: E > Eis an
operator, the uniform norm of T is defined to be

NTH = max{i Tzil|z] < 1}
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In other words, || T [| is the maximum value of | Tz | on the unit bail
D={xcEf|z] <1}

The existence of this maximum value follows from the compacthess of I (Section

1, Proposition 3) and the continuity of T: R* — R*. (This continuity follows im-

mediately from a matrix representation of 7.)

The uniform norm on L{R*) depends on the norm chosen for R*. If no norm on
R~ is specified, the standard Euclidean norm is intended.

Lemmn 1 Let R be given a norm | x |. The corresponding uniform norm on L(R=)
has the following properties:

{a) If)|T|| =k then|Tz| < k|z|forall z in R~
() 18T <NSHITIL
(e T NLT|[™foralim=0,1,2,....

Proof. (a) 1fz=0,then [Tx|=0=Fk|z| If x # 0, then | z| 0. Let
y = | z |-tz then

1
(¥l =—1=z|= 1
|I|I I
Hence

1
E={ITN2|Ty|=—|Tz|
=]
from which (a) follows.
{(b) Let|z| < 1 Then from {a) we have

| S(Tz) [ < [| S 11| Tz}
SNHSHNTI-[=]
<NSHNTIL

Since || ST {| is the maximum value of | §Tz |, (b) follows.
Finaily, (¢) is an immediate consequence of (b).

We now define an important series generalizing the usual exponential series. For
any operator T: R — R~ define
- Tl
exp(T) = et = PIE
ket P+
(Here k! is k factorial, the product of the first k positive integers if k > 0, and
0! = I by definition.} This is a series in the vector space L(R").

Theorem The exponentiol series I 5, Th/k! is absolutely convergent for every
operator T.
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i for some norm on R*).
Proof. Let || Tl = a =0 be the uniform norm ( :
The::OT{T"/k! | < o*/k], by Lemmsa 1, proved earlier. Now- the real series
T o o*/k! converges to e= (where ¢ is the base of natural logan_thms). Theref?m
the exponential series for T converges abaolutely by the comparison test (Section
2).
We have also proved that

H eA |} < elldll,
We shal! need the following result.

Lemma 2 Let 35, A; = Aond 20 4By =B be absolulely convergent series of
operalors on R~.-Then AB = C = Y2, Cr, where Cp = 2w ABa.

Proof. Let the nth partial sum of the series T A; X By, T C; be denoted
respectively by aa, Ba, 7». Then

AB = lim a.8.,

while ¢ = i

If ysn — aaBa i8 computed, it is found that it equals
X AB+ TV Ay,
where ¥’ denotes the sum over terms with indices satisfying
J+ k<, 0<j<n, n+1<k<2n
while 3"’ is the sum corresponding to

i+k<2n, n+1<j<2n <k
Therefore

Hree — anBa t < T 0 A 11 By + Z7 11 45111 Ba i
Now

S A B < (B AMDCE DB
Sl Sl

This tends to 0 a5 1 — w gince Ji_, || 4;1] < =. Si_milarly, N A Bl —
0 8s n — =, Therefore liMe.e(Yse — @a8s) = 0, proving the lemma.

The next result is useful in computing with exponentials.

Proposition Let P, 8, T denole operators on R~. Then:
(8) ifQ = PTP, then e® = PerP,
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(b) 1f ST = TS, then 547 = efet,
(e} &% = ()
(d) ifn=2and T = [ ), then

[Mb —sinb]
eT = | | i
b cosb

The proof of (a) follows from the Mdentities P{A + B)P-!
and {(PTP-')* = PT*P—t Therefore

(EE)r- g

Py k!

= PAP- + pBp-

and (a) follows by taking limits. T'o prove (), observe that because ST = TS we
have by the binomial theorem

) Tk
(S+T)=m 5 3T
Frvmiy Ly 3
Therefore
wr-g(x 8T
nl) j-hb-.]! k!

-ENER)

by Lemma 2, which proves (b). Putting T = —Sin (b} gives (c).
The proof of (d) follows from the correspondence

[ v

of Chapter 3, which preserves sums, products, and rea! multiples. It is easy to see
that it also preserves limits. Therefore

er - gfe?,

where e iz the complex number 37, (16)*/k). Using ? = —1, we find the real

part of e® to be the sum of the Taylor series (8t 0) for coa b; similarly, the imaginary
part is sin b. This proves (d),

Obeerve that (c) implies that f is invertible for every operator 8. This is anal-
ogous to the fact that ¢ 5« 0 for every real number s,

As an example we compute the exponential of T = {3 1) We write

0 ¢
T =al + B, B = A
oo + o]
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Naote that af commutes with B. Hence
er = erlef = 2P,
Now B! = 0; hence B* = 0 for all k£ > 1, and
LIS |
e? = 3 — Bt

i k!

I+ B.

I

Thus

101

ef=e'(I+B)——-e'[b 1
e 0]

-[e'b e

We ean now compute ¢4 for any 2 X 2 matrix A, We will see in Chapter 6 that
can find an invertible matrix P such that the matrix

B = PAP
has one of the following forms:

A 0 a —b x o]
N I M R AN

We Lh{"ll C()Illpute €. I‘Ol (1),

[cosb —gin b
ef=el
sin b cos b

Yor ()

as wae shown in the proposition sbove. For (3)

. \ [1 0]
=8
11
as we have just seen. Therefore e4 ¢can be computed from the formuls

¢4 = ¢F'BF = PSP,
There is a very simple relationship between the eigenvectors of T and those of

er;
If 1 € R~ is an eigenvector of T belonging to the real eigenvalue « of T, then z is also
an eigenveclor of eT belonging lo e*.
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im (£ 57)

llmzfx)

noew k!

£5)-

= ez

For, from Tz = az, we obtain

eTx

It

We conclude this section with the observation that all that has been said for
exponentials of operators on R” also holds for operators on the complez vector space
C=. This is because C~ can be considered as the real vector space R™ by simply
ignoring nonreal scalars; every complex operator is a fortiori a real operator. In
addition, the preceding statement about eigenvectors is equally valid when complex
eigenvalues of an operator on C* are considered ; the proof is the same.

PROBLEMS

1. Let N be any norm on L(R")}, Prove that there is a constant K such that
N(ST) < KN(S)N(T)
for all operators 8, T. Why must K > 1?

2. Let T: R*— R~ be a linear transformation. Show that T is uriformly con-
tiriuous: for all « > O there exists § > 0 such thatif |z — ¥ | < & then

| Tz — Tyl < e
3. Let T': R" — R" be an operator. Show that

[| T §| = least upper bound {' Tﬁ'-'|

1:#0].
|z

4. Find the uniform norm of each of the following operators on R*:

ool @ fod] o [0

5. Let
T= [:o 2]
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(2) Show that
tm || 7= 1= = 4

{b) Show that for every ¢ > 0 there is & basis ® of R? for which
ITlle<t+e
where || T ||@ is the uniform norm of T' corresponding to the Euclidean
®-norm on R,
(¢} For any basis & of R?,
I Tile>%
(a) Show that
NPTzt
for every invertible operator T
(b} If T has two distinct real eigenvalues, then
NTl-r=i>1
(Hint: First consider operators on R%)

Prove that if T is an operator on R~ such that || T — I'|| < 1, then T is
invertible and the series Y i (I — T)* converges absolutely to T-'. Find
an upper bound for || T-'!].

Let A € L(R®) be invertible, Find ¢ > 0 such that if || B — A [| < e then
B is invertible. (Hint: First show A—B is invertible by applying Problem 7
toT = A7'B.}

Compute the exponentials of the following matrices (1 = +/—1):

5 —6 2 -1 2 —1 01
() [3 —4] (b) [1 2] (e) [0 2] () [1 o]

01 2 2 00 A0 0
(e |0 0 3 fh |10 3 0O & |1 x 0
000 01 3 01 2

i 07 . [l+i 0 L frooo

w [0 o770 @ ieeo

1000

1000

For each matrix T in Problem 9 find the eigenvalues of er.
Fingd an example of two operators A, B on R? such that
eAtE o gdeB,
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12. If AB = BA, then e4ef = ¢Bed and ¢4B = Bed.

I3. Let an operator A: R* — R" leave invariant a subspace E CC R~ (that is,
Az € E for all x € E). Show that e* also leaves E invariant.

14. Show that if || T — I || is sufficiently small, then there is an operator S such
that e* = T. (Hinf: Expand log(1 + ) in a Taylor series.) To what extent
is § unique?

15. Show that there is no real 2 X 2 matrix S such that ¢* = [ ¢

2}
§4. Homogeneous Linear Systems

Let A be an operator on R~ In this section we shall express solutions to the
equation:

(1) = Az

in terms of exponentials of operators.
Consider the map R — L(R*) which to ¢ € R assigns the operator e'4, Since
L(R*) is identified with R, it makes sense to speak of the derivative of this map.

Proposition
d

:ﬁ etd = Agtd — gtd4
In other words, the derivative of the operator-valued function e is another
operator-valued function Ae‘4, This means the composition of e*4 with A ; the order
of composition does not matter. One can think of A and ¢4 as matrices, in which
case Ae'4 ig their product.

Proof of the proposition.

g—e" o eltthd etd
dt Aed h
- Im gldghd _ ped
A h
= ¢'4 lim (eM - I)
At h
= gid A;

that the last limit equals A follows from the series definition of ¢4, Note that A
commutes with each term of the series for e'4, hence with 4. This proves
the proposition,
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We can now solve equation (1). We recall from Chapter 1 that the general solu-
tion of the scalar equation
' = ax (a€R)
is
x{t) = ke*; k = z(0).

The same is true where z, a, and k are allowed to be complex numbers (Chapter 3).
These results are special cases of the following, which can be considered as the
fundamental theorem of linear differential equations with constant coefficients.

Theorem Let A be an operalor on R*, Then the solution of the tnitial value problem
(i ' = Az, z{0) = K € R,

(2 etK,
and there are no ofher solutions.

Proof. The preceding lemma shows that

d d

¢ agy = (L

z &K (dte )K
= AeHK;

sinee ¢ K = K, it follows that (2) is a solution of (1’). To see that there are no
other solutions, let (¢} be any solution of (1) and put

y(t) = et4z(l).
Then

¥ (fﬂt_t c“'"‘) z{t) 4+ ez’ (1)

—AetAg(l) + etAzx(l)
et (—A 4+ A)z(l)

= 0. 7

Therefore ity is a constant. Setting ¢ = 0 shows y(#) = K. This completes the
proof of the theorem.
As an example we compute the general solution of the two-dimensional system
. ,
13) T, = G,

r
Ty = b:n + axy,

§4. HOMOGENEOUS LINEAR BYSTEMS o1

where a, b are constants. In matrix notatin this is

, a 0
¥ =Az; A =|: ]; = (21, 7).
b a

The solution with initial value K = (K,, K,) € R?is
e'4K,

o afl 9]
h 1

e4K = (etK,, e (tbK, + K,)}).
Thus the solution to (3) satisfying

In Section 3 we gaw that

Thus

. n(0) = K;, 2:(0) = K,
18

() = etK,,

(1) = e (thK, + K,).

x0
FIG. A. Saddle: B = [0 ], A<O <y
f3
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Since we know how to compute the exponential of any 2 % 2 matrix (Section 3},
we can explicitly solve any two-dimensional system of the form 2’ = Az, A € L(RY).
Without finding explicit solutions, we can also obtain important qualitative in-
formation about the solutions from the eigenvalues of A. We consider the most
important special cases.

Case ]. A has real eigenvalues of opposite signa. In this case the origin (or some-
times the differential equation) is called a saddle. As we saw in Chapter 3, after &
suitable change of coordinates z = Py, the equation becomes

¥y = By,
» 0
BwPAP“=[ ], A<O <
0 &

In the (1, y2) plane the phase portrait looks like Fig. A on p. 91.

Case 1I. All eigenvalues have negative real parts. This important case is called
a sink. It has the characteristic property that

limz(t) =0

fem
for every solution z(f). If A is diagonal, this is obvious, for the solutions are

y() = (ce*, eert); A <0, <O

x0
FIG. B. Focus: H = [ ], » <0
0
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X2

x - -

X

Xz
x 0
FIG. C. Node:B-[O ],)\<u<0.
F'y

If A is diagonalizable, the sclutions
z{t) = Py(t)

are of the form with y(¢) as above and P € L(R?); clearly, z{f) — 0 g8 t —
The phase portrait for these subceases looks like Fig. B if the eigenvalues are
equal (a focus} and like Fig. C if they are unequal (a node).
If the_ eigenvalues are negative but A is not diagonalizable, there is a change
of coordinates z = Py (see Chapter 6) giving the equivalent equation

y' = By,
where

A0
B-rur-[" 7] <o
I A

We have already solved such an equation; the solutions are
n(ty = Ke?,
ya(t) = Koe™ + Kte®,

which tend to 0 as ¢ tends to «. The phase portratt looks L i i
e P portrait looks like Fig. D (an improper

If the eigenvalues are a 4 b, a < 0 we can change coordinates as in Chapter 4
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A0
FIG. D. Improper node: B = [1 )«]’ » <0
to obtain the equivalent system

. -b
y-’ - By’ B = [a ].

& " [costb —gin tb]
e sin b con th ]

From Rection 3 we find

a ~b
FIG. E. Spiral sink: § = [b ], b >0>a
a
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Therefore the general solution is expressed in y-coordinates as
y(t) = e (K, costhb — K,sin th, K; cos tb + K, sin th).
Since | coath | < 1 and |sinth| < 1, and a < 0, it follows that

limy(t) = 0.

fem

If b > 0, the phase portrait consists of counterclockwise spirals tending to 0 (Fig.
E), and clockwige spirals tending to 0 if » < 0.

Case II1.  All eigenvalues have posilive real part. In this case, called a source, we
have
hm|z(f) | = and lim |z(t) | = 0.

- f-+—um

A proof similar to that of Case I1 can be given; the details are left to the reader.
The phase portraits are like Figs. B-E with the arrows reversed.

Case 1V. The ¢igenvalues are pure imaginary. This is called a cenfer. It is charac-
terized by the property that all solutions are periodic with the same period. To see
this, change coordinates to obtain the equivalent equation

B 37[0 -—b:l
y_ y. - b 0'

We know that

= [coa tb —sin tb]
ef = X
gin th cos th

Therefore if y(1) i8 any solution,

(t+21r =
v —b-) = y(1).

G —b
FIG. F, Center: B = [b 0], b >0
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Det Sources
Sinks Tr>0, Oet 20O
Det >0 Spirals Spirals .

Tr< O, De A<O, Tr<0 A<D, Tr >0 A=0

o]

i

=

- ] S

? QQQ\,Q.‘,

< £3

v Nodes
A<0, Tr>0 T

Soddies
Det <0

FIG. G

The phase portrait in the y-coordinates consists of concentric circles. In the origix_ml
r-coordinates the orbite may be ellipses as in Fig. F. (If b <0, the arrows point
rlockwise.) ) . )

Vigure G summarizes the geometric information about the. phase portrait .of
¢ = Ar that can be deduced from the characteristic polynomial of A. We write
this pohynemial as

A — (Tr AY» + Det A.

The discriminant A is defined to be

&= {Trd)* — 4Det A
The eigenvalues are

3 (Tr A = 38).

Thus real eigenvalues correspond to the case A > 0; the eigenvalues have negative
renl part when Tr A < 0; and so on,

"The geometric interpretation of ©' = Az is as follows (compa.rt:. Chnpter_l). The
map R — R~ which sends z into 4x is & vector field on R~ Given s_pomt K‘ of
R~ there is & unique curve ! —s 'K which starts at K at time zero, and is a solution
of (1). (We interpret ¢ as time.) The tangent vector to this curve st a time 4 is the
vector Az(l) of the vector field at the point of the curve x{t). )

We may think of points of R* flowing simultaneously along these solution curves.
The position of a point # € R~ at time ¢ is denoted by

$(z) = e'hz,
Thus for each t £ R we have a map
¢g:R"—"’R- (te R)
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given by
¢ (2) = e'drx.

The collection of maps {¢:} . is called the flow corresponding to the differential
equation (1). This flow has the basic property

Sost = Peo Py,
which is just another way of writing

glrod — pragis.

this is proved in the proposition in Section 2. The flow is ealled lineqr hecause each

map ¢,: R* — R~ iz a linear map. In Chapter & we shall define more general nonlinear
flows.

_ The phase portraits discussed above give a good visualization of the correspond-
ing flows. Imagine points of the plane all moving at once along the curves in the
direction of the arrows, (The origin stays put.)

PROBLEMS

1. Yind the general solution to each of the following systems:

xr
{a) {

s

i
fl

2r —y (b) {x' 2r—y

¥ =2y v =z+2
x':y = —2z

{c) [ '
¥ =z (d} (¥ =2-2y
2=y —2z

’

r

(e}

’

L~ ]
il
(=T -3

2. In (a}, (b), and (¢) of Problem 1, find the solutions satisfying each of the
following initial conditions:

(8) z(0) =1, y(0) = —2; (b) =(0) =0, y(0) = —2;

(e) z(0) =0, y(0) =0.

3 Let A: R*— R be an operator that leaves a subspace £ C R~ invariant.
Let z: R — R* be a solution of 1’ = Azr. If z{t,) € E for some ts € R, show
that z(¢) € Eforallt € R.

4. Suppose A ¢ L(R") has a real eigenvalue A < 0. Then the equation ’ = Azr
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has at least one nontrivial solution z{t) such that

Jimz(t) =0

(B ]

Let A € L(R® and suppose ' = Az has a nontrivial perfodic sokdz'on,.u(t)_:
this means w{{ + p) = u(f) for some p > 0. Prove that every solution is
periodic, with the same period p.

If u: R — R» is a nontrivial solution of £’ = Az, then

d 1
(}—t(lul) = lui(u,Au).

Supply the details of Case II in the text.

Classify and sketch the phase portraits of planar differeritial equations z’ =
Az, A € L{R?), where A has zero as an eigenvalue.

'or each of the following matrices A consider the corresponding differential
equation 2’ = Az. Decide whether the origin is a sink, source, saddle, or none

of these. Identiiy in each case those vectors u such that lim,. . z(f} = 0, where
z(1) is the solution with z(0) = u:

SN P U O B
o [50] e [T

Which values (if anv) of the parameter k in the following matrices makes the
origin & sink for the corresponding differential equation ' = Ax?

‘ a—k:l N [3 0]
m[k2 ® |y 4

(e) ["' 1] 0 -1 0
0kl @ | 1 oo
-1
Let ¢.: R2— Rt he the flow corresponding to the equation z’ = Ar. (That

is, ¢ — ¢ (x) is the solution passing through z at ¢ = 0.} Fix r > 0, and show
that ¢, is a linear map of R* — R, Then show that ¢ preserves area if and only

12,

13.

14.

15.
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if Tr A = 0, and that in this case the origin is not a sink or a source. (Hinf:
An operator is area-preserving if and only if the determinant is +1.)

Describe in words the phase portraits of ' = Az for

(3 (

Suppose 4 is an 1 X n matrix with n distinet eigenvalues and the real part of
every eigenvalue is less than some negative number . Show that for every
solution to x’ = Az, there exists &, > 0 such that

| 2(€) | < et= if &2 ¢

Let T be an invertible operator on R~, n odd. Then ' = Tz has a nonperiodie
solution.

Let A = [? ;] have nonreal eigenvalues. Then b 5 0. The nontrivial solutions
curves to 2’ = Ax are spirals or ellipses that are oriented clockwise if b > 0
and counterclockwise if b < 0. (Hint: Consider the sign of

g} arc tan(z, () /z,()).)

A Nonhomeogeneous Equation

We consider a nonhomogeneous nonautoncmous linear differential equation

(1)

z' = Az + B(1).

Here A is an operator on R* and B: R — R" is a continuous map. This equation is
called nonhomogeneous because of the term B(f) which preventa (1) from being
strictly linear; the fact that the right side of (1) depends explicitly on ¢ makes it
nonautonomous. It is difficult to interpret solutions geometrically.

We look for a solution having the form

(2)

z(t) = ef(1),

where f: R — R is some differentiable curve. (This method of solution is called

“variation of constants,” perhaps because if B(f) = 0, f(1) is a constant.) Every

solution can in fact be written in this form since e is invertible. '
Differentiation of (2) uging the Leibniz rule yields

() = Aetf{t) + eAf (1),
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Since z is assumed to be & solution of {2),

Az(f) + B() = Az(t) + e4f'(t)
or
) = 4B,
By integration

10 = [ eBGs) s + K,
[ ]
8o as & candidate for a sclution of (1) we have
{3y Z(f) = oAt [/ e~4'B(s) ds + K], K¢ R~
]

Let us examine (3) to see that it indeed makes sense. The integrand in (3) and
the previous equation is the vector-valued function s — ¢~ 4*B(s) mapping R into
R~ In fact, for any continuous map g of the reals into a vector space R*, the integral
can be defined as an element of R*. Given a basis of R*, thia integral is a vector
whose coordinates are the integrals of the coordinate functions of ¢.

‘The integral as » function of it upper limit ¢ is & map from R into R*. For each
t the operator acts on the integral to give an element of R~. 8o t — z(1) is & well-

defined map from R into E.
To check that (3) is a solution of (1), we differentiate z(¢) in (3):

2{t) = B(1) + Aes* [f 4B (s) de + K]
]

= B(t) + A=z(l).

Thus (3) is indeed a solution of (1).

That every solution of (1) must be of the form (3) can be seen as follows. Let
y:R"— E be a second solution of {1). Then

-y = A~y
8o that from Section 1
x—y = ¢4K, for some K,in R"

This implies that y is of the form (3) (with perhaps a different constant X € R=).

We remark that if B in (1) is only defined on some interval, instead of on all of
R, then by the above methods, we obtain a solution xz(t) defined for ¢ in that same

interval.
We obtain further insight into (1) by rewriting the general solution (3) in the
form

z(f) = u(l) + 4K,

u(l) =e™ fr"B(l) da.
.

§5- A NONHOMOGENEOUS EQUATION (1)}
Note that u(t) is also a solution to (1), while e4*K iz a solution to the homogeneous
equation

(4) ¥ = Ay

obtained from (1) by replacing B(#) with 0. In fact, if v(t) is any solution to (1)
and ¥(t) any solution to (4), then clearly * = v + y is another solution to (1).
He.nce the general solution to (1) is obtained from a particular solution by adding
to it the general solution of the corresponding homogeneous equation. In summary

Theorem Let u{t) be a particular solution of the nonhomogeneous linear differential
equalion

(1) ' = Az + B().

homogeneous equation

(4" ' = Az,

Conversely, the sum of a solution of (1) and a solution of (4"} is a solution of (1).
If. the fumftion B(t) is at all complicated it will probably be impossible to replace

the integral in (3) by a simple formula; sometimes, however, this can be done.
Example. Find the general solution to

(5) Ty = —Iy,

Ty =2+ L.
A= [‘: “;] B() = [?]

‘_‘._[ cos s sms]
~gins coss

Here
Hence

and the integral in (3) is
‘I coss mns [0 ‘e ain 3
jo[—sins cosa][a]dezj;[aooea]ds
[sint—tcoat ]
cos!+ taint ~ 11
To compute (3) we set

i SR
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hence the general solution is
[z,(t)] _ [cost —gin t] [sint —teost+ Ky ]
PR sin i coatl Leoat + tsint — 1+ K
Performing the matrix multiplication and simplifying yields
(t) = —t+ Kycost + (1 — Ka) sin!,
(1) =1 — (1 — Ky) cost + K,sinl.

This is the solution whose value at ¢ = 0is

() = Ky, 2 (0) = K.

PROBLEMS

1. Tind all solutions to the following equations or systems:

(n) x —4r —ecosl =@ by = —4c—t=0, () 2 =1
y"=2—$,
(@) = =uw &) Z=zx+1y+2
y = —dx + s 2t ¥ o= -2+

Z = 2z+ sint

9. Suppose T: R* —R" is an invertible linear operator and ¢ € E is a nonzero
constant vector. Show there is a change of coordinates of the form.

z=Py+b be R,

transforming the nonhomogeneous equation z = 7z + ¢ into homogeneous
form y' = Sy, Find P, b, and S. (Héni: Where is #' = 07)

3. Solve Problem 1{c) using the change of coordinates of Problem 2.

§6. Higher Order Systems

Consider a linear differential equation with constant eoefficients which involves
a derivative higher than the first; for example,

(1) s +as 4+ be =0

By introducing new variables we are able to reduce (1) to a first order system
of two equations, Let 2, = sand 3 = 2} = ¢'. Then (1) becomes equivalent to the

§0. HIGHER ORDER BYSTEMSB
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system:
(2) x: = Iy
7t = —bx; — an.

Thus if £{(1} = (2.(t}, 2:(2)) is a soluti
8] ; ;- ution of (2), then 2{f) = z L 1
Of'l'(';j)g' if 8(2:1 is a sol-utlon of_ (1), then z() = (a(t), s'(t())) 18 a‘g{ul:i:negiu?;)n
high fdmc ure .of introducing new variables works very generally to red .
er order equations to first order ones. Thus consider Y e

(@) 2™ a0 44 g 8+ as =0
Here s is a real functi w i L .
constants. ction of ¢ and ™ is the nth derivative of s, while Gy, . .., Gy ATE

]n thls case the new varl bles are =8 -
B In y T2 Xy,

(3) is equivalent to the system ++» % = Zay" snd the equation

4 ’
@ <
.‘L‘; =T,
’ -—
Tn = —Galy — Qu_ )Ty — **+ — GyZa.

In vector notation (4) has the form z’' = Az, where A4 is the matrix

4’
@) | [0 1 o .. 0
0 0
. . o
0 0 e 0. 1
__a' —n ree —a

Proposition The characteristic polynomial of (4') is

PN =Mt ad 4 o tog,
Proof. One uses induction on n. For n = 2, this is easily checked. Assume th.
. e the

x:zxoiftljf meosftion for n — 1, and let A.; be the (n — 1) X {n — 1) gub-
il A)c?nmst.‘mg of the last (n — 1) rows and Iast (n — 1) columns ';h:len
is easily computed to be A Det(M — An_4) + ay by expanding along

the first column i ; iy
polynominl . The induction hypothwﬂ y‘elds the desired istie

The point of the proposition is that it gi teristi
. t it giver the characteristic polynomial directl
from the equation for the higher order differential equation (;)Pd g
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Let us now return to our first equation
(1 s’ +as + bs=0.

Denote the roots of the polynomial equation A* + ax 4+ & = 0 by A, Ma Suppose
at fir<t {hat these roots are real and distinct. Then (1) reduces to the equation of
first order (2); one can find a disgonalizing system of coordinates (¥, v2). Every
solution of (2) for these coordinates is then i (2) = Ki exp(?\lt)-, yg.(t) = K, ex'p()\.gt),
with arbitrary constants K1, K. Thus z, (¢} or a(i) is a certain linear combination
sif) = pullyexp(ht) + puKaexp(dat). We conclude that if A, As are real and
distinet then every solution of {1) is of the form

() = Crexp(Ad) + Czexp{hdt}

for some {real) constants C;, Ci. These constants can be found if initial values

s(k), 8'(fy) are given. . _
Next, suppose that A, = A+ = X and that these eigenvalues are real. In this case
the ? X 2 matrix in (2) is similar to a matrix of the form

A 0
[ ]3 B#O!
8 A

as will be shown in Chapter 6. In the new coordinates the equivalent first-order
svstem is
y: = Ay,

y: = By + M
By the methods of Section 4 we find that the general solution to such a system is
w(t) = K,
p(t) = Kidter + Kse™,

K, and K, being arbitrary constants. In the original coordinates the solutions to
the equivalent first order system are linear combinations of these. Thus we con-
clude that if the characteristic polynomial of (1) has only one root A € R, the
solutions have the form

8(!) = C;e" + Cgft?“.
The values of C; and Cz can be determined from initial conditions.

Example. Solve the initial-value problem

(5) '+ 28 +8=0,
85(0) =1, 8(0) = 2.
The characteristic polynomial is M + 2A + 1; the only root is A = — 1. Thereforc

the general solution is

() = Cret + Cofe.
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We find that
§(t) = (—Ci+ Crie™* — Cute,
From the initial conditions in (5) we get, getting ¢ = 0 in the last two formulas
Ci=1,
-1+ C =2
Hence C; = 3 and the solution to (5) is
a(t) = et + 3te.

The reader may verify that this actually is a solution to (5!
The final case to consider is that when Ay, s are nonreal complex conjugate num-
bers. Suppose Ay = u + @, A = u — . Then we Zet a solution (as in Chapter 3):

n(t) = e**(K, cos vt — Kjsin o),
#(l) = e (Kysin vt + K, cos o).
Thus we obtain s({) as a linear combination of ¥, (¢) and (1), so that finally,
8(1) = e**(C\ cos vt + Cysin vt) '

for some constants Cy, Cs.
A special case of the last equation is the "“harmonic oscillator”:

g + b =0;
the eigenvalues are +ib, and the general solution is
Cj, cos bt 4 Cz gin b'.

We summarize what we have found.

Theorem Let )y, M be the roots of the polynomial M + a\ + b. Then every ;
of the differential equation ¢ . wolution
(1) ' +as’ +bs =0
18 of the following type:

Case {a). A, M are real distinct: 3(1) = Crexp(Mf) + Crexp(dat);

Case (b). X = Ay = A i real: s{t) = Cie™ + Cutert;

Case (c}. M =DRa=wu-+dv, 020 s = e (Cy cos vf + Cysin vt),

. In each case (i, C, are (rea)) constants determined by initial conditions of the
orm
a(ly) = a, &(t) = B.

The nth order linear equation (3) can also be solved by changing it to an equiva-
lent first order system. First order systems that come from nth order equations
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have special properties which enable them to be solved quite easily. To understand
the method of solution requires more linear algebra, however. We shall return to

higher order equations in the next chapter. )
gWe make (;qsimple but important observation about the linear homogeneous

equation (3):
If s(t) and g(t) are solutions lo (3), so is the function s{1) + ¢{t); if k 1s any real
number, then ks(t) iz a solution.

In other words, the set of all solutions is a vector space. A}ld gince n initial conditions
determines a solution uniquely {consider the corresponding first order sysf,em) ) t_he
dimension of the vector space of solutions equals the order of the differential

equation. ) )
A higher order inhomogeneous linear equation

(6 s 4 a0 4 - 4 aes = b(E)

ean be solved (in principle) by reducing it to a first order inhomogeneous linear

syvstem

¥ =Ax + B(t)
and applying vaniation of constants (Section 5). Note that
0
B = 0
b(t)

As in the case of first order systems, the general solution to (6') can be expressed
as the general solution to the corresponding homogeneous equation

il + a‘s(l—“ + o + a8 = 1]
plus a particular solution of (3). Consider, for example,
(N ' +s=t— 1.

The general solution of
¢ +s=0
is
Acost+ Baint; A,BER

A particular solution to (7) is
sy =t—- 1

Hence the general solution to (7) is
Acost+ Beint+t— 1.
Finally, we point out that higher order systems can be reduced to first order
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systems, For example, consider the system
42 +2y—3zx=0,
v+ 5z — 4y = 0.
Here z(t) and (i) are unknown real-valued functions of a real varisble. Introduce
new functions u = z’, v = y'. The system is equivalent to the four-dimensional
first order system
2 = u,
u = 3x —u— 2,

¥ =mu

v = —b5u + 4y.

PROBLEM S

1. Which of the following functions satisfy an equation of the form a” + as’ +
bs = 07

(a) tet (b) &#—1t (c) ecos2t + 3sin2¢
(d) cos 2t 4 2sin 3¢ (e) etcos2t (fy e +4
(g) 3t—9

v

Find solutions to the following equations having the specified initial values.
(a) '+ 43=0;2(0) =1,4'{0) =0.

{(b) 8" — 3¢+ 20 =0;4(1) =0,5(1) = —1.

3. For each of the following equations find a basis for the solutions: that is, find

- two solutions 8,(#), 8s(2) such that every solution has the form asy(f) + Bm(D)
for suitable constants a, 8-

(a) 8" 4+35=0 (b) 8" ~-3s=0
(c) &' —3 —68=10 d) "+ +s=0
4. Buppose the roots of the quadratic equation A + ah 4+ b = 0 have negative
real parts. Prove every solution of the differential equation
&' +a +bs=0
satisfies
lim &(t) = 0.
fem
5. State and prove a generalization of Problem 4 for for nth order differen-
tial equations
8™ gt 4 ... 4 ogs =0,
where the polynomial
Mt agh i oo g,
has n distinct roots with negative real parts.
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. .. Iation
6. Under what conditions on the constant:s a, b is there a nontrivial solutio
. to & + as + b = 0 such that the equation

s(t) =0

has
{a} o solution; s
(b)  a positive finite numbet of solutions;
(cj infinitely many solutions? )

. nd-
For ench of the following equations sketch the phase portral{, of ]th:-i (()::::riszf))o -
ing first order system. Then sketch the graphs of several solu

i :nt initial conditions: . ' _
((i:xf;‘o“sl']’ _1;113‘: 0 b) & —s8=0 f¢) " +& +e&=0

o P g+ s
@ s +28=0 {e) ¢ 5 B .
8  Which equations s + as’ + bs = 0 have & nontrivial periodic solution? What
. c ‘
15 the period?

=1

g. Find all solutions to
g -8 4+ 4y —4 =0
10. TFind a real-valued function s({{) such that
s 4+ 48 = cos X,
3(0) =0, £{0) = 1.

i i tial
11. Find all pairs of functions x(f), y(1) that satisfy the system of differen

uations
= z =~y

y'=—z—y+v.
12. Letg(t) bea polynomial of degree m. Show that any equation
a(l) + a‘s(-—-l) + PPN + Oud = q(t)
has & solution which is a polynomial of degree < m.

Notes

. . . ' The
A reference to some of the t,opologica_l ba.ckg,round in 'S(}cu{’;ljl is Bartle's
Jlements of Real Analysis [2]. Another i8 Lang's Analysis T [11].

Chapter 6

Linear Systems and Canonical
Forms of Operators

The aim of this chapter is to achieve deeper insight’ into the solutions of the
differential equation

1) ' = Az, A € L(E), E =R-,

by decomposing the operator A into operators of particularly simple kinds. In
Sections I and 2 we decompose the vector space E into a direct sum

E=El@"' QE,
and A into a direct sum

A=4Are--0d, A€ L(E).
Each A, can be expressed as a sum

A = 8 + Ny; S, Ne € L{Ey),

with S; semisimple (that is, its complexification is disgonalizable), and N, nil-
potent (that is, (N.)™ = O for some m); moreover, S; and N, commute. This
reduces the series for e'4 to a finite sum which is easily computed. Thus solutions
to (1) can be found for any 4.

Section 3 is devoted to nilpotent operators. The goal is a special, essentially
unique matrix representation of a nilpotent operator. This special matrix is applied
in Section 4 to the nilpotent part of any operator T to produce special matrices
for T called the Jordan form; and for operators on real vector spaces, the real canon-
ical form. These forms make the structure of the operator quite clear,

In Section 5 solutions of the differential equation #* = Az are studied by means
of the real canonical form of A. It is found that all solutions are linear combinations
of certain simple functions. Important information about the nature of the solu-
tions can be obtained without explicitly solving the equation.
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Section 6 applies the results of Section 5 to the higher order one-dimensional
Jinear homogeneous equation with constant coefficients

(‘_)') Py + ats{ﬂ—l) R + 048 = 0.
Solutions are easily found if the roots of the characteristic polynomial
A kL SRR o

are known. A different approach to (2), via operators on function spaces, is very
briefly discussed in the last section.

The first four sections deal not with differential equations, only linear algebra,
This linear algebra, the eigenvector theory of a real operator, is, on one hand,
rarcly treated in texts, and, on the other hand, important for the study of linear
differential equations.

§1. The Primary Decomposition

In this section we state a basic decomposition theorem for operators; the proof
is given in Appendix IIL. It is not necessary to know the proof in order to use the
theorem, however.

In the rest of this section T denotes an operator on 8 vector space E, which may
be real or complex; but if E is real it is assumed that all eigenvalues of T are real.

Let the characteristic polynomial of T be given as the product

p(ty= TI (t — a)™.
bl

Here Ay, . . ., A aTe the distinet roots of p(t), and the integer n; > 1 is the multi-
plicity of As; note that my 4 -+ + n = dim E.
We recall that the eigenspace of T belonging to M is the subspace

Ker(T—MCE

(we write A, for the operator \JI). Note that T is diagonalizable if and only if E
is the direct sum of the eigenspaces (for this means E has a basis of eigenvectors).
We define the generalized eigenspace of T belonging to M to be the subspace

E(T,N) = Ker(T — M) CE.

Note that this subspace is invariant under T.
The following primary decomposition theorem is proved in Appendix. 111

Theorem 1 Let T be an operator on E, where E i3 a complex vector space, or else £
is real and T has real eigenvalues. Then E is the direct sum of the generalized eigen-
spaces of T. The dimension of each generalized eigenspace equals the multiplicity of the
corresponding eigenvalue.

§l. THE PRIMARY DECOMPOSITION
111
Let us see what this decomposition means. Su

eigenvalue A, of multiplicity n — ppose first, that there is only one

dim E. The theorem implies E = E(T, »). Pug
N=T-1], S =\
Then, clearly, T = N 4 Sand SN = NS. M

and ¥ is nilpotent, for £ = E(T, A)
compute

oreover, S is diangonal (in every basis
= Ker N~. We can therefore lmmedmtel:r

c"=¢8¢N=eA‘E—lN*

AK
there is no difficulty in finding it.

Example I Let T = [} ~!]. The characteristic polynomial is
PU) =0 —4t4+4=(1—2)n
There i only one eigenvalue, 2, of multiplicity 2. Hence

S=[2 0]’
0 2
1 1)

We know without further comp

. utation that N commutes wi is ni
of order 2: N* = Q. (The reader can verify these smtanent:;tthfe:é‘}gr: Mlpotent
€T = &% = (] + N)
0 — -
i [ 1] _ [0 e
12 ¢ 20]
More generally,

oF = et = (I 4 (N)

- [1 - 2t —t]

t 1+ ¢

Thus the method applies directly
(see the previous chapter).

For comparison, try to compute directly the limit of
o 1 —_ ]
il ]
wmoklll  3]°

T=T|EMN, T).

to solving the differential equation z' = Tz

In the general case put

Then T = i
T e @ T,. Since each T, has only the one eigenvalue ), we can
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apply the previous result. Thus
Tg = Sk+Nk; St, NkE L(E()\h T))!
where 8 = I on E(0, T}, and N = T, — 8 iz nilpotent of order #,. Then
T=8+N,

where

S=89- 08,
N=Nwe.--eN,
Clearly, SN = N&. Morecver, N iz nilpotent and S iz diagonalizable. For if m =
max(ny, ..., n.), then
Ne= (N)"o: - 0 (NJ~=0;
and & is diagonalized by a basis for E which is made up of bases for the generalized

cigenapaces.
We have proved:

Theorem 2 Let T € L{E), where E 1z compiex if T has a nonreal eigenvalue. Then
T = S+ N, where SN = NS and § iz diagonalizable and N 1is nilpotent.

In Appendix II1 we shall prove that S and N are uniquely determined by T.

Using Theorem 2 one can compute the exponential of any operator T: £ — £
for which the eigenvalues are known. {Recall we are making the general assumption
that if E is real, all the eigenvalues of T must be real.) The method is made clear

by the following example.
Example 2 Let T € L(R?) be the operator whose matrix in standard coordi-

nates is

-1 ) I
T, = 0 -1 4|
0 0 1

We analyze T, with a view toward solving the differential equation
z = Tz
The characteristic polynomial of T, can be read off from the diagonal because afl
subdiagonsl entries are 0; it is
p() = L+ 12t~ 1).

The cigenvalues are —1 with multiplicity 2, and 1 with multiplicity 1.
The two-dimensional generalized eigenspace of —1 is spanned by the basis

3 = (l; 0! 0): a = (03 l! 0);

this can be read off directly from the first two columne of Tb.
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The one-dimensional generalized ei ; .
genspace of 41 is the sol
system of equations e solution space of the

(Tn - l)z = 0:
or

-2 1 ~2||x
0 -2 4l =0
0 0 0 £

one can verify that the vector

a=1(0,21)
is a basis.
Let @ be the basis [ay, @, @1} of R. Let T = S+ N i
®-coordinates, S has the matrix * A be s fn Theorem 2. In

-1 00
8 = 0 -1 0};
0 01

this follows from the eigenvalues of 7 bein
¢ g —1, —1, 1. Let 8 i
in standard coordinates. Then ¢ be the matrix of §

8§ = PSP,
where P is the inverse transpose of the matrix whose TOWS are @, 4, a;. Hence
[1 0 0]
Pt=[o 1 0]
[0 2 1]
[1 0 0]
Par={p 1 2|
[0 0 1]
10 o
P=|o 1 —2
_0 0 1
Therefore
So = P"SIP.
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Matrix multiplication gives

-1 00
So-"- 0 —'l 4.
0 01

We can now find the matrix Ny of N in the standard basis for R*,

No*To—So
[—1 1 -2 -1 00
0 0 1 0 01
[0 1 -2
=10 0 0l
__O 0 0

We have now computed the matrices of S and N. The reader might verify that

Nt = Oand SN = NS.
We compute the matrix in standard coordinates of e* not by computing the matrix
&% directly from the definition, which involves an infinite series, but as follows:

exp(So) = exp(P'§P) = P-lexp(S)P

1 0 O0ffjer 0 OHY1 O O
={0 1 2({0¢ e G0 1 —2|
00 1|]|0 0 e]i0 O 1

which turns out to be

e 0 0
exp(S) =0 e?' =21+ 2|
o o0 e

It is easy to compute exp(Ny):
exp(Nu) =TI 4 Ny

11 -2
=10 1 0|
0 0 1

§1. THE PRIMARY DECOMPOBITION 11'5.

Finsally, we obtain
exp(Ts) = exp(8; + No) = exp(8,) exp(N,),

which gives
rl. e—l _2€—l
exp(Ty) ={0 ' —21+42)
0 0 e

It is no more difficult to compute e™, t € R. Replacing T, by (T, transforms S,
to &8y, N, to {Ny, and 80 on; the point is that the same matrix P is used for all values
to ¢. One obtains

exp(tTy) = exp(tSy) exp(iNy)

[t 0 0 1t -
=|0 et —2et4 210 1 0
0 o ¢ 00 1
(et et — 2t
=10 et —2et 4 et |
o 0 ¢

The solution _of z' = T4z is given in terms of exp(iTs).
Th.e following consequence of the primary decomposition is called the Cayley-
Hamilton theorem,

Theorem 3 Lel A be any operator on a real or complex vector space. Lel its charac-
teristic polynomial be

p(f) = ¥ autt,

-0
Then p(A) = O, that 1z,

Y addz) =0

|
Jorallz € E.

Pr.oof. We may assume E = R~ or C*; since an operator on R* and its complexi-
ﬁcatlop haw_a the same characteristic polynomial, there is no loss of generality in
assuming £ is a complex vector space.

1t suffices to show that P(4)z = 0 for all z in an arbitrary generalised eigenspace
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E(A, )), where p(A) = 0. Now
EQ\, A) = Ker(4 — )™,
where m is the multiplicity of A. Since (¢ — M)*™ dividea p(f) we can write
p(t) = q(y (e~ M=
Hence, for z € E{x, A):
p(A)z = q(A)[{A — N)™z]
= g(A)(0) = 0.

§2. The S + N Decomposition

Let T be an operator on R*and T¢:C* —C*its complexification. If Tc is diagonal-
izable, we say T is semisimple.

Theorem 1 For any operator T € L(R').tfxere are uniqlfe operators S, N on R*
mchtlmtT-S-i—N,SN=NS,Sisammmple,andNunilpo¢cM.

imd for operators on complex vector
. 'We have already seen a similar theorem v
sp;r;fnnw we apply this result to prove the theorem.for oper:—tt:rseog .l!v;rhle.::
g: C~ —» C* be the operator of conjugation (Chapter 4.) iifz=2z 1exi¥icat,io;1 Vhere
x- y € R®, then oz = z — iy. An operator Qon C* is the comp

R~ if and only Qo = oQ. ) . ]
Optér;!:g; g‘ne L(P:"'I)l let Te € L(C®) be ita complexification. By Theorem 2, Section

1, there are unique operators Sy, N on C* such that
TC = S|+ Nll

SeNo = NuSs, Ss disgonalizable, and Ny t.xilgot.ent. We assert t:hatt.lsl. an:o r:;:\ :.tr:
complexifications of operators on R®. This is pll-oved by showing they
with o, a8 follows. Put 8; = oS, Ny = aNoo—1. Then

Te = oTeoe! = 81 + Na

i is di i is nilpotent, and SN, = N8, There-
t to see that S, ia disgonalizable, N, is ‘ .
10:: E:Bi S, and Ny = Ni. This means that S, and Ny commute with ¢ a8 asserted
There are unigue operators S, N in L{R") such that
s. = Sc, N. - Nc.
Since the map A — A¢ is one-to-one, it follows that
SN =NS
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for
(SN - NS)C = Sn)\rn - NoSo = 0.

Similar reasoning shows that ¥ is nilpotent, and also S + N = T. The uniqueness
of 8 and N follows from uniqueness of Sy and N,. This completes the proof.

Definition & is called the semisimple part of T and N the nilpotent part.

Let T = 8 + N as in Theorem 1. Since 8¢ is diagonalizable, it follows from
Chapter 4 that in a suitable basis & of R*, described below, S has & matrix of the

form

[N |

As
ol
b], a
[aa _bl}
b, & |

Here Ay, ..., ), are the resl eigenvalues of T, with multiplieity ; and the complex
numbers

a,,-l—th, k=1,...,8

are the complex eigenvalues with positive imaginary part, with multiplicity. Note
that T, T, S¢, and 8 have the same eigenvalues.
The exponentisal of the matrix tL, ¢ € R is easy to calculate since

[!a -—tb] h[costb —gin tb]
=e .
=P th ta sin b cos tb
The basis & that gives S the matrix L is obtained as follows, The first r vectors
in ® are from bases for the generalized eigenspaces of T that belong to real eigen-
values. The remaining 2s vectors are the imaginary and real parts of bases of the

generalized eigenspaces of T that belong to eigenvalues a + i, b>0

In this way €™ can be computed for any operator T, provided the eigenvalues
of T are known.

Example. Let T € L(R*) be the operator whose matrix in standard coordinates
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18
0 -1 0 0
T 1 o0 0
*“lo o0 o0 -1}
2 o1 0
In C* the generalized i-eigenspace is the solution space of
(To — )22 =0,
or of .
—"221 -_ 21.21 = 0,
—2121 - 22, = 0,
"'221 - 22: + 2114 = 0,
”41.23 - 22: _ 21'23 - 2Z| =0
These are equivalent to
o= 1:23,
—2 4+ iz = 12y,

As a basis for the solution space we pick the complex vectors
a=(i1,01), v=01-40.
From these we take imaginary and real parta:
Tu=(1,0,00 =4, Iv=1(1,0 -1,0) =&,
Ru=(0,1,01) = &, Re=(0,1,00 =e.

These four Vectors, in order, form a basis ® of R*. This basis gives S the matrix -

0 -1

1 0
S].=

{We know this without further computation.)
The matrix of S in standard coordinates is

8, = PSP,
where P-1 ig the transpose of the matrix of componenta of &; thus
10 10
01 01
00 —-10
0 1 ¢ 0

P =

§2. THE S + N DECOMPOSITION

and one finds that
B

0 0
pe 006 0 1
00 — of
01 0 —1]
Hence
[0 -1 0 07
1
S = 00 o0
6 10 -1/
i 01 o_J
The matrix of N in standard coordinates is then
N¢=Tu""‘So
[0 -1 ¢ o 0 -1 0 0
|t o0 o 1 0 o
0 0 -1 0 0 —1
| 2 1 0 1 01 o
I
“lo -1 . L)
I 0

which indeed is nilpotent of order 2 (where - denotes a tero)
The matrix of eT in standard coordinates is .

exp(tT,y) = exp(tNy + 18;) = exp(tNy) exp(tSe)

= (I + tNo) P exp(1S,) P,
From
coal —sint
exp(S;) = sin ¢ cos {
coal —sint
sin ¢ cos ¢

the reader can complete the computation.

119 -
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PROBLEMS
1. For each of the following operators T find bases for the generalized eiger'mpaces;
give the matrices (for the standard basis) of the semisimple and nilpotent
parts of T.
® 1 ®) ry 1] (e) [0 l]
[0 1] [0 —1 1 0
(d) 0 20 {e) fo 0 8 (H [r 111
-2 0 00 4 2222
20 6 01 -2 3333
4 4 4 4
2. A matrix [a;] such that a;; = 0 for < j i nilpotent.
3. What are the eigenvalues of a nilpotent matrix?
4. Tor each of the following matrices A, compute e‘4, ¢ € R:
@ oo 57 (Mo 000
2 0 -1 1 0 01
01 0 1 001
) o -1 1 0
@ [ 1o00] @Joz2o0
-1 20 0 0 3
10 2] (100
4. Prove that an operator is nilpotent if all its eigenvalues are zero.
6. The semisimple and nilpotent parts of T commute with A if T commutes
with A.
7. If A is nilpotent, what kind of functions are the coordinates of solutions to
= Ax?
8. If N is a nilpotent operator on an n-dimensional vector space then N* = 0.
9. What can be said about AB and A + Bif AB = BA and

6. LINEAR BYSTEMB AND CANONICAL FORMSB OF OPERATORB

{a} A and B are nilpotent?
{b) A and B are semisimple?
(¢) A is nilpotent and B is semisimple?

2.
10.

11,

13.

14.

15.

16.

17,

18.

19.

21.
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If. A and B are commuting operators, find & formula for the semisimple and
nilpotent parts of AB and A + B in terms of the corresponding parts of A
and B. Show by example that the formula is not always valid if A and B do not
commute.

Identify R**! with the set P, of polynomials of degree < n, via the corre-
spondence

(@) ... 00} s aut* + -+ + axt + a.
Let D: P. — P, be the differentiation operstor. Prove D is nilpotent.
Find the matrix of D in the standard basis in Problem 11.

A rotation around a line in R? and reflection in a plane in R* are semisimple
operators.

Let.Sbesemisimple and N nilpotent. If SN = NS = O,then § = Oor N = 0.
(Hint: Consider generalized eigenspaces of S + N.)

If T = T, then T is diagonalizable.

{Hint: Do not use any results in this
chapter!)

Fipd necessary and sufficient conditions on a, b, ¢, d in order that the operator
[ albe

(a) diagonalizable; (b} semisimple; {¢) nilpotent.

Let ¥ C E be invariant under T € L(E). If T is nilpotent, or semisimple, or
diagonalizable, so is T'| F.

