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Preface 

Thii hook is about dynamical aspects of ordinary differential equations and the 
relations between dynamieal systems and certain fields outside pure mathematics. 
A prominent role is played by the structure theory of linear operators on finite- 
dimensional vector spaces; we have induded a selkontained treatment of that 
subject. 

The background material needed to understand this book is difIerential ealculua 
of several variables. For example, Serge Lang's Calculus OJ SNnol Variabiea, up to 
the chapter on integration, contains more than is needed to undemtmd much of our 
text. On the other hand,after Chapter 7 we do use several results from elementary 
analysis such as theorems on uniform convergence; these are stated hut not proved. 
This mathemties is contained in Lands Anolvsia I. for instance. Our treatment of - - .  
linear algebra is systematic and self<ontaind, although the mod elementary parta 
have the character of a review; in any ease, Lang's C d d w  of Snnol VarioMes 
develops this elementary linear algebra a t  a leisurely pace. 

While this book can he used as early ap the sophomore year by atudents with a 
strong firat year of calculus, it is oriented mainly toward upper division mathematies 
and acience students. It can also be used for a p d u a t e  course, especially if the later 
chapters are emphasized. 

I t  has been said that the subject of ordinary differential equations in a collection 
of tricks and hints for finding solutions, and that it is importaot becaune i t  can 
mlve prohlema in physies, engineering, ete. Our view is that the subject ean be 
developed with considerable unity and coherence; we have attempted such a de- 
velopment with this book. The importance of ordinary differentid quatiom 
via d via other areas of seience lien in its power to motivate, unify, and give force to 
tho= areas. Our four chapters on "applications" have been written to do exactly 
this, and not merely to provide examples. Moreover, an underatand'i of the ways 
that differential equations relate to other subjects is a primary source of height 
and inspiration for the etudent and working mathematician alike. 

Our goal in thii book is to develop nonlinear ordinaty difiermtid equationn in 
open subsets of real Cartesian space, R', in such a may that the d o n  to 
manifolds in simple and natural. We treat chiefly autonomous w&ma emphasiring 
qualitative behaiior of mlution curves. The related themes of &it; and physied 
nieniieance oervade much of the material. Manv tooies have been omitted. mch an 

~ - . . 
Laplace transforms, aeries solutions, Sturm theory, and specid functions. 

The level of rigor is high, and almost everything in proved. More important. 
however, is that ad ha: methods have been rejected. We have tried to develop 
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pn,ofc that add insight to the theorems and that are important methods in their 
own right. 

\Vr hnrr avoided the introduction of manifolds in order to make the book more 
widcly readable; but the main ideas can easily be transferred to dynamical systems 
on manifolds. 

The first six chapters, especially Chapters 3 4 ,  give a rather intensive and com- 
plrtr study of linear differential equations with constant coefficients. This subject 
nlnt trr ran nlmost be identified with linear algebra; hence those chapters constitute 
.1 - I t , . r t  . t u r - * .  i n  linrar algvbrnaa wrll. Thc.algebraic emphasis is i,n rigenvrrtoraand 
I,,lu I 1111ql I hom. \\'r go far hvond this, howrrer, to the "w~nisimplr + nilpttrnt" ~~. 
decomposition of an 81-bitrary operator, A d  then on to the ~ordanform and its real 
analogue. Those proofs that are far removed from our use of the theorems are 
relrgatrd to appendices. While complex spaces are used freely, our primary concern 
is to obtain resulk for real spaces. This point of view, so important for differential 
equabions, is not commonly found in textbooks on linear algebra or on differential 
equations. 

Our approach to linear algebra is a fairly intrinsic one; we avoid coordinates 
where frasible, while not hesitating to use them aa a tool for computations or proofs. 
On tltr nthrr hand, instead of developing abatract vector spaces, we work withj 
litt,:\r -IIIIS/):I(.~,S of R" or C", a small concession which perhaps makes the abstractioni 
ntur , .  (liSe.4il>l<.. 

I'hillc s,ttr :~lg~braic theory, we give explicit methods of writing down solutions 
to arbitrary constant coefficient linear differential equations. Examples are included. 
In particular, the S + N decomposition is used to compute the exponential of an 
arbitrary square matrix. 

Chapter 2 is independent from the others and includes an elementary account 
of the Keplerian planetary orbits. 

The fundamental theorems on existence, uniqueness, and continuity of solutions 
of ordinary differential equations are developed in Chapters 8 and 16. Chapter 8 is 
rrstrirtgd 10 the autonomous case, in line with our basic orientation toward dynami- 
cnl y - t  (,Ins. 

('l~:ll,ti,rs 10, 12, and 14 are devoted to systematic introductions to mathematical 
rno<l,,l-. (11 vla.r:trical circuits, population theory, and classical mechanics, respectively. 
'l'lr,. I<r:iytr,r~ hlnsrr circuit theory is presented as a special case of the more general 
tlrw~r. rr,cv~ltly dercloped on manifolds. The Volterra-Lotkaequations of competing 
sprcitv nrc analyzed, along with some generalizations. In mechanics we develop 
thr Harrliltunian formalism for conservative systems whose configuration space is 
nn r q , v ,  snbsrt of a vector space. 

' ~ ' I I < ,  rtv~utining five chapters contain a substantial introduction to the phase 
portrait analysis of nonlinear autonomous systems. They include a discussion of 
' ' g ~ ~ ~ ~ ~ ~ r i a "  ~m,pertira of linear Bows, I.iapunov and structural stability, Poincar& 
Ur~~dixsun theory, periodic attractors, and perturbations. We conclude with an 
Aftrrxvurd which points the way toward manifolds. 

PREFACE xi 

l ' l i c .  follori~,g rvrnnrkrr should hvll~ ( I N  r,,ad~.r dvcidc ( r n  tvllirh ehaptcrs to n r d  
and in what ~ ~ r d r r .  

('hsptvrs 1 and 2arit clt2mrntary, hut thvy pr(,s<.nt many idcas that rrcur thr~ugh- 
out the book. 

Chnptcrs 3-7 form a sequence that dw14nps linrar thmry rather thoroughly. 
Chaptvrs 3, 4, and 5 makc a good introductiun to liarar oprrators and linrar diffrr- 
ential oquatiana. The canonical form thcory of ('haptvr 6 is thr, basis of thc stability 
rcsults proved in Chapters 7, 9, and 13; howvvvr, this heavy algebra might br post- 
p o n d  a t  a first exposure to this matcrial and thc rvsults takrn on faith. 

The existcncc, uniquenm, and continuity of solutions, prorcd in Chapter 8, arc 
u s d  (often implicitly) throughout the rrst uf the book. Drprnding on thr rradvr's 
taste, proofs could be omitted. 

A rcader intrrcstcd in thc nonlinrar matrrial, who has some background in linrar 
thcory, might start with the stability throry of Chaptrr 9. C:haptcrs 12 (reology), 
13 (prriodic attractors), and 16 (prrturbations) drpr~id stnmgly on Chaptrr 9, whilr 
the section on dual rector spaccs and gradivr~ts rvill makr Chaptrrs 10 (rleetrical 
circuits) and 14 (mwhanics) rasier to undfmtand. 

Chaptcr 12 also depends on Chaptrr I I (Poincar&B~.~~dixson); and the matrrial 
in Section 2 of Chapter I1 on local srctions is uscd again in Chaptcm 13 and 16. 

Chapter 15 (nonautonomous equations) is a conti~~uation of Chaptcr 8 and is 
u s d  in (:haptrrs 11, 13, and 16; lruwcvvr it can bc omit td  at a first reading. 

The logical dcpcndcncc of thc 1atr.r chapter~ is ~ummitrizod in the fclllowing chart: 

The book owes much to many pmplc. We only mention four of thcm hem. lkuko 
Workman and Ruth Suzuki did an cxcclk~nt job of typing the manwript. Dick 
Palais made a number of uscful comments. Spceial thanks are due to Jacob Palis, 
who n:ad tho manuscript thoroughly, found many mir~or r.rrors, and suggcatcd 
sevcral substantial improvements. Profrssor klirsrh is gratcful to the hliller Iuatitute 
for its support during part of the writing d thc b ~ k .  



Chapter 1 
First Examples 

The'purpose of this short chapter is to develop some simple examplea of difiereo- 
tial equations. This development motivates the linear algebra treated subsequently 
and moreover gives in an elementary context some of the basic iden of ordinary 
differential equations. Later these ideas will be put into a more systematic expmi- 
tion. In the examples themselves are special case of the c h  of differen- 
tial wuations considered in Cha~ter  3. We mard this chaoter ma immrtant &tee - 
some of the most basic idem of differential equations are ween in simple form 

81. The Simpleat Examples 

The differential equation 

is the simplest differential equation. I t  is also one of the mast important. First, 
what does it mean? Here z = z(f) is an unknown real-valued function of a real 
variable t and &/dl is its derivative (we will also user' or z'(t) for this derivative). 
The equation tells us that for every value of 1 the equality 

is true. Here a denotes a constant. 
The solutions to (1) are obtained from calculus: if K  is any eonstant (real num- 

ber), the function j(t) = K e g  is a solution aince 



0'0 a a<0 
FIG. A 

ILIoreover, lhere are no other solulions. To see this, let u(t) be any solution and 
compute the derivative of u(l)e-': 

= au(1)e-' - au(1)e-L' = 0. 

Thcreii,rv rcil)r---'  is a constant K, so u(1) = Kel .  This proves our annertion 
Thr. i.c,rlst:rnt K appuilrirtg in the solution is completely determined if the i v k i - 7  
111 t i i v  a,lut i<,n at a singll point to is specified. Suppose that a function z(1) satisfy- 

ing ( 1  i is rvquircd such that ~ ( 1 , )  = %, then K must satisfy Kel* = %. Thus 
~,qu;ttir,t~ f I I has a unique solution satisfying a specified initial condition z(4)  = ua. 
l:or si~t i l l l i<, i ty,  we often take b = 0 ;  then K = 4. There is no lass of generality 
in taking 4 = 0, for if u(1) is a solution with u(0) = ua, then the function v(l) = 
u(f - 1,) is n solution with "(4) = %. 

I t  is romroun to restate (1) in the form of an inilial udw problem: 

(2) 2' = az, z(0) = K. 

A solution z(t) to (2) must not only satisfy the first condition (I ) ,  but must a h  
takr on t,hr prescribed initial value K at  1 = 0. We have proved that the initial 
valur pruhlcm (2) hss a unique solution. 

The constant a in the equation z' = az can be considered as a parameter. If a 
r l i : ~ ~ ~ c ~ ~ s ,  11iq. <%quation chang~s and so do the solutions. Can we dwribe  qualita- 
livvl) I I t v  a:,? thr solut.i<,ns change'? 

'1'111. stq,t t v f  a is crucial here: 

if a > 0, lim,,, K e c  equals rn when K > 0, and equals -a when K < 0; 
if a = 0, Ke '  = constant; 
if a < 0, lim,-. K e l  = 0. 

$1. THE B I M P L U i T  E X A M P L E S  3 

The qualitative behavior of solutions is vividly illustrated by sketching the graphs 
of solutions (Fig. A). These graphs follow a typical practice in this book. The 
figures are meant to illustrate qualitative features and may be impreek in quanti- 
tative detail. 

The equation z' = ar is aluble in a certain sense if a Z 0. More preeiaely, if a 
is replaced by another constant b sufficiently close to a, the qualitative behavior 
of the solutions d o e  not change. If, for example, I b - a I < I a I, then b has the 
same sign a s  a. But if a = 0, the slightest change in a leads to a radical change in 
the behavior of solutions. We may also say that a = 0 is a 5iJurcatia paid in the 
one-parameter family of equations z' = ar, a in R. 

Consider next a system of tn-o differential equations in two unknown functions: 

(3) r: = as , ,  

2: = a&. 

This is a very simple system; however, many more-compLieated systems of two 
equations can be reduced to this form ss we shall see s little later. 

Since there is no relation specified between the two unknown functions z,(t), 
zr(l), they are "uncoupled"; we can immediately write down all solutions (as for 
( 1 ) ) :  

z ~ ( l )  = Kt exp(a,l), Kt = constant, 

zl(t) = K,exp(qL), Kt = constant. 

Here Kt and K, are determined if initial conditions z,(h) = u,, a ( 4 )  = u. are 
specified. (We sometimes write exp a for e . )  

Let US consider equation (2) from a more geometric point of view. We consider 
two functions z,(t), k(1) as specifying an unknown curve z(1) = (zl(l), ~ ( 1 ) )  in 
the (z,, zl) plane Rz. That is to say, z is a map from the real numbers R into R', z: 
R - R'. The right-hand side of (3) expresses the fungent vcdmz'(1) = (z:(l), z;(t)) 
to the curve. Using vector notation, 

(3') 2' = Az,  
where Az denotes the vector (a,z,, ah), which one should thinL of as h e i i  baaed 
a t  2. 

i' 



FIG. C. Az - (a,, - +z,) 

Initial conditions are of the form z(4) = u where u = (u,, u,) is a g t b t  
of R2. Geometrically, this means that when 1 = b the curve is required to p d  
thn,uah thp gicen point u. 

Tht irrap (that is, function) A: R2 -+ R: (or z + Az) can be considered a vcclor 
fild on RZ. Thii mema that to each point z in the plane we aesign the vector Az. 
For purposes of viaualiration, we picture Az as a vector "based a t  z"; that is, we 
wign  to z the directed line w e n t  from z to z + Az. For example, if a, - 2, 
c* = -&, and z = (1, I ) ,  then a t  (1, 1) we picture an arrow pointing from (1, 1) 
to (1, 1) + (2, -+) = (3, f )  ( F i .  B). Thus if A t  = (Zz,, - f a ) ,  we attach to 
each point z in the plane an arrow with tail at z and head at z + Az and obtain 
the pirturr in Fig. C. 

Sulving thc differential equation (3) or (3') with initial conditions (s, u,) a t  
1 = 0 ~nrans finding in the plane a curve z(t) that satisfies (3') and passes through 
the puiat e = (u,, u,) when 1 = 0. A few solution curves are sketched in Fig. D. 

The trivial solution (z~( l ) ,  a ( t ) )  = (0, 0) is a h  considered a "curve." 
The family of d l  solution curvea as s u k t a  of R' is called the "phaee portrait" 

of equation (3) (or (3')). 
The oncdimensional equation z' = az can also be interpreted geometridly: the 

phase portrait is as in Fii. E, which should be compared with Fig. A. It is clearer 
to picture the graphs of (1) and the solution curvea for (3) since two-dimensional 
pictures are better than either one- or threedimensional picturn. The graphs of 

1 .  THE BlMPLEBT EXAYPLEB 

FIG. D. Some aolution curves Lor' - Az,  A - C -3 
solutions to (3) require a three-dimensional picture which the reader is invited to 
sketch! 

Let us consider equation (3) as a d p a m i c d  syslon. Tbis means that the k x k  
pendent variable 1 is interpreted as time and the solution curve z(t) muld be thought 
of, for example, as the path of a particle moving in the plane R'. We ean 
a particle placed at any point u = (u,, ut) in R' a t  time 1 = 0. As time proceeds 
the particle moves along the solution curve z(1) that eatisfica the initial wndition 
z(0) = u. At any later time t > 0 the particle will be in another pceition ~ ( 1 ) .  And 
a t  an earlier time 1 < 0, the particle was a t  a powition ~ ( 1 ) .  To indicate the d b  
pendence of the position on 1 and u we denote it by O,(u). Thus 

We can imagine particles placed at each point of the plane and all moving aimul- 
taneously (for example, dust particles under a steady wind). The solution curvm 
are spoken of as trajectories or orbita in this context. For each lid 1 in B, we have 
a transformation assigning to each point u in the plane another point +,(u). Thin 
transformation denoted by o,: R' 4 R' is clearly a linear transformation, that is, 
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_CC 

0 > o  a '0 

FIG. E 

+ , ( u  + i.) = 4,(,4) + +, (r )  and +,(hu) = h.$,(u), for all vectors u, u, and all 
real nurnbrrs A. 

As timr proceeds, every point of the plane moves simultaneously along the tra- 
jectory passing through it. In this way the collection of maps .$,: R' + R', 1 E R, is 
a one-parameter family of transformations. This family is called the flow or dynami- 
cal sys fem or Rz determined by the vector field z + Az, which in turn is equivalent 
to the system (3). 

Thr dynamical system on the real line R corresponding to equation (1) is par- 
ticul:~rly <.:is\- to drscribr: if a < 0, all points move toward 0 as time goes to - ; if 
a > 0 .  :ill  [loiots (lxcvpt 0 IIIOYP away from 0 toward f m ; if a = 0, all point8 stand 
still. i. 

\Vv It:~vr sl:trtrd from a differential equation and have obtained the dynamical 
swtrrn 4,. Tl~is proress is established through the fundamental theorem of ordinary 
ditT<,rvntinl <,cluntions as we shall see in Chapter 8. 

L n t ~ r  \rc shnll also reverse this process: starting from a dyndmical system 61, a 
difierrntinl equation will he obtained (simply by differentiatink .$,(u) with respect 
to I ) .  

It  is spldonl that differential equations are given in the simple uncoupled fonn 
(3). Consider, for example, the system: 

I 

x; = -62, -42, 

or in vrctor notation 

(4') z' = (5x1 + 321, -62, - 421) = Bz. 

Our approach is to find a linear change of cwrdiinolea that will transform quation 
(4) into uncoupled or diagonal form. I t  turns out that new coordinates (y,, yt) do 
the job where 

Y, = 2tr + z,, 

(In Chapter 3 we explain how the new cwrdmates were found.) 
Solving for z in t e r n  of y, we have 

FIG. F 

To find y:, y; differentiate the equations defining y,, y, to obtain 

y: = 22: + z;, 

y; = 2: + 2;. 
By substitution 

y; = 2(5z, + 321) + (-62, - 421) = 42, + b, 

Another substitution yields 

The last equations are in d i o g o d  jorm and we have already wlved thin elam of 
system. The solution (yt(0, udt ) )  such that (y,(O), y,(O)) = (%, 4) is 

y,(t) = e'h, 

~ ~ ( 1 )  = e - h .  



The phase portrait of this system (5) is given evidently in Fig. D. We can find 
the phase portrait of the original syatem (4) by simply plotting the new ~ ~ t a  
u r n  y, - 0, yl - 0 in the (I,, t t )  plane .nd sketching the tmjectoriea y(t) in thtse 
mo&ten.Thusy, - 0 i s t h e l i n e L : a  - - b ~ a n d y r - O i n t h e l i n e L : s ,  - 
-2,. 

Thus we have the phaae portrait of (4) an in Fia. F, which should be comoared - 
with Fig. D. 

Formulas for the solution to (4) can be obtained by mbatitution as follows. 
Let (u,, IL,) be the initial valuea (a(0).  a (O) )  of asolution ( ~ ~ ( 0 ,  d l ) )  to (4). . ~ . . .  ~ . . .  . ,  
Corresponding to (u,, ut) in the initial value (vl, s )  of a solution (y,(f), yl(1)) to 
( 5 )  where 

s - Ul + ut. 

Thus 

n ( 0  = c"(2u1 + 4 ,  

~ ( 1 )  - c'(u1 + ut) 

and 

2110 = 2'(2u, + ut) - c'(u, + y), 

tt(1) - -e"(2u1+ ut) + 2st(u, + ut). 

If we rompnre these formulas to Fig. F, wesee that thediagram instantly gives us 
the qualitnt~ve picture of the solutions, while the formulas convey little geometric 
information. In fact, for many purpases, it is better to forget the original equation 
(4) and the eomponding solutions and work entirely with the "diagonalized" 
equations (5). their solution and phase portrait. 

PROBLEMS 

1. Each of the "matriee8" 

given below deEnen a vector field on R', aa&nhg to z - (z,, a )  E R' the 
vector Az - (clue, + a&, + M) b a d  a t  z. For each matrix, draw 
enough of tbs -tom until you gat a fedirU for what the vector field loob  

$2. LINEAR sY0TEMs WITH CONWANT COEFFICIENT8 9 

like. Then sketch the phase portrait of the corresponding diUerw~tial equation 
z' = Az, guessing where neceesary. 

(d [-I -I] (h) [C 11 (9 [ 0 0 1  
1 -1  -3 0 

2. Consider the one-panuneter family of differential equations 

2: = 22,, 

(a) . Fmd all solutions (z,(t), z.(f)). 
(b) Sketch the phase portrait for a equal to - 1,0,1,2,3.  Make awe gu- 

about the stability of the phase portmite. 

(2. Linear Systems with Conatant &ffieicnt. 

This nection is devoted to generalising and abstracting the previw exampla. 
The general problem in stated, but solutions are postponed to Chapter 3. 

Consider the following set or "system" of n differential equations: 

Here the a,, (i = 1, . . . , n; j = 1,. . . , n) are n' conatanta (real n u m h ) ,  while 
each z, denotetl an unknown real-valued function of a real vaMble 1. Thus (4) of 
Seetion 1 in an example of the system (1) with n = 2, au = 5, a.9 - 3, on - -6, 
a,, = -4. 



At this point we are not trying to solve (1) ; rather, we want to place it in a geo- 
metrical and algebraic setting in order to understand better what a solution means. 

At the most primitive level, a solution of (1) is a set of n differentiable real- 
valued functions z.(l) that make (1)  true. 

In ,,r<lvr t r ~  wach a more conceptual understanding of (1) we introduce real ndi-  
,,,~,tsl,,ttni ('or-Icsian space R". This is simply the set of all n-tuples of real numbers. 
An rl<,nii.nt 1>1 R" is a "point" z = (r,, . . . , z.) ; the number z, is the ith m d i d  
of the. r x l i ~ t t  I. I'oints I, y in R" are added coordinatewise: 

Also, i f  h is n n d  nun~brr we define the producl of A and z to he 

Xz = (Az,, , . . , Az*), 

The distance between point6 z, y in R" is defined to be 

I2 - y I = [(I, - yl)= + ...  + (2" - Y " ) ~ I ' ~ ~ .  

The length of z is 

I z I = (z,' + . . . + z.')"'. 
A vt~rtor based at z E R. is an ordered pair of points z, y in R", denoted by s. 

We think 01 this as an arrow or line segment directed from z to y. We eay 5 is 
based at r 

A vector based a t  the origin 

is identifid with the point z E R". 
To a vector based a t  z is associated the vector y - z based a t  the origin 0. 

We call the vectors zTand y - z lramlolcs of each other. 
From now on a vector based a t  0 is called simply a vector. Thua an element of 

R' can be considered either as an n-tuple of real numbers or as an arrow issuing 
from thr origin. 

I t  is only for purposes of viaualisation that we consider vectors based a t  points 
other tban 0. I'or computations, all vectors are based a t  0 since such vectors can 
be sddrd and multiplied by real numbers. 

We r ~ t u r n  to the system of differential equations (1). A candidate for a solution 
isanrrveinR' :  

By this we mean a map 

2: R--tW. 

Such a map is deneribed in terms of coordinates by (*). If each function zi(1) is 
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differentiable, then the map z is d e d  dibrentiable; ita derivative is dehed to be 

& - = 
dl 

~ ' ( 1 )  = (z:(l), . . . , zt(1)). 

Thus the derivative, as a function of 1, in again a map from R to R'. 
The derivative can also be expreaeed in the form 

It has a natural geometric interpretation as the vector 141)  based a t  I(#), which b 
a tranalate of ~ ' ( 1 ) .  Thin vector is d e d  the & n o d  ucda to the nvss U 1 (or a t  . . 

d l ) ) .  
If we h a g h e  I M denoting time, then the length I i ( 1 )  I of the taryot vector u 

iniemreted ohva idv  M the weed of a oarticle d e a c r i b i  the d l ) .  
~d write i l j  in abbAted f o m  we d the daub& i b x e d  &'of n u b  

ac an n X n malrir: A, denoted thus: 

a,, a" . . . 
A = [aj;] = 

L a  2 . . . a..J 

Next, for paeh z E R' we define a vector Az E R' whose ith coordinate is 

CSlI, + . . . + on.&; 

note that this is the ith row in the righehand nide of (1). In  thia way the matrix A 
is interpreted as a map 

A:R'+Rm 
which to z ansigns Az. 

With this notation (1) in rewritten 

(2) I' = Az. 

Tbus the syetem (1) urn be conaidered an a W e  "vector di8erenti.l equation" 
(2). (The word equalion in c h i d y  r e w e d  for the caae of just one variable; we 
shall call (2) both a system and an equation.) 

WethinkofthemapA:Rn-R'asavcdmWonR':to  each points E R. 
it assigns the vector based a t  z which is a translate of Az. Then a solution of (2) 
in a curve z:  R -+ R' whose tangent vector a t  any given 1 is the vedar &(l) (tCUg 
lated to ~ ( 1 ) ) .  See Fig. D of Seetion 1. 

In Chapters 3 and 4 we ahdl give methods of explicitly solving (21, or equin- 
lently (1). In  subsequent chapters i t  will be shown that in fact (2) h~ a uniqua 
solution z(1) satisfying any given initial condition r(0) = r E R.. Tha in tha 
fundamental t h m m  of linear dinerentid equations with mnc&nt co&rhta; in 
Section 1 thin was proved for the @ caae n - 1. 



1. For each of the following matrices A sketch the vector field z -+ Az in R'. 
(\Xising matrix entries are 0.) 

2. For A as in (a),  (b) , (c) of Problem 1, solve the initisl value problem 

z' = Az, I(O) = (it,, 4 , 4 )  

3. Let A be as in (e), Problem 1. Find constants a, b, c such that the curve 1 -r 
(a coa 1, b Bin 1, K"') in a solution to z' = Az with z(0) = (1.0, 3). 

4. Find two different matrices A, B such that the curve 

satisfies both the differential equations 

= Az and z' = Bz. 

5. Let A = [ait] be an n X n diagonal matrix, that is, sit = 0 if i Z j. Show that 
the differential equation 

has a unique solution for every initial condition. 
6. Let A be an n X n diagonal matrix. Fmd conditions on A gumanteeing that 

lim z(1) = 0 
I.._ 

for all solutions to z' = Az. 

7. Let A = [aii] he an n X n matrix. Denote by -A the matrix [-ac,]. 
(a) \Vhat is the relation between the vector fielda z -+ Az and z -t (- A)z? 
(b)  What ia the geometric relation between solution curves of I' - AI and 

of z' - -Az? 

8. (a) Let ~ ( t ) ,  ~ (1 )  he eolutions to z' - Az. Show that the curve w(1) = 
4 1 )  + Bu(1) ia a solution for all real numbem a, 8. 

(b) Let A = [' 4. Find solutions u (0 ,  v ( 1 )  to z' = Az such tbat every 
solution can be expressed in the form m(1) + Bv(1) for suitable eoo- 
stante a, 8. 

Notes 

The background needed for a reader of Chapter 1 is a g o d  timt year of coUege 
calculus. One good source is 9. Lands S d  Cmrrac in Cdeulw [12, Chapters I, 
11, and 1x1. In this reference the material on derivatives, nwes, and vecbm in 
R* and matrica is d i d  much more thoroughly than in our 8eetim 2. 
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Chapter 2 
Newton's Equation and Kepler's Law 

We develop in this chapter the earliest important examples of differential equs- 
tions, which in fact are connected with the origins of calculus. These equations were 
used by Naxr-ton to derive and unify the three laws of Kepler. These laws were 
found from the earlier astronomical observations of Tycho Brahe. Here we give a 
brief derivation of two of Kepler's laws, while a t  the same time setting forth some 
general ideas about differential equations. 

The equations of Newton, our starting point, have retained importance through- 
out the history of modem physics and lie a t  the root of that part of physics caned 
classical mechanics. .,':' ' I  

The first chapter of this book dealt with linear equations, but Newton's equa- 
tions are nonlinear in general. In later chapters we shall pursue the subject of non- 
linear diRerrntial equations snmewhat systematically. Theexamples here provide 
us with concrete examples of historical and scientific importance. Furthermore, the 
case we consider most thoroughly here, that of a particle moving in a central force 
gravitational field, is simple enough so that the differential equations can be solved 
explicitly using exact, classical methods (just calculus!). This is due to the existence 
of certain invariant functions called infegrab (sometimes called "first integrals"; 
we do not mean the integrals of elementary calculus). Physically, an integral is a 
conscrvntion larv; in the case of Newtonian mechanics the two integrals we find 
corrrsp<md t<, conservation of energy and angular momentum. Mathematically 
an intr,gral reduces the number of diienaions. 

Wr shall hr lvorking with a particle moving in afield of force F. Mathematically 
F is a I . C C / O ~  j e ld  on the (configuration) space of the particle, which ir. our cme we 
suppose to be Cartesian three space Rs. Thus F is a map F :  R' -+ R' that assigns 
ta a point, r in R' another point F(z)  in R'. From the mathematical point of view, 
F ( z )  is thought of as a vector based a t  z. From the physical point of view, F(z) 
is the farce exerted on a particle located a t  z. 

Thr example of a force field we shall be most concerned with is the gravitational 
field of the sun: F(z)  is the force on a particle located at z attracting it to the sun. 

We shall go into details of thk field in Section 6. Other important examples of force 
fields are derived from electrical forces, magnetic forces, and m on. 

The connection between the ~hysical concept of force field and the mathematied 
concept of differential equation is N m h ' s  second lau: F = ma. This law e r h  
that s particle in a force field moves in such a s a y  that the force vector a t  the lock 
tion of the particle, a t  any instant, equals the acceleration vector of the particle 
times the mass m. If z ( 0  denotes the position vector of the particle a t  time I ,  where 
z :  R - R* is a sufficiently differentiable curve, then the acceleration vector is the 
second derivative of z(1) with reBpect to time 

a ( ( )  = I ( / ) .  

(We follow tradition and use dols for time derivatives in this chapter.) Newtoo's 
second law states 

P(z(r ) )  = I ~ z ( L ) .  

Thus we obtain a m o n d  order differential equation: 

1 
i = - m F(z).  

In Newtonian physics it is assumed that nt is a positive constant. Newton's law of 
gravitation is used to derive the exact form of the function F(z).  While these q u a -  
tions are the main goal of this chapter, we first discuss simple harmonic motion 
and then basic background material. 

$1. Harmonic Oscillators 

We consider a particle of mass at moving in one dimension, its position a t  time 
1 given by a function 1 -+ z(l) ,  z: R -r R Suppose the force on the particle a t  a 
point z E R is given by -mpYz, where p is some real constant. Then according 
to the laws of physics (compare Seetion 3) the motion of the particle satisfies 

This model is called- willator and ( I )  is the equation of the harmonic 
oscillator (in one ]on). 

An example of the harmonic oscillator is the simple pendulum moving in a plane, 
when one makes an approximation of sin z by z (compare Chapter 9). Another 
example is the case where the force on the particle is caused by a spring. 

I t  is easy to check that for any constants A ,  B, the function 

(2) ~ ( t )  = A cos pl + B sin pl 

is a solution of ( I ) ,  with initial conditinnsz(0) = A ,  f ( 0 )  = pB. Infact,asisproved 
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oftcn in calculus courses, (2) is the only solution of (1) satisfying these initial condi- 
tions. Ister r e  will show in a systematic way that these facts are true. 

Using basic trigonometric identities, (2) may be remitten in the form 

(3) z(t) = acos (pl + b), 

where a = (Aa + itr)"' is called the amplitude, and cos 1, = A (A' + B)-"'. 
In Section 6 we will consider equation (1) where a wnstant term is added ( ~ p r e -  

senting s constant disturbing force) : 

Then, similarly to ( I ) ,  every solution of (4) has the form 

K 
(5) j z(t) = acos (pt + b) + --,. 

P 
\ 

The twodimensio~l  version of the harmonic oaeillator concern8 a map z:  R -+ R' 
and a force F(z) = -hkz (where now, of course, z = (zt, Q) E R2).  Equation 
( I )  now has the same form 

(1') t + k'r = 0 

with solutions given by 

(2') z,(t) = A WE kt + B sin kt, 

~ ( t )  = C cos kl + D ain kt. 
See Problem 1. 

Planar motion will be considered more nenerally and in more detail in later eee- 

Thus(z , r )  = IzI ' . Ifr ,  y: I-R'sreCfunctions,thena~oftbeLeibnis 
product rule for derivativw is 

M can be d y  checked using e o o d h t e  functions. 
We will have ocuaion to d d e r  functions j :  R- - + R  (which, f a  mmple, 

wuld be given by tempature or density). Such a map j is d e d  O if tbe nup 
R. - R given by ewh partial derivative r - Jj/Js.(z) is debned and mntinuous 
(in Chapter 5 we diseuas wntinuity in more detail). In  thin uk tbe &t of 
j, d e d  prod j, in the map R* 4 R. tbat sends z into (d j /h (x ) ,  . . . . d j / h ( t ) ) .  
O n d  f is an example of a vector field on R'. (ID Chapter 1 we wnsidaed only 
linear vector fields, but gad j may be more general.) 

Next, wnsider the compmition of two C maps .s follows: 
I .  

I - R ' -  R 

The chain rule can be expressed in this context as 

uaing the de6nitionu of g d i t  and inner product, the reada an prore that tbi. 
is equivalent to 

- 
tions. But first we go over some mathematical preliminaries. 

52. Some Calculus B a c I y o u n d  

A pnth of a moving particle in R" (usually n 5 3) ia given by a map f :  I -+ R" 
whcn I might be the set R of all real numbers or an interval (a, b )  of all real num- 
bers strictly between a and b. The derivative of J (provided f is differentiable a t  
each point of I )  defines a map j': I - R". The map f ia called C', or conlinuaurly 
diflerrrtliablr, if j' is continuous (that is to say, the corresponding coordinate func- 
tions j:(O are continuous, i = 1, . . . , n). If j': I -+RS is itself C', then f is said 
to bc C. Ittductivrly, in this way, one defines a map f :  I -+ R" to be P, where r = 
3, 4. 5, and so on. 

Thc i~ tnrr  produd, or "dot product," of two vectors, z ,  y in R" is denoted by 
(r, y 1 and defined by 

A vector field F :  R' -R' is d e d  a force field if the vector F ( r )  &mimed to tbs - 
point z is interpreted M a force acting on a particle plrced a t  I. 

b y  force fields nppeuiod: in phymes atbe in the followiog way. Tbae ia a O 
function 

B U C ~  tbat 

~ ( r )  - - (2 (z) ,  (z), - a s  (z) ) 
- -gad V(z). 

(The negative sign is traditional.) Such a force held is d e d  cmucmtk. The 
function v ia called the p o l d i d  energy function. (More properly V should be ailed 
a votential ezlem since addin. a wmtant to it doea not c h  tbe fcme M d  - 
--& V(r).) G b l e m  4 rek& potential enew to -k. 



Th? planar harmonic oscillation of Section 1 corresponds to the force field 

'l'his fi<, l<l  i.- cwnsrrvativ~, with potential energy 

IT(=) = Jmk 1 z 1' 
:is i s  ,.:t.ily vvrifird. 

lijr :in? muving partirlr r(1) of msss m, the kinetic energy is defined to be 

Here =(ti is interpreted as the uelocily valor at  time I; itn length 1 f (1) I is the speed 
a t  timp 1. If we consider the function z: R-  R' as describing a curve in R', then 
f (0 is the lawen1 ueclm to the curve a t  ~ ( 1 ) .  

l'or a  article moving in a consenrative force field F = -grad V, the potential 
enemy at r is defined to be V(r). Note that whereas the kinetic energy depends on 
the vrloeity, the potential energy is a function of position. 

The lolal energy (or sometimes simply energy) is 

E = T + V .  

This has thr following meaning. If z(l)  is the trajectory of a particle moving in 
the conservative force field, then E is a real-valued function of time: 

E(1) = + mf (1) 1' + V(z(1)). 

Theorem (Conservation of Energy) Lel z(1) be h e  lrajedory ofa parlide moving 
i,, n ro,rserwliue force field F = -grad V. Then the lolul energy E is itldependenl of 
ll,l,('. 

Proof. It rlccds to be shown that E(z(1)) is constant in 1 or that 

It fo1lua.s from calculus that 

( a  vrraion uf the Leibniz product formula); and also that 
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These facts reduce the proof to showing that 

or (m2 + grad V ,  1) = 0. But this is so since Newton's second law is mf + 
grad V(z) = 0 in this instance. 

$4. Central Force Fields 

A force field F is called cmlral if F(z) points in the dimtion of the line through 
2, for every z. In other words, the vector F ( z )  is always a scalar multiple of z, the 
coefficient depending on z:  

F ( r )  = h(z)z. 

We often tacitly exclude from consideration a particle a t  the origin; many m t r d  
force fields are not defined (or are "infinite") a t  the origin. 

Lemma Lel F be a co-iue jmce field. Then Ule following dafawnb are 
equiualent : 

(a) F is eentral, 
(b )  F(z) = l ( l  z l)z, 
(c) F (z )  = -grad V(Z) and l'(z) = g(1 z 1) 

Proof. Suppose (c) is true. To prove (b) we find, from the chain rule: 

this proves (b) with f(l z 1) = g'(l z 1)/1 z 1. It is clear that (b) imp!& (a). To 
show that (a) implies (c) we must prove that V is constant. on each sphere. 

S . =  ( z E  R a I I z I = a ) ,  a > 0 .  

Since any two points in S. can be connected by a curve in S., it su0iees to shorv that 
V is eonstant on any curve in S.. Hence if J  C  R is an interval and u: J  + S. is 
a C' map, we must show that the derivative of the composition 1'. u 

" Y 

J 4 S . C  Ra-R 

is identically 0. This derivative is 

d 
- VCu(t)) = (grad V(u(1)), ~ ' ( 1 ) )  
dl 



as in Srrtion 2. No\*,grad V(z) = -F(z) = -A(z)z aince F is central: 

= 0 
because I u(l) I = a. 

In Section 5 we shall consider a apecial conservative central force field obtained 
from Newton's law of gravitation. 

Consider now a central force field, not necwr i ly  conmnrative. 
S i p p o ~ r  at mme time h, that P C R' denotes the plane containing the particle, 

t h ~  vrlocitg vector of the partide and the origin. The force vector F(z) for any 
point z in P also lien in P. This makes it plausible that the particle stays in the plane 
P for all time. In fact, thia is true: a particle moving in a central foree field moves 
in a fixed plane. 

The proof depend on the crosa producl (or vector product) u X v of vectors u, 
u in Rx. We recall the definition 

and that u X v = - v  X u = I u I I v I N sin 0, where N is a unit vector perpendicu- 
lar to u and u, ( U ,  s, N) oriented as the axes ("righthand rule"), and 0 is the angle 
betwern u and u. 

Then the vector u X v = 0 if and only if one vector is a scalar multiple of the 
other; if u X v # 0, then u X u is orthogonal to the plane containing u and 0. If 
u and o are functions of 1 in R, then a version of the Leibniz product rule asserts 
(as one can check using Cartesian coordinates) : 

Now let z(l) be the path of a particle moving under the influence of a central 
foror fivld. We have 

because z is a ecalar multiple of z. Therefore z(1) X ~ ( 1 )  is a constant vector y. 
If y # 0, this means that z and I alwaye lie in the plane orthogonal to y, as ssserted. 
If y = 0, then S(1) = g(l)z(l) for some scalar function g ( 1 ) .  This means that the 
\.(,lorit\. vrctor of the moving particle is always directed along the line through the 

. CENTRAL FORCE FIELDS 21 

origin and the particle, a. is the form on the particle. This makes it plwaihle that 
the particle always moves along the same line through the origin. To p m  this let 
(rt(l), rr(O, zs(1)) be the coordinates of ~ ( 1 ) .  Then we have three differentid 
equations 

&. - = 
dl g(l)zt(l), k = 1, 2, 3. 

By integration we find 

Therefore z(1) is always a sealar mtlltiple of z(h) and m z( l )  moves in a bed h e ,  
and hence in a fixed plane, as asserted. 

We restrict attention to a conservative central force field in a plane, which we 
take to be the Cartesian plane R'. Thua z now denotes a point of R', the potentid 
energy V is defined on R' and 

F f z )  = -grd V(z) = - -,- , c: 3 
Introduce polar coordinates (r, e), with r = I I I. 
Define the angular maenlum of the particle to be 

h = mte, 

where b is the time derivative of the angular coordinate of the particle. 

Theorem ( C o m a t i o n  of Angular Momentum) For a paride mooing in a 
central jorceJEcld: 

Proof. Let i = i(1) be the unit vector in the direction z(t) m z=ri .  Let j = 
j ( l )  be the unit vector with a 90' angle from i to j. A computation ahown that d i / d  - 
bj, djldl = -& and hence 

2 = ri + dj. 
Differentiating wain yielde 

If the force is central, however, it has zero component perpendieul.r to I. Tbera 
fore, aince 2 = m-IF(.), the component of 2 along j muat be 0. Hence 

d , ( t e )  = 0, 

proving the theorem. 
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We can no\\' prove one of Kepler's laws. Let A (1) denote the area swept out by 
the vector z(1)  in the time from Lo to 1.  In polar cwrdinates dA - 4r'dB. We define 
thr a ~ ~ a l  velocity to be 

A - tt"e, 
the rate at which the position vector sweeps out area. Kepler observed that the 
line segment joining a planet to the sun sweeps out equal areas in equal times, which 
we interpret to mean A = constant. We have pmved more generally that this is 
true for any particle moving in a consewative central force field; this is a con- 
sequence of conservation of angular momentum. 

We recast the Newtonian formulation of the preceding sections in such a way 
that the differential equation becomes first order, the states of the system are made 
explicit, and energy becomes a function on the space of states. 

A stale of a physical system is information charsete&ing i t  a t  a given time. In 
particular, a state of the physical system of Section 1  is the position and velocity 
of the particle. The space of states is the Cart& product R' X Ra of pairs ( z ,  v ) ,  
z ,  u in R: z  is the position, v  the velocity that a particle might have a t  a given 
monwnt 
M'c may rewrite Newton's equation 

( 1 )  mz = F ( z )  

as a first order equation in t e r n  of z  and v. (The order of a differential equation 
is the ordcr of the highest derivative that occurs explicitly in the equation.) Con- 
si.1c.r the differential equation 

A solution to (1 ' )  is a curve 1 + ( z ( l ) ,  ~ ( 1 ) )  in the state space Ra X R' such that 

= ( t )  = u(t) and b(1) = m-'F(z(1))  for all 1. 

I t  car1 be seen then that the solutions of (1 )  and (1 ' )  correspond in a natural 
i:~sliiorr. Thus if z(1) is a solution of ( I ) ,  we obtain a solution of ( 1 ' )  by setting 
1r(t1 =- ~ ( l ) .  The mop R% RR'+ Ra X R1 Lhal aends ( z ,  v )  Cllo (v, m- 'F (z ) )  w a 
redor  Brlrl OIL the space gf stales, otul thG vedor field defim the diflmenlinl W i m ,  
(1'1. 
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A solution ( z ( t ) ,  ~ ( 1 ) )  to (1') gives the p a w e  of thestatp of thesystem in time. 
No\\' x e  may interpret e n e w  as a function on the state space. R' X R a +  R, 

defind by E ( t ,  u )  = Im I u 1' + 1'(z) .  The statrment that "the energy in an 
integral" thrn means that the composite function 

is constant, or that on a soldim curve in the s lde  apace, E ia conatant. 
We abbreviate Ra X R' by S. An inlegral (for ( 1 ' ) )  on S is then any function 

that is constant on every mlntion curve of ( 1 ' ) .  I t  was shown in Section 4 that in 
addition to energy, angular momrntum is also an integral for (1'). In the nineteenth 
century, the idea of solving a differential equation was tied to the construction of a 
sufficient number of integrals. However, it is realized now that integrals do not exist 
for differential equations very generally; the problems of differential equations have 
been considerably freed from the need for integrals. 

Finally, we observe that the force field may not be defined on all of R', but only 
on some portion of it, for example, on an open subset U C R'. In this case the path 
z ( t )  of the particle is assumed to lie in U. The force and velocity vectors, however. 
are still allowed to be arbitrary vectors in R'. The force field is then a vector field 
on C ,  denoted by F :  U + Ra. The state space is the Cartesian product U X R', and 
( 1 ' )  is a first order equation on U X R'. 

$6. Elliptical Planetnry Orbits 

We now parw to consideration of Kepler's first law, that planets have elliptied 
orbits. For this, a central force is not suscient. We need the pmise form of V 88 

given by the "inverse square law." 
We shall show that in polar coordinates (r, 81, an orbit with nonzero anylar 

momentum h is the set of points satisfying 

r ( l  + rcostl) = I = constant; r = constant, 

which defines a conic, as can be seen by putting r cos 8 = z,  r' = * + y'. 
Astronomical obsewations,have shown the orbits of planets to be (appmxi- 

mately) ellipses. 
Newton's law of gravitation states that a body of rnasa m, exerts a force on a 

body of mass m,. The magnitude of the force is ym,mt/P, where r is the distance 
between their centers of gavity and g in a constant. The direetion of the force on 
m2 is from rl, tom,. 

Thus if m, lies a t  the origin of R' and mr lies a t  z  6 Ra, the fwee on m ia 

The force on ml is the negative of this. 
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We must now face the fact that boa bodies will move. However, if rn, is much 
greater than m2, its motion will be much less since acceleration is inversely pnpnr- 
tional to mass. We therefore make the simplifying assumption that one of the 
bodirs does not move; in the case of planetary motion, of course it is the sun that 
is as-umrd a t  rest. (One might also proceed by taking the center of mass at  the 
oririn, \\-ithout making this simplifying assumption.) 
W c  place the sun a t  the origin of R' and consider the force field corresponding 

to a planet of given mass m. This field is then 

\r-hpre C i s  a Fonstant. We then change the units in which force is measured to obtain 
tlrc sirnpli,r formula 

It ia clrar this force field is central. Moreover, i t  is ~neewat ive ,  since 

Z - -  - grad V, 
1 2 1' 

Observe that F ( z )  is not defined a t  0. 
As in the previoua section we restrict attention to particles moving in the plane 

R'; or, more properly, in R' - 0. The force field is the Newtonian gravitational field 
in R', F(r) = -z/l z 1'. 

Vhnsidrr a particular solution curve of our differential equation d = m-'F(z). 
Thr angular momentum h  and energy E are regarded ae constanta in time since 
ttlr\- nrr thc same a t  all points of the curve. The cage h  = 0 is not so interesting; it 
c,irrc,.sponils to motion along a straight line toward or away from the sun. Hence 
\rt, ii.S>,l,lll. ti Z 0. 

I T ~ I ~ o ~ I u v I ~  polar coordinatps (r, 8 ) ;  along the solution CUNe they become func- 
tion. u ~ f  t i t n r ,  ( r ( l ) ,  O(1)). Since rV is constant and not 0, the aign of B ti cornlad 
slo~rg thr curve. Thus 8  is always increasing or always decreasing with time. There- 
fore r is a Junclwn oJ 8  along the eurue. 

Let u ( l )  = I / r ( t ) ;  then u  is also a function of a ( ( ) .  Note that 

$6. ELLIPTICAL PLANETARY ORBITS 

Proof. Prnm the formula for in Section 4 and the definition of T we have 

T = fm[r' + (rd)']. 
.\lso, 

I,? the chain ~ l e  and the definitions of u and h ;  and also 

Substitution in the formula for T proves the lemma. 

Now r e  find a differential equation relating u and 0 along the solution curve. 
Observe that T = h' - V = E + u.  From the lemma we get 

Differentiate both sides by 0, divide by 2 du/d8, and use d E / &  = 0 (conservation 
of energy). We obtain another equation 

where m/h' is a constant. 
We re-examine the meaning of just whst we are doing and of (2). A particular 

orbit of the planar central force problem is considered, the force being gravitational. 
Along this urbit, thr di~tance r from the origin (the source of the force) is a function 
of 0, ar is l / r  = u. We have shown that this function u = u ( 8 )  satisfies (2),  where 
h is the constant angular momentum and ,fr is the m. 

The solution of (2) (as was seen in Section 1) is 

where C and 00 are arbitrary constanta. 
To obtain a solution to (11,  use ( 3 )  to compute duld8 and &/M, mbstitute 

the resulting expression into (1) and solve for C. The result is 

Wr hnvr n convpnient formula for kinetic energy T 



I'utliry this into (3) we get 

whrrr q is an arbitrary constant. There is no need to consider both aigm in front 
of thr radical since cos(@ + q + x )  = -coa(B + p). hlorwver, by changing the 
vari:ihlr B to 0 - q we can put any particular solution in the form 

\\.e ~ P C B I I  frdm analytic gwmetry tbst the equation of a conic in polar cwrdinatea 
IF 

Ilvrv I is thr lafua rectum and e > 0 is the eccenfricity. The origin is a focus and the 
tllrc,<, fitscs r > 1, e = 1, e < 1 correspond respectively to a hyperbola, parabola, 
nn~l i,llil,r<.. The case r = 0 is a circle. 

Si~rrr ( 4 )  is in the form (5) we have shown that the mbi4 of a particle &ng under 
/he i,tfluer,ce of a Newtonian graYiMwdjorw is a conic of eceenfricity 

Clrarly, 6 2 1 if and only if E > 0. Therefore the orbit is a hyperbola, parabola, or 
c4lipsv arrording to whether E > 0, E = 0, or E < 0. 

l'li*, quantity u = l / r  is always positive. From (4) it follows that 

But if  8 = &r radians, cosB = - 1 and hence 

'l ' l l i -  I -  ~~ctuivnl~~nt to fi: < 0. For samo of the planeta, includinp the earth, complete 
rc i , 1 1 1 t i s a 1 1 .  I>:Iv~ be(v~ obs(.rv~d; 101 these planets cos B = - 1 nt least once a year. 
'filwrvih~rl. tllvir orbits arr rllipses. In fact from a few obaervntions of any planet it 
c:ln I u  . I I , , ~ I I  that th r  orbit is in fact an ellipse. 

PROBLEMS 

1. A @cle of msar m moves in the plane R' under the iduence of an elantic 
band tying it to the origin. The length of the band is negligible. Hooke'a law 
ahtea that the force on the particle in dways directed toward the origin .nd 
is proportional to the h c e  from the origin. Write the force f d d  and verify 
that it in e o m a t i v e  and central. Write the equation F = mu for thin wae 
and solve it. (Compare Section I.) Verify that for "mmt" initid mnditiona the 
particle movea in an ellipse. 

2. Which of tbe following force fields on R' are conservative? 
(a) F(s,  y) = (-9, -2~')  
(b) F(z ,  u) = ( l a  - y', 2 % ~ )  
(4 F(z, Y) = (I, 0)  

3. Consider the eaae of a particle in a gravitational field moving directly away 
from the origin a t  time 1 5 0. Dimus8 its motion. Under what initial mnditiona 
does it eventually reverse direction? 

4. Let F(z) be a force field on R'. Let I., I, be points in R1 and let y ( 8 )  be a path 
in R', 4 < s < 41, p a n m e t r i d  by arc length a, from u to I,. The w k  done 
in moving a particle dong thin path is defined to be the integd 

/:' (F(v(a)), ~ ' ( 6 )  )dr, 

where y'(a) in the (unit) tangent vector to the path. Prove that tbe force fdd  
is conservative if and only if the work is independent of the path. In fact if 
F = -grad V, then the work done is V(z,) - &'(I.). 

5. How can we determine whether the orbit of (a) Earth and (h) Pluto in an 
ellipee, parabola, or hyperbola? 

6. Fill in the details of the p m f  of the theorem in Section 4 

7. Prove the angular momentum h, energy E, and mass m of a planet are related 
by the inequality 

N o t e  

Lang's Second Carre in Cdculw [I23 in a good background reference for the 
mathematica in t b  chapter, especially b Chapters 3 and 4. The phyaiea materid 
is covered extensively in a fairly elementary (and perhaps old-fashioned) way in 



Prirzciplrs oj.llechonics by Synge and Griffith [23]. One can also find the mechanics 
d i scus4  in the book on advanced calculua by Loomis and Sternberg [15, Chapter 
I:<]. 

Thr rlnsystematir ad hoc methods used in Section 6 are successful here because 
Chapter 

of till rvlntivc simplicity of the equations. These methods do not extend very far 
intc, rncr.l,:{~~irs. In general, there are not enough "integrals." 

3 
'I'ln, ~,v,rlrl of planetary motion in this chapter is quite idealized; it ignores the 

Linear Systems with Constant 
pr:tvitnticu~nl eRect of the other planets. Coejkients and Real Eigenvalues 

The purpuse of this chapter ia to be& the study of the theow of hea r  operators. 
which are besic to differential equations. Section 1 is an  outline of the neeessary 
facts about vector spaces. Since it ia long it is divided into P m  A through F. A 
reader familiar with some linear alaehra should use Section 1 mainlv as a reference. " 
In Section 2 we show how to & i o d i z e  an operator having real, distinct eigen- 
values. This technique ia used in Section 3 to solve the linear, constant eoeAcimt 
system z' = A z ,  where A is an operator having real distinct eigenvalues. The last 
mt ion ia an intmduction to complex eigenvalues. Thii subject will be studied 
further in Chapter 4. 

51. Basic Linear Algebra 

We emphasize that for many readers this wt ion  should be used only as a refer- 
ence or a review. 

A. Matrices and operators 

The setting for most of the diRerential equations in this book is Cartesian apace 
R"; this space was defined in Chapter 1, Section 2, as were the operatora of addition 
and eedar multiplication of vectors. The following familiar properties of theae 
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olwr;tti<>~r- ;are immfdiatr eonwquenees of the definitions: 

H r r r r , y . z C R n , - z =  ( - l ) z , a n d O =  (0 , . . . ,  0) E R " .  

O r  = 0' (the first 0 in R, the second in Re). 

Tht.se oprrations satisfying VS1 and VSZ define the &r space structure on R'. 
I'rvqurntly, our dcvclopment relies only on the vector space strueture and ignorrn 
thc ('artvxian (that is, coordinate) structure of R". To emphasi~e this idea, we may 
writ? 15 fcnr R" and call B a vector space. _, 50 e p ~ ~ ' p  ,U 

Tho standard coordinates are often ill suited to the differential equation being 
studied; ~ \ - p  may seek new coordinates, as we did in Chapter 1, giving the equation 
a simplr~ f u n n .  The goal of this and subsequent chapters on algebra is to explain 
tlli, I,rg,r.r,ss. I t  is very useful to be able to treat vectors (and later, operators) as 
ul,]~.~.tb illrlvpendent of any particular coordinate system. 

'l ' l i i ,  ri.:iilvr familiar with linear algebra will recognize VS1 and VS2 as the defining 
~ l i t , l t ~ h  181 a11 abgtract vectm space. With the additional axiom of finite dimen- 
siot~ality, abstract vrctor spaces could be used in place of R" throughcut most of 
this hook. _ - .( e C O T  a , ,  -4; 

Lrt A = [a,,] be some n X m matrix ' in Section 2 of Chapter 1. Thw each 
a,, is a real number, where (i, j )  pngBF 03 d l  ordered pairs of integers with 1 < 
i 5 rt, 1 < j < n. The matrix A can be considered as a map A : R" -+ R" where 
thv ith eor~rdinate of Az is ZT-, a,$,, fnr each z = (21, . . . , 1.) in R". I t  is easy 
11, rlwck that this map satisfi(,rr, for z, y € R", h E R: 

1 . 1 .  . I l l -  + y )  = . lr+ Ay, 
12 .I I h.r) = h A r .  

I ' l i l  .I, : i t #  1~:~11~,1 Ir,trorily proprrlies. Any map A :  R" + R" ~atisfying I,l and L2 
i-. ,.:tIImI ;( / t , , ro~ .  ,,zap. liven mclrr gmcrally, a map A: R" - -  R- (prrhaps different 
I IOI I I :~~IL  :LIIII range) that satisfirs 1.1 and L2 is called linear. In the ewe where the 
durnnin snd range arc the samc, A is also called an operolor. The set of all operators 
crli Rn is ,I~noted by L(R"). 

Sc~tc that if er C R' is the vector 

et = (0, . . . , 0, 1, 0, . . . , O), 

01. urslc LINEAR ALOEBRA 

with a 1 in the kth place, zeros elsewhere, then 

(1) Aer = (a,,. &*, . . . , a.t! = X a,*.. 
1-1 

Thus the image of et is the kth column of the matrix A. 
Let .U, be the set of all n X n matrices. Then from what we have just described, 

thrre is a natural map 

(2) Af. - L(Rn) 

that associates to each matrix the corresponding linear map. There is an inverse 
process that associates to every operator on R" a matrix. In fact let T: R' - R. 
be any operator. Then define a,, = the ith coordinate of Te,. The matrix A = [a,,] 
obtained in this way has for its kth column the vector Tc*. Thus 

Teb = Aet; k = 1, . . . ,  n. 

I t  lollown that the operator defind by A is exactly T. For let z E R' bc any 
vector, z = (I,, . . . , I.). Then 

z = r,e, + . . . + z.c. 
Hencr 

Az = A ( C Z . ~ ~ )  = Zzt(.4et) (by L1 and LZ) 

= zh(Teh) 

= T ( C  I&) 

= Tz. 

In this way we obtain a natural correspondence between operat&n on R' and n X n 
matrices. 

More to wery linear map Rm - R- corresponds an m X n matrix, 
and conversely. In this book we shall usually be concerned with only operaton, and 
n X n matrices. 

Let S, T be operators on R". The composite map TS, sending the vectw z to 
T(S(x) ) ,  is again an operator on R". If S has the matrix [a,,] = A and T bas the 
matrix [bi,] = B, then TS  has the matrix [c,,] = C, where 

c., = X b.tah,. 
k-I 

To see this we compute the image of e, under TS 

(TS)e, = B(Ae,) = B ( C  ar,cd 

= Z &,(Bed 
L 

= T. a,(Z b.,el). 
L 
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This formula says that the ith coordimate of (TS)e; is 

Since tl~ir ltli coordinate is c.,, our assertion follows. 
\Vr call the matrix C obtained in thia way the produd BA of B and A (in that 

ordrrj. 
Since composition of mappings is associative, it follows that C(BA) = (CB)A 

if 14, R,  C are n X n matrices. 
T ~ P  sum S + T of operators S, T E L(R") is defined to he the operator 

z + S z +  Tz. 

I t  is easy to see that if A and B are the respective matrices of S and T, then the 
matrix of S + T is A + B = [a,; + bi,]. 

I ll>+,r:tt<,rs i~od matrices obey the two distributive laws 

P(Q + R) = PQ + PR; (Q + R ) P  = QP + RP. 

Tun rpr,eial operators are 0 :  z -+ 0 and I :  z - z. We aleo use 0 and I  to denote 
the corr~sponding matrices. All entries of 0 are 0 E R while I = [6,,1 where 6ii 
is the Kronecker function: 

if i + j ,  
bi, = (0 

1 if i = j .  

Tlnl- I h:is nnvs on the diagonal (from upper left to lower right) and zeros ekewhere. 
It ih r.lt,:ir that A + 0 = 0 + A  = A, OA = A0 = 0, and A I  = I A  = A, for 

I , ~ ~ t 1 1  ~ I ~ ) I ~ T : I ~ ~ T S  and matrices. 
11 7' is :cn opprator and h any rral number, a new operator T is defined by 

(AT)= = A(Tz). 

If .I  = [ a , , ]  is the nlatrix of T, then the matrix of AT is AA = [ha;,], obtained by 
znullll,lyit,g each entry in A by A. It  is clear that 

OT = 0, 

IT  = T, 

and sinlilarly for matrices. Here 0 and 1 are real numbers. 
The set L(R") of all operators on R", like the set M. of all n X n matrices, satis- 

tivs the vrctor spaec axiom VS1, VS2 with 0 as 0 and z, y, r as operators (or ma- 
trices). If we consider an n X n matrix as a point in R"', the Cartesian space of 
dii~ension n2, then the vector space operations on L(R") and M. rue the usual 
Oll , .X 

An oprrator T is called tnuerlible if there exists an openrtor S such that S T  = 
TS = I We call S the inuerse of T and n-rite S = T-', T = S-I. If A and B rue 
the matrices corresponding to S and T, then AB = BA = I .  We also my A is 
invertible, B = A- ' ,  A = B-1. 

I t  is not easy to find the inverse of a matrix (supposing it has one) in generd; 
we discuss this further in the appendix. The 2 X 2 csse is quite aimple, however. 
The inverse of 

provided the defenninanl D # 0. If D = 0. A is not invertible. (Determimnts are 
considered in Part E.) 

B. Subspaces, bases, and dimension 

Let E = R'. A nonempty subset F C E is called a nubspace (mom pmperly, a 
linear subapace) if F is closed under the operations of addition and MLar multi- 
plication in E ;  that is, for all z E F, y € F,  A 6 R: 

z + y € F ,  h E F .  

I t  follows that with these operations F satisfies VSI and VS2 of Part A. 
If F contains only 0, we write F = 0 and call F the Lriviol subspaee. If F Z E, we 

call F a proper subspace. 
If F, and F, arc subspaces and FI  C F,, we call Ft a subspace of F,. 
Since a subspace sstisfies VS1 and VS2, the concept of a lincor map T: F, -+ F, 

between subspaces FI  C R", FZ C R", makes sense: T is a map satisfying L1 and 
L2 in I'art A. In particular, if m = n and F, = F,, T is an opera(m MI a subspace. 

Henceforth we shall use the tern w r  apace to mean "subspace of a Cartesian 
space." An element of a vector space will be called a uclor (also a point). To dib 
tinguish them from vectors, real numbers are called scnlors. 

TWO important 8ubspaces are determined by a linear map 

A: E, - E,, 

whcrp E, and EZ are vector spaces. The h m d  of A is the set 

Ker A = ( z  E E, / Az = &,= A-I(0). 
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Tlrc rn,n!,r (4 11 is the set 

Im A = l y  E Et I Az = y for some z E Ell 

= A(E,). 

k t  F hr a vector space. A set S = (a,, . . . , a*\ of veeton in F is enid to span F 
if evrry vretor in F  is a linear combination of a,, . . . , a,; that is, for every z E F 
there arr scalam i t , .  . . , 11 such that 

s = tlal + . . . + trrk. 

Thr set S is called independent if whenever I,, . . . , it are scalars such that 

tl,,,,, !, - . . = tk  = 0. 
.\ l i , ~ * i , v  uf F is an ordered set of vectors in F that is independent and which spaw 

F .  
The follo~ving basic fact is proved in Appendix I 

Pmpwition 1 Evcry vedor apace F has a basid, and every bami of F has /he aame 
vtuntber o j  elemenls. If (el, . . . , E L )  C F i( an i n d c p d  arbsel thal w not a b-, 
by adjoining to il suilable vectors a+,, . . . , e, one can jotm a bas& {el, . . . , &I.  

l.he m~mber of clemrnts in a basis of F is called the dimensinn of F, denoted by 
i t' I f  1 e , ,  . . . , em\ is a basis of F, then every veetor t E F can be expressed 

.-I 

stnrt, the r ,  span F. hloreover, the numbers t,, . . . , 1- are unique. To see this, 
suppose also that - 

.I'hrrr nunrbcrs C, . . . , 1- are called the mrdiMles of z in Ue bosia let, . . . , & I .  
'l'lte stn,tdard basis el, . . . , em of R" is defined by 

e n =  (0 , . . . ,  O , I , O  , , , . ,  0) ;  : = I  , . . . ,  n, 

with 1 in the ith place and 0 elsewhere. This is in r a t  a hasis; for C liei - 
I t , ,  . . . , in) ,  so 1 el, . . . , e. 1 spans R"; independence is immediate. 

It is easy to cheek that Ker A and Im A are subspaces of E, and 4, respectively. 
A simpl~ but important property of I<er A is this: A ia one-to-one if and a l y  if 

Iier A = 0. For suppose A is one-twne, and z E I<er A. Then Az = 0 = AO. 
Hrnce z = 0; therefore 0 is tbe only element of Ker A. Conversely, supgose Ker A = 

O , a n d A z = A y . T h e n A ( z - y ) = O , s o z - y E K e t A . T h e n A ( z - y ) = 0 ,  
so z - y E Iier A. Thus z - y = 0 so z = y. 

The kernel of a linear map R' - R" is connect& with linear equations (algebraic, 
not differential) as follows. Let A = [a,,] be the m X n matrix of the map. Then 
z = (z,, . . . , i n )  is in Ker A if and only if 

In other words, (L I ,  . . . , I") is a solution to the above system of m linear horn- 
geneous equations in n unknonns. In this case Krr A is called the mlulia apau of 
the system. "Solmng" the system means finding a h u  lor?Ker A. 

If a linear map T: E - F is both one-to-one and onto, then there w a unique 
map S :  F -  E such that ST(z) = z and TS(y) = y for all z t E, y 6 F. The 
map S is also linear. In this case we call T an isomorphism, and say that E and F 
are isomorphic vector spaces. 

Proposition 2 Two vector gpam are isomorphic iJ a rd  only if l h q  hoa ihc m e  
dimenawn. I n  parl idar,  aery  ndin~enaiod m t o r  apaa ia ismnorphic to R-. 

Prooj. Suppose E and F  are isomorphic. If le,, . . . , &J is a baais for E, it is 
easy to verify that Te,, . . . , Te. span F  (since T is onto) and are independent 
(since T is one-to-one). Therefore E and F  have the same dimension, n. Conversely, 
suppose le,, . . . , e.1 and {ft, . . . , f.1 are bases for E and F, respectively. Dedne 
T:  E + F  to  he the unique linear map such that Te. = f,, i = 1, . . . , n: if I - 
2 z,e. E E,  then Tz = C z J.. Then T is onto since the J, span F, and Ker T = 0 
since the j ,  are independent. 

The following important proposition is proved in Appendix 1. 

Propmition 3 Lel T: 6 - F  be a firtzar map. Then 

dim(1m T) + dim(1ier T )  = dim E. 

In particula~., suppose dim E = dim F. Then the following are a)uidenl #&me&: 

(a) I<er T = 0, 
(b) Im T = F, k (c) T is an omorphrmr 
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C. Chandea of boses a n d  coordinates 

To every basis {e,, . . . , e.1 of a vector space E we have sasociated a system of 
coordinates as fol1ou.s: to each vector z E E we assign the unique n-tuple of real 
numbers (z,, . . . , 2.) such that z = 23 z.c.. If we consider z. as a function of z, 
r e  may drfine a map 

9: E - Rm, v(z) = (zI(z), . . . , z.(z)). 

l'l,is is a liwar map; it is in fact the unique linear map sending each basis vector 
e ,  o i  1.I int,, the corresponding standard basis vector of R", which we denote here 
by 5 , .  

It  is easy to see that v is an isomorphism (see Proposition 2 of Part B). The 
isomorphism p sends each vector z into its n-tuple of coordinates in the hesia 
I@,, . . . , *  " I .  

Conversely, let 9: E -+ R" be any isomorphism. If (Z,, . . . , b) is the sbndard 
basis of R., then define e, = p-'(B,), i = I ,  . . . , n. Then (el, . . . , e.) is a basis of 
E,  and clearly, 

v ( C  r.e.) = (ZL, . . . ,z.). 

1 1 1  I I I I S  wrty wr nrrivv nt thr f<,llow-ing definition: A coordinate syalcm on a vector 
SIIIICI. I<  15 1111 isumorphism 9: it --. R". (Of course, n - dim E.) The coordinates 
o i  : 1 i. :<re (21, . . . , z.), where 9(z) = (I,, . . . , 2.). Each coordinate z, is a 
lirlc.:~r function 2.: E -+ R. 

\Vt, thus have three equivalent concepts: a basis of E, a coordinate system on E, 
and an isomvrphiim E - R'. 

Itraders familiar with the theory of dual vector spaces (see Chapter 9) will 
rrccxnizc. the coordinate functions z,  as forming the basis of E* dual to (e,, . . . ,em); 
hrrc E* is the "dual space" of E, that is, the veetor space of linear maps E -+ R. 

The coordinate functions z. are the unique linear functions E + R such that 

zi(e,) = 6<j, i = 1, . . . , n; j = 1,. . . , n, 

where 6., = 0 if i # j and 1 if i = j. 
Ko!v \vc investigate the relationa between two bases in E and the two compond- 

ing counlitiate systems. 
1.~1 I F , .  . . . , P.) be a basis of E and (z,, . . . , z.) the corresponding coordinates. 

1.t.t r:  I.' - R' be th~ .  corresponding isomorphism. Let If,, . . . ,/.I be a new basis, 
\r-it11 coordinates (y,, . . . , y.). Let $: E -+ R' be the corresponding isomorphiem. 
Each v d o r  I, is a linear combination of the ei; hence we define an n X n matrix: 

(:{I p [PU]; fi - 23 PI$!. 

Each of the new coordinates yi: E - R is a linear map, and so can be expressed 
in terms of the old coordinates (z,, . . . , r). In this way another n X n matrix in 
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defined: 

(4) Q = Cqttl; yr = 23 WE,. 

In  fact, Q is the matrix of the linear operator $9-': R" -t R'. 
How are the matrices P and Q related? To w e r  this we hrst relate the bases 

with their corresponding coordinates: 

(5) zt(ei) = 6,,, 1, j = I ,  . . . , n; 

(6) y~(f.) = 6r,, k, I = I ,  . . . , n. 

Substituting (4) and (3) into (6) : 

6ti = x qkrzr(23 P.8,). 
I , 

Since zt is a linrar function, we have 

6ki = C ( C  grtp.pj(~i)) 
1 i 

= 23 (23 9kt~ibli) 
I ! 

by (6) .  Each tern  of the internal Bum on the right is 0 un lm 1 = j, in which esa 
it is qi,p.i. Thus 

6 s  = 23 Pkipit .  
i 

To interpret this formula, introduce the matrix R which is the lronrporc P of 
P,  by 

R = [r,], r,, = pi,. 

Each mw of R is the corresponding column of P. Then, 

6ti = X qrj rii 
i 

tells us that the (k, i )  th  entry in the matrix QR is 61i; in other words, 

I = QR. 
We finally obtain 

I = QP'. 
Thus 

Q = (PI)-l = (P-1)'. 

The last equality follows from the identities I' = I, and (AB)' - P A '  for any 
n X n matrices A ,  B. Hence 

I = (pp-l), = pl(p-l)*, 

so (P)-' = (PI)'. 



We have pmved: 

Proposition 4 The maIriE aprcasing nm cwrdinolcs in lnms of lhe old u lhe in- 
cmsr iravspose of de  mairk aprcaaing d e  new bodid in lnms of lhe old. 

D. Operator, bases, a n d  matrices 

In Part A we associated to an operator T on R' a matrix [nu] by the rule 

(7) Tc, - acfii; i - 1, . . . , n, 
where ( e l ,  . . . , is the standud basis of R'. Eguivslently, the ith coordinate 
of TI, z = (a,. . . , z.), is 

(9) X @.$I. 

I t  I. r1.e R I I  to reprment (8) as the product ofan n x n matrlx and an n X 1 matrlx : 

We carry out exactly the same procedure for an operator T: E - E, where E 
is any vector space and Is, . . . , s) is a given basis of E. Namely, (7) defines a 
matrix [a.j]. The coordinates of Tz for the baais (e,, . . . , c) are computed by (8). 

I t  is helpful to use the following mles in constructing the matrix of an operator 
in a given basis: 

The jth column of the matrix gives the coordinates of the image of the jth'bsais 
vector, as in (7). 

l'hr it.11 row of the matrix expr- the ith coordinuh of the image of z ada  linear 
function of the coordinates of z, as in (8). 

If we think of the coordinates as linear functions zc: E  -t R, then (7) is expressed 
succinctly by 

(9) ziT = a+,; i = 1, . . . , n. 
i 

This looks very pretty when placed next to (7) !The left side of (9) is the compoai- 
tion 

I ii 

E - E - R .  

The right-hand side of (9) is a linear combination of the linear functionn ZL, . . . ,A. 

The meaning of (9) in that the two linear functions on E, expressed by the left and 
right sides of (9), are equal. 

Now suppwe a new system of coordinatrs (y,, . . . , y.) is introduced in E, eor- 
responding to a new basis I f , ,  . . . , f . I .  Let B be the matrix of T in the new coordi- 
nates. How is B related to A? 

The new coordinates are related to the old ones by an invertible matrix Q = [qiJ, 
as explained in Part C. If z t E is any point, its two seta of wordhates 
z = (rl, . . . , rI) and y = (yt, . . . , y.) are related by 

g = Qz; z = Q'y 

(Here we think of z and y as pointa in R'.) The image Tz a h  hBd two & of e0. 
ordinates, Az and By, where B is the matrix of T in the new coordinated. Therefore 

By = QAr. 
Hence 

By = QAQL 

for all y C R'. I t  follows that 

This is a basic fact. It is worth restating in terms of the matrix P e x p e  the 
new basis vectors f .  in terms of the old basis ( e l ,  . . . , c.) : 

In  Part C we saw that Q is the inverse transpose of P. Therefore 

The matrix P' can be described as follows: the ith column of P consista of the e0. 
ordinates of the new basis vector f, in the old basis let, . . . , s). Observe that in 
(10) and (11) the inverse signs - 1 appear in different places. 

Two n X n matrices B and A related as in (10) by some invertible matrix Q ire 

called similar. This is a basic equivalence relation on matrices. Two m a t r i ~ s  are 
similar if and only if they represent the same operator in di Kerent baaes. Any rrutrix 
property that is preserved under similarity is a property of the underlying linear 
transformation. One of the main goals of linear algebra is to discover criteria for 
the similarity of matrices. 

We also call two operators S, T E L(E)  similar if T = QSC1 for mme invertible 
operator Q E L ( E ) .  This is equivalent to similarity of their matrim. Similar 
operators define differential equations that have the same dynamieal pmpwties. 

E. Determinant, trace, a n d  rank 

We recall briefly the main properties of the determinant function 
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\rht~g, .I/., 1:. the set of t t  X n matrices: 

1 ) l  npt(AB) = (DetA)(DetB) ,  
DL' Ur.t I = 1, 
D3. Det A # 0 if and only if A is invertible. 

There is a unique function Det having these three properties; it is d iussed  in more 
detail in the appendix. For a 1 X 1 matrix A = [a], Det A = a. For a 2 X 2 matrix 
[::I = A, 

Det A = ad - bc. 

F'r,lrn 1)l and D2 it follows that if A-' exists, then 

Det(A-') = (Det A)-'. 

From D l  s-c then obtain 
Det(RAR-I) = Det A. 

In r,thr.r \r rtrds, atmtlar malmes have the some dderminatU. We may therefore define 
the drt~rminant of an overator T: E + E to be the determinant of any matrix 
repn,snrtlng T. 

].or tt = 1, the determinant of T: R1--r R' is the factor by which T multiplies 
lenetlis. execnt ooesihlv for s h .  S i a r l v ,  for R' and arm, R' and volumes. v .  . . - . . 

If A is a triangular matrix (ai, = 0 for i > j, or a,, = 0 for i < j )  , then Det A = 
a,, . . . G., the product of the diagonal elements. 

From D3 we deduce: 

Proponition 5 Ld A be an opera!or. Then fhe following a l o ( a e n b  are cpuiualenl: 

($1) 1)rt A # 0, 
(bi  Iier A = 0, 
( c i  A ts one-bone, 
(dl Awonlo, 
(e) A ia t w l d l c .  

I n  particular, Det A = 0 if and only if Az = Ofor m veclor z # 0. 

Another important similarity invariant is the irace of a matrix A = [ a d :  

Tr A = a* ,  

the sum of the diagonal elements. A computation shows that 

Tr(AB) = Tr(BA) 
and hence 

Tr(RAR1) = Tr(R-IRA) - Tr(A). 

$1. BASIC LINEAR A L U E B M  41 

Therefore we can define the t m e  of an operator to be the tnuz of m y  matzix rep- 
senting it. I t  is not easy to interpret the trace geometridy. 

Note that 
Tr(A + B) = Tr(A) + Tr(B). 

The rank of an operator is defined tobe the dimension of its & Siee every 
n X nmatrix defines an operator on R", we can define the rank of a matrix A to be 
the rank of the corresponding operator T. Rank w inuarionl under aim-. 

The vector apace Im T is spanned by the images under T of the st.ndud bsi. 
vector, el, . . . , e.. Since Te, is the n-tuple that is the j th column of A, it foUowx thrt 
Ute rank oJ A cpuds fhe d m u m  number of indtpmdml cdwnm o j  A. 

This gives a practical method for computing the raoL of an operator T. Let A 
be an n X n matrix representing T in some basis. Denote the j th column of A by 
c,, thought of as an n-tuple of numbers, that is, an element of R.. lh of T 
equals the dimension of the subspace of R' spanned by ct, . . . , C. This aubspsa L 
also spanned by c,, . . . , c,-,, c, + X a ,  c,+,, . . . , c.; A € R. Thun we may rephum 
any column c, of A by c, + Acr, for any A € R, k Z j. In  addition, the order d 
the columns can be changed without altering the rank. By repeatedly t d o r m -  
ing A in these two ways we can change A to the form 

where D is an r X r diagonal matrix whose diagonal entries are dinerent from ra, 
and C has n - r rows and r columns, and all other entries are 0. It is easy to see 
that the rank of B, and hence of A, is r. 

From Proposition 3 (Part B) it follows that an operator on an ndimmsiond 
vector space is invertible if and only if it has rank n. 

F. Direct sum decomposition 

Let E,, . . . , E, be auhspaces of E. We say E ia the dired #urn of them if erey 
vector z  in E can be expressed uniquely: 

z = q + . . . + r , .  z . € E , ,  i = l ,  . . . ,  r. 
This is denoted 

Let T : E + E a n d  T . : E , - E . , i =  1, . . . ,  nbeoperators. Wesay that Tia  
the dired arm of the T, if E = El m . . . m E., each E. is i n v a r h t  under T, that 
is, T(E.) C E., and Tz = T.z if z 6 E,. We denote the situation by T = 
T, m . . . e T.. If T, ha. the matrix A, in some basis for each E,, tbm by 
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the union of the basis elements of the Ej to obtain a basis for E, T has the matrix 

l . l i i -  I ~ I < , : I I I ~  t h ~  matrices A, are put t se the r  corner-to-corner diagonally as indi- 
c n t ~ d .  :dl ittbrr entries in A being zero. (We adopt the convention that the blank 
rntrir,x i n  n rnatrix are zeros.) 

I.'i,r din,ct sums of operators there is the useful formula: 

Det(T, e . . . m T.) = (Det TI) . . . (Det T.), 

and thr equivalent matrix formula: 

Det diag(A,, . . . , A.1 = (Det Ad ... (Det A"). 
Also: 

Tr(T,. ... m T.) = Tr(T,) + ... + Tr(T.), 

and 
Tr diag(Al,. . . , A.) = Tr(Ac) + ... +Tr(A-). 

\\'c id~ntify the Cartesian product of I(" and R' with Rm+' in the obvious way. 
If C' C R" and F C R" are aubspam, then E X F is a subspace of R"+" under 
this identification. Thus the Cartesian product of two vector spaces is a vector space. 

$2. Reel Eigenvaluw 

k t  T be an operator on a vector apace E. A nonsero vector z E E is called a 
(real) eigenvedor if Tz = az for some real number a. This o is called a red eigw- 
due;  r e  say z belongs lo a. 

Eigenvalutg and eigenvectora are very important, Many problem in phyaim 
and other sciences, as well as in mathematim, are equivalent to the problem of 
finding eigenvectors of an operator. Moreover, eigenvectors can often be used to 
find an especially simple matrix for an operator. 

The condition that a is a real eigenvalue of T means that the kernel of theoperator 

is nontrivial. This kernel is &led the azigenupace of T; it consists of all eigen- 
vectors belonging to a together with the 0 vector. 

To find the real eigenvalues of T we must find all real numbers A such that 

t 1)  Det(T - AZ) = 0. 

(See Part E of the previous seetion)To do tbm let A be a representative of T. Then 
(1) is equivalent to 

We consider A as an indeterminate (that in, an "unknown number") and m p u t e  
the left-hand side of (2) (see Appendix I). The reault is a polynomial p(A) in A, 
called the characleristic polynmnial of A .  Thus the real eigenvduea of T .re d y  
the real roots of the p(A). Actually, p(A) is independent of the basis, for if B ia 
the matrix of T in another basis, then 

for some invertible n X n matrix Q (Section I, Part D). Hence 

(Section 1, Part E). We therefore call p(A) the chara&&lic polynmnial of Ub 
operalor T. Note that the degree of p ( A )  is the dimension of E. 

A complex root of the characteristic polynomial w called a mmpfa eipmdu 
of T. These will be considered in Section 4. 

Once a real eigenvalue a has been found, the eigenvectors belonging to o am 
found by solving the equation 

By (2) there must exist a nonzero solution vector z. The solution apace of (3) is 
exactly the a-eigenspace. 

Eromple. Consider the operator A = [_: _:I on R', used to dedcribe II differen- 
tial equation (4) in Chapter 1. The characteristic polynomial ia 

The eigenvalues are therefore 2 and - 1. The eigenvectora belonging to 2 are mlu- 
tions of the equations ( T  - 2 1 ) ~  = 0, or 
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The solutions are 

2, = 1, s, = - 1 ,  , I E R .  

Thtr. 111~. \ ~ r t o r  
J, = (1, - 1 )  E R' 

is a b:wis ior the eigenspace belonging to the real eigenvalue 2 .  
Tht. I r.i~enspace comprises solutions of 

This matrix equation is equivalent to the pair of scalar equations 

I t  is rlear that (-1, 2) is a basis for the solution space. Therefore the vector 
= ( - 1, 2)  E R' is a basis for the (- l)-eigenapace of T. 
The t \ ~ o  vectors 

Ji = (1, -I) ,  11 = (-1, 2) 

form a nea b& I f , ,  A)  for R'. In  this basis T has the diagonal matrix 

Note that any vector 2-= (z,, a) in W can be written in t h d f o m  y j t  + Mft; 
then z = (yl - yr, -y, + Py,) using the definition of the 1,. Therefore (y,, #) are 
the coordinates of I in the new basis. Thus 

This is how the diagonalizing change of coordinates was found in Section 1 of C h a p  
ter 1. 

Example. Let T have the matrix [: -:I. The characteristic polynomial is 
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If a real eigenvalue a is known, the general procedure for finding eigenvectom 
belonging ton  are found as follows. Let A be the matrix of T in  a basis a. The matrix 
equation (A - aI)z  = 0 is equivalent to the system of linear equations 

The vanishing of Det(A - a I )  guarantees a nonzero solution z = (z,, . . . , %). 
Such a solution is an eigenvector for a, expressed in the basks. 

A very fortunate situation occurs when E has a basis IJ,, . . . , j.) such that each 
j; is an eigenvector of T. For the matrix of T i n  this basis is just the d i q d  matrix 
D = diagla,, . . . , em), that is, 

all other entries being 0. We say T is diugonalizable. 
I t  is very easy to compute with D. For example, if z E E has eomponenta 

(21, . . . , I.), that is, I = x zJ.. then Tz = (all,, . . . , am%). The kth power 
D' = D . . . D (k factonr) is just diag(af, . . . , a:) .  

An important criterion for diagondiabiiity is the following. 

Theorem 1 LA T be an opera& for an n-dirnemional uec(or qmu E. lj Ulc chorac- 
Leriatic polynomial of T h a  n dislind red rwls, then T cnn be d q m a l i u d .  

Proof. Let el, . . . , c. be eigenvectors corresponding to diatinct eigennlues 
a,, . . . , n.. If el, . . . , e. do not form a basis for E, order them so that el, . . . , c 
is a maximal independent subaet, m < n. Then e. = EL, t,e,; and 

Hence T has no real eigenvalues 
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i t  , . , . , P, arc independent, 

/,(a,- u.) = 0 ,  j =  1 , . . . ,  m. 

Sinrv n, f n. by apsumption, each 1, = 0. Therefore, e. = 0, contradicting em 
being an rigenvector. Hence {el, . . . , e.1 is a he&, so T is diagonalisable. 

Tlrp follu\ving theorem interprets Theorem 1 in the language of matrices, 

Theorem 2 Let A be an n X n malriz houing n dwtind rcol eigenvalues A,, . . . , A.. 
Then (here e&ts an invertible n X n mdriz  Q w h  thal 

Proof. Lct ( e , ,  . . . , e,) be the standard hasis in R' with corresponding co- 
ordinntrs ( x , ,  . . . , I.). Let T be the operator on R" where the matrix in the stand- 
ard basis is A .  Suppose { jl, . . . , j.1 is a basis of eigenvectors of T, so that Afj = 

Ah, j = 1, . . . , n. Put j, = (j,,, . . . , jjm). If Q is the matrix whose jth column is 
j,, then QAQ-' is the matrix of T in the basis I f i ,  . . . , j.1, as shown in Part D of 
Section 1. But this matrix is d iG(  A,, . . . , A m ) .  

M'r a.ill often use the expression "A has real distinct eigenvalues" for the hypothesis 
of Theorems 1 and 2. 

Another w f u l  condition implying diagonalizahility is that an operator have a 
synrnretric matrix (aii = aid in some basis; see Chapter 9. 

I r t  us examine a general operator T on R' for dingonalizability. Let the matrix 
be [: :]; the characteristic polynomial pr(A) is 

Det [. - A ] = (a  - A) (d - A) - bc 
c d - A  

= A' - (a  + d)A + (ad - be). 

Notice that a + d is the trace T r  and ad - be is the determinant Det. The roots 
of pr(h), and hence the eigenvalues of T, are therefore 

+rTr f (Tr' - 4 Det)"']. 

Tlrr roots are real and distinct if Tr' - 4 Det > 0; they are nonreal complex con- 
jugates il Tr - 4 Det < 0; and there is only one root, necessarily real, if T r  - 
4 1)rt = 0. Therefore T is diagonalizahle if Tr' - 4 Det > 0. The remaining case, ,. . I r -  - 4 Uet = 0 is ambiguous. If T is diagonalieable, the diagonal elements are 
eigenvectors. If pr has only one root u, then T has a matrix C :I. Hence T = ul. 
Rut this means any matrix for T is diagonal (not just diagonalizahlc) ! Therefore 
\\-hen Trz - 4 Det = 0 either every matrix for T, or no matrix for T, is diagonal. 
The op~rator represented by [: :] cannot be diagonalized, for example: 
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93. DiRerential Equations with Red ,  Distinct Eigenvnlua 

We use the results of Section 2 to prove an important reault. 

Theorem 1 Let A be an o p e r a h  on R" having n didfind, red +ndyu. Then 
fm all zo E R', Me linurr differential equation 

(1) z' = Az; z(0) = G, 

has a unique solution. 

Proof. Theorem 2 of Section 2 implies the existence of an invertible matrix Q 
such that the matrix QAQ' is diagonal: 

where A,, . . . , A. are the eigenvalues of A .  Introducing the new coordinates y = QI 
in Rm, with z = Q'y, we find 

y' = Qz' = QAz = QA(Q1y) 
so 

(2) y' = By. 

Since B is diagonal, thia means 

(2') y.' = ha i ;  i = 1 ,  . . . , n. 

Thus (2) is an uncoupled form of (1). We know that (2') has unique dutiona for 
every initial condition ydO) : 

To solve ( I ) ,  put y(0) = Qa. If y(t) is the corresponding solution of (2), then 
the solution of (1) is 

z(t)  = Q-'y(t). 

Nore explicitly, 

Differentiation shows that 

z' = @Ir' = @'By 

= Q1(QAQ')y 

= AQ'y; 
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hloreover, 
z(0) = Q'y(0) = @'Qa = 20. 

Thus r ( t )  really does solve (1). 
To prove that there are no other solutions to ( I ) ,  we note that z(1) in a solution 

to (1) if and only if Qz(t) ins solution to 

(3) y' = BY, y(0) = Qzo. 

Hence two different solutions to (1) would lead to two different solutions to (3), 
whir11 is irnposaible since B is diagonal. This p m v s  the theorem. 

I t  is inrportant to obscrve that the proof in constructive; it actually shows how 
to find adutions in any specific case. For the proof of Theorem 1 of Section 2 
shows how to find the diagonaliring coordinate change Q (or Q-I). We review this 
procedure. 

First, find the eigenvalues of A by finding the roots of t,he chmteriatic p l y -  
nomial of A. (This, of course, may be very difficult.) For each eigenvalue X i  find a 
corresponding eigenvectorf. by solving the aptem of linear equations correapnding 
to the vector equation 

(A - Ail)f* = 0. 

(This is purely mechanical but may take a long time if n is large.) Write out eaeh 
eigenvector fi in coordinates: 

f<  = (pi,, . . . , PC"), 

obtaining a matrix P = [M. Then the yi are defined by the equation 

(4 )  zi = X pity<; j = 1, . . . , n, 

or 
z = Ffy. 

Sotr thr order of the subscripts in (4)! The ith column of P'consiats of the coordi- 
tuttrs of j.. The matrix Q in the p m f  is the inverse of P'. However, for eome pur- 
puses, it is not necessary to compute Q. 

I n  thr new coordinates the original differential equation becomes 

(5 )  y' = A,y, i = I , .  . . , n, 
so the general solution is 

yi(l) = a;exp(tX,); i = 1, . . . , n, 

where a,, . . . , a. are arbitrary constants, ai  = yi(0). The general solution to the 
original t,quation is found fmm (4) : 

( t i 1  z,(l) = X pi,aiexp(lAi); 3 = 1, . . . , n. 
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This substitution ia most easily done by matrix multiplication 

writing z(t) and y(1) as column vectors, 

a. exp(tX.) 

To find a solution z(1) with a specified initial value 

one substitutes 1 = 0 in (6), equates the right-hand side to u, and mlvea the result- 
ing system of linear algebraic equations for the unknorms (a,, . . . , a) : 
(7) pipi = uj; j = 1, . . . , n. ' 
This ia equivalent to the matrix equation 

P a  = u; a = (at, . . . , a 4  
Thus a = (P')-'u. Another way of eaying this is that the initial values z(0) = u 
correspon& to the initial value y(0) = (PL)-4( of (5). If one isinterrstedonly ina  
specific vector u, it is easier to solve (7) directly then to invert the matrix P. 

Here is a simple example. Find the general solution to the syatem 

2: = t, - z,. 
The corresponding matrix is 

Since A is triangular, 

Det(A -XI) = (1 - h)(2-A)(-1-A) .  

Hence the eigenvalues are 1, 2, - 1. They are real and distinct, so the theorem 
applies. 

The matrix B is 
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In  the new coordinates the equivalent ditierential equation is 

y: = Y,, 

r: = Ow,, 

y; = -I*, 

which has the solution 

~ , ( l )  = a', 

yd l )  = be", 

y,(t) = a-I, a, b, c arbitrary conatants. 

To relate the old and new mrdinates we must find three eigenvectors fr, fi, h 
of A belonging respectively to the eigenvalues 1, 2, -1. The second eolumn of A 
shows that we can take 

h = (0 ,  1 , 0 ) ,  

and the third column ~howa that we may take 

J, = (O,O, 1). 

To find j, = (v,, W, v,) we must solve the vector equation 

/ 
( A  - I )J i  = 0, 

or 

[" 1 : 0 -2 "I[]=o; 
this leads to the numerical equation 

n+a=O,  

", - 2v, = 0. 

Any nonzero solution will do; we take vl = 2, w = -2, w = 1. Thus 

J, = (2 ,  -2, 1) .  

.I'he matrix PC has for its columns the triples Jt, J*, Ji: 

P'= -2 1 0 .  [ : : :I 
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From z = P'y we have 

hence 

(9) t . , ( r )  = 2m1, 

*(l) = -2ae' + be", 

~ , ( l )  = ae' + ce', 
where a, b, c are arbitrary constants. 

The reader should verify that ( 9 )  is indeed a solution to (8). 
To solve an initial value problem for (a), with 

we must select a, b, c appropriately. 
From ( 9 )  we find 

~ ~ ( 0 )  = 2a, 

Thus we must solve the linear system 

(10)  2a = u,, 

for the unknouns a, b, c. This amounts to inverting the matrix of coefficients of the 
lefehand side of ( l o ) ,  which is exactly the matrix P'. For particular values of u,, 4, 

us, it is esrrier to solve (10) directly. 
Thia procedure can, of course, be used for more general initial values, z ( 4 )  = u 
The following ohsewation is an immediate consequence of the proof of Theorem 1. 

Theorem 2 Lel lk n X n mat& A haue n dislincl real cigmra2ur A,, . . . , h. 
Then every aolvlwn & t k  differeniial e q d w n  

2' = A s ,  z ( 0 )  = u, 
la oJ the / o m  

x i ( / )  = c,,exp(lAt) + . . . + c,. exp(1A.); i = 1, . . . , n, 

Jor unique constanis ci,, . . . , cis dcpmding on u. 



52 3. LINEAR SYSTEMS: M N s T A N T  COEFIPICIENTS, REAL EIOENVALOFS 

D? using this thearem we get much information about the general character of 
thc solutions directly from the knowledge of the eigenvalues, without explicitly 
solvinp the differential equation. For example, if all the eigenvaluea are negative, 
evidr~ltl? 

lim z(1) = 0 
C- 

for every solution z(t), and conversely. This aspect of linear equation8 will be 
investi~ated in later chapters. 

Theoren, 2 leads to another method of solution of (1). Regard the coefficients co 
aa unknowns; wet 

and substitute it into 

z' = Az, z(0) = u. 

Then equate coefficients of exp(lAi) and solve for the c;,. There results a system 
of linear algebraic equations for the ca which can alwaya be satisfied p0v1'dLd 
A,, . . . , A. are real and distinct. This in the method of "undetermined coefficients." 

As an example we consider the same system M before, 

z: = z, - o, 
nith the initial condition 

z(0) = (1,0,0). 

. . Ilre rigenvalues are A1 = 1. At = 2, AS = -1. Our solution must be of the form 

~ ~ ( 1 )  = c,,e' + cue" + c , c L ;  

~ ( 1 )  = one' + me" + we-'; 

~s ( l )  = Cs~e' + ~ae" + ~6'. 

T l l c ~ ~  from I:(:) = 11 r e  obtain 

s*' + 2E,,e=' - Cut' = cue' + cuc" + c"e-' 

for all values of 1. This in possible only if 

CU = c,, = 0. 

(Differentiate and set 1 = 0.) From z; = 21 + 2% we get 

c2,e1 + 2c& - cme-' = (cn + 2m)e' + (cu2ca)e" + (CI* + 2ca)e-' 
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Therefore 
q, = CLI + Zen, 

-c,, = cu + 2Q,, 
which reduces to 

on = -ct,, 

* = 0. 
From 2; = z, - z, we obtain 

cnc1 + 2cdt - c u r '  = (GI - cn)el + (cu - ca)ll + (ca - c.)r1. 

Therefore 
Ln = c,, - c,,, 

-C.i = cu -ca, 
which boils down to 

cn = is,, 

r, = 0. 