An operator T € L(E) is semisimple if and only if for every invariant subspace
F C E, there is another invariant subspace F’ (C E such that E = F o F’.

Suppose T is nilpotent and

k)
T‘=EG,'T’-, a,-GR.
Fo]
Then T* = 0.
What values of a, b, ¢, d make the following operators semisimple?
(a)[ﬂa] (b){l —11 @ (1 001 (@ [0 40
-1 2 1 b 211 1 0 4
0 0 ¢ d 10

What values of a, b, ¢, d make the operators in Problem 20 nilpotent?
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§3. Nilpotent Canonical Forms

In the previous section we saw that any operator T can be decomposed uniquely
as
T=8+N
with S semisimple, N nilpotent, and SN = NS8. We also found a canonical form
for &, that is, a type of matrix representing S which is uniquely determined by
T, except for the ordering of diagonal blocks. In the complex case, for example,

S = diﬂ.g[k],, LRCRE | Rﬂ}i

where A, ..., A 8re the roots of the characteristic polynomial of T listed with
their proper multiplicities.

Aithough we showed how to find some matrix representation of N, we did not
give any special one. In this section we shall find for any nilpotent operator & matrix
that is uniquely determined by the operator (except for order of diagonal blocks).
From this we shall obtain a special matrix for any operator, called the Jordan
canonical form.

An elementary nilpotent block is a matrix of the form

{1) 0

10
with 1’s just below the diagonal and 0's elsewhere. We include the one-by-one
matrix [07].
It N: E — E is an operator represented by such a matrix in a basis e, . . ., én
then N behaves as follows on the basis elements:
N (G[) = 01,
N(es) = &,
N (en—l) = €ny
Nien) = 0.
It is obvious that N» (e} = 0, k = 1, ..., n; hence N* = 0. Thus N is nilpotent

of order 1. Moreover, N# = 0 if 0 < k < n, since Neeg, = eeq = 0.
In Appendix III we shall prove
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Theorem 1 Lei N be a nil veclor space

'm 1 Let polent operalor on a real or
E has a basis giving N a matriz of the form compler . Then

4= diﬂ'glAlJ “ery Arls
where A; i3 an elementary nilpotent block, and the s !
. s size of A, 18 a nonincreass: ;

of k. The matrices A,, . .., A, are uniguely determined b; the opera!or?\fungfundm

We cail the matrix in Theorem 1 the canonical form of N.

Let A be an elementary nil i i i
R ry nilpotent matrix. It is evident that the rank of A is

dim Ker 4 = 1.
This implies the following corollary of Theorem 1.

Theorem 2 In Theorem 1 the number r of blocks is equal to dim Ker A.

We define the canonical form of a nil i
¢ potent matrix to be the canoni
of the corresponding operator; this is s matrix similar to the original o::l éomncz

similar matrices correspond to the aa i
1 me operator, it f
same canonical form. From this we conclude: pllows that they have the

Theorem 3 Twe nilpotent n X n matri ] operalor. same
¢ nipot rices, or fwo nilpolent
vector space, are similar if and only if they have the same canombalfon: o the

The question arises: given a nilpotent operator, how is its ¢canonical form found?

To angwer this let us examine i :
a nilpotent ich i : :
form, say, the 10 X 10 matrix pe matrix which is already in canonical

o | -
1 0
10

N =

(o]
(o]
R [0]
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We consider N as representing a nilpotent operator T on R™. Consider the relations
between the following sets of numbers:

5 = dim Ker 7%, 1<k<10,
and

» = number of elementary nilpotent & X k blocks, 1<k<10

Note that # = 0 if & > 3. The numbers & depend on the operator, and can be
computed from any matrix for 7. On the other hand, if we know the », we can
immediately write down the matrix N. The problem, then, is to compute the
in terms of the 5.
Consider
5 = dim Ker T'.

From Theorem 2 we find
5 = total number of blocks = », + » + .

Next, consider & = dim Ker T*. Each 1 X 1 block (that is, the blocks [07}
contributes one dimension to Ker TT. Each 2 X 2 block contributes 2, while the
3 % 3 block also contributes 2. Thus

61 = + 27: + 27;.

For 8 = dim Ker T?, we see that the 1 X 1 blocks each contribute 1; the 2 X 2
blocks each contribute 2; and the 3 X 3 block contributes 3. Hence

a!'“'=71+2'!+3’l-

In this example N* = 0, hence & = &, k > 3.

For an arbitrary nilpotent operator T on a vector space of dimension n, let N
be the canonical form; define the numbers 8 and », k = 1, ..., n, a9 before. By
the same reasgning we obtain the equations

h=ntrnt- +w,
b=+ 2(n+ "'+'-),
b=rnt2n+30+ - T,

dpa =it e+ -+ (n — Doz + {(n — 1)('-—l+'-),
§o =+ 2+ - + e

We think of the & as known and solve for the ». Subtracting each equation from
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the one below it gives the equivalent system:
h=n+t+ - 4o,
—hth=nt o+,
“hth=n+t -t
—b 4+ 8 == Ya-
Bubtracting the second of these equations from the first gives
n o= 28 — &
Bubtracting the (k 4 1)th from the kth gives
= =8+ 25 — by, 1<k <n;

and the last equation gives ».. Thus we have proved the following theorem, in which
part (b) allows us to compute the canonical form of any nilpotent operator:

Theorem 4 Let T be a nilpotent operaior on an n-dimensional vector pace

. |
utheuuﬂ.tberofk)(kblochinﬂuwuouimlfomof‘l‘,and&.-diml(er?‘ t}l‘u::
the following equations are valid: '

(‘) L‘Zm-bs-l'mz.s,;,y,;m-1,,_,.,.;
(b) » =25 — 5,

v —8 2y~ By, 1 <k<n,

Ya = =8 + s

Note that the equations in (b} can be subsumed under the single equation
vy o= —8uy + 265 — by,

vdidfor.wintegerskz 1, if we note that 3, = 0 and 3, = &, for k > n.

There ia the more difficult problem of finding a basis that puts a given nilpotent
o?erator in canox-l.ical form. An algorithm ia implicit in Appendix III. Gur point of
view, however, is tao obtain theoretical information from canonical forms. For
example, the eq‘;vntlo:m in the preceding theorem immediately prove that fwo nil-
poleni operalors N, M on a vecior space E are similar if and if di -
dim Ker M* for 1 < k < dim E, d o f dim Rer I

For computational purposes, the S + N decomposition i

, position is usually adequate. On
the other hand, the existence and uniqueness of the i ie i
oo Gy, q canonical forms is important
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PROBLEMS
1. Verify that each of the following operators is nilpotent and find its canonical
form:
(a {0 0 0 (b} {0 2 -2 (¢} |00 00
00 00 4 000
0 20 00 O 6 700
8 8 0 0
(dy o o 0 0O (e) 1 10 0
1000 G -1 -1 0 0
00000 0 1 2 —2
00000 1 0 2 -2
002 30

9 Tet N be a matrix in nilpotent canonical form. Prove N is similar to
(a) kN for all nonzero k € R,
{b} the transpose of N.
3. Let N be an n X n nilpotent matrix of rank r. If N* = 0, then k > nf{n —r1).

Classify the following operators on R¢ by similarity (missing entries are 0;:

(a) [o 1 [ 200 2] () [OO
0 2 0 0 40
0 3 0 0 0
L 0 -2 0 0 -2
@ T o (¢) [0 ¢ 0 100
1 0 0
0 1 0 0
| -1 -1 -1 0 0

§4. Jordan and Rea)l Canonical Forms

In this scetion canonical forms are constructed for art?itrary opera_tors:
We start with an operator T on E that has only one eigenvalue ), if X is nonreal,
we suppose E complex. In Section 1 we saw that

T=X+N
with N nilpotent. We apply Theorem 1 of Section 3 and give E a basis & =

{er, .. ., ea} that gives N a matrix A in nilpotent canonical form. Hence T ha,s the
®-matrix 3] + A. Since A is composed of diagonal blocks, each of which is an
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elementary nilpotent matrix, A] 4+ A has the form

(0 A 7

-

L 1
{Some of the diagonal blocks may be 1 X 1 matrices [x].) That is, A\ 4+ A has
X's along the diagonal; below the diagonal are 1’s and ('s; all other entries are 0.

The blocks making up Al + 4 are called elenentary Jordan matrices, or elementary

A-blocks. A matrix of the form (1) is called a Jordan matriz belonging to ), or briefly,
a Jordan -block.

Consider next an operator T: E — E whose distinct eigenvalues are Ay, ..., \a;
88 ususl E is complex if some eigenvalue is nonreal. Then E = E, 0 --- ® E,.,
where E, is the generalized M-eigenspace, k ~ 1, ..., m. We know that T {E: =

MI + Ni with N, nilpotent. We give E, a basis ®,, which gives T | E, a Jordan

matrix belonging to A. The basis 8 = ®,U - -+ U ®, of E gives T a matrix of the
form

C = diag{Cy, ..., Cal,

where each C. is a Jordan matrix belonging to A.. Thus ¢ is composed of diagonal
blocks, each of which is an elementary Jordan matrix €. The matrix C is called the
Jordan form (or Jordan matrix) of T.

We have constructed a particular Jordan matrix for T, by decomposing E as a
direct sum of the generalized eigenspaces of T. But it is easy to see that given any
Jordan matrix M representing T, each Jordan A-block of M represents the restric-
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tion of T to the generalized A-eigenspace. Thus M must be the matrix we con- of diagonal blocks of the form
structed, perhaps with the A-blocks rearranged.
It is easy to prove that similar operators have the same Jordan forms (perhaps B D
with rearranged A-blocks). For if PToP' = T,, then P maps each generalized
a-cigenspace of To isomorphically onto the generalized \-eigenspace of Ty; hence Iy
the Jordan A-blocks are the same for Ty and T . or D
In summary: o

(2)

Theorem 1 Tet T € L{E) be an operalor; if E i3 real, assume all eigenvalues of
T are real. Then E has a basis giving T a matriz tn Jordan form, that 1s, a matriz

made up of diagonal blocks of the form (1). D= [a —b] L [1 0]
- 1 T =

where

b a

Except for the order of these blocks, the matrix is uniquely determined by T. Thus T | E, has a matrix of the form
Any operator similar to T has the same Jordan form. The Jordan form can be (3) "
written A + B, where B is a diagonal matrix representing the semisimple part of ”—D
7 while 4 is & canonical nilpotent matrix which represents the nilpotent part of I
T:and AB = BA.

Note that each elementary A-block contributes 1 to the dimension of Ker{T — A).
Therefore,

Iy D
Proposition In the Jordan form of an operator T, the number of elementary h-dlocks - —
1z dim Ker(T — AJ. Fy

L -

We turn now to an operator T on a real vector space E, allowing T to have non- .
real eigenvalues. Let Tc: B¢ — Ec¢ be the complexification of T. Then Ec has a
basis ® putting T¢ into Jordan form. This basis & is made up of bases for each .
generalized cigenspace of Tc. We observed in Chapter 4, Section 2, that for a real L D |
eigenvalue ), the generalized eigenspace Ec(Tc, M) is the complexification of a
subspace of E, and hence has a basis of vectors in E; the matrix of T¢ | E(Tc, A)
in this hasis is thus a real matrix which represents T | E(T, A). It is a Jordan A-block.

Let = a 4+ ib, b > 0 be a nonreal eigenvalue of T. Let

: . D i
'xl+1’yh'--!‘rp+1’yrl I-
L .

be a basis for E(n, Te), giving Tc| E(n, Te) a Jordan matrix belonging to a.
In Section 2 we saw that

E(l‘s TC) ] E(ﬂ! TC) L. I’ D

is the complexification of a subspace E, C E which is T-invariant; and the vectors Combining these bases, we obtain

fya, 2 0 - -y Yo )

Theorem 2 Tet T: E — E be
arc a basis for E. It is easy to see that in this basis, T | E, has a matrix composed giving T a matrir campo;d of d';?;t;r.::; xkosn 0; ;;f:ff W(?;MCMT("? ?’M’ o
ormsz (1} and (2). The diagonal
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elements are the real eigenvalues, with multiplicity. Each block [& =), b > 0, appears
as many limes as the multiplictty of the eigenvalue a + bi. Such a matriz is uniquely

determined by the similarity class of T', except for the order of the blocks.

Definition  The matrix described in the theorem is called the real canonical form
of T. 11 T has only real cigenvalues, it is the same as the Jordan form. If 7 is nil-
potent, it is the same as the canonieal form discussed carlier for nilpotent operators.

The previous theory applies to Tc to show:

Proposition In the real canonical form of an operator T on a real vector space, the
number af blocks of the form :

- .

I 1A
s dim Ker (T — A). The number of blocks of the form (2) isdim Ker(Tc — (a + ib)).

The real canonical form of an operator T exhibits the eigenvalues as part of a
matrix for T. This ties them to T much mote directly than their definition as roots
of the characteristic polynomial. For example, it is easy to prove:

Theorem 3 Let Ay, . . ., Aa be the eigenvalues (with multiplicities) of an operator T,
Then

(a) Te(T) = M+ -+ + My

(b) Det(T) = A+ A

Proof. Wemay replace a real operator by its complexification, without changing
its trace, determinant, or eigenvalues. Hence we may assume T operates on a com-
plex vector space. The trace is the sum of the diagonal elements of any matrix for
T looking at the Jordan form proves {a). Since the Jordan form is a triangular
matrix, the determinant of T is the product of its diagonal elements, This proves
(hy.

"Fo compuite the canonical form of an operator T' we apply Theorem 4 of Section
A 1o the nilpotent part of T — A for each real eigenvalue A, and to Te — (& + bi)
for each complex eigenvalue @ -+ b, b > 0. For each real eigenvalue A define s (A) =
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number of k X k blocks of the form

A
1 -

in the real Jordan form of T'; and
3.(A) = dim Ker(T — 2)*,

For each complex eigenvalue A = a + b, b > 0, define »:(A) = number of 2k X 2k
blocks of the form

[ ]

I

s .IDJ

in the real Jordan form of T: and

&{A) = dim Ker{T¢ — »)

a8 a complex vector space. One obtains:
Theorem 4 Let T be an operator on g real n-dimensional vector space. Then the
real Jordan form of T is determined by the following equations:

nlh) = —8a(A} + 28 (A) — Benl(d), 1<k<n,

t_vhere' A runs through oll real eigenvalues and all complez eigenvalues with positive
maginary parl.

Example. Find the real canonical form of the operator

0 00 -8
10

- 0 16 .
010 —14
001 6
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The characteristic polynomial is
(-1 +00—-(1-D)(¢—21

The eigenvalues are thus 1 4- ¢, 1 — £, 2, 2. Since 1 + 7 has multiplicity 1, there
can only be one block [} ~1]- A computation shows

6;(2) = 1.

This is proved most easily by showing that rank (T - 2) = 3, Hence there is only
one elementary 2-block. The real canonical form is thus:

2
1 2
I —1
1 1

There remains the problem of finding a basis that puts an operator in real canon-
ical form. An algorithm can be derived from the procedure in Appendix III for
putting nilpotent operators in canonieal form. We shall have no need for it, however.

PROBLEMS

1. Find the Jordan forms of the following operators on C*:

S T FR ) PO

-1 0 1 t 0 14
Find the real canonical forms of the operators in Problem 1, Section 2,
Find the real canonical forms of operators in Problem 4, Section 2.

What are the possible real canonical forms of an operator on R* for n < 57
Let 4 be a3 X 3 real matrix which is not diagonal. If (4 + I)* = O, find the

real canonical form of A,

EA

6. Let A be an operator. Suppose g(A) is a polynomial (not identically 0) such
that ¢{4) = 0. Then the eigenvalues of A are roots of g.

Let A, B be commuting operators on C* (respectively, R*). There is a basis
putting both of them in Jordan (respectively, real) canonical form.

sl

Every n X n matrix is similar to its transpose.

9. Let A be an operator on R*. An operator B on R~ is called a real logarithm
of A4 if e? = A, Show that A has a real logarithm if and only if A is an iso-
morphism and the number of Jordan A-blocks is even for each negative eigen-
value i,
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10. Bhow that the number of real logarithms of an operstor on R* is either 0,1,
or countably infinite.

§5. Canonical Forms and Differential Equations

After a long algebraic digression we return to the differential equation
(0 ¥ =Az, Ac L(R%.
Buppose A is Jordan A-block, A € R:

8 -
1
1 A
From the decomposition - "
A=x+N,
0 -
1
N =
1 0

we find by the exponential method (Chapter 5) that the solution to (1) with initial
value 2(0) = C € R is

Z(l) = &40 = PN

e

- 1) —_—

[~ E%F]e
- T
¢ 1
e
—e 2t

L L
[ (n =1 ! | J
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In coordinates,

-1 o]

{2) z,(t) = g Z !C;_‘-.
et

k!
Note that the factorials can be absorbed into the constants.
Suppose instead that A = a + bt, b # 0, and that A is a real A-block:

S
e[ R

I
Let m be the number of blocks D so that n = 2m. The solution to (1) can be eom-
puted using exponentials. It is easiest to consider the equation

I D

(3) Z = Bz,

where z: R — C iz an unknown map and B is the complex m X m matrix
p ]

1

. u=a+1h

1 g

We identify C™ with R* by the correspondence
{;"1 +1.y1, ceey T +iyu) = (zly Yy o ooy Imy yll)'
The solution to (3) is formally the same as {2) with a change of notation:
-1 g
(4) z,(t)=e"E—'C,-_;; i=1,...,m
— K!

Put € = Li +iMs, k=1, ..., m, and take real and imaginary parts of (4);
using the identity _
gtleH = eat(oog bt 4 1 gin bf)
one obtains
=1

(5) z; (1) = e Z % [Lj_.g coa bt — M, sin bt],
H .

-1
pi) = X :c:-'l [M ;. cos bt + Lj sin bt];
)
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7 =1,..., m. This is the solution to (1) with initial conditions
n{0) = L;,  y,(0) =M,

The reader may verify directly that (5) is a solution to (1).
At this point we are not so much interested in the precise formulas {2) and (5)
as in the following observation:
(6) If is real, ench coordinate z,(t) of any solution to (1) is a linear combination
(with constant coeflicients) of the functions

M, k=0,...,n

(7) Ifx=a+bib=0,and n = 2m, then cach coordinate z;(t) of any solution
to (1) 18 & linear combination of the functions

et cos b, e*'* gin bi; 0<k<m

Consider now Eq. (1) where A is any real n X n matrix. By a suitable change
or coordinates z = Py we transform A into real canonical form B = PAP. The
equation

(8) ¥ = By
is equivalent to (1): every solution z{f) to (1) has the form
z(t) = Py(t),

where y(£) solves (8).
Equation (8) breaks up into a set of uncoupled cquations, each of the form

u' = B,

where B, is one of the blocks in the real canonical form B of A. Therefore the co-
ordinates of solutiona to (8) are linear coordinates of the function described in (6)
and (7), where A or a + bi is an eigenvalue of B (hence of A). The same therefore
is true of the original equation (1).

Theorem 1 Let A € L(R*) and lef z(t) be a solution of = Ax. Then each co-
ordinate x, (t) is a linear combination of the functions

the®s coa b, tiet= gin bt,
where a 4 bi runa through all the eigenvalues of A withb > 0, and k and I run through

all the integers O, ..., n — 1. Moreover, for each A = a + bi, k and [ are less than
the size of the largest A-block in the real canonical form of A.

Notice that if A has real eigenvalues, then the functions displayed in Theorem 1
include these of the form e,

This result does not tell what the solutions of (1) are, but it tells us what form
the solutions take. The following is a typical and very important application of
Theorem 1.
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Theorem 2 Suppose every eigenvalue of A € L(R*) has negalive real part. Then
lim z(t) =0

[ 5]
for every solulion lo z' = Azx.
Proof. This is an immediate consequence of Theorem 1, the inequalities
jeosdt] £ 1, |sinbi| < 1,
and the fact that

lim#es* =0 forallk ifa <0

[

The converse to Theorem 2 is easy:

Theorem 3 If every solution of r' = Ax tends lo 0 as { - =, then every eigenvalue
of A has negalive real part.

Proof. Suppose p = a-+bis an eigenvalue with @ > 0. From (5) we obtain
a solution (in suitable coordinates)

Il[(t) = ¢* cos bt,
() = e**sin b,
I}(‘) had VI“) = 0, izl

which does not tend to zero as ¢ — =,

An argument stmilar to the proof of Theorem 2 shows:

Theorem 4 If every eigenvalue of A € L(R*) has positive real part, then

Hm|z(f) | = =

1=-c0

for erevy solution to 2’ = Az,
The following corollary of Theorem 1 is useful:

Theorem 5 If A € L{R"), then the coordinales of every solulion fo 2’ = Az are
infinitely differentiable functions (that is, C™ for all m).

PROBLEMS

1. {(a) Suppose that every eigenvalue of A € L(R") has real part less than
—a < 0. Prove that there exists a constant ¥ > 0 such that if z{(1) is a
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solution to = Az, then
[zt ] S k| 2(0) |

for all 1 > 0. Find such & k and a for each of the following operators A :
(b) [-l l] (e) [—1 100]
0 -1 0 -1

(d) [105’: 1 ] (e) [—1 —1]
0 logi 1 -1
Let A € L(R"). Suppose all solutions of z' = Az are periodic with the same

period. Then A is semisimple and the characteristic polynomial is a power of
24 atac R

Suppose at least one eigenvalue of A € L(R") has positive real part. Prove
that for any @ € R", ¢ > 0 there is a solution x{t) to ' ‘= Az such that

tim | z(¢)| = .

L

Let A € L(R*), and suppose all eigenvalues of A have nonpositive real parts.

{a) If A iz semisimple, show that every solution of ' = Az is bounded (that
i8, there is & constant M, depending on x(0), such that | z()| < * for
allt € R).

(b) Bhow by example that if 4 is not semisimple, there may exist a solution
such that

|z(0) —a] < e and

lim | z(t)| = .
-+
For any solution to * = Ar, A € L(R~), show that exactly one of the folow-
ing alternatives holds:
(a) limoz(t) =0andlim,._,|z(f}] = =;
(b) limy., | z()] = = and lim,._, x(t) = 0,
(¢} there exist constants M, N > 0 such that

M<|z(t)| <N
forall £ € R.

Let A € L(R*) be semisimple and suppose the eigenvalues of A are +ai, +bi;
a>0,b>0. .

(a) If a/b is a rational number, every solution to x’ = Az is periodic.

(b) If a/b is irrational, there is a nonperiodic solution z(i) such that

M<clz(h)| < N
for suitable constants M, N > 0.
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§6. Higher Order Linear Equations

Consider the one-dimensional, nth order homogeneous linear differential equation
with constant coefficients

(1) g™ 4 als(w—!) 4+ -+ a2 =0.

Here s: R — R is an unknown function, 4y, . . . , 4, are constants, and s*' means the
kth derivative of s.

Proposition 1 (a) A linear combination of selutions of (1) is again a solution,
(b} The derivative of a solulion of (1} iz agatn a golulton.

Proof. By a linear combination of functions fi, . .., fu having a common do-
main, and whose values are in a common vector space, we mean a function of the
form

f(z) = afiz) + -+ + eaful2),
where ¢, . . . , ¢ &T€ constants. Thus (a) means that if 8,(¢), . . . , 8 (¢) are solutions
of (1) and ¢y, . . . , ¢m 8T constants, then €:4,(t) 4+ -+ + cu8.(t) is also a solution;
this follows from linearity of derivatives.

Part (b) is immediate by differentiating both sides of (1)—provided we know
that a solution is n + 1 times differentiable! This is in fact true. To prove it, con-
sider the cquivalent linear system

(2) =1,
In—l, = Zn,
Zn' = Ga¥L — Gua¥y — -+ — @QiTn.
If s is a solution to (1), then
z=(s4&,...,s*1)

is a solution to (1). From Theorem 4, Section 1 we know that every soluticn to
(2) has derivatives of all orders.
The matrix of coefficients of the linear system (2) is the n X n matrix

(3) 0 1
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A matrix of this form is called the companion matriz of the polynomial
(4) (A = A a4 -+ ap ik + a..
In Chapter 5 it was shown that this is the characteristic polynomial of A.

Companion matrices have special properties as operators. The key to solving (1)
is the following fact.

Proposition 2 Let A € C be a real or compler eigenvalue of a companion mabriz
A. Then the real canonical form of A has only one h-block.

Proof. We consider A as an operstor on C*. The number of X blocks ia
dim Ker{4 — 1),

considering Ker(A — )\) as a complex vector space.
The first n columns of A — X form the {(n — 1) X » matrix

— —

—A 1
—A

~A
! d

which has rank n — 1. Hence A — X has rank n or n — 1, but rank n is ruled out
since A is an eigenvalue. Hence A — Ahasrank n — 1,80 Ker{A — 1) has dimension
1. This proves Proposition 2.

Definition A basis of sclutions to (1) is a set of solutions s, .. ., 8. such that
every solution is ~xpressible as a linear combination of &,, . . ., 2. in one and only
one way.

The following theorem is the basic result of thia section.

Theorem The following n functions form o basis for the solutions of (1):

(a) the function fe™, where A runs through the distinct real roots of the charac-
teristic polynomial (4), and k is a nonnegative inleger in the range ¢ < k <
multiplicity of \; together with

{b) the functions

Hhert com bt and thest gin be,

where a + bt runs through the complex rools of (4) having b > QO and k s o
nonnegative inleger in the range 0 < k < multiplicity of a + bi.
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Proof. We call the functions listed in the proposition basic functions. It follows
from Theorem 1 of the previous section that every solution is a linear combination
of basic functions.

The proof that each basic function is in fact a solution is given in the next section.
By Proposition 1 it follows that the solutions to (1) are exactly the linear combina-
tions of basic functions.

Tt remains to prove that each solution is a unigue linear combination of basie
funetions. For this we first note that there are precisely n functions listed in (a)
and (b): the number of functions listed equals the sum of the multiplicities of the
real Toots of p{1), plus twice the sum of the multiplicities of the complex roots with
positive imaginary parts. Since nonreal roots come in conjugate pairs, this total
is the sum of the multiplicities of all the roots, which is n.

Define & map ¢: R* — R~ as follows. Let f), .. ., f. be an ordering of the basic
functions. For each @ = (ay, ..., as) € R* let 5.(f) be the solution
8y = }: af;.
Joat
Detine

50(‘1) = (30(0)1 8“1(0), ey 3¢(u-i) (0)) € R~

It is easy to sec that ¢ is a linear map. Moreover, ¢ iz surjective since for each
{@o. ..., @s_1) & R" there is some solution s such that

(5) 5(0) =@, ..., 8" V(0) = an-1,

and s = s, for some a. It follows that ¢ is injective.

From this we see at once that every solution s is & unique linear combination
of the basic functions, for if s, = 25, then ¢({a) = ¢(8) and hence a = 8.
This completes the proof of the theorem.

Theorem 1 reduces the solution of (1) to elementary linear algebra, provided
the roots and multiplicities of the characteristic polynomial are known. For example,
consider the equation

(6) 8 3 45 4 5s® 144" 4+ 45 = 0.
The roots of the characteristic polynomial

M4+ O+ 4444
are
-2, =2, i, —i.

Therefore the general solution is
(7} () = Ae* 4 Ble¥ + Ccost + Daint,

where A, B, C, D are arbitrary constants.
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To find a solution with given initial conditions, say,

(8) 8(0} = 0,
§{0) = ~1,
s0(0) = —4,
#3(0) = 14,
we compute the left-hand side of (8} from (7}, to get:
(9 3(0) = A +C =0,
#0) =244+ B +D = —1,
W(0) = 44 - 4B-C = —4
s9(0) = —84A +12B —D =14

The only solution to this system of equations is
A=C=0, B =1, D =-2
Therefore the solution to (6) and (8) is
a(8) = e — 2sint.

PROBLEMS

1. Find a map s: R — R such that
8% — 4 L 4y’ - 43 =,
8(0) =1, #(0) =—1, &£(0) =1.

2. Consider equation (6) in the text. Find out for which initial conditions #(0),
8'(0), &''(0) there is a solution #(2) such that:
(a) s(t) is periodic; (b) lim..,s(t) =0;
{c) lime.,|s(t)]| = m; (d) |a(t) | is bounded for ¢ > 0;
(e) |a(t) | is bounded for all ¢ € R.

3. Find all periodic solutions to
a0 4 20 | g = 0.

4. What is the smallest integer n > 0 for which there is a differential equation

#™ 4 g ™Y ... fas =0,
having among its solutions the functions
sin2f, 40, —g'?
Find the constants @y, ..., a, € R.
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§7. Opcrators on Function Spaces

We discuss briefly another quite different approach to the equation
(1) s™ 4 gz 4 ... +g8=0;, s:R—oR.

Let & be the set of all infinitely differentiable functions R — R (one could also
use maps R — C). Under multiplication by constants and addition of functions, ¥
satisfies the axioms V81, V82 for a vector space (Chapter 3, Section 1, Part A);
but § is not finite dimensional.

Let D: % — § denote the differentiation operalor; that is,

Df = f.
Then 1 35 n linear operator. Some other operators on F are:
multiplicsation of f by a constant X, which we denote simply by A; note that 1f = f

and 0f = 0;
nttiplieation of f by the funetion £({) = {, which we denote by &.

New operators can be built from these by eomposition, addition, and multiplica-

tion by constants. For example,
D:F g
assigns to f the function
D(Df) = D{f') = f";

similarly Dnf = f®™, the nth derivative. The operator D — ) assigns to f the func-
tion f' — Af.

Mhore generally, let

pit)y =t +at'+ --- +a

be a polynomial. (There could also be a coefficient as of ¢*.) There is defined an
operator

p(DYy =D 4+ oD+ - a1 D 4+ ay,
which assigns to f the function
FO 4 af™ 4+ oo 4 oauyf + adf.

We may then rephrase the problem of solving (1) : find the kernel of the operator

p(D),
This way of looking at things suggests new ways of manipulating higher-order
equations. For example, if p(A) factors

p(\) = q(\)r(A),
then clearly,
Ker r(D) C Ker p(D).
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Moreover,
Ker g(D) C Ker p(D},

gince gr = rg. In addition, if f € Kerg(D) and g € Kerr(D), then f+ g€
Ker p(D).
We can now give a proof that if (¢ — x)* divides p(), then t*e¢* € Ker p(D),
0 < k < m — 1. It suffices to prove
(2) (D—N)"¥iger =0, k=01,....
Note that D{e®} = Ae®, or
(D — N)e™ = 0.
Next, observe the following relation between operators:
Dt—th=1
(this means D (¢f) — tDf = f, which follows from the Leibniz formula). Hence alao
(D=t —t(D—» =1.
It follows easily by induction that
(D — Nt — (D — \) =kt k=12....
Therefore
(D ~ A)¥*i(the?) = (D — M)*(D — A) (te?)
= (D — NY[#(D ~ A) + k1 Je?)
= k(D — X)),

Hence (2) is proved by induction on k.

If  is interpreted as a complex number and p{D) has complex coefficients, the
proof goes through without change. If p(D) haa real coefficients but A = a + bi
is a nonreal root, it follows that both the real and imaginary parta of f¢* are anni-
hilated by p(D). This shows that

te* cos th, Best gin th
are in Ker p(D).

We have proved part of Theorem 1, Section 6 by easy “formal” (but rigorous)
methods. The main part—that every solution is a lincar combination of basic
functions—can be proved by similar means. [Sce Linear Algebra by 8. Lang, p. 213
{Reading, Massachusetts: Addison-Wesley, 1966).] Operatora on function spaces
have many uses for both theoretical and practical work in differential equations.



Chapter 7

Contractions and Generic Properties
of Operators

In this chapter we study some important kinds of linear fiows e'4, particularly
contractions. A (linear) contraction is characterized by the property that every
trajectory tends to 0 as { — = . Equivalently, the eigenvalues of A have negative
real parts. Buch flows form the basis for the atudy of asymptotic stability in Chapter
9. Contractions and their extreme opposites, expansions, are studied in Section 1.

Section 2 is devoted to hyperbolic flows e*4, characterized by the condition that
the eigenvalues of A have nonsero real parts. SBuch & flow is the direct sum of a
contraction and an expansion. Thus their qualitative behavior is very simple.

In Section 3 we introduce the notion of a generic property of operators on R;
this means that the set of operators which have that property containsa dense
open subset of L(R"). It is shown that ‘‘semisimple” is a generic property, and
also, “‘generating hyperbolic flows” is a generic property for operators.

The concept of a generic property of operators is a mathematical way of making
precise the idea of “‘almost all” operators, or of & “typical” operator. This point is
discussed in Section 4.

§1. Sinks and Sources

Buppose that a state of some “‘physical” (or mechanical, biological, economie,
etc.) system is determined by the values of n parameters; the space of all states
is taken to be an open set U C R~ We suppose that the dynamic behavior of the
system is modeled mathematically by the solution curves of a differential equation
(or dynamical system)

1)  =f(z), fiU-sR~
We are interested in the long-run behavior of trajectories (that is, solution curves)
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of (1). Of especial interest are equilibrium siales. Such a state £ € U is one that
does not change with time. Mathematically, this means that the constant map
t— % is a solution to (1); equivalently, f(£) = 0. Hence we define an equilib-
rium of {1) to be a point # € U such that f(£) = 0.

From a physical point of view only equilibria that are “‘stable” are of interest.
A pendulum balanced upright is in equilibrium, but this is very unlikely to occur;
moreover, the slightest disturbance will completely alter the pendulum’s behavior,
Such an equilibrium is unatable. On the other hand, the downward rest position is
stable; if slightly perturbed from it, the pendulum will swing around it and {because
of friction) gradually approach it again.

Stability is studied in detail in Chapter 9. Here we restrict attention to linear
systems and concentrate on the simplest and most important type of stable
equilibrium.

Consider a linear equation
(2) ¥ = Az, A€ L(R").

The origin 0 € R* is called a sink if all the eigenvaluea of A have negative real
parts. We also say the linear flow ¢'4 is a contraction,

In Chapter 6, Theorems 2 and 3, Section 5, it was shown that 0 is a sink if and
only if every trajectory tends to 0 as ¢t — oo. (This is called asymplofic stability.)
From Problem 1, Section 5 of that chapter, it follows that trajectories approach
a sink erponentially. The following result makes this more precise.

Theorem 1 Let A be an operalor on a veclor space E. The following slalements are
equivalent:
(a) The origin 18 a sink for the dynamical system ' = Az,
(b) For any norm in E there are conslanis k > 0, b > 0 such that
lettz| < ke®| x|
forallt >0,z¢€ E.
(¢) There exisis b > 0 and a basis ® of E whose corresponding norm satiafiea
letzie S e | zle
forallt 20,z € E.

Proof. Clearly, (¢) implies (b} by equivalence of norms; and (b) implies (a)
by Theorem 3 of Chapter 6, Section 5. That (a) implies (b) follows easily from
Theorem 1 of that section; the details are left to the reader.

It remains to prove that (a) implies {c). For this we use the following purely
algebraic fact, whose proof is poatponed.

Recall that R \ is the real part of A

Lemama Let A be an operator on a real veclor space E and suppose
(3) a<RA<B
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for every eigenvalue \ of A. Then E has a basis such that in the corresponding inner
product and norm,

(4) alzpP < (Az,z) < Bz

forall z ¢ E.

Assuming the truth of the lemma, we derive an estimate for solutions of ' = Az.
Let (ry, ..., ra) be coordinates on E corresponding to a basis @ such that (4)

holds, and let
2(8) = (m(t), ..., za(8))
be a solution to 2 = Az, Then for the norm and inner product defined by ® we have
d d
ol - i
Thel =G IE @]

- Z ;%)
[T (@)

Hence

{x, 2’y {z, Az}

L
7 21 =zl

Therefore, from (4), we have

cHaz] g
2
or
asgt-loglzlsa.

It follows by integration that
af < log ] z(t)| — log | z(0)| < B¢;

hence
log | z(1)|
t < =1 gy
= fog 20| =
or

et z(0)] < [z()] < & 2(0)].

Theorem 1 is proved by letting § = —b < 0 where the eigenvalues of A have
real parts less than - b.

We now prove the lemma; for simplicity we prove only the second inequality
of {4).
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Let ¢ € R be such that
Rr<e<g
for every eigenvalue ) of A.
Suppose first that A is semisimple. Then R* has a direct sum decomposition

Rr=E e---0oFE, oF o---eF,

where each E; is a one-dimensional subspace spanned by an eigenvector ¢; of A
corresponding to & real eigenvalue );; and each F, is a two-dimensional subspace
invariant under A, having a basis (f;, g;} giving A | F: the matrix

a —b
[b& Gt]’
where a. + tb, i an eigenvalue of 4. By assumption
A <e, a <
Given R* the inner product defined by

ne)=Unhi)=(gna)=1,
and all other inner products among the ¢, fi, and g, being 0. Then a computation
shows
(AG,, Gj) = Af <e¢ (Afh fl) =& <¢;
it follows easily that
Az, 2) <z

for all z € R*, a8 required.

Now let A be any operator. We firat give R a basis 80 that A has a matrix in real
canonical form

4 = diag{d,, ..., 4,],

where each A, haz the form

(5)

oy

or

O o IR A
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If we give a subspace E; of E, corresponding to & block A; a basis satisfying the
lemma for A; then all these bases together fulfill the lemma for A, Therefore we
may assume A ia a single block. .

For the first kind of block (5), we can write A = 8 + N where S has the matrix
a;I and N has the matrix

0
1
1 0
Thus the basis vectors |&), . . ., €] are eigenvectors of S, while
. Ne; = ¢,
Nty = €,
Ne, = 0.
Let ¢ > 0 be very small and consider a new basis
1 1
$1 = {61,‘6],...,—‘Ien} = léh ---sell-
¢ [t

®, is again composed of eigenvectors of S, while now

N!l - 'a‘ly
Nal = Eel:
Newo = <.,
Ne, = 0.
Thus the ®. matrix of 4 is
ay
€
(7
| £ ﬂj-l

Let {(r. y). denote the inner product corresponding to ®,. It is clear by considering
the matrix (7) that
(A:c, ;r). - (S-T- :C)

{z, 2}, E2k

e— 0
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Therefore if ¢ is sufficiently small, the basis ®, satisfies the lemma for a block (5).
The case of a block (8) is similar and i left to the reader. This completes the proof
of the lemma.

The qualitative behavior of a flow near a sink has a simple geometrical inter-
pretation. Suppose 0 € R* js a sink for the linear differential equation r = f(z).
Consider the spheres

S.={zeR*||z}|=4al, a>0,
where | z | is the norm derived from an inner product as in the theorem, Since | z(?) |
has negative derivatives, the trajectories all point inside these spheres as in Fig. A.

FIG. A

We emphasize that this is true for the spheres in 4 special norm; it may be false
for some other norm.

The linear flow e'4 that has the extreme opposite character to a contraction is an
exponsion, for which the origin is called a source: every eigenvalue of A has positive
real part. The following result is the analogue of Theorem 1 for expansions.

Theorem 2 If A € L(E), the following are equivalent:
(a) The origin i3 a source for the dynamical system 2’ = Az;
(b) For any norm on E, there are constants L > 0, a > 0 such that
fetdz | > Le*| z |

forallt 20,z ¢ E.
(¢) There erisls a > 0 and a basis ® of E whose corresponding norm satisfies

| ez ja > e | x|
forallt 2 0,z¢€ E.
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The proof is like that of Theorem 1, using the lemma and the first inequality of
(4).

PROBLEMS

i. ¢a) Show that the operator A = [~§ _i] generates a contracting flow e*
(b} Sketeh the phase portrait of r' = Az in standard coordinates.
(¢) Show that it is false that | etz | < jz|forail? > 0, z € R?, where 1z}
is the Euclidean norm.

Let ¢4 be a contraction in R*. Show that for r > 0 sufficiently large, the norm
[| 21| on R» defined by

(8w

llz{l=j:le"‘xids

satisfies, for some A > 0,
feazj| < e™ilz]l
4. {a) If 8 and et are both contractions on R*, and BA = AR, then et4+®
iz a contraction. Similarly for expansions. )
(b) Show that (&) can be false if the assumption that 4B = BA is dropped.

4, Consider § mass moving in a straight line under the influence of a spring. As-
sume there is a retarding frictional force proportional to the veloeity but oppe-
site 1n sigh, )

(a) Using Newton’s second law, verify that the equation of motion has the
form

mr” =ar +bz; m>0 a<0 k<O

(b) Show that the corresponding first order system has a sink at (_O, 0). )
(¢) What do you conclude about the long-run behavior of this physical
system?

o

If e*4 is 5 contraction (expansion), show that /4’ i3 an expansion (respec-
tively, contraction). Therefore s contraction is characterized by every t_rajec-
tory going to = as ¢ — — e« ; and an expansion, by every trajectory going to
Oasi— —,

§2. Hyperbaolic Flows

A tvpe of linear flow e!4 that is more general than contractions and expansions is
the kyperbolic flow: all eigenvalues of A have nonzero real part.
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After contractions and expansions, hyperbolic linear Bows have the simplest
types of phase portraits. Their importance stems from the fact that almost every
linear flow is hyperbolic. This will be made precise, and proved, in the next section.

The following theorem says that a hyperbolic dow is the direct sum of a contrac-
tion and an expansion,

Theorem Let e'4 be a hyperbolic linear flow, A € L(K). Then E has a direct sum
decomposition

E =FE oFE"

invertant under A, such that the induced flow on E* {s a contraction and the induced
flow on Ev is an expansion. This decomposition is unique.

Proof. We give E a basis putting A into real eanonical form (Chapter 6)}. We
order this basis so that the canonical form matrix first has blocks corresponding to
eigenvalues with negative real parts, followed by blocks corresponding to positive
eigenvalues. The first set of blocks represent the restriction of A to a subspace
B+ C E, while the remaining blocks represent the restriction of A to E* C E.

Since E* is invariant under A, it is invariant under e'4. Put A | E* = A, and
A|E" = A, Thene's | E* = ¢4 By Theorem 1, Section 1, ¢*4 | E* is a contraction.
Similarly, Theorem 2, Section 1 implies that €4 | E is an expansion,

Thus 4 = A, @ A, is the desired decomposition.

To check uniqueness of the decomposition, suppose F* @ Fv is another decom-
position of E invariant under the flow such that e | F* iz a contraction and e*4 | F«
is an expansion. Let z € F=. We can write

r=y+g y € B, z¢€ Em
Since e!4r — 0 as { — =, we have e'ly — 0 and e*4z — 0. But
Jettz| Z e |2z|, a>0,

for all £ > 0. Hence | z| = 0. This shows that F* C E*. ‘The same argument shows
that E* C F*; hence E* = F*, Similar reasoning about e~*4 shows that Ev = Fu.
This completes the proof.

A hyperbolic flow may be a contraction (E* = 0} or an expansion (E* = 0).
If neither Ev nor E* is 0, the phase portrait may look like Fig. A in the two-dimen-
sional case or like Fig. B in a three-dimensional case.

If, in addition, the eigenvalues of A | E* have nonzero imaginary part, all tra-
jectories will spiral toward Ev (Fig. C).

Other three-dimensional phase portraits are obtained by reversing the arrows in
Figs. B and C.

The letters s and u stand for stable and unstable. E* and E* are sometimes called
the stable and unstable subspaces of the hyperbolic flow.
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PROBLEMS

1. Let the eigenvalues of A €,.L{R® be A, u, ». Notice that £ is a hyperbolic flow
and gketch its phase portrait if:
(a) A< u<r<0;
b) A <O u=a+bia<0,b>0;
(¢) A <O, p=a+bi,a>0,b>0;
{(d) A <0 < u=yand A is semisimple;
(&) A<u<O<y

2. ¢*4 is hyperbolic if and only if for each z 0 either

| ez ] — o a8 Lo w
or

|etdz| — o a8 f— —w,

3. Show that a hyperbolic flow has no nontrivial periodic aclutions.

§3. Generic Properties of Operators

Let F be a normed vector space (Chapter 5). Recall that a set X Z F is open
if whenever z € X there is an open ball about z contained in X; that is, for some
@ > 0 (depending on z) the open bal! about z of radius a,

lye Fliy—z|<al,

is contained in X. From the equivalence of norms it follows that this definition is
independent of the norm; any other norm would have the same property (for
perhaps a different radius a).

Using geometrical language we say that if z belonga to an open set X, any poiat
sufficiently near to r also belongs to X.

Another kind of subset of F i8 a dense set: X C F is dense if every point of F
is arbitrarily close to points of X. More precisely, if z ¢ F, then for every ¢ > 0
there exists some y € X with | z — y| < e«. Equivalently, [/ 1 X is nonempty for
every nonempty open set I/ C F.
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An interesting kind of subset of X isaset X C F which is both open and dense. It
is churacterized by the following properties: every point in the complement of F
can be approximated arbitrarily closely by points of X (hecause X isdense); but no
point in X ean be approximated arbitrarily closely by points in the complement
(hecause X s open).

Here is a simple example of a dense open set in R*:

X ={(zy) e Ry 1]

This, of course, is the complement of the hyperbola defined by zy = 1. If xyo # 1
and | r — 7|, | ¥ — yo | are small enough, then zy # I; this proves X open. Given
any (xy, 4) ¢ R? we can find (z, ¥) as close as we Jike to {2, 7o) with zy #¢ 1; this
proves X dense. ‘

AMore generally, one can show that the complement of any algebraic curve in
R? is dense and open.

A densc open set is a very fat set, as the following proposition shows:

Proporition Let X, ..., Xa be dense open sels tn F. Then

X = X;n N | Xg.
1s alse dense and open,

Proof. It can be easily shown generally that the intersection of a finite number
of open sets is open, so X is open. To prove X dense let U C F be a nonempty
open sct. Then U7 N X, is nonempty since X, is dense. Because 7 and X, are open,
U n X, is open. Since U n X, is open and nonempty, (I/ 1 X;) n X, is nonempty
because Xy is dense. Since X, is open, U 1t X, N X, is open. Thua (U N0 X, n X,) n X,
is nonempty, and 8o on. So U/ n X is nonempty, which proves that X is dense in F.

Now consider a subset X of the vector space L(R*). It makes sense to call X
dense, or open. In trying to prove this for a given X we may use any convenient
norm on L{R*). One such norm is the B-max norm, where @ is a basis R*:

|| T l|@-mex = max}| i || [855] = ®-matrix of T}.

A property @ that refers to operators on R* is a generic property if the set of opers-
tors having property ® contains a dense open set, Thus a property is generie if it is
shared by some dense open set of operators {(and perhaps other operators aa well).
Intuitively speaking, a generic property is one which “almost all” operators have.

Theorem 1 The set 8, of operators on R* that have n distincl eigenvalues 18 dense
and open in L{R").
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Proof. We first prove §, dense, Let 7 be an o 'Fix & basis
) j I R perator - i -
ting 7 in real canonical form. on R Fixa @ put

The real canonical form of 7 can be written as the sum of two matrices

T=8+4N,
where
M ]
S = A
FaN !
5 D.J
[ —b;
D, = N
) L, a;]' h>0ii=1,...,4
and
o _
N = 1o
Iy 0 '
N Iy 0
1 0
1, = ] n-[00
L0 1 o oJ

The a : T
N :: ?b?:envalues of T (with multiplicities) are 1, . . . » &, and & £ b, ...

Given e > 0, let

’
Mo Al
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be distinct real numbers such that

INM=X|<e and Jai—a|<e

\ ]

Put

L D
and T" = 8 -+ N. Then the ®-max norm of T — T is less than ¢, and the eigen-
values of T’ are the n distinet numbers

S A4 a1+ by, ..., ¢l & 1b,

This proves that $, is dense.

To prove that §, is open we argue by contradiction. If it is not open, then there
is a sequence A, Ay, . .. of operators on R* that are not in §, but which converges
to an operator 4 in 8;. There is an upper bound for the norms of the A, and hence
for their eigenvalues. By assumption each A, has an eigenvalue A of multiplicity
at least two.

Suppose at first that all A, are real. Passing to s subsequence we may assume that
A — A € 8. For each k, there are two independent eigenvectors zi, ysx for A, be-
longing to the eigenvalue \.. We may clearly suppose | z | = | 32 | = 1. Moreover
we may assume Z: and y. orthogonal, otherwise replacing y: by

ve = (o 2B/ | e — {yn, 2)T |

Passing again to subsequences we may assume 2 — z and 3 — y. Ther z and y
are independent vectors. From the relations A,z = Mz, and Awyn = Mt we find
in the limit that Az = Az and Ay = Ay. But this contradicts 4 € §,.

If some of the A, are nonreal, the same contradiction is reached by considering
the complexifications of the A,; now . and g are vectors in C*. In place of the
Euclidean inner product on R* we use the Hermitian inner product on C* defined
by (z, w) = Y71 248, and the corresponding norm | z | = {z, z)'/%. The rest of the
argument is formally the same as before.

Note that the operators in $; are sall semigsimple, by Chapter 4. Therefore an
immediate consequence of Theorem 1 is
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Theorem 2 Semisimplicily is a generic properly in L(R*).

The set of semisimple operators is no! open. For example, every neighborhood
of the semisimple operator I € L(R?) contains a nonsemisimple operator of the
form [% 9].

We also have

Theorem 3 The sel
8 = |T ¢ L(B*} | eT is a hyperbolic flow}
3 open and dense in L(R*).

Proof. In the proof of density of 8, in Theorem 1, we can take the numbers
A ... s M, a8, ..., a (the real parts of eigenvalues of T} to be nonzero; this proves
density. Openness is proved by & convergence argument similar to (and easier than)
the one given in the proof of Theorem 2,

PROBLEMS

1. Each of the following properties defines a set of real n X n matrices. Find out
which sets are dense, and which are open in the space L{R") of all linear opera-
tors on R~:

(a) determinant = 0;

(b} trace is rational;

{c) entries are not integers;

(d) 3 < determinant < 4;

{e) —1 < |x]| < 1forevery eigenvalue \;
{f) no real eigenvalues;

{g) each real eigenvalue has multiplicity one.

2. Which of the following properties of operators on R* are generic?
(a) |»] # 1 for every eigenvalue \;
(b) = = 2; some eigenvalue is not real;
{ec} = = 3;some eigenvalue is not real;
(d) no solution of ' = Az is periodic (except the zero solution);
(e) there are n distinet eigenvalues, with distinet imaginary parta;
(fy Arxr#= zand Ar = —zforallz = 0.

3. The set of operators on R~ that generate contractions is open, but not dense, in
L{R*). Likewise for expansions.
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4. A subset X of a vector space is residual if there are dense open sets 4, C E,
k=1,2...,such that[ 14, C X.
(a) Prove the theorem of Baire: a residual set is dense.
(b} Show that if X, is residual, k = 1, 2, ..., then( 1 X, is residual.
{d) If the set @ C C is residual, show that the set of operators in R whose
cigenvalues are in @, is residual in L(R").