Without wing the initial condition yet, we have found 

zdf) = fc~le' + c s ' ,  

which in equivalent to (9). From (zt(0), s(O), s(0))  = (1, 0, 0) we find 

c,, = 1, Q, = 1, c. = -+. 
The solution is therefore 

z(l) = (el, -el  + 8: +el - f l l ) .  

We remark that the conclusion of Theorem 2 ia definitely false for m e  -tors 
with real, repeated eigenvaluea. Consider the operator A = [: :I, whose only eigen- 
value is 1 and the system d = Az: 

(11) 2: = z,, 

2: = z, + s .  

Obviody, zl(l) = ace, a = eonstant, hut there ia no conatant b such that s(1) = 
be1 in a solution to (11). The reader can verify that in fact a solution is 

z,(t) = ae', 

s(1) = el(al + b ) ,  
a and b being arbitrary constants. AU solutions have thia fwm; see Problem 3. 



..t 1 3. LlTlEhR SYSTEMS: CONSTANT COEPPICIENT8, REAL E I B E N V A L U U  

I. Solve the folloning initial value problems: 
(a) z' = -2, (h) z: = 211 + 12, 

y' = z + 2y; z: = 2, + Iz; 
z(0) = 0, y(0) = 3. z,(l) = 1, *(I) = 1 

(c) Z' = Az; (d) I' = Az, 
z (0) = (3,O) ; z(0) = (0, -b ,  b ) ,  

2. Find a 2 X 2 matrix A such that one solution to z' = Az is 

z(l) = (8: - e ' ,  8' + 2e1). 

3. Show that the only solution to 

2: = z,, 

(Hint: If (y,(l), yt(l)) ia another solution, consider the functions e-Ly,(l), 
e-'yr(t) .) 

4. Lrt an operator A have real, distinct eigenvalues. What condition on the eigen- 
VIIU(~S is equivalent to lim,-, 1 z(l)  I = m for every solution z(1) to z' = Az? 

5 .  Suppose the n X n matrix A hss real, distinct eigenvalues. Let 1 + +(1, zo) 
be the mlution to z' = Az with initial value +(0, 2,) = zo. 
(a)  Show that for each fixed 1, 

lim +(t, YO) = +(l, 20). 
m-=o .J 

This means solutions are continuous in initial conditions. (Hint: Suppose 
A is diagonal.) 

(b)  Improve (a) by tinding constants A > 0, k 5_ 0 such that 

I +(l, yo) - ~ ( 1 ,  za) I 5 AZ1 I yo - I. 
(Htnl: Thmrem 2.) 
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6. Consider a second order differential equation 

($1 z" + bz' + cz = 0; b and c constant. 

(a) By examining the equivalent first order system 

y' = -cz - by, 

show that if b' - 4c > 0, then (*) hss a unique solution r( t )  for every 
initial condition of the form 

(b) If b' - 4c > 0, what assumption about b and c ensures that 

lim z(1) = 0 ,-- 
for every solution z(t)? 

(c) Sketch the graph of the three solutions of 

for the initial conditions 

z(0) = 1, z'(0) = -1,o, I. 

7. Let a 2 X 2 matrix A have real, distinct eigenvalues A, r. Sup- an eigen- 
vector of A is ( I ,  0) and an eigenvector of p is ( I ,  1). Sketch the phase portraite 
of z' = Az for the following cases: 
(a) O < h < r ;  (b) O < r < A ;  (c) A < ,' < 0; 
(d) A < D < l r ;  (e) A = O ; r > O .  

$4. Complex Eigenvaluea 

A class of operators that have no real eigenvalues are the planar opemtom T.,: 
R'-+ R' represented by matrices of the form A,r = C; <], b # 0. The ehane- 
teristic polynomial is 

A' - 2aA + (a' + b'), 
where roots are 

a + ib, a - ib; i = dq. 
\Ve interpret T..b geometricall!, as follows, Introduce the numbers r, 0 by 

r = (a? + b')"', 



56 3. LINEAR BYSTEM8: CONSTANT COEmCIENT8,  REAL EIQENVALUEB 

Then: Providii b > 0, T., ia a wun(ndoekwk.e ro(olia through tl rudiana follourml 
by a stretching (or shrinking) of ilu lmglh of each vedm by a f&r of r. 

That is, if & denote rotation through 8 radifans, then 

T..,(z) = r&(z) = &(rz). 

To see this first observe that 

a - r cos 8,  b = r sin 8. 

In  the standard baais, the matrix of & h 

cose -sin8 

Lain 8 cos 0 I; 
the mstrix of scalar multiplication by r is rI  = [; :]. The equality 

sin 8 cos 0 I 
yields our assertion. 

There is another algebraic interpretation of T..r. Identify the plane R' with the 
field of compb numbers under the identification 

Then with this identification, the operotor T., mesponda to muliiplkdion by 
a + ib: 

(z, Y) - z + iy 
t t 

operate by T..I I I multiply by a + ib . 
(a - by, bz + ay) - (oz - by) + i(bz + ay) 

Notice also that r is the norm (absolute value) of a + bi and 8 is its argument. 
Readers familiar with complex functions will recall the formula a + i6 = re* (see 
Appendix I). 

The geometric interpretation of T.., makes i t  easy to compute with. For example, 
to compute the pth power of T..r: 

(T.,r)J = (rZ)*(&)* = (r.0 (Rz) 

r. cos p8 -rr ain p8 

= [r* sin re con p8 

Next,  we consider the operator Ton  R' where the matrix is[:-:]. The char- 
acterlstlc polynomial is A2 - 2A + 2, where rootsare 
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T does not correspond to multiplication by a complex number since its matrix 
is not of the f o m  A.,b.  But it is possible to introduce new coordinate in R-that 
is, to find a new b a s e v i n g  T a matrix A*,*. 

Let (IS, G) be the dandard coordinates in R'. Make the mbstitution 

2, = y, + y,, 

= -v,, 

so that the new coordinate are given by 

The matrix of T in the y-coordinatea is [: -3 = A,,,. For this matrix r = ~5 ,  
8 = r /4 .  Therefore in the (vl, y.1-plane T is rotation through r / 4  followed 
with stretching by 32. In  the miginal coordinates (s, z,), T is a kind of "elliptical 
rotation" followed by the %%stretch. If vectors in R' are identified wi th  nnnplex 
numbers via the y - ~ o r d i n a t e t h e  vector whose y-coordinates are (y,, yt) becomes 
y, + iy-then T corresponds to multiplication by 1 + i. 

This shows that although T is not diagonalimhle, coordinates can be introduced 
in which T has a simple geometrical interpretation: a rotation followed by a uniform 
stretch. Moreover, the amount of the rotation and stretch can be deduced from 
the roots of the characteristic polynomial, since r / 4  = arg(1 + i) ,  fi = I 1 + i 1. 

We shall explain in Chapter 4, Section 3 how the new coordinates were found. 
We show now how the complex structure on R' (that is, the identification of 

R' with C) may be used to solve a corresponding claps of differential equations. 
Consider the system 

& - = ar - by, 
dl 

9 = bz + ay. 
dl 

We use complex variables to formally find a solution, cheek that what we have 
found solves ( I ) ,  and postpone the uniqueness p m f  (but see Problem 5). 

Thus replace (z, y) by z + i y  = z, and [; -:I by a + bi = p. Then (1) becomes 

Following the lead from the beginning of Chapter 1, we write a solution for (2). 
z(1)  = Ke'r. Let us interpret thin in terms of complex and real numbers. Write 
the complex number K ss u + iv and set z(l) = 1 1 1 )  + iy(t), 6- = cW" .  A staod- 
ard formula from complex numbers (see Appendix 1) says that cU = ms ib + 
i sin lb. Putting this information together and taking red and h a g h r y  parts we 
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obtain 

( 3 )  z ( l )  = uel- cos lb - ue" sin tb, 

y ( t )  = ueU sin tb + ueh cos tb. 

The reader who is uneasy about the derivation of (3) can regard the preceding 
1,ar;~graph simply as motivation for the formulas ( 3 )  ; it is easy to verify directly 
by differentiation that (3) indeed providcq a solution to (1). On the other hand, 
all the steps in the derivation of ( 3 )  are justifiable. 

We have just seen how introduction of complex variables can he an aid in solving 
differential equations. Admittedly, this use was in a very special case. However, 
many system not in the form (1) can be brought to that form through a change 
of roordinates (see Problem 5). In Chapter 4 we shall pursue this idea systemati- 
c~lly.  At present we merely give an example which was treated before in the Kepler 
problrnl ~ t f  Chapter 2. 

('onsidrr the system 

The corresponding matrix is 

whose eigenvalues are f bi. It is natural to ask whether A can be put in the form 

through a coordinate change. The answer is yes; without explaining how we dw 
covered them (this will be done in Chapter 4),  we introduce new coordinates ( u ,  u) 
by setting z = v, y = bu. Then 

I\? hnve already solved the system 
u' = -bu, 

v' = bu; 

the solution with ( u ( O ) ,  u ( 0 ) )  = (uo, uo) is 

~ ( t )  = uo cos lb - *sin tb, 
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Therefore the solution to ( 4 )  with initial condition 

( ~ ( 0 ) ~  ~ ( 0 ) )  = (a, Y O )  
is 

~ ( 1 )  = yo cos tb - b a  sin tb, 

as can be verified by differentiation. 
We can put this solution in a more perspicuous form as follows. Let C = 

C(yolb)' + 221"' and write, assuming C ir 0 ,  

Then u' + v' = 1, and 

z ( t )  = C[V cos 16 - u 8in tb]. 

Int 4 = b-' arc cos u, so that 

cos MO = v, sin bb = u. 

Then z( t )  = C(cos bt cos b4 - sin bt sin bb) ,  or 

(5) z(1) = Ccos b(l - 4 ) ;  

and 

( 6 )  y ( t )  = bC sin b(l - 4 )  

as the reader can verify; C and 4 are arbitrary constants. 
From ( 5 )  and ( 6 )  we see that 

Thus the solution curve ( z ( l ) ,  ~ ( 1 ) )  goes round and round an &pee. 
Returning to the system (4), the reader has probably recognired that it is equiva- 

lent to the second order equation on R 

(7) z" + b=z = 0, 

obtained by differentiating the first equation of ( 4 )  and then substitua the 
second. This is the famous equation of "simple harmonic motion." whaae werd 
solution is (5). 
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PROBLEMS 

I .  Solve the following initial value problems. 
(a) 2' = - !I! (h) 2:- -22% 

y' = 2; 2: - 22,; 
z(0) = 1, ~ ( 0 )  = 1. z,(c) - 0, zt(0) = 2. 

(c) Z ' = Y ,  (d) 2' = As, 
y' = -z; z(0) = (3, -9); 
z(0) = 1, y(0) = 1. 

A - [: -;I. 
2. Sketch the phase portraits of ench of the differential equations in Problem 1. 

3. Let A = C; -21 and let z(1) be a solution to 2' = Az, not identically 0. The 
curve z ( t )  is of the following form: 
(a) a circle if a = 0; 
(b) a spiral inward toward (0,O) if a < 0, b # 0; 
(c) a spiral outward away from (0,O) if a > 0, b Z 0. 

What effect has the sign of b on the spiral8 in (b) and (c)? What ia the phsas 
portrait if b = O? 

4. Sketch the phase portraits of: 
(a) z' = -22; (b) 2' = -2 + 2; 

y' = 22; v' = 3v; 
2' = -2gl. d =  - 2 - E .  

Which solutions tend to 0 as 1 -+ m ?  

5. Let A be a 2 X 2 matrix whose ei~envaluea are the complex numbers a f Ri, 
,9 # 0. Let B = -!I. Show there exkta an invertible matrix Q with QAQ-' = 
n, n5 ~OIIOWS: 

I :A) Show that the determinant of the following 4 X 4 matrix in 0: 

where I = [i :I. 
(b) Show that there exists a 2 X 2 matrix Q such that AQ = QB. 

(Hint: Write out the above equation in the four entries of Q = CPU] 
Show t t the resulting ayatem of four-Linear homogeneous equations in 
the 2 ur unknowne q., haa the coeflicient matrivof part (a).) 

( e )  Show that Q can be chosen invertible. 
Thc rcfore the system z' = Az has unique solutions for given initial conditionn. 
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8. Let A = C; -2. The solutions ofz' = A z  depend eontinuody on initid vduea. 
(See Fkhlem 5, Section 3.) 

7. Solve the initial value problem 

2' = - 4vn 
y' = 2; 

z(O)=O. y(O)=-7.  
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Chapter 4 
Linear Systems with Constant 

Coeficients and Complex Eigenvalues 

As we sax\- in the last section of the preceding chapter, complex numbers enter 
naturnlly in the study and solution of real ordinary differential equations. In,gen- 
era1 the study of operators of complex vector spaces facilitates the solving of h e a r  
differential equations. The first part of this chapter is devoted to the linear algebra 
of complex vector spaces. Subsequently, methods are developed to study almost all 
first ordrr linear ordinary differential equations with constant coefficients, including 
thoqe a hose associated operator has distinct, though perhaps nonreal, eigenvalues. 
1.11~ mr:rnlng of "almost all" nil1 be made preeise in Chapter 7. 

& I .  Complex Vector Spaces 

order to gain a deeper understanding of linear operators (and hence of 
,li~~,.~,.,,ti~,l e,,uations) wr have tr, fiud thr geometric si~nificancc of complex elgen- 
val,l,.s. .].his ia dl,"? hy extcmdin~ an oprrator T on a (rrnl) vector Space to an 

,,lw.r;,t(,l. 'rc ,,,, a r l , l r l l , l t .~  vvctor spacr Kc. Complex eigrnvalues of Tare associated 
, , i ~  1, ~ . , I I , I ~ I I , . ~  , . i~,., ,vt.~t~rs ,,I TC. \PP first develop complex vector spaces. 

' I I I < .  cl~.lii~itil,tts ;rnd i,lcmcntsry lrroprrties of Rm and (real) vector spaces gu over 
<tin.v11? 1,) C. and cumplcx vcetar spaces by systematically replacing the real num- 
1,l.r. R uith ewa8i.x nnmbcrs C. \Ve makr this more prce 

f'u~ri,fl~s Chrles;o,, space C" is the set all n-tuplcs z = 

~ ~ r ~ ~ ~ ~ l , ~ ~ ~  r\pl>rndix I fur the definition of complex no~nbcrs). We call 2 in C' 
( . , I I , ,~ , I ,~x  v , . c ~ u ~  Or sonl~tin~rs a point in C". Complex vvctors are added exactly 

lihl vvrturs ill Rx (set. Chapter 1, Section 2). Also, if A is a complex numhcr and 

z = (21, . . . , 2") is in C', then X I  is the vector (Az,. . . . . XI . ) ;  this is seslar multi- 
plication. Note that R' is contained naturally in C" as the set of all (a, . . . , z.), 
where each 2, is real. 

The axioms VS1, VS2 of Section 1A of Chapter 3 are valid for the operations 
we have just defined for C'. They define the compler w&r apace structure on C'. 

As in Section lB,  Chapter 3, a nonempty subset F of C. is called a subspace or a 
(complex) linear ~ubspace if it is closed under the operations of addition and scalar 
multiplication in C". The notions of trivial subspace, proper subspace, subspace 
of a (complex) suhspace are defined as in the real case; the same is true for the 
concept of linear map T: F L  + F, between subspaces F,, Ft of C.. One replacea 
real scalars by complex scalars (that is, complex numbers) everywhere. A complu: 
ueclor space will mean a subspace of C.. 

The material on kernels and images of linear maps of complex vector spaeea 
goes over directly from the real case as well as the facts about bases, dimension, 
coordinates. Propositions 1, 2, and 3 of Section lB,  Chapter 3, are all valid for the 
complex case. In fact, all the algebraic pruperties of real vector apacea and their 
linear maps carry over to complex vector spaces and their linear mapa In par- 
ticular, the determinant of a complex operator T, or a complex n X n matrix, is 
defined (in C). I t  is zero if and only if T has a nontrivial kernel. 

Consider now an operator on C', or more generally, an operator T on a complex 
vector apace F C C'. Thus T: F --r F is a linear map and we may p r d  to study 
its eigenvaluea and eigenvectors as in Section 2 of Chapter 3. An eigenvalue A of 
T is a complex number such that Tu = Au has a nonzero solution o E F. The vector 
u of F is called an eigenuedor belonging to A .  This is exactly analogous to the real 
case. The methods for finding real eigenvalues and eigenvectors apply to thia com- 
plex case. 

Given a complex operator T as above, one associates to it a polynomia 

p(A) = Det(T - AI) 

(now with complex coefficients) such that the degree of p(A) is the dimensim of 
F and the roots of p are exactly the eigenvalues of T. 

The proof of Theorem 1 of Section 2 in the previous chapter appliea to yield: 

Theorem Let T: F - F be on operalm on an n-dime- cmn+ adm rpaa 
F. I f  the characlcridlic polynmniol has diatincl roo&, thm T urn be d i q o d d .  

This implies lhnl when thcdc rwta arc diatincl, then one may find n ba& 16,. . . , e.1 
of &enwclors for T so Unl if I = I>, z,e, is in F, then Tz = A##,; L, L !he 
eigenuedm belonging lo the ( u n p k )  &dues  A,. 

Observe that the above theorem is stronger than the co- theom 
in the real cane. The lstter demanded the lurther substantial condition that the 
roots of the charaeteriatic polynomial be real. 

Say that an operator T on a complex vector space is rnniaimpk if it is diagonal- 
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izahle. Thus by the theorem above T is semisimple if its characteristic polynomial 
has (listinrt rwts (hut not conversely as we shall see in Chapter 6). 

.\, \ \ I ,  I~nvo natvcl, R* C C.. Wr consider now more ~enerally the relations be- 
I \ v w n  vwtor  spaers in R" and complex vector spaces in C". Let F be a complex 
sul,sl~nrc of C.. Then FR = F fl R" is the set of all n-tuples (2,. . . . , 2.) that are 
in F and are real. Clearly, Fa is closed under the operations of addition as well 
RT scalar multi~lication by real numbers. Thus Fn is a real vector space (subpace 
or R") .  

Consid~r now the converse process. Let E C R" be a suhspace and let Ec he the 
subset of C" obtained by taking all linear combinations of vectors in E, with complex 
coefficients. Thus 

and Ec is a complex subspace of C". Note that (Ec)n = E. We call Ec the com- 
pleiijication of E and FR the space of rml wdors in F. 

In d~fining Ec, Fp we u d  the fact that all the spaces considered were subsets 
of C". The essential element of structure here, beaides the algebraic structure, is 
thr operation of complex conjugation. 

lleeall if z = z + iy is a complex number, then i = z - iy. We often write 
i = r(z) so that a :  C -C as a map with the property s' = . - a  = identity. The 
sv1 131 fixvrl points of r ,  that is, the set of z such that r(z) = z, is precisely the set 
s > f  rwtl ! ~ \ > ~ n l r r s  in C. 

'I'llis ~~i,<.r:ttion o, or conjugation, can be extended immediately to C' by defining 
o :  Cn -+ C.' by conjugating each coordinate. That is, 

For this extension, the set djized points is R'. 
Note also that if F is a complex suhspace of C", such that a F  = F, then the set 

of fixrd points of a on F is precisely Fn. This map a playa a crucial role in the rela- 
tion hrt\t-cen real and complex vector spaces. 

I.rt F C C" be a o-invariant linear suhspace of C'. Then it follows that for u E F 
h . C, o l h u )  = v ( h ) c ( u )  or if we write o(w) = w for w E F, % = LO. Thus a 
trof i.<~tr~lilt.x linear. However, s ( u  + w) = o(u) + a(w). 

II f ~ ~ l l , ~ a s  that for any suhspace F C C", 

11 ,  tcrnrs nf o it is rasy to s p h e n  a he decomplexified, 
t l i t ~ t  is. v x p r c - d  in thc form F = EC for some R": F can be de- 
ron,pl~~xifird if and only if o(F)  C F. For if r ( F )  
J 1 i F with z, y E R"; so z E F because 
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Similarly, y E F. I t  follows easily that F = FRC, that is, F is the complexification 
of the space of real vectors in F. The converw is trivial. 

Just as every suhspace E C R" has a compl~xification Ec C C", every operator 
T: 6 - E hm an extension to a complex linear operator 

Tc: E" - Ec, 
called the complezi/lca(ion of T. To define Tc, z t Ec, let 

(1) z = A+;; A i  E C, z, E E. 
Then 

Tcr = E h,Tz,. 
It is easy to see that this definition does not depend on the choice of the representa- 
tion (1). 

If (e,, . . . , e,) = (B h a basis for E ,  it is also a basis for the complex vector EpWe 
Ec; and the @matrix for Tc is the same as the @-matrix for T. 

In  particular, if T t L(R') is represented by an n X n matrix A (in the usud 
way), then Tc E L(C.) is also re~resented hv A. . . 

The question arises as to when an operator Q: EC - Ec is the complexification 
of an operator T: E - E. 

Proposition Lel E C R' be a red vector space and Ec C C" if., c m n p l a i M i a .  
IfQ E L(Ec) then Q = Tc for some T t I,(Pi ijandonly if 

Qo = .Q, 
where r :  Ec --t Ec ti conjugation. 

P r w J .  If Q = Tc, we leave it to the readrr tr, provc that Qs = .Q. Conversely, 
w u m e  Q commutes with a. Then Q(E)  C E ;  for if z E E, then oz = z, henee 

OQZ = Qoz = Qz 
80 

Q z E I ~ E E c l a y = y l  = E c x = E .  

Let Q E = T E L(E);  it is clear from the definition of Tc that Tc = Q. 

We close this section with a property that will be very important in latercbaptera 
An operator T on a real vector space E is semlaimple if its compledcation Tc is a 
diagonalizahle operator on Ec. Then the theorem proved earlier implies that a 
sufficient (hut not necessary) condition for semisimplicity is that the charsctaktie 
polynomial should have distinct rook. 

PROBLEMS 

1. Let F C C' be the subspace spanned by the vector (1, i). 
(a) Prove that F is not invariant under conjugation and henee h not the 

complexification of any subspace of R'. 
(b) Vind FR and (Fa)=. 
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2 .  1x1 I< C R" and F C C" he subspaces. What relations, if any, exist hetween 
din, E and dim Kc? Urtseen dim F and dim Fa? 

3. If (.. C C" is any subspace, what relation is there between F and Fac? 
4. 1r.t E hr a real v~ctor  space and T E L(h'). Show that ( I k r  T)c = lier(Tc), 

(Inr l')c = Im(Tc),  and (T-')c = (Tc)-I if T is invertible. 

92. Reill Operators with Complex Eigenvalues 

\\.r movr toanrd understanding the linear differential equation with constant 
eocfl~cir~nts 

\ \hc,rt  T is an operator on Rm. I'or this purpose, we study further the eigenvalues 
:xnd r,igvnvcrtr,rs of T. This was done thoroughly in Chapter 3 sssuming that all 
I I ~ ,  rict.n\-:~lucs were distinct and real. Now we drop the hypothesis that the eigen- 
r:clrit,. II~NSI hc real. 

Pr~r~usit iun.  IJ T is art operalor on a red vector space E, then the sd of (IseiSen- 
rdues is preserued u,tde~. co,jrplez cor~jugdion. Thus if X is an etgmudue so is X. Con- 
seq~ie~!lly, we ,,ray wrnle the eiqenudues of T as 

A,, . . . , A., all real; 

I 1:irst. O ~ I S C T V C  tlli~t thc ~ i ~ m v a l u e s  of T coincidt! with the eigcnvalucs 
,,I its ~.c,i~~~~lrxificatic,t~ Tc bveausc both T and Tc have thc same charactcrintic 
~ ~ ~ l > ~ ~ t ~ > ~ i i : ~ I .  I,vt h bc i ~ r i  eig(.nvnl~l~ of Tc and q a corrrspcmdinp; rigenvector in 
I . , , .  -V , I c r  = Xq. .\lq~lying the conjugation opcration s to bath sidr-s, we find 

.(T,@) = ha, 
Hut.  I,? thc proposition of Section 1, 

In othcr ivords, I is an ~igenvaluc of Tc with correspon ing eigenvector 3.. This 

. . 
'4 ~ ~ n w ~ s  t l~c  proposition. (Anothrr c roof is based on the lac that the characteristie 

polyaorni:rl uf T hlrs real coefficients, so the roots occur in conjugate pairs.) 
I l r t .  I,:wir irn,prrtic,s of real operators are contained in the following three 

ll,,,<>rr,,,> 
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Theorem 1 Lel T: E + E be a real operdor u-ilh dislind cigenvalues lided crt in 
the previotrs proposifion. Then E and T haue a direct sun! decomposition (scc S e t i a  
1 F of Chapler 3), 

E=E.mEb.  T = T . m T , ,  T.:E.-E., T,:Eb-Eb, 

where T. has red eigenvaluea and Tb nonreal eigenvalues. 

For the proof we psss to the complexification Tc and apply the t h e o m  of the 
preceding section together with the above proposition. This yields a basis for Ec 
(e,, . . . , e., J,, j,. . . . , .f., j.) of eigenveetors of Tc corresponding to the eigenvalues 
(A, , . . . ,  A,,P!,PI, . . . ,  ,'.,D.). 

Now let F. hr th? rnmplex subspacr of Ec spanned by (el, . . . , SJ and F, be 
the nuhapaee spanned by IJt, i*, . . . , J., f. I. Thus F.  and Fa are invariant subspaces 
for Tc on Ec and form a direct sum decomposition for Ec, 

hlor<.over Fa and Fa are invariant undm complrx conjugation. Srt E. = E fl F. and 
Eb = R n Fb; thrn F.. Fa are thr con~plexifirationa of E., Es, and E = E. 8 El. I t  
is rasy to SM* that E, and El have thr. rrquird properties. 

Theorem 1 reduces the study of such T to T. and Tb. The previous chapter ana- 
lyzed T.. 

We remark that Theorem 1 provides an "uncoupling" of the differential equation 

mentioned at the beginning of the section. \Vt- may rewrite this equation as a pair 
of equations 

where T.. Ts are as above and z. C E., r, E E,. 
\\'e procmd to the study of the operator Ta. 

Theorem 2 Lel T: E + E be all operalor. nit a red tvclor space tr i lh didind non- 
?en1 eiqenvalues (r,. Da, . . . , p,, p,). The,? /hue is an i,~~,aria,,l dired arrr~ d a n t ~ ~ p s l i o n  
for E and a corl.es~~o~rdi,~q direcl su~u decontposiliort Jor- T, 

T =  T , m . . .  mT., 

such fhol each B, u tsa di~rrer~sioi~ol and T. < I.(.?,) lras erge~~unltus r . ,  p. 



For the proof of Theorem 2, simply let P' be the oomplu subsp.ce of Ec spanned 
by the eigenveetom, I;, j. w r r m p m ~  to the eigenvalues pi, pc. m e n  let Ei be 
Fin E. The rest follow. 

Theorrm I and 2 reduce in principle the otudy of an opentor witb distinct 
duestotheesseof  a n o p e r a t o r o n a d t  mdimnc iond  vector opux with nonred 

Theo-3 M T b ~ a n o p c r d o r m a t d i m s n r i o n d M d o r r g a a E C R ~ ~  
m r m l  ciqmoolus #, p, p = a + a. Then lhcre is a malriz repmenfalion A for T 

The study of such a matrix A and the oomponding differentia equation on 
R2, &/dl  = At, was the content of Chapter 3. Section 4. 

We now give the proof of Theorem 3. 
Let Tc:  Ec -+ Ec be the complexifieation of T. Since Tc has the name *dues 

as T, there are eigenveetom v, + in Ec belo& to p, L, renpedvel~.  
Letv - u+ivwithu.vE Rm.Then+ - u -  w.NotethatuandvsrsinEc,for 

u - t ( v + + ) ,  v - $ ( + - v ) .  

H e n c e u a n d v a r e i n E c ~ R m = E . M o r e o ~ r , i t i s e a s y t o s e e t h a t u a n d v s r e  
independent (uee the independence of v, +). Therefore Iv, u\ is a bseie for E. 

To compute the matrix of T i n  thin basis we atart from 

Tc (u + iv) = (a  + bi) (u + w) 
= (-bv+au) + i ( w + b u ) .  

Alm, 

Therefore 
T v - w + b u ,  

Tu = -bv+au. 

This means that the matrix of T in the &is [ v ,  u )  is F f 1, completing the p ~ f .  

In the course of the proof we have found the following interpretation of a ~ o m p l a  
eigenvalue of a red operator T E L(E),  E C Rm: 

Note that u and v can be obtained directly from v and a (without reference to 
C') by the formulas in the proof of Theorem 3, 
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PROBLEM 

For each of the following operators T on R' find an invariant t w d e n s i o n a l  
E C R' and a basis for E giving T I E a mairix of the form F 3: 
(a) 

$3. Application of Complex Linear Algebra to Differentid Equac la~  

Consider the linear differential equation on R" 

& - = Tz, 
dl 

where T is an operator on R. (or equivalently, an n X n matrix). Suppok that 
T has n distinct eigenvalues. Then Theorems 1, 2, and 3 of the prerioua sectioo 
apply to uncouple the equation and, after finding the new basis, one can obtain 
the ralution. Letting E = R", we first apply Theorem 1 to obtain the fdowing sys 
tem, equivalent to (1) : 

Here 
T = T. e T., z = (z., 2.) E E. s El = E, 

T. hss real eigenvalues, and Tb n o d  eigenvalues. 
Note that (2s) and (2b) are equations delined not on R., but on subspaees & 

and El. But our dehnitiona and dimmion of differential equations apply just M 
well to subpaces of R-. To find explicit solutions to the OW equatim, h 
for thme mbepacm must be found. This is done by finding e i g e n m  of the 
complexification of T, as will be explained below. 

If we obtain solutions and properties of (2a) and (2b) sepantely, oomqonding 
information is gained for (2) and (1). Furthermore, ( a )  received 8 oomplets 
diecumion in Chapter 3, Section 3. Thus in principle it is d c i e n t  tagive an adyak 
of (2h). To this end, Theorem 2 of Section 2 applies to give the following system, 
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where T = TI e . . . m T,, y = (y,, . . . , y,) E Es = El a . . . m E. and each Ei 
has tn.o dimensions. 

Thus (L'b) and hence ( Z ) ,  (1) are reduced to the study of the equation 

( 4 )  - dy' = T.y, on two-dimensional E , ,  
dl 

nlr,.rr. ,.:tcI, T. Itas nonrml ~igmvalues. Finally, Theorem 3 of Section 2 applies 
t o  put (41 in thc form of the equation analyzed in Section 4 of Chapter 3. 

Exanaple 1 Consider the equation 
z: = -2a,  

z; = 2, + 2% 
or 

'I.llis is the  matrix considered in Chapter 3, Section 4. The eigenvalues of A are 
\ = l + i . X = l - i .  

.\ roniplrx rigenveetor belonging to 1 + i is found by solving the equation 

(A - (1 + i ) )w = 0 
for tc e C?, 

Thr first fquation is equivalent to the second, as ia seen by multiplying the w a n d  
by ( - 1 - i). From the second equation we aee that the solutions are all (complex) 
rnultiplr.; of any nonzero complex vector w such that w, = (-  1 + i)%; for exam- 
plr, ~ r . ~  = -i, u., = 1 + i. Thus 

w = ( 1  + i, -i) = (1, 0) + i(1, -1) = u + iu  

is a complex eigenvector belonging to 1 + i. 
We chaose the new baais ( v ,  u) for R' C C', with u = (1, - I ) ,  u = (1,O). 
To find new coordinates y,, y, corresponding to thin new basis, note that any z 

can be written 

z = =,(I, 0) +-(a, 1) = yiu + y2u = y,(l, -1) + yt(1,O). 
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Thus 

The new coordinates are given by 

The matrix of A in the y-coordinates is 

or B = A,,, in the notation of Section 4, Chapter 3. 
Thus, as we anw in that section, our differential equation 

on R', having the form 

in the y-coordinates, can be solved as 

yt(1) = u' cos 1 - ve'sin 1, 

U Y ( ~ )  = uc' sin 1 + ue8 coa l 

The original equation has as its general solution 

zt (1) = (u + u)e2 cos 1 + (u - u)elsin 1, 

zr(1) = -uelcoal + ue'sinl. 

Example 2 Consider on R' the differential equation 

& - - 
dl 

-Ax, A =  0 2 - 3 .  [: : :] 
The characteristic equation Det(A - 1I) = 0 is (1 - 1) ( ( 2  - 1)' + 9) = 0. Ite 
solutions, the eigenvalues for A ,  are X = 1, ,, = 2 + 3i, p = 2 - 3;. Eigenveetom 
in C' for the complexified operator are found by solving the homcgeneous systems 
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of three linear equations, 

(A - A)e = 0, 

this \it>lds r = ( -  10, 3, 1).  Likewise 

-1 -3 ;  0 

( A - p ) w = O  [ : -: d E ] = o  

yields w = (0, i,  1). A third eigenvector ie 0 = (0, -i,  1). 
Wr now wish to find the matrix P that gives a change of coordinates z = py, 

'J = P-'r whpre z is in the original coordinate system on R'and y cormponds to the 
1,:l.i~ r , f  r.igt~nvectors. Proposition 4 of Section lc, Chapter 3, applies. 

Y'hus 

-10 0 0 

Hrrr the columns of P are (e, v ,  u) where w = (0, 0, 1) + i(0, 1, 0) = u + *. 
Then -* 0 0 

* O l  

B = P-1'4. = -:I. 
Now we have transformed our original equation I' = Az following the outline 

givcn in the beginning of this section to obtain 

y1 = By, B = 0 2 -3 , y = P-'z. [: "1 
This can be solved explicitly for y as in the previous example and from this solution 
one obtains mlutions in t e r n  of the original z-coordinates by z = PY. 
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A related approach to the equation (1) is obtained by directly eomplexifying it, 
extending (1) to a differential equation on C", 

One can make sense of (Ic) as a differential equation either by making definitions 
directly for derivatives of curves R -+ C" or by considering C. as R'., that ie, 

(ZI, . . . , Z", Yl, . . . , y") = (2, y) -2 + C = 1. 

Application of the theorem of Section 1 diagonaliees Tc, and one may correspond- 
ingly rewrite ( lc)  as the set of differential equatiom, 

dw; - - dl - Piwi, i = I, . . . , a. 

(Sometimes i ,+i is written in place of w,.) Here z,, G+,, W; are all in onedimensiond 
complex vector spaces or can be regarded as complex numbers, and n = r + 2r. 
These complex ordimary differential equations may be solved using propexties of 
complex exponentials, as in Section 4 of the previous chapter, obtainiq .s the 
general solution: 

Now it can be checked that if z(0) € R., then z(t) € R. for all 1, uaing f o n d  
properties of complex exponentials. This can be a useful approach to the study of 
(1). 

PROBLEM 

Solve z' = Tz where T ie the operator in (a) and (b) of Problem 1,8& 2. 



Chccptc~r 5 
Linear Systems and Exponentials 

of Operators 

l'hr ohjt-ct of this chapter is to solve the linear homogeneous system with con- 
stant rlr.ficients 

(1) z' = Az, 

where A is an operator on R" (or an n X n matrlt). This is accomplished with 
expt,nrnt,ials of operatom. 

This nlrthod of solution is of great importance, although in this chapter we can 
computc solutions only for special c w .  When combined with the operator theory 
of Ch~pt11r 6 ,  the exponential method yields explicit solutions for every syatem (1) .  

wcry operstor A ,  another operator e*, called the e x p o n d i o l  of A ,  is defined 
in St,rti<,n 4. The function A --. eA has formal properties similar to those of ordinary 
erp<tnmtials of real numbers; indeed, the latter is a special case of the former. 
Likp\\-ise the function 1 + elA ( 1  E R) resembles the familiar ela, where a E R. In 
particular, it is shown that the solutions of (1) are exactly the maps z :  R +R" 
given by 

z(1) = e8*K (K E R"). 

Thus we establish existence and uniqueness of solution of (1) ; "uniqueness" means 
that there is only one solution z(1) satisfying a given initial condition of the form 
~ ( 1 . )  = KO. 

Exponentials of operators are defined in Section 3 by means of an infinite series 
in the operator space L(R"); the series is formally the samr as the usual series for 
r .  Convergenec is established by means of a special norm on L(R"), the uniform 
rlornt. Norms in general are discussed in Section 2, while Section 1 briefly reviews 
sonlr bl~qic topology in R". 

Srrtions 5 and 6 an: devoted to two less+entral types of differential equations. 
One is a simple inhomogeneoua system and the other a higher order quation of one 
variable. We do not, however, follow the heavy emphiis on higher order equations 

of some texts. In geometry, physies, and other kinds of applied msthematirs, one 
seldom encounters naturally any difirrential equation of order higher than two. 
Often even the second order equations are studicd with more insight after reducing 
1*> a first o r d ~ r  system (for example, in Hamilton's approach to mechrmies). 

81. Review of Topology i n  R* 

The inner product ("dot product") of vectors z and y in R. is 

(2, Y )  = z,yr + - . . + z.y.. 

The Euclidean norm of z is l z 1 = (z, z)lj' = (z,. + . . . + z.~)"'. &c p m g  
erties of the inner product arc 

Synmetry: (2, Y )  = (Y, z ) ;  

Bi l imady:  (z + y, r )  = (z, z) + (y, z), 

( a , y ) = a ( z , y ) ,  a E R ;  

Posilive definilmesa: (z, z )  > 0 and 

(2, z )  = 0 if and only if z = 0 

An important inequality is 

Cauchu'8inWily: ( z , y )  _< J z J j y I .  

To see thin, first suppose z = 0 or y - 0; the inequality ia ohviow. Next, observe 
that for any A 

(2, + )  + X2(y, Y )  + 2A(z, y )  > 0. 

Writing - (z, Y)/(Y, Y )  for A yields the inequality. 
The basic properties of the norm me: 

(1) I z I 2 0 and I z I = 0 if and only if z = 0; 
(2)  I z + y l  S l z l + l y l ;  
(3)  l a z l = l a l l ~ l ;  

where I a I is the ordinary absolute value of the scalar a. To prove the triangle 
inequality (2),  it aufica to prove 

I ~ + ~ l ' i l ~ I ' + l y l ' + 2 1 z 1 I y l .  
Since 

I z + y l l =  ( ~ + Y , Z + Y )  

= I ' I' + l Y I' + 2(z, y), 
this follow8 from Cauchy's inequality. 
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Geom~trically, / z [ is the length of the vector z and 

(z, y) = I z I I y I cos 8,  

where 0 is the angle betwen z and Y. 
T ~ P  distance between two points z, y E Rm is defined to be I z - y ( = d(z, Y). 

11 is C R P ~  10 prove: 

. 1 , - y I > _ O a n d I z - y I = O i f a n d o n l y i f z = y ;  
15) ! e - z l i l z - y l f l y - 2 1 .  

'1.h~. I:trt inequality follo\vs from the triangle inequality applied to 

If r > O the tntighborhd of z E R" ia 

B.(z) = I y E R ' I I y - z l < . I  

.4 neighborhood of z is any subset of R" containing an cneighborhood of z. 
A set X C R. is open if it is a neighborhood of every z E X. Explicitly, X ia 

open if and only if for every z E X there exkts r > 0, depending on z, such that 

A sequence (zt) = z,, a, . . . in R. muerged lo the limd y E R' if 

Erluivalcntly, every neighborhood of y contains all but a finite number of the points 
of the sequence. We denote this by y = limb. zr or z, -t y. If zr = (zrr, . . . , Zh) 
and y = (y,, . . . , y.), then {a) converges t o y  if and only if I'm. z v  - yj, 1 - 
1, . . . . n. A sequence that has a limit is called w n ~ g n * .  

A sequence {zk) in R" is a C a d y  sequence if for every e > 0 there &ts an 
integer ka such that 

z -  < i f k l k  and j 24 ,  

The following basic property of R. is called metric completeness: 

A sepuenu mnueroes lo a limil if and only if il is a Cauchy sequmc. 

A subset Y C R" is dosed if every sequence of points in Y that is convergent 
has its limit in Y. It is easy to see that this is equivalent to: Y is c l o d  if the com- 
plement R" - Y is open. 

Let X C R" be any subset. A map f: X -+ R is d n u r m s  if it takes convergent 
sequences to convergent sequences. This means: for every sequence (zhl in X with 
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it is true that 
limf(zr) = /(Y). 
k-- 

A subset X C R" is bounded if there exists a > 0 such that X C B.(O). 
A subset X is cmnpact if every sequence in X has a subsequence converging to a 

point in X. The basic theorem of BolloturWtierstraas says: 

A subsel of R' w compact if and only if it ti bolh c l o d  and boundcd. 

Let K C  R' be compact and f :  K - + R m  he a continuous map. Then f(K) is 
compact. 

A noncmpty compact subset of R has a maximal element and a minimal element. 
Combining this \\ith the preceding statement proves the familiar result: 

Every conlinumrs map j: K -t R, &fined on a compact sct K, taka on a -'mwn 
value and a minimum valu. 

One may extend the notions of distance, open set, convergent sequence, and other 
topological ideas to vector subapaees of R". For example, if E is a subspace of R., the 
distance function d: R' X R' --t R restricts to a function ds: E X E -+ R that dao 
satisfies (4) and (5). Then tneighborhoods in E may be defined via ds and ahus 
open sets of E h o m e  defined. 

62. New Norms for Old 

I t  is often convenient to use functions on Rm that are similar to the Euclidean 
norm, but not identical to it. We defines norm on Rm to be any function N: R. + R 
that satisfies the analogues of ( I ) ,  (2),  and (3) of Section 1: 

(1) N(z) L 0 and N(z)  = 0 if and only if r = 0; 
(2) N(z + Y) 5 N(z)  + N(y);  
(3) N(ar )  = l a  l N(z). 

Here are some other norms on R-: 

l z l m . . = m l l z , 1 .  . . . ,  [z.I), 

lzl...= I z , l +  ... +lz.1. 

Let = (f~, . . . , f.1 be a basis for R" and define the Eudidmn c&unn: 

I z = (ha + . . . + t.3"' if z = Z: fj,, 
i l  

In other words, I z lo ia the Euclidean norm of z in &coordinates (1,. . . . , f.) 
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The hnric fact about norms is the equivalence Of Mnna: 

Proposition 1 Let N: R. -R be any norm. There etisl conslanls A > 0, B > 0 
st~rh lhal 

(4) A l z l < N ( z )  _ < B l z I  

for dl 2, u.here 1 t 1 ia the Eudideon norm. 

Proof. Finrt, consider the mlu norm. Clearly, 

(max I ti I)' < Ez? < n(max 1 % ;  1)'; 
i 

taking square roots we have 

1 ~ 1 , ~  5 ltl < * I ~ l m u .  

T~IIIP  fa)r t l , ~  msx norm we can take A = 116, B = 1, or, equivalently, 

Now let N: R" -+ R be any norm. We ahow that N is eonlinurms. We h s ~ e  

N(z) = N(Cz,e,) < C Iz,lN(e,), 

where e,, . . . , e. ia the standard basis. If 

mrslN(e,), . . . ,  N(e.)l = M, 
then 

N(z) < M Z I z, 1 5 Mn I z I... 
< M n I z l .  

By the triangle inequality, 

I N(z) - N(y) I < N(z - u) 

< M n l z - y l .  

This shows that N is continuous; for suppose l i i  z k  = y in R": 

I N(z4  - N(u) I < Mn 121 - u I, 
so lim N(zk) = N(y) in R. 

Slnce N is continuous, it a t t a b  a &urn value B and a minimum value A 
on tbe closed bounded set 

( z E R " \ ( z I = l ) .  

$2. NEW NORM0 ROR OLD 

Now let z E R'. If x = 0, (4) is obvioua. If I z I = a # 0, then 

N(z) = d (a - ' z ) .  
Since I a-'z I = 1 we have 

A < N(a-'2) < B. 
Hence 

A < a-'N(z) 2 B, 

which yields (41, since a = I z 1. 
Let E C R" be a subspace. We define a norm a E to be any function 

that eatisfien ( I ) ,  (2), and (3). In particular, ever?, norm onRm restrictd to a norm 
on E. In  fact, every norm on E is obtained from a norm on R. by restriction. To  
nee t b i ,  decompose R' into a direct sum 

R . = E . F .  

(For example, let (c,, . . . , e.1 he a basis for R" such that (m, . . . , c) is a ba& 
for E; then F is the subspace whose basis is I%+,, . . . , &I.) Given a norm N on 
E, define a norm N' on R' by 

where 

and I z I in the Euclidean norm of z. It is easy to verify that N' is a norm on R' and 
N' I E = N. 

From thia the equivalence of norms on E follows. For let N be a norm on E. Then 
we may assume N is restriction to E of a norm on R', dm denoted by N. There 
exist A ,  B C R such that (4) holds for all z in R", en it holds a fmliuri for dl z 
in E. 

We now define a normed vector apace (E, N) to be a vector spaee E (that in, a 
subspace of some R') together with a particular norm N on E. 

We shall frequently use the following corollary of the equivalence of n o m :  

Proposition 2 Let (E, N) be any nmmd welor space. A bqumm (z.1 in E om- 
vcrged lo y if and a l y  if 

(5) lim N ( a  - y) = 0. 
.-.o 

Proof. Let A > 0, B > 0 he as in (4). Suppose (5) holds. Then the inequality 

shows that limk-, I z, - y I = 0, hence zb + y. The converse is proved similarly. 

Another useful application of the equivalence of n o m  is: 
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Prc,f~'.itior~ 3 i,el ( E ,  N )  be a named &or space. Then /he unit ball 

D =  I z E E I N ( z ) I l l  
7s co?upac/ 

Proof. I.rt B he as in (4). Then D is a bounded subset of R., for it is contained 
in 

( Z E R " ( / ~ I < B - ~ ~ .  

I t  follows from Proposition 2 that D is closed. Thue D is compaet. 

The Cauchy convergence criterion (of Section 1) can be rephrased in terms of 
arbitrary norms: 

Propns i~ ion  4 Let ( E ,  N) be a normed v&r space. Then a sequence (zrl in  E 
cotrreryrs to on element in E if and only if: 

( 6 )  for aery r > 0, there ezisld an inlegar m > 0 such lhal if p > n 2 m, Lhen 

Proof. Suppose E C R., and connider {z,)  as a sequence in R'. The condition 
(6) is equivalent to the Cauchy condition by the equivalence of norms. Therefore 
(6) is equivalent to convergence of the sequence to some y E R". But y E E because 
subspaces are closed sets. 

A sequence in R" (or in a suhspaee of R") is often denoted by an injnile series x;, zr. This is merely a suggestive notation for the sequence of parlid sums ( a  1 ,  
where 

sr = 2, + . . . + 21. 

If lin~t-., SI = y, we write 

x z k  = Y 
C I  

and say the s c r k  z, ennvcrges to y. If all the are in a subspace E C R", then 

also y E E because E is a cloeed set. 
A serir.s x zr in a named vector space (E, N) is absolulely conucrgerU if the series 

of rral numbers x;d N(zL) is convergent. This condition implies that x zh is 
runvt,rgerit in E. hloreover, it is independent of the norm on E, as follows easily 
from e~~oivalence of norms. Therefore it is meaningful to speak of absolute con- 
vcrgencc of a series in a vector space E, without reference to a norm. 

A useful criterion for absolute convergence is the comparison leal: a aeries I. 

in a normed vector space (E, N )  converges absolutely provided there is a conver- 
gent serles I: a& of nonnegative real numbers a, such that 

$2. NEW NORMS FOR O W  

For 

hence EL N ( z d  converges by applying the Cauchy criterion to the partid sum 
sequences of E N(z,) and ak. 

PROBLEMS 

I .  Prove that the norms described in the beginning of Section 2 actually are 
norm. 

2. / t I, is a norm on R", where 

l z l , = x l z / " ' ;  l _ < p < - .  
i l  

Sketch the unit halls in R' and R' under the norm I z 1, for p = 1, 2, 3. 

3. Find the largest A > 0 and smallest B > 0 such that 

A l r l  < l z l ~ , I B l z l  

for all z E R'. 

4. Compute the norm of the vector (1, 1) E R' under eaeh of the foUowing 
norms: 
(a) the Euclidean norm; 
(h) the Euclidean &norm, where is the basis ( (1 ,  2) ,  (2, 2) 1; 
(c) the max norm; 
(dl the a-max norm; 
(e) the norm / z I ,  of Problem 2, for all p. 

5. An inner producl on a vector space E is any map R. X R. --t R, denoted 
by (z, y) -+ (z, y), that is symmetric, bilinear, and positive defhite (see 
Section 1).  
(a) Given any inner product show that the function (z, z)'!' is a norm. 
(h) I'rove that a norm N on E comes from an inner product as in (a) if aod 

only if it satisfies the "parallelogram law": 

N ( z  + Y)' + N ( z  - Y ) ~  = ~ ( N ( Z ) ~  + N(y)l). 

(c) Let at, . . . , a. be positive numbers. I;ind an inner product on R. whose 
corresponding norm is 

N(z) = ( x  atl.12)'l'. 
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(d) Let (e,, . . . . GJ be a basis for E. Show that there is a unique inner 
product on E such that 

(ei, ei) = 6ii for all i, j. 

6. Which of the following formulas define norma on R'? (Let (z, y) be the co- 
ordinates in R*.) 
(a) (21 + zy + ?)If'; (b) (zl - 3zw + !A1''; 
(c) (1 2 l + l Y 1)'; (d) t ( l z l + I 1 / I ) + f ( 2 1 + V ) ' " .  

7. I*t U C R* be a bounded open eet containing 0. Suppose U in c o m a :  if z E U 
and y E U ,  then the line segment (& + (1 - t)y 10 5 1 5 1)  in in U.  For 
each z E R' define 

o(z) = leadupperboundof [ A  2 O I X z  E U). 

Then the function 

is a norm on R.. 

8. Let M. be the vector space of n X n matrices. Denote the transpoee of A E M. 
by A*. Show that an inner product (see Problem 5) on M. in defined by the 
formula 

(A, B)  = Tr(A'B). 

Exprw thin inner pmduct in tern of the entries in the matrices A and B. 

9. Find the orthogonal complement in bf. (see Problem 8) of the subapace of 
diagonal matrices. 

10. Find a basis for the subspace of M. of matrices of trace 0. What is the ortho- 
gonal complement of this subspace? 

F 
53. E ~ ~ o n e n t i a l s  of Operators 

The set L(R") of opereton, on R' ia identified with the set A!. of n X n matrices. 
This in turn is the same as R"' since a matrix is nothing but a list of n' numbers. 
(One cl~no~cs an ordering for these numbers.) Therefore L(Rm) is a v m h  space 
under thc usual addition and scalar multiplication of operators (or matriw). We 
may thus speak of no- on L(RS), convergence of series of operators, and so on. 

A frequently used norm on L(RS) in the uniJorm norm. Thin norm in de6ned in 
terms of a given norm on R. = E, which we shall write as I z I. If T: E + E in an 
operator, the uniform norm of T in defined to be 
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In other words, 11 T 11 in the maximum value of I Tz I on the unit boll 

D =  [ Z E E ~ I ~ I S ~ ) .  

The e&ence of thin maximum value follows from the compactness of D (Section 
1, Propaition 3) and the continuity of T: R" + R'. (Thia continuity folloras im- 
mediately from a matrix representation of T.) 

The uniform norm on L(R') depends on the norm chosen for R.. If no norm on 
R" is specified, the standard Euclidean norm in intended. 

Lemma 1 Let R' be given a norm I z I. The cot~mpondi"~ uniform ~ n n  m L(R-) 
has the following propcrtics: 

Proof. (a) If z = 0, then I Tz 1 = 0 = k 1 z 1. If z # 0, then 1 z 1 # 0. Let 
y = 1 z 1-'z, then 

I l w l =  -1zI  = 1. 
Iz  I 

Hence 

from which (a) follows. 
(b) Let I z 1 5 1. Then from (a) we have 

I S(Tz) I S I I  s 11.1 Tz I 
5 IISII.II TII. lzl  

5 I I  8 11.11 T II. 
Since I l  ST I /  ia the maximum value of 1 STz 1, (b) foUowa. 

Finally, (c) in an immediate consequence of (b). 

We now define an important eerie, generalizing the usual exponential series. For 
any operator T: R" --r R" define 

(Here k! in k Jaclorial, the pmdoct of the firat k positive intepem if k > 0, aad 
O! = 1 by definition.) This in a aerie, in the vector space L(R"). 

Thmrem The ezponefdial a r i c a  x;, Tk/k! i a  &adu&l~/ mnar@ jm aery 
operafor T. 



Prwf. Let 11 T (1  = a 2 0 be the uniform norm (for wme norm on R'). 
Then I\ TLIk! 11 < d l k ! ,  by Lemma 1 ,   roved earlier. Now the real series 

d / k !  converges to c- (where c in the b.ae of natural logarithms). Therefore 
the exrmnential series for T converged absolutely by the cornpariaon test (&tion 
2). 

WP h ~ v e  8 b   roved that 
(1 & 11 5 c"'". 

We s i d  need the following result. 

L ~ - ~  2 Ld C; A j  = A and B, = B be absdulcly m q m t  series of 
opcra(ma on R":Then AB = C = CI, w b c  CI = x,+t-~ A& 

Prooj. Let the nth partial sum of the series E A,, x B., CI be denoted 

mpeetively by o., ,9., 7.. Then 

AB - had., .-- 
while 

~f 7h - in computed, i t  is found that i t  equals 

Z A P b +  C"AIB,, 

where r denotes the sum over tenna with indiwn  ati is lying 

j + k < 2 n ,  O s j l n ,  n + l I k _ < 2 n ,  

while r' is the sum corresponding to 

j + k 5 2 n ,  n + l < j s Z n ,  O L k I n .  
Therefore 

ll B- -ad. ll I 2 II A i  11-Il BI 11 + C" II A i  11.11 B b  II. 
Now 

T h i a t e n d s t o O s s n - m s i n e e x ~ I ) A j ( I  < m.Similarly,C"IIAiIl.IlBbII+ 
0 as n -+ m. Therefore Lim,.(v,. - ad.) - 0, pro* the 1- 

The next reault in uaeful in eomputiq with enponentiah. 

F'mpdtlon Ld P, S, T dmo* opaabrr on R". Then: 

(b) 11 ST = TS, hn fl+r -. fler; 
(c) c-* = (fly,; 
(d) if n = 2 and T .= C; 3, 

m e  proof of 18) follows from the identities P(A + B)P~ = PAP* + p ~ p r  
and (PTP1)I  = PTkP-1. Therefore 

and (a) follows by taking limits. To prove ( b ) ,  observe that because ST = TS w 
haw by the binomial theorem 

Therefore 

by Lemma 2, which proves (b). Putting T = -8 in (h) gives (c). 
The proof of (d) follows from the correspondence 

of Chapter 3, which Preserves mum, products, and real multiples. I t  in easy to re 
that it also preserves limits. Therefore 

where c* is the complex number x', (*)'/k!. Using ry = -1, we h d  & 4 
part of c' to be the sum of the Taylor series (at 0) for cos b ;  aimilyly, the- 
part in sin b. This proves (dl. 

Obeerve that (cj implid that cd is invertible for every opentor S. Tha ia ,,,& 
WUB to the fact that 1 # 0 for every real ncmber 8. 

As an example we compute the ex&meutial of T = C; 3. We rrite 
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\',,ti, that nl commutrs with B .  Hence 

S,,W 0% = 0; hence Bk = 0 for d l  k > 1, and 

= I + B .  
Thus 

\\.e can now compute eA for any 2 x 2 matrix A. We will see in Chapter 6 that 
can find an invertible matrix P  such that the matrix 

B  = P A P '  

has one of the following fonm: 

\Ye tlrtm compute en. For (11, 

RS was shown in the proposition above. For (3) 

as we have just seen. Therefore eA can be computed from the formula 

There is a very simple relationship between the eigenvectors of T  and those of 
er: 

If r E R. ti an eigenu&r of T  belonging lo the real cipenualue a of T ,  then z is abo 
art ei(renvec1or of e' belonging lo b. 

03. EXPONENTIALS OF OPERATORB 

For, from T z  = az, we obtain 

= ez. 

We conclude this section with the observation that all that has been said for 
exponentiale of operators on R" a h  holds for operators on the cmnpk vector apsee 
C". This is because C" can be considered as the real vector space R" by simply 
ignoring nonreal scalars; every complex operator is a f o r l a  a real operator. In 
addition, the p r d i g  statement about eigenvectorn is equally valid when eomplu 
eigenvaluea of an operator on C" are considered; the proof is the m e .  

PROBLEMS 

1. Let N  be any norm on L(Rm). Prove that there is a conatant K such that 

N ( S T )  < K N ( S ) N ( T )  

for all operatorn S ,  T .  Why must K 2 l? 

2. Let T :  R' + R- be a linear transformation. Show that T  is unijmly m- 
Linumra:forall~>Othereexists8>Osuchthatif~z - y I  <&then 

I T z -  T y l  < r  

3. Let T :  R- -+ R' be an operator. Show that 

4. Find the uniform norm of each of the following operators on R': 

5. Let 
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( a )  Show that 
lim II T' II"' = t. .. .. 
"-- 

(bi Show that for every r > 0 there is a basis (B of R' for which 

I 1  T lle < + + *, 
where 1 1  T lie is the uniform norm of T corresponding to the Euclidean 
&norm on R'. 

(c) For any basis (B of R', 

l l  T lle > 4. 
6. (a)  Show that 

I I  TII.11 T-'11 2 1 

for every invertible operator T. 
(b) If T has two distinct real eigenvalues, then 

(Hinl: First consider operators on R'.) 

7. Prove that if T is an operator on R" such that 1 1  T - I l l  < I, then T is 
invrrtible and the series E L  ( I  - T)' converges absolutely to T-'. Find 
all upper bound for 1 1  T-' (1. 

4. Lt,t '4 E L(Rm) be invertible. Find r > 0 such that if I (  B - A I I  < r ,  then 
B is invertible. (Hinl: Fi t  show A-'B is invertible by applying Problem 7 
to T = A-'B.) 

9. Compute the exponentials of the following matrices ( i  = ) : 

10. Fca rach matrix T in Pmblem 9 find the eigenvalues of er 

1 I .  i.ir~d an example of two operators A,  B on R' auch that 

12. If A B  = BA,  then eAe" = @c' and eAB = Bc". 

13. Let an operator A :  R" -+ R" leave invariant a subspace E C Rm (that is. 
A t  E E for all z E E).  Show that eA a b  leaves E invariant. 

14. Show that if I I  T - Ill is sufficiently small, then there is an operator S such 
that eS = T. (Hint: Expand log(1 + t )  in a Taylor aeries.) To what extent 
is S unique? 

15. Show that there is no real 2 X 2 matrix S such that # = [< 21. 

94. Homogeneous Linear Systems 

Let A be an operator on R". In  this ~ection we shall e x p m  mlutiws to the 
equation: 

(1) t '  = A z  

in term of exponential8 of operators. 
Consider the map R -+ L(R') which to 1 t R assigns the operator c". S i m  

L(R') is identified with R"', it makes aense to speak of the derivative of this map. 

Proposition 

In  other words, the derivative of the operator-valued function elA ia another 
operator-valued function Ae". This means the composition of elA with A ;  the order 
of composition does not matter. One can think of A and elA as matrim, in which 
case AeIA is their product. 

Proof of the proposition. 

elAe*A - 
= lim 

l d  h 

e** - 
= elA lim (Ty 

L 4  

= 

that the last limit equals A follows from the aeries definition of e". Note that A 
commutes with each term of the series for elA,  hence with elA. This proves 
the proposition. 
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\\'e earl now solve equation (1). We recall from Chapter 1 that the general solu- 
tion of thc scalar equation 

z' = az ( a  E R) 

1.111. xunr is  true where r ,  a, and k are allowed to he complex numbers (Chapter 3 ) .  
Thcac rcsults are special cases of the following, which can be considered as the 
fundamental theorem of linear differential equations with constant coefficients. 

Throrenl I,et A be an operalor on R". Thm ha solution of the initial value problem 

( 1 ' 1  z' = Az,  z ( 0 )  = K E R", 

IS 

( 2 1  elAK, 

n,til l l i i , r  ate 710 olher soluliona. 

rronj. The preceding lemma shows that 

sitr~v. r"'K = K,  it follows that (2) is a solution of (1'). To see that there are no 
otlrr,r s<,lutions, let z(1) be any solution of (1') and put 

= -Ae-'*z(l) + r l A A z ( l )  

= e-'"(-A + A ) z ( t )  
I 

J 
= 0. 

' l ' / t l . r</ ,sr~~ !,I/) is a cunstant. Setting f = 0 shows y( t )  = K. This completes the 
l > r t ~ d  < > i  11w thcormm. 

.\% an rxample we compute the general solution of the two-dimensional system 

1.3) 2: = az,, 

z; = b z ~  + an, 

94. HOYOGESEOUB LINEAR SYSTEM8 

where a, b are constants. In matrix notati~n this is 

The solution with initial value K = (K,, K,) E R' is 

el*K 
In  Section 3 we saw that 

Thus 
c"K = (ebK,, eY(tbK, + K*)) .  

Thus the solution to (3) satisfying 

z,(O) = K,, * ( O )  = K, 
is 

z ~ ( l )  = eUKl, 

4 1 )  = eU(tbK, + K t ) .  

FIG. A. Saddle: R - [i ''1, A < 0 < e. 
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Since ac know how to compute the exponential of any 2 X 2 matrix (Section 3) ,  
ran explicitly solve any two-dimensional system of the form z' = Az, A E L(R1). 

\Vithout finding explicit solutions, we can also obtain important qualitative in- 
formation a b u t  the solutions from the eigenvaluea of A. We consider the most 
important special cases. 

Cose I. A baa red cigenualus oJ oppoaile siqm. In this ease the origin (or some- 
times the differential equation) is called a saddk. As we saw in Chapter 3, after a 
suitable change of coordinates z = Py, the equation h o m e s  

In the (y,, y?) plane the phase portrait looks like Fig. A on p. 91. 

Cose 11. .Ill eigenvdud haue negative red parts. This important case is called 
a sirrk. I t  has the chanrcteristic property that 

limz(1) - 0 
8 - .  

Ic,r <,very sulution ~ ( 1 ) .  If A is diagonal, this is obvious, for the solutions are 

FIG. B. Foeas: n - [i 3,. < 0. 

I"' 

FIG. C. Ncde: B - [i ''1. < e  < 0 

If A is diagonalisable, the solutions 

are of the form with y(1) as a b v e  and P E L(R'); clearly, z(f) -+O as 1 -  m. 

The phase portrait for these subeases looks like Fig. B if the eigenvalue are 
equal (ajocus) and like Fig. C if they are unequal (a node). 

If the eigenvalues are negative but A is not d i i d i b l e ,  there is a change 
of coordinates z = Py (see Chapter 6 )  giving the equivalent equation 

Y' = BY, 
where 

We have already solved such an equation; the solutions are 

n (1) = KIG", 

y,(l) = K2e" + KIU", 

which tend to 0 as 1 tends to -. The phase portrait looks l i e  Fig. D (an improper 
node). 

If the eigenvalues are a i i6, a < 0 we can change coordinates as in Chapter 4 
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FIG. D. Improper node: H = [: :I, I < 0 

to obtain the equivalent system 

From Section 3 we find 

= ,t. 
malb -sinlb 

sin lb con lb 

FIG. IS. Spirnl sink: 8 - [: -:I, 6 > 0 > a. 

94. HOMOGEXEOUB LINEAR SYSTEMS 

Therefore the general solution is expressed in y-coordinates as 

y ( t )  = e U ( K ,  cos lb - Kt sin lb, Kt cos lb + K ,  sin lb )  

Since I con lb I < 1 and I sin lb I 5 1, and a < 0, it follows that 

limy(1) = 0. ,-- 
If b > 0, the phase portrait consists of counterclock~ise spirals tending to 0 (Fig. 

E),  and clockwise spirals tending to 0 if b < 0. 

Case 111. All e i p ~ u a l w  h e  poailiue real part. In this case, d e d  a a r e ,  we 
have 

lim I z ( t )  I = m and lim I z(t)  I = 0. 
2-- ,--- 

A proof similar to that of Case I1 can be given; the details are left to the reader. 
The phase portraits are like Figs. B-E with the arrons reversed. 

Cose IV.  The eigenualues are pure imaginary. This w called a center. It is charac- 
terized by the property that all solutions are periodic with the same period. To Bee 
this, change coordinates to obtain the equivalent equation 

We know that 

em = lb -sin lb 

sin ib cos ib I 
Therefore if y ( l )  is any solution, 

FIG. p, Center: B - [: -:I. b > 0 
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Det Sources 
T 1 r 0 , O e l ~ O  

Sinks 
T, ' 0 , ~~t 0  S ~ i r o I =  Spiral, 

\ 
A<O,T.<O 

FIG. G 

The phase portrait in the y a r d i n a h  consists of concentric cuclea. In the o r i g i d  
z-cwrdinates the orbits may be ellipses as in Fig. F. (If b < 0, the m w s  point 
rlork\visr..) 

I.'inlrc G summarizes the geometric information about the phase portrait of 
s' - As that can be deduced from the characteristic polynomial of A. We write 
this polyr~umial a s  

A' - (TI A)A + Det A. 

The dism'miwnl A is defined to be 

A =  (TrA) ' -4DetA.  
The eigenvaluss are 

4 (TI A + JA). 

Tt~us rv:tl eigenvalues correspond to the case A 2 0; the eigenvalues have n~gative 
rvid p:rrt, when TI A < 0; and so on. 

~ h v  cru,rnctric in t r~~reta t ion of 2' = Az is as follows (compare Chapter 1). The 
r r ~ : t p  R., -t R. which sends z into Az is a vector field on R.. Given s point K of 
R". t h v n  is a uniqu,l curve 1 -+ el*K which e b r b  a t  K a t  time scm, and is asolution 
uf ( l I .  i \\.r interpret 1 as time.) The tangent vector to this curve at a time bin the 
vrctor ;lr(h) of the vector field a t  the point of the curve 

We nray think of points of R" flowing simdbneoualy along these solution curves. 
The position of a point z E R" at  time I is denoted by 

Thus for each 1 t R we have a map 
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given by 
+,(z) = e'*z 

The collection of maps (+,I,, is called thepow corresponding to the differentid 
equation (I) .  This flow has the basic property 

+.+, = 4. 41, 
which is just another way of writing 

this is proved in the proposition in Seetion 2. The flow is called linear heeause eeeh 
map 9,: R" --t R' is a linear map. I n  Chapter 8 we s h d  define more general ~ n h a w  
flows. 

The phase portraits d i s c 4  above give a good visualization of the correspond- 
ing flows. Imagine wink of the plane all moving a t  once along the curves in the 
direction of the amws. (The origin stays put.) 

1. I'id the general solution to each of the following systems: 

2. In (a),  (b),  and (c) of Problem 1, find the solutions -tidyins each of the 
following initial conditions: 
(a) z(0) = 1, y(0) = -2; (b) r (0 )  = 0, y(0) = -2; 
(c) 1(0) = 0, y(0) = 0. 

3 Let A : R' - R. be an operator that leaves a subapace E C R' inrariant. 
Let I: R -+ R" be a solution of z' = Ax. If z(6) E E for 6 0 6  4 E R, show 
that z(1) € E for all 1 6 R. 

4. Suppose A t L(R") has a real eigenvalue A < 0. Then the equation d = Az 
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hns a t  least one nontrivial solution z( / )  such that 

lim z(t) = 0. 
,-- 

5. k t  A E L(Rz) and suppose z' = Az has a nontrivial p m ' d i c  solulion, u(l) : 
this means u(t + p )  = u(t) for some p > 0. Prove that every solution is 
p~riodic, with the same period p. 

6. If u: R - R" is a nontrivial solution of z' = Az, then 

7. Supply the details of Case I1 in the text. 

8. Classify and sketch the phase portraits of planar differefitial equatione z' = 
A z ,  A E L{R'), where A hss zero an an  eigenvalue. 

9 i'or mch of the following matrices A consider the corresponding differential 
~ r~r~n t ion  z' = Az. Decide whether the origin is a sink, source, saddle, or none 
of tlirse. Identify in each cnse those vectors u such that lim,-,z(l) = 0, where 
z(1) is the solution with z(0) = u:  

10 \\'llirh values (if anv) of the parameter k in  the following matrices makes the 
rlrigin a sink for the corresponding differential equation z' = Az? 

11. Let 9,: R'+Rx be the Aou. corresponding to the equation z' = Az. (That 
is, t - +,(z) is the solution peaing through z a t  1 = 0.) Fix 'ix > 0, and show 
t1n:tt O, is a linrar map of R* + R:. Then show that 4, preserves ares if and only 
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if Tr A  = 0, and that in this case the origin is not a sink or a .*wee. (Hinl: 
An operator is area-preserving if and only if the determinant is fl.) 

12. Describe in words the phase portraits of r' = A z  for 

13. Suppose A  is an n X n matrix with 11 distinct eigenvalues and the real part of 
every eigenvalue is less than some negative number a. Show that for every 
solution to z' = Az, there exists 4 > 0 such that 

I z(1) I < e'. if t t to. 

14. Let T be an invertible operator on R', 71 odd. Then z' = Tr hea a nonpwiodic 
solution. 

15. Let A = C: 3 have nonreal eigenvalues. Then b # 0. The nontrivial solutions 
curves to z' = Az are spirals or ellipscs that are oriented clockwise if b > 0 
and counterclockwis*: if b < 0. (Hinl: Consider the sign of 

95. A Nonhomogeneous Equation 

We consider a nonhomogeneous nonautonamous linear differential equation 

Here A  is an operator on R' and B: R - R. is a continuous map. This equation is 
called nonhomogeneous because of the t c m  B(1) which preventa (1) from being 
strictly linear; the fact that the right sidv of (1) depends explicitly on 1 mak- i t  
nonaulonomrms. I t  is difficult to interpret solutions geometrically. 

We look for a solution having the form 

where f :  R + R' is some differentiable curve. (This method of solution is d e d  
"variation of constants," perhaps because if B(1) 0, f(1) is a constant.) Every 
solution can in fact be written in this form since elA is invertible. 

Differentiation of (2) wing the Ie ibn i  rule yields 



Since z ia amumed to be a solution of (2), 

so M a candid& for a solution of (1) we have 

Let us examine (3) to nee that it indeed d m  sense. The in-d in (3) and 
the previous equation ia the vector-valued function a -+ cA'B(r) mapp* R into 
R-. In fact, for any wntinuous map p of the reds into a vector s p e  R', the integd 
uur be defined n an element of R-. Given a b& of R-, this integd ia a vector 
whose c o o d i ~ t c s  M the integdo of the w0&te f u n c t i ~  of 9. 

The integ.l .a a function of its upper limit 1 is a map from R into R'. For each 
1 the opentor aets on the in- to give an element of R". So 1 -+ z(1) is a well- 
dehed map from R into E. 

To check that (3) is a solution of (I), we differentiate z(1) in (3) : 

Thus (3) in indeed a solution of (1). 
That every solution of (1) must be of the form (3) can be rn M follows. Let 

y:R"+Ebeaseeondsolutionof (1). Then 

2'- v' - A(* - y) 
eo that from Section 1 

I - y - cu& for wme K. in R.. 

This implies that y is of the form (3) (with perhaps a different eoastaot K E R'). 
We remark that if B in (1) in only dehed on arme interval, instad of on all of 

R, then by the above methoda, we obtain a solution z(1) dehed for 1 in that calm 

interval. 
We obtain further innight into (1) by reniting the general solution (3) in the 

form 
z(1) - u(1) + a"K, 

Note that u(1) ia also a solution to (I), while &""K ia a solution to the b n q p e n m  
equation 

(4) u'-  Au  
obtained fmm (1) by replacing B ( 0  with 0. In  fact, if v(1) in any solution to (1) 
and y(t) any solution to  (4), then clearly z = v + y in anotha solution to (1). 
Hence the general solution to (1) ia obtained from a particular solution by adding 
to i t  the general solution of the conwpnding homogeneow equstion. In summary 

(4') z' = Az. 

Cmvcrscly, the .urn of a sdulirm oj (1) and a dulia of (4') u a dulion oj (1). 

If the function B(1) ia at all complicated it wiU probably be -ble to npl.ce 
the integral in (3) by a simple formula; sometimes, however, this esn be done. 

Erampk. Find the @ solution to 

E; = 2, + 1. 
Here 

Hence 

cm r ain I 

-sin. cma 
and the integral in (3) is 

I 

To compute (3) we set 
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hence the general solution 

performing the matrix multiplication and eimplifying yields 

= - t + K,  cos 1 + (1 - KI) sin 1, 

~ ~ ( 1 )  = 1 - (1 - K,) CMI 1 + K1 Bin 1. 

Tllis is the solution %.hose value at 1 = 0 is 

a (0)  = KI, a(0)  = Kr 

1. ~ i " d  all solutions to the follo~ing equations or systems: 
1 0 )  t' - 4r - cost - 0;  (b) 2' - 42 - t = 0; (c) 2' = Y. 

y ' - 2 - 2 ;  

(dl 2' = Y, (e) z' = z + U f 2,  

y' = -42 + sin 21; y' = -2y -b 1, 
2' = 2r + sin 1. 

2. Suppose T: R" -r R" is an invertible linear operator and c E E ia a nonzero 
constant vector. Show there is a change of coordinates of the form 

z = Py + b, b E R", 

transforming the nonhomogeneous equation z = Tz + c into homogeneous 
form y' = Sy. Find P, b, and S. ( H i d :  Where is z' = O?) 

3. Solve Problem 1 (c) using the change of coordinates of Problem 2. 

$6. Higher Order Systems 

Consider a linesr differential equation with constant coeffieiente which involves 
a derivative K i e r  than the first; for example, 

(1) a" + as' + ba - 0. 

By introducing new variables we are able to reduce (1) to a first order system 
of two equations. Let 2, = 8 and = r: = a'. Then (1) becomes equivalent to the 

Thus if z(t) = (a({), ~ ( 1 ) )  ia a solution of (2), then a(l) = z,(t) is a sdution 
of (1); if d l )  ia a solution of (I), then z(l) = (a({), a'(t)) is a solution of (2). 
Thia procedure of introducing new variables works very g e n e d y  to redurn 

higher order equations to first order ones. Thus comider 

Here a is a real function of t and a'"' is the nth derivative of a, while a,, . . . , a. are 
constants. 

In this case the new variables are ZL = a, zr = z:, . . . , z, - %,'and the equatioo 
(3) is equivalent to the Bystem 

2: = -a.s - a%-,* - . . . - a,=.. 

In vector notation (4) has the form 2' = Az, where A ia the matk 

P . ~ ~ i t i o n  The c h a r d t i c  p o l y o m s  of ( 4 7  

P(A) = A' + n,X".l + . . . + a. 
Proof. One usen induction on n. For n = 2, this is easily cheeked. Aawne the 

truth of the proposition for n - 1, and let A,, be the (n - 1) X (n - 1) sub 
matrix of A con&ing of the last (n - 1) rows and last (n - 1) columna. Then 
D e t W  - A) is Pasily computed to be A Det(h1- A,,) + a. by erpndhg dong 
the first column. The induction hypothein yields the desired c h m t e i d e  
polynomial. 

The point of the proposition is that it giver the charaekrktic p d y n o d  dlect?y 
from the equation for the higher order di11erential equation (3). 
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Let us now return to our first equation 

(1) s" + aa' + bs = 0. 

Denote the roots of the polynomial equation A' + aA + b = 0 by A,, Ar. Suppose 
:,I lirst that thpsp roots are real and distinct. Then (1) reduces to the equation of 
lirst ordvr ( 2 ) ;  onr can find a diagonalidng system of coordinates (yl, yg). Every 
s~,lrltionc,l ( 2 )  forthrsrcoordinatesisthen y,(l) = K,exp(hIt), yt(l) = K.exp(~tl), 
witl,  nrl,itrttry rc,nstaata K,, K,. Thus z,(l) or a(t) is a certain linear combination 
a ( ( )  = l ~ , , K l  cxp(A,t) + pt2Ktexp(A&). We conclude that if At, A, are real and 
distinct then every solution of (1) is of the form 

s(l) = C, exp(Ad) + C, exp(At1) 

for somr (real) constants C,, C,. These constants can be found if initial values 
s(l,), 8 ' ( t0 )  ai-e given. 

Srxt,  .uppose that A, = h = A and that these eigenvalues are real. In this case 
tllc, ? X  2 n~atrix in (2)  is similar to a matrix of the form 

iw \\ill 11c shown in Chapter 6. In the new coordinates the equivalent firstarder 
systml is 

Y; = A Y l ,  

y; = BY, + AYZ. 

13y the n~rthods of Section 4 we find that the general solution to such a systrm is 

y,(l) = Kle", 

yl(t) = K,BleL1 + KleL', 

h.1 imd K2 being arbitrary constants. In the original coordinates the m~lutions to 
t I w  mlnivnlmt first order system are linear combinations of these. Thus \ye con- 
cl,a,lr that if the characteristic polynomial of (1) has only one root A e R, the 
solutiolis have the form 

a([) = C,eU + CZlcA'. 

The values of C, and C2 can be determined from initial conditions. 

Erample. Solve the initial-value problem 

(5) a" + 2s' + s = 0, 

a(0) = 1, s'(0) = 2. 

Thr rhnracteristic polynomial is A' + 2A + 1; the only root is A = -1. Thrrcforc 
thr, general solution is 

s(1) = C,e-' + Cde-'. 

$6. HIOHER ORDER SYSTEM8 

We find that 
~ ' (1)  = (-C, + C,)C' - C*'. 

From the initial conditions in (5) we get, setting 1 = 0 in the laat two formulas 

Hence C, = 3 and the solution to ( 5 )  is 

The reader may verify that this actually is a solution to (5)! 
The final ease to consider is that when A,, A, are nonreal complex awjugte n u -  

hem. Suppose A, = u + iu, A, = u - iv. Then we get a solution (aa in Chapter 3) : 

y,(t) = ea'(K, cos ul - K,sin ul), 

~ ( 1 )  = e"(K, sin vl + KI cos ut). 

Thus we obtain s(t) as a linear combination of y,(t) and y,(t), m that findly, 

s(l) = e"'(C1 em ut + C, sin ul) 

for some constants C,, C,. 
A special casp of the laat equation is the "harmonic willator": 

8" = 0 ;  

the eigenvalues are fib, and the general solution is 

CL coa bl + C, sin bl. 

We mmmarire what we have found. 

Theorem Let A,, AS be the rwb of ihe polynomial A' + aA + b. Then axry dulh 
of the differential e q d h  

(1) 8" + as' + ba = 0 

is of the jollmoing type: 

Case (a). A,, A, are real dialincl: a(/) = C, exp(A11) + C, exp(AJ); 
Case (b). A, = A, = Aiareal:a(t) = C,e"+C,te"; 
Case (e l .  A, = X, = u + iu, u # 0: s(l) = e"(C, cob ul + C, sin vt) 

In each case CI, Ct are (real) constants determined by initial wnditions of the 
form 

. a t  = a, a'(&) = 8. 
The nth order linear equation (3) can also be solved by changing i t  to an equiva- 

lent first order system. First order systems that come from nth order equations 
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l~nvr. q>r.cial properties which enable them to be solved quite eaeily. To understand 
thc mrthod of solution requires more linear algebra, however. We ahall return to 
higher order equations in the next chapter. 

\Ve make a simple but important observation about the linear homogeneous 
equation (3) : 

11 s(t) and ~ ( 1 )  are sdulimts Lo (3), ao is ihe fundirm a(l) + d l )  ; iJ k any red 

number, hen b(1) w a aolulh. 

In other words, the set of all solutions is a vector space. And since n initial conditions 
determinrs a solution uniquely (consider the companding first order system), the 
dmwnblon of the vector space of solutions equals the order of the differential 
~ ~ u e t i o n  

\ hlghrr order inbomogenmus linear equation 

ran hc solved (in principle) by mlucing i t  to a first order inhomogenmus linear 
system 

i = Az + B(t) 

and applying variation of constants (Section 5). Note that 

r o i  

Lb(t)J 

h s  in the case of first order systems, the general solution to (6) can be e x p d  
RI( t h ~  9(.11er@l aoiution to the cor-nding homogeneow equation 

plus a particular solution 01 (2). Consider, for example, 

The general solution of 
s" + a = 0 

A particular solution to (7) is 
a(t) = 1 - 1 

Hpnrc the general solution to (7) is 

Finally, we point out that hjgher order *(dents eas be reduced to first order 

56. HIGHER ORDER SYSTEMS 

systems. For example, consider the system 

z" + z' + 2y' - 32 = 0, 

y" + 52' - 4y = 0. 

Here z(1) and y(1) are unknown real-value functions of a real variable. Introduce 
new functions u = z', u = y'. The system is equivalent to the fowdimensiond 
first order Bystem 

z' = U, 

u' = 32 - U - Zu, 

y' = u, 

d = -5u + 4y. 

PROBLEMS 

1. Which of the following funetions satisfy an equation of the lorn  a" + or' + 
ba = O? 
(a) te' (b) t' - 1 (c) cas 21 + 3 sin 21 
(d) cos 21 + 2 sin 31 (e) e-'cos 21 (f) el + 4 
(9) 31 - 9 

2. Find solutions to the following equations having the d e d  initial values. 
(a) a" + 4s = 0; a(0) = I ,  s'(0) = 0. 
(b) a" - 3s' + 28 = 0; s(1) = 0, ~ ' ( 1 )  = -1. 

3. For each of the following equations find a bagia for the solutions; that is, find 
two solutions a,(t), 4(1) such that every solution has the fonn m(l) + ph(1) 
for suitable constant. a, 8: 
(a) a" + 3s = 0 (b) a"- 3s = 0 
(c) a" - a' - 6s = 0 (d) s" + a' + s = 0 

4. Suppose the mots of the quadratic equation A' + aA + b = 0 have negative 
real parts. Prove every solution of the differential equation 

s" + ar' + bs = 0 
satisfies 

lim s(1) = 0. 
,*I 

5. State and prove a generalization of Problem 4 for for nth order difieren- 
tial equations 

+ als"-L' + . . . + = 0, 
where the polynomial 

A" + a,Am-I + . . . + a. 
hm n distinct root. with negative real parts. 



10% 5. LINEAR SYSTEMS AND EXWNENTIALS OF O P E R A ~ K S  

6. under m.hat conditions on the constants a, b is there a nontrivial solution 
to + LIB + b = 0 such that the equation 

s(t) = 0 

(a  > nr, solution; 
(1,) :L p n ~ i t i v ~  finitp number of soh~tions; 
c infinitclv many so l~ t ions~  

7 I'r,r ~ : i r h  of thr follouinp, equations sketch the phaw portrait of the correspond- 
lvrn firqt order system. Then sketch the graphs of several solutions s(!) for .--r 

difl~rent initial conditions: 
. U + ~ = O  (b) 8 " - s = 0  (c) S " + S ' + S = 0  ,-, " . - . . 
,*" + zat = 0 (e) s" - 8' + 8. 

\ -  - 

8, which equations + + bs = 0 have a nontrivial periodic solution? What 

is the period? 

9. Find all solution8 to 
8"' - a" + 4s' - 4a = 0. 

10. Find a real-valued function s(t) such that 

s" + 4s = ccm 21, 

s (0 )  = 0,  ~ ' ( 0 )  = 1. 

11. Find all pairs of functions z ( l ) ,  y(t) that satisfy the system of differential 
equations 

2' = -y, 

12. k t  q ( ~ )  he a polynomial of degree m. Show that any equation 

s ~ m ~  + a,sl.-~l + . . . + &a = q(t) 

has a solution which is a polynomial of degree 5 m. 

A reference to some of the topological backpound in Section 1 ia Bartle's T* 
3 h e n b  o/. Red Analyaia [2]. Another is Lang's Analyaia I [Il l .  

Linear Systems and Canonical 

Forms of Operators 

The aim of this chapter is to achieve deeper insight* into the solutions of the 
differential equation 

by decomposing the operator A into operators of particularly wimple k i d .  In  
Sectiom 1 and 2 we decompoee the vector space E into a direet sum 

E=E,m ... mE, 
and A into a direet sum 

A = A ,  e ... mA., Ak € L(Ek) .  
Each AI can be expremed as a sum 

Ar = S k  + NA; Sk, Nk E L(E,) ,  
with W wemiaimpie (that is, its compledfication is diagonalisable), and N. nil- 
potent (that is, (Nt)" = 0 for some m); moreover, S h  and N, mmmute. This 
reduces the series for elA to a finite sum which is easily computed. Thus solutions 
to (1) can be found for any A .  

Section 3 is devoted to nilpotent operators. The goal is a special, mntia l ly  
unique matrix representation of a nilpotent operator. This speeial matrix is applied 
in Section 4 to the nilpotent part of any operator T to produce specia matrices 
for T called the Jordan fonn; and for operators on real vector spam, the red canon- 
ical fonn. These forms make the structure of the operator quite clear. 

In Section 5 solutions of the differential equation z' = A r  are studied by m a w  
of the real canonical fonn of A. I t  is found that all solutions are linear wmhii t ions  
of certain aimple functions. Important information about the n a t m  of the solu- 
tions can be obtained without explicitly solving the equation. 
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Sretion 6 applies the results of k t i o n  5 to the higher order one-dimensional 
lirwar hotrrogenwus equation with constant coefficient@ 

( 2 )  s1.1 + a,jI-I) + . . . + 4.11 = 0. 

Sulutions are easily found if the roota of the characteristic polynomial 

sre known. A different approach to (2), via operators on function spaces, is very 
briefly d i s c u d  in the last section. 

Thr first four sections deal not with differential equations, only linear algebra. 
This l in~ar  algebra, the eigenvector theory of a real operator, is, on one hand, 
rawly t r r a t d  in texta, and, on the other hand, important for the study of linear 
differential equations. 

51. T h e  Primary Decompasition 

In this section we state a basic decompition theorem for operators; the p m f  
is given in Appendix 111. It is not necesasry to know the p m f  in order to uae the 
theorem, however. 

In the rest of this section T denotes an operator on a vector space E, which may 
be real or complex; but if E is real i t  is mumed that all eigenvalues of T are real. 

Let the characteristic polynomial of T be given as the product 

~ ( t )  = n ct - AJ-. 
LI 

Here A,, . . . , L are the distinct m o b  of p(t), and the integer n, 2 1 is the mull6 
plicily of A*; note that n, + . . . + nh = dim E. 

We recall that the eigenspace of T belonging to Ah is the subspace 

Ker (T-  X1) C E  

(we write L for the operator LZ). Note that T is diagonalirahle if and only if E 
is the direct sum of the eigenspaces (for this meam E has a baaiia of eigenvectors). 

We define the generalired cigMpace of T l x b ~ i n g  lo k to be the suhspace 

E(T, L) = Ker(T - b)'* C E. 

Notc that thia aukpace is invariant under T. 
Thr following primary decapoailim theorem is proved in Appendix. 111. 

Theorem 1 Lcl T be an operatm on E,  whtre E is a complcr wclm apau, or else E 
is real nnd T hos red  eigmvalues. Then E id fhe direct arm of the q m a l d  e i g m  
spaces of T. The dinmion of each generalired kgmapace cquab fhe muUiplicily of& 
corresponding kgenwlu. 

$1. THE PRIMARY D E M M m S I T I O N  
111 

Let us see what thia decomposition means. Sup- fir& that there is only one 
eigenvalue A, of multiplicity n = dim E. The theorem implies E = E(T, A). Put 

Then, clearly, T = N + S and S N  = NS. Moreover, s is diagonal (j,, 
maubasis) and N is nilpotent, for E = E(T, A) = Ker N-.  We 

therefore immediately compute 

"-1 N. 
e F =  C S C H = &  -. 

.-. k!' 
there in no difficulty in finding it. 

Example I Let T = [: :I. The characteristic polynomial i. 

There is only one eigenvalue, 2, of multiplicity 2. Hence 

We know without further amputation that N commnh with S a n d  is nilpotent 
of order 2: N' = 0. (The reader can verify these statements.) Therefore 

0 -8 

8 2 8  
More generally, 

Thus the method applies directly to aolving the differential equation i = Tz 
(nee the previous chapter). 

For comparison, try to compute directly the limit of 

In the general c m  put 

!7'k = T 1 E(X1, T). 

Then T = TI a . . . a T.. Since each TA hss o d y  the one eigenvalue )u, we ean 
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apl,i\. tht. previous result. Thus 

Tk = Sh + N.; S,, Nh E L(E(Ak. T ) ) ,  

wherr Sk = hrI on E ( k ,  T ) ,  and N h  = T, - St is nilpotent of order n,. Then 
T = S + N ,  

where 
S - S t m . . .  mS,, 

N = N , m . . .  mN,. 

Clearly, SN = NS. Moreover, N ia nilpotent and S ia diogonoliEable. For if m = 
max(n1, . . . , n.), then 

N" = (N,)" m . . . m (N-1- = 0 ;  

and S is diagonalized by a basis for E which ia made up of bases for the generalized 
r i~~nspar r s .  

We have proved: 

Theorem 2 Lcl T E L ( E ) ,  whcre E w cmnplcz if Thad a n a r d  cignmlue. Thcn 
T = S + N ,  where SN = NS and S is dthpn~Iirabk and N ia nilpdmt. 

In Appendix I11 we ahall prove that S and N are uniquely dcfermined by T.  
Using Theorem 2 one can compute the exponential of any operator T :  E --t E 

for which the eigenvalues are known. (Recall we are making the general assumption 
that if E is red, all the eigenvalues of T must be real.) The method is made clear 
by the following example. 

Ezomple 2 Let T E L(Ra)  be the operator whose matrix in atandard coordi- 
nates is 

-1 1 -2 

T o = [ :  -; ;I. 
We analyze To with a view toward solving the differential equation 

2' = T s .  

T h e  characteristic polynomial of To can be read off from the diagonal because all 
subdiagonal entries are 0 ;  it is 

p(1) = ( 1  + l) ' ( l  - 1).  

Tho  ci~pnvalues are -1 with multiplicity 2, and 1 with multiplicity 1. 
Tht* twodimensional generalized eigenspace of - 1 ia spanned by the basis 

a, = (l ,O, O), at = (0 ,  L O ) ;  
thh can be read off directly from the first two columns of TO. 

$1. T H E  PRIMARY DECOMW81nON 113 

The one-dimensional generalied eigenspaee of + I  is the solution sp.oe of the 
system of equations 

(To - I ) z  = 0, 
or 

[-8 -: -;][;j-o; 
one can verify that the vector 

a, = (0,  2, 1 )  
is a bseis. 

Let a be the bssis la,, 4, a,} of R'. Let T = S + N be M in Tbeorpm 2. In 
cB-coordinates, S hm the matrix 

this followa from the eigenvalues of T being - 1, - 1 ,  1. Let 4 be the matrix of S 
in standard coordinates. Then 

S ,  = P S P ' ,  

where P is the inverse transpose of the matrix whose rows are a,, at, a,. Hence 

( P I ) ' =  0 1 0 , [: : I] 
P l = f  % 3. 

Therefore 
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Ilntriy ~r,ultiplication gives 

WP can now find the matrix NO of N in the standard bssis for R', 

NO = TO - So 

-1  1 - 2  -1  0 0 

= i -3. 
We have now com~uted the matrice of S and N. The reader might verify that - -- 

N' = 0 and SN = NS. 
We compute the matrix in standard coordinates of es not by computing the matrix 

eSa directly fmm the definition, which invokes an infinite series, but as follows: 

exp(S0) = exp(P1S,P) = P1 w(&)P 

whirlr turns out to be 

€7' 0 0 

I t  is easy to compute exp(No): 

exp(No) = I + No 

Finally, we obtain 

which give. 

It in no more difficult to compute el*, 1 E R. Replacing T. by tT. t d o m  S. 
to ISo, N. to IN., and a, on; the point in that the m matrix P in used for d values 
to t. One obtains 

e-' LC' - 2 k '  

The wlution of I' = TLZ in given in t e r n  of exp(tT*). 
The following consequence of the primary decomposition w called the Cayley- 

Hamilton theorem. 

Theorem 3 Lcl A be any operalor m a rcd  m c a p k z  wlor w. Ld i* duvoc- 
Lcristic pdylmnial & 

~ ( 0  = C &. 
U 

Then p(A) = 0, that is, 

Proof. We may arrnune E = R" or C.; since an operator on R* and ita m p l &  
fication have the same characteristic polynomial, there is no l w  of waal i ty  in 
ammdng E ia a complex vector apace. 

It mffices to ahow that P(A )I - 0 for all I in an arbitrary genenlLed e&mpaee 
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E ( A ,  A), where p(X) = 0. NOW 
E(A, A )  = Km(A - A)., 

where rn is the multiplicity of A. Since (1 - A)* divide p(f) we can nrite 

~ ( 1 )  - d l )  (f - A)-. 

Hence, for z E E(A, A): 

p(A)z - q(A)C(A - A)"zl - q(A) (0) - 0. 

Let T be an opentor on Rm and Tc: C' -. C' its complai6c.tion. If Tc is di860d- 
izable, we my T in min'mpb. 

Theorem 1 For ony opnntor T E L(Rm) there ore unw o p m l m a  S, N a R. 
r u d r W T  = S + N , S N  = NS,Stknmiaimple,andNNnilpdnC. 

P-1. We have dready seen a simil.r theorem for operators on complex vector 
epacea; now we apply this d t  to prove the theorem for open- on R.. Let 
c: C" -+ c be the operator of conjugstion (Chapter 4) ; if z = z + iu E C*, where 
r ,  y E R., then or = t - ig. An opentor Q on C" is the complexification of an 
operator ou R- if and only Qo = 4. 

Given T E L(R.) let Tc E L((r )  be its compl&fication. By Theorem 2, Section 
1, there are unipuc openton, S., NI on C' such that 

Tc = S. + Nr 

S&, = N&, S. diagodimble, m d  N, oilpotent. We Msert that S. and No are 
complexificatio~ of operators on R.. % is  roved by honing t h q  commute 
with a, as follow. Put $ = USOC~, NI = u N g l .  Then 

Tc = oTcc'  - SI + NI. 

I t  is easy to nee that S, ia ~ ~ b l e ,  N, in oilpotent, and SINl - NISI. Then- 
fore So = S, and N. - N,. % meana that & and N. wmmute with o M asserted. 

There are unique operatomS. N in L(RS) such that 

S. - Sc, N. - Nc. 

Since the map A --r Ac in one-to-one, it follow that 
SN - NS 
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for 
( S N  - NS)c  = SoAro - NOSo = 0. 

Similar reasoning shoa,s that N is nilpotent, and also S + N = T. The uniqueness 
of S and N follows from uniqueness of S. and NO. Thii completes the p m f .  

Definition S is called the semisimple par1 of T and N the n i l p m  part. 