§4. The Significance of Genericity

If an operator A € L(R") is semisimple, the differential equation ' = Az breaks
down into & number of simple uncoupled equations in one or two dimensions. If
the eigenvalues of A have nonzero real parts, the differential equation might be
complicated from the analytic point of view, but the geometric structure of the
hyperbolic flow et is very simple: it is the direct sum of a contraction and
an expansion.

In Section 3 we showed that such nice operators A are in & sense lypical. Pre-
cisely, operators that generate hyperbolic lows form a dense open set in L(R");
while the set of semisimple operators contains a dense open set. Thus if A generates
8 hyperbolic low, so does any operator sufficiently near to A. If A does not, we can
approximate A arbitrarily closely by operators that do.

The significance of this for linear differential equations is the following. If there
is uncertainty 8s to the entries in a matrix 4, and no reason to assume the contrary,
we might as well assume that the flow ¢4 is hyperbolic. For example, 4 might be
obtained from physical observations; there is & limit {0 the accuracy of the measur-
ing instruments, Or the differential equation z' = Ar may be used as an abstract
model of some general physical {or biological, chemical, ete.) phenomenon; indeed,
differential equations are very popular as models. In this case it makes little sense
to ingist on exact values for the entries in A.

It is often helpful in such situations to assume that A is as simple as possible—
until compelled by logic, theory or observation to change that assumption. It is
reasonable, then, to ascribe to A any convenient generic property. Thus it iz com-
forting to assume that A is semisimple, for then the operator A (and the flow e'4)
are direct sums of very simple, easily analyzed one- and two-dimensional types.

There may, of course, be good reasons for not assuming a particular generic
property. If it is suspected that the differential equation z' = Ax has natural
symmetry properties, for example, or that the flow must conserve some quantity
(for example, energy), then assumption of a generic property could be a mistake.

Chapter 8
Fundamental Theory

This chapter is more difficult than the preceding ones; it is also central to the
study of ordinary differential equations. We suggest that the reader browse through
the chapter, omitting the proofs until the purpose of the theorems begins to fit
into place.

§1. Dynamical Systems and Vector Ficlds

A dynamical system is a way of describing the passage in time of ali points of a
given space 8, The space $ could be thought of, for example, as the space of states
of some physical system. Mathematically, § might be a Euclidean space or an open
subset of Euclidean space. In the Kepler probiem of Chapter 2, 8 was the set of
possible positions and velocitiea; for the planar gravitational central force problem,

$=(R*—0) XR* = {(z,v) € R* XRY r # 0}.

A dynamical system on $ tells us, for z in 8, where z is 1 unit of time later, 2 units
of time later, and 80 on. We denote these new positions of z by z,, 1, reapectively. At
time zero, z i at x or 2,. One unit before time sero, r was at z_,. If one extrapolates
to fill up the real numbers, one obtains the trajectory x, for all time ¢. The map
R — 8, which sends 1 into z,, is 8 curve in % that represents the life history of z aa
time runs from - @ to c.

It is assumed that the map from R X $ — 8 defined by (¢, z) — z. is continuocusly
differentiable or at least continuous and contiruously differentiable in £. The map
é,: § — § that takes z into z, is defined for each t and from our interpretation as
states moving in time it is reasonable to expect ¢, to have as an inverse ¢_.. Also,
oy (ah)ould be the identity and ¢.(¢.(z)} = #:4.(2) i8 & natural condition (remember
o(z) = Il)- )



160 8. FUNDAMENTAL THEORY

We formalize the above in the following definition:

A dynamical system is 8 (' map R X $ % § where $ is an open set of Euclidean
space and writing ¢(¢, 2) = ¢.(x), the map ¢,: 8 — § satisfies

{a)  ¢o: § — 8 is the identity;
(b)  The composition ¢ * ¢, = ¢, for each £, 8 in R.

Note that the definition implies that the map ¢.: § — 8 is C? for each ¢ and has a
Ctinverse ¢_¢ (take s = —¢in (b)). .

An example of a dynamical system is implicitly and approximately defined by
tie differential equations in the Newton—Kepler chapter. However, we give a pre-
cise example as follows.

Let A be an operator on s vector space E; let E = §and ¢: R X § — § be de-

fined by ¢(t, ) = e"4x. Thus ¢,: $ — 5 can be represented by ¢, = e'4, Clearly,

¢o = & = the identity operator and since e!**'4 = gf4¢'4 we have defined a dy-
namical system on E (see Chapter 5).

This example of 8 dynamical system ia related to the differential equation dz/dt =
Az on E. A dynamical system ¢, on 8 in general gives rise to a differential equation
on 8, that is, a vector field on 8, f: $ — E. Here 8 is supposed to be an open set in
the vector space E. Given ¢, define f by

e 1) = G|

thus for r in §, f(z) is a vector in E which we think of as the tangent vector to the
curve ¢ — ¢.(z) at ¢ = 0. Thus every dynamical system gives rise to a differential
equalion.

We may rewrite this in more conventional terms. If ¢.: § — 8 is a dynamical
system and z € §, let z({}) = ¢,(z), and f: $§ — E be defined as in (1). Then we
may rewrite (1) as

(1 = ().

Thus £(t) or ¢:(z) is the solution curve of (1') satisfying the initial condition
x(G) = z. There is & converse process to the sbove; given a differential equation
one has associated to it, an object that would be a dynamical system if it were
defined for all ¢. This process is the fundamental theory of differential equations
and the rest of this chapter is devoted to it.

The equation {1’} we are talking about is called an gulonomous equation. This
means that the function f does not depend on time. One can also consider & !
map f: I X W — E where I is an interval and W is an open set in the vector space.
The equation in that case is

(2) ' = f(t, z)

and is called nonautonomous. The existence and uniqueness theory for (1’) wilt
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be developed in this chapter; (2) will be treated in Chapter 15. Our emphasis in
this book is completely on the autonomous case.

§2. The Fundamental Theorem

Throughout the rest of this chapter, E will denote a vector space wit.l_x a norm;
W C E, an open set in E; and f: W — E a continuous map. By s sdufion of the

differential equation
(n ' = f(z)
we mean a differentiable funetion
uJ W
defined on some interval J C R such that forall ¢ € J
uw(t) = f(u{t}}.
Here J could be an interval of real numbers which is open, closed, or half open, half

closed. That is,

(a,d) = fteRja <t <b},
or

[arb]"' |¢6R|ﬂ£¢$bl.
or

{a,] = {tcRla <t <},
and so on. Also, a or b could be =, but intervalg like (a, = ] are not allowed.

Geometrically, u is a curve in E whose tangent vector w'(f) equals f(u({)); we

think of this vector as based at u({). The map f: W — E is a vector field on W. A
solution u may be thought of as the path of a particle that moves in E so that at
time ¢, ita tangent vector or velocity is given by the value of the vector field at the
position of the particle. Imagine & dust particle in & steady wind, for example, or
an electron moving through a constant magnetic field. See also Fig. A, where u(te) =
z, v'(ta) = f(z}.

fix)
u(t)

x = ulty)

FIG. A
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AR
e

FIG. B

An initial condition for a solution u:J — W is a condition of the form u(f) = =
where & € J, 2y € W. For simplicity, we usually take & = 0.

A differential equation might have several solutions with a given initial condition.
For example, consider the equation in R,

' = 3,

Here W =~ R = K, f: R - R is given by f(z) = 32,

The identically zero function w: R — R given by u(t) = 0 for all ¢ is evidently
a solution with initial condition »(0} = 0. But so is the function defined by z(¢) =
t*. The graphs of some solution curves are shown in Fig. B. '

Thus it is clear that to ensure unique solutions, extra conditions must be imposed
on the function f. That f be continuously differentiable, turns out to be sufficient,
a8 we shall see. Thus the phenomenon of nonuniqueness of solutions with given
initial conditions is quite exceptional and rarely arises in practice.

In addition to uniqueness of sclutions there is the question of existence. Up to
this point, we have been able to compute solutions explicitly. Often, however, this
is not possible, and in fact it is not a priori obvious that an arbitrary differential
equation has any solutions at all.

We do not give an example of a differential equation without a solution because
in fact (1} has a solution for all initial conditions provided f is continuous. We
shall not prove this; instead we give an easier proof under hypotheses that also
guarantec unigqueness.

The foliowing is the fundamental local theorem of ordinary differential equations.
It is called a “local” theorem because it deals with the nature of the vector field
f: W — E near some point z, of W.

Theorem |  Let W C E be an open subset of a normed vector space, f: W — E a ("
(continuously differentiable} map, and zo € W. Then there is some a > 0 and a unigque

§3. EXISTENCE AND UNIQUENESS 163

solution
z: (~am,a) = W
of the differential equalion
¢ = f(x)
satisfying the initial condition
I(O) = Tg.

We will prove Theorem 1 in the next section.

$3. Existence and Uniqueness

A funetion f: W — E, W an open set of the normed vector space E, is said to be
Lipachitz on W if there exists a constant K such that

[fy) —f(D]| < Kly - z|

for all z, yin W. We call K a Lipschitz censtant for f.
We have assumed a norm for E. In a different norm f will still be Lipschitz be-
cause of the equivalence of norms (Chapter 5) ; the constant K may change, however.
More generally, we call 7 locally Lipschitz if each point of W (the domain of f)
has a neighborhood W, in W such that the restriction f [ Wy is Lipachits. The Lip-
schitz constant of f| W, may vary with Wo.

Lemma Let the function f: W — E be C. Then [ is locally Lipschilz.

Before giving the proof we recall the meaning of the derivative Df(z) forz € W.
This is a linear operator on E; it assigns to a vector u € E, the vector

Df(r)u = llm (f(x +su} — f(x)), sER,

which will exist if Df(z) is deﬁned.
In coordinates (z1, ...,z on E, let fiz) = (fi(xy, ..., 7a), .. “» Jalzy, .., 2));
then Df(x) is represented by the n X n matrix of partial derivatives
(6/64:,) ( .fn(zh sy In))-

Conversely, if all the partial derivatives exist and are continuous, t.h.en fis C. For
each x € W, there is defined the operator norm || Df(z) || of the linear operator
Df(z} € L(E) (sce Chapter 5}. If u € E, then

(1) | Df(x)u| < || DACY| | ut

That f: W — E is C* implics that the map W — L{E} which sends z — Df(z} is a
continuous map (see, for example, the notes at end of this chapter).
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Proof of the lemma. Suppose that f: W — E is C' and 7, € W. Let b>0be

o small that the ball By(z,) is contained in W, where
By(z) = {z2€ W||z—m]| < b},

Denote by W, this ball By(z). Let K be an upper bound for || Df(z) || on W; this

exists because Df is continuous and W, is compact. The set W, is conver; that is, if

y.z: W, then the linc segment going from y to z is in We. (In fact, any compact

convex neighborhood of r, would work here.) Let y and zbein Woand put u = z —

Then ¥ + su &€ Wofor0 < & < 1. Let ¢(8) = f(i, ¥y + su); thus¢ [0,1]—~E

is tlu eomposition [0, 17— W, LN E where the first map sends # into y + su. By
the chain rule
(2) ¢'(s) = Df(y + sw)u.
Therefore
f{z) = f(y) = (1) — #(0)

1
= [ as
-]
aud, by (2)!
= [ Drty + swpu s
[]
Hence, by (1),

1

1@ ~ 1@ < [ Klulds=K[z—yl.
]
This proves the lemma. '

The following remark is implicit in the proof of the lemma:

If W, is convex, and if || Df{z}]| < K for all £ € Wy, then K is a Lipschitz con-
stant for f| W,

We proceed now to the proof of the existence part of Theorem 1 of Section 2,
Let o € W and W, be as in the proof of the previous lemma. Suppose J is an open
interval containing zero and z: J — W szatisfies
(3) () = f(z(t))
and x(0) = z,. Then by integration we have

) 2(0) = u+ [ flz(e)) ds
L]

Conversely, if z: J — W satisfies {4), then z(0) = 2, and z satisfies (3) aa is seen
by differentiation.

Thus {(4) is equivalent to (3) as an equation for z: J — W.

By our choice of W, we have a Lipschits constant K for f on W, Fur-
thermore, | f(z)| is bounded on W,, say, by the constant M. Let ¢ > 0 satisiy
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e < min{b/M, 1/K}, and define J = [—a, a]. Recall that b is the radius of the
ball W,. We shall define a sequence of functions u,, w4, . . . from J to W, We shall
prove they converge uniformly to a function satisfying (4), and later that there
are no other solutions of (4). The lemma that is used to obtain the eonvergence
of the u;: J — W, is the following:

Lemma from analysis Suppose wi: J = E, k=0, 1, 2, ... is a sequence of
conlinuous functions from a closed inlerval J to a normed vector space E which satisfy:
Given ¢ > 0, there 18 some N > 0 such that for every p, g > N

max | up (1) —~ u (8} <«
€

Then there i3 a confinuous funetion u: J — E such that

max | u(t) — u(®)] -0  as k- .
€

This is called uniform convergence of the functions ;. This lemma is proved in
elementary analysis books and will not be proved here.
The sequence of functions u, is defined as follows:

Let

Ut} = &
Let

() = 2o+ [ flua(s)) d.
a

Assuming that u:{f) has been defined and that

| ety — 20| < b forall t¢J,
let

e () = 2o+ [ J{ue(s)) da.
]

This makes sense since ux(s) € W, so the integrand is defined. We show that
Iu;_,..(t) - Iol < b ar u.t+1(t) € Wn for e J’

this will imply that the sequence can be continued to wa,s, tua, and 8o on.
We have

ImMQ—MSLUMMH¢

gf'Mds
[

< Ma<b
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Next, we prove that there is a constant L > ¢ auch that for all k > 0:
[ e () — m(t)] < (Kaj)*L.
Put L = max{jw{t) — w(t)|:|t| < a}. We have

) ~ (O] = f C0a06) ~ Stal)) 2
]

< [° K| w(s) — wu(s)| ds

< oKL, .
Assuming by induction that, for some k > 2, we have already proved
|us () — wea (O} < {(aK)*'L, it| <a
we have

[t~ w(@] < [ |f0(®) = flua(s)| ds

< Kfiim(a) — i (8)| ds
]
< {(aK) (aK}*"L = (aK)'L.

Therefore we see that, putting aK = a < 1, foranyr > 2> N

l8) — (0] € T [ waant) — w(®)]
N

< T oL

k=N
<€
for any prescribed ¢ > @ provided & is large encugh.

By the lemma from analysis, this shows that the sequence of functions ug, w, . ..

converges uniformly to a continuous function 2: J — E. From the identity
() = 20+ [ () o,
0
we find by taking limits of both sides that

2(t) = 2o+ lim [ f(ua(s)) ds
bew 70

~ -+ [ Qi f(n(s)]ds
9 kew
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{by uniform convergence)
= 20+ ds
To j; J(z(s))

{by continuity of f).

Therefore z: J — W, satisfies (4) and hence is a solution of (3). In particular,
2 — Wyis CL

This takes care of the existence part of Theorem 1 {of Section 1) and we now
prove the uniqueness part.

Let z, y: J — W be two solutions of (1) satisfying z{0) = y(0) = z,, where
we may suppose that J is the closed interval [—a, ¢]. We will show that z(f) =
y(t) for all ¢t € J. Let Q = max,.,[z() — y(t)|. This maximum is attained at
some point {, € J. Then

@ =|z(h) —yt))| =

[ 26—y asl

o |

< [ 15®) = Sy da
[

sfanlz(s)—y(s)lds

< aKQ.
Since aK < 1, this is impossible unless ¢ = 0. Thus

z(t) = y(D).

Another proof of uniqueness follows from the lemma of the next section.

We have proved Theorem 1 of Section 2. Note that in the course of the proof
the following was shown: Given any ball W, C W of radius b sbout z,, with
max..w, | f(x)| < M, where f on W, has Lipschitz constant K and 0 < a <
min{b/M, 1/K], then there is a unique solution z: ( —a, a} — W of (3) such that
z(0) =z,

Some remarks are in order.

Consider the situation in Theorem 1 with a ' map f: W — E, W open in E.
Two solution curves of x’ = f(z) cannot cross. This is an immediate consequence of
uniqueness but is worth emphasizing geometrically. Suppose ¢: J = W, ¢:J1 = W
are two solutions of ' = f(z) such that ¢(f)) = ¥(&). Then ¢(4) is not a crossing
because if we let ¥1(¢) = ¢(& — & + 1), then ¢, is also a solution. Since () =
v{&) = ¢(t), it follows that ¢, and , agree near { by the uniqueness statement of
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Theorem 1. Thus the situation of Fig. A 18 prevented. Similarly, a solution curve
eannot cross itself as in Fig. B.

¥ ¢

PR AN ERIErY

FIG. A FIG. B

If, in fact, a solution curve ¢: J — W of 2’ = f(z) aatisfies ¢(h) = (b + w)
for some I, and w > 0, then that solution curve must close up as in Fig. C.

pla tw)= Pl

FIG.C

Let us see how the “‘iteration scheme” used in the proof in this section applies
to a very simple differential equation. Consider W = R and f(z) = z, and search
for a solution of ' = z in R (we know salready that the solution z(t) satisfying
z{0) = 1, is given by z(t)} = xzoe').

Set

u(l) = o,

wit) = ro+f zods,  wilt) = 20+ txy,
]

W) = n+ [ (0t d,
]

‘2

U () = 20 + f ‘u»(S) ds,
[ ]
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and so

k ‘.'
unalt) = 3-'02._,-
L

As k— =, u,(f) converges to
- ti
T 2o, = net = u(l),
1!

which is, of course, the selution of our original equation.

§4. Continuity of Solutions in Initial Conditions

For Theorem 1 of Section 2 to be at all interesting in any physical sense (or even
mathematically) it needs to be complemented by the property that the solution
z{t) depends continuously on the initisl condition z(0}. The next theorem gives a
precise statement of this property.

Theorem Let W C E be open and suppose f: W — E has Lipschitz constant K.
Let y(t), z(t) be solutions to
(1) z' = f(2)
on the closed interval [ty ¢.]. Then, for all t € [, 4]:
ly(8) — 2(8)] < |y{ta) ~ 2(t)| exp(K(t — &)).

The proof depends on s useful inequality (Gronwall’s) which we prove first.
Lemma Let u: [0, a] — R be continuous and nonnegative. Suppose C > 0, K > 0
are such that

t
u(l) < C +[ Ku(s) ds
o
Jor all £ € [0, a). Then

u{f) < Cekt
Jorallt € [0, 2]
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Proof. First, suppose C > 0, let

v = C+f‘Ku(a) d > 0;
[ ]

then
u(t) < UQ).

By difierentiation of U/ we find

U'(t) = Ku(t);

hence
Ut Kul(l
F((T)) = U((t)) <K
Hence
2 log UM) < K
- <
80

log U(t) < log U{0) 4+ Kt
by integration. Since U(0) = C, we have by exponentiation

U(t) < Cexy,
and 8o
u(t) < Ce¥Xt,

If C = 0, then apply the above argument {or a sequence of positive ¢, that tend
to 0 as 1 — =, Thia proves the lemma.

We turn to the proof of the theorem.

Define
] o) = |y(0) — 2(0)].
Since
¥(0) — 20 = yit) — 2@ + [ [fy()) ~ fzie)) ]ds,
is
we have

() < vty + [lKu(s) ds.

Now apply the lemma to the function u(f) = v(f + ) to get
v(8) < v(ty) exp(K(t — &),

which is just the conclusion of the theorem.

§5. ON EXTENDING SOLUTIONB m

§5. On Extending Solutions

Lemma ZLet a C' map f: W — E be given. Suppose lwo solutions u(l), v(t) of
z' = f(z) are defined on the same open interval J containing ly and salisfy u(ly) =
v(ly). Then u(l) = o(t) forallt € J.

We know from Theorem 1 of Section 2 that u{f) = v({) in some open interval
around f. The union of all such open intervals ia the largest open interval J* in
J around & on which 4 = v. But J* must equal J. For, if not, J* has an end point
4 € J; we suppose § is the right-hand end point, the other case being similar. By
continuity, w(t,) = #(4). But, by Theorem 1 of Section 2, 4 = v in some J', an
interval around #. Then u = v in J* UJ* which is larger than J*. This contradiction
proves the lemma.

There is no guarantee that a solution z(f) to a differential equation can be de-
fined for all £. For example, the equation in R,

¥ =142,
has as solutions the functions
z = tan(¢t — ¢), ¢ = constant.

Such a function cannot be extended over an interval larger than
r T
—_ t —
[ 2 <t<e+ 2

since z(t) —» +® asl —¢ = »/2.

Now consider & general equation (1) ' = f(z) where the € function f is defined
on an open set W C E. For each x, € W there {2 a mazimum open interval (a, §)
containing O on which there 13 a solution z(t} with z(0) = z,. There is some such
interval by Theorem 1 of Section 2; let (&, 8) be the union of all open intervals
containing 0 on which there is a solution with z(0) = z. (Possibly, a = —w or
8 = 4+, or both.} By the lemma the solutions on any two intervals in the union
agree on the intersections of the two intervals. Hence there is a solution on all of
{a, ).

Next, we investigate what happens to a solution as the limits of its domain are
approached. We state the result only for the right-hand limit; the other case is
similar,

Theorem Let W C E be open, lel f: W — E be a C* map. Let y(£) be a zolution
on 6 mazimal open inlerval J = (a, 8) C R with 8 < ». Then given any compact
set K C W, there is some L € (a, 8) with y(¢) 4 K.
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Thi-s theorem says that if a solution y(£) cannot be extended to a larger interval,
then it leaves any compact set. This implies that as ¢ — 8 etther y(¢) tends io the
boundary of W or | y(t)] tends to = (or both).

Proof of thc theorem. Suppose y(f) € K forall? € (a, 8). Since f is continu-
ous, there exigtsa M > 0 such that [f(z)] < Mifz ¢ K.

let v € (&, #). Now we prove that y extends to a continucus map {v.8]—E.
By a lemma from analysis it suffices to prove y: J — E uniformly continuous. For
fo < & in J we have

y(l) = y(t)| =

[vwal

< [ 1wl ds < (6 - 1.
N
Now the extended curve y: [a, 8] — E is differentiable at 8. For

y(8) = y() +1im [ y'(s) an
[ I 4
=y +1im [ f(y(e)) ds
iy

s
=y + [ Sy as;

hence

ey = yl{v) + / Fy(2)) ds

for all ¢ betw?en v and 8. Hence y is differentiable at 8, and in fact ¢’ (8) = f(y(8)).
Therefore y ia a solution on [, 8]. Since there is a solution on an interval (8, 8),
5> B, we can extend y to the interval (a, 8). Hence (a, 8) could not, be s maximal
domain of a solution. This completes the proof of the theorem.

The following important fact follows immediately from the theorem.

Proposition Let A be a compact subset of the open set W C E and let f: W — E
be . Let yo € A and suppose it s known that every solution curve of the form

v Eor ﬂ] - W: y(o) = Vo
lies entirely tn A. T'hen there i3 a solution

vi[0, =)o W, 0=y and y()E 4
Jorallt > 0.
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Proof. Let [0, 8) be the maximal half-open interval on which there ia a solution
y as above, Then ¥([0, 8)) C A, and 80 8 cannot be finite by the theorem.

§6. Global Solutions

We give here a stronger theorem on the continuity of solutions in terms of initial

conditions.
In the theorem of Section 4 we assumed that both solutions were defined on the

same interval. In the next theorem it is not necessary to assume this. The theorem
shows that solutions starting at nearby points will be defined on the same closed
interval and remain near to each other in this interval.

Theorem Let f(z) be C. Let y(t} be a solution to ' = f(z) defined on the closed
tnterval [f, b, with y{t) = yo. There is a neighborhood U C E of y, and o consiont
K such that if z € U, then there ia a unique solution z(t) also defined on [, ] with
2{le) = 2o; and z satisfies

by — 2] € K |yo— z]|exp(K({ — &))
for allt € [fm tl]-

For the proof we will use the following lemma.

Lemama JIf f: W — E s locally Lipschitz and A C W 1is o compact (closed and
bounded) sel, then f | A s Lipschitz.

Proof. Suppose not. Then for every K > 0, no matter how large, we can find
rand ¥ in 4 with

|f(2) = f)| > Klz -yl

In particular, we can find z., ¥~ such that
(1) [flzs) —f)t 2 nlga—=ya]l for n=1,2,....

Since A is compact, we can choose convergent subsequences of the z, snd y..
Relabeling, we may assume z, — 2* and y. — ¥* with z* and y* in A. We observe
that z* = y*, since we have, for all n,

[z* = p* | =lim|za — v | S0 [f(2a) — flia)] < n12M,

Lo

where M is the maximum value of f on A. There is & neighborhood W, of z* for
which f | W has a Lipschits constant X in 2. There is an ne such that z, € W, if
n > ny. Therefore, for n > ne:

| f(za) = fy)] < Klza — a s
which contradiets (1) for n > K. This proves the iemma.
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The proof of the theorem now goes as follows,

By compactness of [t, 1], there exista ¢« > O such that z € Wif |z — y(¢)] < e
The set of all such points is a compact subset A of W. The ' map f is
locally Lipschits {Section 3). By the lemma, it follows that f| A has a Lipschits
constant k.

Let 5 > 0 be so small that 3 < ¢ and Sexp(k| & — &|) < . We assert that if
| 20 — yo| < 8, then there is a unique solution through z, defined on all of [&, 4].
First of all, z, € W since | 2 — y{&)}| < ¢, 80 there is a solution 2(¢) through 2, on
a maximal interval (&, §). We prove 8 > h. For suppose 8 < #i. Then by the ex-
ponential estimate in Section 4, for all ¢ € [4, #), we have

l2(t) — y()| < |20 — polexp(kit — &)
<sexplk|t— b
<e

Thus z(¢) lies in the compact set 4 ; by the theorem of Section 5, [, #) could not
be a mazimal solution domain. Therefore z(¢) is defined on (4, 4]. The exponential
estimate follows from Section 4, and the uniqueness from the lemma of Section 5.

We interpret the theorem in another way. Given f(z) as in the theorem and a
solution y(¢) defined on [, &1, we see that for all z sufficiently close to ys = y (&),
there is a unique sclution on &, 4] starting at z, at time zero. Let us note this
solution by { — u(l, z) ; thus u{0, ) = 2o, and u(t, yo) = y(?).

Then the theorem implies:

lim u(t: 30) = u(‘i yﬂ)r

NN

uniformly on [f, £i]. In other words, the solulion through zy depends continuously
on z.

§7. The Flow of a Differential Equation

In this section we consider an equation

(1) 7' = f(z)

defined by a C function f: W — E, W C E open.
For each y €W there is a unique solution ¢(t) with ¢(0) = y defined on a maxi-
mal open interval J{y} C R. To indicate the dependence of ¢(t) on y, we write

o) = &L, 1)
Thus {0, y) = y.
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Let 2 C R X W be the following set:
Q=1{{t,y) cRXW|te I}
The map (¢, y¥) — ¢(¢, ) is then a function

oW,
We call ¢ the flow of equation (1).
We shall often write
#(t, z) = ().

Example. Let f(z) = Az, A € L(E)}. Then ¢.(2} = e*4z.

Theorem 1 The map ¢ has the following property:

(2) Siri(x) = d(di(2))
in the sense that if one side of (2} iz defined, 8o iz the other, and they are egqual.

Proof. First, suppose 8 and ¢ are positive and ¢,(¢.(z)) is defined. This means
t€ J(z) and 8 € J(¢{2)). Suppose J(z}) = (a, 8). Then a <t < 8; we shall
show 8 > § 4 t. Define

y: (aq,s+t]—-W

by
#(r, z)
y(r) =

if e<r<i;

o(r — t, () if t<r<it+as
Then ¥ is a solution and ¥(0) = z, Hence s + ¢ € J(z). Moreover,
dure(7) = y(a+ ) = du(d:(2)).
The rest of the proof of Theorem 1 uses the same ideas and is left to the reader.

Theorem 2 {1 is an open sel in R X W and ¢: @ — W is a continuous map.

Proof. To prove 0 open, let (&, z:) € . We suppose {4 > 0, the other case
being similar, Then the solution curve { — ¢(f, z,) is defined on [0, 4}, and hence
on an interval [ —¢, & + €], ¢ > 0. By the theorem of Section 6, there is a neighbor-
hood U C W of x, such that the solution ¢ — ¢(¢, x) is defined on [—¢, & -+ €]
for all z in U. Thus {—¢, & + ¢} X U C @, which proves Q2 open.

To prove ¢: 2 — W continuous at (&, o), let I/ and ¢ be as above. We may sup-
pose that U/ has compact closure U C W. Since f is locally Lipachitz and the set
A = ¢([—¢ to + ¢] X U) is compact, there is a Lipschitz constant K for f| A.
Let M = max{|f(z) |:z € A}. Let 3 > Osatisfy § < ¢, and if | 2y — 74| < 8, then
2 € U. Suppose

|t — k| < 8, | — 2| < 8.
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Then
| ¢ty 1) — o(ta, T)] < | @(ts, 21) — dty, %) | + 1 6(h, 2o) — (b, 2a}].

The second term on the right goes to ¢ with 3 because the solution through z, is
continuous (even differentiable) in {. The first term on the right, by the estimate
in Section 6, is bounded by 5e** which also goes to 0 with é. This proves Theorem 2.

In Chapter 16 we shall show that in fact ¢ s C°.
Now suppose (I, T,) € &; then z, has a neighborhood U C W with ¢ X U C @,
since we know @ is open in R X W. The function x — ¢(z) defines a map

.7 Uv-W.

Theorem 3 The map ¢, sends U onio an open set V and ¢, 18 defined on V and
sends V onto U. The compasilion $_.¢, is the identily map of U; the composition ¢,
15 the identity map of V.

Proof. If y = ¢:(2), then ¢ € J(z). It is easy to eee that then —¢ € J(y),
for the function
8 — ¢ui(y)

is a solution on [ —¢, 0] sending O to y. Thus ¢, is defined on ¢.(U/) = V; the state-
ment about compositions is cbvious. It remains to prove V is open. Let V* D V
be the maximal subset of W on which ¢, is defined. V* is open because Q is open,
and ¢_.; V* — W is continuous because ¢ is continuous, Therefore the inverse
image of the open set U/ under ¢_, is open. But this inverse image is exactly V.

We summarize the results of this section:

Corresponding to the autonomous equation z’ = f(z), with locally Lipschitz
f: W = E, there is a map ¢: @ — W where (¢, z) € 8 if and only if there ia a solu-
tion on [0, ] (or [¢, 0] if t < 0) sending 0 to z. The set @ is open. ¢ is defined by
letting t — #.(2) = ¢(¢, z) be the maximal solution curve taking 0 to z. There
is an open set U, CC W on which the map ¢,: U, — W is defined. The maps ¢, satisfy
db(2) = dou(2) 88 in Theorem 1. Each map ¢ is & homeomorphism; that is, ¢,
18 one-to-one and has & tontinuous inverse; the inverse is ¢_..

If

f(z) = Az, A€ L(E),
then
@uz) = ethx,

In this case @ = R X E and each ¢, is defined in all of E.
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PROBLEMS

1. Write out the first few terms of the Pieard iteration scheme (Section 3) for
each of the following initial value problems. Where possible, use any method
to find explicit solutions. Discuss the domain of the solution.

(a) = =z+42;z(0) =2.
(b} = = 2 2(0) = 0.
(¢) 2 =2z(0) =1.
(d} 2’ =sinz;z(0) =0.
{e)  =1/22;z(1) =1,

2. Let A be an n X n matrix. Show that the Picard method for solving ' = Axr,
z(0) = u gives the solution e'4u.

3. Derive the Taylor series for sin ¢ by applying the Pirard method to the first
order system corresponding to the second order initial value problem

= —z; z(0) =0, £(0) = 1.

4. For each of the following functions, find a Lipschitz constant on the region
indicated, or prove there is none:
(a) f(z) =[z]|, —o <z < .
b) fz) =2, -1 << 1.
(¢) f(z2) =1/2,1 <2< =,
(d) f(zl y) = (z + 2y: _y)s (.1‘, y) € R

@ S0y =

4y <4

5. Consider the differential equation

' = 12h,

(a} There are infinitely many solutions satisfying z{0) = 0 on every in-

terval [0, 8]
{b) For what values of « are there infinitely many solutions on [0, a] satiafy-
ing z(0) = —17
6. Let f: E — E be continuous; suppose f{(z) < M. Foreachn = 1,2, ..., let

Z.: [0, 1] — E be a solution to 2’ = f(z). If z,(0) converges, show that a
subsequence of {z.]| converges uniformly to a solution. {Hint; Look up Ascoli’s
theorem in a book on analysis.)

7. Use Problem 6 to show that continuity of solutions in initial conditions follows
from uniqueness and existence of solutions.
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8. Prove the following general fact {see also Section 4) :if ¢ > Oand u,v: [0,5] -~
R are continuous and nonnegative, and

unsc+f}mugm forall £¢ [0, 8],
[]
then

w(t) < Ce?®, wn=fﬁ@¢
L]

9. Define f: R =R by
flzy =1 if z<1; flz) =2 if z>1.
There is no solution to ' = f{z) on any open interval around ¢ = 1.
10. Let g: R — R be Lipschitz and f: R — R continuous. Show that the system
z’ = g(2),
v =12,

has at most one solution on any interval, for a given initial value. (Hint: Use
Gronwall’s inequality.)

Notes

Our treatment of caleulus tends to be from the modern point, of view. The deriva-
tive is viewed ma a linear transformation.

Suppose that U7 is an open set of & vector space E and that g: I/ — F is some map,
F a second vector space. What is the derivative of g at 2, € U;? We say that this
derivative exists and is denoted by Dg(z,) € L(E, F) if

lim | g(ze + u) — g(x) — Dglzdu] _
|l ||

¥
wpl

Then, if, for each z € U, the derivative Dg{z) exists, this derivative defines a
map

.

U—-L(E,F), z -+ Dg(x).

If this map is continuous, then g is said to be C*. If this map is C? itself, then g is
said to be C.
Now suppose F, 7, H are three vector spaces and u, v are open sets of F, G, re-
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spectively. Consider C* maps f, g,
vLvLa

The chain rule of caleulus can be stated as: the derivative of the composition is the
composition of the derivatives. In other words, if £ € U, then

D(gf) (z) = Dg(f(a))-Df{(z) € L(F, H).

Consider the case where F = R and U is an interval; wniting ¢ € U, f'(§) = Df(?),
the chain rule reads
(of)'(t) = Dg(f(O)) (£ (D).

In case H also equals R, the formula becomes

{gY'(t) = (grad g( f(1)), £ (&)

For more details on this and a further development of calculus along these lines,
see 8. Lang’s Second Course in Calevius [12]. S. Lang’s Analysis I [117] alsc cavers
these questions as well as the lemma from analysis used in Section 3 and the uni-
form continuity statement used in the proof of the theorem of Section 5.



Chapter 9

Stability of Equilibria

In this chapter we introduce the important idea of stability of an equilibrium
point of a dypamical system. In later chapters other kinds of ptability will be dis-
cussed, such as stability of periodic solutions and structural stability,

An equilibrium £ is stable if all nearby solutions stay nearby. It is asymptolically
stable if all nearby solutions not only stay nearby, but also tend to £. Of course,
precise definitions are required; these are given in Section 2. In Section 1 a special
kind of asymptotically stable equilibrium is studied first: the sink. This 18 charac-
terized by exponential approach to £ of all nearby solutions. In Chapter 7 the
special case of linear sinks was considered. Sinka are useful because they can be
detceted by the eigenvalues of the linear part of the system (that is, the derivative
of the vector field at £).

In Section 3 the famous stability theorems of Liapunov are proved. This section
also contains & rather refined theorem (Theorem 2) which is not essential for the
rest of the book, except in Chapter 10.

Sections 4 and 5 treat the important special case of gradient flows. These have
special properties that make their analysis fairly simple; moreover, they are of
frequent occurrence.

§1. Nonlinear Sinks

Consider & differential equation
(1 r =fz); f:W-—-RYy W C R" open.
We suppose fis C'. A point £ € W is called an equilibrium point of (1} if f(£) = 0.

Clearly, the constant function r(f) = £ is & solution of (1). By uniqueness of
solutions, no other solution curve can pass through £. If W is the state apace of
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some physical {or biological, economic, or the like) system described by (1), then
£ 18 an “equilibrium state”: if the system is at £ it always will be (and always
was} at £,

Let ¢: 2 — W be the flow associated with (1); 2 C R X W is an open set, and
for each z € W the map t — ¢(¢, z) = ¢:(z) is the solution passing through x when
¢ = 0; it is defined for ¢ in some open interval. If £ is an equilibrium, then ¢,(£) = #
for all ¢ € R. For this reason, £ is also calied a stationary point, or fized point, of
the flow. Another name for £ is a zero or singular point of the vector ficld I

Suppose ]‘_is linear: W = R*and f(z) = Az where A is a linear operator on R»,
Then t?le origin 0 € R~ is an equilibrium of (1). In Chapter 7 we saw that when
A < 0is greater than the real parts of the eigenvalues of A, then solutions ¢,(x)
approach 0 exponentially: :

| pe(2)| < Ce
for aome C > 0.

Now suppose f is a C' vector field (not necessarily linear) with equilibrium
point 0 € R We think of the derivative Df{0) = A of f at 0 as a linear vector
field which approximates f near 0. We call it the linear part of f at 0. If all eigen-
vahfe:s of Df{0) bave negative real parts, we call 0 s sink. More generally, an
equilibrium # of (1) is a sink if all eigenvalues of Df(£} have negative real parts.

) The following theorem says that a nonlinear sink £ behaves locally like a linear
sink: nearby solutions approach £ exponentially.

Theorem Lel £ € W be a #ink of equation {1). Suppose every eigenvalue of Df(£}
has real part less than —c¢, ¢ > 0. Then there is a neighborhood U C W of # such that

(8) ¢(z) isdefined andin U forallz € U, t > 0.
(b) There is 6 Euclidean norm on R* such that
lfz) ~ 2| S ez~ 2|
Jorallz € Ut > 0.
{c) For any norm on R*, there i3 @ consiani B > 0 such that
[@e(x) — £ < Be* |z~ %]
forallz € U, t2>0.
In particular, ¢.(z) > Fast— o forallz ¢ U,

Progf. For convenience we assume £ = 0. (If not, give R* new coordinates
¥ = z — Z;in y-coordinates f has an equilibrium at 0; etc.)

Put A = Dj(0). Choose b > 0 so that the real parts of eigenvalues of A are
less than —b < —e¢. The lemma in Chapter 7, Section 1 shows that R* has a basis
® whose corresponding norm and inner product satisfy

(Az, 2} < ~b| x|
forall z € R~
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Since A = Df{0) and f{G) = 0, by the definition of derivative,

: — Az
lim | f(x) | - 0.

20 | x |
Therefore by Cauchy’s inequality,

lim Y& - 4z 2) z) = 0.
o fz |
It follows that there exists 8 > 0 so small that if | z | < 3, then z € W and
(), 2y < —c|z
Put {' = [z € Ro| |z} <68} Letz(),0 <t <t be a solution curve in U,
() # 6. Then .

d

1 7
aill =m(2,z)-
Hence, since ' = f(z):
@ 21zl —elal

This shows, first, that | 2{t) | is decreasing; hence | z(?) | € U for a.ll.t € [0, &)
Since U is compact, it follows from Section 5, Chapter 8 that the trajectory z(f)
is defined and in U for all ¢ > 0. Secondly, {2) implies that

[2() | < et | 2(0) |

for all t > 0. Thus (a) and (b) are proved and (c) follows flfom equivalence of
no’i‘nliz. phase portrait at a nonlinear sink £ looks like that of the linear‘ part of the
vector field: in a suitable norm the trajectories point inside all sufficiently small
spheres about £ (Fig. A).

FIG. A. Nonlinear sink.
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Remember that the spheres are not necessarily “round’’ spheres; they are spheres
in a special norm. In standard coordinates they may be ellipsoids.

A simple physical example of 4 nonlinear sink is given by a pendulum moving in
a vertical plane (Fig. B). We assume a constant downward gravitational force
equal to the mass m of the bob; we neglect the mass of the rod supporting the
bob. We assume there is a frictional (or viscous) force resisting the motion, pro-
portional to the speed of the bob. i

Let I be the (constant) length of the rod. The bob of the pendulum moves along
a circle of radius L. If 8(f) is the counterclockwise angle from the vertical to the
rod at time ¢, then the angular velocity of the bob is d8/dt and the velocity is
1 dg/dt. Therefore the frictional force is —kl dé/dt, k & nonnegative constant; this
force is tangent to the circle,

The downward gravitational force m has component —m gin 8(2) tangent to the
circle; this is the force on the bob that produces motion. Therefore the total force
tangent to the circle at time ¢ is

F=— (klg-{-msina).
The acceleration of the hob tangent to the circle is

i
e’

hence, from Newton's law a = F/m, we have

a =1

ki
) = —— ¢ — ging
m
or
k 1
#' = — —¢ — —sind.
m i
Introducing & new variable
w=~
1
£

N

FIG. B. Pendulum.
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(interpreted as angular velocity), we obtain the equivalent first order system
(3) ¢ = w,

|
w = ——-8nf— —w
1 m

This nonlinear, autonomous equation in R? has equilibria at the points
(8, w} = (nwx, 0); n=0 %112, ...,

‘We concentrate on the equilibrium (0, 0).
The vector field defining (3) is

(ot
f(ai“,) =@ lsm mw .
Its derivative at (8, «) is

0
Df(ﬂ, "’) = 1
]

Hence

with eigenvalues

(-7

The real part —k/2m is negative as long as the coefficient of friction & is positive
and the mass is positive. Therefore the equilibrium 8 = w = 0 is a sink. We con-
clude: for all sufficiently small initial angles and velocities, the pendulum tends
toward the equilibrium position (0, 0).

This, of eourse, is not surprising. In fact, from expetience it seems obvious that
from any initial position and velocity the pendulum will tend toward the down-
ward equilibrium state, except for a few starting states which tend toward the
vertically balanced position. To verify this physical conclusion mathematically
takes more work, however. We return to this question in Section 3.

Before leaving the pendulum we point cut & paradox: the pendulum cannol come
to rest. That is, onee it ia in motion—not in equilibrium—it cannot reach an equi-
librium state, but only approach one arbitrarily closely. This follows from unique-
ness of solutions of differential equations! Of course, one knows that pendulums
actually do come to rest. One can argue that the pendulum is not “really” at rest,
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but its motion is too small to observe, A better explanation is that the mathematical
model (3) of its motion is only an approximation to reality.

PROBLEMS

1. (a) State and prove a converse to the theorem of Section I.
{b} Define “sources’” for nonlinear vector fields and prove an interesting
theorem about them.

2. Show by example that if f iz a nonlinear C" vector field and f(0) = 0, it is
possible that lim.., z(f) = 0 for all solutions to ' = f(x), without the eigen-
values of Df(0) having negative real parts.

3. Assume f is a C" vector field on R* and f(0} = . Suppose some eigenvalue of
Df(0) has positive real part. Show that in every neighborhood of 0 there ia a
sclution z (¢} for which | z(¢) | is increasing on some interval [0, 47, & > 0.

4. If # is a sink of a dynamical system, it has a neighborhood containing no other
equilibrium.

§2. Stability

The study of equilibria plays a central role in ordinary differential equations

and their applications. An equilibrium point, however, must satisfy a certain

stability eriterion in order to be very significant physically. (Here, as in several
other places in this book, we use the word pkysical in & broad sense; thus, in some
contexts, physical could be replaced by biological, chemical, or even ecological.}

The notion of stability most often considered is that usually attributed to
Liapunov. An equilibrium is atable if nearby solutions stay nearby for all future
time. Since in applications of dynamical systems one cannot pinpoint a state
exactly, but only approximately, an equilibrium must be stable to be physically
mesaningful.

The mathematical definition is:

Definition 1 Suppose £ € W is an equilibrium of the differential equation

(1) = I(x),

where f: W — E is a C' map from an open set W of the vector space E into E.
Then £ is a stable equilibrium if for every neighborhood U of £ in W there is a
neighborhood U, of £ in U such that every solutior z({) with z(0) in U/ is defined
and in U for all t > 0. (See Fig. A))
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al e s )

FIG. A. Stability.

Definition 2 If U; can be chosen so that in addition to the propertiefx deseribed
in Definition 1, lim,.., z{t) = Z, then 2 is asymptlotically atablfz. (See Fig. B.)

-

)

(g \_l

A U,

FIG. B. Asymptotic atability.

Definition 3 An equilibrium Z that is not stable is called unstable. This means
there is a neighborhood U of £ such that for every neighborhood U/, of £in U, f,here
is at least one solution z() starting at z{0) € U, which does not lie entirely in U,

(See Fig. C.)
/

r
_______.T /fl

FIG. C. Instability.

A sink is asymptotically stable and therefore stable. An example of an equi-
brium that is stable but not asymptotically stable is the origin in R? for a linear
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equation
(2) = Az,
where A has pure imaginary eigenvalues. The orbits are all ellipses (Fig. I}).

FIG. D. Stable, but not asymptotically stable.

The importance of this example in application is limited (despite the famed
harmonic oscillator) because the slightest nonlinear perturbation will destroy its
character. Even a smsll linear perturbation can make it into a sink or a source
since “hyperbolicity” is a generic property for linear flows (see Chapter 7).

A source is an example of an unstable equilibrium.

To complement, the main theorem of Section 2 we have the Iollowing instability
theorem. The proof is not essential to the rest of the book.

Theorem Let W C E be open and f: W — E continuously differeniiable. Suppose
J(£) = 0 and £ 18 o stable equilibrium point of the equation

r = f(z).
Then no eigenvalue of Df(£) has posilive real part.

We say that an equilibrium £ is hyperbolic if the derivative Df(Z) has no eigen-
value with real part zero.

Corollary A hyperbolic equilibrium point 18 either unasiable or asymplotically dable.

Proaf of the theorem. Suppose some eigenvalue has positive real part; we
shall prove £ is not stable. We may assume £ = 0, replacing f{(z) by f(z — £}
otherwize. By the canonical form theorem (Chapter 2), E has a splitting E, ¢ B,
invariant under Df(0), such that eigenvalues of A = Df(0) | E, all have positive
real part, while those of B = Df(0) | E: all bave negative or 0 real part.

Let @ > 0 be such that every eigenvalue of A has real part >a. Then there is
& Euclidean norm on E, such that

(3) {Az,z) 2 alz |} all z¢ E,.
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Similarly, for any b > 0 there exists a Euclidean norm on E; such that

(4) By, y) <bjyl all ye€ B

We choose b so that -
0<b<a

We take the inner product on E = E; o E; to be the direct sum of these inner
products on E, and Ej; we also use the norms associated to these inner products
omEL,EyElfz=(z,y) € ExeEy,thenjz| = (|2 + |y

We shall use the Taylor expansion of f around @:

Jlz,y) = (Az + R(2,9), By + S(z,9)) = (hlz, ), filz, 4})
with
() =z {(R(z,y), 8{z, 1)) = Q2.

Thus, given any e > 0, there exists § > 0 such that if U = B,(0) (the ball of
radius & about ),

(5) [Qz} ] € ez for £¢ U.
We define the cone € = {(z, %) € Byeo Ea||z| 2 | ¥ |}

FIG. E. The cone C is ghaded.

Lemma There exisis § > 0 such that if U is the closed ball Bi{0) C W, then for
allz = (r,y) e Cn U,

(8) (z file, )y — W h(x, 4) > 0ifz # 0, and
(b)Y there erists a > Qwith {f(2),z}) > a2 |’.‘

This lemma yields our instability theorem s follows. We interpret first condi-
tion {a). Let g1 By X E; — R be defined by g(z, ) = ¥{| 2z ~ ] ¥ ». Then
gis ', ¢*{0, ») = C, and g—'(0) is the boundary of C.
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Furthermore, if (z,y) = 2z € U, then Dg(z} (f(z}} = Dg(z, v} (hiz, ¥), falz, ¥} ) =
& iz, ¥) ) — (o, S, ) ) which will be positive if z € ¢(0) by (a). This implies
that on a solution z(¢) in U/ passing through the boundary of C, g is increasing
since by the chain rule, {d/dt) (g(2(t)) = Dg(z(t))f(z(1)). Therefore no solution
which slarts in C can leave C before 1l leaves U. Figure E gives the idea.

Geometrically (b) implies that each vector f(z) at z € C pointa outward from
the sphere about 0 passing through z. S8ee Fig. F.

FIG. F

Condition (b) has the following quantitative implication. If z = z(#) is a solution
curve in C N U, then

fz), 2y = 2) =

so {b) implies

2o lekzalep
or
d/dt|z |t
>
[ep 2
tditloghl’ 2 2a,
log | 2(8) |* > 2at + log | 2(0) |8,
Fz(®) ' 2 e | 2(0) |%;
thus

| z(t) | 2 e | 2(0) |.
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Thus each nontrivial solution z({{) starting in C 1 U moves away from 0 at an
exponential rate as long as it is defined and in C 0 U.

If y() is not defined for ali ¢ > 0, then, by Chapter 8, Section 5, it must leave
the compact set C N U; a8 we have seen above, it must therefore leave U. On the
other hand, if (1) iz defined for all {, it must also leave U since U is the ball of
radius 5 and e=* | 2(0) | > & for large t. Therefore there are solutions starting arbi-
trarily close to @ and leaving U. Thus (assuming the truth of the lemma}, the
vector field f does not have O as a point of stable equilibrium.

We now give the proof of the lemma. First, part (b):if (2, y) =2€ Cn U,

{f(2), 2} = {Az, z) + By, y) + Q(2), 2),
so, by (3), (4), (5):
Y@, )zalzt —blylt—elz
InC,|z|>|y|and|zF>4(|zP+ |y = }| 2% Thus (J(2), 2) 2 (a/2 —
b/2 — ¢} | 2. We choose ¢ > 0 and then 5 > 0 so that a = a/2 — b/2 — ¢ > 0.

This proves (b).
To check (a), note that the left-hand side of (a) is

{Az, ) — (By, y) + {z, R(z, ) — (v, S(zx, 1),
but
| {z, R{z, y)) — , S(x, )| £ 2) (& Q(a)) |

We may proceed just as in the previous part; finally, 3 > 0is chosenso thats/2 —
b/2 — 2e¢ > 0. This yields the proposition.

In Chapter 7 we introduced hyperbolic linear fiows. The nonlinear anslogue is
a hyperbolic equilibrium point £ of a dynamical system z' = f(z); and to repeat,
this means that the eigenvalues of Df{#) have nongero real parts. 1f these real parts
are all negative, £ is, of course, a sink; if they are all positive, # is called a source. If
both signs occur, £ is a saddfe point. From the preceding theorem we see that a
saddle point s unsiable.

If £ is an asynptotic equilibrium of & dynamieal system, by definition there is
a neighborhood N of Z such that any solution curve starting in N tends toward Z.
The union of all solution curves that tend toward z {as ! — =) is called the basin
of Z, denoted by B(Z).

It is clear that any solution curve which meets N is in B(£); and, conversely,
any solution cutrve in B(£) inust meet N. It follows that B(2) iz an open set; for,
by continuity of the Row, if the trajectory of z meets N, the trajectory of any
nearby point also meeta N.

Notice that B(£) and B(g) are disjoint if # and 7 are different asymptotically
stable equilibria. For if a trajectory tends toward Z, it cannot also tend toward 4.

1f a dynamical system represents a physical system, one can practically identify
the states in B(Z) with 2. For every state in B(£) will, after a period of transition,
stay so close to £ as to be indistinguishable from it. For some frequently occurring
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types of dynamical systems {the gradient systems of Section 4), almost every
state is in the basin of some sink; other states are “improbable™ (they constitute
a set of measure 0). For such a system, the sinks represent the different types of
long term behavior.

It is often a matter of practical importance to determine the basin of a sink Z.
For cxample, suppose £ represents some desired equilibrium state of a physical
system. The extent of the basin tells us how large a perturbation from equilibrigm
we can allow and still be sure that the system will return to equilibrium.

We conclude this section by remarking that James Clerk Maxwell applied
stability theory to the study of the rings of the planet Saturn. He decided that
they must be composed of many small separate bodies, rather than being solid or
fluid, for only in the former case are there stable solutions of the equations of mo-
tion. He discovered that while solid or fluid rings were mathematically possible,
the slightest perturbation would destroy their configuration.

PROBLEMS

1. {a) Let 7 be a stable equilibrium of a dynamieal system corresponding to a

¢! vector field on an open set W C E. Show that for every neighborhood
U of £ in W, there is a neighborhood [/’ of £ in {7 such that every solution
curve x{!) with z(0) € {/' is defined and in U’ forall £ > Q.

(b) 1If £ is asymptotically stable, the neighborhood {7 in (a) can be chosen
to have the additional property that lim,.. r(8) = £if 2(Q) € ¢/

(Hint: Consider the set of all points of I/ whose trajectories for ¢ > 0 enter

the set U/; in Definition 1 or 2.)

2. For which of the following linear operators 4 on R~ is 0 € R= a stable equi-

librium of &’ = Az?

(a) 4=0 (b) "0 -1 {c) O -1 00
1 1] 1 ¢ 00
01 1 0 01
B -1 0 0 0 ~-10
(d) I:O l] ey 1 2:[
o 0 L2 -2

3. Let A be a linear operator on R~ all of whose eigenvalues have real part 0.

Then 0 € R" is a stable equilibrium of »* = Az if and only if A is semisimple;
and 0 is never asymptotically stable.
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4. Show that the dynamical system in R?, where equations in polar coordinates
are
rgn (1/7), r>0,

0. r=0,

has a stable equilibrium at the origin. {Hint: Every neighborhood of the
origin contains a solution curve encircling the origin.)

5. Let f: R* — R* be 7 and suppose f(0) = 0. If some eigenvalue of Df{0} has
positive resl part, there is a nonzero solution z(f}, — = <t <0,tez’ = f(x),
such that im, . z(t) = 0. (Hint: Use the instability theorem of Section 3 to
find a sequence of solutions z.(?), t» < ¢ < 0, in B{0) with | 2,(0) | = é and
lim,. o Ia(ta) = 0.}

6. Let g: R*~ — R* be ' and suppose f(0) = 0. If some eigenvalue of Dg(0) has
negative real part, there is a solution g{1), 0 < t- < ®, to ¥’ = g{z), such that
lim,., g(t) = 0. (Hint: Compare previous problem.)

§3. Liapunov Functions

In Section 2 we defined stability and asymptotic stability of an equilibrium £
of a dynamical system

(1) ¥ = f(x),

where f: W — R~ is a C! map on an open set W C R». If £ is a sink, stability can
be detected by examining the eigenvalues of the linear part Df(#). Other than that,
however, as yet we have no way of determining stability except by actually finding
all solutions to (1), which may be difficult if not impossible. '

The Russian mathematician and engineer A. M. Liapunov, in his 1892 doctoral
thesis, found & very useful criterion for stability. It is a generalization of the idea
that for a sink there is & norm on R* such that | z(t) — 2 | decreases for solutions
r(f) near 2. Liapuncv showed that certain other functions could be used instead
of the norm to guarantee stability.

Lot Vo I — R be a differentiable function defined in a neighborhood I/ C W
of F. We denote by V: U — R the function defined by

V(z) = DV(z) (f(z)).
Here the right-hand side is simply the operator DV (z) applied to the vector
J(7). Then if ¢.(z) is the solution to (1) passing through z when ¢ = 0,

V(@) = Viea)

)
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by the chain rule. Consequently, if V(z) is negative, then V decreases along the
solution of (1) through z.
We can now state Liapunov’s stability theorem:

Theorem 1 Let £ ¢ W be an equilibrium for (1), Let V: U —+ R be a confinuous
Sfunction defined on a neighborhood U C W of x, differentiable on U/ — £, such that

(8) V(2) =0and V(z) > 0if £ # %;
(b) V<0inlU — £

Then 2 ¢a stable. Furthermore, if also
(¢) V<oinl — 2,
then £ ia asymplotically stable.

A function V satisfying (a) and (b) is called a Liapunov f@ction for 2. If (e)
also holds. we call V « strict Liapunov function. The only equilibrium is the origin
&=y =0

We emphasize that Liapunov’s theorem can be applied without solving the
differential eqguation. On the other hand, there is no eut-and-dried method of
finding Liapunov functions; it is a matter of ingenuity and trial and error in each
cade. Sometimes there are natural functions to try. In the case of mechanical or
electrical systems, energy is often a Liapunov function.

Example I Consider the dynamical system on R? described by the system of
differential equations

¥ o=2y(z — 1),
y’ = -J:(z - l)r
= -2

The z-axis (= {(z,y, z) [ z = y = 0}} consists entirely of equilibrium pointa.
Let us investigate the origin for stability.
The linear part of the system at (0, 0, 0} is the matrix

0 -2 ¢
1 00
0 00

There are two imaginary eigenvalues and one zero eigenvalue. All we can conclude
from this is that-the origin is not a sink.

Let us look for a Liapunov funetion for (0, 0, 0} of the form V(x, y,2) = az* +
2 + cet, witha, b,¢ > 0. Forsucha V,

V = 2(axz’ + byy’ + cz2');

AV = 2azy(z — 1) — bzy(z — 1) — czt.
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We want V = 0; thiscan be accomplished by setting¢ = 1and 2a = b.We conclude
that #* + 2y* + z* is a Liapunov function; therefore the origin is a stable equi-
librium. Moreover, the origin is asymptotically stable, since our Liapunov function
V is clearly strict, that is, it satisfies (¢) of p. 193.

Example 2 Consider a (constant) mass m moving under the influence of a
conservative force field —grad ®{z) defined by a potential function &; W, -+ R
on an open set Wy C R (8ee Chapter 2.) The corresponding dynamical system
on the state space W = Wy X R* C R* X Rlig, for (x,v) € W, X R:

dx
di

=u,

dv
dt

—grad ©{z).

Let (£, ) € Ws X R? be an equilibrium point. Then § = 0 and grad (£} = 0.
To investigate stability at (£, 0}, we try to use the total energy

E(x, vy = bm v + m®x)

to construct a Liapunov function. Since a Liapunov function must vanish at
(£, 0), we subtract from F{z, v} the energy of ihe state (£, 0), which is (£}, and
define V: W, X R* = R by

Vir,v) = E(x,v) — E(z,0)
=km|v]* + mdir) — mdii).

By conservation of energy, ¥V = 0. Since }mi* > 0, we assume #{z) > &(£) for
rnear F, r # I, in order to make V" & Liapunov function. Therefore we have proved
the will-known theorem of Lagrange: an equilibrium (&, 0) of & conservalive force
Jicld is stable if the poleniial energy has a local ebsolule minimum at £.

Proof of Liapunov’s theorem. let & > 0 be so small that the closed bail
By(2) around £ of radius § lies entirely in I/, Let a be the minimum value of V
on the boundary of By(£), that is, on the sphere S;(£) of radius & and center £.
Then a > 0 by (a). Let Uy = |z € Bi(£) [ V() < a}. Then no solution starting
in U/, can meet S,{#) since V is nonincreasing on solution curves. Hence every
solution starting in {7, never leaves B;(#). This proves £ is stable, Now assume
{¢} holds as well, so that V is strictly decreasing on orbits in I/ — £. Let z(¢) be a
solution starting in {'y —~ £ and suppose r{i,) — 2o € B,(%) for some sequence
t, — <« ; such a sequence exists by compactness of B;(2). We assert z, = 2. To see
this, vheerve that Vir(f)} > V(z) for all ¢ > 0 since V{r(¢)) decreases and
Virtta)) — ¥z} by continuity of V. If z; # £, let z(t) be the solution starting
8tz Forany s > 0, we have V(z(s)) < V(2,). Hence for any solution y(s) starting
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sufficiently near 2z, we have
Vi(n) < Viz;

putting y(0) = z(t.) for sufficiently large n yields the contradiction
Viz(ta + 8)) < V(a).

Therefore 2y = £ This proves that # is the only possible limit point of the set
fz(t) | ¢ > 0}. This completes the proof of Liapunov's theorem.

FIG. A. Level surfaces of a Liapunov function.

Figure A makes the theorem intuitively obvious. The condition V < 0 means
that when a trajectory crosses a “level surface"” V-'(¢), it moves inside the set
where V < ¢ and can never come out again. Unfortunately, it is difficult to justify
the diagram; why should the sets V—'{c) shrink down to £? Of course, in many
cases, Fig. A is indeed correct; for example, if V is a positive definite quadratic
form, such as z? + 232 But what if the level surfaces look like Fig. B? It is hard
to imagine such a V that fulfills all the requirements of a Liapunov function; but
rather than trying te rule out that possibility, it is simpler to give the analytic
proof as above.

Liapunov functions not only detect stable equilibria; they can be used to esti-
mate the extent of the basin of an asymptotically stable equilibrium, as the follow-
ing theorem shows. In order to state it, we make two definitions. A set P is positively
tnvariant for a dynamical aystem if for each zin P, ¢.(z) is defined and in P for all
t 2> 0 (where ¢ denotes the flow of the system). An entire orbit of the system is a

FIG. B Level sarfaces of i Lagnmoy fanction?
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set, of the form
{#(z) [t € R},
where ¢,(r) is defined for all ¢ ¢ R.

Theorem 2 Let £ € W be an equilibrium of the dynamical system (1) and let V:
U7 — R be a Liapunov function for £, U a neighborhood of £. Let P C U be a neighbor-
hood of & which i3 closed in W. Suppose that P is posilively invariant, and that there
is no entire orbit in P — & on which V s constant. Then £ i& asymptolically atable,
and P C B(%).

Before proving Theorem 2 we apply it to the equilibrium # = (0, 0) of the
pendulum discussed in Section 1. For a Liapunov function we try the total energy
E, which we expect to decrease along trajectories because of friction. Now

E = kinetic energy -+ potential energy;
kinetic energy = dms?
= dm(if)*
= {miut.
For potential energy we take mass times height above the loweat point of the circle:

potential energy = m(l — I cos 8).
Thus
E = mPo* + ml(1 ~ cos §)

= mi(}l® + 1 — cos ).
Then
E = mli(l’ + ¢ sin 6);

using (3) of Section 1 this simplifies to
E = —kBo.

Thus E < 0 and E(0, 0) = 0, so that E is indeed a Liapunov function.
To estimate the bagin of (0, 0), fix a number ¢, 0 < ¢ < Zmi, and define

P.=[(6w | E(Bw) €£c¢ and [o] < ).

Clearly, (0, 0) € P.. We shall prove P. C B(0, 0).
P is pusitively invariant. For suppose

#0,w}), 0<t<a a>0

is a trajectory with (8(0), w(0)) € P.. To see that (#(a)}, w(a)) € P., observe
that E(f(a), w{a)) < csince E < 0.1f | #(a) | 2> r, there must exist a smallest
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t € [0, a] such that 8(&) = =x. Then
E(6(t), w(k))

E(:!:I‘, W(to))
mif (k) + 2]
> 2mil.

But
E@{L)), wlla)) € ¢ < 2ml

This contradiction shows that 8(a) < r, and 50 P. is positively invariant.

Woe assert that P. fulfills the second condition of Theorem 2. For suppose & is
constant on a trajectory. Then, along that trajectory, £ = 0 and so w = 0. Hence,
from (3) of Section 1, = 0 so #is constant on the orbit and also sin § = Q. Since
| 8] < =, it follows that 8 = 0. Thus the only entire orbit in P, on which E is con-
stant is the equilibrium orbit (0, 0).

Finally, P, is a closed set. For if {8, wo) is & limit point of P, then | 6| < =,
and E (8, ws) < ¢ by continuity of E. But | 6, | = x implies E (8, wy) > ¢. Hence
16, | < »and 8o (%, wo) € P..

From Theorem 2 we conclude that each P. C B(0, 0); hence the set

P=UJIP. |0 < ¢ < 2mi}
is contained in B(0, 0). Note that
P=1{6w|E@0w <2ml and 0] <=}

This result is quite natural on physical grounds. For 2ml is the total energy of
the state (x, 0) where the bob of the pendulum is halanced above the pivot. Thus
if the pendulum is not pointing straight up, end the total energy is less than the
total energy of the balanced upward state, then the pendulum will gradually
approach the state (0, 0).

There will be other states in the basin of (0, 0) that are not in the set P. Con-
gider a state (x, u), where u is very small but not zero. Then (x, u) 4 P, but the
pendulum moves immediately into a state in P, and therefore approaches (0, ).
Hence (x, u) € B(0,0). See Exercises 5 and 6 for other examples.

Proof of Theorem 2. Tmagine a trajectory z(f), 0 < ¢ < «, in the positively
invariant set P. Suppose z(t) does not tend to £ as { — oo. Then there must be &
point a # £ in P and a sequence &, — » such that

Iim z(t.) = a.
If « = V(a), then a is the greatest lower bound of {V(z(t)) | ¢ > 0}; this follows
from continuity of V and the fact that V decreases along trajectories.

Let L be the set of all such points a in W:

L = {a € W | there exist t, — = with z(&) — a},
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where r{f) is the trajectory postulated above. Since every point of L is a limit
of points in P, and P is closed in W, it follows that L C P. Moreover, ifac L,
then the entire orbit of a is in L; that is, ¢.(a) is defined and in L for all ¢ € R.
For ,(a) is defined for all { > 0 since P is positively invariant. On the other hand,
ench point ¢{z(L)) is defined for all ¢ in the interval [—£., 0]; since z(L.) —+ o
and we may assume 4 < & < - --, it follows from Chapter 8 that ¢,{a) is defined
forallt € [—£,,0),n =1,2,....8ince —t. = — =, ¢.{a) is defined for all ¢ < O.
To see that ¢.(a) € L, for any particular s € R, note that if z(t) — &, then
z(t + 5) — ¢ (a).

We reach a contradiction, for ¥(a) = a for all a € L; hence V is constant on
an entire orbit in P. This is impossible; hence lim ... z(t) = £ for all trajectories
in P. This proves that # is asymptotically stable, and also that P C B(#). This
completes the proof of Theorem 2.

The set L defined above is called the set of w-limif points, or the w-limil sel, of
the trajectory z(f) (or of any point on the trajectory). Similarly, we define the
set of a-limit points, or the a-limit sef, of a trajectory y(f) to be the set of all points
b such that Yim... y(f&) = b for some sequence & — — . (The reason, such as
it is, for this terminology is that « is the first letter and « the last letter of the
Greek alphabet.) We will make extensive use of .these concepts in Chapter 11.

A set A in the domain W of a dynamical system is invarignt if for every z € 4,
&t 5) is defined and in A for all £ € R. The following facts, essentially proved in
the proof of Theorem 2, will be used in Chapter 11.

Proposition  The a-limit set and the w-limit set of a trajectory which i3 defined for all
t € R are closed invariant sets.

PROBLEMS

1. Find a strict Liapunov function for the equilibrium (0, 0) of
= -2z —
y o= —y—
Find & > O as large as you can such that the open disk of radius & and center
(0, 0) is contained in the basin of (0, 0).
9. Discuss the stability and basins of the equilibria of Example 1 in the text.

3. A particle moves on the straight line R under the influence of a Newtonian
force depending only upon the position of the particle. If the force is always
directed toward 0 € R, and vanishes at 0, then 0 is a stable equilibrium. (Hént:
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The total energy E is a Liapunov function for the corresponding first order
system

2 =y,

’

¥y = —glz);

.E is kinetic energy plus potential energy, and the potential energy at z ¢ R
is the work required to move the mass from 0 to z.)

4. In Problem 3 suppose also that there is a frictional force opposing the motion
of the form —f(z}v, f{z) = 0, where v is the velocity, and x the position of th!;
par_tic]e. If f-*(0) = 0, then (0, 0) is asymptaotically stable, and in fact every
trajectory tends toward (0, 0).

5. Sketch the phase portraits of
(a) the pendulum with friction (see also Problem 6);

(b) the pendulum without friction.

6. (a) For the frictional pendulum, show that for every integer n and every
angle & there is an initial state (%, ws) whose trajectory tends toward
(0, 0), and which travels n times, but not n + 1 times, around the circle,

(b) Discuss the set of trajectories tending toward the equilibtium (=, 0).

7. Prove the following instability theorem: Let V be a ' real-valued function
defined on a neighborhood U of an equilibrium £ of a dynamical system,
Suppose V() = 0and V > 0in U/ — £ If V(z,) > 0 for some sequence
x4 -3 £, then £ is unstable.

8. Let V be a strict Liapunov function for an equilibrium & of a dynamical system.

Let ¢ > 0 be such that V-[0, ¢] is compact and contains no other equilibrium.
Then V[0, c] C B(%).

§4. Gradient Systems

A gradient system on an open set W C R~ is a dynamical system of the form
(1) = —grad V(z),
where
V:U—>R

av 3
v ()
gr dxy ar,

grad V: U/ = R~

ia a C? function, and

is the gradient vector field




200 9. BTABILITY OF EQUILIBRIA

of V. (The negative aign in (1) is traditional. Note that —gradV(z} =
grad (— V(z)).)

Gradient systems have special properties that make their flows rather simple.
The following equality is fundamental:

(2) DV(z)y = (grad V(2), ¥).

This says that the derivative of V. at z (which is & linear map R* — R}, evaluated
ony € R», gives the inner product of the vectors grad V(z) and y. To prove (2),
we observe that

E)4 ’
DV(z)y = T o= (D)
=1 04
which is exactly the inner product of grad V{(z) and y = (1, ..., ¥s).
Let V: [/ — R» be the derivative of ¥ along trajectories of (1); that is,

V) = 5 Vo)

=l

Theorem ¥ V(z) < 0forallz € U;and V{z} = 0 f and only if = is an equi-
librium of (1).

Proof. By the chain rule
V(z) = DV{z)z'

= {(grad V(z), —grad V(2))
by (2); hence
Vi(z) = — | grad V(2) |*.
This proves the theorem.

Corollary Let & be an isolated minimum of V. Then 2 is an asymplotically stable
cquilibrium of the gradient system ¥’ = —grad V(z}).

Proof. It is easy to verify that the function x — V(z) — V(£) is a strict
Liapunov funetion for £, in some neighborhood of 2.

To understand a gradient flow geometrically one looks at the level surfaces of
the function V: U — R. These are the subsets V-'(¢}, ¢ € R. Ifu € V'(c) is a
regular point, that is, grad V{z) # 0, then V=(c) looks like a “surface’’ of dimen-
sion n — 1 near z. To see this, assume (by renumbering the coordinates) that
aV/ar,(u) # 0. Using the implicit function theorem, we find a function g:
R~ - R such that for r near u we have identically

V(tl, vy Taaty 9(3‘!: ey zn-l)) = C,

hence near u, V-1(c) looks like the graph of the function g.
The tangent plane to this graph is exactly the kernel of DV (u). But, by (2),
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this kernel is the (n — 1)-dimensional subspace of vectors perpendicular to grad
V{u) (translated parallelly to u). Therefore we have shown:

Theorem 2 Al regular poinis, the veclor field —grad V(z) is perpendicular to the
level surfaces of V.

) Note by (2) that the nonregular or critical points of V are precisely the equi-
librium points of the system (1).

Since the trajectories of the gradient system (1) are tangent to —grad V{z),
we have the following geometric description of the flow of a gradient system:

Theorem 3 Let
2 = —grad V(x)
be a gradient system. Al reqular potnis the lrajectories crosa level surfaces orthogonally.

Nonregular points are equilibria of the system. Isolaled minima are asympiotically
stable.

Example. Let V:R* — R be the function V(z, y) = 72(z — 1)* + }* Then we
have, putting z = (z, y):

-8V -3
f(2) = —grad V(g) = (—a;" , a_yv) ={(-2z(z -~ 1)(2z — 1), —2)
or
“_ g
- r{r — 1) (2x — 1),
dy _
EE‘ = —2y.

The study of this differential equation starts with the equilibria. These are
found by setting the right-hand sides equal to 0, or —2z(z — 1)(2z — 1) = 0,
=2y =0.

We obtz.;in prec‘:i‘sely three equilibria: 21 = (0, 0),2n = (4, 0), 2iIn = (1,0). To
check their stability properties, we compute the derivative Df(z) which in co-

. ordinates is

d 2
= (=22 — 1) (22 — 1)) 0

d
0 L
dy( 2y)
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)
FIG. A. Graphof V = 23z — 1) 4 ¢

or

5 —2(622 — 6z + 1) 0}
Df(s) = [0 o)

Fvaluating this at the three equilibria gives:
] —2 0] D [1 0] Df(eur) = [-—-2 0]
Dfiz = I: o —2)’ f(2n) = o —2]". ) = 0 —2l°

We conclude from the main result on nonlinear sinks that z;, 2y are sinks while zir
is a saddle. By the theorem of Section 2, z1 is not a stable equilibrium.

The graph of V looks like that in Fig. A. The curves on the graph represent
intersections with horizontal planes. The level “surfaces’” (curves, in this case)
look like those in Fig. B. Level curves of V(z, y) = #*(x — 1)* 4 3 and the phase

(2,0

FIG. B. Level curves of V(zx, y).
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\ -

FIG. C. Level curves of V(x, y) and gradient lines of (', ') = —grad V(z, y).

portrait of (2, ') = —grad V(z, ), superimposed on Fig. B, look like Fig. C.
The level curve shaped like a reclining figure eight is V-1().
More information about a gradient flow is given by:

Theorem 4 Let z be an a-limit point or an w-limit point (Section 3) of a trajectory
of a gradient flow. Then 2 12 an equilibrium.

Proof. Suppose z is an w-limit point. As in the proof of Theorem 2, Section 3,
one shows that V is constant along the trajectory of z. Thus V(z2) = 0; by Theorem
1, 2 is an equilibrium. The case of a-limit points is similar. In fact, an a-limit point
zof ' = —grad V (x) is an wlimit point of 2 = grad V(z), whence grad V (z) = 0.

In the case of isolated equilibria this result implies that an orbit must either run
off to infinity or else tend to an equilibrium. In the example above we see that
the sets

VH[—ec,c]), c€R,

are compact and positively invariant under the gradient flow. Therefore each
trajectory entering such a set is defined for all ¢ > 0, and tends to one of the three
equilibria (0, 0), (1, 0), or (}, 0). And the trajectory of every point does enter
such a set, since the trajectory through (z, ) enters the set

Vi [—e el o=V

The geometrical analysis of this flow is completed by observing that the line
z = } is made up of the equilibrium (4, 0) and two trajectories which approach
it, while no other trajectory tends to (3, 0). This is because the derivative with
respect to £ of [z — 4| is positive if 0 < x < § or § < r < 1, 28 a computation
shows,

We have shown: trajectories to the left of the line = } tend toward (0, 0)
{as t — + ) ; and trajectories to the right tend toward (1, 0). Trajectories on
the line z = } tend toward (4, 0). This gives a description of the basins of the
equilibria (1}, 0) and (1, 0). They are the two half planes

B(0,0) = {(z,y) € R*|z < 4},
B(1,0) = {(z,¥) € R*| z > }}.
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PROBLEMS

1. For each of the following functions ¥ (u), sketch the phase portrait of the gradi-
ent flow w' = —grad V(u). Identify the equilibria and classify them as to
stability or instability. Sketch the level surfaces of V on the same diagram.
(a) 2+ 298 b)) #2—y—-2x+4y+5
(¢} ysingz (d) 22 —2Zzy + 507 + 4z + 4y +4
() P41y —2 N 2z—-V+py—2)+2

2. Suppose a dynamical system is given. A trajectory z(), 0 < ¢t < =, is called
recurrent if z(ta) — z(0) for some sequence {, — . Prove that a gradient
dynamical gystem has no nonconstant recurrent trajectories,

3. Let V: E ~» R be C* and suppose V—1(—®, c] is compact for every ¢ € R,
Suppose also DV (z) » 0 except for a finite number of points py, . . ., p.. Prove:
(a) Every solution z(t) of 2’ = —grad V{z) is defined for ali ¢ = 0;
(b} lim... 2(f) exists and equals one of the equilibrium points py, . . ., Pr
for every solution z(1).

§5. Gradients and Inner Products

Here we treat the gradient of a real-valued function V-on s vector space E
equipped with an inner product {, ). Even if E is R", the inner product might
not be the standard one. Even if it is, the new definition, while equivalent to the
old, has the advantage of being coordinate free. As an application we study further
the equilibria of a gradient fow.

We define the dual of a (real) vector space E to be the vector apace

E* = L(E, R}
of all linear maps E — R.

Theorem 1 E* is isomorphic lo E and thus has the same dimension.

Proof. Let {e;, ..., éx} be a basia for E and {, ) the induced inner product.
Then define u: £ — E* by z — u, where u,(y) = {z, y). Clearly, u is a linear map.
Also, u, # 0if z # 0 since u,(z) = (z, z) #¢ 0. It remains to show that u is sur-
jective. Let v ¢ E*and v(e;) = L. Definez = T Le;, 80 ualen) = (o, L liei) = b
and u, = v This proves the theorem.

Since E and E* have the same dimension, say n, £* has a basis of n elements.
If {e, ..., e = G is a basis for E, they determine a basis {e, ..., ea} = &
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for E* by defining
el E R,
el (T le) = L
i

fori,j = 1,...,n Thus ¢} is characterized by
ef (&) = 8.
®"* is called the basis dudl to .

Now suppose E is gi_ven an arbitrary inner product (, ). We define an associated
map 4' E — E* (a3 in Theorem 1) by ®(x)(y) = (z, y). Clearly, ® is an iso-
morphism by Theorem 1, since ite kernel is 0.

Next, let V: W — R be a continuously di i
s y differentiable map defined
set W C E. The derivative of V is a continuous map P o oben

DV:W — L(E,R) = E*.

A map W — E* is called & 1-form on W. An ordin i i ion i

. ary differential equation is th
same a8 & vector field on W, that is, s map W — E. Weused’“‘:E"a’q—uE‘tocont-e
vert the 1-form DV: W — E* into a vector field grad V: W — E:

Definition grad V(z) = &(DV(2)), z ¢ W.

From the definition of ¢ we obtain the equivalent formulation
(1) DV(z)y = (grad V(z),y) forall y¢ E.

The reader can verify that if E = R* with the usual inner prod i i
; uct, th -
tion of grad V(z) is the same as P e this defiod

av av
(;3_2:: (’-':).-n,éz (2))-

t
We now rove some p g 100 COn ﬂlﬁ dl mt‘al

(2 Z = —grad V(2),
using our new definition of grad V.

1'l'nde})rem2 Let V: W — R be a C* function (that is, DV: W — E* is C": or V haa
confinuous second partial dertvaiives) on a t W 1 E wi
e ) n open se in a veclor space E with an

~(a) E;’;(a)n equilibrium point of the differential equation (2) +f and only if
) =0
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(b} If x(1) is a solution of (2), then
ZVG0) =~ gnd V) I

te)  If x(t) ts not constant, then V(z(l)) 18 a decreasing function of i.

Proof. Since V is 7, the right side of (2) is a C" function of z; therefore the
basic uniqueness and existence theory of Chapter 8 applies to (2).

By the definitions —grad V(£) = 0if and only if DV (£) = 0, since &: £ — E*
is a linear isomorphism ; this proves (a). To prove (b) we use the chain rule:

d
= V(z(t)) = DV (z())z' ()

= DV(2(0) (—grad V(());
by (1) this equals

{grad V(z()), —grad V{(z(£))) = — | grad V{(z(£)) P
If (1) is not constant, then by (a), grad V{(z(t)) # 0; s0 (b) implies

d
o Viz{t)) < 0.
This proves (c).

The dual vector space is also used to study linear operators. We define the
adjoint of an operator

T-E—E
(where E has some fixed inner product) to be the operator

T*:F— E
defined by the equality

(Tx, ) = (2, T%)

for all r, ¥ in E, To make sense of this, first keep y fixed and note that the map

z — (Tr, y) is & linear map E — R; hence it defines an element A{y) ¢ E* We
define

Tey = o)\ y),
where
& E — E*
is the isomorphism defined earlier. It is easy to see that T'* is linear.
If ® is an orthonormal basis for E, thatis, ® = [e,, ..., e.] and
(C.‘, C;) = aif,

then the ®-matrix of T'* turns out to be the transpose of the ®-matrix for T, as is
eagily verified.
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An operator T € L(E) is self-adjoint if T* = T, that is,
{(Tz, y) = {z, Ty), forall r, ¥ € E.

In an orthonormal basis this means the matrix [a,;} of T is symmelric, that is,
ai; = B

Theorem 3 Let E be a real veclor space with an inner product and let T be o self-
adjoint operator on E. Then the eigenvalues of T are real,

Proof. Let E; be the complexification of E. We extend {, } to a function
Ec X Ec— C as follows. If z 4+ iy and u + iv are in E¢, define

rtwut i) =(w+i(yw = () + &)
It is easy to verify the following for alla, b € E¢, x € C:
(3) {@a)>0 if a0,
(4) Aa, b) = (Aa, b} = {a, Ab),

where — denotes the complex conjugate.
Let. T¢: Ec — E¢ be the complexification of T; thus T¢(z + iy) = Tz + #(Ty).
Let (T'*)c be the complexification of T*. It is easy to verify that

(5) (Tea, b) = (a, (T*)ch).

(This i true even if T is not self-adjoint.)

Suppose A € C is an eigenvalue for T and a € E¢ an eigenvector for ; then
Tea = Ma.

By (5)

(Tcﬂ- a) (ﬂ, (T.)Ca)

{a, Tca).

[

]

since T* = T. Hence

(\a, a) = (a, \a).
But, by (4),

Ma, ) = (\a, a),
while

80, by (3), A = X and X is real.

Corollary A symmelric real n X n malriz has real eigenvalues.

Consider again a gradient vector field
F(2) = —grad V{z).
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For simplicity we assume the vector space is R*, equipped with the usual inner
procduet. Lot  be an equilibrium of the system

x = —grad V{z).
The operator
DF(£)

2l
- [Bz,ﬁz; #) ]

in the standard basis. Since this matrix is symmetrie, we conclude:

has the matrix

Theorem 4 At an equilibrium of a gradient system, the eigenvalues are real.

This theorcm is also true for gradients defined by arbitrary inner products.
For example, a gradient system in the plane cannot have spirals or centers at
equilibria. In fact, neither can it have improper nodes because of:

Theorem 5 Let E be a real veclor space with an inner product. Then any self-
adjoint operator on E can be diagonalized.

Proof. Let T: E — E be seli-adjoint. Since the eigenvalues of T arc real, there
is 8 nonzero vector £, € E such that Te, = ey, M € R, Let

E, =|z€ E| (z,a) =0},
the orthogonal complement of e, If x € E,, then Tz € E,, for .
{(I'zr, 1) = (z, Tey) = {z,xe1} = Az, &} = 0.
Hence T leaves E) invariant. Give E, the same inner product as E; then the operator
T\ = T|E € L(E)
is self-adjoint. In the same way we find a nongero vector e; € E) such that
Tey = Mey; M ER,

Note that e, and ey are independent, since {¢;, &) = 0. Contiruing in this way, we
find & maximal independent, set @ = [ey, . . ., €} of eigenvectors of T. These must
span E, otherwise we could enlarge the set by looking at the restriction of T to
the subspace orthogonal to e, . . -, e.. In this basis ®, T is diagonal.

We have actually proved more. Note that ey, . . . , e. are mutually orthogonal;
and we can take them to have norm 1. Therefore a self-adjoint operator (or a aym-
melric matriz) can be diagonalized by an orthonormal basts.

For gradient sysfems we have proved:
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Theorem 6 A! an equildbrium of a gradient flow the linear part of the vector field
12 diagonalizable by an orthonormal basis.

PROBLEMS

1. Find an orthonormal diagonalizing basis for each of the following operators:
{a) [2 1] (b} [ 0 —-2] (¢ o o i
11 -2 0 01 2
1 2 -1

2. Let A be a self-adjoint operator. If r and y are eigenvectors belonging to
different eigenvalues then {z, y) = 0.

3. Bhow that for each operator A of Problem 1, the vector field z — Az is the
gradient of some function.

4. 1If A is a symmetric operator, show that the vector field z — Az is the gradient
of some function.

Notes

A statement and proof of the implicit funetion theorem used in Section 4, is
given in Appendix 4. See P. Halmos’ Finite Dimensional Veclor Spaces [8] for a
more extended {reatment of self-adjoint linear operators. One can find more on
Liapunov theory in LaSalle and Lefschetz’s Stability by Liapunov's Direct Method
with Applications [14]. Pontryagin's text [10] on ordinary differential equations
is recommended; in particular, he has an interesting application of Liapunov
theory to the study of the governor of a steam engine.



Chapter 10

Differential Equations

for Electrical Circuits

First a simple but very basic circuit example is deseribed and the differential
equations governing the circuit are derived. Our derivation is done in such a way
that the ideas extend to general circuit equations. That is why we are so cnre:ful
to make the maps explicit and to describe precisely the sets of states obt?ymg
physical laws. This is in contrast to the more typical ad hoe approach to nonlinear
circuit theory. ‘ '

The equations for this example are analyzed from the purely ma.then:mtlca.l
point of view in the next three sections; these are the classical equations of Lienard
and Van der Pol. In particular Van der Pol’s equation could perhaps be regarded
85 the fundamental example of a nonlinear ordinary differential equation. It
possesses an oscillation or periodic solution that is a periodic attractor. Ever.y
nontrivial solution tends to this periodic solution; no linear flow can have this

property. On the other hand, for a periodic solution to be viable in applied mathe-

Inatics, this or some related stability property must be satisfied.

The construction of the phase portrait of Van der Pol in Section 3 inv?lves
some nontrivial mathematical arguments and many readers may wish to skl;? or
postpone this part of the book. On the other hand, the methods have some wider
use in studying phase portraits. ' _

Asymptotically stable equilibria connote death in a system, while attrm?t.{ng
oscillators connate life. We give an example in Section 4 of a continuous transition
from one to the other. :

In Section 5 we give an introduction to the mathematical foundations of elec-
trical circuit theory, especially oriented toward the analysis of nonlinear circuits.
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$§1. An RLC Circuit

We give an example of an electrical circuit and derive from it a differential
equation that shows how the state of the eircuit varies in time. The differential
equation is analyzed in the following section. Later we shall describe in greater
generality elements of the mathematical theory of electrical circuits.

Our discussion of the example here is done in & way that extends to the more
general case.

The circuit of our example is the simple but fundamental series RLC ecircuit in
Fig. A. We will try to communicate what this means, especially in mathematical
terms, The circuit has three branches, one resistor marked by R, one inductor
marked by L, and one capacitor marked by C. One can think of a branch as being
8 certain electrical deviee with two terminals, In the circuit, branch R has terminals
@, B for example and these terminals are wired together to form the points or
nodes o, 8, ¥.

The electrical devices we consider in this book are of the three types: resistors,
inductors, and capacitors, which we will characterize mathematically shortly.

In the circuit one has flowing through each branch a current which is measured
by a real number. More precisely the currents in the circuit are given by the three
numbers g, if, fg; ix measures the current through the resistor, and 8o on. Current
in & branch is analogous to water flowing in a pipe; the corresponding measure for
water would be the amount flowing in unit time, or better, the rate at which water
passes by a fixed peint in the pipe. The arrows in the disgram that orient the
branches tell us which way the current (read water!) is flowing; if for example 15
is positive, then according to the arrow current flows through the resistor from
B8 to a (the choice of the arrows is made once and for all at the start).

The state of the currenta at a given time in the circuit is thus represented by a
point i = (ig, tu, fe) € RE But Kirchhof's current law (KCL) says that in reality
there is a strong restriction on what i can occur. IXCL asserts that the total current
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flowing into a node is equal to the total current flowing out of that node. (Think of
the water analogy to make this plausible.) For our circuit this is equivalent to

KCL: ia = fz, = —ic.

This defines a one-dimensional subspace K, of R? of physical current states. Our
choice of orientation of the eapacitor branch may seem unnatural. In fact the
oricntations are arbitrary: in the example they were chosen so that the equations
eventually obtained relate most directly to the history of the subject.

The state of the circuit is characterized by the current ¢ together with the voltage
{or better, voltage drop) across each branch. These voltages are denoted by vg, vy, ve
for the resistor branch, inductor branch, and capacitor branch, respectively. In the
water analogy one thinke of the voltage drop as the difference in pressures at the
two ends of a pipe. To measure voltage one placesa voltmeter (imagines water pres-
sure meter) at each of the nodes a, 8, ¥ which reads V(e) at o, and so on. Then ve
is the difference in the reading at o and 8

V(g) — Via) = va.

The orientation or arrow tells us that ve = V(8) — V() rather than V(a) — Vig).
An unrestricted voltage state of the circuit is then a point v = (o, VL, ve) in R3
Again a Kirchhoff law puts a physical restriction on v:

KVL: wpt+v—tc= 0.

This defines & two-dimensional linear subspace K of R%. From our explanation of
the vg, vy, ve in terms of voltmeters, KVL is clear; that is,

vp+ v —ve = (V(8) — Vi) + (V(a) — V(7)) — (V(8).— V() =0.

In a general circuit, one version of KVL asserts that the voltages can be derived
from & ‘*voltage potential” function V on the nodes as above.
We summarize that in the product space, R? X R? = 8, those states (¢, v) satis-

44

FIG. B
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fying Kirchhofl’s laws form a three-dimensional subspace K of the form K = K; X
K, C R X R,

Next, we give a mathematical definition of the three kinds of electrical devices
of the circuit.

] First consider the resistor element. A resistor in the B branch impoees a “func-
tional relationship” on tz, vg. We take in our example this relationship to be de-
fined by a C! real function f of & real variable, so that vg = f(iz). If R denotes a
conventional linear resistor, then f is linear and vz = f(iz) is a statement of Ohm’s
law. The graph of f in the (iz, vz) plane is called the characteristic of the resistor.
é couple of examples of characteristics are given in Figs. B and C. (A characteristic
like that in Fig. C occurs in the “tunnel diode.”)

A ?hysical state (¢, v) € R* X R* = § will be one which satisfies KCL and KXVL
or (i, v) € K and also f(i,) = v,. These conditions define a subset T C K C §
Thus the set of physteal slates = is that set of points (ig, 7., #c, s, 1, ve) in R? X R?
satisfying: -

ir =1, = —dp (KCL),
w+ v —ve =0 (KVL),
J(ir) = e (generalized Ohm’s law).

Nex:(. we concern ourselves with the passage in time of a state; this defines a
curve in the state space $:

t— (i(t): ”(t)) = (iﬂ(t)] if-(t)r ‘l‘c(t), l)g(t), vl-(t)i v(-'(t))-

The inductor {which one may think of as a coil; it is hard to find a water analogy)
specifies that

I dir(t)
di
where L is a positive constant called the inductance.

= v, (i) (Faraday’s law),

YR

‘n

F1G.C




214 10. DIFFERENTIAL EQUATIONS FOR ELECTRICAL CIRCUITS

On the other hand, the capacitor {which may be thought of as two metal plates
separated by some insulator; in the water model it is a tank) impbses the condition
dvc(t)

C dt = "C(t)s

where (7 is a positive constant called the capacitance.

We summarize our development 8o far: a state of our circuit is given by the six
numbers {ir, it, ig, ¥r, bz, te), that is, an element of R* X RY. These numbers are
subject to three restrictions: Kirchhoff’s current law, Kirchhoff’s voltage law, and
the resistor characteristic or “generalized Ohm's law.” Therefore the space of
physical states is a certain subset Z C R? X R% The way a state changes in time
is determined by two differential equations.

Noxt, we simplify the state space T by observing that iy and vc determine the
other four coordinates, since ig = i and 1¢ = —#c by KCL, e = f(ia) = f(ir) by
the generalized Ohm's law, and v, = v¢ — vz = t¢ — f(ir) by KVL. Therefore
we can use R? as the state space, interpreting the coordinates as (i, v¢). F ormally,
we define a map x: R? X R? — R?, sending (4, v) € R* X R? to (i, vc). Then we
set xo = 1| Z, the restriction of » to Z; this map »o: £ — R* is one-to-one and onto;
its inverse is given by the map ¢: R* — Z,

elin, ve) = (ir, iz, —iL, f(1L), ve — f{iL), ve).

It is easy to check that (i, v¢) satisfies KCL, KVL, and the generalized Ohm's
law, so ¢ does map R? into I; it is also easy to see that xy and ¢ are inverse to each
other.
We therefore adopt R? as our state space. The differential equations governing

the change of state must be rewritten in terms of our new coordinates (i, ve):

dﬁ, .

— = ve — f(i

L q vy = V¢ f ( 1'-)_9

CT‘? = fg ® —iL.

For simplicity, since thiz is only an example, we make L = 1, = 1.
If we write £ = i1, ¥ == v¢, we have as differential equations on the (z, y} Car-
tesian space:
d_x

dt ‘U"‘f(f).

dy
d

= —x

These equations are analyzed in the following section.
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PROBLEM S

I. Find the differential equations for the network in Fig. D, where the resistor is
voltage controlled, that is, the resistor characteristic is the graph of a (" func-
tion g: R — R, g(vg) = ip.

Rg | :J:c L

FiG. D

2. Show that the LC circuit consisting of one inductor and one capacitor wired

in a closed loop oscillates.

§2. Analysis of the Circuit Equations

I-.Iere we begin 8 study of the phase portrait of the planar differential equation
derived from the circuit of the previous section, namely:

(1) 2oy 1o,

dy
dt

This is one form of Liengrd’s equatton. If f(zr) = 2 — z, then (1) is a form of
Van der Pol’s equation.

= —zr

First consider the most simple case of linear f (or ordinary resistor of Section 1).
Let f(x) = Kz, K > 0. Then (1) takes the form

, -K )
z=Az,- A=[_l 0], z=(ry).

The eigenvalum of A are given by A = 4[—K + (K? — 4)'7]. Since A always
has negative real part, the zero state (0, 0) is an asymptotically stable equilibrium,
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in fact a sink. Every state tends to zerc; physically this is the dissipative eﬂ'e(‘:t of
the resistor. Furthermore, one can see that (0, 0} will be a spiral 'aink precisely
when K < 2,

Next we consider the equilibrin of (1) for a general C" function f.

There is in fact & unique equilibrium Z of (1) obtained by setting

y— flz) =0,
—z =0,

or
z = (0,1(0)).

The matrix of first partial derivatives of (1) at £ ia

[-f "(0) 1]
-1 o
whose eigenvalues are given by
x = 3[—f(0) £ (f(0)* — 4)'2].
We conclude that this equilibrium satisfies:
z  isagnkif F{e) > 0,
and

z isasourceif f{0) <0

{sec Chapter 9). ) ]
In particular for Van der Pol’s equation (f{(2) = r* — z) the unique equi-
librium is a source.
To analyze (1) further we define a function W: R* —» R by W‘_(z, y) = $(a* +
y*); thus W is hali of the norm squared. The following proposition is simple but
important in the study of (1).

Proposition Let z(f) = (z(), y(£)} be a solution curve of Lienard’s equation (1).
Then

L W) = —z0f()).
dt
Proaf. Apply the chain rule to the composition

JLR LR
to obtain

WD) = DWEWE®) = 2020 + vy ();

§3. VAN DER POL’S EQUATION 217
suppressing ¢, this is equal to

z{y — f(©)) — yx = —zf(2)

by (1). Here J could be any interval of real numbers in the domain of z.

The statement of the proposition has an interpretation for the electric circuit
that gave rise to (1) and which we will pursue later: energy decreases along the
solution curves according to the power dissipated in the resistor.

In circuit theory, a resistor whose characteristic is the graph of f: R = R, is
called passive if its characteristic is contained in the set consisting of {0, 0) and
the interior of the first and third quadrant (Fig. A for example). Thus in the case
of a passive resistor —zf(z) is negative except when x = 0.

FIG. A

From Theorem 2 of Chapter 9, Section 3, it follows that the origin is asymptoti-
cally stable and its basin of attraction is the whole plane. Thus the word passive
correctly describes the dynamics of such a eireuit,

§3. Van der Pol’s Equation

The goal here ig to continue the study of Lienard’s equation for a certain func-
tion .

dr
(1) I

I

y_f(x)y f(x) =I‘—'1',

d
d_ .

d
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FIG. A

This is called Van der Pol's equation; equivalently
dz .

2 —_—=y— ,

(2) il + =z

dy

di

In this case we can give a fairly complete phase portrait analysis.

= —UI.

Theorem There is one nontrivial periodic solution of (1) and every nonequilibrium
solution tends to this periodic solution. “The system oscillates.”

We know from the previous section that (2) has a unigue equilibrium at (0, 0),
and it is a source. The next step is to show that every nonequilibrium solution
“rotates” in & eertain sense around the equilibrium in a clockwise direction. To
this end we divide the (r, ¥) plane into four disjoint regions {open sets) A, B,
C, D in Fig. A. These regions make up the complement of the curves

(3) y — f(x) =0,
—z =0

These curves (3} thus form the boundaries of the four regions. Tet us make this
more preeise. Define four curves

vt = {{z ) |y >0,z =0],
gt=1(rlz>0y =2 — 2z,
r = {(r,y) |y <0,z =0}
=iz <0y=2—z.

3. va 1 ]
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These curves are disjoint; together with the origin they form the boundaries of
the four regions. '

Next we see how the vector field (2, ¥') of (1) behaves on the boundary curves
It is clear that ' = 0 at (0, 0) and on v* Uy, and nowhere clse; and * = 0 emctlj;
on‘g+ U g U (0, 0). Furthermore the vector (', ¥') is horizontal on v+ U v~ and
Pomts right on #*, and left on v~ (Fig. B). And (', ¢') is vertical on gt U g, point~
ing downward on g+ and upward on g—. In each region A, B, C, D the ;igna of
z" and ¥ are constant. Thus in 4, for example, we have 2 > 0, ' < 0, and 8o the
vector field always points into the fourth quadrant, ,

The pext part of our analysis concerns the nature of the flow in the interior of
the regions. Figure B suggests that trajectories spiral around the origin clockwise
The next two propositions make this precise. -

v

FIG. B

Proposition 1 Any trajeclory starting on v+ enlers A. An; ] ing &
. . Any lrajeclory starling in A
meels gt ; furthermore it meels g+ before tt meets v—, g or v+, "

+Proof. See Fig. B. Let (z(t), y(¢}) be a solution curve to (1). If (x(0), y(0)) €
v+, then z(0) = 0 and y(0) > 0. Since 2'(0) > 0, z(1) increases for small ¢ and
80 z{¢) > 0 which implies that y(t) decreases for small . Hence the curve enters 4.
Before the curve leaves A (if it does), ' must become 0 again, 8o the eurve must
cross g* before it meets v—, g~ or v*. Thus the first and last statements of the propo-
sition are proved.

It remains to show that if (z(0), y{(0)) € A then (x({}, y{t)) € g* for some
t > 0. Suppose not.

I_et P C R be the compact set bounded by (0, 0) and v+, g+ and the line y = y(0)
as in Fig. C. The solution curve (z(t), y(t)),0 < t < 8isin P. From Chapter 8
it fc_ullows since (z{t), y(£)) does not meet g*, it is defined for all t > 0. .

Since 2’ > 0in 4, z(t) > a for ¢ > 0. Hence from (1), () < —afor¢ > 0.
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v
=

v

-
10y, yLOY

FIG.C
For these values of ¢, then
v = [ ) ds S YO — at.
This is impossible, unless our trajectory meets g+, proving Proposition 1.

Similar arguments prove (see Fig. D):

FIG. D. Trajectories apiral clockwise.

Proposition 2 Every lrajectory is defined for (at least) al.It 20 I'i‘zcept for (0, ?),
each trajectory repeatedly crosses the curves vt, g+, v, g~, in clockwise order, passing
among the regions A, B, C, D in clockwise order.

To analyze further the flow of the Van der Pol oscillator we define & map

oyt — vt
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as follows, Let p € v*; the solution curve { — ¢,(p} through p is defined for all
t 2 0. There will be a smallest ti(p} = t, > 0 such that ¢.,(p) € v*. Weput o(p) =
¢:,(p). Thus o (p) is the first point after p on the trajectory of p (for ¢ > 0) which
is again on v+ (Fig. E). The map p — #(p) is continuous; while this should be
intuitively clear, it follows rigorously from Chapter 11. Hence » is also continuous.
Note that o is one to one by unigueness of solutions.

The importance of this section map o: v+ — v+ comes from its intimate relation-
ehip to the phase portrait of the flow. For example:

Proposition 3 Let p € v*. Then p iz & fized point of o (that is, o(p) = p) if and
only if p is on a periodic solution of (1) (that is, ¢.(p) = p for some t # 0). Moreover
every periodic solution curve meets v+,

Proof. If o(p) = p, then ¢,(p) = p, where L = L(p) in a8 in the definition
of o. Suppose on the other hand that o(p) # p. Let v* = v* v (0, 0). We observe
firat that ¢ extends to & map v* — v* which is again continuous and one to one,
sending (0, 0) to itself. Next we identify v* with {y € R | y > 0} by assigning to
each point its y-coordinate. Hence there is a natural order on v*: (0, y) < (0, z) if
¥ < z. It follows from the intermediate value theorem that #: ¥* — v* is order
preserving. If o(p) > p, then ¢*(p) > o(p) > p and by induction +~{p) > p,
n = 1,2 ... This means that the trajectory of p never crosses v* again at p.
Hence ¢,(p) # p forall ¢ # 0. A similar argument applies if ¢(p) < p. Therefore
if #(p) # p, pis not on a periodic trajectory. The last statement of Proposition 3
follows from Proposition 2 which implies that every trajectory (except (0, 0))
meets vt

For every point p € v* let ts(p) = ¢, be the smallest ¢ > 0 such that ¢,(p) € v
Define & continuous map

a vt — v,

“(P) = ¢l|(p)-
vt

.Y S ¢*
por( p)

{0,0)

v

FIG. E. The map «: v* — v+,
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y¢

Po g
Fd '\
(1,0 x-oxis
alp)

V-

FIG. F. The map a: vt — v,

See Fig. F. The map a is also one to one by uniqueness of solutions and thus mono-
tone.