Let T = S + N as in Theorem 1. Since Sc is diagonalisable, it follows from 
Chapter 4 that in a mitable hash cB of R", described below, S has a matrix of the 
form 

- 
Here XI, . . . , are the real eigenvaluea of T, with multiplicity; and the compla 
numbers 

are the complex eigenvduea with positive imaginary part, with multiplicity. Note 
that T, Tc, &, and S have the same eigenvalues. 

Tbe exponential of the matrix lL, 1 E R is easy to calculate since 

-tb cwtb -8inlb 

sintb cwtb 
The basis that given S the matrix L is obtained as followe. The first r vectors 

in 53 are from bases for the generalized eigenspaeea of T that belong to red eigen- 
values. The remaining 2s vectors are the imaginary and red park of b of the 
generaliEed eigenspacea of TC that belong to eigenvaluea a + a, b > 0. 

In this way elT can be computed for any operator T, provided the eigeavdues 
of T are known. 

Example. Let T E L(R') be the oprator whose matrix in etandard ooordioates 
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and one finds that 

In C the generalized i-eigenspace is the solution s p w  of 
(To - i ) 4  = 0, 

These are equivalent to 
2, = izi, 

As a b a ~ k  for the solution space we pick the complex VeCMra 

u = ( i , l , O , l ) ,  " = ( ; , I , - i , O ) .  

From these we take imaginary and real parh: 

1 u = (l,O, 0, 0) = e,, I u = (1, 0, -1, 0) = ea* 

R u = (0, l,O, 1) = e, R v = (0, 1,O, 0) = ea. 

~h~~~ four vectors, in order, form a basis CI of R'. This baais gives S the 1118th 

r o  -1 1 

L 1 oJ 
(We h o w  this without further computation.) 

The matrix of S in standard ~ r d i n a t e s  is 

where PI is the transpose of the matrix of component8 of CI; thus 
r l o  1 0 1  

Hence 

L1 0 1 01 
The matrix of N in standard coordinates is then 

Ne = To - So 

r. . . .1 

which indeed is nilpotent of order 2 (where . denotes a zero). 
The matrix of e" in standard c w & h  is 

From 

cost - s i n 1  

cos 1 

the reader can complete the computation. 
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1. For each of the following operators T find bases for the generalired eigenspaces; 
givr the matricrs (for the standard basis) of the wmisimple and nilpotcnt 
parts of T. 

2. A [aii] such that o,, = 0 for i 5 j is nilpotent. 

3. What are the eigenvalues of a nilpotent matrix? 

4. For each of the following matrices A ,  compute el*. 1 E R: 

(8) 

(c) 

T,. I'rov~ that an operator is nilpotent if all its eigenvalues are aero. 

6 .  The semisimple and nilpotent parts of T commute with A if T commutes 
with A .  

7. If A is nilpotent, what kind of functions are the coordinates of solutions to 
r' = Az? 

8. If N is a nilpotent operator on an ndimensional vector space then N" = 0. 

9. What can be said about AB and A + B if AB = BA and 
( a )  A and B are nilpotent? 
(b) A and B are semisimple? 
(c) A is nilpotent and B is semiaimple? 
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10. If A and B are commuting operators, find a formula for the semiaimple and 
nilpotent parts of A B  and A + B in terms of the corresponding parts of A 
and B. Show by example that the formula is not always valid if A and B do not 
commute. 

11. Identify R"+' with the set P. of polynomials of degree 5 n, via the corm 
spondence 

(cs, ..., cq)*csF+ ... +a,t+%. 

Let D: P. -+ P. be the differentiation operator. Prove D is nilpotent. 

12. Find the matrix of D in the standard basis in Problem 11. 

13. A rotation around a line in R' and reflection in a plane in Rs are semisimple 
operators. 

14. Let Sbesemiaimpleand Nnilpotent. If S N  = NS = 0, then S = Oor N = 0. 
(Hint: Coneider generalized eigenspaces of S + N.) 

15. If l1 = T, then T ia diagonalizable. (Hint: Do not uae any results in this 
chapter!) 

16. Find necessary and sufficient conditions on a, b, c, din order that the operator 
:l be -- (a) -- diagonalisable; (b) semisimple; (c) nilpotent. 

17. Let F C E be invariant under T E L ( E ) .  If T ia nilpotent, or miaimple, or 
diagonalizable, aa is T I F. 

18. An operator T E L ( E )  ia semisimple if and only if for every invariant subspaee 
F C E, there ia another invariant suhspace F' C E  mch that E  = F m F'. 

19. Suppose T is nilpotent and 

k-l 

TL = 1 4 T f  a, E R. 
+a 

Then Tk = 0. 

20. What values of a, b, c, d make the following operators semisimple? 

(d [ a]  (b) [[: -:I (c) 1 (d) 7 
-1 2 2 1 1  1 0 d  

O O c  d l 0  

21. What values of a, b, c, d make the operators in Problem 20 nilpotent? 
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$3. Nilpotent Canonical Forma 

In thr previous section we saw that any operator T can be decomposed uniquely 
as 

T = S + N  

~ i t h  S semisimple, N nilpotent, and SN = NS. We also found a canaicnl fm 
for S ,  that is, a type of matrix representing S which k uniquely determined by 
T, except for the ordering of diagonal blocks. In  the complex case, for example, 

S = d i ( A , ,  . . . , A.), 

-vI,nre A .  . . . . A. are the roots of the characteristic polynomial of T, listed with .. . . , 
their proper multiplicitiee. 

Although we showed how to find smnc matrix representation of N, we did not 
give any special one. In  this section we shall find for any nilpotent operstor a matrix 
that is uniquely determined by the operator (except for order of diagonal blocks). 
From this we shall obtsin a special matrix for any operator, called the Jordan 
canonical fonn. 

An elemenlay nilpolmt block k a matrix of the form 

0 1  

with 1's just below the diagonal and 0's elsewhere. We include the one-by-one 
mntrix [O]. 

If AV: E -+ E is an operator represented by such a matrix in a beak el, . . . , e., 
then N behaves as follows on the basis elements: 

N(eJ - CI, 

N(et) = er, 

N(e.-,) = e., 

N(e.) = 0. 

~t is obvious that N- ( e ~  = 0, k = 1, . . . , n ;  hence N. = 0. Thus N is nilpotent 
of order *. Aloreover, Nb # 0 if 0 5 k < n ,  since Nbet = ei+l f 0. 

In Appendix 111 we shall prove 

Theorem 1 Lel N be a nilpotmL opera& a a real m c m p l c z  vedor spree E. Then 
Ehoaa&giv ingNamalr i zo j lhe jm 

whme A, is an elemmtay nilpolen4 block, and lhe sire of AI is a noniwmring  fundia 
oj k .  The matrim A,, . . . , A, are uniquely determined by lhe opemar N .  

We call the matrix in Theorem 1 the cononicnl j m  of N .  
Let A be an elementary nilpotent matrix. It is evident that the rank of A is 

n - 1; hence 
dim KerA = 1. 

This implies the following corollary of Theorem 1. 

Theorem 2 i n  Theom 1 lhe number r oj blocks w epud Lo dim Ker A.  

We define the canonical form of a nilpotent matrix to be the canonical form 
of the comespanding operator; this is a matrix aimilar to the original one. Siee 
aimilai matrices correspond to the same operator, it follows that they bave the 
same canonical form. From this we conclude: 

Theorem 3 Two nilpolen4 n X n malriws, or two nilpotrm o p m h a  on tAe amc 
vector space, are sirnilor i f  and only if  lhcy haw lhe some mnoniml jmm. 

The question ~ILWS: given a nilpotent operator, how is its canonical form found? 
To answer this let us examine a nilpotent matrix which is already in canonical 
form, say, the 10 X 10 matrix 
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\i'r considrr N as representing a nilpotent operator T on RlO. Consider the relations 
hetwcrn the following sets of numbers: 

6, = dim Ker T', 1 5 k 5 10, 

and 

rr = number of elementary nilpotent k X k blocks, 1 < k 5 10. 

Note that u t  = 0 if k > 3. The numbers 6. depend on the operator, and can be 
computed from any matrix for T. On the other hand, if we know the v r  we can 
immediately write down the matrix N. The problem, then, is to compute the v b  

in terms of the 6t. 
Consider 

6, = dim Ker T. 

From Theorem 2 we find 

6, = total number of block. - n + "3 + n. 
Next, consider 4 = dim Ker P. Each 1 X 1 block (that is, the blocks [O]) 

contributes one dimension to Ker P. Each 2 X 2 block eontributes 2, while the 
3 X 3 block also contributes 2. Thus 

For = dim Ker P, we see that the 1 X 1 block. each contribute 1; the 2 X 2 
blocks each contribute 2; and the 3 X 3 block contributes 3. Hence 

In  this example N' = 0, hence 61 = 6., k > 3. 
For an arbitrary nilpotent operator T on a vmtor space of dimension n, let N 

br the canonical form; define the numbers 6r and rr, k = 1, . . . , n, as before. By 
thr same reasoning we obtain the equations 

I\.<, th ink  r,l the 6, n.7 known and aolve for the rr. Subtracting each equation from 

the one below it givm the equivalent sy*: 

Subtncthg the saond of these equations from the h a t  &m 

Subtncthg the (k + 1)th from the kthgim 

and the kt equation given h. Thua we have proved the folio* tbeonm, in whieh 
p.rt (b) allows us to compute the e rnon id  form of any nilpotent -tor: 

Theo.w4 L c l T k a n J ~ ~ p c r o b r a a n M i i ~ a d o r . p o c c . I f . ~  
ir thenwrbcrofkX kblo&inthemwnimljonnofT,and8~ -dimKtrP,iheu 
the j M n q  sqvationr an did: 

Note that the equations in (b) ean be subsumed under the air& equation 

Th - - 6 ~ 1  + %A - 8wt, 

~ f o r d l i n t r g e n k 1 1 , i f w e n o t e t h a t b = O ~ d i .  - i f o r k > n .  
There ia the more diti5eult problem of finding a baais that put. a giver, u t  

operator in canonicd form. An algorithm ia implicit in Appendix 111. Ow point of 
view, however, is to obtain themet id  infomution from mx&d formr Fa 
example, the equation# in the p m d h g  t h w m  immediately pmrs that h nJ- 
~ ~ ~ N , M a a ~ . p o c c E o r c r i r n i h r i f ~ a J y i f d i m K a N . -  
dim Ker ML for 1 < k 5 dim E. 

For computational purpasea, the S + N demmposition is d y  &+ate (kr 
the other h d ,  the existence and uniqueneaa of the cmouial formu L m t  
for theory. 
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1. Verify that each of the following operators is nilpotent and find its canonical 
form: 

0 2 - 2  

'2 I R ~  S be a matrix in nilpotent canonical fotm. Prove N is similar to 

(a) kiV for all nonzero k E R, 
(b) the transpose of N. 

3. Let N be an n x n nilpotent matrix of rank r. If Nb = 0, then k > n/(n - r) .  

4. Classify the following operators on R' by similarity (mieaing entries are 0) : 

94. Jordan and Real Cenoniral Forma 

Ilr thir  scction canonical forms are constructed for arbitrary operatom. 
IVt. stitrt with an oprrator T on E that has only one eigenvalue A; if A is nonreal, 

a . ~  sopprlst. E compl~x. In Section 1 we saw that 

T E A I + N  
with S nilpotent. We apply Theorem 1 of Section 3 and give E a hasis (B = 
le,. . . . , em) that g ive  N a matrix A in nilpotent canonical fotm. Hence T has the 
@-matrix A I  + A. Since A is compoaed of diagonal blocks, each of which is an 

elementary nilpotent matrix, A 1  + A has the form 

(Some of the diagonal blocks may be 1 X 1 matrices [A].) That is, N + A has 
A's along the diagonal; below the diagonal are 1's and 0's; all other entries are 0. 
The blocks making up XI + A are called elentenlary Jordan malrius, or clrmmfary 
A-blocks. A matrix of the form (1) is called a Jordan m d r i z  belonging lo A, or briefly, 
a Jordan A-block. 

Consider next an operator T: E -+ E whose distinct eigenvalues are A,, . . . , A.; 
as usual E is complex if some eigenvalue is nonreal. Then E = E, m . . . m Em, 
where Ek is the generalized Ak-eigenspace, k - 1, . . . , m. We know that T I  Ek = 
A t 1  + Nt with N k  nilpotent. We give E. a basis 6 ,  which gives T I  El a Jordan 
matrix belonging to A&. The basis a = a, u . . . u a, of E gives T a matrix of the 
form 

where each Cb ia a Jordan matrix belonging to A&. Thus C is comgoeed of diagonal 
blocks, each of which is an elementary Jordan matrix C. The matrix Cia called the 
Jordun jorm (or Jordan matrix) of T. 

We have comtructed a particular Jordan matrix for T, by decompoebg E ss a 
direct sum of the generali~ed eigenspaees of T. But it ia easy to see that given any 
Jordan matrix M representing T, each Jordan A-block of M r e p m t s  the restric- 
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tion of T to the generalized A-ekenapace. Thus M must he the matrix we con- of diagonal blocks of the lorn 
structd,  prrhaps with the A-blocb rearranged. 

It is rasy to prove that similar operators have the same Jordan f o m  (perhaps 
12) 

with rearranged A-blocks). For if P T S '  = TI, then P mapa each generalized 
A-eigenspace of TO isomorphically onto the generalized A-eigenspaee of TI; hence 
the Jordan A-blocks are the same for TO and TI. or D, 

In summary: 

I, D 
Theorem 1 Let T E L(E) be an operalm; if E is real, assume all eigenvnlus of where 

1 :  1 
T are real. Then E has a basis p'm.ng T a malrir in  Jordan form, that 18, a matriz 
made up oJ diagonal blocks of the fmm ( 1 ) .  a - b  

D = [* a] ,  I ,  = [I 0 O] 1 '  

Except for the order of these blocks, the matrix is uniquely determined by T. Thus T I E, has a matrix of the fom 
AnS operator similar to T has the same Jordan form. The Jordan form can be 
written A + B, where B is a diagonal matrix representing the semisimple part of 

(3) 

T while A is a canonical nilpotent matrix which represents the nilpotent part of 
T;  and AB = BA. 

Note that each elementary A-block contributes 1 to thedimemion of Ker(T - A). 
Thrreiore, 

Proposition In the Jordan fm of an operator T, ihe number o f e h n l a r y  Mlocka 
ta dim Ker(T - A ) .  1 

We turn now to an operator T on a rral vector space E, allowing T to have non- 
real eigenvalues. Let Tc: Ec -+Ec be the complexifieation of T. Then Ec has a 
basis Cd putting Tc into Jordan form. This bask m is made up of bases for each 
generalierdeigenspace of Tc. We observed in Chaptcr 4. Section 2, that for a real 
e ig~nva lu~  A, the generalized eigenspace Ec(Tc, A) is the complexification of a 
suhspacr of E,  and hence has a basis of vectors in E ;  the matrix of Tc I E(Tc, A )  
in t h ~ r  ha-is is thus a real matrix which represents T 1 E(T, A). It is a Jordan A-block. 

I.rt r = a + i b ,  b > 0 be a nonreal eigenvdue of T. Let 

br a basis for E( r ,  Tc), giving Tc I E ( r ,  Tc) a Jordan matrix belonging to p .  
In Section 2 we saw that 

E(P, Tc) e E ( P ,  Tc) L 
is t h ~  eomplexification of a subspace E. C E which is T-invariant; and the vectors Combining theae bases, we obtain 

(yt, ZII . . . 9 Y.8 ~ r \  
Theorem2 I & t T : E - - t E b r a n ~ p c r a l m m a r c d v c c l m ~ . T h c n E h c l s a ~  

bnsis for E. ~t is "my to see that in this basis, T I E. has a matrix compased !7i.n'%? a m a ~ r  compared of df'urond bbcks of the f m  (1) and ( 2 ) .  Th 



e l m e n l s  are the real eig€TdW?8, with multiplicil~/. Each bled [t $1, b > 0, appears 
as natty limes as the mulliplicity of the kgenvalu a + bi. Such a malrir is uniquely 
d~ternrined by the similarity clas of T, except for the mder of the blocks. 

1)rlinition The matrix dracribrd in the thmrrm is called thp real canonical form 
01 ?. I f  7' l u h  only rrnl 1.igcnvaIu~8, it is thr samr a8 the Jordan form. If T is nil- 
p<tt<,tit. i t  is the same as the canonical form dkuased earlier for nilpotent operatom. 

TI,? prrvious theory applies to Tc to show: 

Proposition I n  the real canonical form of an operator T on a real ueclm apace, the 
nu,r>brr ,$blocks of the form 

I:. 1 

isdim K w ( T  - A). Thenumberofblocksoflhefom (2) wdim Ker(Tc - (a  + a)). 
The real canonical form of an opemtor T exhibits the eigenvalues as part of a 

matrix for T. This ties them to T much more directly than their definition as rwts  
of 1 1 1 ~  rh~rnrtcristic polynomial. For example, it is easy to prove: 

r e  I,el A,. . . . , A. be the eigcnvalues (with mulliplicilics) of an operator T. 
Thcri 

Prwf. We may replace a real operator by its complexifieation, without changing 
its traer, determinant, or eigenvalues. Hence we may aasume T operates on a com- 
plcx vector spacr. The trace is the sum of the diagonal elements of any matrix lor 
T :  I,x,lir,c at the .Jordnn form proves (a). Since the Jordan form is a triangular 
t~i:ttri\, t l ~  drtrrnlinant of T is thc product of its diagonal elements. This proves 
( I ? ) .  

'1'~) V O I I I ~ I I I ~ C  thr canonicsl form of an operator T we apply Theorem 4 of Section 
.4 1 , ~  111, nilpotmt part of T - A for each real rigenvalue A, and to Tc - (a + bi) 
for r:rcl, r<wnplrx rigenvalue a + bi, b > 0. For each real eigrnvalue A define rk(A) = 

. JORDAN AND REAL CANONICAL FORMS 

number of k X k blocks of the form 

in the real Jordan fonn of T; and 

= dim Ker(T - A)'. 

For each complex eigenvalue A = a + bi, b > 0, define ".(A) = number of 2k x 2k 
blocks of the form 

in the real Jordan form of T; and 

&,(A) = dim Ker(Tc - A) 

as a complex vector space. One obtains: 

Theorem 4 Lel T be an operator rm a real n d i m ~ o n d  vcdm rpaa. Then Lhc 
real Jordan fmm of T is delemined by the fdlouring epuatim: 

where A runs Ulracgh aU red kgenualua and d l  m p k z  &mdw wz?h posilia 
imaginary part. 

Exsmple. Find the real canonical form of the operator 

0 0 0  
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The characteristic polynomial is 

( 1  - ( 1  + tI(1 - ( 1  - i ))(L - 2)=. 

Tht, eig~nvalues are thus 1 + i, 1  - i, 2, 2. Since 1 + i has multiplicity 1, there 
can only be one block [: -3. A computation shows 

a,(2) = 1. 

This is proved mast easily by showing that rank (T - 2) = 3. Hence there is only 
one elementary 2-block. The real canonical form is thus: 

2 . .  . 

[; ; -1. 
Thrrr rrmaine the problem of finding a basis that puts an operator in real canon- 

ical form. An algorithm can be derived from the procedure in Appendix I11 for 
putting nilpotent operators in canonical form. We &all have no need for it, however. 

PROBLEMS 

1 .  Finrl the Jordan forms of the following operators on C": 

2. Find the real canonical f o m  of the operators in Pmblem 1, Section 2. 

3. Find the real canonical f o m  of operators in Problem 4, Section 2. 

4. What are the poasible real canonical f o m  of an operator on R. for n < 57 

5 .  Let A be a 3 X 3 real matrix which is not diagonal. If (A + I)' = 0, find the 
rral rnnonicnl form of A. 

I; l.rt ;I I N .  an oprrator. Suppoar q(X)  is a polynomial (not identically 0) such 
1111~1 q (  .A )  = 0. Then the cigrnvalues of A are roots of q. 

i .  I r t  ;I. B be commuting operators on C' (mpectively, R"). There is a b& 
putting both of them in Jordan (respectively, real) canonical form. 

S. Evt,ry n X 11 matrix is similar to its transpose. 

$1. Let A be an operator on R". An operator B on R' is called a real logarihm 
of :I if e' = A.  Shoe that A has a real logarithm if and only if A is an inc- 
n~orpliisrn and the number of Jordan A-blocks is even for each negative eigen- 
value h .  
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10. Show that the number of real logarithms of an operator on R. is either 0, 1, 
or countably infinite. 

6. Ononiul F o m  and Dieennttl +tiom 

After a long algebraic digmuion we return to the differ~ntial equation 

(1) z ' = A z ,  A€L(R') .  
Suppose A is Jordan A-block, A E R: 

we find by the exponential method (Chapter 5) that the solution to (1) with initial 
vduez(0)  = CE R'is 
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In coordinates, 

Note that the factorials can be absorbed into the constants. 
Suppose instead that A = a + bi, b # 0, and that A is a real A-hloek: 

L -I 

Let m be the number of blocks D so that n = 2m. The solution to ( 1 )  can be com- 
puted using exponentials. It is eaeieat to comider the equation 

m h ~ r e  1: R + C- is an unknown map and B is the complex m X m matrix 

k .  1 

Wp identify C- with R" by the correspondence 

(?I + iy~ ,  . . . , z- + ~ Y J  = (21,  Y I ,  . . . , &, V-).  

'1.1~. solution to (3) is formally the same as ( 2 )  with a change of notation: 

i -r  p 
(11 Z , ( L ) = @ ' C - C ~ ~ ;  j - 1 ,  . . . ,  m. 

r-o k! 

Pot Cb = L, + i M t ,  k = 1 ,  . . . , m, and take r d  and imaginary parts of (4); 
us in^ the identity 

e'(*M* = ~ ' ( c o s  bl + i sin bl) 
one obtains 

i-1 ,& 

(5) ~ ( 1 )  = e' C - [Lj-t cce bt - M I A  dn bt], 
k! 

1-1 p 
l i ( l )  = 1' 2 - [ M I A  cce bl + L i a  sin bl];  

b o  k! 

$5. CANONICAL FORMS AND DIWERENTIAL EQUATION8 

j = 1 ,  . . . , m. This is the solution to ( 1 )  with initial conditions 

The reader may verify directly that (5) in a solution to ( 1 ) .  
At this point we are not so much inter& in the prmise formulas ( 2 )  and (5) 

as  in the following observation: 

(6 )  If A is real, each coordinate z,(l) of any solution to ( 1 )  is a linear combination 
(with constant coefficients) of the function. 

( 7 )  If A = a + bi, b # 0, and n = 2m, then each coordinate zj(1) of any solution 
to ( 1 )  1s a linear combination of the functions 

I' lk C c e  bt, hCPsin bl; 0 < k m. 

Consider now Eq. ( 1 )  where A is any real n X n matrix. By a suitable change 
or coordinates z = Py we transform A into real canonical form B = P A P ' .  The 
equation 

(8) y' = By 

is equivalent to (1): every solution z(1) to ( 1 )  has the form 

z(1) = Pu(t ) ,  
where y(1) mlvea (8). 

Quation (8) breaks up into a eet of uncoupled equations, each of the form 

where B, is one of the blocks in the real canonical form B of A. Therefore the co- 
ordinates of solutions to (8) are l i n e .  coordinates of the function denmibed in (6) 
and ( 7 ) ,  where X or a + bi ia an eigenvalue of B (hence of A ) .  The m e  therefore 
is true of the original equation ( 1 ) .  

Theonm 1 Lel A E L(R') and lei z(1) be a adution of z' = Az. Then d 
ordinate z, ( t )  is a linear combinaLia of thzfuneEion.4 

PeY COB b1, Feu sin bl, 

where a + bi rum through all the ciqmvdw of A ~ ' t h  b 2 0, and k and I run through 
all Me ~ ~ & c T . Y  0,  . . . , n - 1. Moruxlcr, for each A = a + bi,  k and I are h lhan 
the 6iEC oj  Me largedl A-Mock in Me real cnmiml fam of A. 

Notice that if A has real eigenvaluea, then the functions displayed in Theorem 1 
include thexe of the form re*.  
This mult doea not tell what the solution. of ( I )  are, but it telb us r h t  form 

the solutions take. The following is a typicd and very important d a t i o n  of 
Theorem 1 .  
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Theorem 2 Suppose amy cignwdue of A E L(RS) had negalk red part. Then 

h z(t) = 0 ,-. 
for every sdulirm lo z' = Az. 

Prwj. This is an immediate consequence of Theorem 1, the inequalities 

IcosbtI < 1, IainMI < 1, 

and the fact that 

lim P e t  - 0 for all k if a < 0. 
1 - 1  

The converse to Theorem 2 is easy: 

Theorem3 I f c v e r y a d u l i r m o j z ' = A z t m d s l o O a a l - - , m , t h m e v c r y c i g e n v d w  
of . I  has n~galiue real part. 

Frooj. Suppose r = a + ib is an eigenvalue with a 2 0. From (5) we obtain 
a solution (in suitable coordinates) 

z,(r) = e1 cos bt, 

yl(t) = el sin bt, 

~ l ( t )  - YI(~)  - 0, J 2 1, 

which does not tend to zero as t -r m . 

An argument similar to the proof of Theorem 2 shows: 

T h w r r n l  4 Ij every eigenvalue of A E L(Rn) ha9 pom'tiue real part, thm 

lim I z(t) I = m 
I-- 

for w~r!, *oltdfion to z' = A*. 
TIie following corollary of Theorem 1 is useful: 

Theorem 5 If A E L(RS), Urn the coordinafea of every solUia lo z' = Az are 
injinikly differenliable funclirma (fhaf ia, C-for dl m ) .  

PROBLEMS 

1. (n) Suppose that every eigenvalue of A E L(R') has real part leas than 
-a  < 0. Pntvr that there exists a conatant k > 0 such that if ~ ( t )  is a 
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solution to z' = Az, then 

for all 1 > 0. Find such a k and a for each of the following operaton, A : 

2. Let A c L(R') .  Suppose all solutions of z' = Az are periodic with the asme 
period. Then A is semisimple and the characteristic polynomial in a power of 
I' + a', a E R. 

3. Suppose a t  least one eigenvalue of A E L(R') has positive red part. Prove 
that for any a C R', r > 0 there is a solution z(t) to t ' =  A t  such that 

Iz(0) - a1  < r and l imlz(t)l  = m. 
8 - -  

4. Let A t L(Rm), and mppose all eigenvalues of A have nonpsitiye ml puts. 
(a) If A is semisimple, show that every solution of z' = Az M bounded (tbat 

is, there is a conatant M, depending on z(O), such that I t(t)I < Y for 
all 1 E R) .  

(b) Show by example that if A is not semisimple, there may exkt a solution 
such that 

'bm 1 z(t)l = m. 
,*. 

5. For any solution to z' = Ax, A E L(R'), show that exactly one of the folbw- 
ing alternatives holds: 
(a) Iirn,-- ~ ( t )  - 0 and limn--. 1 z(f)I - m ;  
(h) lim,-, I z(t)l - m and lim,--. z(t) - 0; 
(c) there exkt conatanta M, N > 0 euch that 

M < 1 z(f)  1 < N  
for all 1 E R. 

6 .  Let A E L(R4) be semisimple and suppoae the eigenvalues of A are +a', *bi; 
a > 0, b > 0. 
(a) If a/b is a rational number, every solution to z' = Az is pmbdk. 
(h) If a/b is irrational, there is a nonperiodic solution z(t) such that 

M < 1 z(l)l < N 

for suitable constants M, N > 0. 
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$6. Iligher Order Linenr Equatlona 

Consider the onedimensional, nth order homogeiwus linear differential equation 
with constant coefficients 

(1) a") + a,a(-') + . . . + a r  = 0. 

Here 8: R -t R is an unknown function, a,, . . . , a. are constants, and aCL' means the 
kth derivative of a. 

Proposition 1 (a) A linear cumbindion of sdulirms of (1) is again a aolulion. 
I 11) The deriualiue oJ a aolulion of (1) ia again a sdul in .  

Proof. By a linear combination of functions f,, . . . , f. having a common do- 
main, and whose values are in a common vector apace, we mean a function of the 
form 

f ( r )  = idl(=) + ... + ~ f - ( r ) ,  

where c,, . . . , c a r e  conslank. Thus (a) means that if al(t), . . . , a.(l) are solutions 
of (1) and c,, . . . , c a r e  constants, then clal(l) + . . . + c,a,(l) in also a solution; 
this follows from lin~arity of derivatives. 

I'nrt ( h )  is immediate by differentiating both aides of (1)-provided we know 
tlrnt n svlrltion is n + 1 times differentiable! This is in fact trne. To prove it, con- 
sidvr thr ~,quivalcnt linear system 

(3  2; = I*, 

If s is a solution to ( I ) ,  then 

r = (a, a', . . . , a~.-t)) 

is a solution to (1). From Theorem 4, Seetion 1 we know that every solution to 
(2) has derivatives of d l  orders. 

The matrix of coefficients of the linear system (2) in the n X n matrix 
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A matrix of thin form in called the cumpanion d r i z  of the polynomial 

(4) p(h) = A' + a,A-' + . . . + &_,.A + a.. 
In  Chapter 5 it was shown that thin in the characteristic polynomial of A. 

Companion matrices have pecial properties as operators. The key to solving (1) 
in the following fact. 

Proposition 2 Let A E C be a rml or cmnpler eigenvdtte of a companion & 
A. Then ULC real comical form of A h a  only one A-blodr. 

Prmf. We consider A as an operator on C'. The number of A bloeka ia 

dim Ker(A - A), 

considering Ker(A - A) as a complex vector apace. 
The first n calm of A - A form the (n - 1) X n matrix 

. 1 
1 -A 4 

which has rank n - 1. Hence A - A ha. rank n or n - 1, but rank n is nrled out 
aince A is an eigenvalue. Hence A - A ha. rank n - 1, m Ker(A - A) 6.s d' 
1. Thin proves Proposition 2. 

Definition A &mi of solutions to (1) in a set of mlutiom a,, . . . , a. such that 
every solution in expressible as a hear eomhiition of a,, . . . , a. in one .nd only 
one way. 

The following thwrem is the baaic result of thin seetion. 

Theorem The fdlavinq n f u n d h a  Jam a baaid for the sdutirmd of (1) : 

(a) ULC fundion fieU, where A NM through the dklind rml rm(r oj the k 
lcrislicpdpnnial(4),andkwamne&*cinkgminthe~O~ k < 
mulliplicily of A; togclhm toiUi 

(b) ULCfundha 

P e ' m  bt and Pe'mn bl, 

where a + bi NM through the cmnplet roola of (4) hauing b > 0 and k i. a 
mne&iw inkgm in the range 0 O k < mmultiplici(y of a + bi. 
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Proof. We call the functions listed in the proposition basic functions. I t  follows 
from Theorem 1 of the previous mtion that every solution is a linear combination 
of basic functions. 

The prwf that each basic function is in fact a solution is given in the next section. 
By Proposition 1 it follows that the solutions to (1) are exactly the linear comhina- 
tinns of hasic functions. 

It  nm,nins to prove that each solution ia a unique linear combination of basic 
It~twtic~ns. For this WP first note that there are precisely n functions listed in (a) 
alr8l (1,) : tl,r nnrnhvr of functions listed equals the sum of the multiplicitie.8 of the 
rvnl routs of p ( k ) ,  plus tuice the sum of the multiplicities of the complex rwts  with 
positive imaginary parts. Since nonreal rwts  come in conjugate pairs, this total 
is the sum of the multiplicities of all the mots, which is n. 

Define a map q:  R" -+ R. as follows. Let f,, . . . , j. be an ordering of the basic 
functions. For ~ a c h  a = (ar, . . . , a.) E R' let 8.(1) be the solution 

It is t . 3 ~  to see that q is a linear map. Moreover, q is surjective since for ench 
inn.  . . . . ".-I) t R" there is some ~olution 8 such that 

and s = s. for some a .  I t  follows that q is injective. 
From this we see a t  once that every solution s is a unique linear combination 

of the basic functions, for if 8. = as, then q(a)  = q(B) and hence a = 8. 
This completes the proof of the theorem. 

Theorrm 1 reduces the solution of (1) to elementary linear algebra, provided 
the roots and multiplicities of the chmter is t ic  polynomial are known. For example, 
ronsidrr the equation 

The  roots of the characteristic polynomial 

Therefore the general solution is 

(7 )  s(t) = A c "  + Blc" + C cce t + D sin 1, 

$6. HIGHER ORDER LINEAR EQUATION8 

To find a solution with given initial conditions, say, 

(8) s(0) = 0, 

~ ' ( 0 )  = -1, 

aU)(O) = -4, 

~" ' (0 )  = 14, 

we compute the left-hand aide of (8) from (7), to get: 

(9) a(0) = A + C  = 0, 

a l ( 0 ) = - 2 A +  B + D = - 1 ,  

au1(O)= 4 A -  4 8 - C  = - ,  
a0'(O) = -8A + 128 - D = 14. 

The only solution to this system of equations is 

A = C = O ,  B = l ,  D = - 2 .  

Therefore the solution to (6 )  and (8) is 

a(l) = fca' - 2 sin 1. 

PROBLEMS 

2. Consider equation (6) in the text. Find out for which initid conditions ~ ( 0 ) .  
af(0), ~ " ( 0 )  there is a solution 8(t) mch that: 
(a) a(t) is periodic; (h) lib. s(t) = 0; 
c m a ( )  I = ; (d) 1 a(l) 1 is bounded fo r t  >0; 
(e) I a(t) I is bounded for all r E R. 

3. Find all periodic solutions to 

4. What is the smallest integer n > 0 for which there is a differential quation 

s'.' + a,a(-" + . . . + a,.# = 0, 

having among its solutions the functions 

sin 2, 4 ~ ~ 1 ,  -CV 

Find the conatanta a,, . . . , G E R. where A, B, C, D are arbitrary constants. 
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\\I. discuss briefly another quite different approach to the equation 

Let 5 be the set of all infinitely differentiable functions R - R (one could also 
use maps R + C). Under multiplication by constants and addition of functions, 3 
satisfies the axioms VSl, VS2 for a vector space (Chapter 3, Section 1, Part A) ; 
but 3 ia not finite dimensional. 

Let D: 5 -+ 5 denote the differentinlion operalm; that is, 

Df = f'. 
'l'lrvri I )  is r~ linrar operator. Some other operators on 3 are: 

trr~rltil,lication off by a constant A, which we denote simply by A; note that 1f = f 
n,,<l 01 = 0 ;  

~~n~ltiplicntion o f f  by the function i(t) = 1, which we denote by 1. 

Srw opvrators can he built from these by composition, addition, and multiplica- 
tion by constants. For example, 

P: 5-+3 
assigns to j the function 

D(Df) = D(f) = f"; 

similarly D"f = r"), the nth derivative. The operator D - A assigna to f the func- 
tion J' - hf. 

illore grnerally, let 

p(t) = 1" + ad-' + . . . + a. 
bc a polgnornial. (There could also be a coefficient oo of t'.) There is defined an 
uprrntor 

p(D) = D' + a,D"-' + . . . + %-ID + ~SI, 

which assigns to f the function 

We may then rephraee the problem of solving (1): find the kern1 of l b  operalm 
P(D).  

This way of looking a t  things new ways of manipulating higherdrder 
equations. For example, if p(A) factors 
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Moreover, 
Ker q(D) C Ker P(D), 

since or = rs. In  addition, if f € Ker q(D) and g € Ker r(D), then J + g E 
K e r p i ~ ) .  

We can now give a pmof that if (t - A)- divides p(t), then PcP E Ker p(D), 
0 < k < m - 1. I t  suffices to prove 

Note that D(e') - heA, or 

(D - A)e" = 0 

Next, obeerve the following relation between operatora: 

DL - ID = 1 

(this means D(1f - tDf = j, which follows from the Leibniz fonnuk). Hence also 

I t  follows easily by induction that 

Therefore 

( D  - h)'+'(Pc") = (D - A)'(D - A)(PeU) 

= (D - A ) ~ ( [ ~ ' ( D  - A) + kf+I)a) 

Hence (2) is proved by induction on k. 
If A is interpreted as a complex number and p(D) has complex d c i e n t s ,  the 

proof goes througb without change. If p(D) has real coefficients but A = a + bi 
is a no-l root, it follow8 that both the red and imaghiy parts of Pen are anni- 
hilated by p(D). This shown that 

PZ'eos lb, t'elsin lb 
are in Ker p(D) . 

We have proved part of Theorem 1, Seetion 6 by easy "formal" (but rigorous) 
methods. The main part-that every solution is a linrar combination of basic 
functions-can hr proved by similar means. [Srr Linear Algebra by S. Lang, p. 213 
(Reading, Massachusetts: Addison-Wrslcy, Igfifi).] Oprratnrs on function spaces 
have many uses for both theoretical and practical work in differential equations. 

PO) = q(A)r(A), 
then clrarly, 

Ker r(D) C Ker p(D). 
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Chapter 7 
Contractions and Generic Properties 
of Operators 

In this chapter we study some important idnda of linear flown elA, particularly 
contmtions. A (linear) contraction in chancterkd by the property that every 
trajectory tends to 0 as 1 - -. Equivalently, the eigenvalues of A have negative 
real parts. Such flown form the basis for the study of asymptotic stability in C h a p k  
9. Contractions and their extreme oppceites, expansions, are studied in Section 1. 

Section 2 is devoted to hyperbolic flows elA, chsraeteri~ed by the condition that 
thr eigrnvalues of A have no- real parta. Such a flow in the direct eum of a 
contraction and an expansion. Thus their qualitative behavior in very simple. 

In Sction 3 we introduce the notion of a generic property of operators on R.; 
t h i ~  mpans that the set of operators which have that property containen denae 
open subset of L(Rs). I t  is sh0u.n that "semisimple" is a generic property, and 
also, "generating hyperbolic flows" is a generic property for operators. 

The concept of a generic property of operators ia a mathematical way of making 
precise the idea of "almost all" operators, or of a "typical" operator. Thb point in 
discussed in Section 4. 

$1. Sinlrs and  So- 

Suppcae that a state of some "physid" (or mechanical, biological, economic, 
etc.) system in determined by the values of n parameters; the apace of all states 
is taken ta he an open net U C R.. We mppoae that the dynamic behavior of the 
system is modeled mathemat idy by the solution curves of a differential equation 
(or dynmiml  sys(rm) 

(1) i - f ( z ) ,  f : U - R ' .  
We are interested in the long-run behavior of trajectories (that in, solution curves) 

of (1). Of especial intemt are equilibrium staled. Such a state f E U in one that 
does not change with time. Mathematically, this means that the e o ~ t a n t  map 
1 - i is a solution to (1) ; equivalently, J(f)  = 0 .  Hence we define an quilIb 
rium of (1) to be a point f E U such that f ( f )  = 0. 

From a physical point of view only equilibria that are "stable" are of interest. 
A pendulum balanced upright is in equilibrium, but this is very unlikely to occur; 
moreover, the slightest disturbance will completely alter the pendulum's behavior. 
Such an equilibrium in unstable. On the other hand, the downward rest position in 
stable; if slightly perturbed from it, the pendulum will swing amund it and (because 
of friction) gradually approach i t  again. 

Stability is studied in detail in Chapter 9. Here we restrict attention to linear 
aystems and concentrate on the simplest and most important type of stable 
equilibrium. 

Consider a linear equation 

(2) z' = Az, A E L(RS). 

The origin 0 E R' in d l e d  a sink if all the eigenvaluea of A have negative ml 
parts. We a h  say the linear flow elA in a cdracfion. 

In Chapter 6, Theorems 2 and 3, Section 5, it was shown that 0 in a sink if and 
only if every trajectory tends to 0 as 1 - m. (This is d l e d  augmpfcfic stability.) 
From Problem 1, Section 5 of that chapter, it follows that trajectories appmseh 
a sink ezponmlially. The following reeult makes this more p m k .  

Theorem 1 Lel A be an opcralm on a vcclor spou E. The following .hlcmm* arc 
equwdml: 

(a) The origin is a sink Jrn thc dymmical a y a h  z' = Az. 
(b) Frn any nmm in E Lhcre are mfa& k > 0, b > 0 areh hl 

I etAz I 5 ke* 1 r 1 
f r n a U f > O , r E E .  

(c) There etidld b > 0 and a (B of E whOdC corresponding norm s o ( i a ~ I ~  

Proof. Clearly, (c) implies (b) by equivalence of norms; and (b) implies (a) 
by Theorem 3 of Chapter 6, Section 5. That (a) implies (b) follows d y  from 
Theorem 1 of that seetion; the detail. are left to the reader. 

It remains to prove that (a) implies (c). For this we uae the following purely 
algebraic tact, whoae pmof in postponed. 

Recall that R X is the real part of A. 

Lemma Let A be an uperator on a real vcclm spau E and arpporc 
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for aery eqenvalue A of A. Then E hos a basis arch tho( in the cowcaponding i n w  
product and nmm, 

(4) a l z P 5  ( A z , z ) < P ~ ~ ~ ~  

jm all r C E. 

Assum~irtr the truth of the lemma, we derive an estimate for solutions of z' = A t .  
I r t  fr, ,  . . . , I.) be coordinates on E corresponding to a basis LE such that (4) 
holds, and lct 

z(t)  = (z,(t), . . . , ~ ( 1 ) )  

be a solution to z' = Az,  Then for the norm and inner product defined by LE we have 

Hence 

Thurrforr, from (4) ,  we have 

d / d l l z l s g ,  as- 
121 

I t  follows by integration that 

a t  5 log I z(t)  l - log 1 ~ ( 0 )  l S 81; 
hence 

)I. 0INM AND I)OWCEa 

Let c E R be such that 
R A < C < U  

for every eigenvalue A of A. 
Buppoee hrst that A ia semiaimple. Then R' has a direct aum demmpoitj, 

where each Ei is a onedimensiond subspace spanned by an  eigenveetor q of A 
corresponding to a real eigenvalue Xi; and each F, is a two-dimendod nubsp.a 
invariant under A, having a basis 1 ji, ail giving A ( F b  the matrix 

where a, + is an eigenvdue of A. By .asumption 

Given R' the inner product defined by 

(el, ei) = Uh,fk) = @I, h) = 1, 

and all other inner products among the ei, I,, and fi being 0. Then 8 computation 
ahowe 

(-4% 9) = XI < c, (A/b,f,) = 4 < c; 

i t  foUow.9 eaaily that 
CIz, 2 )  s c I2  I' 

for dl z E R., lur required. 
Now let A be m y  operator. We fir& give R. a bsaia m that A h.s a matrix in real 

canonical form 

A = dieg{At,.  . . , A , ] ,  

where each A, has the form 

Theorem 1 is proved by letting B = - b  < 0 where the eigenvalues of A have 
real parts lesa than -b. 

\Ire now prove the lemma; for simplicity we prove only the second inequality 
of (4). 
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If we give a mbapace Ej of E, corresponding to a block A, a baais matidying the 
lemma for Aj, then all these bases tagether fulfill the lenuna for A. Therelore we 
may w u m e  A ie a single block. 

I'or tllr fust kind of block ( 5 ) ,  we ean write A - S + N where Shad the matrix 
o,l and N has the m a t h  

I: . 1 

Thus the baeis vectors {a, . . . , c.1 are eigenveetors of S, while 

Nc, - 4, 

NG-, = G, 

Nc. = 0. 

Let e > 0  be very am$l and considers new b& 

m. in again compcaed of &nvectorn of S, while now 

N€I - 4, 

N.?, = *, 

N€. = 0. 
Thus the m. matrix of A ia 

(7) 

I R ~  (I, y ), denote the inner product correnponding tom.. I t  is clear by considering 
thc matrix (7) that 
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Therefore if r is sufficiently mall, the basis @. satisfies the lemma for a block (5). 
The case of a block (6) is similar and is left to the reader. This mmpletee the p m f  
of the lemma. 

The qualitative behavior of a flow near a sink hsa a simple geometrical inter- 
pretation. Suppose 0 € R" in a sink for the linear difierentid equation x' - f(z). 
Consider the spheres 

S . =  I z € R . I I z I = a l ,  a > 0 ,  

where I x I is the norm derived from an inner product as in the theorem. Since I I({) I 
has negative derivatives, the trajectoria all point inside these spherea as in Fq. A. 

We emphasi~e that this is true for the spheres in a special norm; i t  may be fahe 
for some other norm. 

The linear flow elA that has t b ~  extreme oppasite character to a wntraction is an 
expa*, frn which the origin ia d e d  a amtee: every eigenvdue of A has poeitive 
real part. The following r m l t  is the analogue of Theorem 1 for expansions. 

Theorem 2 I j  A € L(E) , the jdlmm'nq are wiua2ml: 

(a) The o r e n  is a  amroc for the dpumicd ayalem z' = Ax; 
(b) For any nmm on E ,  t h e  arc umatanb L > 0, a > 0 such Lhoi 

I eIAz I 2 LCY I z  I 
fm all 1 2 0, r E E. 

(c) There e&& a  > 0  and a bosid (B of E whoac cmreqonding nonn &IEu 
I elAz la > eY I r I 

for aU t 2 0, z E E. 
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Tht. proof is like that of Theorem 1, using the lemma and the first inequality of 
(4) 

After contractions and expansions, hyperbolic linear flows have the simplest 
types of phase portraits. Their importanec stems from the fact that almost every 
linear flow is hyperbolic. This Hill he made precise, and proved, in the next section. 

The follo\ving theorem says that a hyperbolic dow is the direct sum of a contrac- 
tion and an expansion. 

1 .  (a) Show that the operator A = [-: f ]  generates a contracting flow elA 
( I , )  Skrtch thc phase portrait of z' = A z  in standard coordinates. 

(r)  Show that it is false that I eLAz / 5 I t I for all 1 > 0, t E R', where I z I 
is thc Euclidean norm. 

2. I.ct E'" bc a contraction in R". Show that for r > 0 sufficiently large, the norm 
1 1  r I /  on R" defined by 

Theorem Let elA be a hypcrbdic linear pow, A € L ( E ) .  Then E  rlos a dircd arm 
decomposition 

E = E ' m E "  

invariant under A ,  such that lhe induced Pow on E' is a conlradwn and lhe induced 
pow on E. is an ezpam'm. This decomposition is unique. 

wtisli~s, for some A > 0, 

II e'*z I I  < e-At I1 1 211. 
3 .  : If elB and are both contractions on R', and BA = AB, then e'lA+B1 

is n contraction. Similarly for expansions. 
(h)  Show that (a) can bc false if the apsumption that A B  = BA is dmpped. 

4. Consider a mass moving in a. straight line under the influence of a spring. As 
surnr there is a retarding frictional force proportional to the velocity but oppo- 
site in sign. 
(a) Using Newton's second law, verify that the equation of motion has the 

form 

mz" = a d  + bt; m > 0, a < 0, b < 0. 

(b) Show that the corresponding first order system has a sink a t  (0,O). 
(c) What do you conclude about the long-run behavior of this physical 

system? 

5 11 r'" is a contraction (expansion), &.ow that e"-"I is an expansion (respec- 
tively, contraction). Therefore a contraction is characterized by every trajec- 
tory going to oo 8s t --r - oo ; and an expansion, by every trajectory going to 
O a s l - - r - m . '  

v2. Ayperbalie Flows 

.\ typv of linrnr floxr elA that is nlore general than contractions and expansions is 
thr hyprrbolic,Rou~: all eigenvalues of A have nonzero real part. 