Using the methods in the proof of Proposition 1 it can be shown that there is s
unique point py € v* such that the solution curve

l¢dm) {0 <t < L(po)]

intersects the curve g* at the point (1, ) where g* meets the z-axis. Let r = | py|.
Define a continuous map
§:v1t - R,

3p) =|alp) ° - |p |?)

where | p | means the usual Euclidean norm of the vector p. Further analysis of
the flow of (1) is based on the following rather delicate result:

Proposition 4 (a) 3(p) > 00 <|p| <r;
{b) &(p) decrensrs monolonelylo —w as|p| — o, |p| > 1

Part of the graph of 3(p)} as a function of | p | is shown schematically in Fig. G.
The intermediate value theorem and Proposition 4 imply that there i3 a unique
qo € vt with 5(g) = 0.

We will prove Proposition 4 shortly; first we use it to complete the proof of the
main theorem of this section. We exploit the skew symmelry of the vector field

Q(I,y) =(y -7 + ¥, _x)
given by the right-hand side of (2), namely,
gl—z, —y) = —glz, ).

Thix means that if { = (z{t), y{&)) is a solution curve, sois t — (—z(t}, —y(8)).
Consider the trajectory of the unique point go € vt such that 3(g) = 0. This
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point has the property that | a{ge) | = | g |, hence that

$ul®) = —¢o
From skew symmetry we have also
bu(—@) = —(—p) = g
hence putting A = 26 > 0 we have

ain) = o

Thus ¢, lies on & nontrivial periodic trajectory v.

Since 8 is monotone, similar reasoning shows that the trajectory through g, is
the unique nontrivial periodic solution.

To investigate other trajectories we define a map 8: v~ — v*, sending each point
of v~ to the first intersection of ita trajectory {for { > 0) with v*. By symmetry

B(p) = —a{—p).
Note that ¢ = Ba.

We identify the y-axis with the real numbers in the y-coordinate. Thus if p,
¢ € v* Vv we write p > ¢ if p is above q. Note that a and 8 reverse this ordering
while o preserves it.

Now let p € vy, P > g0 Since a(g) = —¢go we have a{p)} < —gsand ¢(p) > gy
On the other hand, §(p) < 0 which means the same thing a8 a(p) > —p. There-
fore ¢ (p) = Ba(p) < p. We have shown that p > g, implies p > o{(p) > ¢s. Simi-
larly o(p} > o*(p) > go and by induction e*(p) > o**'(p) > g n = 1,2, .. ..

The sequence ¢~(p) has a limit g, > g, in #*. Note that ¢, is a fixed point of a,
for by continuity of ¢ we have

ol@) — @ = lim a(e™(p)) — @
=¢ — H = 0.
5(p)
(o) ;0 Iggl legl

FIG. G
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Since ¢ has only one fixed point ¢; = ¢. This shows that the trajectory of p spirals
toward v as § — o, The same thing is true if p < g¢o; the details are left to the
reader, Since every trajectory except (0, 0) meets v+, the proof of the main theorem
is complete.

It remains to prove Proposition 4.

We adopt the following notation. Let v: [a, b] — R? be a C? curve in the plane,
written v () = (z(t), ¥($)). If F: R — R is (", define

*
[Py = [ Fla®, v e
¥ -

It may happen that z'(t) » 0 for ¢ < { < b, so that along v, y is a function of
z, y = y(z). In this case we can change variables:

Ll

[ rew. 0 a = [ ey Lo

zla}

*® F(z, y(z))
LF(I, y) = [‘m m— dz.

hence

Similarly if y'(¢) = 0.
Recall the function

Wiz, ¥) =}z + ).

Let v{f) = (z(&), ¥{¢)), 0 € t < & = f(p) be the solution curve joining p € v*
to a(p) € v~ By definition &(p) = W(z(ts), y(ts)) — W(z(0), ¥(0}). Thus

13 d
i) = [ 5 WG, 50) &
°
By the proposition of Section 2 we have

80 = [~z - 20) &
°

3(p) = L "2 (M1~ 2(0) dt

This immediately proves (a) of Proposition 4 because the integrand is positive for
0<ri) <L

We may rewrite the last equality as
s = [ 20 - ).
R

We restrict attention to points p € v+ with | p | > r. We divide the corresponding
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Y

V' 4
alp)

FIG. H

solution curve ¥ into three curves v, vs, s 83 in Fig. H. Then

3(p) = &(p) + &(p) + &i(p),
where

s = [ 20~ i=123
Y.
Notice that along vy, ¥(!) is a function of z(¢). Hence

1 —
q(p) = [u %azi)dx

=I'M
[ - f(x)

where f(z) = 2 — z. As p moves up the y-axis, y — f(z) increases (for (z, p)
on n). Hence 8;(p) decreases as | p { — . Similarly &(p) decreases as | p | — .
On 4y, z i3 a function of y, and z > 1. Therefore, since dy/dt = —uz,

o) = [ —2)( - 2 @

= [T - zwm @y <.

As | p | increases, the domain [y, 2] of integration becomes steadily larger.
The function ¥ — z(y)} depends on p; we write it z,(y). Aa | p | increases, the
curves y: move to the right; hence z,(y) increases and so 1,(y) (1 — z,(3)?) de-
creases. It follows that &(p) decreases a8 |p| increases; and evidently
lim)yivu $(p) = — . This completes the proof of Proposition 4
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PROBLEMS

1. Find the phase portrait for the differential cquation
¥=y—fln, flr)=2

y" = =T

L&

Give a proof of Proposition 2.

3. (Hartman [9, Chapter 7, Theorem 10.27]) Find the phase portrait of the
following differential equation and in particular show there is a unique non-
trivial periodic solution:

=y~ f(z),
¥y o= —g(n),
where all of the following are assumed:
(i) f, gareCY
(iiy g(—xy = —g(r) and rg(s) > Oforall x = 0;

(i) fl—1) = —f(x) and f(5) < O0for0 < z < a;
(iv) for xr > a, f(r) is positive and increasing;
{(v] flz) = o asr— =,
{ Hint: Imitate the proof of the theorem in Section 3.)
4. (Hard!) Consider the equation
z’=y—f(:r), f:R—lR,C',
2.

= —z.

Given f, how many periodic solutions does this syastem have? This would be
interesting to know for many broad classes of functions f. Good results on this
would probsbly make an interesting research article.’

FIG. I
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5. Consider the equation

2 =ply - -2). wu>o0

¥ = —r
It has a unique nontrivial periodic solution v, by Problem 3. Show that as
&~ o, 7, tends to the closed curve consisting of two horizontal line segments
and two arcsony = * — rasin Fig. 1. -

§4. Hopf Bifurcation

Often one encounters s differential equation with parameler. Precisely, one is
given a C' map g,: W — E where W is an open set of the vector space E and 4 is
allowed to vary over some parameter space, say p € J = [—1, 1] Furthermore
it is convenient to suppose that g, is differentiable in g, or that the map

J x W_’ Ev (5"- I) "'GF(‘I)

is (1.
Then one considers the differential equation
(1 ' = gu(x) on W.

One is especially concerned how the phase portrait of (1) changes as u varies.
A value g, where there is a basic structural change in this phase portrait is called
a bifurcation point. Rather than try to develop any sort of systematic bifurcation
theory here, we will give one fundamental example, or & realization of what is
called Hopf bifurcation.

Return to the circuit example of Section 1, where we now suppose that the
resistor characteristic depends on a parameter ¢ and is denoted by f,: R — R,
—1 < g < 1. (Maybe x is the temperature of the resistor.) The physical behavior
of the circuit is then described by the differential equation on R3:

dr
{2) J =Yy - fp(‘t)r
j—:’ —
Consider as an example the special case where f, is described by
(2a) L(z) = 2 — ur.

Then we apply the results of Sections 2 and 3 to see what happens as y is varied
from —1 to 1.

Foreach u, —1 < u < 0, the resistor is passive and the proposition of Section 2
implies that all solutions tend asymptotically to zero as  — «. Physically the
circuit is dead, in that after a period of transition all the currents and voltages
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g g0 O<psgl

FIG. A. Bifurcation.

stay at O (or as close to 0 as we want). But note that as 4 crosses 0, the circuit
becomes alive. It will begin to oscillate. This follows from the fact.that the anal.ysw
of Section 3 applies to (2) when 0 < u < 1;in this case (2) will have a unique
periodic solution v. and the origin becomes s source. In fac_t every nontrivial
solution tends to v, 83 ¢ — «. Further elaboration of the ideas in Section 3 can be
used to show that v, — 0asp—0,u > 0. )

For (2), g = 0 is the bifurcation value of the parameter. The l?amc structure of
the phase portrait changes as s passes through the value 0. See Fig. A. -

The mathematician E. Hopf proved that for fairly general on&pzframete'r families
of equations ' = f,(z), there must be a closed orbit for u > e if the eigenvalue
character of an equilibrium changes suddenly at s from a sink to a source.

PROBLEMS

1. Find all values of x which are the bifurcation points for the linear differential

equation:
dr
di = ux + W
dy
=z -2y,
at y

9. Prove the statement in the text that v, = 0asp — 0, 0 > 0.

§5. More General Cirenit Equations

We give here a way of finding the ordinary differential equations for a class O.f
electrical networks or circuits. We consider networks made up of resistors, capaci-
tors, and inductors. Later we discuss briefly the nature of these objects, called the
branches of the circuit; at present it suffices to consider them as devices with two
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terminals. The circuit is formed by connecting together various terminals. The
connection points are called nodes.

Toward giving a mathematical description of the network, we define in R a
linear graph which corresponds to the network. This linear graph consists of the
following data:

(a) A finite set A of pointa (called nodes) in R, The number of nodes is de-
noted by a, a typical node by a.

(b) A finite set B of line segments in R? (called branches). The end points of a
branch must be nodes. Distinct branches can meet only at a node. The number of
branches is &; a typical branch is denoted by 8.

We assume that each branch § is eréented in the sense that one is given a direction
from one terminal to the other, say from a (—) terminal 8~ to a (4) terminal g+.
The boundary of ¢ Bistheset 98 = g+ U g

For the moment we ignore the exact nature of a branch, whether it is a resistor,
capacitor, or inductor.

We suppose also that the set of nodes and the set of branches are ordered, so
that it makes sense to speak of the kth branch, and so on.

A current stale of the network will be some point 1 = (i), ..., ) € R* where
1, represents the current flowing through the kth branch at a certain moment.
In this case we will often write 4 for R®,

The Kirchhoff current law or KCL states that the amount of current flowing
into a node at a given moment is equal to the amount flowing out. The water
analogy of Section 1 makes this plausible. We want to express this condition in a
mathematical way which will be especially convenient for our development.
Toward this end we construct a linear map d: § — D where © is the Cartesian
space R* (recall a is the number of nodes).

If £ € 4 i3 a current state and « is a node we define the ath coordinate of di € D
to be

(d‘.)l = Z eﬂﬂiﬂr

17
where
1 if gt =a,
s = 11 if g =a
0 otherwise.

One may interpret {df) . as the net current flow into node @ when the eireuit ia in
the current state i,

Theorem 1 A current slale © & 4 salisfies KCL if and only if di = 0.
Proof, 1t is sufficient to check the condition for each node a € A. Thus (di), =
0 if and only if
2 eatis = 0,

BchB
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or from the definition of e,

2 =2 fn
fcB sel
Et=a 8=

This last is just the expression of KCL at the node a. This proves the theorem.

Next, a voltage state of our network is defined tobea point v = (1, ..., u) € R,
where in this context we denote R* by U. The kth coordinate v, represents the
voltage drop across the kth branch. The Kirchhoff vollage law (KVL) may be
stated as asserting that there is a real function on the set of nodes, a voltage potential
(given, for example, by voltmeter readings), V: A — R, so that ve = V(8*) —
V{(g~) foreach 8 € 8.

To relate KCL to KVL and to prove what is called Tellegen’s theorem in net-
work theory, we make a short excursion into linear algebra. Let E, F be vector
spaces whose dual vector spaces (Chapter 9) are denoted by E*, F*, respectively.
Ii u: £ — F is & linear transformation, then its adjoint or dual is a linear map
u*: F* — E* defined by u*(#) {(y) = z(u(y)), where x € F*, y € E. (Here u*(r)
is an element of E* and maps £ — R.)

Now let ¢ be the natural bilinear map defined on the Cartesian product vector
space £ X E* with values in R: if (e, e*) € E X E*, then ¢(e, €*) = e*(e).

Proposition Let w: E — F be a linear map and let K = (Ker w} x ?Im #*) C
E x E*.Then ¢is zeroon K.

Proof. Let (e, e*) € K so that u(e) = O and e* = u*y for some y € F*. Then
dle, e*) = dle, u*y) = (uy)(e) = ylule)) = 0.

This proves the proposition.

Remark. A further argument shows that dim K = dim E.

We return to the analysis of the voltage and current states of a network. It
turns out to be useful, as we shall see presently, to identify the space U with the
dual space §* of 4. Mathematically this is no preblem since both © and 4* are
naturally isomorphic to R*, With this identification, the voltage which a voltage
state 1 - 4* assigns to the kth branch 8 is just v(fs), where iy € 4 i3 the vector
where the kth coordinate is 1 and where other coordinates are Q.

We can now express IKVL more elegantly:

Theoremn 2 A voltage state v € 4% salisfies KV L if and only if it is in the tmage
of the adjoint d*;: D* > d* of d: 9 — D.

Proof. Suppose v satisfies Kirchhoff’s voltage law. Then there is a voltage
potential ¥V mapping the set of nodes to the real numbers, with v(8) = V(8*) -
V{#) for each branch 8. Recalling that © = R®, @ = number of nodes, we define
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a linear map V: D - R by

Vizy ..., %) = L V().
=]
Thus ¥ ¢ D*
To see that d*V = v, consider first the current state 75 ¢ § defined above just
before Theorem 2. Then

(d*V)is

V{(diy)
Vigt) — v(g)
v(B).

Since the states is, § € B form a basis for g, this shows that v = d*V. Hence v is in
the image of 4*.

Conversely, assume that v = ¢*W, W € D*. For the kth node a define V(a) =
W f.}, where f, € D has kth coordinate 1 and all other coordinates 0. Then V is
a voltage potential for v since the voltage which v assigns to the branch 8 is

v(ig) = d*W(1a)
= W(fe') — W(fr)
= V(g*) - V(g).
This completes the proof of Theorem 2.

The space of unrestricted stales of the eircuit is the Cartesian space § X 9*. Those
states which satisfy KCL and KVL constitute a linear subspace X C 4 X #*. By

Theorems 1 and 2,
K=Kerd X Imd* C 9 x 3%

An actual or physical state of the network must lie in K.

The power ¢ in a network is a real function defined on the big state space 5 X s*
and in fact is just the natural pairing discussed earlier. Thus if (i, v) € 8§ X #*,
the power ¢{i, v) = ¢(7) or in terms of Cartesian coordinates

¢(11 "') = E i’v’r
A

i={i,...,Hh), v= (v, ...,W).

The previous proposition gives us

Theorem 3 (Tellegen's theorem)  The power is zero on slates salisfying Kirchhofl's
laws.

AMathematically this is the same thing as saying that ¢: 8 X #* — R restricted
to K is zero.
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Now we describe in mathematical terms the three different types of devices in
the network: the resistor, inductor, and capacitor. These devices impose conditions
on the state, or on how the state changes in time, in the corrcaponding branch.

Each resistor » imposes a relation on the current and voltage in its branch. This
relation might be an equation of the form F,(t,, v,) = 0; but for simplicity we will
assume that (4, v,) satisfy f,(3,) = v, for some real-valued C* function f, of a real
variable. Thus f is a “generalized Ohm’s law.” The graph of /, in the (%, v,) plane
is called the characteristic of the pth resistor and is determined by the physical
properties of the resistor, (Compare Section 1.) For example, a battery is a re-
sistor in this context, and its characteristic is of the form {(i,, v,) € R? | v, =
constant}. ’

An inductor or capacitor does not impose conditions directly on the state, but
only on how the state in that branch changes in time. In particular let A be an
inductor branch with current, voltage in that branch denoted by #, va. Then the
ath inductor imposes the condition:

i
(1) L) 5 = 0.

Here I, is determined by the inductor and is called the inductance. 1t is assumed
to be a (" positive function of .

Similarly & capacitor in the yth branch defines s C* positive function vy — Cylny)
ealled the capacitance; and the current, voltage in the yth branch satisfy.

dv .
(1b) Cyltn) 5 = in

We now examine the resistor conditions more carefully. These are conditions on
the states themselves and have an effect similar to Kirchhoff’s laws in that they
place physical restrictions on the space of all atates, 4 X s*. We define Z to be the
subset of 4 X g* consisting of states that eatisfy the two Kirchhoff laws and the
resistor conditions. This space I is called the space of physical stales and is de-
seribed by

T={h) €esXFIEYEKLE) =no=1...,7]

Here (i, ©v,) denotes the components of %, v in the pth branch and p varies over
the resistor branches, r in number.

Under rather generic conditions, Z will be a manifold, that is, the higher dimen-
sional analog of a surface. Differential equations can be defined on manifolds; the
capacitors and inductors in our circuit will determine differential equations on Z
whose corresponding flow ®,: £ —» I describes how a state changes with time.

Becauge we do not have at our dispoaal the notions of differentiasble manifolds,
we will make a simplifying assumption before proceeding to the differential equa-
tions of the circuit. This is the assumption that the space of currents in the in-
ductors and voltages in the capacitors may be used to give coordinates to Z. We
make this more precise,
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. Let £ be the space of all currents in the inductor branches, so that £ is naturally
monlmrphic to RY, where [ is the number of inductors. A point ¢ of £ will be denoted
by ¢ = (4, ..., i;} where 1) is the current in the Ath branch. There is a natural
map (8 projection) .:  ~+ £ which just sends a current state into its components
in the inductors.

Similarly we let ©* be the space of all voltages in the capacitor branches so
that €* is isomorphic to R¢, where ¢ is the number of capacitors. Also ve: 9* — @*
will denote the corresponding projection.

_Consider the map i, X vo: 8 X 4* — £ X C* restricted to £ C # X #*. Call
thismap »: Z — £ X €* (It will help in following this rather abstract presentation
to follow it along with the example in Section 1.)

Hypothesis The map x: Z — £ X €* has an inverse which is a C' map
L X o ZC 4 X9

Under this hypothesis, we may identify the space of physical states of the net-
work with the space £ X €*. This is convenient because, as we shall see, the dif-
ferential equations of the circuit have a simple formulation on £ X €*. In words
the hypﬂt.hasis may be stated: the current in the inductors and the voltages in
the capacitors, via Kirchhoff's laws and the laws of the resistor characteristics
determine the currents and voltages in all the branches. ’

Although this hypothesis ia strong, it makes some sense when one realizes that
the "dimension” of Z should be expected to be the same as the dimension of
£ X e*. This follows from the remark after the proposition on dim K, and the fact
that Z is defined by r additional equations. '

To state the equations in this case we define a function P: 4 %X 4* — R called
the mired polential. We will follow the convention that indices p refer to resistor
bf'al?ches and sums over such p means summation over the resistor branches.
Similarly A is used for inductor branches and v for ecapacitor branches. Then
P:3 X 8* -+ R is defined by

Pi,v) =Xiv, + % [f,(i,) di,.

Hex:e the integral refers to the indefinite integral so that P is defined only up to an
arbitrary constant. Now P by restriction may be considered as a map P:Z - R
and finally by our hypothesis may even be considered as a map

P:g X e*—>R.

(By an “abuse of language” we use the same letter P for all three mapa.}

Now assume we have a particular circuit of the type we have been considering.
AF a given instant £ the circuit is in a particular current-voltage state. The states
will change as time goes on. In this way a curve in 4 X #* is obtained, depending
on the initial state of the circuit.
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The components is(t), vs(t), 8 € B of this curve must satisfy the conditions
imposed by Kirchhoff’s laws and the resistor characteristics; that is, they must
be in E. In addition at each instant of time the components di,/dt and dv,/dt of
the tangent vectors of the eurve must satisfy the relations imposed by (1a) and
i1b). A curve satisfying these conditions we call a physicel lrajeclory.

If the cireuit satisfies our special hypothesis, each physical trajectory is identi-
ticd with & curve in £ X @*. The following theorem says that the curves so obtained
are exactly the solution curves of a certain system of differential equations in
£ X ex:

Theorem 4 (Bravton-Moser) Each physical Irejectory of an electrical circuit
salisfying the special hypothests is o solution curve of the system

di), aP

i) — = — —,

A %
dv, &P
Cy{vy) I G_U, '

where N and v run through all induclors end capacilors of the circuil respectively.
Conversely, every solution curve lo these equations is a physical trajectory.

Here P js the map £ X ©* — R defined above. The right-hand sides of the
differential equations are thus functions of all the ,, v,.

Proof. Consider an erbitrary € curve in £ X €*. Because of our hypothesis
we identify £ X €* with Z C g X $%; hence we write the curve

t— (i(t), v(1)) € 8 X g%,

By Ikirehhoff's law {Theorem 1) i(t) € Ker d. Hence ¢'({) € Ker d. By Theorem 2
ety Ty od*. By Tellegen’s theorem, for all ¢

3 va()ia(t) = 0.

T
We rewrite this as

Yool + Lond + 2 vyd, = 0.
From Leibniz’ rule we get

Zoudy = (Zedy) — Xiw,.
Substituting this into the preceding equation gives

-): l'hik, + E iyvvr = (E l'-,l)-,)’ + 2 v.nin' = =,

o | &
-
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from the definition of P and the generalized Ohm’s laws. By the chain rule
dP ar _, P
I = E a_h 29 + z: al)-, Uy

From the last two equations we find

aP . aP
— 4+ )i — -4 ), =0
2(0i1+ 1) x +E(au, -r) v
Since 1" and #,’ can take any values,
ar P .
— = —, — = 1q,.
a1, * vy Y

The theorem now fotlows from (1a) and (1b).

Some remarks on this theorem are in order. First, one can follow this develop-
ment for the example of Section 1 to bring the generality of the above down to
earth. Secondly, note that if there are either no inductors or no capacitors, the
Brayton-Moser equations have many features of gradient equations and much of
the material of Chapter 9 can be applied; see Problem 9. In the more general case
the equations have the character of a gradient with respect to an indefinite metric.

We add some final remarks on an energy theorem. Suppose for simplicity that
all the L, and C, are constant and let

W.:2xe*—R

be the function W(i, v¥) = % 3a Lyis? + 3} 3, 0,2 Thus W has the form of a
norm square and its level surfaces are generalized ellipsoids; W may be interpreted
as the energy in the inductor and capacitor branches. Define P,: £ X €* = R
{(power in the resistors) to be the composition

EXE S8 X IFOR,

where P,(i, v) = T 1,u, (summed over resistor branches). We state without proof:

Theorem 5 Let ¢: I — £ X C* be any solulion of the equations of the previous
theorem. Then

d
al (We(1)) = —P.(s(1).

Theorem 5 may be interpreted as asserting that in a circuit the energy in the
inductors and capacitors varies according to power dissipated in the resistors.

See the early sections where W appeared and was used in the analysis of Lienard's
equation. Theorem 5 provides criteria for asymptotic stability in circuits.
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PROBLEMS

o

Let N be a finite set and P C N X N a symmetric binary relation on N (that is,
(z,y) € Pif (y, z) € P). Suppose z » y for all (z,y) € P. Show that there
is a linear graph in R* whose nodes are in one-to-one correspondence with N,
such that the two nodes corresponding to z, y are joined by a branch if and
only if (x,y) € N.

Show that Kirchhoff’s voltage law as stated in the text is equivalent to the
foliowing eondition (“the voltage drop around a loop is zero”) : Let ag, ey, . . .,
ox = ay be nodes such that . and am_1 are end points of & branch 8., m =
1, ...,k Then

k
E h”(ﬂ-) = 0)
=1
where ¢. = =1 according as (fm}* = 0w OF Cm-1.

Prove that dim K = dim E (see the proposition in the text and the remark
after it).

Prove Theorem 5.

Consider resistors whose characteristic is of the form F{1,, v,) = 0, where F is
a real-valued € function. Show that an RLC cireuit (Fig. A) with this kind of
resistor satisfies the special hypothesis if and only if the resistor is current
controlled, that is, F has the form

F(t, v,) = v, — 7).

FIG. A
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C

c
FIG. B

Show that the differential equationa for the circuit in Fig. B are given by:
diy
LE = ~(1, + 1),

do
C—&f = f},
dv,-
C = = b = Jle).

Here : = f(v) gives the resistor characteristic.

Suppose given a cireuit satisfying the basic hypothesis of this section and all
the other assumptions except that the charscteristic of one resistor is given
by & voltage-controlled characteristic ¢ = f(v), not necessarily current con-
trolled. Show that if the corresponding term of the mixed potential P i replaced
by fvf'{v) dv, then Theorem 4 is still true.

Find the differential equations for this circuit (Brayton) (Fig. C). Here |IJi
denotes & battery (resistor with characteristic: v = const.), 4 denotes a

A AA

It
1\

Sa0s0




238 10. DIFFERENTIAL EQUATIONS FOR ELECTRICAL CIRCUITS

linear resistor, and the box is a resistor with characteristic given by { = f{v).
Find the mixed potential and the phase portrait for some choice of f. See
Problem 7.

9. We refer to the Brayton—Moser equations. Suppose there are no capacitors.
(a} Show that the function P: £ — R decreases along nonequilibrium tra-
jectories of the Brayton-Moser equations.
{h) Lot n be the number of inductors. If cach function I, is a constant,
find an inner product on R* = £ which makes the vector

(10, LoF)
Ly oty "' L.dt

the gradient of P in the sense of Chapter 9, Section 5.

Notes

This chapter follows to a large extent “Mathematical foundations of electrical
circuits” by Smale in the Jowrnal of Differential Geometry |22}, The undergraduae
text on electrical cireuit theory by Desoer and Kuh 5] is excellent for a treatment
of many related subjects. Hartman’s book [9], mentioned also in Chapter 11,
goes extensively into the material of our Sections 2 and 3 with many historical
references. Lefschetz’s book Differential Equations, Geometrical Theory [14] also
discusses these nonlinear planar equations. Van der Pol himself related his equation
to heartbeat and recently E. C. Zeeman has done very interesting work on this
subject. For some physical background of circuit theory, one can see The Feynman
Lectures on Physics [6].

Chapter 1 ].

The Poincaré~Bendixson Theorem

We have already seen how periodic solutions in planar dynamical systems play
an important role in electrical circuit theory. In fact the periodic solution in Van
der Pol's equation, coming from the simple circuit equation in the previous chapter,
has features that go well bevond circuit theory. This periodic solution is & “fimit
cycle,” a concept we make precise in this chapter,

The Poincaré-Bendixson theorem gives a criterion for the detection of limit
cvelesintheplane ; thiscriterion could have been used to find the Van der Pol oecilla-
tor. On the other hand, this approach would have missed the unjqueness.

Poincaré-Bendixson is a basic tool for understanding planar dynamical systems
but for differential equations in higher dimensions it has no generalisation or
counterpart. Thus after the first two rather basic sections, we restrict ourselves to
planar dynamical systems. The first section gives some properties of the limiting
behavior of orbits on the level of abstract topological dynamics while in the next
section we analyze the flow near nonequilibrium points of a dynamical system.

Throughout this chapter we consider a dynamical system on an open set W in a
vector space E, that is, the flow ¢, defined by a C" vector field f: W — E.

§1. Limit Sets

We recall from Chapter 9, Section 3 that y ¢ W is an w-limil point of € W
if there is a sequence t, — ® such that lim,., #..{z) = y. The set of all w-limit
points of y i8 the w-limi! set L.(y). We define a-limit points and the a-limil set L.(y)
by replacing {n — = with {, = —  in the above definition. By a limil set we
mean a set of the form L, {y) or L.(y}.

Here are some examples of limit gets. If £ is an asymptotically stable equilib-
rium, it is the w-limit set of every point in its basin (see Chapter 9, Section 2). Any
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FIG. A

FIG. B

equilibrium is its own a-limit set and w-limit set. A closed orbit is the a-limit and
w-limit set, of every point on it. In the Van der Pol oscillator there is a unique closed
orbit 7v; it is the w-limit of every point except the origin (Fig. A). The origin is the
a-limit set of every point inside y. If i is outside v, ther La{y) is empty.

There are examples of limit sets that are neither closed orbits nor equilibria, for
example the figure 8 in the flow suggested by Fig. B. There are three equilibria, two
sources, and one saddle, The figure 8 is the o-limit set of all pointa outside it. The
right half of the 8 is the w-limit set of all points inside it except the equilibrium, and
gimilarly for the left half.

In three dimensions there are extremely complicated examples of limit sets,
although they are not easy to describe. In the plane, however, limit sets are fairly
gimple. In fact Fig. B is typical, in that one can show that a limit set other than s
closed orbit or equilibrium is made up of equilibria and trajectories joining them.
The Poincaré—Bendixson theorem says that if a compsct Jimit set in the plane
contains no equilibria it is a closed orbit.

We recal] from Chapter 9 that a limit set is closed in W, and is invariant under
the flow. We shall also need the following result:

Proposition (a) If z and z are on the same trajeciory, then Lo(x) = L.(2); simi-
larly for a-limita.
(b)Y If D is a closed posilively invariant set and 2 € D, then L.(z) C D; similarly
for negatively invarien! sets and a-limils,
{c) A closed invariant sel, in particular a limil sel, contains the a-limil and w-limit
sets of every point in il
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Proof. (a) Suppose y € L,(2),and ¢,{z) = z. If $..(z) — y, then ¢, (z) — .
Hence y € L.(z).

(b) If t— » and ¢.(2) =y € L.(2), then £ > 0 for sufficiently large n
80 that ¢,.(z) € D. Hencey € D = D,

(¢} Follows from (b).

PROBLEMS

1. Show that a compact limit set is connected {that is, not the union of two disjoint
non-empty closed sets.

2. Identify R* with C* having two complex coordinates {w, z}, and consider the
linear system
(%) w = 2w,
2 = 2xbiz,

where 8 is an irraifonal real number.

{a) Put a = ¢* and show that the set {a"{n = 1, 2, ...} is denne in the
unit circle C = fz € C|| 2] = 1}.

(b} Let ¢, be the flow of (»). Show that for n an integer,

¢ (w, 2) = (w, a~2).
(e} Let (wy, z) belong to the torus € X ¢ C C*. Use (a), (b) to show that
Lo(wy, z4) = La(uw, z4) = C X C. '
(d) Find L. and L. of an arbitrary point of C*.

3. Find a linear system on R® = C* such that if a belongs to the k-torus
C X -- X CCCH then

Lu(a) = L.(a) = C~.

4, In'Problem 2, suppose instead that ¢ is rational. Identify L, and L, of every
point.

5. Let X be a nonempty compact invariant set for a ! dynamical system. Suppose
that X is minimal, that is, X containg no compact invariant nonempty proper
subeet. Prove the following:

{a} Every trajectory in X is dense in X;
(b) Lu.{x) = L,(z}) = X foreachz ¢ X;
{¢) For any (relatively) open set {/ (C X, there is a number P > 0 such that

;Eranyx € X, 4 € R, there exists ¢ such that ¢,(z) € Uand |t — 4] <
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tdy For any r, y in X there are sequences £, — <, 3, — — « such that

[fo — ter| < 2P, | 8n — 8un| < 2P,
and
¢ () — ¥, . (z) .

6. Let X be a closed invariant set for a C' dynamical system on R, such that
&.(z) is defined for all t ¢ R, z ¢ X. Suppose that L.{z) = L.(x) = X for
all x © X. Prove that X is compact.

§2. Local Sections and Flow Boxes

We consider again the flow ¢, of the C! vector field f: W — E. Suppose the origin
0 < E belongs to W.

A local section at 0 of £ is an open set S containing 0 in & hyperplane # C E which
is transverse to f. By a hyperplane we mean a linear subspace whose dimension
is one less than dim £. To say that S C H is transverse to f means that f(z) ¢ H
for all z € &. In particular f(x) » Oforz € S. '

Our first use of 8 local section at 0 will be to construct a “flow box™ in a neighbor-
hood of 0. A flow box gives a complete description of a flow in a neighborhood of
any nonequilibrium point of any flow, by means of special (nonlinear) coordinates.
The description is simple: peints move in paraliel straight lines at constant speed.

We make this precise as follows. A diffeomorphism ¥: U — V is a differentiable
map from one open set of & vector space to-another with a differentiable inverse.
A flow bor is a diffeomorphism

RXHDONIW

of a neighborhood N of (0, 0) onto a neighborhood of 0 in W, which transforms
the vector field /2 W — E into the constant vector field {1,0) on R X H. The flow
of f is thereby converted to a simple flow on R X H:

valt,y) = (t+ay).
The map ¥ is defined by

¥t y) = o{p),

for (¢, ¥) in a sufficiently small neighborhood of (0, 0) in R X H. One appeals to
Chapter 15 to see that ¥ is a €' map. The derivative of ¥ at (0, 0) is easily computed
to be the linear map which is the identity on 0 X H, and on R = R X 0 it sends
1 to f{0). Since f(0) is transverse to H, it follows that D¥(0, 0) is an isomorphism,
Hence by the inverse function theorem W maps an open neighborhood N of (0, 0)
diffcomorphically onto a neighborhood ¥V of 0 in E. We take N of the forp
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H

N
y YN

FIG. A. The flow box.

S >< (—v, 0), where S C H is a section at 0 and & > 0. In this case we sometimes

-wrlte Ve = ¥(N) and call V, a flow box at {or about) 0 in E. See Fig. A. An

ltmepo(rtant property of a flow box is that if x € V., then ¢,(z) € S for a unique
—ea, 7).

From the definition of ¥ it follows that if ¥1(p} = (s, ¥), then ¥ (g, (p)) =
(s + ¢, o) for sufficiently small | 8|, | ¢].

We remark that a flow box can be defined about any nonequilibrium point x,.
The assumption that zy = 0 is no real restriction since if x4 is any point, one can
replace f{z) by f(z — x,) to convert the point to 0.

If S is & local section, the trajectory through a point 2z (perhaps far from S) may
feach 0 € Sin a certain time &; see Fig. B. We show that in a certain local sense, &
is & continuous function of zp. More precisely:

0= g, (2)

FIG. B

Proposition Let S be a local section a O as above, and suppose ¢.,(zs) = 0. There

t'sanopensetUCWcantainingzoandauniqueC'map-r:U—»Rcuchﬂwlr(zg) =
L and

Preixy (I) €8
Jorallx ¢ U.

f’foof. Let h: E — R be a linear map whose kernel H is the hyperplane con-
taining S. Then h(f{0)) # 0. The function

G(I, t) = h¢J(I)
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is (%, and
2 (s ) = hU@) %0,

By the implicit function theorem there is & unique C! map z — r(z) € R defined
on o neighborhood U of z, in Wosuch that 7(z,) = t, and G(x, () = 0. Hence
d.n{2) € H; i U C U, is a sufficiently small neighborhood of z then ¢y (2) € 8.
This proves the proposition.

For later reference note that

G 1aG t
Dr{z) = ~ [a (ze) fo)T ’z (o4 o) = — [g (20 k)T *h* Déyy(z).

§3. Monotone Sequences in Planar Dynamical Systems

We now restrict our discuasion to planar dynamical systems.

let @, 1, ... be & finite or infinite sequente of distinct points on the solution
curve { = l¢,(20)] 0 <t < a]. We say the sequence is monotone along the tro-
jectory if ¢, (z0) = za With0 < 4 < -+ S

Let yo 41, . . . be a finite or infinite sequence of points on a line segment I in R2.
We say the sequence is monotone along 7 if the vector y. — ys is & scalar multiple
My - pdwithl < A, < X< .. .n =23, .. .. Another way to say this is that
Yy, i1sbetweeny,_, and y, ., in the natural orderalong f/,n = 1,2, . . ..

o)
et
X2

————

Xy FIG. A
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A sequence of points may be on the intersection of a solution curve and a segment
I; they may be monotone along the solution curve but not along the segment, or
vice versa; see Fig. A. However, this s impossible if the segment is a local section.
Figure B shows an example; we suggest the reader experiment with paper and
pencil!

Proposition 1 Let S be a local section of a C' planar dynamical system and y, 3,
Vs, . . . G sequence of dislinel poinis of S that are on the same solution curve C. If the
sequence 18 monotone along C, il 1s also monotone along S.

Proaf. It suffices to consider three points yo, 11, 2. Let Z be the simple closed
curve made up of the part B of C between yo and y and the segment T C S between
yo and y. Let D be the closed bounded region bounded by Z. We suppose that the
trajectory of y leaves I at 3 (Fig. C); if it enters, the argument is similar.

We assert that at any point of T the trajectory leaves D. For it either leaves or
enters because, T being transverse to the flow, it crosses the boundary of D. The
set of points in T whose trajectory leaves I} is a nonempty open subset T'_ C T, by

4 ¥

FIG. C
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coutinity of the flow; the set T, C T where trajectories enter 2 is also open in
T osinee T oand T, oare digjoint and T = T_u Ty, it follows from connectedness
of the interval that T, must be empty.

1t follows that the complement of D is positively invariant. For no trajectory
can enter £ at a point of T; nor can it cross B, by uniqueness of solutions.

Therefore ¢e(3n) ¢ R? — D for alt £ > 0. In particular, 42 ¢ § — T.

The set 8 — T is the union of two half open intervals /o and [, with g, an end-
point of Io and y an endpoint of I1. One can draw an arc from a point ¢,(y) (with
€ > 0 very small) to a point of [, without crossing Z. Therefore I, is outside D.
Similarly 7, is inside D. It follows that 3 € [, since it must be outside D. This
shows that 3 is between gy and 3. in I, proving Proposition 1,

We come to an important property of limit points.

Proposition 2 Let y € L.{z) U L.{z). Then the trajeclory of y crosses any local
section al nof more than one potnt,

Proaf. Suppose y and y, are distinct pointa on the trajectory of y and Sisa
loeal section containing, ¥y and ya. Suppose ¥ € Lo{x)} (the argument for L.(z} is
similar). Then y € L.(x), £ = 1, 2. Let V) be flow boxes at i defined by some
intervals.fy C S; we assume J, and J, disjoint (Fig. D). The trajectory of = enters
V' infinitely often; hence it crosses J, infinitely often. Hence there is a sequence

Gx,blpa'!;binaljbljl-'r

5

X
'_/_-_ ')’|
Vin

FIG. D
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which is monotone along the trajectory of x, with @, € J, ba € Sy, n = 1,2, . ...
But such a sequence cannot be monotone along S since J, and J; are disjoint, con-
tradicting Proposition 1.

PROBLEMS

1. Let 4 C R?be the annujus
A={zc Rl <|z] <2).

Let f be a C! vector field on a neighborhood of A which points inward along
the two boundary circles of A. Suppose also that every radial segment of A
is loeal section (Fig. E). Prove there is a periodic trajectory in 4.

FIG. E

{(Hint: Let S be a radial segment. Show that if 2 ¢ S then $.(z) £ S for a
smallest ¢ = £(z) > 0. Consider the map & — 8 given by 2 ¢, (2).)

2. Show that a closed orbit of a planar C! dynamical system meets a local section

in at most one point.

3. Let W C R? be open and let f: W — R? be a (" vector field with no equilibria.

Let J C W be an open line segment whose end points are in the boundary of

W, Suppose J is a global seclion in the sense that f is transverse to J, and for

any £ € W there exists &« < 0 and ¢ > 0 such that ¢,(z) £ J and ¢.(z) £ J.

Prove the following statements.

(a} For any z € J let r(z) € R be the smallest positive number such that
F{z) = ¢rn £ J; this map F:J —J is C' and has a C* inverse.

(b} A point z ¢ J lies on a closed orbit if and only if F(z) = z.

{c) Every limit set is a closed orbit.
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4. Let r be a recurrent point of a C' planar dynamieal system, that is, there is &
sequence £, — 4 o such that

b {z) — .

(a) Prove that either r is an equilibrium or z lies on a closed orbit.
(b) Show by example that there can be a recurrent point for higher dimen-
sional systems that is not an equilibrium and does not lie on a closed orbit.

§4. The Poincaré-Bendixson Theorem

By a closed orbil of a dynamical system we mean the image of & nontrivial periodic
solution. Thus a trajectory v is a closed orbit if v is not an equilibrium and
¢, (x) = z for some z ¢ v, p #= 0. It follows that ¢.,(y) = yforally € v, n =0,
+1, +2,....

In this section we complete the proof of a celebrated result:

Theorem (Poincaré&DBendixson) A nonempty compacl limil sel of @ C' planar
dynamical system, which contatns no equilibrium point, is a closed orbil.

Proof. Assume L.(x) is compact and y € L.{z). {The case of a-limit sets iz
similar.) We show first that the trajectory of y is a closed orbit.

Since y belongs to the compact invariant set L.(z) we know that L,{y) is a
nonempty subset of L,{z). Let 2 € L.(y); let § be a local section at 2z, and N a
flow box neighborhood of z about some open interval J, z € J C 8. By Proposition
2 of the previous section, the trajectory of ¥ meets S at exactly one point. On the
other hand, there is a sequence {, — = such that ¢..{(y) — ¢; hence infinitely many
¢..(y) belong to V, Therefore we can find r, 8 € R such that r > s and

{y) € SNV, &ly) € SnV.

It follows that ¢.(y) = &.(y); hence ¢,_.{y) = y, r — 5 > 0. Since L.(x) contains
no equilibrium, y belongs to closed orbit.

It remains to prove that if v is a closed orbit in L.(z) then v = L.(x). It is
enough to show that

limd(¢.(x),v) =0,

where d(¢:(x), v} is the distance from z to the compact set v (that is, the distance
from ¢,(x) to the nearest point of ¥).
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Let S be a local section at z € v, 8o small that S ny = z. By looking at & flow
box V. near z we see that there is 8 sequence £, < #; < - -- such that

é.(z) € §,
‘..(I) _’Z,
d(z) €8 for o<t <y, n=1,2,....

Put z, = ¢,.(z). By Proposition 1, SBection 3, z. — z monotonically in 8.
There exists an upper bound for the set of positive numbers L,y — £,. For sup-
pose ¢r(2) = 2z, A > 0. Then for z. sufficiently near 2, ¢1(z.) € V, and hence
h«u(zn) E S
for some ¢ € [—¢, ¢]. Thus

t-+i_tn SA+¢
Let # > 0. From Chapter 8, there exists 8§ > 0 such that if | z. — u| < & and
|t] € X+ ethen | ¢fza) — ¢u(u)| < 8.
Let ng be 8o large that | z. — z| < & forall v 2 n,. Then
[ () — u(2)} | <8
if(t] €A+ eand n > ne. Now let ¢ > £, Let n > nq be such that

Lh<t< ity
Then

d(#:(2), v) S [ u(2) — ¢eu (2}
= | ¢rnlza) — $-el2)]
<8
aince | ¢ — £, | < A + «. The proof of the Poincaré-Bendixson theorem is complete.

PROBLEMS

1. Consider a C* dynamical system in R? having only a finite number of equilibria.
(a) Show that every limit set is either a closed orbit or the union of equilibria
and trajectories ¢,(z) such that lim,.. ¢.{x) and Lim,. . ¢.(z) are
equilibria.
(b) Show by example (draw a picture) that the number of distinct trajectories
in L,(z) may be infinite.
2. Let v be a closed orbit of a C* dynamical system on an open set in R%:. Let A
be the period of v. Let {v.} be a sequence of closed orbita; suppose the period
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of v, is Aa. If there are points z. € v, such that z, — z € ¥, prove that A, — .
{ This result can be false for higher dimensional systems. It is true, however, that
if Aa — i, then u is an integer multiple of A.)

§5. Applications of the Poincaré-Bendixson Theorem

We continue to suppose given a planar dynamical system.

Definition A [imit cycle is a closed orbit v such that v C Lu(z) or ¥ C La(z)
for some z § ¥. In the first case v is called an w-limit cycle; in the second case, an
a-limit cycle.

In the proof of the Poincaré—Bendixson theorem it was shown that limit cycles
enjoy a certain property not shared by other closed orbits: if v is an w-limit cycle,
there exists r ¢ v such that

limd(¢:(z)}, ¥) = 0.

(24 ]
For an o-limit cycle replace © by — . Geometrically this means that some tra-
jectory spirals toward v as { — = (for w-limit cyecles) or as t — — « (for a-limit
cveles). See Fig. A.

FIG. A. v is an w-limit cycle.

Y

Limit cycles possess a kind of one-sided stability. Suppose v is an w-limit cycle
and let ¢,(2) spiral toward v ast — <. Let S be a local section at z € . Then there
will be an interval T (C S disjoint from v bounded by ¢,(z), ¢4(z), with & < 4
and not meeting the trajectory of z for & < ¢ < 1; (Fig. B). The region A bounded
by v, T and the curve

fodz) o L S 1}
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FIG. B

Y

is positively invariant, as is the set B = A — . It is easy to see that ,(y) spirals
toward v for all ¥ € B. A useful consequence of this is

Proposition 1 Let v be an w-limit cyele. If v = L.(z),z § v then z has a neighbor-
hood V such that v = L.(y) for all y € V. In other words, the sel

A=lylvy=Ldip) - v

18 open.

Proof. Yor sufficiently large t > 0, ¢,(z) is in the interior of the set A deseribed
above. Hence ¢,(y) € A for y sufficiently close to z. This implies the proposition.

A similar result holds for a-limit cycles.
Theorem 1 A nonempty compact sel K that iz positively or negatively invariani
contains either a limit cycle or an equilibrium.

Proof. Suppose for example that K is positively invariant. If z € K, then L.(z)
is & nonempty subset of K; apply Poincaré-Bendixson.

The next result exploits the spiraling property of limit cycles.

Proposition 2 Let v be a closed orbit and suppose that the domain W of the dynamical
syslem includes the whole open region U enclosed by v. Then U contains either an
equiltbrium or a limil cycle.
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Proof. Let D be the compact set U U+. Then D is invariant since no trajectory
from U can cross y. If I/ contains no limit cycle and no equilibrium, then, for any
ze U,

Lu(z) = La(x) = v

by Poincaré-Bendixson. If S is a local seetion at a point z € «, there are sequences
{, — =, 5, — — = such that

¢;.(I) E ‘Sr ¢fn(z) 2,

and
$.(z) € 8, b, (2}~ 2

But this leads to a contradiction of the proposition in Section 3 on monotone
Sequences,

Actually this last result can be considerably sharpened:

Theorem 2 Let v be a closed orbil enclosing an open set U contained in the domain
W of the dynamical system. Then U contains an equiltbrium.

Proof. Suppose U contains no equilibrium, If z, — z in U/ and each z, lies
on a closed orbit, then z must lie on a closed orbit. For otherwise the trajectory of
z would spiral toward a limit cycle, and by Proposition 1 so would the trajectory
of some z..

Let A > 0 be the greatest lower bound of the areas of regions enclosed by closed
orbits in U, Let {va} be a sequence of closed orbits enclosing regions of areas A,
such that lima.,, A, = 4. Let z, € v, Since yU U is compact we may assume
2o — 2z ¢ U'. Then if U contains no equilibrium, z lies on a closed orbit 8 of area
A (8. The usual section argument shows that as n — «, v, gets arbitrarily close
to 8 und henee the area A, — A (8}, of the region between v, and 8, goes to 0. Thus
Ay = A,

We have shown that if U contains no equilibrium, it contains a closed orbit 8
enclosing a region of minimal area. Then the region enclosed by 8 contains neither
an equilibrium nor a closed orbit, contradieting Proposition 2,

The following result uses the spiraling properties of limit cyeles in a subtle way.

Theorem 3 Lel H be a first inlegral of a planar C' dynamical system (that is, H
15 a real-valued function thet i3 constant on trajeclories). If H 1s not constant on any
open sel, then there are no lim# cycles. '

Proof. Suppose there is a limit cycle v; let ¢ € R be the constant value of H
on v. If (1) is a trajectory that spirals toward «, then H(z({)) = ¢ by continuity
of H. In Proposition 1 we found an open set whose trajectories spiral toward ; thus
H is constant on an open set.
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PROBLEMS

1. The celebrated Brouwer fized point theorem states that any continuous map f
of the closed unit ball

Dr=|zeR||z|=1])

into itselfl has a fixed point (that is, f{z) = z for some z).

(a) Prove this for n = 2, assuming that f is C*, by finding an equilibrium for
the vector field g(z) = f(z) — z.

{b) Prove Brouwer's theorem for n = 2 using the fact that any continuous
map is the uniform limit of C!* maps.

2. Let f be a C! vector field on a neighborhood of the annulus

A=zcRl<|z] <2l

Suppose that f has no zeros and that f is transverse to the boundary, pointing

inward.

(a) Prove there is a closed orbit. (Notice that the hypothesis is weaker than
in Problem 1, Section 3.}

(b) If there are exactly seven closed orbits, show that one of them has orbitas
spiraling toward it from both sides.

3. Let f: R* = R? be a " vector field with no zeros. Suppose the flow ¢, generated

by f preserves area (that is, if . is any open set, the area of ¢,(S) is independent
of t). Show that every trajectory is a closed set.

4. Let f be a ' vector field on a neighborhood of the annulus A of Problem 2.

Suppose that for every boundary point z, f(x) iz & nonzero vector tangent to

the boundary.

{a) Sketch the possible phase portraits in A under the further assumption
that there are no equilibria and no closed orbits besides the boundary
circles. Include the case where the boundary trajectories have opposite
orientations,

{b}) Suppose the boundary trajectories are oppositely oriented and that the
flow preserves area. Show that A contains an equilibrium,

5. Let f and ¢ be C" vector fields on R? such that {f(z), g{z)) = Ofor all z. If f

has a elosed orbit, prove that g has a zero.

6. Let f be a C! vector field on an open set W C R* and H: W — R & (? function

such that
DH(z)f(z) =0

for all z. Prove that:
() H is constant on solution curves of 2’ = f{z);
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th1 DH(x) = 0il x belongs to a limit cycle;
ter  If r belongs to a compact invariant set on which DH is never 0, then z
lics on & closed orbit.

Notes

P. Hartman's Ordinary Differential Egqualions [9], & good but advanced book,
covers extensively the material in this chapter.

It should be noted that our discussion implicitly used the fact that a closed curve
in R? which does not intersect itself must separate R? into two connected regions, a
bounded one and an unbounded one. This theorem, the Jordan curve theorem, while

naively obvious, needs mathematical proof. One can be found in Newman’s Topology
of Plane Sets {17].