Proof. We give E  a basis putting A into real canonical form (Chapter 6). We 
order this baais so that the canonical form matrix first has blocks corresponding to 
eigenvalues with negative real parts, followed by blocks cormponding to positive 
eigenvalues. The firat spt of hlocka represent the restriction of A to a subspace 
E' C E, while the remaining blocks represent the restriction of A to EU C E. 

Since E' is invariant under A ,  i t  is invariant under elA. Put A 1 E' = A. and 
A I E" = A.. Then elA I E' = elA*. By Theorem 1 ,  Section 1, el* I E' isa  contraction. 
Similarly. Theorem 2, Section 1 implies that el* I E" is an expansion. 

Thus A = A.  m A. is the desired decomposition. 
To check uniqueness of the d~omposition, suppose F. m FY is another decom- 

position of E  invariant under the flow such that elA I Fm is a contraction and el" I F. 
is an expansion. Let z E P. We can write 

Since e'*r -+ 0 as 1 -+ ro, we have e'"y + 0 and e'*z -+ 0. But 

for all 1 2 0. Hence I z I = 0. This shows that F' C E'. The same argument shows 
that E' C F'; hence E' = F*. S i a r  reasoning about CIA show that E. = Fm. 
This completes the proof. 

A hyperbolic flow may be a contraction (Eu = 0 )  or an expansion (Em = 0). 
If neither E" nor E' is 0, the phase portrait may look like Fig. A in the twc-dimen- 
sional case or like Fig. B in a three-dimensional case. 

If, in addition, the eigenvalues of A I E' have nonzero imaginary part, all tra- 
jectories will spiral toward EU (Fig. C).  

Other threedimensional phase portraits are obtained by reversing the mows  in 
Figs. B and C. 

The letters s and u stand for atable and unstable. E' and E" are sometimes called 
the stable and unstable subspaces of the hjperbolic flow. 
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\EY PROBLEMS 

FIG. A 

' E '  

FIG. B 

1. Let the eigenvaiues of A E,L(R3) be A, p,  v .  Notice that elA la a hyperbolic flow 
and sketch its phase portrait if: 
(a) A < r < r < O ;  
(b) A < O , p = a + b i , a < O , b > O ;  
(c) ~ < O , p = a + b i , a > O , b > O ;  
(d) A < 0 < p - . and A is sunisimple; 
(e) A < r < O < . .  

2. elA is hyperbolic if and only if for each r # 0  either 

3. Show that a hyperbolic flow 6aa no nontrivial periodic solutions. 

\ 
Let F be a nonned vector apace (Chapter 5). Recall that a set X C F is open 

if whenever t E X there is an open bdl about r contained in X; that is, for some 
a  > 0  (depending on I) the open bal! about r of radius a. 

is contained in X. From the equivalence of noma it follows that thin definition is 
independent of the n o m ;  any other norm would have the same property (for 
perhaps a different radius a). 

Using geometrical language we nay that if z b e l o w  to an open met X ,  any point 
sufficiently near to z abo b e l o w  to X. 

Another kind of subset of F is a dnwe set: X C F is dense if every point of F 
is arbitrarily close to points of X. More precisely, if r E F, then for every e > 0  
there exists some y E X with I r - y I < r .  Equivalently, U 17 X is noaempty for 
every nonernpty open set U C F. 
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An intrrrzting kind ofsubset ofX isasetX C F which is both open and dense. I t  
IS chitrnctvr~zrd 1," tlrr Rllowin~ properties: every point in the complement of F 
ri,~, I , , .  ;t~qrox1nrr~tr,l arlt~trarily closely hy tminbofx (hecausf X iadenwl: but no 
,,,)tnt H I  S c:tn tu. ;al)l~roximnt~ri nrbltrarily c lmly  by pointti in the complement 
[l~.c;,~ar,.Y IS open). 

Ilvrt. is a simple example of a dense open set in R': 

This, of course, is the emnplemnt of the hyperbola defined by zy = 1. If qyo Z 1 
and ( I - s 1, I y - yo 1 are small enough, then zy # I; this provee X open. Given 
arlr (I,,, yo) C R', we can find (I, y) as close as we like to (z0, yo) with q # 1; this 
provrs X dense. 

;\lore generally, one can show that the complement of any algebraic curve in 
R' is dense and open. 

A dense open set is a very fat Bet, as the following propmition shows: 

Frnpnsilion Lel XI, . . . , X, be dense open seb in F. Then 

x=x,n ... nx. 
1s also drrcse and upen. 

Proof. It can be b e y  shown generally that the interseetion of a finite number 
of open sets is open, m X is open. To prove X denae let U C F be a nonempty 
oprn set. Then U n XI is nonempty since X, ia dense. Beeause U and XI are open, 
U n X, is open. Since U n XI ia open and nonempty, (U n Xi) n X, is nonempty 
because XI is dense. Since X, is open, U n XI n Xr is open. Thus (U n XI n XI) n XS 
is nonempty, and m on. So U n X ia nonempty, which proves that X ia dense in F. 

Now consider a s u k t  X of the vector space L(Rm). I t  makes sense to call X 
dense, or open. In trying to prove this for a given X we may use any convenient 
norm on L(RS). One such norm is the d-max norm, where (B is a basis R.: 

I/ T IIa.,, = maxll ail 1 1  [aii] = Obmatrix of TI. 

A property B that refera to operators on R. id a posric propcry if the set of opere- 
tora having property B containn a denae open set. Thus a property ia generic if it in 
ahared by wme dense open set of operatom (and perhaps other operatom as well). 
Intuitively speaking, a generic property in one which "almmt dl" operators have. 

Theorem 1 The sel SI of opcralms on R' llrd houc n dwlind a@ntdua w h e  
and open i n  L(R"). 

Proof. We first prove 0, dense. Let T be an operator on R.. Fi a bsais d put- 
ting T in real canonical form. 

~ ~~~~~~. 
The real canonical form of T can bt. written as the sum of two matrices 

T = S + N ,  
where 

and 

The eigenvalues of T (with multiplicities) are A,, . . . , A,, and a, & ib,, . . . , 
a. * 23,. 

Given e > 0, let 

A:, . . . , A;, a:, . . . , d  
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be distinct real numbers such that 

and T' = 8' + N .  Then the a-max norm of T - T' is lesa than t, and the eigen- 
values of T' are the n distinct numbers 

This provt,a that I is dense. 
To prove that S ,  is open we argue by contradiction. If it is not open, then there 

is a spqupnce A,, At, . . . of operators on R. that are not in & but which converges 
to an upfrator A in I,. There is an upper bound for the norma of the Ak and hence 
for their eigenvalues. By mumption ench A& hss an eigenvalue XI of multiplicity 
a t  least two. 

Suppose a t  first that all A. are real. Passing to a subsequence we may assume that 
XI  - h E L. For each k, there are two independent eigenvectors zb, yr for AI be- 
longing to the eigenvalue XI. We may clearly suppose I zk I = I yb I = 1. Moreover 
WP may assume z1 and y. orthogonal, otherwine replacing yt by 

Passing again to mbsequences we may assume zr -+ z and yr + y. Then z and y 
are independent vectors. From the relations A m  = X1n and AN, = A& we find 
in the limit that A z  = Az and Ay = Ay. But this contradicts A E St. 

If somr of the XI are nonreal, the same contradiction is reached by considering 
the complrxifioations of the A,; now zh and y, are vectors in C'. In place of the 
Euclidean inner product on R" we use the Hermilion inner producl on C. defined 
by (2,  W )  = x7-I I@,,  and the corresponding norm I r I = (z, r)'". The rest of the 
argument is formally the m e  M before. 

Kote that the operators in 1 are all semiwimple, by Chapter 4. Therefore an 
irnmdintr consequence of Theorem 1 is 
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Theorem 2 Semiaimplicitw ti a gmeric properly in  L(R"). 

The set of semisimple operators is nol open. For example, every neighborhood 
of the semisimple operator I E L(Ra) contains a nonsemiwimple operator of the 
form [: 3. 

We also have 

Theorem 3 The set 

4 = IT E L(R") I elT is a hyperbolic flow \ 

w open and &me in  L(Rm) 

Prmf. In the proof of density of & in Theorem 1, we can take the numbers 
A;, . . . , X:, a;, . . . , a: (the real parts of eigenvalues of T') to be nonzero; thia proves 
density. Openness is proved by a convergence argument similar to (and easier than) 
the one given in the proof of Theorem 2. 

PROBLEMS 

1. Each of the following properties defines a set of real n X n matrices, F i  out 
which sets are dense, and which are open in the space L(R') of all linear open- 
tors on R': 
(a) determinant # 0;  
(b) trace is rational; 
(c) entries are not integers; 
(d) 3 5 determinant < 4; 
(e) - 1 < ( A I < 1 for every eigenvalue A; 
(f) no real eigenvalues; 
(g) ench real eigenvalue haa multiplicity one. 

2. Which of the following properties of operators on R' are generic? 
(a) I h 1 # 1 for every eigenvalue A; 

(b)  n = 2; some eigenvalue is not real; 
(c )  n = 3; some eigenvalue is not real; 
(d)  nu solution of z' = A z  is periodic (except the zero solution); 
(e) there are n distinct eigenvalues, with distinct imaginary parts; 
(1) A z  # z and A z  # - r  for all z z 0. 

3. The set of operators on R' that generate contnretions is open, but not dense, in 
L(Rm) . Likewise for expansions. 
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4. A subset X of a vector apace is midual if there are dense open sets A, C E, 
k = 1,2 ,..., s u c h t h a t n A k C X .  
(a) Prove the theorem of Baire: a residual set is dense. 
(b) Show that if Xk is residual, k = 1, 2, . . . , then fl Xt is residual. 
(d) If the set Q C C is residual, show that the set of operators in R" whose 

cigenvalues are in Q, is residual in L(Rm). 

$4. l'hr Significance of Genericity 

If an oporator A E I,(R") is semisimple, the differential equation r' = AE break 
down into a number of simple uncoupled equations in one or two dimensions. If 
the ci~envnlues of A have nonzero real parts, the differential equation might be 
complicated from the analytic point of view, but the geometric structure of the 
hv~erbolic flow elA is very simple: it is the direct sum of a contraction and . . 
an expansion. 

In Section 3 we showed that such nice omratom A are in a sense lvpicd. Pre- -~~ ~ ~ ~ . . 
cisel?, operatom that generate hyperbolic Row? fonn a dense open set in L(R'); 
while the s ~ t  of semisimple operatomcontains adense open set. Thus if A generates 
a hypc,rbolic Row, so d m  any operator sufficiently near to A. If A does not, we can 
approximate A arbitrarily closely by operatom that do. 

The significance of this for linear differential equations is the following. If there 
is uncertainty as to the entries in a matrix A,  and no reaeon to assume the contrary, 
we might as weU assume that the flow el* is hyperbolic. For example, A might be 
obtained from physical observations; there is a limit to the accuracy of the measur- 
ing instruments. Or the differential equation x' = Az may be used as an abstract 
model of some general phys id  (or biological, chemical, etc.) phenomenon; indeed, 
diflerential equations are very popular as models. In  this case it makes little sense 
to insist on exact values for the entrim in A. 

, I t  is often helpful in such situations to assume that A is as simple ss possible- 
until compelled by logic, theory or observation to change that assumption. I t  in 
reasonable, then, to ascribe to A any convenient generic property. Thus it is com- 
forting to m u m e  that A is semisimple, for then the operator A (and the flow et*) 
are direct sums of very eimple, easily analyzed one- and two-dimgnsional types. 

There may, of course, be good reasons for not aasuming a p&icular generic 
property. If it is suspected that the differential equation z' = Ar  has natural 
symmetry properties, for example, or that the Row muat conserve some quantity 
(for example, energy), then assumption of a generic property could be a mistake. 

Chapter 8 
Fundamental Theory . 

Thin chapter in more ditiicult than the ~recedina ones; it is deo centrd to the 
atudy of ordinary differential equations. W= mggest-that the reader bm- thm& 
the chapter, omitting the p m f s  until the purpose of the t h w m  begha to fit 
into place. 

$1. Dynamid System. and Vector Fields 

A dynamicd 8ystem in a way of deacrib'i the p q e  in time of all points of a 
given apace 8. The apace S could be thought of, for example, as the space of a t a h  
of mme phyeical syatem. Mathematieally. S might be a Euclidean space or an open 
subset of Euclidean w e .  In the Kepler problem of Chapter 2, 1 was the net of 
poesible positions and velwitiea; for the planar gravitational central force problem, 

S = (Ra - 0) X Ry = ( ( a ,  u) E R' X RyI x Z 0). 

A dynamical ~ystem on 8 telle un, for z in S, where z in I unit of time later, 2 units 
of time Inter, and m on. We denote these new poeitiona of x by z,, a, r~speetively. At 
time sero, t i n  a t  x or I, One unit before time zero, z wan a t  2-1. If one extrapolah 
to hll up the real numbem. one obtains the trajectory z, for aU time 1. The map 
R - S, which sends 1 into rs is a curve in S that represents the We history of x as 
time tuna from - - to m . 

It in assumed that the map fromR x 8 - S defined by (1, x) -2, in continuously 
diRerentiable or a t  least wntinuoua and continuously differentiable in 1. The map 
+,: 8 -+ S that t a k e  z into x, in defined for each 1 and f m  our interpretation .s 
a t a h  moving in time it is m u a b l e  to expect +, to have as an in- *I. A h ,  
01 should be the identity and +,(+,(z)) = +a+.(r) is a natunl condition (member 
+,(a) = x,). 



We formalize the above in the following definition: 

A dymmical s y a h  is a 0 map R  X S 3 S where S is an open set of Euclidean 
space and writing + ( 1 ,  z )  = + , ( I ) ,  the map 0,: 8 --+ 8 eatisfiea 

(a)  +o: S + S is the identity; 
rb) The composition 4 ,  - 9. = +,+. for each t ,  s in R. 

Xote that the definition implien that the map 4,: S + S is CL for each 1 and h a  a 
CL inverse +_, (takes = - I  in (b)). 

An example of a dynamical system is implicitly and approximately defined by 
differential equations in the Newton-Kepler chapter. However, we give a p r e  

cise example as follows. 
Let A be an operator on a vector space E; let E = 8 and 0 :  R X S + s be de- 

f ind by 4(1, 2 )  = eCAz. Thus + I :  S + s can be represented by 6, = elA. Clesrly, 
& = eD = the identity operator and since e"+'" = e'*eA, we have defined a dy- 
namical system on E (see Chapter 5). 

This example of a dynamical system is related to the differential equation dz/dl = 
A r  on E. A dynamical system +, on S in general gives rise to a differential equation 
on s, that is, a vector field on S, f :  S -+ E. Here 8 is s u p p d  to be an open set in 
the vector space E. Given +I ,  define f by 

thus for r in 8, f(z) is a vector in E which we think of as the tangent vector to the 
curve 1 --. +,(z)  a t  1 = 0. Thus every dynomical a y a h  gives rise Lo a  differential 
equation. 

M'e may rewrite this in more conventional terms. If +,: I + S is a dynamical 
system and 2 € I, let r(1) = + , ( z ) ,  and f :  S--+ E be defined as in ( 1 ) .  Then we 
may rewrite (1) as 

Thus r ( l )  or + , ( z )  is the solution curve of (l') eatisfying the initial condition 
r(0) = z .  There is a converse process to the above; given a differential equation 
one has asaoeiated to it, an object that would be a dynamical system if it were 
dehnd for all 1.  This process is the fundamental theory of differential equations 
and the rest of this chapter is devoted to it. 

The equation (1') we are talking about is called an aulonmmrs equation. Thia 
means that the function f d m  not depend on time. One can also consider a C 
map f :  I x W  -+ E where I is an interval and W  is an open set in the vector spaee. 
The equation in that case is 

(3 2' = f ( 1 ,  1) 
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be developed in this chapter; (2) will be treated in Chapter 15. Ow emphasis in 
th ia book is completely on the autonomous ease. 

02. The Fundunend Themran 

Throughout the rest of this chapter, E will denote a vector spsce with a norm; 
W C E , a n o p e n s e t i n E ; a n d f :  W-Eacontinuousmap. B y a . d u l i o n d t b e  
differential equation 

( 1 )  t f = f ( t )  
we mean a differentisble function 

u : J - + W  

defined on mme interval J C R  such that for all I E J  

u'(0 = f(u(1) ). 

Here J  could be an i n t e n d  of real numbera which is open, dosed, or hdf  opn, half 
closed. That in, 

(a ,b )  = I l € R l a < l < b ) ,  

or 
[ a , b l -  I l E R l a S t l b l ,  

or 
( a , b ] =  ( t E R ( a < t < b l ,  

and m on. Also, a  or b  could be -, but intervals l&e (a ,  m ]  are not allowed. 
Geometrically, u  b a curve in E whme tangent vector u'(1) eqluls f ( u ( 1 ) ) ;  we 

think of t h h  vector M based at u(1) .  The map f: W + E h a vector deld on W. A 
~ ~ 

mlution u  may be thought of M the path of a particle that m o m  in B a, that at 
t h e  1, its tangent vector or velncity is given by the d u e  of the netor field a t  tbe 
pwition of the particle. Imagine e dwt particle in a a t e d y  wind, for aumple, or 
an electron moving through a mudant magnetic field. See .bo a. A, where u ( 4 )  - 
I,  ~ ' ( 4 )  = f ( z ) .  

and is rnllr,d nonautonomous. The existence and uniqueness theory for (1')  will 
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An initial condition for a solution u: J --t W is a condition of the form u(&) = 
where & E J ,  € W. For simplicity, we usually take 4 = 0. 

A differential equation might have several solutions with a given initial condition. 
For example, consider the equation in R, 

2' = 31,'. 

IIrrr 1V = R = E, j :  R + R is given by j(z) = 391'. 
The identically zero function uo: R -R given by %(t) = 0 for all 1 is evidently 

a solution with initial condition u(0) = 0. But so is the function defined by z(t) = 

P. The graphs of some solution curves are shown in Fig. B. 
Thus it is clear that to ensure unique solutions, extra conditions must be imposed 

on the function j. That j be continuously differentiable, turns out to be sufficient, 
as we shall see. Thus the phenomenon of nonuniqueness of solutions with given 
initial conditions is quite exceptional and rarely arises in practice. 

In addition to uniqueness of solutions there is the question of existence. Up to 
this point, we have been able to compute solutions explicitly. Often, however, this 
is not possible, and in fact it is not a priori obvious that an arbitrary differential 
equation has any 8oiutions a t  all. 

We do not give an example of a differential equation without a solution because 
in fact (1) haa a solution for all initial conditions provided j is continuous. We 
shall not prove this; instead we give an easier prwf under hypotheses that a h  
gunrantre uniqueness. 

The following is the fundamental local theorem of ordinary differential equatioi. 
I t  is called a "local" t b e o m  because i t  deala with the nature of the vector field 
j :  W-Enearsomepointroof W. 

Theorem 1 k t  W C E be an opm arbset r j  a n d  vector space, f: W - E a O 
(confinuously diffwnliable) map, and s € W. Then h e  is a m  a > 0 and a unique 
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solution 
z: (-a, a)  --t W 

oj the diffwenlial epuolion 

Z' = f ( r )  
aaiisjying the initial condition 

z(0) = I.. 

We will prove Theorem 1 in the next section. 

$3. Existence and Uniqueness 

A function J: W --t E,  W an open set of the normed vector space E, is aaid to be 
Lipschitz on W if there exista a constant K such that 

I j(y) -f(z)l ~ K I Y  - 1 1  
for all I, y in W. We call K a Lipachifz consfant for j. 

We have assumed a norm for E. In  a different norm j will still be Lipachitr he- 
causeof theequivalence of n o m  (Chapter 5) ; the constant K may change, however. 

More generally, wr call f locally Lipschilz if each point of W (the domain of j )  
has a neighborhood W. in W such that the restriction j I W, is Lipachib. The Lip 
sehitr constant of j I W, may vary with Wo. 

Lemma Let ihe junction f :  W --t E be C.  Then J is locally Lipschi&. 

Before giving the proof we recall the meaning of the derivative Dj(z) for z E W. 
This is a linear oprrator on E ;  it assigns to a vector u E E, the vector 

1 
Dj(z)u = lim- ( j ( z  + ar) - j ( r ) ) ,  a E R, 

.4 a 

which will exist if Dj(r)  is defined. 
Incoordinates(z,, ..., zm)onE, le t f ( z )  = (j,(z,, ..., z.), ..., f.(zt, ..., z.)); 

then Dj(2) is repres~nted by then  X n matrix of partial derivatives 

Conv~rwly, if all thr partial derivatives rxist and are continuous, then j is C1. For 
each z t W, there is defined the oprrator norm I (  Dj ( r )  1 1  of the linear operator 
DJ(z) E L (E)  (ace Chapter 5). If u E E, then 

(1) I Df(z)u I 5 l l  Df(r)ll l u I. 
That j :  W + E is C1 implies that the map 1V + L ( E )  which sends z -r Dj(r)  is a 
continuous map (see, for example, the notes at end of this chapter). 



Prwfofthekrnma. Suppoaethatf:W--tEisCandsE W . L e t b > O b e  
so small that the hall lib(*) is contained in W ,  where 

Bdro) = I r e  W l l r - z o l s b l .  

Denote by Wp thia ball B d s ) .  Let K be an upper bound for 1 1  Dj (4  1 1  on WO; this 
rxists b~rnuse Dj  is continuous and WO is compact. The set Wo is comer; that is, if 
y, z ! ti',, then the line segment going from y to z ia in W.. (In fact, any compact 
I.r,nvvr nt~ieliborhcmd of r. would work here.) Let y and r be in Wo and put u = z - 
y .  'l'llvtl i, + nu c WD for 0 < a < 1 .  Let +(a) = f(1, I + m )  ; thus 4: [0, I ]  - E 

I 
is tltc err~npasition [O, 11 --t Wa -+ E where the first map sen& a into y + su. By 
thr chain rule 

(2) +'(a) = Df(y + m)u. 

Therefore 
f(z) - J(Y) = + ( I )  - 6(0) 

= +,(a) 

and, by ( 2 ) ,  

Hcncc, by ( I ) ,  

This proves the lemma. 

The following remark is implicit in the proof of the lemma: 

If WO is Convex, and if 11 Dj(r)ll 5 K for all z € Wo, then K is a Lipsehita con- 
stant for j I Wo. 

We proceed now to the proof of the existence part of Theorem 1 of Section 2. 
Let E W end We be aa in the pmof of the previous lemma. Suppose J is an open 
interval containing zero and 2: J' W  satisfies 

(3) z'(0 = f M 0 )  
and r(0) = z+ Then by inLegration we have 

Conversely, if z: J - W  satisfies (4), then t (0 )  = and r satisfies (3) aa is seen 
by differentiation. 

Thus (4) is equivalent to (3) ae an equation for r :  J - W .  
By our choice of W,, we have a Lipechita constant K for f on WO. Fur- 

thermorr. I j(z)l is bounded on Wv, say, by the constant M. Let a > 0 satisfy 
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a < min(b/M, 1/KJ, and define J = [-a, a]. R e e d  that b is the radius of the 
ball WO. We shall define a sequence of functions %, u,, . . . from J to W ,  We shdl 
prove they converge uniformly to a function satisfying (4), and Later that there 
are no other solutions of (4). The lemma that is used to obtain the Eonvewnoe 
of the u': J - Wo is the following: 

LEmmairomandysLs S u p p m u l : J + E ,  k = O ,  1, 2, ... uarsqtrmccoj 
catinurn junction8 from a c l o d  inlend J lo a -mi vcelor rpocc E which ro(hfp: 
Given r > 0, there ia a m  N > 0 such lhol jm cvcry p, q > N 

This is called uniform convergence of the functions u*. Thin lemma is proved in 
elementary snalyab book8 and will not be proved here. 

The sequence of functions ub is defined aa follows: 

Let 

%(l) = s .  
Let 

Assuming that ~ ~ ( 1 )  hss been defined and that 

- b  f o r d  t E J ,  
let 

Thia makes sense since uda) E W. so the inteerand is dehed.  We &ow that 

1 - z o  5 b or uk+l(l) E WO for 1 E J ;  

thin will imply that the sequence can be continued to uk+z, w*, and so on. 
We have 
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Next, we prove that there ia a constant L 2 c such that for all k 2 0: 

I V L C ~ ( ~ )  - w(0I  < (KaIbL. 

Put L = max[lu,(t) - ua(1)l: 111 5 a ) .  Wehave 

I t - I = f ( u ~ ( 8 )  - f(ua(8)) d8 11 

huming by induction that, for some k 2 2, we have already proved 

1 - - 1  < K ,  I t  l < a, 
we have 

< (aK) (aK)'-1L = (aK)'L. - 
Therefore we see that, putting aK = a < 1, for any r > 8 > N 

- 
< C d L  - 

C N  

5 t 
for any prescribed t > 0 provided N in large enough. 

By the lemma from analysis, this shows that the sequence of functions ua, ut, . . . 
converges uniformly to a continuow function z:  J -+ E. From the identity 

.I 

we find by taking limita of both aiden that 
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(by uniform convergence) 

= tr + / f(z(a))  * 
(by continuity of f) .  

Therefore z:  J -+ WO satisfies (4) and hence in a solution of (3). In partic&, 
z : J - + W * i a C .  

Thin takes care of the h t e n c e  part of Theorem 1 (of Section 1) and we now 
prove the uniquenm part. 

Let z, p: J - +  W be two adutions of (1) satisfying z(0) = y(0) = y when 
we may suppose that J in the closed interval [-a, a]. We wil l  show that z(t) = 

y(t) for all t E J. Let Q = max,., I z(1) - y(t)l. This maximum w attained a t  
some point 1 E J. Then 

< aKQ. 

Since aK < 1, this in impossible unless Q = 0. Thus 

Another proof of uniqueness follows from the lemma of the next seetion. 
We have proved Theorem 1 of Seetion 2. Note that in the course of the pmof 

the following wan shown: Given any ball W. C W of radius b about y with 
max.tr. 1 j (z)  1 < M, where f on Ro has Lipsehits constant K and 0 < a < 
minlb/M, 1 /KJ ,  then there in a unique solution z: (-a, a )  -+ W of (3) such that 
z(0) = z,. 

Some remarks are in order. 
Consider the situation in Theorem 1 with a C' map f: W -t E, W open in E. 

Two sdultim c u m  of z' = j(z)  c ~ s m t   OM. TI& in an immediate consequence of 
uniqueness but in worth emphasizing geometrically. Suppase r: J -+ W, $: JI --t W 
are two solutions of z' = f(z) such that ~ ( 1 , )  = $(It). Then ~ ( 1 , )  ia not a m x i n g  
because if we let h(1) = $(h - 18 + l) ,  then 3, is also a solution. Since h(lt) = 

+(h) = ~ ( 1 , ) ~  it follows that +I and p agree near 1, by the uniquenea, ataternent of 
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Theorem 1. Thua the situation of Fig. A ia prevented. Similarly, a solution curve 
cannot crass itself as in Fig. B. 

FIG.  A FIG. R 

If, in fact, a solution curve r :  J -t W of z' = f(z) satisfies c(h) = r(fi + W) 
for some 1, and w > 0, then that solution curve must close up as in Fig. C. 

-d 
FIG. C 

Let us see bow the "iteration scheme" used in the p m f  in thia seetion applies 
to a very simple differential equation. Coneider W = R and /(I) = z, and search 
for a solution of z' = z in R (we know already that the solution z(1) satisfying 
r(0) = I. is given by t(1) = w'). 

Set 
ua(t) = a, 

94. CONTINUITY OP WLUTlONB IN  INITIAL CONDITION8 

and so 

As k -+ oo, ~ ( 1 )  converges to 

which is, of course, the solution of our orjginal equation. 

$4. Continuity of Solutioom i n  Initial Gndi t ionn 

For Theorem 1 of Section 2 to be a t  dl interesting in any physied aense (or even 
mathematically) it needa to he complemented by the property that the aolution 
r(t)  depends continuously on the initial condition ~ ( 0 ) .  The next theorem givea r 
preeise statement of this property. 

Theorern Let W C E be open and suppose f :  W -+ E has Lipdehitr cmdant K. 
Lel y (l), z(1) be sduliona to 

(1) I' = f ( r )  

on fhe doaed itUcrwl [h, t i3  Then, for d t € [h, t11: 

I Y ( ~  - ~ ( 0 1  5 I Y ( ~ o )  - z(4)I exp(K(1 - 4 ) ) .  

The proof depends on a useful inequality (Gronwdl's) which we prove first. 

Lemma Let u: [O, a] + R be m l i n u o w  and nonneqdiuc. Suppolc C 2 0, K 2 0 
are such lhnl 

J o r d f E  D,a3 Then 

u(1) 5 Ce" 

far all t E LO, a]. 



Proof. First, suppose C > 0, let 

then 
4 1 )  5 U ( 0 .  

By diffcrentiation of U  we find 

hrncc 

Hence 

so 
log U(1) 5 log U(0)  + Kt 

by integration. Since U ( 0 )  = C, we have by exponentiation 

and so 

11 C = 0 ,  then apply the above argument for a sequence of positive c, that tend 
to 0 as i -t m .  Thin provea the lemma. 

We turn to the proof of the theorem. 
Define 

~ ( 1 )  - IY(t) - z(t) l .  
Since 

we have 

~ ( t )  s + J ' K ~ ( ~ )  h. * 
Now apply the lemma to the function u( t )  - v(L + 1 )  to get 

~ ( 1 )  5 ~ ( 4 )  = P ( K ( ~  - b ) ) ,  
which is just the conclusion of the theorem, 

95. On Extending Solutions 

Lemma Lel a  C' map f :  W - + E  be piurn. Suppose lwo ad& u(l) ,  ~ ( 1 )  of 
z' = f ( z )  are defined on the aame open intend J  conhining 4  and aaliajy u ( 4 )  = 

~ ( 4 ) .  Tha u(1) = u ( t )  for aU 1 E J .  

We know from Thwrem 1 of Section 2 that u( t )  = u ( 1 )  in some open interval 
around 4. The union of all such open intervale is the largest open interval J* in 
J around b on which u  = u. But J* must equal J .  For, if not, J* has an end point 
1 E J ;  we suppose tl is the right-hand end p i n t ,  the other wrse being similar. By 
continuity, u(4)  = ~ ( 1 , ) .  But, by Thwrem 1 of Section 2, u = o  in some J', an 
interval around 1,. Then u  = u in J* u J' which is larger than J*. This wntradiction 
proves the lemma. 

There is no guarantee that a mlution z( t )  to a differential equation can be de- 
fined for all 1. For example, the equation in R, 

z ' = 1 + 2 = ,  

has as solutions the functions 

z  = tan(1 - c),  c  = constant. 

Such a function cannot be extended over an interval larger than 

~ i n c e r ( 1 ) - f m a s i - c f  x / 2 .  
Now consider a general equation (1) z' = f ( z )  where the O function f in defined 

on an open set W C E. For each lo E W there ia a m a ~ m u m  open inlnval (a ,  8 )  
cm*ointng 0  on which h e  is a  adulirm z(1) with z ( 0 )  = a, There is some such 
interval by Theorem 1 of Seetion 2; let ( a ,  8)  be the union of dJ open intervals 
containing 0  on which there is a solution with z ( 0 )  = a. (Possibly, a - - - or 
B = + m ,  or both.) By the lemma the solutions on any two intenrds in the union 
agree on the intersections of the two intervals. Hence there in a solution on dl of 
(a ,  8). 

Next, we investigate what happens to a mlution as the limits of ib domain are 
approached. We atate the result only for the right-hand limit; the other cane ia 
similar. 

Theorem Let W C E be open, let f :  W E be a  C mop. Lcl y(1) be a  a d u l i a  
o n a m a z i m d o p e n i n l n v a l J =  ( a , 8 ) C R m ' t h B <  m.ThmpiDmanyumtW 
ael K C W ,  there ia a m  1 E (a ,  8 )  with y(1) 4 K .  



This theoran says that if a solution y (1) m o t  he extended to a larger interva, 
then it  leaves any compact set. This implies that a 1 -r 8 e t L k  y(1) Lmda lo h 
bounduty of W or I y(1)I bnds Lo rn (or both). 

Prwj. Let [O, 8)  be the maximal half-open interval on which there is a aolutioo 
y aa above. Then y([O, 8))  C A,  and so 8 cannot be finite by the theorem. 

Proof of the theorem. Suppose y(1) € K for all 1 € (a, 8). Since f i n  continu- 
ous, there exiats M > 0 such that ( f ( t )  ( I M if z € K. 

Let 7 E (a, 8) .  Now we prove that y ntenda to a continuous map [r, 81 -+ E. 
By a lemma from analysis it suffices to prove y: J + E uniformly continuous. For 
b < 1, in J we have 

$6. Global Solutionn 

We give here a stronger theorem on the continuity of solutions in terms of initid 

5 /:lf(v(*))lh 5 (11 - b)M. 

Now the extended curve y: [a, 81 + E is differentiable a t  8. For 

conditions. 
In the theorem of Section 4 we mwned that both solutions were defined on the 

m e  interval. In the next theorem it is not necessary to assume this. The theorem 
shows that solutions s t m h g  at nearby points will he dehned on the same e l 4  
interval and remain near to each other in thin intewal. 

Theorem Let f(z) be C. k t  y(1) be a adulimz Lo a! = f(z) &fid on the dosd 
inlnnl [to, f,], wi!h y(b) = yo, T h e  w a nkghborhmd U C E of y. md a crmalon( 
K arch tho( if r. € U ,  Uun Uure a unique sdulion r(1) &o &fined on [&, C] d h  
.(lo) = ro; and z &* 

Iy(1) - z(1)I < K I U O  - aIexp(K(1 - &)) 

fm all 1 E [b, C1. 

hence 

for all 1 hetween Y and 8. Hence y in diIerentiahle a t  8, and in fact y'(5) = f(y(8)). 
Therefore y is a solution m [v, 81. Since there id a mlution on an interval [B, 0, 
6 > 5, we ean extend y to the interval (a, 6). Hence (a, 8) could not he a maximal 
domain of a solution. This completes the p m f  of the theorem. 

The following important fact followa immediately from the theorem. 

Proponition L d A b e a m p a d a o f L h c o p o l a c l W C E a n d W f :  W - r E  
teC. k l y * €  A a n d s u ~ i l w l n m u n i h o ( c u c r l ( 8 d U i o n ~ o f t h c f m  

V: LO, 81 + W, ~ ( 0 )  - yo, 
lied entidy in A. Then h e  C a wt& 

w 0 ,  - 1 + w ~ ( 0 )  - ye, m d  #(I) € A 
f r n d l I > O .  

For the proof we will uee the following lemma. 

Lemma Iff: W + E ti 2omlly Lipachifr and A C W w a mpm2 ( c l o d  and 
barn&) eel, Uun f 1 A w Lipschi&. 

Proof. Suppose not. Then for every K > 0, no matter how Large, we can ruwl 
r a n d y  in A with 

I f ( d  - l (y) l  > K l r -  u l .  
In particular, we ean find I., y. such that 

(1) 1 % )  - f 2 n I t. - . I for n = 1, 2, . . . . 
Since A is compact, we can choose conv'xgent subsequem;a, of the 2. aod )b 

Relabeling, we may seaume 2. -+ z' and a + y* with z' and p in A. We obsarr 
that r' = y*, since we have, for dl n, 

( r* - y.1 = lim [ z. - y. I < n-' (f(z.; - f(u.)l _< n-'ZM. 
"-- 

where M is the maximum value of f on A. There is a neighborhood We of r* far 
which j I We 6es a Lipwhit. constant K in t. There is an rr arch that% € Wm if 
n > %. Therefore, for n 2 rr: 

lf(z.) - f(y-)l < K I 1. - u. 1, 

which contradicts (1) for n > K. This proves the lemma. 



The proof of the theorem now goes M foUows. 
Bycompaetneesof [~h] , therede>OsuchthatzE Wif I z -  y(1)I St.  

The set of dl such points is a compact subset A  of W. The C map f is 
locally Lipschit. (Section 3). By the lemma, it followa that f I A  has a Lipschits 
constant k. 

Lrt6>Obesosmal l that6<eand6exp(k1h-b l )<e .Weaaser t that i f  
I + - yo 1 < 6, then there is a unique solution through 4 defined on all of [b, l,]. 
F i t  of all, 20 E W since I 4 - y(b)1 < e, so there is a solution a(() through r. on 
a rnaximal interval [b, 8). We prove 8 > b. For suppose 8 < 1,. Then by the ex- 
ponential estimate in Section 4, for d l  1 € [I,, 0 ) )  we have 

Iz(r) - y(1)I 5 I4 - yo I exp(k I t  - I, I) 
< a e x ~ ( k I l - b I )  

5 e. 

Thus z(1) lia in the compact set A ;  by the theorem of Section 5, [b, 8) could not 
be a w'md sdution domain. Therefore z(1) is defined on [b, h]. The exponential 
estimate follows from Section 4, and the uniqueness from the lemma of Section 5. 

We interpret the theorem in another way. Given f(z) as in the theorem and a 
solution y(1) defined on [h, B], we see that for dl 4 d c i e n t l y  cloee to ye = y(b), 
there is a unique solution on [b, t,] starting a t  4 at  time zero. Let us note this 
mlution by 1 + u(1, a )  ; thus ~ ( 0 ~ 4 )  = 4, and ~ ( 1 ,  ye) = ~ ( 1 ) .  

Then the theorem implie: 

lim u(l, a) = 41 ,  a), 
-1 

uniformly on [b, 41. In  other words, Lhc adulion lhrough lo dcpmds crmlinuaurly 
on 4 .  

57. The Flow of n DUTemntLl Equation 

In  this seetion we conaider an equation 

(1) z' = f(z) 

d&edbyaCfu~~ctionf:W+E,WCEopen. 
For each y €IW there is a unique solution +(t) with +(0) = y defined on a maxi- 

mal open in teml  J (y )  C R. To  indicate the dependence of d l )  on u, we write 

$7. W E  FLQW OP. A DIFFERENTIAL EQUATION 

Let n C R X W be the following set: 

The map (1, y) - 0(1, y) is then a function 

+:n+w. 
We call + the pow of equation (1). 

We shall often write 
+(1, ?) = 0 4 ~ ) .  

Example. Let f(z) = Az, A 6 L ( E ) .  Then +,(z) = cut. 

Theorem 1 The map + hoa the f M n p  properly: 

in Ule smse lhai if one sidc of (2) is defined, so is lhe &, and they ore qud. 

Proof.  F i t ,  suppose s and 1 are positive and +.(+,(z)) is defined. This means 
1 E J ( z )  and s E J(+,(z)) .  Suppose J (z )  = (Q, 8). Then Q < 1 < 8; we shall 
show 8 > s + 1. Define 

y: ( u , s + t ] - W  

Then y is a solution and y(0) = x. Hence s + t E J (z ) .  Moreover, 

The reat of the proof of Theorem 1 uses the same ideas and is left to the reader. 

Theorem 2 n is cm open scl in R X W and 0: n +  W w a c r m l i n m  map. 

Proof.  To prove n open, let (4, I.) E n. We suppose I, 2 0, the other eaae 
being similar. Then the solution curve 1 + +(t, I.) is defined on [O, I,], and hence 
on an interval [-t, b + t], t > 0. By the theorem of Section 6, there is a neighbor- 
hood U C W of i, such that the solution 1 + +(l, z) is defined Jn [-*. 4 + r ]  
for all z in U .  Thus ( - r ,  b + r )  X U C n, which proves n open. 

To prove 4: 0 + W continuous a t  (4, a ) ,  let U and r be as above. We may m t p  
pose that U has compact closure 0 C W. Since f is locally Lipschits and the set 
A = +([-t, b + e l  X 0) is compact, there is a Lipschita wnstant K for j I A.  
LetM = max(lf(z) I : zE  A) .Le td>Osa t i a fyd<  r ,andif Iz , - -1  <( , then 
XI E U .  Suppose 

1 4 - & I < &  I z t - a l < ( .  
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Then 

The second term on the right goes to 0 with I because the solution through a in 
continuous (even differentiable) in 1. The first term on the right, by the estimate 
in Section 6, is bounded by 6 6 '  which also goen to 0 with 6. This proves Theorem 2. 

In Chapter 16 we shall show that in fact + is C. 
S o w  suppose (1. 1.) E n ;  then a has a neighborhood U C W with 1 X U C 0, 

sinrr \vr known is open in R X W. The function z + +,(z) defines a map 

Theorem 3 The map 4, sends U onto an open 8el V and +_, C defrmd on V and 
sends V mlo U. The cnmpodkm +-,+, td the identity map o j  U ;  the cmnpoaition 64-1 
is the idcnlPy map of V. 

Proof. If y =+ , (z ) ,  t h e n ( €  J(I) .  It ineaey to we tha t  then - l E  J(y), 
for the function 

8 -+ *-1(Y) 

is a golution on [-t,0] sending 0 toy. Thus +-, is defined on +,(U) = V; the state- 
mrnt nbclut compositions is obvious. It remains to prove V is open. Let V* > V 
hr 1111, maximal subset of W on which +-, in defined. V* is open because U in open, 
and 9-,: V* - W is continuous because + in continuous. Therefore the inverse 
image of the open set U under 0-1 in open. But this inverse image is exactly V. 

We summarize the results of this section: 
Corresponding to the autonomous equation I' = j (z) ,  with loedly Lipsehits 

j: W -+ E, there in a map +: n - W where (1, z) E U if and only if there is a solu- 
tion on [0, t] (or [t, 0] if t < 0) sending 0 to z. The set n is open. + in defined by 
letting t - +,(z) = +(t, z) be the maximal solution cutve taking 0 to I. There 
is an open set U, C Won which the map +I: U, - Win defined. The m a p  4, satisfy 
k+,(z) = C+,(z) se in Theorem 1. Eaeh map 4, is a homwmorphism; that is, +, 
is one-to-one and has a continuous inverse; the inverse in 4-1 

If 

f (z)  = Az, A E L(E),  
then 

+,(z) = el*z. 

In this case n = R X E and each +, in defined in all of E. 

$7. THE FLOW OF A DIPPERENTIAL EQUATION 

PROBLEMS 

1. Write out the first few terns of the Pic'ard iteration seheme (Seetion 3) for 
each of the following initial value problems. Where possible, use any method 
to find explicit solutions. Discuss the domain of the solution. 
(a) r' = z + 2; z(0) = 2. 
(b) I' = i I a ;  z(0) = 0. 
(c) I' = 2"'; z(0) = 1. 
(d) z' = sin z; z(0) = 0. 
(e) z' = 1/21; z(1) = 1. 

2. Let A be an n X n matrix. Show that the Pieard method for solving a' = AI, 
z(0) = u gives the solution el*u. 

3. Derive the Taylor series for sin t by applying the Pirard method to the fvat 
order system corresponding to the second order initial value problem 

z,, = - z ;  z(0) = 0, ~ ' ( 0 )  = I. 

4. For each of the following functions, find a Lipsehita constant on the +on 
indicated, or prove there is none: 
(a) j(z)  = 1 t 1, - m < z < m. 

(b) j(1) = z'l', -1 < z 5 I. 
(c) f(z) = l/z, 1 < z < m. 

( 4  f ( r ,  Y) = ( z  + ZY, - Y ) ,  (2, Y) E R'. 

TY Il+y3<4. ( 4  f(z,  Y) = + + ?, 

5. Consider the differential equation 

(a) There are infinitely many solutions satisfying z(0) = 0 on every in- 
terval [0, @]. 

(b) For what values of a are there infinitely many solutions on [O, a] satisfy- 
ing z(0) = - l? 

6. Let j :  E -+ E be continuous; suppose j ( r )  5 M. For each n = 1, 2, . . . , let 
2.: [O, 11 + E  be a solution to z' = f (z) .  If ~ " ( 0 )  convergee, &ow that a 
subsequence of (z.1 converges uniformly to a solution. (Hint: Look up kseoli'a 
theorem in a book on analysis.) 

7. Use Problem 6 to show that continuity of solutions in initial conditions follow 
from uniqueness and existence of solutions. 



8. Prove the following general fact (nee also Section 4) :if C 2 0 and u, u: [O, 81 - 
R are continuous and nonnegative, and 

then 

9. Define f :  R 4 R by 

f(z) = 1 if z 1 1; f(z) = 2 if z > 1. 

There in no solution to z' = f(z) on any open interval around 1 - 1. 

10. Let g: R -r R be Lipaehitz and f :  R -r R continuom. Show that the system 

2' = e(z), 

r' = f ( d s  

has a t  most one solution on any interval, for a given initial value. (Hint: Use 
Gronwall's inequdity.) 

Notes 

Our treatment of calculus tends to be from the modern point of view. The derive 
tive in viewed as a hear translormation. 

Suppoee tbat U in an open set of a vector qace  E and that g: U + F b some map, 
F a mend vector space. What b 'he derivative of g a t  a € UO? We say that this 
derivative exiata and in denoted by &(a)  E L(E, F) if 

lim I r(z, + - ~ ( 4 )  - D d z , ) ~  I _ 0, 
111-0 

m.8 
IuI  

4 

Then, if, for each z € U, the derivative Dg(z) exists, this derivative dehea a 
map 

spectively. Consider C maps I, g, 

U ~ V ~ H .  

The chain rule of calculus can be stated as: the derivative of the eompoeition b the 
composition of the derivativea. In other words, if z € U, then 

Consider the caee where F = R and U in an interval; aniting 1 E U, f (I) = Dj(l), 
the chain rule read8 

(sd)'(O = DP(f( t ) ) ( f  ( 1 ) ) .  

In  case H also equals R, the formula becornea 

For more details on this and a further development of calculus alow these linen, 
see S. Lang's Seamd Course in Cdculw [12]. S. Lang's Analgbid I [ I l l  dw mvera 
these questions as well as the lemma from analyab used in Section 3 and the uni- 
form continuity statement used in the proof of the theorem of Section 5. 

If this map in continuous, then g b said to be O. If this map in C1 iteelf, then g is 
said to be C. 

h'ow suppose F ,  G, H are three vector spacea and u, v are open &a of F, G, re- 
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Chapter 9 
Stability of Equilibria 

In this chapter we introduce the important idea of slabilily of an equilibtium 
pozrtl of a dynamical system. In  later chaptern other 'kinds of stability will be dis- 
cussed, such m stability of periodic solutions and structural stability. 

An equilibrium Z is stnblc if all nearby solutions stay nearby. It is asynptdicdly 
slo6lc if all nearby solutions not only stay nearby, but also tend to 2. Of course, 
precise definitions are required; these are given in Section 2. In Section 1 a special 
kind of asymptotically stable equilibrium ia studied first: the sink. Thin is charac- 
terized by e r p m t i a l  a p p m h  to 2 of all nearby solutions. In  Chapter 7 the 
special case of linear sinks was considered. Sinka are useful because they can be 
dctrcted by the eigenvalues of the linear part of the system (that is, the derivative 
of the vector field a t  2). 

In Section 3 the famous stability theorems of Liapunov are proved. This section 
also contains a rather refined theorem (Theorem 2) which is not eesential for the 
rrst of t h ~  bwk, except in Chapter 10. 

Srctions 4 and 5 treat the important apecia1 cme of gradient flows. These have 
special properties that make their analysis fairly simple; moreover, they are of 
frequent occurrence. 

$1. Nonl inur  Sinks 

Cons~cirr a differential equation 

(1) z' = z ; f: W -+ Rm; W C R' open. 

Wc suppose fin C. A point Z E W k d e d  an equt'libtium point of (1) if f ( i )  - 0. 
Clrarly, th? constant function I(;) I t is a solution of (1). By uniqurncss of 
sulutions, no other solution curve can paa, through 2. If W is the state apace of 

some physical (or biological, economic, or the like) system described by (I) ,  then 
Z is an "equilibrium state": if the system is a t  2 it always will be (and always 
was) a t  2. 

Let 4: D -+ W be the flow amxiated with ( 1 ) ;  n C R X W is an open set, and 
for each z E W the map t + O(t, z) = &(z) ia the solution p- through z when 
t = 0; i t  L defined fort  in some open interval. If d is an equilibrium, then +,(i) = z 
for all t E R. For thin reawn, Z is alao called a afnfiaary point, or jiud point, of 
the flow. Another name for r is a zero or m d r  poin~ of the vector field f. 

Suppose f is linear: W = Re and f(z)  = A t  where A is a linear operator on R*. 
Then the origin 0 E R. is an equilibrium of (1). In Chapter 7 we saw that when 
X < 0 is greater than the real parts of the eigenvalues of A, then wlutions +,(x) 
approach 0 exponentially: 

I (~t(z)I  5 ce" 
for some C > 0. 

Now suppose f is a C1 vector field (not needy linear) with equilibrium 
point 0 E R'. We think of the derivative Df(0) = A off a t  0 as a linear vector 
field which approximate f near 0. We call it the linear par1 off a t  0. If all eigen- 
valuea of Df(0) have negative real parts, we call 0 a dink. More generally, an 
equilibrium Z of (1) is a sink if all eigenvalues of Df(2) have negative real parts. 

The following theorem says that a nonlinear sink 3 behaves locally like a linear 
sink: nearby solutions approach 2 exponentially. 

Theorem Lcl f E W be a sink of equation ( I ) .  Suppose ewq cipmwluc of Df (2) 
had red par1 less h n  -c, c > 0. Then there is a ncighb~~hwd U C W of2 arch that 

(a) $41) w &fined and in U for all z € U, t > 0. 
(b) There w a Eudidenn nmm on R' m h  (hat 

1 ,+,(z) - 2 1 5 C" 1 z - 2 1 
f o r a l l t E  U;t?O. 

(c) For any nmm n R-, t h e  is a caslonf B > 0 m h  that 

Prwf. For convenience we assume 2 = 0. (If not, give R. new coordinate 
y - z - 2; in y-cwrdinate f has an equilibrium a t  0 ;  ete.) 

Put A = Df(0). Choose b > 0 so that the real parts of eigenvalues of A are 
less than - b < -c. The lemma in Chapter 7, Section 1 shows that R. baa a basis 
cB whose corresponding norm and inner product satisfy 

(Az, I) < - b  1 z 1' 
for all r E R.. 



1\L' 9. STABILITY OF EQUILIBRIA 

Sinre A = DJ(0) and f(0) = 0, by the definition of derivative, 

lim 
I f ( r )  - AL. I = 0. 

*4 l t l  

Therefore by Cauchy's inequality, 

lim 
U(.) - At,  2) = 0. 

rO I z l l  

I t  follows that thrre exista 6 > 0 so small that if I r I 5 I, then t E W and 

W E ) ,  t )  5 -c I L. 1'. 
I'ut I ' = ( r  E Rm I / r ( 5 6). Let z(t), 0 5 1 < b, be a solution curve in u, 

r ( l )  # 0 Then 
d 1 
- 1 t 1 = - (t', z). 
dl 121 

Hence, since z' = f (2) : 
d 

(2) 2 I z l  5 - c l z I .  

This shows, first, that I z(1) I is decreasing; hence I z(l) I E U for all 1 E [O, b]. 
Smcr U is compact, i t  follows from Section 5, Chapter 8 that the trajectory z(l) 
is defined and in U for all 1 2 0. Secondly, (2) implies that 

I z ( 0  I 5 C" l z(0) l 
for all 1 >_ 0. Thus (a) and (h) are proved and (c) follows from equivalence of 
norms. 

The phase portrait a t  a nonlinear sink d looka like that of the linear part of the 
vector field: in a suitable norm the trajectorim point inside all sufficiently small 
apheres about d (Fig. A). 

/ 
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Remember that the spheres are not neeeasarily "reund" spheres; they areapherea 
in a speeial norm. In standard coordinates they may be rllipsoida. 

A simple physical example of a nonlinear sink is given by a pendulum moving in 
a vertical plane (Fig. B).  We awume a constant downward gravitational f o m  
equal to the mass m of the bob; we neglect the maw of the rod supporting the 
bob. We mqume there is a frictional (or viscous) force resisting the motion, pro- 
portional to the speed of the bob. 

Let I be the (constant) length of the rod. The boh of the pendulum moves dong 
a cirrlc of radius I .  If B(1) in the countercloekwiw angle from the v e r t i d  to the 
rod at time 1, then the angular vclocity of thv hob is @/dl  and the velocity ir 
1 &/dl. Therefore the frictional force is -k l  &/dl, k a nonnegative eonstant; thia 
force is tangent to the circle. 

The dorvnward gravitational force m has component -m sin B(t) hngent to the 
circle; this is the force on the bob that praduces motion. Therefore the total force 
tangent to the circle a t  time t is 

The acceleration of the bob tangent to the circle is 

hence, from Newton's law a = F /m,  we have 

Introducing a new variable 
w = b  

FIG. A. Nonlinear sink. 



(interpreted as angular velocity), we obtain the equivalent first order system 

(3) 6' = w, 

This rronlinrsr, autonomous equation in R' has equilibria a t  the points 

We concentrate on the equilibrium (0,O) 
The vector field defining (3) is 

Its derivative a t  (9, w )  is 

Hence 

with eigenvaluea 

Thp real part -k/2m is negative as long as the coefficient of friction k is positive 
and the maps is positive. Therefore the equilibrium 9 = o = 0 ia a sink. We con- 
clude: for all sufficiently small initial angles and velocities, the pendulum tends 
toward the equilibrium position (0,O). 

This, of c o w ,  is not surprising. In fact, from experience it seems obvious that 
from any initial pcaition and velwity the pendulum will tend toward the down- 
ward equilibrium state, except for a few starting statea which tend toward the 
vertically balanced position. To verify this physical conclusion mathematically 
tahps morr work, however. We return to thin question in Section 3. 

Hrforr leaving the pendulum we point out a paradox: Me pendulum cannof umtc 
Lo rest. That is, once it ia in motion--not in equilibrium-it cannot reach an equi- 
librium state, hut only approach one arbitrarily closely. Thin follows from unique 
ness of solutions of differential equations! Of course, one knom that pendulum 
actually do come to rest. One can argue that the pendulum is not " d y "  a t  rest, 

but ita motion is tm amall to observe. A better explanation is that the mathematical 
model (3) of its motion is only an approximation to reality. 

PROBLEMS 

1. (a) State and prove a converse to the theorem of Section 1. 
(b) Define "sourcea" for nonlinear vector fields and prove an intereating 

theorem about them. 

2. Show by example that if f is a nonlinear C vector field and f(0) = 0, i t  ia 
possible that lim,-, z(1) = 0 for all aolutiona to z' = f(z),  without the eigen- 
values of Df(0) having negative real parts. 

3. Aasume f ia a C vector field on R' and f(0) = 0. Suppose m e  eigenvalue of 
Df(0) has positive real part. Show that in every neighborhood of 0 there is a 
solution z(1) for which I z(t) I ia increasing on some interval [O, 41, 4 > 0. 

4. If Z ia a sink of a dynamical system, it has a neighborhood containing no other 
equilibrium. 

$2. Stability 

The dudy of equilibria plays a central role in ordinary differential equations 
and their applications. An equilibrium point, however, must aatisfy a certain 
stability criterion in order to be very significant physically. (Here, as in several 
other places in this book, we use the word p h y d  in a broad sense; thus, in some 
contexts, phyaicol could be replaced by bid&d, chemical, or even ccdopical.) 

The notion of stability most often conaidered is that usually attributed to 
Liapunov. An equilibrium is stable if nearby aolutiona stay nearby for all future 
time. Since in application8 of dynamical system one cannot pinpoint a atate 
exactly, but only approximately, an equilibrium must be stable to be physiedly 
meaningful. 

The mathematical definition is: 

Definition 1 Suppoae 2 E W is an equilibrium of the differential equation 

(1) z' = f ( z ) ,  

where f :  W -t E ia a CL map from an open set W of the vector space E into E. 
Then i is a atable equilibrium if for every neighborhood U of 2 in W there is a 
neighborhood U ,  of i in U such that every solution z(1) with z(0) in U, is dedned 
and in U for all 1 > 0. (See Fig. A.) 
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b 
FIG. A. Stability. 

Definition 2 If U, can be chosen so that in addition to the properties described 
in Delinition 1, h,,. z(t) = 2, then f ia osynpbtimUu slabk. (See Fig. B.) 

FIG. B. Asymptotic atsbility 

Definition 3 An equilibrium f that is not stable is called unslabk. This means 
thrre in a neighborhood U of f sueh that for neighborhood U, off  in U ,  there 
is a t  leaat one solution z(t) Btarting a t  r(0) E UI, which does not lie entirely in U. 
(See Fig. C.)  

A sink is asymptotically stable and therefore stable. An example of an equi- 
b r i m  that is stable hut not m p t o t i d y  stable is the origin in R' for a linear 

equation 

(2) I' = Az, 

where A has pure imaginary eigenvalues. The orbits are all ellipses (Ti. D). 

FIG. D. Stable, but not aaymptotidy aubk. 

The importance of tbis example in application is limited (despite the famed 
harmonic oscillator) because the slightest nonlinear perturbation m i l l  destroy i b  
character. Even a small linear perturbation can make it into a eink or a muree 
since "hyperbolicity" is a generic property for linear flows (see Chapter 7). 

A source is an examole of an unstable eauilibrium. 
To complement the main theorem of Section 2 we have the followiq inatability 

theorem. The proof is not essential to the rest of the book. .- 

Theorem Let W C E be ouen and 1: W -+ E conlinuowly diffmmfioblc. Suppan 
j(f) = 0 and 3 id a s!nbk quilibrium pmnI of the equulWn 

I' = f ( r ) .  

We any that an equilibrium 3 is hypcrbdie if the derivative Df(f) hss no 
value with real part zero. 

Corollary A hyperbdie cquil&ium painl w either UM~PMC or ~ # a ? k d i ~  

Proof of the theorem. Suppaw some eigenvalue has +tive red port; we 
shall prove f ia not stable. We may asswne f = 0, replacing f(z) by f(z - a3 
o t h e h .  By the canonical form theorem (Chapter 2 ) ,  E hsa a splitting BS & 
invariant under Df(O), such that eigenvalues of A = Df(0) I EL ell hw pc&tim 
real part, while those of B = Df(0) IE, all have negative or 0 red put. 

Let a > 0 be such that every eigenvalue of A has real part >a lhn tbae 
a Euclidean norm on E such that 

(3) (Az, 2) > a 1 I l a ,  dl 2 t El. 
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Sinlilnrly, lor any b > 0 there exists a Euclidean norm on Ex such that 

(4) (BY, Y )  < b l Y la, all y E E,, 
Wr choose b so that 

O < b < a .  

We take the inner product on E = El a E, to be the direct sum of these inner 
products on El and E,; we also use the noma associated to these inner producta 
on E,, EI, E. If z = (z, y) E Et e Ez, then I z I = (1 z I' + I y Ir)"'. 

We shall use the Taylor expansion off around 0: 

Furthermore, if (2, u) = z E u, tbenDg(z1 (f ir))  = Dgiz, Y) Udz,uJ,friz,~)) = 
(2, f,(z, y) ) - (y,, f2(z, I)) which will be positive if z E g-'(0) by (a). Thia implies 
that on a solution r(f) in U passing through the boundary of C, g is iwauinq 
since by the chain rule, (dldf) (g(z(f)) = Dg(z(t))f(z(l)). Therefore M dulion 
which &rb in  C con kme C befwe il leaves U. F i e  E gives the idea. 

Geometrically (h) implies that each vector f(z) a t  z E C points outward from 
the sphere about 0 passing through z. See Fig. F. 

f (z ,y)  = (Az + R(z,y), BY + S(z ,y ) )  = (h(z ,  y),f*(z, Y)) 

uith 

(z, Y) = z; (R(z, u), S(z, Y)) = Q b ) .  

Thus, given any t > 0, there exists l > 0 such that if U = BdO) (the ball of 
radius 6 about O), 

( 5 )  1 Q(z)  I S e 1 z 1 for s E U. 
WrdefinetheconeC= I (z ,y)  E E t e E s l I z l  ? l u l l .  

FIG. F 

Condition (b) hss the following quantitative implieation. If r = z(l) is a solution 
curve in C fl U ,  then 

BO (b) implies 

FIG. E. The mne Cis shaded 

Lemma There e&b 6 > 0 such h t  if U w fhe closed ball B'(0) C W, lhen far 
all z = (I, y) E C n U ,  

(a) (2, fi(z, Y ) )  - (Y, fdz ,  Y ) )  > 0 if z # 0, and 
(h j  there eriafa a > 0 d l h  U(z), z) 2 a 1 8 1'. 

Tlris Ir~nrna yields our instability theorem as follows. We interpret hrst condi- thus 
t i o ~ t  ill]. Ixt. g: B, X E, -+ R be defined by g(z, y) = f ( l  z 11 - I y 1'). Thm 
g is C", y ' [ O ,  m) = C ,  and rl(0) is the boundary of C. 

d 
dl 1% I 2 I' t Za, 

log I ~ ( 1 )  I' t I ' t  + log 1 4 0 )  I*, 
I z ( 0  I= 2 e- 1 z(0) 1'; 
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Thus each nontrivial solution r(t) starting in C n U moves away from 0 a t  an 
exponential rate as long ae it is defined and in C n U. 

If y(l) is not defined for all t 2 0, then, by Chapter 8, Section 5, i t  must leave 
the compact set C fl U; as we have seen above, it must therefore leave U. On the 
other hand, if y(l) is defined for all 1, it must also leave U since U ia the hall of 
radius 6 and el I r(0) I > 6 for large 1. Therefore there are solutions starting arbi- 
trarily close to 0 and leaving U. Thus (assuming the truth of the lemma), the 
vector field f does not have 0 ae a point of stable equilibrium. 

We now give the proof of the lemma. First, part (h): if (z, y) = z E C n U, 

U(z), z) = (Az, 2) + (BY, u) + (Qb),  z ) ,  

so, by (31, (4), (5): 

U ~ z ~ , z ~ 2 ~ l ~ ~ - b l u l s - ~ l ~ P .  

I n C , I z 1 1 1 u I a n d J z I ' 2 ~ ( ~ z 1 1 + ~ y ( ' )  2 t I z I s . T h u s U ( z ) , z ) 1  ( 4 -  
b/2 - e) I z 1'. We chooser > 0 and then 6 > 0 so that m = a/2 - b/2 - t > 0. 
This proves (b). 

To ch~ck  (a),  note that the left-hand side of (a) is 

(Az, r )  - (BY, u) + (2, R(z, u)) - b, S(z, Y) ), 
but 

I (2, R(2, Y) )  - (Y, S(z,  Y)) I 5 2 I (2, Q(z)) I. 
We may proeeed just as in the previous p&; finally, 6 > Ois chosen so that a12 - 
b / 2  - 2t > 0. This yields the propoeition. 

In Chapter 7 we introduced hyperbolic linear flows. The nonlinear analogue ia 
a hyperbolic equilibrium point 2 of a dynamical system I' = f (z)  ; and to repeat, 
this mc,ans that the eigenvalues of Df(2) have nonaero real parts. If these real psrte 
art. all nrgative, 2 is, of course, a sink; if they are all p i t i v e ,  2 is called a smrrel. If 
both signs occur, i is a aaddlt point. From the preceding theorem we eee that a 
saddle point is undobk. 

If Z is an asymptotic equilibrium of a dynamical system, by definition there is 
a neighborhood N of i such that any solution curve starting in N tends toward f. 
The union of all solution curves that tend toward z (as t -r w ) is called the f i n  
of r, denoted by B(2). 

It is clear that any solution curve which meets N is in B(1);  and, conversely, 
any solution curve in B(2) 'nust meet N. It follows that B(f)  is an open set; for, 
by continuity of the flow, if the trajectory of z meets N ,  the trajectory of any 
nearby point also meets N. 

Sotirt, that B(2) and B(P) are dijoint if 2 and are different asymptotically 
stahlr equilibria. For if a trajectory tends toward 2, it cannot &a tend toward P. 

If a dynamical system represents a physical system, one can practically identify 
the states in B(2) with 2. For every state in B(2) will, after a period of tmnmition, 
stay so close to 2 as to be indistinguishable from it. For some frequently occurring 

types of dynamical systems (the gradient systenls of Section 4), almast every 
state is in the basin of some sink; other states arc "improbable" (they constitute 
a set of mpasure 0). For such a system, the sinks represent the different types of 
long term behavior. 

It is often a matter of practical importancr to determine the basin of a sink t. 
For examplv, suppoar 2 raprrsmts somr dcairrd equilibrium state of a physical 
system. The extent of the basin tells us how large a perturbation from equilibrium 
we can allon. and still be sure that the system will return to equilibrium. 

We conclude thia section by remarking that James Clerk .\faxwell applied 
stability theory to the study of the rings of the planet Saturn. He decided that 
they must be composed of many small separate bodies, rather than being solid or 
fluid, for only in the former case are there stable solutions of the equations of mo- 
tion. He discovered that while solid or fluid rings were mathematically possible, 
the slightest perturbation would destroy their configuration. 

1. (a) Let i be a stable equilibrium of a dynamical system corresponding to a 
C' vector field on an open set W C E. Show that for every neighborhod 
U of Z in W, there is a neighborhood U' of i in U such that every solution 
curve r ( t )  with r(0) E U' is defined and in U' for all 1 > 0. 

(b) If i is asymptotically stable, the neighborhood U' in (a) can be chosen 
to have thc additional property that lim,-. r( t)  = f if ~ ( 0 )  t U'. 

(Hint: Considcr the set of all points of U whose trajectories for t > 0 enter 
the set U, in Definition 1 or 2.) 

2. For which of the following linear operators A  on R" is 0 € R. a stable equi- 
librium of z' = Az? 

(a) A = O  (b) 

-1 0 0 -1 0 

(d) [::I (e) [l 2 1  
2 -2 

3. Let A  be a linear operator on R" all of whose eigenvalues have d part 0. 
Then 0 E R' is a stable equilibrium of r' = A z  if and only if A is semisimple; 
and 0 is never asymptotically stable. 
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4. Show that the dynamicid system in R', where equations in polar cwrdinatea 
are 

f s i n ( I / r ) ,  r > 0 ,  

0, r = 0, 

has a stable equilibrium a t  the origin. (Hint: Every neighborhood of the 
origin contsins a solution curve encircling the origin.) 

5. Let f: R" 4 R. be C and nuppcee f(0) = 0.. If some eigenvalue of Df(0) has 
positive real part, there is a nonzero solution z(f), - .D < 1 < 0,  to z' = f(z), 
such :hat lim,,, z(1) = 0. (Hint: Use the instability theorem of Section 3 to 
find a sequence of solutions %(I), L 5 I 5 0, in &(O) with I 4 0 )  I = 6 and 
Iirn--- z s ( L )  = 0.) 

6. Let g: R" - R" be C' and suppcee j(0) - 0. If some eigenvalue of Dg(0) has 
negative real part, there is a solution g(f), 0 5 t < m,  to z' = g(z), such that 
lirn,-, g(1) = 0. (Hint: Compare previoue problem.) 

$3. Liapunov Function. 

In Section 2 we defined stability and asymptotic stability of an equilibrium .t 
of a dynamieal system 

(1) 2' - f(z),  

where f: W --r R' is a C map on an open set W C R'. If Z is a sink, stability can 
be detected by examining the eigenvaluea of the linear part Df(d). Other than that, 
however, as yet we have no way of determining stability except by actually Iinding 
all solutions to ( I ) ,  which may be difficult Y not impossible. 

The Russian mathematician and engineer A. M. Liapunov, in his 1892 doctoral 
theais, found a very uaeful criterion for stability. It is a generalization of the idea 
that for a sink there is a norm on R' auch thqt I z(1) - i! 1 decreases for solutions 
r ( 0  war t. Liapunov showed that certain other functions could be used instead 
<rl O r < .  rt<lrrn to guarantee stability. 

1r.t 1' I' -r R bc a differentiable function defined in a neighborhood U C W 
of I.  \VI, ~lr,note by V .  U -+ R the function defined by 

Here the righehand aide is simply the operator DV(z) applied to the vector 
f ( r ) .  Then if +,(z) is the solution to (1) p* though z when f = 0, 

13. LIAPUNOV TUNCTIOMI- 191 

by the chain rule. Consgluently, if ~ ( z )  is negative, then V deereases dong the 
solution of (1) through z. 

We can now state I*.punov'a stability theorem: 

Thmnm 1 Lcl i € W be on equilibrium jm (1). Lct V: U --r R be a cmlinuoy 
fundion defined a o neighborhood U C W oj  z, differdioMc a U - i, nrdr I A d  

(a) V(i )  - 0 ond V(z) > 0 if 2 # i ;  
(b) V S O i n U - 2 .  

Then f ir d l c .  Furthemuwe, if clko 
..~ 

(c) v < 0 in U - r, 

A function V aatbfying (a) and (b) is called a Liclpunm f-ia for 2. If (c) 
also hol~ls. n r  call V a strict Li:~uullov frlllcriot~. T l ~ r  ol~ly qrnillbri~~tn is the ongin 
r = y = O .  

We emphasize that Liapunov's theorem can be applied without solving the 
differential equation. On the other hand, there in no cut-and-dried method of 
finding Liapunov functions; i t  is a matter of ingenuity and trid and e m r  in -h 
ease. Sometimes there are natural functions to try. In the ease of meehsnicd or 
electrical systems, energy ia often a Liapunov function. 

Ezamplc 1 Consider the dynamical system on R' deaerihd by the system of 
differentid equations 

2' = 2y(z - I ) ,  

The r-axis (=  ((z, y, r )  ( z = y = 01) consists entirely of equilibrium points 
Let ua investigate the origin for stability. 

The linear part of the system a t  (0,O. 0) is the matrix 

There are two imaginary eigenvalues and one zero eigenvalue. AU we an eonelude 
from this is that.the origin is not a sink. 

Let ua lwk for a Liapunov function for (0, 0, 0) of the form V ( z ,  y, r )  = oi + 
by' + d, with a, b, c > 0. For such a V, 

Y = Z(atZ '+b& +ur'); 

so 
j Y  - h ( z  - I )  - bm(z - I )  - a'. 
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WP r:mt V s 0 ;  thiscan heaccomplished by settingc = 1 and2a = b.Weeonclude 
that ? + 2y' + I' is a Liapunov function; therefore the origin is a stable equi- 
librlum. Moreover, the origin isasymptoticallystable,sinmour Liapunov function 
V isclearly strict, that is. it satisfies(c) ofp.  193. 

Example 2 Consider a (constant) mass m moving under the influence of a 
conservat~vr force field -grad .(I) defined by a potential function O: W, 4 R 
on an opcn set W .  C R'. (See Chapter 2.) The corresponding dynamieal aystem 
on thr state space W = W. X R' C R' X R' is, for (I, v )  E W. X R': 

Let (i, i.) E W .  X R' be an equilibrium point. Then O = 0 and grad O(f) - 0. 
To investigate stability a t  ( i ,  O), we try to use the total energy 

to construct a Liapunov function. Since a Liapunov function muat vanish a t  
( i ,  O ) ,  we subtract from E(z,  v )  the energy of the state (J ,  O), which is O(i ) ,  and 
define V :  W ,  x R' -+ R by 

BY runsrrvation of energy, V r 0. Since JmZ > 0, we assume O(r) > Ofi) for 
I nmr  i. I # i, in ardrr to make V a Liapunov function. Thrrefore we have proved 
tllc. u. il-ht~onn theorem of Lagrangc: an equilibrium ( i ,  0) oJ aconperwztiw Joru 
.ii~./O 5 .  s l < z l ~ / v  if /he polenlial energy has a local abaolule minimum a1 Z. 

Prooj of Liapunov's theorem. Let 6 > 0 be 80 small that the closed bail 
El(*) around i of radius 6 lies entirely in U. Let a be the minimum value of V 
on thr boundary of El(*), that is, on the sphere &(f)  of radius 6 and center i. 
Then a > 0 by (a).  Let U ,  = 1 1  E B,(i) I V(r) < a ) .  Then no solution starting 
in I : ,  can meet &(I;) since V is nonincreasing on solution curves. Hence every 
solution starting in (1, nrvrr leaves B,(i). Thii proves f is stable. Now w u m e  
( r  holds as well, so that V is strictly decreasing on orbits in U - f .  Let z(1) be a 
s u l u t i ~ a ~  st:~rting in ('I - i and wpposr r(t.) 4 r. € El(*) for some sequence 
1. - = , YII(.II a scqupnc? exis& by eornpactnm of Bs(2). We assert 2. = J. To see 
t l i t s .  I J I L I ~ T V ( ~  that V(z(1)) > V(s)  for all t >_ 0 since V(r(1)) decreases and 
I ' ! J ( ~ . )  1 - V ( s )  by continuity of V. If r, # i ,  let z(1) be the solution starting 
at 20. For an? s > 0, we have V(z(s)) < V(r,). Hence for any solution y(s) starting 
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sufficiently near r, we have 

V ( Y ( ~ ) )  < V(r,); 

putting y(0) = ~(1.) for sufficiently large n yields the contradiction 

V(I(t .  + 8 ) )  < V(r,). 

Therefore r, = 9. This proves that Z is the only possible Limit point of the set 
( ~ ( 1 )  I 1 2 0 ) .  Thin completes the proof of Lispunov's theorem. 

FIG. A. h v e l  sudsees of s Liapunov function 

Figure A makes the theorem intuit~vely obvious. The condition 5 0 meana 
that when a trajectory crasses a "level surface" V-'(c), it movea inside the set 
where V 5 c and can never come out again. Unfortunately, it is difficult to justify 
the diagram; why should the sets V-'(c) shrink down to i ?  Of wurse, in many 
cases, Fig. A is indeed corrmt; for example, if V is a positive definite quadntic 
form, such as 9 + 2y2. But what if the level surfaces look like Fi. B? It  is hard 
to imagine such a V that fulfills all the requirements of a Liapunov function; but 
rather than trying to rule out that possibility, it is simpler to give the analytic 
proof as above. 

Liapunov functions not only detect stable equilibria; they can be used to esti- 
mate the extent of the basin of an asymptotically stable eqdibrium, as  the follow- 
ing theorem shows. In order to state it, we make two definitions. A set P is p~'lialy 
inuarianl for a dynamical system if for eaeh z in P, +, ( r )  is defined and in P for dl 
1 > 0 (where + denotea the flow of the system). An entire orbit of the sys(em is a 



set of the form 

l+,(z) I t  E RJ, 

~ r h e r ~  +, ( r )  is defined for all f E R. 

Theorem 2 Let Z 6 W be a n  equiltbrium of the dynamicol system (1) and let V: 
I1 - R be a Liopunm Junction for i, U a neighborhood of$. Let P C U be a neighbor- 
hood of i which is closed in W. Suppose thol P w poaitivcly itworiant, and Ulal lhm 
ts no entire orbit in P - 3 on whieh V w cmlanl .  Then Z is asyrnptolicdly eta&, 
and P C B (Z). 

Before proving Theorem 2 we apply i t  to the equilibrium Z = (0, 0) of the 
pradulum discussed in Section 1. For a Liapunov function we try the total energy 
E ,  which we expect to decrease along trajectories because of friction. Now 

E = kinetic energy + potential energy; 

kinetic energy - +d 

For potential energy we take mass times height above the loweat point of the circle: 

Thus 

Then 

potential energy = m(l - I ccm 0) 

E = ) m P d + m l ( l  -ccaO) 

= ml(+lu'+ 1 - cos0). 

k = ml(hf + 8' sin 0) ; 

using (3) of Section 1 thin simplifies to 

8 = -kPd. 

Thus 8 _< 0 and E(0,O) = 0, ao that E is indeed a Liapunov function. 
To estimate the bssin of (0, O), fix a number c, 0 < c < Zml, and define 

PC = ((8, w )  I E(0, w) 5 c and 10 1 < T I .  
Clt.nrl?, (0. 0) t P,. We shall prove P. C B(0, 0). 

1'. is pc,sitively invariant. For sup- 

is a traj?rtory with (0(0), ~ ( 0 ) )  E Pe. To nee that (O(Q), w(a)) E P<, observe 
that E(O(a), w(a)) < c since k < 0. If I O(Q) ( 2 r, there must exist a malleat 

$3. LIAPUNOV PUNenDNB 

lo E [0, a] such that O(0  = *r. Then 

E(O(b), 4 4 ) )  = E ( f  r ,  *(lo)) 

= m1[1h(b)' + 21 
2 2ml. 

But 
E(O(b)), 4 4 ) )  5 c < 2ml. 

This contradiction shoes that @(a) < r, and so P. is positively invariant. 
Wc awert that P, fulfills the second condition of Theorem 2. For suppose E is 

constant on a trajectory. Then, along that trajectory, 8 = 0 and sou = 0. Hence, 
from (3) of Section I ,@'  = 0 so 0 is constant on the orbit and also ain 0 = 0. Since 
I 0 I < r, it follows that 8 = 0. Thus the only entire orbit in PC on which E is con- 
stant is the equilibrium orbit (0, 0) .  

Finally, P. is a closed set. For if (0.. m) is a Limit point of PC, then 1 0. 1 I r ,  
and E(*, *) 5 c by continuity of E. But I 8, I = r implies E ( I ,  u*) > c. Hence 
1 0. I < r and BO (00, wo) E PC. 

From Theorem 2 we conclude that each PC C B(0,O) ; hence the set 

P = U I P c l 0 < c < Z m l l  

is contained in B(0,O). Note that 

P = ((8, W) I E(8, o )  < 2ml and l 01 < *I. 
This result is quite natural on physical grounds. For 2ml is the total energy of 

the state ( r ,  0)  where the bob of the pendulum is balanced above the pivot. Thus 
if the pendulum is not ~ointing straight up, and the total energy is l e a  than the 
total energy of the balanced upward state, then the pendulum wi l l  @dually 
approach the state (0,O). 

There will be other s t a t a  in the hmin of (0, 0) that are not in the net P. Con- 
Bider a state (r, u),  where u is very small but not zero. Tben (r, u) 4 P, but the 
pendulum moves immediately into a state in P, and therefore a p p ~ h e a  (0, 0). 
Hence ( r ,  u) E B(0,O). See Exercises 5 and 6 for other examples. 

Prmf of Thoorcrn 2. Imagine a trajectory z(t), 0 5 t < w , in the pog'tidy 
invariant set P. Suppose z(t) does not tend to Z as t -+ m .  Then there must be a 
point a # rl in P and a sequence L -+ m such that 

If a = V(a) , then a is the greatest lower bound of I V(z(t)) 1 I 2 0 )  ; thia f0U0- 
from continuity of V and the fact that V decreases along trajedories. 

Let L be the set of all mch points a in W: 

L = ( a  6 W I there exist L -r m with z(L) 4 51, 



where r(1) is the trajectory postulated above. Since every point of L in a limit 
of points in P, and P is cloaed in W, i t  followe that L C P. Moreover, if a E L, 
t h ~ n  the rntire orbit of a is in L; that is, &(a) is defined and in L for dl t E R. 
For +,(a) is defined for all 1 > 0 since Pin positively invariant. On the other hand. 
each point + , ( z ( l ) )  in defined for all 1 in the interval [-L, 01; since r(L) --t a 
and we may assume 1, < $ < . . . , it follows from Chapter 8 that +,(a) ie d e h e d  
for all 1 E [-L, 01, n = 1,2, . . . . Since -L - - m,  +,(a) in defined for dl t < 0. 
To see that +.(a) E L, for any particular a E R,  note that if r (L)  a, them 
r( tm + 8) ++.(a). 

We reach a contradiction, for V(a) = a for dl a E L; hence V in c o ~ t a o t  on 
an pntire orbit in P. This is impossible; hence lim,,. r ( l )  = f for all trajectories 
in P. This proves that i is mymptotically stable, and dao that P C B(d). This 
completes the proof of Theorem 2. 

  he' set L defined above is d l e d  the set of d i n i t  or the d i m i t  rcl, of 
the trajectory r ( t )  (or of any point on the trajectory). S i m k l y ,  we define the 
set of a-limit poi&, or the a-limit set, of a trajectory y(1) tqbe the set of all points 
b such that lim.-. y ( ~ )  = b for some sequence L - - m. (The reason, such M 

it is, for this terminology is that a is the finrt letter and o the lsst letter of the 
Greek alphabet.) We will make extensive use of .these concepts in Chapter 11. 

A set .4 in the domain W of a dynamical system is invclrianl if for every I E A, 
+,I.) is drfined and in A for all 1 E R. The following facts, e n t i a l l y  proved in 
thr pro<tf of Theorem 2, will be used in Chapter 11. 

Proposition The a-l in~ilsdand the *limit setofa t r n j e h y  whichis&fittedfmd 
t E Rare closed invariant sets. 
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The total energy E is a Liapunov function for the corresponding first order 
system 

2' = y, 

Y' = - 9 ( r ) ;  

E is kinetic energy plus potential energy, and the potential energy a t  z E R 
is the work required to move the mass from 0 to 2.) 

4. In Problem 3 suppose also that there is a frictional force opposing the motion, 
of the form -f(z)v, f(z) t 0, where v is the velocity, and z the position of the 
particle. If J-'(0) = 0, then (0, 0) is aqymptotieally stable, and in fact cary 
trajectory tends toward (0, 0) .  

5. Sketch the phsse portraita of 
(a) the pendulum with friction (see also Problem 6) ; 
(b) the pendulum without friction. 

6. (a) For the frictional pendulum, show that for every integer n and every 
angle Bo there ia an initial state (4, ub) whose trajectory tends toward 
(0, O), and which travels n times, but not n + 1 times, around the circle. 

(b) Discuss the set of trajectories tending toward the equilibrium (r, 0). 

7. Prove the following instability theorem: Let V be a C real-valued function 
defined on a neighborhood U of an equilibrium i of a dynamical system. 
Suppose V(Z) = 0 and V > 0 in U - z'. If V(z.) > 0 for some sequence I. - z', then z' is unstable. 

8. Let V be a strict Liapunov function for an equilibrium r of n dvnamid avstem. 
Let c > 0 be such that V-'CO, c] is compact -and contains no other equilibrium. 
Then V-'[O, c] C B(Z).  

PROBLEMS 
04. Gradient Systems 

1. Find a strict Liapunov function for the equilibrium (0, 0) of 

2' = -22 - 3. 

Find d > 0 as large a8 you can such that the open disk of radiun 6 and center 
(0, 0) is contained in the baein of (0,O). 

1. Divcuss the stability and baaina of the equilibria of Example 1 in the text. 

3. A particle move on the straight h e  R under the influence of a N c v t o h  
force depending only upon the position of the particle. If the force in almya 
directed toward 0 E R, and vaniahea a t  0, then 0 in a stable equilibrium. (Hint: 

A gradiml ayalem on an open set W C R" is a dynamical system of the form 

(1) = - grad V(z), 

where 
V: U - R  

is a O function, and 

is the gradient vector field 
grad V: U -+ R. 



of V. (The neative sign in (1) is traditional. Note that -gradV(z)  = 
grad(-v(=)) . )  - 

Gradient systerrm have special properties that make their flows rather simple. 
The following equality is fundamend: 

This says that the derivative of V a t  z (which is a line& map R" -+ R) ,  evaluated 
on y E Rm, given the inner product of the vector8 grad V ( t )  and y. To prove (2), 
we obsewe that 

which is exactly the inner product of grad V(z) and y - (yt, . . . , us). 
Let V:  U --t Rm be the derivative of V along trajectories of (1) ; that is, 

Theorem 1 V(z) 5 0 for all z E U; and ~ ( r )  = 0 if and only if z is  a n  cpui- 
librium of ( I ) .  

Proof. By the chain rule 

V(z) = DV(z)zf  

= (grad V(z) ,  -grad V ( z ) )  
by (2) ; hence 

V(z) = - 1 grad V(r )  1' 
This arovps the theorem. 

Corollary Let 5 be a n  isolated minimum of V. Then 2 is a n  craymplolicoUy stable 
~ q ~ c ~ l ~ h r z , r n ~  of the gradient system z' = -grad V(r ) .  

this kernrl is the (n  - 1)dimeasional subspace of vectors perpendicular to grad 
V(u) (translated parallelly to u) .  Therefore we have ahown: 

Theorem 2 At regular poinls, Lhe veclor J~?M -grad V(z) ia perpendiah Lo Ulc 

level mrfaces of V. 

Note by ( 2 )  that the nonregular or ctiticd points of V are precisely the equi- 
librium points of the syatem (1). 

Since the trajectories of the gradient system (1) are tangent to --gad V(r) ,  
we have the following geometric description of the flow of a gradient system: 

Theorem 3 O t  
z' = -grad V(r)  

be o g r a d i d  system. A t  r&w poinls the LrojcUorics rrma k d  ~ ( U U  ortlbgmdly. 
lvonregular poinls ore cpudhia of the system. Isdalcd m i n i m  ore a 8 p p M i d l y  
sloble. 

Ezomple. Let V: R' -r R be the function V(I, y) = i ( r  - 1)' + y'. Then we 
have, putting z = ( r ,  y) :  

Prwj. I t  is easy to verify that the function r -+ V(z) - V(Z) is a strict 
The study of this differential equation starts with the equilibrh. These an 

Linpunov function for 5, in some neighborhood o f f .  
To understand a gradient flow geometrically one looks a t  the lcuel arrfma of found by setting the righehand sides equal to 0, or - 2 r ( z  - 1) (2z - 1)  - 0, 

-2y = 0. 
the function V: U -+ R. These are the subsets V-'(c), c E R. If u E V-'(c) is a 
reyular pm'nt, that is, grad V ( r )  # 0, then V-'(c) looks like a "surface" of dimen- We obtain precisely three equilibria: zr = (0, O), ql = (4, O), +m - (1,O). To 
sion n - 1 near z. To eee this, assume (by renumbering the coordinates) that check their stability properties, we compute the derivative Df(r) which in 

ordinates is 
JV/dr.(u) # 0. Using the implicit function theorem, we find a function g: 
RS-I -+ R such that for r near u we have identically 

V ( e ,  . . . , 2.-1, g(zr,. . . , 2.-8)) = c; 

hence near u, V-'(c) looks Like the graph of the function q. 
T ~ P  tnngrnt plane to this graph is exactly the kernel of DV(u) .  But, by ( Z ) ,  

1; ( -2z(r  - 1) (2z  - I ) )  
01 



Y/ 
FIG. A. G r v h  of V - z'(r - 1)' + yl 

I<r-iilu:~ting this a t  the three equilibria gives: 

\VP ronc~lude from the main result on nonlinear ainks that a, zIll are sinks wbile zn 
is x saddk,. By the theorem of Section 2, z,, ia not a Btable equilibrium. 

The graph of V looks like that in Fig. A. The curves on the graph represent 
intrrsrctions with hori~ontak phnea. The level "Burfaces" (curves, in thb ease) 
look like those in Fig. B. Level curves of V(z, y) = $(I - I)' + yl and the phase 

FIG. C. Level cum- of V(r, y) and gradient line of (r', y') - -grd V(r, I) 

portrait of (I', y') = -grad V(r, y), superimposed on Fig. B, look like Fii. C. 
The level curve ehaped like a reclining figure eight is V-I(*). 

More information about a gradient flow is given by: 

Theorem 4 Lcl z be an d i m i !  point m an d i m i t  point (SedMn 3)  of a hjedmy 
of a gradienl ,¶ow. Then z is an cquilhium. 

Proof. Suppoae z ia an vrlimit point. As in the proof of Themem 2, &don 3, 
one shows that Via constant along the trajectory of z. Thua V(z) - 0; by Theorem 
1, z in an equilibrium. The ease of d i m i t  points ia similar. In fact, an *limit point 
zof z' = -grad V(z) iaandirnitpointof z' = grad V(z), whencegsd V(z) = 0. 

In the case of isolated equilibria this result implies that an orbit must either run 
off to infinity or eke tend to an equilibrium. In  the example above we see that 
the sets 

V-I([-c,c]), c E R ,  

are compact and positively invariant under the gradient flow. Therefore each 
trajectory entering such a set k defined for d l  t t 0, and tend6 to one of the three 
equilibria (0, O), (1, O), or (f, 0). And the trajectory of every point doen enter 
such a set, aince the trajectory through (2, y) enters the eet 

The geometrical analysis of this flow is completed by observing that the line 
I = f ia made up of the equilibrium (t,0) and two trajectorien which approach 
it, while no other trajectory tends to (:. 0). This is becausr the derivative with 
respect to 1 of I z - + 1 i8 positive if 0 < I < : or : < I < 1, as a computation 
ahows. 

We have ahown: trajectorien to the left of the line z = f tend toaud (0, 0) 
(as 1 -+ +-); and trajectories to the right tend toward (1, 0). Tmjectwies on 
the line 2 = t tend toward ( f ,  0). This gives a decription of the haioa of the 
equilibria (0,O) and ( I ,  0). They are the two half planes 

FIG. B. Level curvaa of V(z, y). 
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PROBLEMS 

9. STABILITY OF EQUILIBRIA 

1. For each of the following functions V(u), sketch the phase portrait of the gradi- 
ent flow u' = -grad V(u). Identify the equilibria and clasaify them aa to 
stability or iastsbility. Sketch the level surfaces of V on the same d i m .  
(a) 2' + 2 P  (h) 2 ' - y ' - 2 ~ + 4 y + 5  
(c) y sin z (d) 22' - 2224 + 5y' + 42 + 4y + 4 
(P) p + y r - z  (f) z'(z - 1) + P ( Y  - 2) + f 

L Suppuuse a dynamical system is given. A trajectory z(l) ,  0 < 1 < m,  is called 
recurrenl if ~ ( 1 . )  --r z(0) for some sequence L -t m. Prove that a gradient 
dynanlical syatem hss no nonconstant reewrent trajectories. 

3. Let V: E -. R be C and  upp pose V-'(- m, c] is wmpact for every c E R. 
Suppow aleo DV(z) Z 0 except for a finite number of points p,, . . . , p.. Prove: 
(a) Every mlution z(t) of z' - -grad V(z) is defined for all 1 2 0; 
(b) li,. s( t )  exists and equals one of the equilibrium points pt, . . . , p., 

for evey solution z(1). 

$5. Gradients end Inner Pmducts 

tlrrc we treat the gradient of a real-valued function V on a vector space E 
~u~uippcd with an inner product ( , ). Even if E is R', the inner product might 
not be the standard one. Even if i t  is, the new definition, while equivalent to the 
old, has the advantage of being coordinolc free. A s  an application we study further 
the equilibria of a grndient flow. 

We define the d u d  of s (real) vector space E to be the vector space 

E* = L(E, R) 

of all linear mapa E --t R. 

Theorem 1 E* is isommphu lo E and UMls baa Ute Mame d i m m s h .  

Pr wj .  Let let, . . . , e.) be a bask for E and ( , ) the induced inner product. 
Thrn define u: E -+ E* by z + u. where &(y) = (2, y). Clearly, u is a linear map. 
Also, u, # 0 if z # 0 since u.(z) = (z, z )  # 0. It remains to show that u is aur- 
jective. Let v € F and v(ei) = I d .  Define z - C l,ci, m u.(ed = (er, C lie,) = 
m d  u, = v. Thin proves the t h w m .  

Since E and F have the same dimension, any n, ED hss a basis of n elements. 
If (e l ,  . . . , e,l = (B is a basis for E, they determine a basis (e:, . . . , e:) = 6. 
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for P by defining 
e f : E - t R ,  

for i ,  j = 1, . . . , n. Thus ef is characterized by 

e:(ei) = 6,). 

(B* is called the basis dual to a. 
Now suppose 6 is given an arbitrary inner product ( , ). We define an ~soeiated 

map Q: E -+ E* (as in Theorem 1) by Q(r) (y) = (I, y). Clearly, is an b 
morphiam by Theorem 1, since its kernel is 0. 

Next, let V: W -+ R be a wntinuously differentiable map defined on an open 
aet W C E. The derivative of V is a continuous map 

DV: W + L(E, R) = E*. 

A map W -+ F is d l e d  a 1-form on W. An ordinary differentid equation is the 
same as a vector field on W, that is, a map W --r E. We use F': .P --r E to con- 
vert the 1-form DV: W + P into a vector field grad V: W -+ E: 

Definition grad V(z) = ~ ~ ( D v ( z ) ) ,  E W. 

From the definition of Q we obtain the equivalent formulatinn 

(1) DV(z)y = (grad V(z),  y )  for all y E E. 

The reader can verify that if E = Re with the usual inner product, &,, thj., defini- 
tion of grad V(z) is the same as 

We now prove some reaulte of the preceding seetion concerning the differential 
equation 

(2) Z' = - grad V(z) ,  

using our new definition of grad V. 

Theorem2 LclV: W - r R h a C j u t l U M n ( U l a l i s , D V : W + E ? u O ; o r V h  
confinurma accond parlid d e r k d i v c s )  a an open set W in a ueclor spou E d on 
inner produd. 

(8) i ia an equilibrium point oj the differenlid Wia (2) if end mJy if 
D V ( i )  = 0. 



(b) I f  t ( 1 )  w a aolulirm 01 ( 2 ) ,  lhol 

d 
- V ( z ( 1 ) )  = - 1  grad V ( r ( 1 ) )  1'. 
dl 

(c )  I f  z ( l )  is no1 crmsfanl, Utm V ( r ( 1 ) )  w a dccreuuing function of 1. 

Proof. Since V is C, the right side of (2) is a C function of I ;  therefore the 
banic uniqueness and existence theory of Chapter 8 applies to ( 2 ) .  

By the delinitions -grad V ( 5 )  = 0 if and only if DV(.t) = 0, since +: E -+ E* 
1s a linear isomorphism ; this proves (a). To prove (b) we use the chain rule : 

= D V ( z ( l ) )  (-grad V ( z ( l ) )  ; 
by (1) this equals 

(grad V ( z ( L ) ) ,  -grad V ( r ( 1 ) ) )  = - 1  grad V ( r ( 1 ) )  1'. 
If ri0 is not constant, then by (a),  grad V ( r ( 1 ) )  # 0 ;  so (b) implies 

d 
- V ( z ( 1 ) )  < 0. 
dl 

This proves (c). 

The dual vector space is also used to etudy linear operators. We define the 
mijoint of an operator 

T : E - + E  

(where E han some Iixed inner product) to be the operator 

T*: E -4 E 
defined by the quality 

( T I ,  Y )  = (t, T V )  

for all r, y in E. To make sense of this, first keep y fixed and note that the map 
I -+ (Tr, y )  is a linear map E -+ R; hence it defines an element A(y) E P. We 
define 

Toy = 4-'A(y), 
where 

+: E -+ E* 

is the isomorphism defined earlier. I t  ia easy to see that T* is linear. 
If @ is an orthonormal basis for E,  that is, @. = [el, . . . , e.1 and 

b c  C I )  = 6i1, 

then the @-matrix of T* tumn out to be the transpcee of the @-matrk for T ,  as is 
easily verified. 

w. ORADlENTB AND INNER PRODUClB 

An operator T E L ( E )  ia sclfddjoinl if T* = T ,  that is, 

(Tz ,  Y) = ( I ,  T y ) ,  for all I, y E E 

In an orthonormal bask this means the matrix [asj] of T is synmehi, that ia, 
- ,, - aji. 