Chapter ]. 2

Ecology

In this chapter we examine some nonlinear two dimensional systems that have
been used as mathematical models of the growth of two species sharing a common
environment. In the first section, which treats only a single species, various mathe-
matical assumptions on the growth rate are discussed. These are intended to capture
mathematically, in the simplest way, the dependence of the growth rate on food
supply and the negative effects of overcrowding.

In Section 2, the simplest types of equations that model a predator-prey ecology
are investigated: the object is to find out the long-run qualitative behavior of tra-
jeetorics. A more sophisticated approach is used in Section 3 to study two competing
species. Instead of explicit formulas for the equations, certain qualitative assump-
tions are made about the form of the equations. (A similar approeach to predator
and prey is outlined in one of the problems.) Such assumptions are more plausible
than any set of particular equations can be; one has correspondingly more confidence
in the conelusions reached.

An interesting phenomenon observed in Section 3 is bifurcation of behavior.
Mathematically this means that a slight quantitative change in initial conditions
leads to a large qualitative difference in Jong-term behavior (because of a change of
w-limit sets ). Such bifurcations, also called “catastrophes,” occur in many applica-
tions of nonlinear systems; several recent theories in mathematical biology have
been based on bifurcation theory.

§1. One Species

The birth rate of a human population is usually given in terma of the number
of births per thousand in one year. The number one thousand is used merely to
avoid decimal places; instead of a birth rate of 17 per thousand one could just as
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well speak of 0.017 per individual {(although this is harder to visualize). Similarly,
the period of one year is also only a convention; the birth rate could just as well
be given in terms of & week, a second, or any other unit of time. S8imilar remarks
apply to the death rate and to the growth rate, or birth rate minus death rate. The
growth rate is thus the net change in population per unit of time divided by the
total population at the beginning of the time period.

Suppose the population y(!) at time ¢ changes to ¥ + Ay in the time interval
[t, ¢ + At]. Then the (average) growth rate is

Ay
y(t) ar’

In practice y(t) is found only at such times i, &, . . . when population is counted;
and its value is a nonnegative integer. We assume that y is extended (by interpola-
tion or some other method ) to a nonnegative real-valued function of a real variable.
We assume that y has a continuous derivative.

Giving in to an irresistible mathematical urge, we form the limit

ay ¥y
im— = —=,
so ¥ ALy (2)
This function of ¢ is the growth rate of the population at time ¢
The simplest assumption is that of a constant growth rate «. This is the case
if the number of births and deaths in a small time period At have a fixed ratio to
the total population. These ratios will be linear functions of At, but independent

uf the size of the population. Thus the net change will be ay Af where « is a constant;
henee

d
a= = 18V

integrating we obtain the familiar formula for unltmited growth:

y{t) = e=y(0).

The growth rate can depend on many things. Let us assume for the moment that
it depends only on the per capita food supply ¢, and that ¢ > 0 is constant. There
will be 8 minimum oy necessary to sustain the population. For ¢ > ay, the growth
rate is pusitive; for ¢ < gy, it 18 negative; while for ¢ = gy, the growth rate is 0. The
simplest way to ensure this is to make the growth rate a linear function of ¢ — ap:

a = afs — ay), a>0.

Then
dy
(1 _ ]
at =a(e — w)y(l).
Here a und oy ure constants, dependent only on the species, and ¢ is 8 parameter,

§1. ONE SPECIES 257

dependent on the particular environment but constant for a given ecology. (In
the next section ¢ will be another species satisfying a second differential equation.)
The preceding equation is readily solved.:

y(t} = explia(c — a0} Jy (0).

Thus the population must increase without limit, remain constant, or approach
0 as a limit, depending on whether ¢ > 00, ¢ = a4, OF & < vo. If we recall that actu-
ally fractional values of y (1) are meaningless, we see that for all practical purposes
“y(t) — 0" really means that the population dies ocut in a finite time.

In reality, a population ecannot increase without limit; at least, this has never
been observed! It is more realistic to assume that when the population level exceeds
a certain value n, the growth rate ie negative. We call this value 4, the limiting
population. Note that y iz not necessarily an upper bound for the population. Rea-

sons for the negative growth rate might be insanity, decreased food supply, over-
crowding, smog, and so on. We refer to these various unspecified causes as social
phenomena. (There may be positive social phenomena; for example, a medium size
population may be better organized to resist predators and obtain food than a
small one. But we ignore this for the moment.)

Again meking the simplest mathematical assumptions, we suppose the growth
rate is proportional to n — y:

a=cn—y) ¢ > 0 a constant.
Thus we obtain the equation of limiled growth:

d
@) df clo—y)yi €¢>0, >0

Note that this suggests

Ay

o = o - et

This means that during the period At the population change is ey? At less than it
would be without social phenomena. We can interpret cy® as & number propor-
tional to the average number of encounters between y individuals. Hence cy?is a
kind of social friction.

The equilibria of (2) occur at y = 0 and y = ». The equilibrium at » is asymptot-
ically stable (if ¢ > 0) since the derivative of ¢(n — y)y at n is —cn, which is
negative. The basin of nis |y | y > 0} since y(t) will increase to 5 as a limit if 0 <
¥{0) < n, and decrease to 5 as a limit if y < y{0). (This can be seen by considering
the sign of dy/dt.)

A more realistic model of a single speties is

= M(y)y.

Here the variable growth rate M is assumed to depend only on the total population
y.
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It is plausible to assume as before that there is a limiting population # such that
Mi{y) =0 and M(y) < 0 for y > n. If very small populations behave like the
unlimited growth model, we assume M (0) > 0.

PROBLEMS

1. A population y(t) is governed by an equation

=My
Prove that:
(a) equilibria oceur at y = 0 and whenever M (y) = 0,
(b} the equilibrium at y = 0 is unstable;
e} an cquilibrium £ > 0 is asymptotically stable if and only if there exists
¢ > 0 such that A/ > 0 on the interval [§ — ¢, ¢) and M < 0 on
(5 &+ ]

2. Suppose the population of the United States obeys limited growth. Compute
the imiting population and the population in the year 2000, using the following
data:

Year Population

1950 150,697,361
1960 179,323,175
1970 203,184,772

§2. Predator and Prey

We consider a predator species y and its prey z. The prey population is the total
food supply for the predators at any given moment, The total food consumed by
the predators (in a unit of time) is proportional to the number of predator—-prey
encounters, which we assume proportional to zy. Hence the per capita food supply
for the predators at time t is proportional to £ (). Ignoring social phenomena for
the moment, we obtain from equation (1) of the preceding section:

y' = a(z — o)y,
where ¢ > 0 and oy > 0 are constants. We rewrite this as
y = (Czx — D)y; C>0 Db>0

Consider next the growth rate of the prey. In each small time period Al, a certain
number of prey are eaten. This number is assumed to depend only on the two popu-
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lations, and is proportional to Al; we write it as f(r, y) Af. What should we postulate
about f{x, y)?

It is reasonable that f{x, ¥) be proportional to ¥: twice as many cats will eat
twice as many mice in a small time period. We also assume f(z, ¥} is proportional
to r: if the mouse population is doubled, a eat will come across a mouse twice as
often. Thus we put f(z, y) = Bry, 8 a positive constant. (This assumption is less
plausible if the ratio of prey to predators is very large. If a cat is placed among a
sufficiently large mouse population, after a while it will ignore the mice.)

The prey species is assumed to have & constant per capita food supply available,
sufficient to increase its population in the absence of predators. Therefore the prey
is subject to a differential equation of the form

' =Ar — Bry
In this way we arrive at the predalor-prey equations of Volterra and Lotka:

(1) ' = (A - By)z,

A, B, C,D>0
y' = (Cz — D)y.

This system has equilibria at (0, 0) and z = (D/C, 4/B}. It is easy to see that
{0, 0) is a saddle, hence unstable. The eigenvalues at (D/C, A/B) are pure imagi-
nary, however, which gives no information about stability.

We investigate the phase portrait of (1) by drawing the two lines

These divide the region z > 0,y > 0into four quadrants (Fig. A). In each quadrant
the signs of z’ and y' are constant as indicated.

The positive z-axis and the positive y-axis are each trajectories as indicated in
Fig. A. The reader can make the appropriate conclusion about the behavior of the
population.

Otherwise each solution curve (z(f}, y(!)) moves counterclockwise around z
from one quadrant to the next. Consider for example a trajectory (z{}, y(f))
starting at o point

2(0)=u>g>0,

A
= Zson
y{0) v>p>

in quadrant I. There is 2 maximal interval [0, r) = J such that {z(t), y(1)) €
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quadrant I for 0 < ¢ < r (perhaps r = o). Put
A—Br=—r<0,
Cu—D=8s>0

As long as & € J, z(1) is decreasing and y{t) is increasing. Hence
r

j—tlogx(t) - ’zi =4 -By< -,

-

w2

g—tlugy(t) ===0z—-D2>s

= |

Therefore

) <z(t) <ue,

i oD

(3) 2 y(t) = ve,

ECOLOGY

for 0 < ¢ < r. From the second inequality of (2) we see that r is finite. From (2)
and (3) we see that for £ € J, (z(2), y(l)) is confined to the compact region

%S z(l) <,

A< (t) < ve
5 S () Sver.
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Therefore {Chapter 8) (z(r), ¥{r)) is defined and in the boundary of that region;
since z(l} is decreasing, z(r) = D/C. Thus the trajectory enters quadrant II.
Similarly for other quadrants.

We cannot yet tell whether trajectories epiral in toward z, spiral toward a limit

cyele, or spiral out toward “infinity” and the coordinate axes. Let us try to find a
Liapunov funetion H.

Borrowing the trick of separation of variables from partial differential equations,
we look for a function of the form

H{z,y) = F(z) 4+ G{y).
We want H < 0, where

. d
H(‘tl y) = &EH(I(t)r y(t))

dF | dG
—dxz+dyy'

Hence
. dF daG
Hiz, y) = td—z(A —By)+y@ (Cz — D).

We obtain ¥ = 0 provided

zdF/dz _ Y dG/dy
Cz—D By—4A

Since £ and y are independent variables, this is possible if and only if

zdF/dr  ydG/dy
Cz—D By -4

= constant.

Putting the constant equal to 1 we get

dF D
4) —ec-t,
e _ . _ A
dy v’

integrating we find
F(z) =Cz— Dlogz,

G(y) =By — Alogy.
Thus the funetion

H(z,y)=Cx— Dlogz+ By — Alogy,

defined for r > 0, y > 0, is constant on solution curves of (1).
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By considering the signs of aH /8 and 8H/dy it is easy to sce that the equilibrium
z = (D/C, A/B) is an absolute minimum for 4. It follows that H (more precisely,
H — H(2)) is a Liapunov function (Chapter 9). Therefore z 1s a slable equiltbriwm.

We note next that there are no l1mil cycles; this follows from Chapter 11 because
H 1z not constant on any open set. :

We now prove

Theorem 1 Every trajeclory of the Vollerra-Lotka equations (1) s a elosed orbil
{crcept the equilibrium z and the coordinale ares}).

Proaf. Consider a point w = (u, v), u > 0, v > 0; w # z. Then there is a
doubly infinite sequence -+ - < £, <ty < &) < - -+ such that ¢, (w) is on the line
r=0C and

{,— @ as n— o,

l, — — a8 n— — o,

If t is not in a closed orbit, the points ¢,, (w) are monotone along the line x = D/C
(Chaptoer 11). Since there are no limit cycles, either

$r,(w) —* 2 as n- o,

or

P fw) =2 a3 n— — o,

Since # is constant on the trajectory of w, this implies that H(w) = H(z). But this
contradicts minimality of H (2).

14

(0, Q) x
F1(. B, Phase portrait of (1).
We now have the following {(schematie) phase portrait {Fig. B). Therefore, for

any miven initial populations (£(0), ¥(0)) with 2(0) = 0, and y(0) = 0, other
than . the populations of predator and prey will oscillate cyclically.
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Neo matter what the numbers of prey and predator are, neither species will die
out, nor will it grow indefinitely. On the other hand, except for the state z, which
is improbable, the populations will not remain constant.

Let us introduce social phenomena of Section 1 into the equations (1). We obtain
the following predator—prey equations of spectes with limited growth:

() ' = (A — By ~ 1)z,
¥ = (Cx — D — uy)y.

The constants A, B, C, D, A, u are all positive.

We divide the upper-right quadrant ¢ (r > 0, ¥ > 0) into sectors by the two
lines

L: A—By—rxx=0
M: Cx—D— uy=0.
Along these lines 2’ = 0 and ¥’ = 0, respectively. There are two possibilities, ac-

cording to whether these lines intersect in @ or not. If not (Fig. C), the predators

die cut and the prey population approaches its limiting value A /A (where L meets
the z-axis).

Al X
F1G. C. Predators — 0; prey — A/\

This is because it is impossible for both prev and predators to increase at the
same time. If the prey is above its limiting population it must decresse and after
a while the predator poputation also starts to decrease (when the trajectory crosses
). After that point the prey can never increase past 4 /A, and so the predators
continue to decrease. If the trajectory crosses L, the prey increases again (but not
past 4/%), while the predators continue to die off. In the limit the predators dis-
appear and the prey population stabilizes at A /).
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FIG. D

Suppose now that L and M cross at a point z = (£, §) in the quadrant Q (Fig,.
D); of course z is an equilibrium. The linear part of the vector field (3) at z is

[— Af —E.f]
C§ -wyd
The characteristic polynomial has positive coefficients. Both roots of such a poly-
nomial have negative real parta. Therefore z 18 asymplotically stable.

Nate that in addition te the equilibria at, z and (0, 0, there is also an equilibrium,
a saddle, at the intersection of the line . with the z-axis.

It is not easy to determine the basin of z; nor do we know whether there are any
limit eyeles. Nevertheless we can obtain some information.

Let I meet the r-axis at (p, 0) and the y-axis at {0, ¢). Let T be a rectangle
whose corners are

©00, @0 0§ B

with § > p, § > ¢, and {5, §) € M (Fig. E). Every trajectory at a boundary point
of T either enters T or is part of the boundary. Therefore T is positively mvarumt
Every point in @ is contained in such a rectangle.

By the Poincaré-Bendixson theorem the w-limit set of any point (z, y)} in T, with
z > 0, 4y > 0, must be a limit cycle or one of the three equilibria (0, ), z or (p, 0).
We rule nut (0, 0) and (p, 0) by noting that 2’ is increasing near (0, 0); and y' is
increasing near (p, 0). Therefore Ly{u) is either z or a limit cycle in I". By a con-
sequence of the Poincaré-Bendixson theorem any limit ¢ycle must surround z.

We observe further that any such rectangle T contains all limit eycles. For a
limit eyele (like any trajectory) must enter T, and I' is positively invariant.

Fixing (8, §) as above, it follows that jfor any fnitial values (z(0), y(0)), there
extsis to > 0 such that

) <h yt)<qg i (26
Omne can also find eventual lower bounds for z{t) and y ().
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{0, q) _ / r
(7

(0,0} (p, 0}
FIG. E

A~

We also see that in the long run, a trajectory either approaches z or else spirals
down to a limit cytie.

From a practical standpoint a trajectory that tends toward z is indistinguishable
from z after a certain time. Likewise a trajectory that approaches a limit cycle ¥
can be identified with v after it is sufficiently close.

The conclusion is that any ecology of predators and prey which obeys equalions (2)
eventually seitles down (o either @ constant or periodic population. There are absolute
upper bounds that no population can exceed #n the long run, no matler what the initial
populations are.

PROBLEM

Show by examples that the equilibrium in Fig. D can be either a spiral sink or a
node. Draw diagrams.

§3. Competing Species

We consider now two species z, ¥ which compete for a common food supply.
Instead of analyzing specific equations we follow a different procedure : we consider
a large class of equations about which we assume only a few qualitative features. In
this way considerable generality is gained, and little 15 lost because specific
equations can be very difficult to analyze.
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The equations of growth of the two species are written in the form
(1 =Mz, y)e,
= N{z, ¥y,

where the growth rates M and N are C' functions of nonnegative variables r, y.
The following assumptions are made:

{(a) If cither species increases, the growth rate of the other goes down. Hence

M N
E <0 and 7y < 0.
(b) If either population is very large, neither species can multiply. Hence
there exists X > 0 such that

M(z,y) <0 and N, p) <0 if z2K or y> K.

(c) In the absence of either species, the other has a positive growth rate up to
a certain population and a negative growth rate beyond it. Therefore there are
constants a > 0, b > 0 such that

Vir,0)>0 for r<a and Mz, 0) <0 for z > a,
NG, y) >0 for y<b and NOy) <0 for y > b.

By () ard () each vertical line # x R meets the set g = M ' () exactly once
if0 <z <aandnotatallifl > a By (a) and the implicit function theorem u
is the graph of a nonnegative C" map f: [0, a] — R such that f-'(0) = a. Below
the curve 4, M > 0 and above it M < 0 (Fig. A).

y H=M"(O)
M < Q
M>0
x
FIG. A~

In the same way the set v = N-'(0) is a smooth curve of the form

f(-"—'x y)l T = G(y)}l
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where g: [0, ] —=Ris a nonnegative (" map with g71(0) = b. The function V is
positive to the left of » and negative to the right. .

Suppose u and » do not intersect and that u is below v. Then a phase portrait can
be found in a straightforward way following methods of the previous section. The
cquilibria are (0, 0), (a, 0) and (0, b). All orbits te -nd to one of the three equilibria
but most to the asymptotically stable equilibrium (0, b). See Fig. B.

¥

b

FIG. B

Suppose now that u and » intersect. We make the assumption that uynris a
finite set, and at each intersection point, 4 and » cross transversely, that is, they have
distinet tangent lines. This assamption could be dispensed with but it simplifies
the topology of the curves. Moreover M and N can be approximated arbitrarily
closely by functions whose zero sets have this property. In a sense which can be
made precise, this is a ‘‘generic’’ property. '

The curves z and » and the coordinate axes bound a finite number of connected
open sets in the upper right quadrant: these are sets where 2’ # 0 and y* # 0. We
call these open sets bastc regions (Fig. C). They are of four types:

I: >0 y>0
I ¥<0, y>0;
HI: <0, y <t
IV: >0, y <0
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FIG. C

'.I‘bn boundary B of & basic region B is made up of points of the following types:
points of 4 N v, called vertices; points on  or » but not on both nor on the eoordinate
axes, called ordinary boundary points; and points on the axes.

A vertex is an equilibrium; the other equilibria are at (0, 0), (a, 0), and (0, b).
At an ordmax:y boundary point w € 3B, the vector (z’, y’) is either vertical (f
w E.u) or horizontal (if w € v). It pointa either into or out of B since a has no
vertlcal tangents and » has no horizontal tangents. We call w an inward or oulward
point, of 3B, accordingly,

The following technical result is the key to analyzing equation {1):

Le:pma Let B be a basic region. Then the ordinary boundary points of B are either
all inward or all outward.

Proof. 1f the lemma holds for B, we call B good.

Let p be a vertex of B where 4 and v cross. Then P is on the boundary of four

basic regions, one of each type. Types Il and IV, and t 1 ;
opposite pairs. ! ypea I and 111, are diagonally
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Let 4o C u and v C » be the open ares of ordinary boundary points having p
as a common end point. If z Uy consists entirely of inward or entirely of outward
points of 4B, we call p good for B; otherwise p is bad for B. It is easy to see that if
pis good for B, it is good for the other three basic regions adjacent to p, and similarly
for bad (Fig. D). This is because (z', ¥’} reverses direction as one proceeds along
u OF v past a crossing point. Hence it makes sense to call a vertex simply good or bad.

Bod Good
FIG. D

Consider first of all the region B, whose boundary contains {0, 0). This is of type
I{(z' >0,y > 0).If gis an ordinary point of u Nl 38,, we can connect g to a point
inside B by & path which avoids ». Along such a path y* > 0. Hence (¥, y'} points
upward out of By at g since u is the graph of a funetion. Similarly at an ordinary
point r of v N 3By, (z', y’) points to the right, out of B, at r. Hence B, is good, and
80 every vertex of By is good.

Next we show that if B is a basic region and 9B contains one good vertex p of
u N v, then B is good. We assume that near p, the vector ficld along 3B points into
B; we also assume that in B, z’ < ¢ and g’ > 0. {The other cases are similar.) Let
wo C i ¥ C » be ares of ordinary boundary points of B sdjacent to p (Fig. E). For
example let 7 be any ordinary point of 8B N i and g any ordinary point of po- Then
y' > 0at ¢. As we move along p from g to r the sign of y’ changes each time we cross
». The number of such crossings is even because r and g are on the same side of ».
Hence y’ > 0 at r. This means that (2, ') points up at r. Similarly, " < 0 at
every ordinary point of » N dB. Therefore along u the vector (¢’, y') points up;
along » it points left. Then B lies above p and left of ». Thus B is good.

This proves the lemma, for we can pass from any vertex to any other along &,
starting from a good vertex. Since successive vertices belong to the boundary of a
common basic region, each vertex in turn is proved good. Hence all are good.

As a consequence of the lemma, each basic region, and ils cloaure, ta either posi-
tively or negatively tnvariant.
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FIG. E

What are the possible w-limit points of the flow (1)}? There are no closed orbits.
For a closed orbit must be contained in s basic region, but this is impossible since
z(i) and y(t) are monotone along any solution turve in a basic region. Therefore
all w-limit points are equilibria.

We note also that each trajectory is defined for all { > 0, because any point
lies in a large rectangle T spanned by (0, 0), (2s, 0), (0; wu), (Zo, o) With 2, > a,
¥o > b; such a rectangle is compact and positively invariant (Fig. F). Thus we
have shown:

Theorem The flow ¢, of (1) has the following property: for all p = (z, y), z > 0,
y = 0, the limit

lim ¢:(p)

m

exisls and t3 one of a finile number of equilibria.

We conclude that the populations of two compeling species always tend Lo one of a
finite nwmber of limiting populations.
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/ A

FIG. F

Examining the equilibria for stability, one finds the following results. A vertex
where u and » each have negative slope, but u is steeper, is asymptotically stable
(Fig. G). One sees this by drawing a small rectangle with sides parallel to the axes
around the equilibrium, putting one corner in each of the four adjscent regiona.
Such a rectangle is positively invariant; since it can be arbitrarily small, the equilib-
rium is asymptotically stable. Analytically this is expressed by

2 N‘
slope of y = —%—<slopeofy‘= “A_'<0’
L 1 ]

where M, = aM/3z, M, = aM /3y, and so on, at the equilibrium, from which a
computation yields eigenvalues with negative real parts. Hence we have a sink.

FIG. G

A case by case study of the different ways u and » can cross shows that the only
other asymptotically stable equilibrium is (b, 0} when (b, 0) is above g, or (a, 0)
when (a, 0) is to the right of ». All other equilibria are unstable. For example, ¢
in Fig. H is unstable because arbitrarily near it, to the left, is a trajectory with »
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decreasing; such a trajectory tends toward (0, b). Thus in Fig. H, (0, &) and p
are asymptotically stable, while ¢, r, s and (a, 0) are unstable. Note that r is a
source.

There must be at least one asymplotically stable equiltbrium. 1f (0, b) is not one,
then it lies under x; and if (a, 0) is not one, it lies over u. In that case g and » cross,
and the first crossing to the left of (a, 0) i3 asymptotically stable.

ivery trajectory tends to an equilibrium; it is instructive to see how these
w-limits change as the initial state changes. Let us suppose that ¢ is a saddle. Then
it can be shown that exactly two trajectories a, o' approach g, the so-cailed stable
manifolds of ¢, or sometimes separafrices of g. We concentrate on the one in the
unbounded basic region B, labeled « in Fig. H.

(0,0

FIG. H. Bifurcation of behavior.

All points of B, to the left of « end up at (0, b), while points to the right go to
p. As we move across « this limiting behavior changes radically. Let us consider
this bifurcation of behavior in biological terms.

Let vo, v1 be states in By, very near each other but separated by «; suppose the
trajectory of vy goes to p while that of v, goes to (@, b). The point vy = (zq, yo)
represents an ecology of competing species which will eventually stabilize at p.
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Note that both populations are positive at p. Suppose that some unusual event
oecurs, not accounted for by our model, and the state of the ecology changes sud-
denly from v to ry. Such an event might be introduction of a new pesticide, importa-
tion of additional members of one of the speeies, a forest fire, or the like. Mathe-
matically the event is a jump from the basin of p to that of (0, b).

Such a change, even though quite small, is an ecological catastrophe. For the
trajectory of v; has quite a different fate: it goes to (0, b) and the z species is wiped
out!

Of course in practical ecology one rarely has Fig. H to work with. Without it, the
change from v, to #; does not seem very different from the insignificant change from
o to a near state v, which also goes to p. The moral is clear: in the absence of com-
prehensive knowledge, a deliberate change in the ecology, even an apparently minor
one, is a very risky proposition.

PROBLEMS

1. The equations

]
I

22— —y),

¥ =y3 —2r—y)

satisfy conditions (a) through (d) for competing species. Explain why these
equations make it mathematically possible, but extremely unlikely, for both
species to suryive.

3]

Two species z, y are in symbiosis if an increase of either population leads to an
increase in the growth rate of the other. Thus we assume

=Mz, y)x
. (z20,y20)
¥ =Ny
with
M aN
il >0 and > 0.
ay dr

We also suppose that the total food supply is limited; hence for some 4 > 0,
B > 0 we have

Mz, y) <0 if r> 4,
Nz, y)<0 if y> B.
If both populations are very small, they both inerease; hence

M©O,0) >0 and N{©,0) >0
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Assuming that the intersections of the curves M-1(0), N-'(0) are finite, and

all are transverse, show that:

{a) every trajectory tends to an equilibrium in the region 0 < z < 4, 0 <
¥y < B;

{b) there are no sources;

(e) there is at Jeast one sink;

(d) if aM/dx < 0 and aN /9y < 0, there is a unique sink z, and z = L, (x, y}
forallz > 0,y > 0.

3. Prove that under plausible hypotheses, two mutually destructive species can-
not coexist in the long run.
1. 1.ty and z denote predator and prey populations. Let
=Mz, y)z,
v =Ny
where M and N satisfy the following conditions.
(i) If there are not enough prey, the predators decrease. Hence for some
b>0 '
Nz, y) <0 if z<b.
(i) An incremse in the prey improves the predator growth rate; hence
aN/azx > 0.
(i) In the absence of predators a smali prey population will increase; hence
M0, 0) >0
{iv) Beyond a certain size, the prey population must decrease; hence there
exists A > 0 with M (2, y) < 0if z > A.
{v) Any increase in predators decreases the rate of growth of prey; hence
aM /ey < 0.
(vi} The two curves M~-1(0), N-'(0) intersect transversely, and at only a
finite number of points.

Show that if there is some (u, v) with M(u, v) > 0 and N{u, v) >0
then there is either an asymptotically atable equilibrium or an w-limit cycle.
Moreover, if the number of limit cycles is finite and positive, one of them must
have orbits spiraling toward it from both sides.

5. Show that the analysis of equation (1) is essentially the same if (¢) is replaced
by the more natural assumptions: M (0,0) > 0, N(,0) > 0,and M (2,0) < 0
forr > A, N0, y) <O0fory > B.

Notes

There is a good deal of experimental and observational evidence in support of
the general conclusions of this chapter-~that predator-prey ecologies oscillate
while competitor ecologies reach an equilibrium. In fact Volterra’s original study
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was inspired by observation of fish populations in the Upper Adriatic. A discussion
of some of this material is found in a paper by E. W. Montroll et el., *‘On the Volterra
and other nonlinear models” [16]. See also the book The Struggle for Exristence by
U. D’Ancona [4].

A very readable summary of some recent work is in “‘The struggle for life, I"
by A. Rescigno and I. Richardson [217]. Much of the material of this chapter was
adapted from their paper.

A recent book by René Thom [24 ] on morphogenesis uses very advanced theories
of stability and bifurcation in comstructing mathematical models of biological
processes.



Chapter 13

Periodic Attractors

Here we define asymptotic stability for closed orbits of a dynamical system, and
an rspecially important kind called a periodic attractor. Just as sinks are of major

mportanee aong equilibris in models of “physical” systems, so periodic attractors
are the nost important kind of oscitllations in such models. As we shall show in
Clupter 16, such oscillations persist even if the vector field is perturbed.

The main result is that a certain eigenvalue condition on the derivative of the

flow implies asymptotie stability. This is proved by the same method of local sec-
tions used earlier in the Poincaré—Bendixson theorem. This leads to the study of
“discrete dynamical systems” in Section 2, a topic which is interesting by itself.

§1. Asymptotic Stability of Closed Orbits

Let f: W — R~ be a (! vector field on an open set W C R~; the flow of the dif-
ferential equation

(n g = f(z)

is denoted by ¢,

Lot v < W be a closed orbit of the flow, that is, a nontrivial periodic solution
curve. We call v asymplotically stable if for every open set Uy C W, with v C U
there is an open set {7y, v C Ua C Uy such that ¢,(U:) C U, for all ¢t > 0 and

lim d(:(z),v) = 0.

Herc d(x, v) means the minimum distance from z to a point of v.

The closed orbit in the Van der Pol oscillator was shown to be asymptotically
stable. On the other hand, the closed orbits of the harmonic oscitlator are not since
an asymptotically stable closed orbit is evidently isolated from other closed orbits.

§1. ABYMPIOTIC BTABILITY OF CLOSED ORBITS Pri

We say a point z ¢ W has asymplolic period » € R if
lim | ¢y o(3) — ¢e(z)| = 0.

o d

Theorem 1 Let v be an asymplotically stable closed orbit of period . Then v has a
netghborhood U (C W such that every point of U has asymplotic period X,

Proaof. Let U be the open set U; in the definition of asymptotically stable with
Wt = U, Tlet 2 € U and fix ¢ > 0. There exists § 0 < § < ¢, such that if z € v
and | ¥ — 2| < & then | ¢a{y) — #a(2}| < ¢ {(by continuity of the flow}. Of course
#(2) = z Since d($(z), v} — 0 as { — «, there exists &, > 0 such that if ¢ > &,
there is & point z, € ¥ such that | ¢,(2) — z,| < §. Keeping in mind ¢,(z;) = z,
we have for ¢ > §:

! ernilz) — ¢I(3’)l < ! éade(z) — ¢l(zt)[ + l e (z) — ﬁ((z)!
<e+ 8 < 2e.
This proves the theorem.

The significance of Theorem 1 is that after a certain time, trajectories near an
asymptotically stable closed orbit behave as if they themselves had the same period
as the closed orbit.

The only example we have seen of an asymptotic closed orbit oceurs in a two
dimensional system. This is no accident; planar systems are comparatively easy to
analyze, essentially because solution curves locally separate the plane,

The theorem below is analogous to the fact that an equilibrium £ is asymptotically
stable if the eigenvalues of Df(£) have negative real part. It is not as convenient
to use since it requires information about the solutions of the equation, not merely
about the vector field. Nevertheless 1t is of great importance.

Theorem 2 Lel v be a closed orbit of period ) of the dynamical system (1), Lelp € 4.
Suppose that n — 1 of the eigenvalues of the linear map Déy(p): E — E are less than
1 in absolute value, Then vy is asymplotically stable.

Some remarks on this theorem are in order. First, it assumes that ¢, is differenti-
able. In fact, ¢.(z) is a C* function of (¢, x); this is proved in Chapter 16. Second,
the condition on D¢y (p) is independent of p € v. For if ¢ € v is a different point,
let r € R be such that ¢,.ip) = ¢. Then

Dén(p) = D(¢itrde) (p)
= D¢.(p)'Dér(q) Dé.(p),

which shows that De, (p) is similar to D¢»{q). Third, note that 1 is always an eigen-
value of D¢, {p) since

Den(p)f(p) = J(p).
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The eigenvalue condition in Theorem 2 is stronger than asymptotic stability.
If it holds, we call v & periodic aitractor. Not only do trajectories near a periodic
attractor v have the same ssymptotic period ae v, but they are asymptotically
“in phase” with . This is stated precisely in the following theorem.

Theorem 3 Let v be a periodic atiractor. If lim,. . d(¢(2), ¥) = 0, then there
is @ unique poinl z € v such that im .. { ¢:(z) — &:(2)| = 0.

"This means that any point sufficiently near to ¥ has the same fate as a definite
point of . . '

It can be proved (not easily) that the closed orbit in the Van der Pol oscillator
is a periodic attractor (see the Problems}.

The proofs of Theorems 2 and 3 occupy the rest of this chapter. The‘proof of
Theorem 2 depends on a local section S to the flow at p, analogous to those in Chap-
ter 10 for planar flows: S is an open subset of an (n — 1)-dimensional subapace
transverse to the vector field at p. Following trajectories from one point of S to
anather, defines a C! map h: So — S, where S, is open in § and contains p. We call
h the Poincaré map. The following section atudies the “‘discrete dynamical system"”
h: 8 — &. In particular p € 8, is shown to be an asymptotically stable fixed point
of h, and this easily implies Theorem 2.

PROBLEM

Let ¥ be a closed orbit of period A > 0 in a planar dynamical system 2’ = f(z).
Let p € v.
(a) If

] Det D#x(P)l < lr

then v is a periodic attractor, and conversely.
(b) Using the methods of Chapter 10, Section 3, and Liouville's formula (a proof
of Liouville’s formula may be found in Hartman’s book [9])

Y
Det Dga(p) = exp {f Tr Df(ép) dt‘,
0

show that the closed orbit in the Van der Pol oscillator iz a periodic attractor.

§2. Discrete Dynamical Systems

An important example of a discrete dynamical system (precise deﬁnition. later)
is & C' map g: W — W on an open set W of vector space which has & C' inverse
g~: W — W. Such a map i2 called a diffeomorphizm of W, If W represents a “state
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space” of some sort, then g(z) is the state of the system 1 unit of time after it is in
state z. After 2 units of time it will be in state g2(z) = g(g(z)); after n units, in
state ¢"(x). Thus instead of a continuous family of states [#,.(x) } 1 € R} we have
the discrete family {g"(z) | n € Z], where Z is the set of integers.

The diffeomorphism might be a linear operator T; £ — E. Such systems are
studied in linear algebra. We get rather complete information about their structure
from the canonical form theorems of Chapter 6.

Suppose T = ¢4, A € L{E}. Then T is the “time one map” of the linear flow
et If this continuous flow e'4 represents some natural dynamical process, the
discrete flow T" = e is like a series of photographs of the process taken at regular
time intervals. If these intervals are very smali, the discrete flow is a good approxi-
mation to the continuous one. A motion picture, for example, is a discrete flow
that is hard to distinguish from a continuous one.

The analogue of an equilibrium for a discrete system g: E — E is a fired point
z = g(z}. For a linear operator T, the origin is a fixed point. If there are other
fixed points, they are eigenvectors belonging to the eigenvalue 1.

We shall be interested in stability properties of fixed points, The key example is a
{inear contraction: an operator T € L(E)} such that

(n lim Tmx = 0

e

for all z ¢ K. The time one map of a contracting flow is a linear contraction.

Proposition The following slalements are equivalent:

(a) T is a linear contraction,
(b) the eigenvalues of T have absolute values less than 1;
(c) thereisanorm on K, and u < 1, such that

[Tz| < plr|
forallx ¢ K.

Proof. If some real eigenvalue A has absolute value | A} > 1, (1) is not true
if z is an eigenvector for A. If | A| > 1 and X is complex, a similar argument about
the complexification of T shows that T is not a contraetion. Hence (a) implies
(b). That (c) implies (a) is obvious; it remains to prove (b) implies (c).

We embed E in ita complexification £¢, extending T to a complex linear operator
Tc on E¢ {Chapter 4). It suffices to find a norm on E¢ asin (¢) (regarding £c as a
real vector space), for then (¢) follows by restricting this norm to E.

Recall that Ec is the direct sum of the generalized eigenspaces V) of T¢, which
are invariant under T¢. It suffices to norm each of these subspaces; if z = ¥ .,
#» € ¥V, then we define | ] = max{| zx|). Thus we may replace Ec hy V,, or
what is the same thing, assume that 7 has only one eigenvalue X.

A gimilar argument reduces us to the case where the Jordan form of Te has only
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one elementary Jordan block

A
1
For any ¢ > O there is another basis {e, ..., €.} giving T¢ the “eJordan form”
m -
€
B =
L ¢ A

This was proved in Chapter 7. Give E¢ the max norm for this basis:
| 3 e | = maxf| a;[},

where ay, . .., am are arbitrary complex numbers. Then if | A | < 1 and ¢ is suffi-
ciently small, (c) is satisfied. This completes the proof of Proposition 1.

We now define a discrete dynamical system to be a C' map g: W — E where W
is an open set in a vector space E. If W » E, it is possible that g? is not defined at
all points of W, or even at any points of W. (This last case is of course uninteresting
as a dynamical system.)

A fired point & = g(£) of such a system is asymptofically stable if every neighbor-
hood {7 C W of & contains a neighberhood {7, of £ such that g({') C I for
n 2> 0and

lim g~{z) = %
for all x € U,. It follows the Proposition that 0 is asymptotically stable for a
linear contraction.

In analogy with continuous flows we define a sink of a discrete dynamical system
g to mean an eguilibrium (that is, fixed point) at which the eigenvalues of Dg have
absolute value less than 1.

The main result of this section is:

Theorem Let Z be a fixed poinl of a discrete dynamical system g: W — E. If the
eigenvalues of Dg(£) are less than 1 in absolute value, £ is asymplotically stable.

Proof. We may assume # = § € E. Give E a norm such that for some u < 1,

| Dg(O)z| < u|=|
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for all z ¢ E. Let 0 < ¢ < 1 — u. By Taylor’s throrem there is a neighborhood
V C W of 0 so small that if z € V', then

|giz) — Dgiyz| < e|xl
Hence

g(x)| < | Dg(Oyx| + ef x|

pizl ezl

Putting v = u + € < 1 we have | g{x)] < v| z) for £ V. Given a neighborhood
[7 of 0, choose r > 0 s0 small that the ball U’y of radius r about 0 lies in L. Then
Loz} <w |z} forz € Uy hence gnx ¢ U, and gz — 0 as z — = This completes
the proof.

IA

The preceding argument can be slightly modified to show that in the specified
norm,

l9{x) —g(y)| Culz—yl w<Y,
for all z, ¥ in some neighborhood of 0 in W',

§3. Stability and Closed Orbits

We consider again the flow ¢, of a (! vector field f: W - E. Let yC Wbean
closed orbit and suppose 0 ¢ .

Suppose S is a section at 0. If A > 0 is the period of v, then as ¢ increases past
A, the solution curve ¢.{0) crosses .S at 0. If z is sufficiently near 0, there will be a
time 7(x) near A when ¢, (2) crosses S. In this wav a map

g: U — S,
glz) = ppnlx)

is obtained, {' being a neighborhood of 0, In fact, by Section 2 of Chapter 11, there
is such & ' and a unique C* map r: &’ — R such that ¢, {x) € Siorall rin U
and r(0) = i,
Now let U, r be as above and put S; = §n {". Define a C' map
g: 85— S,
glz} = ¢s(2).
Then g is a discrete dynamical system with a fixed point at 0. See Fig. A. We Fall
g a Poincaré map. Note that the Poincaré map may not be definable at all points
of S (Fig. B).

There is an intimate connection between the dynamical properties of the flow
near v and those of the Poincaré map near 0. For example:
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FIG. A. A Poincaré map g: Sy —+ §

Proposition 1 Let g: Sy — S be @ Poincaré map for v as above Let x € S, be such
that limn., g7(x) = 0. Then

lim d(¢.(z), ¥) = 0.

I wy
Proof. Let g"(z) = z4 € S. Since g"*i(z) is defined, z, € So. Put r{za) = As.
Since r, — 0, A, — A (the period of v). Thus there is an upper bound r for
1 2| | # = 0}. By continuity of the flow, as n — =,
l ¢l(zl) - ¢l(0)' -0

uniformly in s ¢ {0, r]. For any ¢ > 0, there exist s({) ¢ [0, r], and an integer
S

FiG. B. The Peincaré map is not defined at y.
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n(t) > 0 such that
¢ (2) = dun{Tan)
and n(t) — = ag{ — = Therefore fort > 0

d(#.(x), v} | &z} — $un (0)]

= I PatnZatn — Patn (O)L
which goes to 0 ast — 0.

Keeping the same notation, we also have:

Proposition 2 If 0 is a sink for g, then v is asymptotically stable.

Proof. Let U be any neighborhood of v in W; we must find U,, & neighborhood
of v in U, such that ¢, (U,) C U forall ¢t > 0 and

lim d(é:(z), v) = 0

forall x ¢ Uy
Let N C U be a neighborhood of v 80 small that if x € N and | | < 2\, then
¢.{x) € U (where \ is the period of ¥).
Let H C E be the hyperplane containing the local section S. Since 0 is a sink,
the main result of Section 2 says that H has a norm such that for some g < 1, and
some neighborhood V of 0 in 8y, it is true that

[¢(@)] S ulz]

for all x ¢ V. Let p > 0 be s0 small that the ball B, in H around 0 of radius p is
contained in V N N; and such that r(zx) < 2\ifz € B,.
Define
Ul = l¢l‘(x) l z€ Bpl ¢ ->—‘ 01'

See Fig. C. Then U, is a neighborhood of ¥ which is positively invariant. Moreover
Us CU. Forlet y € Uy. Then y = ¢.(z) for some £ € B, t > 0. We assert that
(t, ) e¢an be chosen so that 0 < ¢ € r(x). For put g~(z) = z.. Then z. € V for
all n > 0. There exists n such that y is between z. and z.,; on the trajectory of
x;sincex, € V, r(z,) < 2%;andy = ¢,(z) = ¢,(x.) for0 < ¢t < 2x. Theny € U
because z, ¢ N.

Finally, d(¢:(y), v) ~»0 as t — « for all y € U. For we can write, for given y,

¥ = ¢ (), z€EV,

Since g~(x) —» 0, the result follows from Proposition 1.

The following result links the derivative of the Poincaré map to that of the flow.
We keep the same notation.

Proposition 3 Let the hyperplane H C E be tnvariant under D¢, (0). Then
Dg(0) = D¢ (0) H.
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FIG. C. U, ia positively invariant.

Proof. Let 7: 8 — R be the ' map such that r(0} = xand g(z) = #{r(2), 2)
By the remark at the end of Section 2, Chapter 11, we have

3G -1
Dr(0) = — [5 (0, A)] “h-Den (0} H.
Since D¢y (D) (HY = H = Ker h, Dr(0) = 0. Hence by the chain rule
3
Dg(0) = Den(O)] H + 3:—’ (A, 0) Dr(0)

= D¢ (0)| H.

It is easy to see that the derivatives of any two Poincaré maps, for different
sections at 0, are similar.

We now have ali the ingredients for the proof of Theorem 2 of the first section.
Suppose v is a closed orbit of period : as in that theorem. We may assume € € 7.

We choose an (n — 1)-dimensional subspace H of E as follows. H is like an
eigenspace corresponding to the eigenvalues of D¢,(0) with absolute value less
than 1. Precisely, let B C E¢ be the direct sum of the generalized eigenspaces
belonging to these eigenvalues for the complexification (Dén(0))ec: Ec — Ec, and
let H = BnE. Then H is an (r — I)-dimensional subspace of £ invariant under
D¢:.{0) and the restriction D¢, (0)| H is a linear contraction.

Let S C H be a section at 0 and g: §;, — S a Poincaré map. The prewous proposi-
tion implies that the fixed point 0 € S, is a sink for g. By Proposition 2, v isasymptot-
ically stable.

To prove Theorem 3, it suffices to consider a point z € S, where g: S, — S is
the Poincaré map of a local section at 0 € v (since every trajectory starting near
v interseets S,).
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If p.a(x) is defined and sufficiently near 0 forn = 1, ..., k, then

¢nl($) = 'ﬁl.(g-z)r
where

t = la_y + rlg'z) — A
For some v < 1 and some norm on E we have
gz} <o oed;
and using Dr(0) = 0, we know that for any ¢« > 0,
[tn = ten| S el 2] Lot 2]

if | z | is sufficiently small. Thus

el STl +eX v =7
k=0 —r
Hence if ¢ is sufficiently small, the sequence ¢aa(x) stays near 0 and can be con-
tinued for all positive integers n, and the above inequalities are valid for all n. It
follows that the sequence §t.} is Cauchy and converges to some s € R, Thus ¢ (2}
converges to ¢,(0) = z € 4. This implies Theorem 3 of Section 1.

PROBLEMS

1. Show that the planar system
= —-2—yz—y,
vV=z+(—-22—yy

has a unique closed orbit v and compute its Poincaré map. Show that v is a
periodic attractor. (Hint: Use polar coordinates.)

2. Let X denote either a closed orbit or an equilibrium. If X is asymptotically
stable, show that for every » > 0 there is a neighborhood U of X such that if
p € U — X,then ¢,(p) = pforallic [0, 2]

3. Show that a linear flow cannot have an asymptotically stable closed orbit.

4. Define the concepts of stable closed orbit of a flow, and stable fized point of a
discrete dynamieal system. Prove the following:
{a} A closed orbit is stable if and only if its Poincaré map haa a stable fixed
point at 0.
(b) If a closed orbit v of period M is stable then no eigenvalue of D¢y(p),
P € <, has absolute value more than one, but the converse can be false.
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(8) Let p be an asymptotically stable fixed point of a discrete dyr}amical
system g: W — E. Show that p has arbitrarily small compact neighbor-
hoods V ¢ W such that g(V) Cint V and (Meaeg™(V} = p.

(b) State and prove the analogue of (a) for closed orbits.

Let g: R — R be the map
glr) = ax + bzt + ez, a#0.

Investigate the fixed point 0 for stability and asymptotic stability (see Problem
4). Consider separately the cases|a| < 1,{a] = 1,/ a[ > 1.

{ The Contracting Map Theorem) Let X C R" be a nonempty closed set and
f: X — X a continuous map. Supposc f has a Lipschitz constant o < 1. Prt?ve
that f has unigque fixed point p, and lim.., f*{x) = p for all z ¢ X. (Hint:
Consider the sequence f*(x).)

Chapter 14:'

Classical Mechanics

The goal of this very short chapter is to do two things: (1) to give a statement
of the famous n-body problem of celestial mechanics and (2) to give a brief intro-
duction to Hamiltonian mechanics. We give a more abstract treatment of Hamil-
tonian theory than is given in physics texts; but our method exhibits invariant
notions more clearly and has the virtue of passing easily to the case where the
configuration space is a manifold.

§1. The n-Body Problem

We give a description of the n-body “problem’ of celestinl mechanics; this
extenda the Kepler problem of Chapter 2. The basic example of this mechanical
gystem is the solar system with the sun and planets representing the n bodies,
Another example is the system consisting of the earth, moon, and sun. We are
concerned here with Newtonian gravitational forces; on the other hand, the New-
tonian n-body problem is the prototype of other n-body problems, with forces
other than gravitational.

The data, or parameters of this system, are n positive numbers representing the
masses of the » bodies. We denote these numbers by m,, . . . , m,.

The first, goal in understanding a mechanical syatem is to define the configuration
space, or space of generalized positions. In this case a configuration will consist
precisely of the positions of each of the n bodies. We will write z; for the position
of the ith body so that z; is a point in Euclidean three space {the space in which we
live) denoted by E. Now E is isomorphic to Cartesian space R? but by no natural
isomorphism. However E does have a natural notion of inner product and associ-
ated norm; the notions of length and perpendicular make sense in the space in
which we live, while any system of coordinate axes is arbitrary.
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Thus Euclidean three space, the configuration space of one body, is a three-
dimensional vector space together with an inner product.

The configuration space Af for the n-body problem is the Cartesian product of
E with itsell n times; thus M = (E)*and r = (21, ..., £.), where r; € Eis the
pusition of the ith body. Note that r; denotes a point in E, not a number.

One may deduce the space of states from the configuration space as the space
Ty of all tangent vectors to all possible curves in M. One may think of Ty as the
product M X M and represent a state as (r, #) € M X M, where r is a configura-
tion as before and ¢ = (v, .. ., ta}, v; € E being the velocity of the ith body. A
state of the system gives complete information about the system at a given moment
and (at least in classical mechanics}) dgtermines the complete life history of the
state,

The determination of this life history goes via the ordinary differential equations
of motion, Newton's equations in this instance. Good insights into these equations
can be obtained by introducing kinetic and potential energy.

The kinetic energy is a function K: M X M — R on the space of states which
is given by

1 n
K(r,v) ==Y m|w|.
2 1wl
Here the norm of v, is the Euclidean norm on E. One may also consider K to be
given directly by an inner product B on M by

Bv, w)

[

bo | -

i: m;(py, w;),

K{x,v) = By, v).

It is clear that B defines an inner product on M where (v;, w;) means the original
inner product on E,

The potential energy V is a function on M defined by
mmy
Vig) = L ———..
i | T — |
We suppose that the gravitational constant is 1 for simplicity. Note that this
function is not defined at any ““collision™ (where r. = 7;). Let A;; be the subspace of
collisions of the 7th and jth bodies so that

By =frc M|ri=asli<]

Thus A,;is a linear subspace of the vector space M. Denote the space of all collisions
by A C M sothat A = | Ai;. Then properly speaking, the domain of the potential
enerey i 1 — A

V.M — A—R.
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We deal then with the space of noncollision states which is (M — A) X M.
Newton’s equations are second order equations on M — A which may be written

miE; = —grad; V(z) for i=1,...,n

Here the partial derivative D,V of V with respect to #, 13 a map from M — A to
L(E,R): thenthe inner product on E converts DV (r) to a vector which we call grad,
V(x). The process is similar to the definition of gradient in Chapter 9. Thus the
equations make sense as written.

One may rewrite Newton's equations in such a way that thev become a first
order system on the space of states (M — aA) X M:

ii = ¥y,
ma, = —grad, V), for = ... . n.

The flow obtained from this differential equation then determines how a state
moves in time, or the life history of the n bodies once their positions and velocities
are given. Although there is a vast literature of several centuries on these equa-
tions, no clear picture has emerged. In fact it is still not even clear what the basic
questions are for this “problem.”

Some of the questions that have been studied include: s it true that almost all
states do not lead to collisions? To what extent are periodie solutions stable? How
to show the existence of periodic solutions? How to relate the theory of the n-body
problem to the orbits in the solar system?

Our present goal is simply to put Newton's equations into the framework of
this book and to see how they fit into the more abstract framework of Hamiltonian
mechanics.

We put the n-body problem into a little more general setting. The key ingredients
are:

(1) Configuration space @, an open set in a veetor space £ (in the above case
G=M—Aand E = M).

(2) A C function K: @ X E — R, kinetic energy, such that K(r, ¢) has the
form K (x, v) = K,(v, v), where K, is an inrer product on £ (in the above
case K, was independent of x, but in problems with constraints, K, de-
pends on ).

(3} A €2 function V: @ — R, potential cnergy.

The triple (@, K, V) is called a simple mechanical system, and ¢ X F the state
space of the system. Given a simple mechanical system (Q, K, V) the energy or
total energy is the function e: @ X £ — R defined by e(r, v) = K(r,v) + V{r).

For a simple mechanical system, one can canonically define a vector field on
@ X F which gives the equations of motion for the states {points of @ X E). We
will sce how this can be done in the next section.
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Examples of simple mechanical systems beside the n-body problem include a
particle moving in a conservative central force field, a harmonie oscillator, and a
frictionless pendulum. If one extends the definition of simple mechanical systems
to permit @ to be a manifold, then a large part of classical mechanics may be
analvzed in this framework.

§2. Hamiltonian Mechanica

We shall introduce Hamiltonian mechanics from a rather abstract point of
view, and then relate it to the Newtonian point of view. This abstract development
proceeds quite analogously to the modern treatment of gradients using inner
products; now however the inner product is replaced by a “‘symplectic form.”
8o we begin our discussion by defining this kind of form.

H F is a vector space, a symplectic form § on F is a real-valued bilinear form
that is antisymmetric and nondegenerate. Thus

LFXF-oR

iz a bilinear map that is antisymmetric: Q(u, v) = —8Q(v, u), and nondegenerate,
which means that the map

$g = B: F — F*
is an isomorphism, Here ® is the linear map from F to F* defined by
®(u)(v) = Q(u, ), uve F

It turns out that the existence of a symplectic form on F implies that the di-
mension of F is even (see the Problems).

We give an example of such & form {2 on every even dimensional vector space.
If F is an even dimensional vector space, we may wtite F in the form F = E X E*,
the Cartesian product of & veetor space £ and its dual E*. Then an element f of
F is of the form (v, w) where v, w are vectors of E, E*, respectively. Now if f = (v, w),
P = (", u) are two vectors of F, we define

BW(f, ) = () — w(®).

Then it is easy to check that @, is a symplectic form on F. The nondegeneracy is
obtained by showing that if & # 0, then one may find § such that Qy{a, 8) #= 0.
Note that @ does not depend on a choice of coordinate structure on E, so that it
is naturai on E X E*.

1i one chooses a basis for E, and uses the induced basis on E*, §} iz expressed
in coordinates by

nﬂ((ul w)l (,p' wn)) = E v — 2 w®.
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It can be shown that every symplectic form is of this type for some representa-
tion of F ag E X E*.

Now let U/ be an open subset of a vector space F provided with a symplectic
form £. There is a prescription for assigning to any €? function H: U - R, a C,
vector field Xy on U called the Hamsllonian vector field of H. In this context H ia
called 8 Homiltonian or a Hamiltonian function. To obtain X, let DH: U — #*
be the derivative of H and simply write

(1) Xu(z) = &'DH(z), zc U,

where &1 is the inverse of the isomorphism &: F — F* defined by { above. (1} is
equivalent to saying 0(Xy(x), y) = DH{r) (1), all y € F. Thus Xe: U = Fisn
Ct vector field on U/; the differential equations defined by this vector field are
called Hamilton's equations. By using coordinates we can compare these with what
are called Hamilton’s equations in physics books.

Let @ be the sympleetic form on F = E X E* defined above and let

z = {(r, ..., ) represent points of E and ¥ = (y, ..., y.) points of E* for the
dual coordinate structures on E and E*. Let %,: F — F* be the associated iso-
morphism.

For any C?* function H: I/ —= R,

»~ aH = oH
=Y, — dz; — dy..
DH(,y) = £ da+ L3 dy
Fron this. one has that & 'DH (x, y) 15 the veetor with components
oH aH oH aH
Xy(x, ={l—,...,—, - ,...,——]-
w(z, y) n ay. an, Bz,.)

This is seen as follows. Observe that (suppressing (z, y))

®(Xy) = DH

or
Q(Xy, w) = DH(w) forall we¢ F.
By letting w range over the standard basis elements of R*, one confirms the ex-
pression for X. The differential equation defined by the vector field Xy is then:
. oH
= —
i

‘= oH t =1 n
¥ = ar, ] poooeep T
These are the usual expressions for Hamilton’s equations.
Continuing on the abstract lovel we obtain the “‘conservation of energy” theorem.
The reason for calling it by this name is that in the mechanical models described
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in this setting, H plays the role of energy, and the solution curves represent the
motions of states of the system.

Theorem (Conscrvation of Energy) Lef U be an open sel of a vector space F,
H: U — R any C? function and @ a symplectic form on F. Then H 18 constant on the
solution curves defined by the vector field Xy,

Proof. If $.(x) is a solution curve of the vector ficld Xy, then it has to be shown
that

d
d—tH(d‘u(r)) =0, all =zt
This expression by the chain rule is
d
DH(62) (5 8:0)) = DH(Xa).

But DH(Xy) is simply, by the definition of Xy, 3(X«, Xy) which is 0 since { is
antisymmetrie. This ends the proof.

It is instructive to compare this development with that of a gradient dynamical
system. These are the same except for the character of the basic bilinear form
involved; for one system it is an inner product and for the other it is a symplectic
form. The defining function is constant on solution curves for the Hamiltonian
case, but except at equilibria, it is increasing for the gradient case.

From the point of view of mechanica, the Hamiltonian formulation has the
advantage that the equations of motion are expressed simply and without need
of eoordinates, starting just from the energy H. Furthermore, conservation laws
follow easily and naturally, the one we proved being the simplest example. Rather
than pursue this direction however, we turn to the question of relating abstract
Hamiltonian mechanics to the more classical approach to mechanics. We shall see
how the energy of a simple mechanica! system can be viewed as a Hamiltonian H;
the differential equations of motion of the system are then given by the vector
ﬁ(‘]d X”.

Thus to a given simple mechanical system (@, K, V), we will associate a Hamil-
tonian system H: U = R, U C F, 1 a symplectic form on F in a patural way.

Reeall that configuration space € is an open set in a vector space E and that
the state space of the simple mechanical system is @ X E. The space of generalized
momenta or phase space of the system is @ X E*, where E* is the dual vector
space of .

The relation between the state space and the phase space of the avstem is given
by the Leyendre transformation A: Q X E — @ X E*. To define A, first define a
lincar isomorphism A,: E s E* for each ¢ € @, by

Al)w = 2K (v, w); vEE wekFE,
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Then set
Mg v) = (g A(0)).

Consider the example of a simple mechanical system of a particle with mass m
moving in Euclidean three space E under a conservative force field given by poten-
tial energy V. In this case state space is E X £ and K: E X E — R is given by
Kig, o) =3mjv® Then x: E X E— E X E*is given by A(v) = p € E*, where
p(w) = 2K, (v, wy; or

p(w) = mv, w)
and (, }is the inner product on E. In a Cartesian coordinate system on E, p =
mv, so that the image p of v under A is indeed the classical momentum, “conjugate”’
to v

Returning to our simple mechanical system in general, note that the Legendre
transformation has an inverse, so that A is a diffeemorphism from the state space
to the phase space. This permits one to transfer the energy function e on state

space to a function A on phase space called the Hamiltonian of a simple mechanical
system. Thus we have

-——~——,(J><E“

N

H=e°)\'

The final step in converting a simple mechanical system to a Hamiltonian system
is to put a symplectic formon F = £ X E* D Q X E* = [, But we have already
constructed such a form Gy in the early part of this section. Using (g, p) for variables
on @ X E* then Hamilton's equations take the form in eoordinates
oH

—, i=1,...,n

q; = apl

. oH o
pi = og," T=1...,n
Since for a given mechanical system H (interpreted as total energy) is a known
function of p,, ¢., these are ordinary differential equations. The basic assertion of
Hamiltonian mechanits is that they deseribe the motion of the system.

The justification for this assertion is twofold. On one hand, there are many
cases where IHamilton's equations sre equivalent to Newton’s; we discuss one
below. On the other hand, there are common physical svstems to which Newton's
laws do not direetly apply (such as a spinning top), but which fit into the framework
of “simple mechanical systems,” especially if the configuration space is allowed
to be a surface or higher dimensional manifold. For many such systems, Hamilton's
equations have been verified experimentally.
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It is meaningless, however, to try to deduce Hamilton's equations from Newton's
on the abstract level of simple mechanical system (Q, K, V). For there is no
identification of the elements of the “configuration space” @ with any particular
physical or geometrical parameters.

Considet as an example the special case above where K(g, v} =} T ma® in
Cartesian coordinates. Then myy, = p and H(p, @) =  (p*/2m,) + V(g); Hamil-
ton's equations become

v
P P
Differentiating the first and combining these equations yield
av
b o
m:q', aq; )

These are the familiar Newton's equations, again. Conversely, Newton’s equations
imply Hamilton’s in this case.

PROBLEMS

1. Show that if the vector space F has a symplectic form {1 on it, then F has even
dimension. Hint: Give F an inner product {, ) and let A: F — F be the operator
defined by (Az, y} = Q(z, y). Consider the eigenvectors of A.

2. (Lagrange) Let (@, K, V) be a simple mechnnical system and Xy the associ-
ated Hamiltonian vector field on phase space. Show that (g, 0) is an equi-
librium for Xy if and only if DV (q) = 0; and (g, 0) is & stable equilibrium if
g is an isolated minimum of V. {Hint: Use conservation of energy.)

3. Consider the second order differential equation in one variable
£+ f(z) =0,
where f: R = R is Ct and if f(z) = 0, then f'(x} # 0. Describe the orbit struc-
ture of the associated system in the plane
t=v
b= —f(z)
when f(z) = z — 7. Discuss this phase-portrait in general. (Hint: Consider

H{z,v) -iv'+f fl at
0

NOTES 255

and show that H is constant on orbits. The critical points of H are at v = 0,
f(z) =0;use H,, = f'(2), H,, = 1)
4. Consider the equation
F+ g{z)d + f(z) =0,

whert? g{z} > 0, and f iz as in Problem 3. Describe the phase portrait (the
function ¢ may be interpreted as coming from friction in a mechanical problem).

Notes

One rpodern approach to mechanics is Abraham’s book, Foundations of Mechanica
[1]..Wmtner’s Analytical Foundations of Celestial Mechanics [25] has a very ex-
tensive treatment of the n-body problem,



Chapter 15

Nonautonomous Equations
and Differentiability of Flows

This is a short technical chapter which takes care of some unfinished business
left over from Chapter 8 on fundamental theory. We develop existence, uniqueness,
and continuity of solutions of nonautonomous equations ' = f(1, z). Even though
our main emphasis is an autonomous equations, the theory of nonautonomous
lincar cquations &' = A (£) r is needed as a technical device in establishing differenti-
ability of Aows. The variational equation along a solution of an autonomous equation
is an equation of this tvpe.

§1. Existence, Uniqueness, and Continuity for Nonautonomous Differen-
tia}! Equations

Let E be a normed vector space, W C R X ¥ an open set, and f: W — E a con-
tinuous map. Let (&, u) € W. A solution to the initial value problem

(0 L = f(t, ),
z(to)

is a differentiable curve x(t) in F defined for ¢ in some interval J having the following
properties:

U

Lhed and ri{ta) = up,

{t, x(t)) € W, X = f(t, x{1))
forall ¢ J.
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We call the function f(¢, x) Lipschifz in r if there is a constant K > 0 such that
[f(t) Il) _f(t, I‘l)l S Kl'rl - 'rzl

for all (¢, x) and (i, £2) in W,
The fundamental lecal theorem for nonautonomous equations is:

Theorem 1 Let W CR X E be open and f: W — FE a continuous map thal is
Lipschitz tn r. If (f, ue) € W, there i3 an open interval J containing ! and a unique
solution to (1) defined on J.

The proof is the same as that of the fundamental theorem for autonomous equa-
tions (Chapter 8), the extra variable ¢ being inserted where appropriate.

The theorem applies in particular to functions f(¢, £} that are ', or even con-
tinuously differentiable only in r; for such an f is locally Lipschitz in £ (in the
obvious sense). In particular we can prove:

Theorem 2 et A:J — L{E) be a conlinuous map from an open interval J lo the
space of linear operators on E. Let (&, wy} € J X E. Then the inital value problem

¥=Ar  xlh) =u

has @ unique solufion on all of J.

Proaf. Tt suffices to find a solution on every compact interval; by uniqueness
such solutions can be continued over J. Il Jo C J is compact, there is an upper
bound K to the norms of the operators A(¢), ¢ ¢ J,. Such an upper bound is a
Lipschitz constant in « for f | J; X E, and Theorem 1 can be used to prove Theorem
2.

As in the autonomous casce, solutions of (1) are eontinuous with respect to initial
conditions if f{¢t, r) is locally Lipschitz in r. We leave the precise formulation and
proof of this fact to the reader.

A diffrrent kind of eontinuity is continuity of solutinns as functions of the data
S, x). That is, if f: W — E and g: W — E are hoth Lipschitz in z, and | f — ¢
is uniformly small, we expect solutions to + = f(¢, £) and ¥’ = g({, y), having the
same initial values, to be cloge. This iz true; in fact we have the following more
precise result,

Theorem 3 ILet W C R X E be open and f, g: W — E continuous. Suppoese that
for all (4, 1) € W,
[flt,r) — glt, 7)] < e
Let K be a Lipschitz constant in x for f(t, £). If r(t}, y(L) are solutions to
o= f(L, ry,

¥ =gt y),
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respectively, on some interval J, and z(ty) = y{k), then
€
l2(0) — (0] < & (exp(K [t—6) -1

forallt € J,
Proof. For i€ J we have

20—y = [ [ — v (9)]ds

= f‘ [f(s, z(8)) — g(s, y(s})} ] ds.
Hence

|20y = y®1 < [ 1506, 2(6)) = 7o, (o))l ds
+ [ s, v = g0a, y(6))] de

g/‘:K|r(s) —y(s)lda+j:eda.

Let u(t} = [ z(t) — y(t)|. Then

uWSKme+ﬂa,

[ 4

¢ ' P
- —{ds.
um+KSK+KAPm+K]
It follows from Gronwall’s inequality (Chapter 8) that
€ €
L <l explKit—
u(t) + % < Kexp( [t—tl),
which yields the theorem.

§2. Differentiability of the Flow of Autonomous Equations

Consider an autonomous differential equation

(1 r = f(1), [ W=>E, W open in E,
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L
where f is assumed C'. Qur aim is to show that the flow
{t, z) = ¢lt, 2) = ()

defined by (1) is a (" function of two variables, and to identify a¢/az.
To this end let y(¢) be a particular solution of (1) for ¢ in some open interval
J. Fix &, € J and put y{f) = y. For each ¢t € J put

A(t) = Df(y(0));
thus 4:J — L(E) is continuous. We define a nonautonomous linear equation
(2) v = A(Du.

This is the varietional equation of (1) along the solution y(!).

From Section 1 we know that (2) has a solution on all of J for every initial condi-
tion u(&) = ue.

The significance of {2} is that if u, i small, then the map

E— y(6) + u(t)

i8 @ good approximation lo the solution x (1) of (1) with initial value (k) = ys + Us.
To make this precise we introduce the following notation. If ¢ € E, let the map

t—ult, )

be the solution to (2) which sends & to £. If £ and y, + £ € W, let the map
t—y(t, &)

be the solution to (1) which sends & to yo + £ (Thus y(¢, £) = ¢y + £))

Proposition Lel J, C J be a compact interval containing &, Then

fim L2680 — v(@) —u(t, O _
£+ l&]

0
uniformly in t € J,.

This means that for every ¢ > 0, there exists § > 0 such that if | £| < &, then

(3 vt ) — (@ +ult, )] < e ]

for all t € Jo. Thus as £ — 0, the curve t — y(t) + u(t, £) is a better and better
approximation to y({, £). In many applications y(2) 4+ u{{, £) is used in place of
y(t, £}; this is convenient because u(¢, ) is linear in §.

We will prove the proposttion presently. First we use (3) to prove:

Theorem 1 The flow ¢(t, ) of (1} ia C'; tha! is, 3¢/t and d¢/dz exist and are
continuous in (1, x).
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Proof. Of course d¢(t, x) /ot is just f{¢.(x)), which is continuous. To compute
a¢/dr we have, for small ¢,

The proposition now implies that d¢ (¢, yo) /dz € L(E) is the linear map § — u({, £).
The continuity of /0. is a consequence of the continuity in initial conditions and
data of solutions to the variational equation (2).

Denoting the flow again by ¢.(z), we note that for each ¢ the derivative D¢ ()
of the map ¢, at x € W is the same as 3¢ (4, z) /dr. We call this the space derivalive
of the flow, as opposed to the time derivative a4 (¢, z) /at.

The proof of the preceding theorem actually computes D¢, () as the solution
to an initial value problem in the vector space L(E): for each z, ¢ W the space
derivative of the flow satisfies

(Do) = Ditu(z0)) Der(x0), ~

Dgn(ry) = 1.

Here we regard ry as a parameter. An important special case is that of an equilibrium
T so that ¢.(£) = £. Putting Df(£) = A € L(E), we get

d Sy .
7 (De(£)) = ADgu(2),

Deg(E) = L.
The solution to this is
D (F) = et4,

This means that tn a neighborhood of an equilibrium the flow is approzimately linear.
We now prove the proposition. For simplicity we take t, = 0. The integral equa-
tions satisfied by y(¢, £}, y(£), and u{¢, &) are

¥O = v+ [ Fy(e) ds,
o
¥ 8 = v+ i+ [ fuls ) d,
0

ult, ) = £+ [ Df(y(s))us &) do.
[1] R

From these we get

4) lutt, ) —ylt) —ul, pi < [ [ f(y(s, &) — f(y(8)) — Df(y(s))u(s, &) ds.
[}
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The Taylor estimate for f says
fw) —f(&) = Df(a)(y — 2) + R(z, y — 2),

lim R{z,y — 2)/ly — 2| =0

Ty

uniformly in y for y in a given compact set. We apply this to ¥ = y(s, £}, 2 = y(s);
from linearity of Df{y(s)} and (4) we get

(5) Iyt g) —y(h) —u(t, B < [ | Df(y(s)}u(s, £) — y(s) — u(s, £)]|ds
]

+ [ 1R, v, ) — y(s)l ds.
)

Denote the left side of (5) by ¢(t) and put

N = max|||Df(y, 8)||| s € Jo}.

Then from (5) we get
(6) o) <N [ o) ds+ [ 1RGs), w(s©) = ys)) ds.
o 1]

Fix ¢ > 0 and pick & > 0 so small that
{(7) | R(y(s), yls, &) — w(s)}| < e|u(s, &) — y(s)

if jyls, &) — y(s)] < doand s € Jo.
From Chapter 8, Section 4 there are constants K > 0 and 5; > 0 such that

(8) lu(s, &) —y(®)| <jEe <&
iflE| <8 ands€ J,
Assume now that | £| < 8. From (6), (7), and (8) we find, for t ¢ J,,
1y < N ds + | el ds,
o) <N [ o as fetu

whence

o) < N [ o(s) ds + Celt]

for some constant C depending only on K and the length of Jo. Applying Gronwall’s
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inequality we obtain PROBLEMS

g(t) < Coe™*|E|
ift € Joand | E| < 8. (Recall that 8, depends on «.} Bince ¢ is any positive number, 1. Let A: R — L(E) be continuous and let P: R — L(E) be the solution to the

this shows that g(t)/] ¢ | — 0 uniformly in ¢ € Jo, which proves the proposition.
We show next that the flow enjoys the same degree of differentiability as does
the data.
A function f; W -+ E is called €7, 1 < r < = if it has r continuous derivatives.
For r > 2 this is equivalent to: fis C* and Df: W — L(E) ia C—*. If [ is C* for all
r > 1, we say f is C*. We let C* mean “continuous.”

Theorem 2 Let W C Ebeopmandlet f: W—E be C, 1 < r < o, Then the
fiow ¢: @ — E of the differential equation

T = f(z)
18 also C*.

Proof. We induct on r, the case r = 1 having been proved in Theorem 1.
We may suppose r < = for the proof.
Suppose, as the inductive hypothesis, that r > 2 and that the flow of every
differential equation
£’ = F (5).
with €~ data F, is C™.
Consider the differential equation on E X E defined by the vector field

F:WXE-EXE, F(z,u) = (f(z), Df(z)w),

d
E‘ {z,u) = F(zl u),

ot equivalently,

(9) ¥ =f(z), W =Df(z)u

Since F is ¢!, the flow & of (9) is C~'. But this flow is just
*(t, (z,4)) = (6(, z), D(2)us},

gince the second equation in (9) is the variational equation of the firat equation.
Therefore d¢/dz is a O function of {t, ), since d¢/3z = D¢,(z). Moreover
d¢p/at 1s C* (in fact, €* in &) since

2 - set, 20,

It follows that ¢ in C~ since its first partial derivatives are C,

initial value problem

P =AHP, P =P,c L(E).
Show that

Det P(t) = (Det Py) exp U Tr A(s) ds].

Show that if fis C, some r with 0 < r < =, and z(¢) is a solution to 2’ = f(z},
then z is a C*! function.
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Perturbation Theory
and Structural Stability

This chapter is an introduction to the problem: W}.aa.t effect does changing th.e
differential equation itself have on the solution? In pz.artlcular, we find general gor!dl-
tions for equilibria to persist under small perturbations c.of the vector field. Similar
results are found for periadic orbits. Finally, we discuss hr}eﬂy more glohal problems
of the same type. That is to say, we consider the question: When does the phase
portrait itself persist under perturbations of the vector field? This is the problem of
structural stability.

§1. Persistence of Equilibria

Let W be an open set in a veetor space E and f: W — Eal .vector ﬁe_ld. By a
perturbation of f we simply mean another C" vector field on W which we think of a8

being “C! close to f,” that is,
|ftx) — ¢(z)] and [ Df(z) — Dg(2)l
are small for all r € W,
To muake this more precise, let V(W) be the set of all ¢ vector fields on W. If

F has o norm, we define the Cl-norm || & |1 of & vector field 2 € V(W) to be the
least upper bound of all the numbers

FR(), [T DR(D]; rew.

We ailow the possibility || & ||, = oo if these numbers are unbounded.
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A neighborhood of f € V(W) is any subset 9 V(W) that contains a set, of the
form

lge v lg~ 71l <e

for some ¢« > 0 and some norm on F.

The set B(W) has the formal properties of a vector space under the usual opera-
tions of addition and scalar multiplication of vector-valued functions, The € norm
has many of the same formal propertics as the norms for vector spaces defined
earlier, namely,

”hHIZD,
fhih =0 ifandonlyif & =0,
Hhtgllh <A+ 1lglh

where if || &}, or [| ¢ ||, is infinite, the obvious interpretation is made.
We can now state our first perturbation theorem.

Theorem 1 Let f: W — E be a C* vector field and £ ¢ W an equilibrium of ¥’ =
J(x} such that Df(£) € L(E) is tnvertible. Then there erists o neighborhood U C W
of £ and a neighborhood R C V(W) of f such that for any g € R there is a unigque
equttibrium § ¢ U of y' = g{y). Moreover, if E is normed, for any ¢ > 0 we can
choose M so that | § — £| < e

Theorem 1 applies to the special case where £ is a hyperbolic equilibrium, that
is, the cigenvalues of Df(£) have nonzero real parts. In this case, the inder ind(£)
of £ is the number of cigetivalues (counting multiplicitiesy of DF(£) having negative
real parts. If dim & = n, then ind(F) = » means # is a sink, while ind(£) = 0
means it is & source. We can sharpen Theorem 1 as follows:

Theorem 2 Suppose thal £ s a hyperbolic equilibrium. I'n Theorem 1, then, €N,
U can be chosen so that if g € M, the unique equilibrium § € U of y’ = g{y) ts hyper-
bolic and has the same index gs &.

Proof. This follows from a theorem in Chapter 7 and Theorem 1.

The proof of Theorem T has nothing to do with differential equations; rather, it
depends on the following result about €' maps:

Proposition Lel f: W - E be ' and suppose ry ¢ W is such thai the linear operator
Df(ro): E — E is invertible. Then there is a neighborhood M C V(W) of f and an
open set L7 C W conlaining xo such that if ¢ € N, then

(a) g | U is one-to-one, and

{b) flre) € g(U).
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Theorem 1 follows by taking z, = £ and f(£) = 0, for then g(#) = 0 for a unique
g€ U. To make | § — | < ¢ (assuming E is normed now) we simply replace W
by Wo = {x€ W|]z— 2| <e}. The proposition guarantees that 3 can be
chosen so that U/, and hence §, is in W, for any g € M.

It remains to prove the proposition. In the following lemmas we keep the same
notation.

Lemma 1 Assume E i3 normed. Let

» > || Df ()~ Ii.
Tet V. W be an open ball around x, such thet
(1) 1 DfFH < »,
and
(2) | Df(y) — Df(2)] < 1/

forally, z € V. Then f| V is one-fo-one.
Proef. 1f y € V and u € E is nonzero, then
% = Df(y) " (Df(y)w);

hence
|u] < || Df()~ |l | Df(w)ul,
80, from (1},
|ul
(3) | Df () (w)| > —.

Now let y, z be distinct points of V with z = y + u. Note that since V is a ball,
v+ tu € Vior all £ € [0, 1]. Define a C* map ¢: [0, 11— E by

e(t) = fly + tu).
Then
e(0) = f(), (1) = f(2).
By the chain rule,

¢'(t) = Df(y + twu.

Hence

1
(&) — Sy} = f° Dy + tw)u dt

- f Df(y)udt + fl [Df(y + tu) ~ Df(y) Judt.
L] ]
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Therefore

1
|5 = )} 2 1Dy | = [ I Dfty + ) ~ DIC@)I|jw at.
]
From (3) and (2) we then get

1w — sy > 2l

14 ¥y

Thus f(y) # f{2). This proves Lemma 1,

Lemma 2 Suppose E is @ normed vector space with norm defined by an inner product.
Let B C W be a closed ball around z, with boundary o8B, and f: W = E a C" map.
Suppose Df(y) is inverttble for all y € B. Let

min{| f(y) — f(zo)| |y € 9B} > 25 > 0.
Then w € f(B) if | w — f(z)]| < 4.
Proaf. Since B is compact, there exists i, € B at which the function
H:B—>R,
H(y) = 4{fly) —w]
takes & minimal value. Note that y, cannot be in a8, for if y € aB, then

[f@) — w | 2 11() ~ f(2)] = | f(ze) — w]

, > 25 — &,
Hence

1f) —w| >8> |f(z) — w],

showing that | f(y} — w | is not minimal if y ¢ 3B,
Since the norm on £ comes from an inner product, } | |t is differentiable; ita

derivative at z is the linear map z — {z, z). By the chain rule, H is differentiable
and its derivative at y, is the linear map

z— DH{y}z = {{(3n) — w, Df(p)2).

Since yo is a critical point of H and y in an interior point of B, DH{y,) = 0.
Since Df{yu) is invertible, there exists » ¢ F with

Df{yo)v = flye) — w.

Then
0 = DH(yo)v
= {f(z) — w, f(yo) — w)
=[f(w) —wl.

Therefore f{y) = w, proving Lemma 2.
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Note that the proof actually shows that
wE f{B — 8B).

To prove the proposition we give E a norm coming from an inner product. The
subset of invertible operators in the vector space L(E) is open. Therefore there
exists @ > 0 such that A ¢ L(E) is invertible if

| A — Df(ro)]] < e

Since the map r— Df(r) is continuous, there is a neighborhood Ny C W of x
such that if r € Ny, then

It Df(z) — Df(ze)|| < e
It follows that if ¢ € V(W) is such that
li Dg(z) — Df(2)] < }e

forall r € Ny, then Dg(z) isinvertible for all z € N,. The set of such g is & neighbor-
hood 9, of f. ‘

Let » > 1 Df(e)~'||. The map A — A~! frem invertible operators to L(E), is
continuous (use the formula in Appendix I for the inverse of a matrix). It follows
that f has n‘m\ighborhood 91, C 91, and o has a neighborhood Ny C N, such that
if g ¢ 9 and y € V., then

|| Dg(x)~" || < ».

We can find still smaller neighborhoods, M C R of f and N; C N of 1, such that
if g € M and y, z € Ny, then

1
|| Dgly)y — Dg()]| < ~

It now foliows from Lemma 1 that for any ball V. C N and anyg € T, ¢ | V is one-to-
one.

Fix a ball V N, around z,. Let B C V be a closed ball around x; and choose
5 > 0 as in Lemma 2. There is a neighborhood M C 51, of f such that if g € 9, then

min{| g(y) — g(ze)| |y € 3B] > 26 > 0.
It follows that if | w — g(x}| < & and g € 9, then w € g{B). The proposition is
now proved using this 3 and taking U = V.

We have not discussed the important topic of nonautonomous perturbatiqns.
Problem 2 shows that in a certain sense the basin of attraction of a sink persists
under small nonautonomous perturbations,
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PROBLEMS

1. Bhow that the stable and unstable manifolds of a hyperbolic equilibrium of a
linear differential equation ' = Azr vary continuously with linear perturbations
of A ¢ L(E). That is, suppose E* @ E* is the invariant splitting of E such
that e'4: E* — E" is an expanding linear flow and e*4: E* — E» is contracting.
Given ¢ > 0, there exists & > 0 such that if [|B — A || < 5, then B leaves
invariant a splitting F" @ F* of E such that ¢'® | F* is expanding, '8 | F* is
contracting, and there is a linear isomorphism 7' E — E such that T{E*) =
Fo, T(EY) =Fuand | T— 71| <e

2. Let W C R~ be an open set and 0 ¢ W an asymptotically stable equilibrium
of & C" vector field f: W — R". Assume that 0 has a strict Liapunov function. -
Then 0 has a neighborhood W, C W with the following property. For any
¢ > 0 there exists § > 0 such that if ¢: R X W—R is C' and | g{{, z) —
flx)| < &forall (1, 2}, then every solution x(t) to ' = g{t, z) with z(4) € W
satisfies x(f) € W for all ¢ > & and | £({)] < e for all ¢ greater than some t;.
(Hint: I V is a strict Liapunov function for 0, then (d/dt) (V{z(¢)) is close
to (d/dt) (V(y(?)), where y' = f{y). Hence (d/dt) (V{x()} <0 if | z(t)] i=
not too small. Imitate the proof of Liapunov’s theorem.)

§2. Persistence of Closed Orbits

In this section we consider a dynamical system ¢, defined by a C! vector field
fi W — E where W C E is an open set. We suppose that there is a closed orbit

¥ C W of period X > 0. For convenience we assume the origin 0 € E is in y. The
main result is:

Theorem 1 Let u: S; — 8 be a Poincaré map for a local section Sat 0. Let U C W
be a neighberhood of v. Suppose that 1 is not an eigenvalue of Du(0), Then there exists
a neighborhood L C V(W) of f such that every vector field g € N has a closed orbit
gCU.

The condition on the Poincaré map in Theorem 1 is equivalent to the condition
that the eigenvalue 1 of D, (0) has multiplicity 1. Unfortunately, no equivalent

condition on the vector field £ is known.

Proof of the theorem, Let r: 8, - R be the (" map such that »(0) = X and
u(x) = dun(z).
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We may assume that the closure of S; is a compact subset of S. Let a > 0. There
exists 8 > O such that if g € M(W) and | g(2) — f(2)| < & for all z € &, then,
first, S will be a local section at O for g, and second, there is 2 C* map o: So = R
such that

fo(z) ~ 7(2)| < @,

'l‘.m(-r) € S:
and

| Yoo () — ulx)]| < o,

where ¢, is the flow of ¢.
Put .
dl"(;)(-r) = ﬂ(.r).
Then
v: S — S

is a {7 map which is a kind of Poincaré map for the Row ..
Given any ty > 0 and any compact set K C W, and any » > 0 we can ensure
that
[l De:(x) = Da(D)| < »

forallt € [—t &], xr € K, provided we make {{ g — f ||, small enough. This fqll?ws
from eontinuity of solutions of differential equations as functions of the original
data and initial conditions and the expression of &f.{zr)/dr as solutions of the
nonautonomous equation in L(E),

Y DewnAw,
dt
where ' = g{y}. {See Chapter 15.)
Fram this one ean show that provided || ¢ — f {|: is small enough, one can make
buls) - rir)| and |} Du(x} — Dv(x)|| 8s small as desired for all r € So.
A fixed point r = v(x) of v lies on a closed orbit of the flow ¢,. We view such a
fixed point as & zero of the C! map

n: So-+ H, (7)) =v(r) — z,

where H is the hyperplane containing S.
Let t: So — H be the " map

i(z) = u(z) — =
80 that £(0) = 0. Now
DE(0) = Du(0) — I,

where I: f — H is the identity. Since 1 is not an eigenvalue of Du{0) we knO\fv
that 0 is not an eigenvalue of DE(0), that is, DE(0) ig tnvertible. From the proposi-
tion in the preceding section we can find a neighborhood M C U(8,) of £ such that
any map i M has a umque zeroy S, 11| | ¢ = F| | 1s sufficiently small, g € 9.
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Henee  has a unique zero ¥ € 8o; and y lies on a closed orbit 8 of g. Moreover, we
can make ¥ so close to 0 that 8 C U. This proves Theorem 1.

The question of the uniqueness of the clased orbit of the perturbation is interest-
ing. It is not necessarily unique; in fact, it is possible that ell points of U lie on
closed orbits of f! But it is true that closed orbits other than v will have periods
much bigger than . In fact, given ¢ > 0, there exists § > 0 so small that if 0 <
dir, v} < & and ¢.(r) =, t > 0, then t > 2x — e. The same will hold true for
sufficiently small perturbations of v: the fixed point y of v that we found above
lies on a closed orbit 4 of g whose period is within ¢ of ; while any other closed orbit
of g that mects S, will have to circle around g several times before it closes up. This
follows from the relation of closed orbits to the sections; see Fig. A.

FIG. A. A closed orbit 8° near s hyperbolic elosed orbit 8.

There is one special case where the uniqueness of the closed orbit of the perturba-
tion can be guaranteed: if v is a periodic attractor and g is sufficiently close to f,
then g will also be a periodic attractor; hence every trajectory that comes near 8
winds closer and closer to # as t = « and so cannot be a closed orbit.

Similarly, if v is a periodie repeller, so is 8, and again uniquenecss holds.

Consider next the case where v is a hyperbolic closed orbif, This means that the
derivative at 0 ¢ v of the Poincaré map has no eigenvalues of absolute value 1. In
this case a weaker kind of uniqueness obtains: there is a neighborhood V C U of
7 such that if 9% is small enough, every g € 9 will have a unique closed orbit that
18 enlirely contained in V. It is possible, however, for every neighborhood of a hyper-
bolic closed orbit to interseet other closed orbits, although this is hard to picture.

We now state without proof an important approximation result. Let B C R*
be a closed ball and a8 its boundary sphere.

Theorem 2 Let W C R~ be an open set containing B and f: W s R* a (" veclor
Jfield which is transverse (o OB at every point of 8. Let I C V(W) be any neighborhood
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of . Then there exists g € I such that:

(a) if £ € B it an equilibrium of g, then & is hyperbolic;
(b) if ¥ C B is aclosed orbil of g, then v 1s hyperbolic,

The condition that f be transverse to B is not actually necessary, and in fact, B
ean be replaced by any compact subset of W,

PROBLEMS

1. Show that the cigenvalue condition in the main theorem of this section
I8 necessary.

2. Let ¥ be & periodic attractor of ' = f(z). Show there is a C' real-valued
function V() on a neighborhood of v such that V >0, V-{0) = v, and
(d/d) {V (x(t)) < 0 if r(2) is a solution curve not in y. (Hint: Let z(t) be
the solution eurve in y such that z{f) — 2(t} = 0 as { — o« ; see Chapter 13,
Section t, Theorem 3. Consider I‘T | r{f) — z(8)J? dt for some large constant 7'}

3. Let W R*be open and let ¥ be a periodie attractor for a " vector field f: W —
R+ sShow that ¥ has a neighborhood {7 with the following property. For any
¢ > 1) there exists 8 > 0 such that if g: R X W — R~ is C' and |g(¢, 2} —
firy| < 4. then every solution r{f) to =’ = g{t, ) with r(f) € U satisfies
sityv 2 U forallt 2 ¢ and d(x(t), ¥) < e for all { greater than some §. {Hint:
Prolblem 2, and Problem 2 of Section 1.)

§3. Structural Stability

In the previous sections we saw that certain features of a flow may be preserved
under small perturbations. Thus if a flow has a sink or attractor, any nearby flow
will have a nearby sink; similarly, for periodic attractors.

It sometimes happens that any nearby flow is topologically the same as a given
flow, that is, for any sufficiently small perturbation of the flow, a homeomorphism
exists that carries each trajectory of the original flow onto a trajectory of the per-
turbation. (A homeomorphism is simply a continuous map, having a continuous
inverse.) Such a homeomorphism sets up a one-to-one correspondence between
equilibria of the two flows, closed orbits, and so on. In this case the original flow
(or its vector field) is called structurally stable.

Here is the precise definition of structural stability, at least in the restricted
setting of vector fields which point in on the unit disk (or ball) in R*. Let

Dr={reR[]z] <1
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and
aD* = {z € R}|z| = 1}.

Consider C' vector fields f: W — R~ defined on some open set W containing D=
such that {f(x), z) < 0 for each r in 3D~ Such an f is called structurally stable on
D~ if there exists a neighborhood 9 C V(W) such that if g: W — R~ iz in 9, then
flows of f and ¢ are topologically equivalent on D, This means there exists a homeo-
morphism h: D» — D~ such that for each x € Dn,
A(fe(x) £ 2 0}) = [W(h(x))|t = 0},

where ¢, is the flow of ¢; and if z is not an equilibrium, & preserves the orientation
of the trajectory. (The orientation of the trajectory is simply the direction that
peints move along the curve as ¢ increases.)

This is a very strong condition on a vector field. It means that the flow ¢, can-
not have any “exceptional” dynamical features in D*. For example, it. can be shown
that if £ € int D" is an equilibrium, then it must be hyperbolic; the basic reason
is that linear flows with such equilibria are generic.

The harmonic oscillator illustrates the necessity of this condition as follows.
Suppose that f: W — R?, with W O D#, is a vector ficld which in some neighborhood

of 0 is given by
0 1
x = Az, A= I: ]
-1 0

By arbitrary slight perturbation, the matrix A can be changed to make the origin
either a sink, saddle, or source. Since these have different dynamic behavior, the
flows are not topologically the same. Hence f is not structurally stable. In contrast.
it is known that the Van der Pol oscillator is structurally stuble.

The foliowing is the main result of this section. It gives an example of a class of
structurally stable systems. (See Fig. A.)

FIG. A. A structurslly siable vector field.
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Theorem 1 Let f: W — R~ be a ' veclor field on an open set W O D~ with the
Jollowing properties:

{a) [ has eractly one equilibrium 0 € D", and G 15 a sink;
thY f points tnward along the boundary aD™ of D™, that 1s,

i), r) <@ il r€ aDm,
(¢) lmeg ¢ ey =0 for all £ € D, where ¢, i3 the flow of f.
Then f s structurally stable on D,

Before proving this we mention three other resuits on structural stability. These
concern a (' vector field f: W — R?* where W C R? is a neighborhood of D The
first is from the original paper on structural stability by Pontryagin and Andronov.

Theorem 2 Suppose [ points inward or D Then the following conditions taken
logether are equirvalent fo structural stability on D*:

{(a)  the rquilibria in D? are hyperbolic;

thy each rlosed orbit in D? is either a periodic allraclor or a periodic repeller (that
ts, a periodic attractor for the vector field —f(x));

el uo tragectory in D goes from saddle lo saddle.

The necessity of the third econdition is shown by breaking a saddle connection
as in ig. B(a) by an approximation as in Fig. B{(b}.

A goud deal of force is given to Theorem 2 by the following result of Peixato;
it implies that structural stability on D? iz a generie condition. Let V(W) be the
set of ' veetor fields on W that point inward on aD3.

Theorem 3 The set
§ = |f € V{W)| fis structurally stable on D?}

1s dense and open. That 1s, every element of 8 has a neighborhood in Vo(W) contained
in 8, and every open set in V(W) contains a vector fleld which is structurally stable
on 2

Unfortunately, it has been shown that there can be no analogue of Theocrem 3
for dimensions greater than 2. Nevertheless, there are many interesting vector
fields that are structurally stable, and the subject continues to inspire a lot of
rescarch.

In the important case of gradient dvnamical systems, there is an analogue of
Theorem 3 for higher dimensions as follows. Consider in 'V(D") the set grad(Dn)
of gradient vector fields that point inward on D=,
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FIG. B. (a) Flow near a saddle conuection; (b} breaking & saddle connection.

Theorem 4  The sel of structurally stable systems contained in grad (D*) is open
and dense in grad {Dn).

We turn to the proof of Theorem 1. In outline it proceeds as follows. A vector
field g sufficiently close to f is shown to have a unique equilibrium a € D" near
0; moreover, all trajectories of ¢ in D tend toward a. Once this is known, the homeo-
morphism h: D — D* is defined to be the identity on 8D*; for each 1 € 3D~ it
maps the f-trajectory of £ onto the g-trajectory of r preserving the parametrization;
and A(0) = a.

The proof is based on the following result which is inteesting in itself. In Section
1 we showed the persistence of a hyperbolic equilibrium under small perturbations.
In the special case of a sink we have a sharper result showing that the basin of
attraction retains a certain size under perturbation.
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Proposition Let 0 € E be a sink for a (" vector field f: W — E where W i3 an open
gel condaining Q. There exists an tnner product on E, a number r > 0, and a neighbor-
hood 21 C U(W) of f such that the followring holds: for each g € 9 there is a sink a =
alg) for g such that the sel

B, ={zc E||lz} <)
contains g, s in the basin of a, ond is positively invariant under the flow of g.

Proof. From Chapter 9 we give £ an inner product with the following property.
For some » < 0 and 2r > 0 it is true that '

(o), 2y <vizlt

0 < {r] <0 2r, It follows that B, is in the basin of 0, and that f{z) points inward
along a8, It is clear that f has a neighborhood 9, (C U (W) such that if § € T,
then also gir) points inward along 48,.

Lo e randputs = + e 1f [y | < €, then the cloxedd ball B.(y) about y
with rolin- < satisfies:

Br C B-(y) C B!cv

Let v < u < 1. We assert that if || g — f||1 is sufficiently small, then the sink a
of ¢ wilt be in B,, and moreover,

(1) Gy z—a)<Lplz—al

if r € B,(a). To see this, write

Jx—a)z—a)+ (g{z) - flz —a), 2 — a)
<viz—al 4 (@x) —flz— ), z—a)

The map a(r) = g(r) — f{x — a) vanishes at a. The norm of its derivative at z is
estimated thus:

it Da(z)]| < || Dgtz) = Df(D)f + || Df(z) — Df(z — a)|j;

as |[g —~ flL— 0, || Dg(x) — Df(x)|| — 0 uniformly for | z| < 2r; and also x —
a— 0, so || Df(x) — Df(z — a)|| — 0 uniformly for | z| < 2r. Thus if || g — [ |
is small enough, || Da{z)|| € » — #, and u — v i & Lipschitz constant for «; hence

Ja{e)] = [alr) — ala)] € (b ~»)| 2 - al
Consequently, if }| ¢ — f ||, is sufficiently small, say, less than & > 0,
G, r—)Lvlz—alf+ (a(x), 2 - a)
<vlz—alf+ {u—vw)z—al

=plz~af

@lr), 2~ a)

as required.

Put 2, = g € VW) |lg — L < 8], and set N = N N N, Suppose g € M,
with sink @ © B.. By (1) the set B,(a) is in the basin of a. Since B, C B,(a), and
¢(x) points inward along a5B,, the proof is complete.
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We now prove Theorem 1. Since Dn is compact and f(z) points inward along the
boundary, no solution curve can leave D~ Hence D" is positively invariant. Choose
r > 0 and 9 C V(W) as in the proposition. Let 9, C 91 be a neighborhood of f
8o small that if g € 9, then g(z) points inward along 3D». Let ¢, be the flow of
g € M,. Note that D is also positively invariant for ..

For every z € D" — int B,, there is a neighborhood U, C W of z and &, > &
such that if y € U, and { > ¢, then

| (1)} <r.
By compactness of D" & finite number U.,, . . ., U, of the sets U, cover 3D~ Put
to = maxfly, ... bl

Then ¢,(D* — int B,) C By, if t > &, It follows from continuity of the flow in f
(Chapter 15) that f has a neighborhood 91, C 9 such that if g € 2, then

g, (D* — int B,) C B, if 124
This implies that
limy¢{z) =a forall r¢ D=

[

Forletx D";theny = ¢5(x) B,, andB, C basin of a under ;.

It also implies that evervyy D" — a 1s of the form , (x) for some »* D" and
t = 0. For otherwise L,(y) is not empty : but ifz  L,(y). then ¥, (z) — g as { — =,
hencey = a.

Fix g € 9.. We have proved so far that the map

¥: [0, ©) X aD*— D~,
¥(t, 1) = (1)
has D~ — a for its image. And the map
$: [0, =) X aD"— D~,

Q(I, t) = ¢g(.t)
has D» — ( as its image. We define
h: D~ — D~
v i y=0,
= {77
if y=0.

Another way of saying this is that » maps ¢.(2) to ¢, (z) for z € 3D, £ > 0, and
h{0} = a; therefore h maps trajectories of ¢ Lo trajectories of ¥, preserving orienta-
tion. Clearly, A(D") = D~ The continuity of h is verified from continuity of the
flows, and by reversing the role of the flow and its perturbation one obtains a con-
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tinuous iaverse to h. Thus h is a homeomorphism; the proof of Theorem 1
is complete.

PROBLEMS

1. Show that if f: R* — R? is structurally stable on D2 and f(0) = 0, then 0 is a
hyvperbolie equilibrium. '

Let v C R, n 2> 2 be the circle
y=freR|d+2=4,2=0 for k> 2]

1%

Lt
N ={zcR|dlz,v) <1},

Let W C R" be a neighborhood of N and f: W — R~ a ! vector field. Suppose
f{&) points into N for all zin N = {z € R*|d(r, v) = 1}. If v is a periodic
attractor and y = L,(r) for all x € N, prove that f is structurally stable on
N. (See Fig. Cforn = 3.)

FIG.C

3. Hf€ V(W) is structurally stable on D* C R~, show that f has a neighborhood
N such that every g € 9 is structurally stable.

4. Show that Theorem 1 ¢an be sharpened as follows. For every ¢« > (t there is a
neighborhood 9 of f such that if g € 9 the homeomorphism & (in the definition
of structural stability) can be chosen so that {h(z) — x| < ¢ for all z € D~

5. Find necessary and sufficient conditions that a veetor field f: R — R be strue-
turally stable on a compact interval.

6. Let A be an operator on R such that the linear flow e*4 is hyperbolic. Find
¢ > 0 such that if B is an operator on R~ satisfying || B — A || < ¢, then there
is a homeomorphism of R* ontc itself that takes each trajectory of the dif-
ferentinl equation r” = Ar onto a trajectory of ¥ = By.

Afterword

This book is only an introduction to the subjeet of dvnamical systems. To pro-
ceed further requires the treatment of differential equations on manifolds; and
the formidable complications arising from infinitely many closed orbits must be
faced.

This is not the place to develop the theory of manifolds, but we can trv to indi-
cate their use in dynamical systems. The surface $ of the unit ball in R? is an exam-
ple of the two-dimensional manifold. A vector field on R? might be tangent to S
at all points of S;if it is, then S is invariant under the flow. In this way we get an
example of a dynamical system on the manifold S (see Fig, A).

The compactness of S implies that solution curves of such a system are defined
for ali ¢t ¢ R. This is in fact true for all flows on compact manifolds, and is one
reason for the introduction of manifolds.

Manifolds arise quite naturally in mechanics. Consider for example a simple
mechanical system as in Chapter 14. There is the Hamiltonian function H: U — R,
where U/ is an open subset of a vector space. The ‘‘conservation of energy” theorem
states that A is constant on trajectories. Another way of saying the same thing
is that if H(z) = ¢, then the whole trajectory of z lies in the subset H-'(¢). For
“most’’ values of ¢ this subset is a submanifold of U/, just as the sphere S in R? can
be viewed as H-5 (1) where H(z, y, z) = z* + y* + 2*. The dimension of H'(¢)
is one less than that of U7, Other first integrals cut down the dimension even further.
In the planar Kepler problem, for example, the state space is originally an open
subset [/ of RY. The flow conserves both total energy H and angular momentum
k. For all values of ¢, d the subset {z € U] H(z) = ¢, k(z) = d} is a manifold
that is invariant under the flow.

Manifolds also arise in mechanical problems with constraints. A pendulum in
three dimensions has a configuration space consisting of the 2-sphere 8, and its
state space is the manifold of tangent vectors to 8. The configuration space of a
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FIG. A. A vector field tangent to 8.

-

rigid body with one point fixed is a ecompact three-dimensional manifold, the set
of rotations of Euclidean three space.

The topology (global structure} of a manifold plays an important role in the
analysis of dynamical systems on the manifold. For example, a dvnamical system
on the two sphere S must have an equilibrium; this can be proved using the
Poincaré-Bendixson theorem.

The mathematical treatment of electrical circuit theory can be extended if mani-
folds are uscd. The very restrictive special hypothesis in Chapter 10 was made in
order to avoid manifolds. That hypothesis is that the physical states of a circuit
foheyving Kirehhoft’s and generalized Ohm’s laws) can be parametrized by the
inductor currents and eapacitor voltages, This converts the flow on the space of
physical states into & flow on a vector space. Unfortunately this assumption ex-
cludes many circuits. The more general theory simply deals with the flow directly
on the space of physical states, which is a manifold under “generic” hypotheses
on the cireuit.

Manifolds enter into differential equations in another way. The set of points
whose trajectories tend to a given hyperbolic equilibrium form a submanifold called
the stable munifold of the equilibrium. These submanifolds are s key to any decp
global understanding of dynamical systems.

Our analysis of the long-term behavior of trajectories has been limited to the
simplest kinds of limit sets, equilibria and closed orbits. 1'or some types of systems
these are essentially all that ean oceur, for example gradient flows and planar sys-
tems. But to achieve any kind of general picture in dimensions higher than two, one
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must confront limit sets which can be extremely complicated, even for structurally
stable systems, It can happen that a compact region contains infinitely many
periodic solutions with periods approaching infinity. Poincaré was dismayed by
his discovery that this could happen even in the Newtonian three-body problem,
and expressed despair of comprehending such a phenomenon.

In spite of the prevalence of such systems it is not easy to prove their existence,
and we cannot go into details here. But to give some idea of how they arise in ap-
parently simple situations, we indicate in Fig, B a discrete dynamical system in
the planc. Here the rectangle ABCD is sent to its image A'B'C'D' in the most
obvious way by a diffeomorphism f of R?; thus f(4) = .1’, and so on. It can be
shown that f will have infinitely many periodic points, and that this property is
preserved by perturbations. (A point p is periodic if f(p) = » for some n > 0.)
Considering R? as embedded in R, one can construct a flow in R? transverse to R?
whose time one map leaves R? invariant and is just the diffeomorphism f in R% Such
a flow has closed orbits through the periodic points of f.

’ ‘ ¢

A -4 (A

.

D

N

N

FIG. B

In spite of Poincaré’s discouragement there hag been much progress in recent
vears in understanding the global behavior of fairly general types of dynamical
systems, including thosc exhibiting arbitrarily long closed orbits, On the other
hand, we arc far from a clear picture of the subject and many interesting problems
are unsolved.

The following bocks are recommended to the reader who wishes to see how the
subject of dynamical systems has developed in recent years. They represent a good
cross section of eurrent research: Proceedings of Symposia in Pure Mathematics
Volume XIV, Global Analysis {3] and Dynamical Systems [19]. See also Nitecki's
Diflerentiable Dynamics [18].
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Elementary Facts

This appendix collects various clementary facts that most readers will have
seen before.

1. Set Theoretic Conventions

We use extensively maps, or functions, from one set X to another ¥, which we
write
7
[ XY or X—Y.

Thus the map f assigns to each element z € X (that is, z belongs to X'} an element
f{r) = y of Y. In this case we often write r — y or £ — f(z). The identity map
. X — X is defined by i(z) = x and if @ is a subset of X, @ C X, the inelusion
map a: Q@ — X isdefined by «{g) = q. f f: X — ¥, and g: ¥ — Z are two maps,
the composition g © f (or sometimes written gf) is defined by g * f(z) = g(f(z}).
The map f: X — ¥ is said to be one-to-one if whenever r, &' € X, r # 2, then
Jiry = fur'y. The image of fis the set described as

Imf=1{ye¥Y|y=flz),somezec X}

Then fisonto if Imf = ¥. An inverse g {or f') of fis a map g: ¥ — X euch that
g ° fis the identity map on X and f = g is the identity on ¥. If the image of f is
¥ and f is one to one, then f has an inverse and conversely.

Hf:X —Yisamap and Q C X, then f|Q: @ — Y denotes the resiriction of
fro@sof|Qlg) = flg)
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We frequently use the summation sign:

n .

a=n+n+ -+ 15,

vl
where the r, are clements of a vector space. 1f there is not much ambiguity, the
limits are omitted:

Xrn=n+ -+

2. Complex Numbers

We recall the elements of complex numbers C. We are not interested in complex
analysis in itself; but sometimes the use of complex numbers simplifies the study
of real differential equations.

The sct of complex numbers € is the Cartesian plane R? considered a3 a vector
spare, together with & product operation.

Let { be the complex number £ = (0, 1) in coordinates on R?. Then every complex
number z can be written uniquely in the form z = r + iy where x, y are real num-
bers. Complex numbers are added as elements of R, s0if 2z = z + iy, 2" = I’ + 13/,
thenz + 2 = {r+ z') + i(y + y'): the rules of addition carry over from R* to C.

Multiplication of complex numbers is defined as follows: if z = r + 1y and
2 =1 + iy, then 22’ = (zz' — yy') + {oy’ + £'y). Note that # = —1 (or
“j = /—1") with thisdefinition of produet and this fact is an aid to remembering
the product definition. The reader may check the following properties of multi-
plication:

(a) 2z = 2z

(b) (z2")2" = z(2"2").

(¢} lz=z(herel =1 4+ 1-0).
(dy Ifz = r + iy is not 0, then

1'2+y"

2z =271 =1, where 2z}

(e) H zisreal (thatis, z = £ + 7-0), then multiplication by z coineides with
scalar multiplication in R If z and 2’ are both real, complex multiplication
speclalizes to ordinary multiplication.

Yy @+ 2)Yw=2z2w+ w2 2,weC

The compler conjugate of a complex number 2 = £ + iy is the complex number

Z = « — iy. Thus conjugation is 2 map o: C — C, o(z) = % which has as its set
of fixed points the real numbers; that is to say Z = z if and only if z is real. Simple
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propertics of eonjugation are:

I

z =z

(z+2)=E8+72,
= B
The absolute value of a complex number z = z + dy is
fzl = (28} = (& + y)i
Then
lz] =0 if and only if z =0
lz+2" 1 <z + 2],
tzz" = [z]i7],

and | z | is the ordinary absolute value if z is real.

Suppose a complex number z has absolute value 1. Then on R? it is on the unit
circle (deseribed by 22 + 42 = 1) and thereis 8 8 € R such that z = cos8 + ¢ sin 8.
We define the symbol e* by

e* = cos® 4 isin b,
el+:'b = gagi®,

This use of the exponential symbol can be justified by showing that it is con-
sistent with a convergent power serics representation of ef. Here one takes the
power series of ¢+ ag one does for ordinary real exponentials; thus

) = {(a + tb)"
en+|ll = -,
_:}5'; n!
One ean operate with complex exponentials by the same rules as for real ex-

ponentials.

3. Determinants

One may find a good account of determinants in Lang’s Second Course tn Calewlus.
[12]). Here we just write down a couple of facts that are useful.

First we give a general expression for a determinant. Let 4 = [a,,] be the
(e X n) wuatrix whose entry in the ith row and jth column is a;;. Denote by 4
the vn — 1) X (n — 1) matrix obtained by deleting the tth row and jth column.

Then if i 1s a fixed integer, 1 < ¢ < n, the determinant satisfies

Det 4 = ("‘-I)H"Clu Det A.‘l + -+ (—1)“’"0.,. Det Am-
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Thus the expression on the right does not depend on ¢ and furthermore gives a
way of finding (or defining) Det A inductively. The determinant of a 2 X 2 matrix
[¢5)is ad — be. For a 3 X 3 matrix

ay S o

A=1{a;]=]0ay an ou{,

ay Gz da
one obtains
an GOn Gy On Gn On
Det (4) = an Det [ :I —ayp Det [ ' ] +an Det[ ]
dy dyp az an an dx

Recall that if Det A # 0, then A has an inverse. One way of finding this inverse
is to solve explicitly the system of equations Ar = y for r obtaining x = By ; then
Bisaninverse A~ ' for 4.

If Det A # 0, one has the formula

(—1)** Det A.—,]

-1 —
A transpose of [ Det 4

It follows easily from the recursive definition that the determinant of a tri-
angular matrix is the product of the diagonal entries.

4. Two Propositions on Linear Algebra

The purpose of this section is to prove Propositions 1 and 3 of Section 1B, Chap-
ter 3.

Proposition 1 Every vector space F has a basis, and every basis of F has the same
number of elements. If {ey, . . ., &} C F 12 an independent subsel that 13 not a basis,
by adjoining fo i suttable veclors eeyy, . . ., tm, OME COR form o basis ey, .. ., fm.

The proof goes by some easy lemmas.

Lemma 1 A system of n linear homogeneous equations in n + 1 unknowns always
has a nonirivial solufion.

The proof of Lemma 1 is done by the process of elimination of one unknown to
obtain a system of n — 1 equationa in n unknowns. Then one is finished by induc-
tion (the first case, # = 2, being cbvious). The elimination is done by using the
first equation to solve for one variable as a linear combination of the rest. The
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expression obtained is substituted in the remaining equations to make the re-
duction.

Lemma 2 Let lay, ..., e.] be a basis for a vector space F. If v, . . . , v. are linearly
independent elemenis of F, then m < n.

Proof. 1t is sufficient to show that m # n 4+ 1, Suppose otherwise. Then each
; is a linear combination of the e,

v.~=f_,a.*e., l-=1,...,ﬂ+1.
=
By Lemma 1, the system of equations
ntl
> raa = 0, k=1,...,n
-1
has a nontrivial solution x = (zy, . . ., Zns1). Then

Tzt = 22 ), Gata = 3, 3, Tlats = 0,
% k k9
so that the v; are linearly dependent. This contradiction proves Lemma 2.

From Lemma 2 we obtain the part of Proposition 1 which says that two bases
have the same number of elements, If {e, ..., e,} and {v,, . . ., va} are the two
bases, then the lemma says m < n. An interchange yields n < m.

Ray that aset S = {v, ..., vm} of linearly independent elements of F is marimal
if forevervvin F,v 4 S, theset {v, vy, ..., v} is dependent.

Lemma 3 A mazimal set of linearly independent elemenis B = {u, ..., v.} ina
vector space F 1s a basts.

Proof. We have to show that any v € F, v 4 B, is a linear combination of the
;. But by hypothesis v, t, . . . , v are dependent so that one can find numbers z,
z, not all zero such that 3 za; + 2v = 0, Then x # 0 since the v, are independent.
Thus v = 37 (—z,/z)v;. This proves Lemma 3.

Proposition 1 now goes easily. Reeall F is a linear subspace of R* (our definition
of vector space!}. If F # 0, let v, be any nonzero element, If {1} is not a basis,
one can find vy € F, vy not in the space spanned by {1}, Then v, 1 are independent
and if {#, w} is maximal, we are finished by Lemma 3. Otherwise we continue
the process. The process must stop with a maximal set of linearly independent
elements fu, ..., va}, m < n by Lemma 2, This gives us a basis for F. The rest of
the proof of the proposition proceeds in exactly the same manner.
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Proposition 3 Lel T: E — F be a linear map. Then
dim(Im T} + dim(Ker T') = dim E.
In particular, suppose dim E = dim F. Then the following are equivalen! sltalements:

(a) KerT =0;
(b) ImT = F,
(¢) T is an isomorphism.

Proof. The second part follows from the first part {and things said in Seetion 1
of Chapter 3).

To prove the first part of the proposition let fi, . . ., fs be a basis for Im T'. Choose
e, . . ., ¢ such that Te; = fi. Let gy, . . ., g1 be & basis for Ker T. It is sufficient
to show that

leh...,ﬂi.gly---:gll

i8 a basis for E since k = dim Im 7 and I = dim Ker T,

First, these elements are independent: for if 3- hie; + X M.g: = 0, application
of T yields 3 MTei = 2. Afi = 0. Then the »; = 0 since the f; are independent.
Thus ¥ M,g; = 0 and the M; = 0 since the g; are independent.

Second, E is spanned by the e; and g;, that is, every element of E can be written
48 a linear combination of the e: and the g;. Let ¢ be any element of E. Define
v = Y he;, where Te = T Af; defines the A, Then e = {e —v) +v Now
T(e —v) = 080 ¢ — v ¢ Ker T and thus (e — v} can be written as a linear combin-
ation of the g,.
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Polynomials

1. The Fundamental Theorem of Algebra

Let
pl2) = a2 + ez F -+ @z + a5, 2. =D,

he i polynomial of degree n > 1 with complex coefficients ag, . - . , an. Then p(z) = 0
for at least one z € C,
The proof is based on the following basic property of polynomials,

Proposition 1 lim,., | p(z} | = =.

Proof. For:z # 0 we can write

P — z&
Hence
z n
(1) ‘p()lzla”!_zlan—hl'
fz] =1 Izlk

Therefore there exists L > 0 such that if { 2 | > L, then the right-hand side of
(1)is > $ la,| > 0, and hence

[p(z) i

fz |

Zia. |

from whiel the proposition follows.
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Proposition 2 |p(z)| alteins @ minimum value.
Proof. For each k > 0 define the compact set
Dy =fz€Cljz] <kl
The continuous function | p(z) | attains a minimum value
o= |plal 2 € Dy,
on Di. (z, may not be unique.) By Proposition 1 there exists k > 0 such that
@) lpE) 2 if |2i2k

We may take & > 1. Then v, is the minimum value of | p(z) |, for if z € Dy, then
| p(2) | < vy, whileif z § D, [ p(2) | 2 v by (2); and vy > v, since Dy C Du.

Proof of theorem. Let}p(z} | be minimal. The function
gz} = plz + @)

is a polynomial taking the same values as p, hence it suffices to prove that ¢ has a
root. Clearly, | ¢(0) | is minimal. Hence we may assume that

(3) the mintmum value of | p(z) | is | p{(0} | = |2 |.
We write
plz) = as + a2t + 2" (2), ac#0, k> 1,

where r is a polynomial of degreen — k — 1if k < nand r = 0 otherwise.
We choose w s0 that

(4) @ + auw* = 0.
In other words, w is a kth root of —ay/a,. Sueh a root exists, for if

—ao . .
. = pleos & + isin d),
]

« o () ()

We now write, for0 < ¢t < 1,
pltw) = (1 — t*)ao + (e + awe®) + (tw)*'r(tw)
= (1 — t*)ag + (fw)**r(tw).

then we can take

Hence
[ pltw) | € |as| — & | ag | + 41§ whir (hwo) |

=lao| = &(jr | = t]wr(tw) ).
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But if | a0 | > 0, for ¢ sufficiently small, we have

|ao | — & | w*r(tw) | > 0,
such a value of ¢ makes

Jplw) | <[aol.
This contradicts minimality of | p(0) | = | a |- Henee | p{0) | = 0.

Corollary A polynomial p of degree n can be factored:
ple) = (z— M) --(z — M),

where p(a) =0,k = 1,...,n,and p(z) # 0 for z = .
Proof. For any X € C we have
pz) = pl(z — 2) + 1)

[

Yoa((z — 2) + A
P’
Expanding by the binomial theorem, we have
n & k
ple) = 2 X ( ) ar(z — M)A
k=g =0 \J]

Every term on the right with j > 0 has a factor of 2 — X; hence

p(2) = (z — Ng() + 3 and
=0

or

Il

p(z) = (2= 2A)gq(2) + p(N)

for some polynomial g(z) of degree n — 1 (which depends on A}, In particular, if
p(M) = 0, which must be true for some A;, we have

plz) = (z — Mq(2).
Since g, has a root A\, we write

pl2) = (z ~ M) (2 — M)@(z)

and so on.
.Th{' complex numbers A, . . ., A, are the roots of p. If they are distinet, p has
simple roots. If X appears k times among Ay, . .., A, A i8 a root of multiplicity k,

or u k-fold root. This is equivalent to (z — A)* being a factor of p(z).
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On Canonical Forms

The goal of this appendix is to prove three results of Chapter 6: Theorem 1 and
the uniqueness of the § + N decomposition, of Section 1; and Theorem 1 of Sec-
tion 3.

1. A Decomposition Theorem

Theorem 1 (Section 1, Chapter 6) Let T be an operator on V where V is a
complex vector space, or V is real and T has real eigenvalues. Then V is the direct
sum of the generalized eigenspaces of T. The dimension of each generalized eigenspace
equals the multiplicity of the corresponding eigenvalue.

For the proof we consider thus an operator T: V — V, where we suppose that
V is & complex vector space.
Define subspaces for each nonnegative integer ; as follows:

Ki{T)=K;,=KerT"; N =K,
5

LT

Li=ImT;, M=[0L,
i

Tpen

0=K CK.C---CK;CK;nC--CN;

VeLeDELiD DL, CLinD--DM.
Choose n and m so that
K, =K. i jzn
Li=La if j2m
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which is possible since V is finite dimensional. Put
N(TY =N = K,, M(Th =M= L.

Clearly, ¥ and M are invariant.

Lemma V = N s M.

Proof. Since TM = L.y = M, T| M isinvertible; also, T (M) = M and
Trx # 0 for nonzero x in M. Since T*(N) = 0, wehave NN M =0.1fz ¢ Vis
any vector, let Tmxr = y € M. Since T~ | M is invertible, Tmz = Tmz, 2 ¢ M.
Putr = (r — 2z} + z Sincez ~ z € N, z € M, this proves the lemma.

Let ay, . .., &, be the distinct eigenvalues of T. For each eigenvalue o; define
subspaces

Ne = N(T — oI} = | Ker{T — 1)/,
20

My = M(T —ad) = M Im(T — aul)?.
e

Clearly, these subspaces are invariant, under T
By the lemma,

V = N]@M;.
Proposition V = N, ¢---0 N

P!'oof. We use induction on the dimension d of V, the cases d = 0 or 1 being
trivial. Suppose d > 1 and assume the theorem for any space of smaller dimen-
sion. In particular, the theorem is assumed to hold for T | M. M, — M,

1t therefore suffices to prove that the eigenvalues of T | M, are o, . . . , a,, and
that

(n N(T — aul | M) = N(T — &), all k> 1.
We first prove that

{2) Ker ((T — auf) | M) = 0, all k> 1.

Suppose (T — anf)x = 0and z # 0. Then Tz = oz; hence

(T — aed)z = (0 — )z,
But then
(T~ D)z = (og — )z #0Q

forall; 2 (L, sox § N,
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Since N, is invariant under T — ayJ we have
(T — al)Ne = N,
by (2). Therefore Ny C Im (T — aud)d, all j > 0, k > 1. This shows that
N. C M, all k> L

This implies that as, . . . , a, are eigenvalues of T' { ;. It is now clear that the
eigenvalues of T | M are precisely aq, . . ., o, since a; is not, and any eigenvalue of
T | M, is also an eigenvalue of T. The proposition is proved.

We can now prove Theorem 1. Let n; be the multiplicity of o a9 a root of the
characteristic polynomial of T, Then T | N« Ni — N, has the unigue eigenvalue
ax {the proof is like that of (2} above), and in fact the lemma implies that a: has
multiplicity », as an eigenvalue of T | N;. Thus the degree of the characteristic
polynomial of T | N, is n, = dim N,.

The generalized eigenspace of T: ¥V — V belonging to o is defined by E, =
E(T, ox) = Ker (T — oa)ma. Then, clearly, Ey C N

In fact, it follows that £, = N, from the definition of N and Lemma 2 of the
next section (applied to T — ). This finishes the proof of the theorem if V is
complex. But everything said above is valid for an operator on a real vector space
provided its eigenvalues are real. The theorem is proved.

2. Uniqueness of § and ¥

Theorm Let T be a linear operator on a vector space E which is compler if T has
any nenreal eigenvalues. Then there iz only one way of expressing T as S + N, where
S s diagonalizable, N is nilpotent, and SN = N 8.

Proof. Let E. = E{d, TY, k = 1, ..., 1, be the generalized eigenspaces of T
Then ¥ = E,9-- -0 E, and T=T19--- @ T, where T. = T|E, Note
that E, is invariant under every operator that commutes with 7.

Since S and N both commute with S and N, they both commute with T. Hence
E. is invariant under 8§ and N.

Put 8¢ = AJ ¢ L(E)), and Ny = Ty — S, It suffices 1o show that S| E, = §,,
for then N | E, = E,, proving the uniqueness of S and N.

Since 8 is diagonalizable, sa is § | Ex {Problem 17 of Chapter 6, Section 2). There-
fore 8| Ex — M/ is diagonalizable; in other words S| £y — S, is diagonalizable.
This operator is the same as Ny — N | Ey. Since N | K. commutes with aJ and
with T, it also commutes with N, It follows that Ny — N | Ex is nilpotent (use
the binomial theorem). Thus 8| E: — Sk is represented by a nilpotent diagonsl
matrix. The only such matrix is O; thus S| Ex = S, and the theorem is proved.
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3. Canonical Forms for Nilpotent Operators

The goal is to prove the following theorem.

Theorem 1 {Section 3, Chapter 6) Let N be a nilpotent operator on a real or
complex vector space V. Then V has a basts giving N a matriz of the form

A = diag{d,, ..., 4.},

where A; is an elementary nilpotent block, and the size of A, is a nonincreasing func-
tion of k. The malrices Ay, . . ., A, are uniquely determined by the operator N.

In this section, V is a real or complex vector space.

A subspace W (C V is a cyclic subspace of an operator T on V if T(W) C W
and there is a vector z € W such that W is spanned by the vector T"z,n = 0,1, . . ..
We call such an x a eyclic vector for W,

Any vector T generates a cyclic subspace, for the iterates of z under T, that is,
z, Tx, Tz, . . . generate a subspace which is evidently cyclic. We denote this
subspace by Z{(z) or Z(z, T).

Suppose ¥N: V — V is a nilpotent operator. For each € V there is a smallest
positive integer n, denoted by nil(z) or nil{z, N}, such that N*z = 0. If z = 0,
then Ntz # O for 0 < k < nil(z).

Lemma | Letnil{z, N} = n. Then the veclors Nz, 0 < k < n — 1, form a basis
for Zir, N').

Proof. They clearly span Z(z). If they are dependent, there is a relation
3t g, N4 (r) = 0 with not all ax = 0. Let 7 be the smallest index, 0 < j <n — 1
such that a; # 0. Then

n—1
0= N--H():, a.N*z)

ke

a—1
- E aiNn+k-‘i—lz
L
n—1
(I,'IV’I_IJ: + E a.N’H'“"_l'I
=3

I

= a,—N"“x

sincen + k —j—12>nifk 27+ L. Thus q;N~'z = 0, so N*~'z = 0 because
a; # U. But this contradicts » = nil(z, N).
This result proves that tn the basis {z, Nz, ..., N 1z], n = nil(x), the nilpotent
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operator N | Z(x) has the matrix

0
1

1 0

with ones below the diagonal, zeros elsewhere. This is where the ones below the
diagonal in the canonical form come from.
An argument sitmilar to the proof of Lemma 1 shows;

if 27, axN*z = 0, then a, = 0 for k < nil(z, N).

It is convenient to introduce the notation p(T') to denote the operator 3.1, a,T*
if p is the polynomial

P(t) = adt +- -+ it + ao,

where ¢ is an indeterminate (that is, an “unknown'"). Then the statement proved
above can be rephrased:

Lemma 2 Letn = nil (x, N). If p(!) is a polynomial such that p(N)x = 0, then
° divides p (1), that is, there 18 a polynomial p) () such that p(t) = t*py(L).

We now prove the existence of a canonical form for a nilpotent operator V.
In view of the matrix discussed above for N | Z{z), this amounts to proving:

Propoeition Let N: V — V be a nilpotent operalor. Then V is a direct sum of
cyelic subspaces.

The proof goes by induction on dim V, the case dim V = 0 being trivial. If
dim V > 0, then dim N(V} < dim V, since N has a nontrivial kernel. Therefore
there are nonzero vectors yy, . . ., y, in N (V) such that

NV)=2Z{yp) o- -0 Z{y).
Let x; ¢ V he a nonzero vector with
NI,-=y,', j=1...,r

We prove the subspaces Z (x1), . . ., Z(z,) are independent.
Observe that nil (z;) > 2 since

Nz, =y, # Q.

If the subspaces Z(z;)} are not independent, there are vectors u; € Z(z;), not
all zero, such that 3.1 u; = 0. Therefore 3.; Nu; = 0. Since Nu; € N(Z(z;)) =
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Z(y,) and the Z(y;) are independent by assumption, it follows that w, £ Ker N,
7 = 1....,r Now each u; has the form

a;—1

E -‘J.,‘;NEIJ', n; = [lil(I,‘).

Ry
Hence u; = p,;(N)z; for the polynomial p;(1) = T.is' aat*. Therefore Nu; =

p;{N)y; = 0. By Lemma 2, p; (¢) is divisible by {® if m < nil{y,). Since 1 <€ nil{y,),
we ean write

pi{t) = s;(1)¢
for some polynomial s;(£).
But now, substituting .V for ¢, we have

8,’(1V)¢VI,‘
8 (N € Z(yy).

Therefore u; = 0 since the Z (y;) are independent.
We now show that

) V=2Zmxn)e -oi(x)el
with . C Ker V. Let Ker N = K and let L be a subspace of X such that
K= (KnN(V))elL.

Then L is independent from the Z(z;). To see this, let v € (®Z(z;)) N L. Then
v 1@Z{r,)) n K, and by an argument similar to the one above, this implies
v N But N(V)NE =0, hencer = 0.

1t is elear that every cyclic subspace in K, and hence in L, is one dimensional.
Therefore L = Z{wy) @+ Z{w.), where {wy, . . ., w,} i3 a basis for L. Finally,

V=Zxmle  eZx)eZ)e -oZiw).

t

U

This proposition implies the theorem, except for the question of uniqueness of the
matrices Ay, . .., 4,. This uniqueness is equivalent to the assertion that the oper-
ator N determines the sizes of the blocks A, {or the dimensions of the cyelic sub-
space=). This is done by induction on dim V.

Consuler the restriction of N to its image N (V) = F:

N|F:F—>F.
1t is easy o see that if 1 is the direet sum of eyelic subspaces Z, @---a Z, @ W,
where Wy O Ker N, and Zi is generated by 7z, dim Z, > 1, then N (V) is the
direet sam

N(Z) e -6 N(Z,),

where N (£6) is exvelie, generated by N (x), and dim N (Z,) = dim Z: — . Since
dim NV (F} < dim 17, the numbers {dim Z, —, 1] are determined by N | F, hence
by V. It follows that {dim Zy} are also determined by V.

This finishes the proof of the theorem.

Appendix I V

The Inverse Function Theorem

In this appendix we prove the inverse function theorem and the implicit function
theorem.

Inverse function theoremn Let W be an open sel in a vector space E and let f:
W — E be a C' map. Suppose 7, € W s such that Df(x) is an tnvertible linear
operator on E. Then £, has an open neighborhood V C W such that f | V is a diffeo-
morphism onlo an oper sel.

Proof. By continuity of Df: W — L(E) there is an open ball ¥V (C W about z,
and a number » > 0 such that if y, z € V, then Df(y) is invertible,

| Dty || < »,
and

i| Df(y) — Df(z) || < ».
It follows from Lemma 1 of Chapter 16, Section 1, that f | V is one-to-one. More-
over, Lemma 2 of that section implies that f(V) is an open set.
The map f~': f(V) — V is continuous. This follows from local compactness of

S(V). Alternatively, in the proof of Lemma 1 it is shown that if y and z are in
V, then

ly=—zl<»ifly) — flo) |
hence, putting f(y) = a and f(z) = b, we have
[ ff @) — ) [ <v]a—b]

which proves f-! continuous.
It remains to prove that f-* is C'. The derivative of /' at @ = f(z) € f(V) is
Df(x)~ To see this, we write, for b = f(y) € f(V):

JUb) = fHa) — DATY(b —8) =y — 2 — D)) ~ f(2)).
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Now
Hy) —J(2) = Df(z){y — 2) + Ry, 2),
where
. Ry, x)
hm ly—z|=0"
Hence

ly =z = D@ YW —fEN = |y — = — DDy — =) + Ry, 2)) |
= | Df(x)"(R(y, 2) |.

Hence

ly =z = DA(x)~' (Jly) = f(2)) | _ | Df(z) " (R(y, 7) |

i fly) — fla) | [ 1) — f{2) |

R | /W S|
S v-z /Ty

This clearly goes to 0 as | f(y} — f(z) | goes to 0. Therefore D{(f*)(a) =
[Df(f-'a) 1. Thus the map D(f~"): f(V) — L(E) i8 the composition: f-!, followed
by Df, followed by the inversion of invertible operators. Since each of these maps
i8 continuous, so 18 D(f).

Remark. Induction onr = 1, 2, ... shows also thal if f is C*, then [~ is C".

Implicit function theorem Let W C E; X E, be an open set in the Cartesian
product of two vector spaces. Let F: W — E, be a C' map. Suppose (2o, yo) € W 18
such that the linear operator

ar
E (2o, o) : Bx — Ey

18 invertible. Pul F(xzo, o) = c. Then there are open sels 7 C E,, V C E, with

and a unique C' map

g U—V
such that

Fiz, g(x)) = ¢

forall e U, and moreover, F(z, y) £ cif (e, ) €U x Vandy # glx}h.
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Before beginning the proof we remark that the conclusion can be rephrased thus:
the graph of g is the set
' F-i{c) n (U X V).

Thus F-1(c) is a “hypersurface” in a neighborhood of (x4, ye).
To prove the implicit function theorem we apply the inverse function theorem
to the map

[ W E, X E,
floy) = (1, Flr, p)).
The derivative of f at {x, y) ¢ W is the linear map
Df(z, ). E, X E: — E, X E,,

F
(£, 9) — (E, oF

aF
. (z, ¥y}t + a7 (x, y)n)-

It is easy to find an inverse to this if 3F (z, y) /8y is invertible. Thus Df(xs, u} is
invertible. Hence there is an open set I/; X V C W containing (xs, ¥) such that
S restricts to a diffeomorphism of /4 X V onto an open set Z C E; X E,.

Choose open sets U C Uy, ¥ C Ezsuchthat zp € U, c € Y, and

UXYC2Z

The inverse of f: Uy X V — Z preserves the first coordinate because f preserves
it. Thhe restriction of (f| Ua X V)~'to I X Y is thus a C' map of the form

hUXY—=UsXV,

hiz, w) = (z, o(z, ),

where
e UXY -V
is C.
Define a C' map
gU—V,

gz} = plz, c).
From the relation f * & = identity of I/ X ¥ we obtain, forz ¢ U:
(x, ) = Jh(z, c)
= (x, Fhiz, c))

(z, F(.’l?, «?(I, C)))
{z, F(z, p(x))).

Thus
F(z,g{x)) = ¢
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for all z € U, Since f is one-to-one on U X V, if y # ¢g(z)}, then
[z, y) #= [z 9(2));

hence
(z, F(z, y)) = (z, F(z, g(z})} = (x,0),

go F(z, y) # c. This completes the proof of the implicit function thecrem.
We note that if F is C*, g 18 C".

From the identity
F(z, g{z)) = ¢,

we find from the chain rule that for all z in U;
aF
T (ne@) + 5 (9o = 0.
This vields the formula

aF
Dg(z) = — [3—5 (x, g(z))] P {x, g(x).
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Answers to Selected Problems

Chapter 1

Section 2, page 12

2, (a) (ke', ke, kze')
(b)  (Kee!, kee®, k)
(e) (ke koe™?!, kze?t)
6. 4 =diag|{a, ....a.landa, <0, r=1,...,n
8 (b} Any solutions u, v such that (0} and ¢(0) are independent vectors.

Chapter 2
Page 27
2
1. P = —Kr V() = w,; £ R?
dr
= = —prad V = —
mdt’ grad Kr

“Muost” initial eonditions means the set of (r, v) ¢ R? X R? such that ¢ is not
collinear with r.

L2 t
2. (a) withV(irny) = — 3~ —;;l—a and (¢) with V{z, y) = %

7. Himt: Use (4) Section 6.




344 ANSWERS TO SELECTED PROBLEMS
Chapter 3
Section 3. page 54
o) rtt) =0, y(t) = 3e®
4 [% i]
2 0
4. Al eigenvalues are positive.
6. () >0

W

Section 4, page 60

3e' cos 2t + et sin 2
et sin 2t — 9e¢* cos 2t,

1. (dy r
)

[l

Chapter 4

Section 1, page 65

2. dim K = dim E¢ and dim F > dim Fg
3. F2O Rer

Section 2, page 69

1. (a) Basis for K is given by (0, —v2,¥2) and (1, =2, —1).

\[ai]lx S I I
1 —

Section 3, page 73

Introduee the new basis {1, 0, 0), (0, —v2,v2), (1, —2, —1), and new coordinates
(%1, ¥2. ¥3) related to the old by

I = W + Yz,

I = =V2y — 2y,

n=vViy-— Ys.

ANSWERS TO SELECTED PROBLEMS

In the new coordinates the differential equation becomes

Y=
¥ = —v2 LN
¥=vV2 .
The general solution is
th = Cet,
¥ = Aeos(¥V21t) + Bsin(V2 1),
¥a= —Beos(VZ21) + Asin(V2 ().

Therefore

r=Ce¢ — Beos(¥V21) + Asin(Vv2 D),
7= (2B — AV2 ) cos{¥V2 () — (BVZ + 24) sin{v2 1),
= (B 4+ AVZ) cos(VZ8) + (BVZ — A} sin{¥20).

{The authors solved this problem in anly two days.)

Chapter 5
Section 2, page 81
3. A=1,8B=+n
4. (a) V2 (b)y % {e) 1 (d) 1}
6. (a) and (d)

Section 3, page 87

1. Suppose C| S|| < N(8§) < DI S]|. Then

N(ST) SDISTISDISINTE S 3 NSNT).

3. Hint: Note ITII=M=|Tyfify=i.
[zl lyl [z
4, {(a) The normis 1.
7. Hinl: Use geometric series.
- ) 1 .
Y= for 0<r<l, wither=IFT-T|.
=0 1—r

a5

13. Hint: Show that all the terms in the power series for e4 leave E invanant.
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Section £, page 97
1. (a) x(4) = (K, — tKy)e*,

¥ty = Ky
by r() = e (K,cost — Kasint},

y(t) = e'(Kscost + Kysint).
20 fay rid) = (204 Ber,
yit) = —2e
ihy rif) = 2 sind,
yity = —2e* cost.

1. Mintt Consider A restricted to eigenspaces of » and use result of Problem 3.

9 iur sink {b) source (¢} source
tdd)  none of these (fY none of these

1. ) Only if @ < —2 are there any values of such & and in this case for
k>~/—2a.
tb)  No values of k.
14, Hint: There is a real cigenvalue. Study T on its cigenspace.

Section 3, page 102
1. (a) rit) = [—4cost 4 sinl] — fret + k.

(hy rot)

L1
e[+ 1]+ &+ etk
16

ey rit) Acost+ Bsint.
y{t) = ~Asint+ Beost+ 2L

Section 6, page 107
2. (a) sit) = cos 2l {(b) (1) = —e'~t 4 -2
3. (1) eosvV3L sinV3e (b} expV3(, exp ~V3 !
4. Hint: Check cases (a), (b), (¢) of the theorem.
8. a =0,b > 0; period is 4/b/2x.

Chapter 6

Section 2, page 120

1. (a} Generalized 1-eigenspace spanned by (1, 0), (0, 1);

L bl
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(h) Generalized 1-vigenspace spanned by (1, 0); generalized { — 1) -eigenspace
spanned by (1, 2};

sl Ll vlod)

If the rth power of the matrixis [b,, ], then b, = Ofori < j+rir=1,2. ...

[ O]

3. The only cigenvalue is 0.
4. () €’ 0 0
et — et e 0
e G LY
3 Consider the § 4 Y deconiposition.

G. A preserves each generalized eigenspace K, ; henee 1t suffices to consider the
restrictionsof Aand Tto Ex. If T = § + ¥, then S | £\ = Af which commutes
with A. Thus § and T both commute with 4; s therefore does ¥ = T — 8.

8. Usec the Cayley-Hamilton theorem.

15.  Consider bases of the kernel and the image.

Section 3, page 126

1. Canonical forms:
() {o 1 0 (dy [0

001 0
000 , 01
00

3. Assumwe that .V is in nilpotent canonical form. Let & denote the number of blocks
and s the maximal number of rows in a block, Then bs < n;alsob = n — rand
8 < k.

4. Similar pairs are (2), {(d) and (b), (e).

Section 4, page 132

Lo [i O] ) [1+i 1 ]
o 0 —i (e 0 14+t

4. Forn = 3: a 0 0 a l 0 a =8 0
0 b 0], 0 a 0, B a
0 0 ¢ 0 0 b 0 0 ¢
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6. IFAr = pr,r#0,then Q0 = g(A)er = g(u)r.

N, Bhow that 4 and A* bave the same Jordan form if A i8 2 complex matrix, and
the same real eanonical form if A4 is real.

Section 3. page 136

1. 1a) Lot every eigenvalue havereal part < —bwithb >a > 0. letA =S+ N
with S semisimple and ¥ nilpotent. In suitable coordinates |j ¢'¥ || < e~ ®,
e L < Ct=. Then |Jei] < ce®n, and so e“}jet ] -0 as 1 — w.
Lot s > O be so large that et || &4 || < 1fort > 3. Put & = min(]| e*t ||-1)

foro0 <t < s.
2. If r is an eigenvector belonging to an eigenvalue with nonzero real part, then
the solution e!4r is not periodic, If ib, 2 are pure imaginary eigenvalues, b = ¢,

and z. w € C= are corresponding eigenvectors, then the real part of ¢4 (z + w)
is a nonperiodic solution.

Section 6. page 141

Loty = et
2 (a) In (7), A =B=0 Hence s(0) =C, §0) =D, s¥0) = —¢,
Sm(o) - _D’

Chapter 7

Section I, page 150

3. (a) Usee'feld = g8 +4),

Section 2, page 153

2. Use the theorem of this section and Theorems 1 and 2 of Section 1.
3. Use Problem 2,

Section 3, page 157

1. rav dense, open (b) dense {c) dense,open
i1 apen (f)  open (g} dense, open

ANBWERS TO SELECTED PROBLEMS 349

Chapter 8

Page 177

1. (a) fir) =z+2
uﬂ“) =2

w(6) =2+ff(ue(s))ds =‘2+j;4ds
1

2 + 44,

¢
(£} =2+f (4 + 43) ds = 2 4+ 41 4+ 28,
1]

‘ 98
(1) =2+f (4+4s+ 25 ds = 2 + 4t + 20 + .
1]
By induction

3 tn
u, (1) =4(]+5+-2—'+...+_)_2

nl
Hence
z(f) = hm u.{f) = 4/ — 2.
{b) uw(l) =0,
H=f 0ds =0,
w (0 j' s
un(t) = 0
for all n: Hence z(t) = 0.
(e} z{t) =t
4. (a) 1
(b) M — o« as r — 0; no Lipschitz constant.
[z 0]
fc) 1

5 (a) ForO0<ec<Blet
0, 0<t<~c
z(t) =
#r(t — ), c<t<h
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Chapter 9

Section 1, page 185

20 Forexample, ftry = =2 (rv R

3. Hint: Use a special inner product on R, Compute the rate of change of
| #8) |* where £(¢) is a solution such that x(0) is (the real part of) an eigen-
veetor for Df(0) having positive real part; take r(0) very small.

4. TUse (hy of the theorem of Seetion 1.

Seetion 2. page 191

20 an, (b e
3. Mint: Look at the Jordan form of A. It suffices to consider an clementary
Jordan block.

Section 3, page 199

1. r* + 3 is a striet Liapunov function.

8. V-0, ¢] is positively invariant. The w-limit set of any point of V-1[0, ¢] con-
sists entirely of equilibria in V[0, ¢]; hence it is just Z.

Section 1, page 204

2. Let & = —grad V(z). Then ¥ decreases along trajectorics, so that Vis con-
stant on a recurrent trajectory. Hence, a recurrent trajectory consists entirely
of equilibrium points, and so is a constant.

3. (a) Eaeh set V-1(— =, ¢] is positively invariant.
thy  Use Theorem 3.

Section 3, page 209

1. #Himt: 1ind eigenvectors,

Let Ar = Ar Ay = pro M # p, p 2 0. Then (1, y) = w{x, Ay} = y~t{Ar, y) =
At o, and At £ 1

A Ao = gead o Ar).

&
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Chapter 10
Section 1, page 215
dr dy .
L@«y. i £+ fly);
r =i, ¥ = v

Section 3, page 226

1. FEvory solution is perindic! Hint: If (2(1), y(£)) is a solution, se is (—r(—1{),
y(—=1).

Section 4, page 228

1. u= -2 p=—12+47.
Section 5, page 237

dr \ dy
. Lﬁﬁ—y—R,-i-E, C(”-I )

r =1 Yy =
Chapter 11

Section 1., page 24]

1. Hint: If the limit set L is not connceted, find disjoint open sets {7y, {73 con-
taining .. Then find a bounded sequence of points £, on the trajectory with
I,E Ul,;r,ﬂ (’g.

4. Hint: Every solution is periodie.
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Section 3, page 247

2. Hint: Apply Proposition 2.

4, Hints: (a) If z is not an equilibrium, take a local section at z. (b) See
Problem 2 of Section 1.

Section 1, page 249

2. Hint: Lety¢ vy Take alocal section at y and apply Proposition 1 of the pre-
vious section.

Section 5, page 253

2. Hints: (a) Use Poincaré-Bendixson. {b) Do the problem for 2n + 1
closed orbits; use induction on n.

Hini: Let U be the region bounded by a closed orbit v of f. Then ¢ is trans-
verse to the boundary v of U/. Apply Poincaré-Bendixson.

ot

Chapter 13

Section I, page 278

{a) Hint: Show that the given condition is equivalent to the existence of an
eigenvalue a of Do (z) with | o | < 1. Apply Theorem 2.

Section 3, page 285

3. Hint: If vis periodic of period A, then so is rv for all r > 0.

Hints: (a) Do the problem first in case p is zero and g is lincar. Then use
Taylor's formula for the general case. (b}  Apply the result in (a) after taking
a local section.

Chapter 15

Section 2, page 303

2. This is pretty trivial. Since 2’ is the Cr function f, then r is €+,
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Chapter 16

Section 1, page 309

1. Hint: If Bis close to A, each eigenvalue of B having negative real part will
he close to a similar eigenvalue X of 4. Arguing as in the proof that 8, is open
in Theorem 1 of Chapter 7, Section 3, show that the sum of the multiplicities
of these eigenvalues u, of B near x equals the multiplicity of A. Then show that
bases for the generalized eigenspaces of the y, can be chosen near corresponding
bases for A

Section 3, page 318

1. Suppose Df(0) has 0 as an eigenvalue, let g,{x) = f(£) 4 ez, ¢ # 0. For | ¢]
sufficiently small, one of g_,, g, will be a saddle and the other a source or sink;
hence f cannot have the same phase portrait as both ¢g_, and g.. If Df(0) has
£\, A > 0, as an eigenvalue, then g_, is a sink and g, 1s a source.

6. Hint: TFirst consider the case where e'4 is a contraction or expansion. Then use
Problem 1 of Section 1.



Subject Index

A

Absolute convergence, S0

Adjeint, 230

Adjoint of vperator, 206

o Limit point, 198, 234

Andronov, 314

Angular momentum, 21

Annulus, 247

Antisymmetric map, 200

Areal velocity, 22

Asymptotic period, 277
Asymptotie stability, 145, 180, 186
Asymptotically stable periodic solution, 276
Asympiotically stable sink, 280
Autonomous equation, 160

Bad vertices, 2649
Bavsed vector, 10
Basic functions, 140
Basie regions, 267
Basin, 190
Basis, 34

of sdutions, 154
Belongs to eigenvector, 42
Bifureation, 227, 255

of hehavior, 272
Bifureation paint, 3
Bilinearity, 75
Boundary, 224
Branches, 224, 211
Brayton—Muoser theorem, 234
Brouwer fixed point theorem, 253

C

CLO 1R

Canonical forms, 122, 123, 331
Capacitance, 232

Capaciturs, 211, 232

Curtesian product of vector spaces, 42
Cartestan ~pace, 10

Cuuchy sequence, 76

Cusiehy’s inequality, 75
Cayiey-Humilton theorem, 115
Cetiter, B9

Central furce fields, 19

Chain ruabe, 17, 175

Change

b Dases, 36

of coordinates, 6, 36
Characteristic, 213, 232
Characteristic polynomial, 43, 103
Closed orbit, 248
Closed subset, 76
Companion matrix, 139
Comparison test, 80
Competing species, 265
Complex Cartesian space, 62
Complex eigenvalues, 43, 55
Complex numbers, 323
Complex vector space, 62, 63
Complexification of operator, 65
Complexification of veclor spaces, 64
Configuralion space, 287
Conjugare of complex number, 323
Conjugste momentum, 293
Conjugation, 64
Con=ervation

of angular momentum, 21

of energy, I8, 292
Couservative force field, 17
Continuons map, 76
Continuctisly differentiable map, 16
Coutracting map theorem, 286
Contraction, 145
Convergence, 76
Cotivex =et, 164
Coordinnte zystem, 36
Coerrdinates, 34
Cross product, 20
Current, 211
Current states, 212, 229
Curve, 3, 10
Cyelic subspace, 334
Cyelic vector, 334

Dense set, 154
Perivative, 11, 178
Deterninants, 30, 323
iagonal form, 7
1Hagonal inatrix, 45
Diagonalizability, 43
Diffeomorphisin, 242
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Differentiation operator, 142

Direct sum, 41

IJiserete dynamical system, 278, 280
Iiserete flow, 279

Jiseriminant, 96

istance, 10, 76

1ual basis, 205

Dusl space, 36

Dual vector space, 204

ynamical system, 5, 6, 159, 160

E

Eccentricity, 26
Eigenspace, 110
Eigenvalue, 63
Eigenvector, 42, 63
Elementary r-block, 127
Elementary Jordan matrix, 127
Elementary nilpotent block, 122
Fnergy, 18, 281
Fntire arbit, 195
Fquation of limited growth, 257
Equilibrium, 145
Equilibriam point, 180
Equilibrium state, 145, 181
Euclidean three space, 287
Expansion, 149
Exponent (exp}, 83
Exponential, 74

of operator, 82
Exponential approach, 181
Expouential series, 83

Factorial, 83

Field of force, 15

Fixed point, 181, 279
Flow, 6, 175

Flow box, 243

Focus, 43

Force field, 16, 17, 23
Fundamental theorem, 162

Fundamental theorem of algebra, 328

Fundamental theory, 160

G

tieneralized eigenspace, 110
fienetalized momenta, 202
(reneric property, 154
Grenericity, 188

Global section, 247

Guod vertices, 269
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Gradient, 17

Gradient system, 199
Graph of map, 339
Gronwall's inequality, 169
Growth rate, 256

H

Hamiltoman, 201, 203
Hamiltonian vector field, 291
Hamilton’s equations, 291
Harmonic motion, 53

Harmonic oscillator, 15, 105
Higher order linear equations, 138
Higher order systems, 102
Homeomorphism, 312
Homogeneous linear systems, 89
Hopf bifurcation, 227
Hyperbolic closed orbit, 311
Hyperbolic equilibrium, 187
Hyperbolic flow, 150
Hyperplane, 242

Identity map, 322

Image, 34, 322

Implicit function theorem, 338
Improper node, 93
Independent set (subset), 34
inductance, 213, 232
Inductors, 211, 213, 232
Infinite series, 86

Initial condition, 2, 162
Initial value problem, 2
Inner product, 16, 75

In phase trajectories, 278
Integral, 23

Invariance, 138

Inverse, 33

Inverse function theorem, 337
Invertibility, 33
Isomorphism, 35

Iteration scheme, 168

Jordan A-block, 127
Jordan curve theorem, 254
Jordan form, 127

Jordan matrix, 127

KCL, 211, 229
Kepler problem, 58
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Kepler's first law, 23
Kernel, 33

Kinetic energy, 18, 288
Kirchhoff's current Jaw, 211
KVL, 212, 230

L

Lagrange’s theorem, 1494
Latus rectum, 26

Legendre transformation, 292
Length, 10, 76

Level surface, 195, 200
Liapunov, 192

Liapunov function, 193
Liapunov’s theorem, 180
Lienard's equation, 210, 215
Limit cycle, 250

Limit set, 239

Limiting population, 257
Linear contraction, 279
Linear flow, 97

Linear graph, 229

Linear map, 30, 33

Linear part, 181

Linear subspace, 33

Linear transformation, 5
Linearity properties, 30
Linearly independent elements, 326
Liouville’s formuls, 278
Lipschitz constant, 163
Lipschitz funetion, 163
Local section, 242, 278
Locally Lipschitz, 163

M

Manifelds, 232, 319
Matrices (matrix), 8, 11
Maxwell, 191
Minimal set, 241
Mixed potential, 233
Monotone along trajectory, 244
Multiplicity, 110

of a root, 330

N

n-body problem, 287
Neighborhood, 76, 305
Newtonian gravitational field, 24
Newton's equations, 289
Newton’s second law, 15

mi(x), 334

Nilpotent, 112, 117

Nilpotent canonical form, 122

Nodes, 93, 211, 229

Nonautonomous differential equations, 99, 296
Nonautonomous perturbation, 308
Nondegenerate bilinear form, 290
Nonhomogeneous, 99

Nonlinear sink, 182

Norm, 77

4]
Ohm's law, 213
w Limit point, 198, 239
One-form, 205
Onto mapping, 322
Open set, 76, 153
Operator, 30, 33
Orbits, 5
Order of differential equation, 22
Ordinary boundary points, 268
Oriented branch, 229
Origin, 10
Orthonormal basis, 206

|

Parallelogram law, 81

Parameter, 2

Parametrized differential equation, 227
Partial sums, 80

Passive resistor, 217

Peixoto, 314

Pendulum, 183

Periodic atiractor, 278

Periodic sulutions, 95

Perturbation, 304

Phase portrait, 4

Phase space, 292

Physical states, 213, 232

Physical trajectory, 234

Picard iteration, 177
Poincaré-Bendixson theorem, 239, 248
Poincaré map, 278, 281

Pontryagin, 314

Positive definiteness, 75

Positive invariance, 195

Potential energy, 17, 288

Power, 231

Predator-prey equation, 259
Primary decomposition theorem, 110
Product of matrices, 32

Proper subspace, 33

Rank, 41
Real canonical form, 130
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Real distinct eigenvalues, 46
Real eigenvalue, §2

RReal logarithm of operator, 132
Recurrent point, 248

Regular puint, 200

Residunl sets (xubsets), 158
Resistors, 211, 213

Rextriction, 322

RLC cirentt, 211

Saddle, 102

Saddle poina, 190

Realars, 33

Rection miap, 221

Self-adjoint operator, 207
Remishmplicity, 63, 65, 116, 117
Separation of variables, 261
Separatrices, 272

Sequence, 76

SBeries, 80

Singularity point, 181

Sink, 145, 180, 181, 280
Similar matrires, 39

Simple harmonic motion, 59
Simple mechanical system, 28%
Social phenomena, 257

Solution of differential equation, 161

Solution space, 35
Source, 45, [44, 190
Space derivative, 300

of states 22

of unrestricted states, 231
Stability, 145

of equilibria, 180
Stable closed orbit, 285
Stable equation, 3
sStable equulihrmm, 185
Htuble fixed point, 285
Stable marnifedds, 272
Stabie sudrpnee, 151
Standard basis, 34
State space, 23, 28
States, 22
Stationary puint, 181
Structural stability, 304, 313
Subspace, 33
Summation sign, 323
Svmbinsis, 273
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Symmetric matrix, 46, 207
Symmetry, 75
Symplectic form, 290
System, 3

of differential equations, 9

T

Tangert vectar, 3, 11
Tellegen’s theorem, 231

Time one map, 279

Total energy, 18, 280

Trace, 40

Trajectories, 5

Translates of vectors, 10
Transversal erossing, 267
Transverse to vector Reld, 242
Trivial subspace, 33

U

Uncoupling, 3, 67
Undetermined coefficients, 52
Uniform continuity, 87
Uniform norm, 82

Unit ball, 83

Unlimited growth, 256
Unstable equilibrium, 186
Unstable subspace, 151

¥y

Variation of constants, 99
Variational equation, 299

Van der Pol's equation, 210, 215, 217

Vector, 10, 33

Vector field, 4, 11

Vector spave, 30, 33
Vector structure on R*, 30
Velocity vector, 18
Vertices, 268

Voltage; 212

Voltage drop, 212

Voltage potential, 212, 230
Voltage state, 212, 230

Vulterra-Lotka equations, 254, 262

w
Work, 17

Zero, 181