Theorem 3 Lcl E be a rml mlor a p a u  with an inner prcducl and icl T be a 4- 
adjoin1 operalor on E. Then Ulc tignwduea of T are real. 

Proof. Let Ec be the complexification of E. We extend ( , ) to a function 
Ec X Ec -+ C as follows. If z + iy  and u + iu are in Ec, define 

(r + iy, u + i u )  = ( I ,  U )  + i ( ( y ,  U )  - (2, v ) )  + b, v). 

It is essy to verify the following for all a, b E Ec, A E C :  

(3) (a, a )  > 0 if a # 0. 

(4) A(a, b )  = (Aa, b )  = (a, Xb), 

where - denotes the complex conjugate. 
Let Tc: Ec -+ Ec be the complexifieation of T ;  thua T c ( z  + i y )  - Tz + i ( T y ) .  

Let (T*)c  be the complexifieation of T*. I t  is essy to verify that 

( 5 )  (Tea, b )  = (a, (T*)cb). 

(Thin is true even if T is not self-adjoint.) 
Suppose A E C is an eigenvalue for T and a E Ec an eigenveetor for A ;  then 

Tca = Xa. 
BY (5) 

(Tea, a )  = (0, (T*)ca)  

= (a. Tca). 
since T* = T.  Hence 

(Aa, a )  = (a, Aa). 
But, b.v (4), 

A(a, a )  = (Aa, a ) ,  
while 

X(a, a )  = (a, ha); 
so, by ( 3 ) , A  = Xandkiareal. 

Corollary A symmclric real n X n malrir has real tigmyaluea. 

Consider again a gradient vector field 

F ( z )  = -grad V ( z ) .  
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l,'q,r siuq,l~rity WP assume the vector space is k, equipped with the usual inner 
pnxtnrt. 1r.t i be an equilibrium of the system 

z' = -grad V(z) 
The operator 

D F ( I )  
has the matrix 

in thr standard basis. Since this matrix is 8ymmetric, we conclude: 

Theorem I A1 an equilibrium of a gmdictll a y a h ,  the eigcnudued are red 

This throrrrn is also true for gradients defined by arbitrary inner products. 
For example, a gradient system in the plane cannot have spirals or centers a t  

equilibria. In fact, neitber can it have improper nodes beesnne of: 

Theorem 5 Iat E be a rcd veclm apace m.th an i n w  prcducl. T h  any elf- 
adjm',il operalor on E can be d i a q d u e d .  

Proof. Let T: E - E bo selfadjoint. Sinae the eigenvalur,s of T arc rral, there 
is a nonzero veetor 6, E E such that Tc, = Ale,, XI E R. Let 

El = ( z  E E 1 (r, el) = 01, 

the orthogonal complement of e,. If t E Et, then Tz E El, for 

(Tz, el)  = (z, Te,) = (z, he,) = A(Z, el) = 0. 

Hence T Iqavea El invariant. Give El the same inner product aa E;  then the operator 

is self-adjoint. In the aame way we find a nonsem vector 4 E EI such that 

Te, = A*; A, E R. 

Note that el and e, sre independent, since (el, 4) = 0. Continuing in this way, we 
find a maximal independent set (8 = (el, . . . , esJ of eigenvectors of T. These must 
span E, othenvise we could enlarge the set by looking a t  the reatriction of T to 
the subapace orthogonal to a, . . . , c.. In thin basis cB, T is diagonal. 

PROBLEMS 

1. Find an o r t h o n o d  dkgonalizing basis for each of the following operators: 

1 2 -1  

2. Let A be a self-adjoint operator. If z and y are eigenvectws belo- ta 
different eigenvaluea then (2, y) = 0. 

3. Show that for each operator A of Problem 1, the vector field z - A r  is the 
w e n t  of mme function. 

4. If A is a symmetric operator, show that the vector field z + A r  is the g d i e n t  
of mme function. 

A atatanent and proof of the implicit function theorem used in Section 4, is 
given in Appendix 4. See P. Halmna' Fin& DinteMiaal Vedor Spaced [a] for a 
mnre extended treatment d self-adjoint linear operators. One can find more on 
Liapnnov theory in IaSdle and Lefschets's Stability by LiapuMds Dired M e W  
with Applimtions [14]. Pontryagin's text [lo] on ordinary differential equations 
is recommended; in particular, he has an interesting application of Liapunov 
theory to the study of the governor of a steam engine. 

We have actually proved more. Note that a, . . . , c. are mutually or thogod;  
and wc, ran take them to have norm 1. Therefore a ~ a d j m ' n l  opcraf~~ (or a a y -  
melnc malriz) can be diaqandiud by an abnormal boais. 

For gradient systems we have proved: 



Chapter 10 
Diferential Equations 

for Electrical Circuits 

First n simple but very basic circuit example is described and the differential 
equations governing the circuit are derived. Our derivation is done in such a way 
that the ideas extend to general circuit quations. That in why we are so careful 
to ~nakr thr maps explicit and to deacribe preeieely the sets of staten obeying 
physical laws. This is in contrast to the more typical ad hoe approach to nonlinear 
circuit theory. 

The equntions for thin example are analysed from the purely mathematical 
noint of view in the next three sections: these are the claesical equations of Lienard 
ind Van der Pol. In particular Van der  pol'^ equation could perhapa be regarded 
as the fundamental example of a nonlinesr ordinary differential equation. I t  
possesses an oscillation or periodic solution that is a periodic attractor. Every 
nontrivial solution tends to thin periodic solution; no linear flow can have this 
property. On the other hand, for a periodic solution to be viable in applied mathe- 
matics, this or some related stability property must be satisfied. 

The construction of the phase portrait of Van der Pol in Section 3 involves 
some nontrivial mathematical arguments and many readers may wish to skip or 
postpone this part of the book. On the other hand, the methods have some wider 
use in studying phase portraits. 

Asymptotically stable equilibria connote death in a system, while attracting 
oscillators connate life. We give an example in Section 4 of a continuous transition 
from one to the other. 

$1.  AN RLC CIRCUIT 

$1.  An RLC Circuit 

We give an example of an electrical circuit and derive from it a differential 
equation that shows how the state of the circuit varies in time. The differential 
equatirrn is analyzed in the following section. Later we shall describe in greater 
generality elementa of the mathematical theory of electrical circuite. 

Our discussion of the example here is dune in a way that extends to the more 
g~nrlral case. 

The circuit of our example is the simple but fundamental aeries RLC circuit in 
Fig. A. We will try to communicate what this means, especially in mathematid 
terms. The circuit has three bratuhes, one resistor marked by R, one inductor 
marked by L, and one capacitor marked by C.  One can think of a branch as being 
a certain electrical device with two terminals. In the circuit, branch R has terminals 
a, B for example and these terminals are wired together to form the points or 
node8 a, 8, r. 

The electrical devices we consider in this bwk are of the three types: reaistom, 
inductors, and capacitors, which we will characterize mathemat idy shortly. 

In the circuit one has flowing through each branch a current which is m d  
by a real number. More precisely the currents in the circuit are given by the three 
numbers in ,  i ~ ,  ic; i~ measure? the current through the resistor, and so on. Current 
in a branch is analogous to water flowing in a pipe; the corresponding measure for 
water would be the amount flowing in unit time, or better, the rate a t  which water 
passes by a fixed point in the pipe. The arrows in the diagram that orient the 
branches tell us which way the current (read water!) is flowing; if for example ir 
is positive, then according to the arrow current flows through the resistor from 
B to a (the choice of the arrow8 is made once and for all a t  the atan).  

The state of the currents a t  a given timr in the circuit is thus r e p r ~ n t e d  by a 
point i = ( i ~ ,  i ~ ,  i ~ )  E R*. But Kirchhof's current law (KCL) saya that in d t y  
there is a strong restriction on what i can occur. liCL asserts that the total current 

In Section 5 we give an introduction to the mathematical foundations of elec- 
trical circuit thwry, especially oriented toward the analysis of nonlinear circuits. 

FIG. A 
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flowing into a node is equal to the total current flowing out of that node. (Think of 
tho water analogy to make this plausible.) For our circuit this is equivalent to 

KCL: in = iL = -ic. 

TKL? dpfines a one-dimensional subspace Kt of R1 of physiwl nrnd states. Our 
choirr of orientation of the capacitor branch m y  seem unnatural. In fact the 
orirntations are arbitrary; in the example they were chosen so that the equations 
eventually obtained relate mast directly to the history of the subject. 

The state of the circuit is characterized by the current i together with the voltage 
(or b~ t t e r ,  voltage drop) across each branch. These voltages are denoted by vn, vr ,  vc 
for the resistor branch, inductor branch, and capacitor branch, respectively. In  the 
water analogy one thinks of the voltage drop as the difference in preseures a t  the 
two ends ofa pipe. To measure voltage one plaeesa voltmeter (imagine8 water prrs- 
sure meter) a t  each of the nodm a ,  0, 7 which reads V(a) a t  a ,  and en on. Then vn 
is the differe~ice in the reading a t  a and B 

V(8) - V(a) = un. 

Thr aritmtation or arrow tells us that vn = V(8) - V(a) rather than V(a) - V(B). 
An unrestricted udloge sf& of the circuit is then a point v = (vn, VL, VC) in R'. 

Again a Kirchhofl law puts a physical restriction OD v: 

KVL: v. + VL - vc = 0. 

This defines a two-dimensional linear nubspace K, of R'. From our explanation of 
the un, v r ,  vc in t e r n  of voltmeters, KVL ia clear; that is, 

UB + UL. - vc = (V(B) - V(a)) + (V(a) - V ( r ) )  - (V(B) - V(r))  = 0. 

In a general circuit, one vereion of KVL mrta that the voltages can be derived 
from a "voltage potential" function V on the nodes as above. 

We summarise that in the product space, R' X Ra = 8,  those states (i, v) eatis- 

I "R 
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fying Mrchhofl'slawsform a three-dimensional subpace K of the form K = Kt x 
K, C R' X R'. 

Next, we give a m a t h e m t i d  definition of the three kinds of electrical deviees 
of the circuit. 

F i t  consider the resistor element. A resistor in the R branch impaees a "fune- 
tional relationship" on in, VR. We take in our example this relationship to be de- 
fined by a C1 real function f of a real variable, so that vn = ~ ( I B ) .  If R denotea a 
conventional linear resistor, then j is linear and urn = f(in) is a atatement of Ohm's 
law. The graph off in the (is, un) plane is called the churaclcrislic of the resistor. 
A couple of examples of characteristics are given in Figs. B and C. (A characteristic 
like that in Fig. C occurs in the,"tunnel diode.") 

A p h y a d  s(ole (i, u) E R' X R' = S will be one which satisfia KCL and KVL 
or (i, v) E K and also f(i,) = u,. These conditions define a subeet Z C K C I 
Thus the eel of p h y d  a@a Z is that set of points (in, ir, ic, us, v r  vc) in R' X R' 
satisfying: 

ia - i~ = -iC (KCL), 

vn + UL - vc - 0 (KVL), 

j ( i ~ )  = VI (genernlized Ohm's law). 

Next we concern ourselves with the passage in time of a state; thin defines a 
curve in the state space 8 :  

1 -+ (i(t), ~ ( 1 ) )  = (in(t), i ~ ( t ) ,  ic(t), u ~ ( t ) ,  v ~ ( t ) ,  vc(t)). 

The inductor (which one may think of as a coil; it is hard to find a water analogy) 
specifies that 

d i d 0  L -- = ~'(1) (Farsday'a law), 
dl 

where L h a positive constant d e d  the inductance. 

I I "* 
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01, thl  other hand, the capacitor (which may be thought of as two rnetd plates 
sr.paratn1 by some insulator; in the water model it is a tank) impses the condition 

whcrt. C is a positive constant called the capacitance. 
We summarize our development so far: a state of our circuit is given by the nix 

numbers ( in,  ir, ic, U R ,  UL, vC) ,  that is, an element of R' X R'. These numbers are 
subject to three restrictions: Kirchhoff's current law, Kuchhoff's voltage law, and 
the resistor characteristic or "generalized Ohm's law." Therefore the space of 
physical states is a certain subset Z C R' X R'. The way a state changes in time 
is drtcmined by two differential equations. 

Srxt .  wr simplify the state space Z by observing that iL  and vc determine the 
other furrr coordinates, since in = i~  and ic = -ir. by KCL, vn = j ( id = j ( i r )  by 
tht, genc,mlizcd Ohm's law, and u~ = vc - vn = vc - f ( i r )  by KVL. Therefore 
a-1. rnrl use R'as the state space, interpreting the wrdinates as ( i ~ ,  U C ) .  Formally, 
we define a map r: R* X R' + IP, sending (i, v) E R* X R' to ( i r ,  vc). Then we 
set ra = rr I 2,  the restriction of r to 2 ;  this map ro: Z -+ R' is one-bone and onto; 
its inverse is given by the map 9 :  R' -+ Z, 

q ( i ~ ,  U C )  = ( i ~ ,  i ~ ,  - i ~ ,  j ( i ~ ) ,  vc - VC).  

It  is easy to check that 9(ir ,  vc) satisfies KCL, KVL, and the generaliaed Ohm's 
law, so s does map R' into Z;  i t  is also easy to see that r o  and 9 are inverse to each 
othrr. 

We therefore adopt R' as our statc space. The differential equations governing 
the change of state must be rewritten in te rn  of our new coordinates ( i ~ ,  V C )  : 

di, 
L -  = v 

dt 
L =  v c -  f ( i r ) ,  

For simplicity, since this is only an example, we make L = 1, C = 1. 
If we write z  = i ~ ,  y i. VC, we have as differential equations on the ( I ,  y) Csr- 

tcsian space: 

These equations are analyzed in the following seetion. 

$2. LVALYSIS OP THE CIRCUIT EQUATIONS 

PROBLEMS 

1. Find the differential equations for the network in Fig. D, where the resistor is 
voltage controlled, that is, the resistor characteristic is the graph of a C func- 
tion 0 :  R - R, g(vm) 9 iR.  

u 
FIG. D 

?. Show that the LC circuit consisting of one inductor and one capacitor wired 
in a closed loop aseillates. 

$2. Analyais of t h e  Ciwuit  Equations 

Here we begin a study of the phase portrait of the planar differentid equation 
derived from the circuit of the previous section, namely: 

Tlris in one form of Lienard's epuolion. If f ( z )  = 1' - I ,  then (1) is a form of 
Van der Pol's equalion. 

First consider the most simple case of linear f (or ordinary resistor of Seetion I ) .  
Let / ( I )  = Kz ,  K > 0. Then ( 1 )  takes the form 

The eigenvdues of A are given by X = 1 [ - K  f (K' - 4)'n]. Since h always 
has negative real part, the zero state (0.0) is an asymptotically stable equilibrium, 
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in isrt n sink. Every state tends to zero; physically this is the diiipative effect of 
thr r~sistot.. Furthermore, one can see that (0 ,  0 )  will be a spiral pink precisely 
nhr,n ti < 2. 

S w t  rvr consider the equilibria of ( 1 )  for a general C function f .  
Thrre is in fact a unique equilibrium i of ( 1 )  obtained by setting 

Tlre matrix of first partial derivatives of ( 1 )  a t  Z is 

whose rigrnvalu~a are given by 

A = t [ - f ( 0 )  (f'(0)' - 4)lnI. 

Wc conclude that this equilibrium satisfies: 

i is a sink if f(O) > 0, 
and 

i is asourceif f ' (0)  < 0  

(we Chaptrr 9). 
In particular for Van der Pol's equation ( f ( r )  = z' - z )  the unique equi- 

librium is a source. 
To analvae 1 1 )  further we define a function W: R' -t R' by  W ( z ,  y )  = t ( Z  + . . .  

y') ; thus W is half of the norm squared. The following is simple but 
important in the study of ( I ) .  

Proposition Lel z ( 1 )  = ( z ( l ) ,  y(1)) be a solulion c u m  of LMlard'a equation (1). 
Tlirri 

Proof.  Apply the chain rule to the composition 

J L R ~ I ~ R  
to obtain 

m p p d n g  1 ,  this is equal to 

z (u  - j ( z ) )  - yz = - r f ( z )  

by ( I ) .  Here J  could be any interval of real numbers in the domain of z. 
The statement of the proposition has an interpretation for the electric circuit 

that gave rise to ( 1 )  and which we will pursue later: energy decreases along the 
solution curves according to the power dissipated in the mistor. 

In  circuit theory, a &tor whcae characteristic is the graph of j:  R - R, is 
called paasive if its characteristic is contained in the set c o n s i s t i  of (0, 0 )  and 
the interior of the first and third quadrant (Fig. A for example). Thus in the ease 
of a passive resistor - r j ( z )  is negative except when r = 0 .  

FIG. A 

I'rom Theorem 2 of Chapter 9, Section 3, it follows that the origin is aqymptoti- 
cally stable and its bssin of attraction is the whole plane. Thus the word paMivc 
correctly describes the dynamics of such a circuit. 

$3. Van der  pol'^ Equation 

The goal here is to continue the study of Lienard's equation for a certain func- 
tion j. 
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FIG. A 

This is called Van der Pol's epuation; equivalently 

dy = - = ,  

dl 

In this case we can give a fairly complete phase portrait analysis 

Theorem There is one n o n t r i d  periodic aolulia of ( 1 )  and every nonequilibrium 
solulion tends Lo lhis periodic solution. "The system oscilloles." 

\Yt. knrm from thr previous section that (2) has a unique equilibrium at  (0 ,  01, 
nnrl it is :i source. Thr next step is to show that every nonequilibrium solution 
"rutatr,~" in a certain sense around the equilibrium in a clock\vise direction. TO 
this cnd \vc divide thc ( r ,  y) plane into four disjoint regions (open sets) A,  B, 
C, Ll in Fig. A. These regions make up the complement of the curves 

(3) Y - I (z)  = 0 ,  

-1  = 0 .  

Tlrcsr curves (3) thus form the boundaries of the four regions. Let us make this 
morr prc~.isr. Dcfinp four C U I V ~  

v+ = ( ( I ,  y) 1 y > 0 ,  r = 01, 
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These curves are disjoint; together uith the origin they form the boundaries of 
the four rqiuns. 

Next r e  see how the vector field (r ' ,  y') of (1) behaves on the boundary curves. 
I t  is clrsr that y' = 0 at  (0 ,O)  and on u+ U u, and nowhrre clsr; and i = 0 exactly 
on g+ U r U (0 ,  0 ) .  Furthermore the vcctor (L' ,  y') is horiwntal on o+ u tr and 
points right on u+, and left on w (Fig. B). And (z', y') is vertical on g+ u g-, point 
ing downward on g+ and upwanl on g. In  each region A, B, C. D the signs of 
z' and y' are constant. Thus in A, for example, we have z' > 0,  y' < 0,  and so the 
vector field always points into the fourth quadrant. 

The next part of our analysis concerns the nature of the flow in the interior of 
the regions. Figure B snggesta that trajeetoria spiral around the origin clockwise. 
The nrxt two propositions make this precise. 

FIG. B 

Proposition 1 Any 1rajech-y starting on u+ mlers A. Any trajedoq alartinq in A 
meek g+; furlhenore il meeta g+ before il meeta u, r or u+. 

Proof. See Fig. B. Let ( ~ ( t ) ,  ~ ( 1 ) )  be a solution curve to (1). If ( ~ ( 0 ) .  ~ ( 0 ) )  E 
v+, then z ( 0 )  = 0 and y(0)  > 0 .  Since ~ ' ( 0 )  > 0 ,  z ( t )  increases for small 1 and 
so z(1)  > 0 which implies that y ( t )  decreases for small 1. Hence the curve enters A.  
Before the curve leaves A (if it does), z' must become 0 again, ao the curve must 
crass g+ before it meets w, g- or u+. Thus the fvst and last statements of the propo- 
Bition are proved. 

I t  remains to show that if ( ~ ( 0 1 ,  ~ ( 0 ) )  f A then ( r ( l ) ,  y ( t ) )  t g+ for some 
t > 0 .  Suppase not. 

Let P C R' be the compact set bounded by (0 ,O)  and u+, g+ and the h e y  = y ( 0 )  
as in Fig. C. The solution curve ( r ( l ) ,  y ( l ) ) ,  0 5 t < 6 ia in P. From Chapter 8. 
it follows since ( r ( t ) ,  ~ ( 1 ) )  does not meet g+, it is defined for all t > 0 .  

Since z' > 0 in A, r(1)  > a for t > 0 .  Hcnce from ( I ) ,  y'(1) 5 -a for t > 0 .  
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FIG. C 

For these values of 1, then 

This is impossible, unless o w  trajectory meets g+, proving Proposition 1. 

Similar arguments prove (see Fig. D) : 

FIG. D. Trajectorie. apiral  clock^. 

Proposition 2 Every trajectory is &fined for (al leost) dl t > 0. Ezcepl for ( 0 ,  O),  
each lrajeclmy repealcdly CTOS6M Uu Cum8 +, p, r, g-, in dodrtcise mdcr, pas& 
among the regimw A ,  B, C, D i n  cloekluiae order. 

To analyze further the flow of the Van der Pol oscillator we d e h e  a map 

0 :  v+ - v+ 
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an follows. Let p E vf ;  the solution curve 1 + & ( p )  through p in defined for all 
t > 0. There will be a d e s t  t h ( p )  = h > 0 such that +,,(p) E VC. We put a ( p )  = 
+,,(p). Thus r ( p )  in the first point after p on the trajectory of p (for t > 0)  which 
in again on VC (Fig. E). The map p --r t ,(p) in continuous; while this ahould be 
intuitively clear, it follows rigorously from Chapter 11. Hence r in also eontinuoua. 
Note that r in one to one by uniqueness of solutions. 

The importance of thin &ion map  r :  v+ --r v+ comes from ita intimate relation- 
ship to the phase portrait of the Bow. For example: 

Proposition 3 LU p € v+. Then p is a W point of r (that is, r ( p )  - p)  i f  and 
~ J Y  i f p  is on a &ic a d u t i o n o f ( 1 )  (that is, 9 , ( p )  - P f o r m  t Z 0 ) .  M o r u ~ c r  
euery periodic solution NNC me& VC. 

Proof. If r ( p )  = p, then + , , ( p )  = p, where 1, = t , (p )  ia an in the debition 
of 0.  Suppose on the other hand that o(p) # p. Let v* = v+ u (0 ,O) .  We observe 
first that r extends to a map v* + v* which is again continuow and one to one, 
aending (0, 0 )  to itself. Next we identify v* with ( y  E R I y 2 0 )  by to 
each point ib y-eoordinate. Hence there in a natural order on P: ( 0 ,  y )  < ( 0 ,  r )  if 
y < z. It follows from the intermediate value theorem that a :  Z + P is ader 
prcaknq. If r ( p )  > P,  then d ( p )  > o ( p )  > p and by induetion e ( p )  > p, 
n = 1, 2, . . .. This means that the trajectory of p never c- tre again a t  p. 
Hence +,(p) # p for all t Z 0. A similar argument applies if r ( p )  < p. MOR 
if r ( p )  Z p, p in not on a periodic trajectory. The last statement of Pmpoeitinn 3 
follows from Proposition 2 which implies that every trajectory (except ( 0 ,  0 ) )  
meeta v+. 

For every point p € VC let k ( p )  = tr be the smallest 1 > 0 such that +,(p) € P. 

Define a continuous map 

a:u++r ,  

.(P) = +<.(P). 

I"- 
FIG. E. The map r :  .+ - @*. 



See Fig. F. The map a is a h  one to one hy uniqueness of solutions and thus mono- 
tone. 

Using the methods in the proof of Proposition 1  it can be shorn that there is a 
unique p i n t  f i  E v* ouch that the solution curve 

I+I (R)  I 0  S 1  S (Y(PO)I 

intersects the curve g+ at  the point ( 1 , O )  where g+ meets the z-axis. Let r = I PO I. 
Define a continuous map 

6 : v + - R ,  

6 ( p )  = '(1  a ( p )  1' - I p  1 2 )  
where I p  I means the usual Euclidean norm of the vector p. Further analysis of 
the ROW of (1) is based on the following rather delicate result: 

Proposition4 (a) 6 ( p )  > 0 i f 0  < 1 p  1 < r ;  
(b) 6 ( p )  decrcaa~a mmtdrmcly lo - m aa 1 p  1 --. m', 1 p  1 > r .  

Part of the graph of b ( p )  an a function of I p I is shown schematically in Fig. C. 
The intermediate value theorem and Proposition 4 imply that h e  w o uniw 
cl. E v+ m'lh 6(&) = 0 .  

We will prove Proposition 4 shortly; firat we uae it to complete the proof of the 
main thmrem of this seetion. We exploit the sknv symmetry of the vector field 

glrcn by the rlghthand slde of@), namely. 

c ( - z ,  - Y )  = -l7(z, Y ) .  

'l'hli rwnns that if 1 - ( r ( l ) ,  ~ ( 1 ) )  ia a solution curve, ao is t  - ( - I . ( ( ) ,  - y ( t ) ) .  
Cantiidcr the trajectory of the unique p i n t  rl. E v+ such that 6(q0) = 0 .  Thin 
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point hss the property that 1 a(*) I - I 4% 1, hence that 

+*.(4%) = -* 
From skew symmetry we have also 

+,,(-4%) = - (-4%) = 4%; 

hence putting = 2f, > 0 we have 

+r(a) = ch. 

Thus qe lies on a nontrivial periodic trajectory 7 .  
Since 6 is monotone, similar reasoning shows that the trajectory through q,, is 

the unique nontrivid periodic solution. 
To i n v d g a t e  other traiectoriea we define a map 0:  r - v*, sending each point 

of tr to the first intersection of its trajectory (for 1 > 0 )  with v*. By symmetry 

R ( P )  = -4-P). 
Note that e = 6. 

We identify the yaxia with tbe real numbers in the y-coordhte. Thus if p, 
q E v* U ir we write p  > q if p  is above q. Note that a and 0 reveme this ordering 
while n preserves it. 

Now let P E v+, P > qo. Since a ( & )  = -cl. we have a ( p )  < -4% and ~ ( p )  > p.. 
On the other hand, i ( p )  < 0 which means the same thing M a ( p )  > - p .  There- 
fore r ( p )  = 0 a ( p )  < p. We have ehom that p  > @ implies p  > o ( p )  > % S i -  
krly r ( ~ )  > $ ( p )  > ,and by induction r ' ( ~ )  > r S + l ( p )  > a, n = 1.2, . . .. 

The sequence ~ ' ( p )  has a limit q, 2 qo in uf. Note that q, ia a fixed point of r ,  
for by continuity of m we have 

r ( q d  - q ~  = lim r ( u " ( p ) )  - ql .-- 
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Since o has only one fixed point q, = po. Thi. ahow8 that the hrrjeCfmI 01 p +r& 
tmwrdTas  1- co. T h e m e  thiegis t rueifp < h;thedetsilsareleft  to the 
reader. Since every trajectory except (0,O) meeta u+, the prwf of the main theorem 
is complete. 

I t  remains to prove Proposition 4. 
We adopt the following notation, Let 7: [a, b] - R' be a C1 curve in the plane, 

written ~ ( 1 )  = ( ~ ( r ) ,  ~ ( 1 ) ) .  If F: R' - R is C', define 

I t  may happen that ~ ' ( 1 )  + 0 for a < 1 < b, so that dong 7,  y is a function of 
I, y = y (r). In this esae we can cbenge variables: 

hence 

Similarly if ~ ' ( 1 )  Z 0. 
Recall the function 

w(z ,  I) = ( ( 9  + 9). 
Let ~ ( t )  = (I({), y(t)), 0 5 1 $ h = h(p) be the solution curve joining p E u+ 
to a (p )  E r. By definition ((p) = W(z(f,), y(l2)) - W(r(O), ~ ( 0 ) ) .  Thus 

By the proposition of Section 2 we have 

.(, = C - ~ ( l ) ( I ( l ) ~  - z(l))  dl; 

6(p) = [ z(l)*(l - z(l)-) dl. 

ThL? im~ndiately proves (a) of Proposition 4 beeawe the i n w a n d  ia positive for 
0 < r(1) < 1. 

R e  may rewrite the Isst equality as 

We restrict attention to points p E u+ with ( p I > r. We divide the corresponding 

solution e w e  7 into three curves .rt, n, 7, as in Fig. H. Then 

6 ( ~ )  = 6 1 ( ~ )  + &(P) + &(P), 
where 

Notice that dong 72, y(l) is a function of ~ ( 1 ) .  Hence 

where f (z)  = i - z. An p movea up the yaxis, y - j ( r )  inrreases (for (z, y) 
on rd. Hence 61(p) decreases as 1 p I -. O .  Similarly &(p) d e e m  M I p I -r -. 

On n, I is a function of y, and z > 1. Therefore, since dy/O - -2, 

As I P I in-, the domain [y,, y.] of inkgration beurmes stadily w. 
The function y -r z(y) depmda on p;  we write it z.(u). An I p I iDcraseq tbs 
curves -n move to the right; hence z,(y) inc- and a, %(#)(I - z,(y)') de- 
creases. I t  follows that L(p) dee- as 1 p 1 inc-; and &tlv 
~I . I - .  &(P) = - O. Thi. completes the proof of Propmition 4 
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I .  Find 1 1 1 ~  phase portrait far the differential quation 

I' = Y -J (x) ,  J ( r )  = s, 
y' = -r. 

2 Give a proof of Proposition 2. 

3. (Hartmen [9. Chapter 7, Theorem 10.21) Find the phase portrait of the 
f,lllnaing diffrrential equation and in particular show there is a unique non- 
trlvi:~l prricdic solution: 

u' = -!Ax), 

rvhrrv all of the following are sssumed: 
( i)  J ,ga r rC1;  

( i i )  g ( - r )  = -g(r) and r g ( ~ )  > 0 for all z ;r 0;  
(iii) !(-I) = - j ( r ) a n d j ( r )  < O f o r O < z  < a ;  

iiv) for r > a, j ( r )  is positive and incressing; 
(v) / ( I )  - rn BS r -+ m. 

(H8,rl Imitate thr proof of the thcorem in Section 3.) 

4. (Hard!) Consider the equation 

z f = y - J ( z ) ,  J : R + R , C ,  

Given j, how many periodic solutions does thii system have? This would be 
interesting to know for many broad classes of functions J. Good results on this 
would probably make an interesting r w c h  article.' 

04. HOPP BIWRCAnON 

5. Consider the equation 

It has a unique nontrivial periodic solution 7, by Problem 3. Show that M 

p - -, tends to the cloaed cuwe consisting of two horizontal line segments 
and two a m  on y = i - r as in Fig. I. 

44. Hopf Bifurcation 

Often one encounters a differential equation wilh parameln. Precisely, one is 
given a C1 map g,: W -+ E where W is an open set of the vector space E and p is 
allowed to vary over some parameter space, say p E J = [ - I ,  I]. Furthermore 
i t  is convenient to suppose that g, is differentiable in p, or that the map 

J X W - E,  ( $ 8 ,  2) -+ Q,(z) 
is C1. 

Then one considers the differential equation 

(1) z '=g , (z )  on W. 

One is especially concerned how the phase portrait of (1) changer as p varies. 
A value w where there is a basic structural change in this phase portrait is called 
a bifurcation point. Rather than try to develop any sort of systematic bifurcation 
theory here, we will give one fundamental example, or a realmtion of what is 
called Hopf bifurcation. 

Return to the circuit example of Section 1, where we now suppose that the 
resistor characterietic depends on a parameter r and is denoted by J.: R - R, 
- 1 < p 5 1. (Maybe p is the temperature of the resistor.) The physical behavior 
of the circuit is then described by the difierential equation on R': 

Coneider as an example the special case where J. is described by 

Then we apply the results of Sections 2 and 3 to see what h a p p e ~  M r ia varied 
from - 1 t o l .  

For eaeb p, - 1 < p < 0, the resistor is passive and the proposition of Section 2 
implies that all solutions tend asymptotically to zero as t --r -. Physiully the 
circuit is dead, in that after a period of transition all the currents and volta@a , 
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I ~ $ 0  O < p r l  
FIG. A. Bifurostion. 

stag at 0 (or as close to 0 as we want). But note that as r c m  0, the circuit 
becornrs alive. I t  will begin to o8eillate. Thia follows from the fact that the analysis 
of Section 3 applies to (2) when 0 < r < 1; in this case (2) will have a unique 
periodic solution 7, and the origin becomes a source. In  fact every nontrivial 
wIut,inn tends to 7. as 1 -+ oo. Further elaboration of the ideas in Section 3 can be - -. - . - - - . -- .- 
u s e d t o s h o w t h a t r , ~ O a s ~ - t O , r > O .  

For (Z), p = 0 is the bifurcat~on value of the parameter. The basic structure of 
the phsse portrait changes as p passes through the value 0. See Fig. A. 

The mathematician E. Hopf proved that for fairly general one-parameter families 
of equations z' = j,(t), there must be a closed orbit for r > rr if the eigenvalue 
character of an equilibrium changes suddenly a t  )r from a sink to a source. 

PROBLEMS 

1. Find all values of r which are the bifurcation pointa for the linear differential 
r,q!l:ttion: 

2. Prove the statement in the text that r, + 0 as r + 0, r > 0. 

$5. More General Circuit Equation. 

I\.? ~ i v r  here a way of finding the ordinary differential equations for a class of 
clertrirnl nrtworka or circuits. We consider networks made up of resistors, capaci- 
tors, and inductom. b i e r  we discuaq briefly the nature of these objects, called the 
branches of the circuit; a t  p r w n t  it suffices to consider them as devices with two 
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terminals. The circuit ia formed by connecting together various taminah. The 
connection pointa are called nodca. 

Toward giving a mathematical description of the network, we detine in R' a 
linear vaph which corresponds to the network. This linear graph consists of the 
following data: 

a A finite net A of pointa (called nodes) in R'. The number of nodes is de- 
noted by a, a typical node by a. 

(b) A finite set B of line aegmenta in Ra (called branches). The end points of a 
branch must be nodes. Dietinct branches can meet only a t  a node. The number of 
branches is b; a typical branch is denoted by 8. 

We aasume that each branch 6 is mierUcd in tbe sense that one is given a daon 
from one terminal to the other, say from a ( - )  terminal ,r to a (+) terminal p. 
The boundary of 8 € B is the set a8 = BL U 6 

For the moment we ignore the exact nature of a branch, whether i t  is a rexktor, 
capacitor, or inductor. 

We suppose aLso that the set of nodes and the set of branches are ordered, a, 
that it makes sense to speak of the kth branch, and so on. 

A c u r d  alafe of the network will be some point i = (it, . . . , ir) E R'wbere 
i, r e p m t a  the current flowing through the kth branch a t  a certain moment. 
In this esse we will often write d for Rb. 

The Kirchhd m r r d  law or KCL s t a t e  that the amount of current Bowing 
into a node a t  a given moment is equal to the amount flowing wt. The water 
analogy of Section 1 makes this plausible. We want to express this condition in a 
mathematical way which will be especially convenient for our development. 
Toward this end we construct a linear map d: d + D where a is the Cartesian 
space R* (mall a ia the number of nodes). 

If i € d is a current atate and a ia a node we define the ath eoodhate  of d i  E o 
t o b e  

(di). = C f.bib, 
P € B  

where 
if #+=a, 

e 4 =  -1  11. if , r = a ,  
otherwise. 

One may interpret (di). as the net current flow into node a when the drmit is in 
the current state i. 

Tharrem 1 A c u w d  alate i E d sotisfica KCL if a d  aly if di  = 0. 

Prwf. It is auffrcient to check the condition for each node a E A. Thus (do. = 
0 if and only if 

CeJir = 0, 
LC B 
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or from the definition of *.r 
C is = C is. 

# C B  a * n  . . 
6- r- 

This last is just the exprmion of KCL at  the node e. This proves the theorem. 

Next, a uoltage sldc of our network is defined to be a point s = (u,, . . . , ub) E Rb, 
where in this context we denote R' by U. The kth coordinate uh represents the 
voltage drop across the kth branch. The KirchhoB voltage law (KVL) may be 
stated as asserting that there is a real function on the set of nodes, a voltage polenlid 
(given. for example, by voltmeter readings), V: A -+ R,  so that us = V(V)  - 
V ( b )  for each (J E 8. 

To r ~ l a t e  KCL to  KVL and to prove what is called Tdlegen's theorem in net- 
rc,rk thmry, r e  make a short excursion into linear algebra. Let E, F be veetor 
spares \vhose dual vector spaces (Chapter 9) are denoted by E*, F* ,  respectively. 
If u:  ti - F is a linear transformation, then its adjoin1 or dual is a linear nlap 
u*: F* - E* defined by u*(x) (y) = z(u(y)), where I E F* ,  y t E. (Here u8(r) 
is an elrmrnt of E' and maps E - R.) 

Now let + b e  the natural bilinear map defined on the Cartesian product vcctor 
space E X Eo with values in R:  if (e, e*) t E X EL, then +(e, e') = e*(e). 

Pmposition Let 11: E - F be a linear wmp and let K = (Ker r c )  x ?In? rc'l C 
E x E' Then 4 IS zero on K. 

P r o o f .  Ifit ( P ,  e*) C K so that u(e) = 0 and e* = u'y for some y E F*. Then 

4(e, e') = +(e, uWy) = (uWy)(e) = y(u(e))  = 0. 

This pnlvcs the proposition. 

Remark. A further argument shows that dim K = dim E. 

We return to the analysis of the voltage and current states of a network. I t  
turns out to be useful, as we shall see presrntly, to identify the space 2) with the 
dual spare 9. of 9. IIathematically this is no problmm since both W and 9' are 
nnfur:tlly isomorphic to Rb. With this idrntifcation, thr voltage which a valtage 
-1 : i t v  r. . g*  .?signs to the kth branch (J is just "(is), whrre is E 9 is thv veetor 
\rltt,n. t i i t ,  kt11 coordinate is 1 and where othcr coordinatvs are 0. 

\\'<. can now rxprrss ICVL more elegantly: 

Thcorrm 2 A tlollage slate v t 9' satisfies KVI, if and o111y if it is in the image 
of ihr arljoi,al d*: 3)' + 9. oj d: 9 - 4). 

P r a q .  Suppusc v satisfies KirchhoWs voltagr lau.. Tlirn there is a voltage 
~s r t , . t r t t : i l  V mapplop th? set of nodes to the real nunrlr,rs. with a ( P )  = V(pf)  - 
1 . W )  for csch branch 8. R~calling that o = R', a = number of nodes, we define 
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Thus P t o*. 
To see that d*P = u, consider first the current state is E J defined above juat 

before Theorem 2. Then 

(d*$)ir = V(dis) 

= V ( P )  - V ( b )  

Since the slates is, (J E B form a basis for 9, this shows that u = d*'3. Hence v ia in 
the image of 9'. 

Conversely, assume that u = d'W, W E 9)'. For the kth node a define V(P) - 
W( fa),  wher~j .  t 4) has kth coordinatr I and all othpr coordinates 0. Thcn V is 
a voltage potential for u since the voltage which u assigns to the branch B is 

"(is) F d'W(1,) - W(fs') - W(fo-) - I.(@+) - V ( b ) .  

This completes the proof of Theorem 2. 

The space oj  u~zreslricled stales of thr circuit is the Cartesian space 9 X 9.. Those 
slatm which satisfy KCL and KVL constitute a linear subspace K C d X do. By 
Theorems 1 and 2, 

An actual or physical state of the network must lie in K. 
Thc p o w  O in a network is a real function defined on the big state spsce d X 6. 

and in fact is just the natural pairing discussed earlier. Thus if (i,  u )  E d X do. 
the power 4(i ,  a )  = u(i) or in terms of Cartesian coordinates 

i = ( i  , , . , I )  u = (u, ,  . . . , u,) 

The prcvious proposition givrs us 

Theorem 3 (Trllrgcn's theorem) T/IE powr is m o  a slalca d is jy ing Kidhof f r  
laws. 

llathematically this is the same thing 83 saying that +: 9 X 9' -t R restricted 
to K is zero. 
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XOIV ar describe in mathematical terms the three different types of devices in 
thr nctwc,rk: the resistor, inductor, and capacitor. These devices impom conditions 
on the state, or on how the state changes in time, in the corresponding branch. 

Kach rc,sistor p imposes a relation on the current and voltage in its branch. This 
relation nright be an equation of the form F,(i,, u,) = 0; but for simplicity we will 
m u m e  that (i,, v,) satisfy f,(i,) = v, for some real-valued C function f, of a real 
variable. Thus f is a "generalized Ohm's law!' The graph of 1, in the (i,, v,) plane 
is rallcd the choracleristic of the resistor and is determined by the physical 
prop~rties of the resistor. (Compare Section 1.) For example, a battery is a re- 
sistor in this context, and its characteristic is of the form [(in,  v,) € R' I v, = 

constant 1. 
An inductor or capacitor does not impose conditions directly on the state, but 

only on how the state in that branch cbangee in time. In particular let A be an 
inductor branch with current, voltage in that branch denoted by il, va. Then the 
hth inductor imposes the condition: 

Hrrc I,h is determined by the inductor and is called the inductance. I t  is assumed 
11, 1,r n ('I positive function of il. 

Sitnilnrl? a capacitor in the 7th branch defines a C' poaitive function v, -+ C,(v,) 
~ 1 1 1 1 ~ 1 1  t1w rapacitancr; and the current, voltage in the 7th branch satisfy. 

We now examine the resiator conditions more carefully. Theae are conditions on 
the ststrs themaelves and have an effect eimilar to Kirchhoff's laws in that they 
place physical restrictions on the space of all s t a h ,  5 X 5'. We define Z to be the 
srlbsrt of 8 x 8' consisting of states that satisfy the two Kirchhoff laws and the 
rrristor renditions. This space Z is called the space of physical slnlea and is de- 
scribed 

Z =  l ( i , u ) E 5 X 5 * / ( i , v ) € K , j , ( i , )  = v . , p = l ,  . . . ,  r l .  

Herr, ( i , ,  r i )  denotes the components of i, v in the pth branch and p varies over 
thr rvsistor branches, r in number. 

Undrr rather generic conditiona, Z will be a manifdd, that is, the higher dimen- 
sional analog of a surface. Differential equations can be defined on manifolds; the 
rapneitors and inductors in our circuit will determine differential equations on Z 
\r.lrosr corresponding flow e,: Z -+ Z describes how a state changes with time. 

Because we do not have a t  our diispod the notions of differentiable manifolds, 
we will make a simplifying assumption before pmeeding to the differential e q w  
tions of the circuit. Thin is the aesumption that the space of currents in the in- 
ductors and voltages in the capacitors may be wed to give coordinates to 2. We 
make this more precise. 
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Let e be the space of all currents in the inductor branches, ao that & is n a t u d y  
isomorphic to R', where 1 is the number of inductors. A point i of & will be denoted 
by i = (it, . . . , i t )  where i is the currcnt in the Ath branch. There is a natural 
map (a  projection) i r :  S -+ C which just sends a current atate into its components 
in the inductors. 

Similarly we let e* be the space of all voltages in the capacitor branches ao 
that C?* is isomorphic to R', where c is the number of capacitors. Alao vc: #* -+ e* 
will denote the comespanding pmjection. 

Consider the map i~ X vc: 5 X 5. -+ e x e* restricted to Z C d X I*. Cdl 
this map r :  Z -+ Z X e*. (It  will help in fol:owing this rather abstract presentation 
to follow it along with the example in Section 1.) 

Hypothesis The map r: Z -+ & X e* h a  an inuerse whhidr is a C m a p  

Under this hypothesis, we may identify the space of physical states of the n e t  
work with the space ~2 X e'. This is convenient because, as we shall see, the dif- 
ferential equations of the circuit have a simple formulation on & x e'. In words 
the hypothesis may be stated: the current in the inductors and the voltaga in 
the capacitors, via Kirchhoff's laws and the laws of the &tor characteristics, 
determine the currents and voltages in all the branches. 

Although this hypothenis is strong, it makes some sense when one realizes that 
the "dimension" of Z should be expected to be the same as the dimension of 
2 X e*. Thin follows from the remark after the proposition on dim K ,  and the fact 
that Z is defined by r additional equations. 

To state the equations in this case we define a function P: 5 x d* -+ R called 
the mized polenlial. We will follow the convention that indices p refer to resistor 
branches and sums over such p means summation over the resietor bnmehes. 
Similarly A is used for inductor branches and 7 for capacitor branches. Then 
P: 5 X 5. --r R is defined by 

P( i ,  v) = C i?, + X /f,(i.) dip 

Here the integral refers to the indefinite in-al so that P is dehned only up to an 
arbitrary constant. Now P by restriction may be considered an a map P: Z --r R 
and finally by our hypothesis may even be considered as a map 

(By an "abuse of language" we me the m e  letter P for all three map.) 
Now assume we have a particular circuit of the type we have bepn musidering. 

At a given instant 4 the circuit is in a particular current-voltage state. The states 
will change as time goea on. In this way a curve in d x d* is obtained, dependi i  
on the initial state of the circuit. 
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The cunrponents ip(t), un(l), 0 E B of this curve must satisfy the conditions 
imposd by Kirchhoff's laws and the resistor characteristics; that is, they must 
hc in 2. In addition a t  each instant of time the components dir/dl and du,/dl of 
thc tangrnt vectors of thc curve must satisfy the relations imposed by ( l a )  and 
I 111). A curve satisfying these conditions we call a physical lrajeclory. 

I i  tht, circuit satisfies our special hypothesis, each physical trajectory is identi- 
fwd with n rurve in & X e*. The following theorem says that the cum- so obtained 
;gr,. rxactly the solution curves of a certain system of differential equations in 
b: x e*: 

Theorem 4 (Brayton-Xloser) Each physical trajectory of an electrical cirri1 
nnlisfyi,rg the special hypothesis is a solulcon curue of the ayslem 

du, J P  
C,(u,) - = - 

dl Ju, ' 

trli,,lc. \ r z r t d  7 run  through all i,aluclors and cnpacilors of the circuit reapecli~ly. 
( ' a , ! l r r s r l y ,  euery solulio?~ curve Lo t h e  epualions is a physical lrajcelory. 

Here P is the map 2 X e* - R defined above. The right-hand sides of the 
diffprential equations are thus functions of all the i l ,  u,. 

Proof. Consider an arbilrary C' curve in 2 X e*. Because of our hypothesis 
n r ,  i<lc~rtify 2 X e* with Z C 4 X 4'; hence we write the curve 

13, l i ir~~l~holf 's  law ((Thmrem 1) i(l) C Ker d. Hence i'(1) E Ker d. By Theorem 2 
I 1 l l ~ i  rl*. 13y T ~ ~ l l ~ ~ ~ ~ ~ n ' s  thcvrrm, for all 1 

C u ~ ( l ) i ~ ( l )  = 0. 
a t a  

\Vc rcwrit,. this as 

C u,i, + 2 U A ~ A  + C u,i, = 0 

From L,ihniz' rule we get 

Substituting this into the preceding equation gives 

from the dthit ion of P and the generalized Ohm's laws. By the chain rule 

From the last two equations we find 

c CZ + uh) G, + x (E - i,) u; = 0. 
Jrl J", 

Since i ~ '  and vl' can take any values, 

The theorem now follows from ( la)  and (Ih). 

Some remarks on this theorem are in order. First, one can follow this develop 
ment for the example of Section 1 to bring the generality of the above down to 
earth. Secondly, note that if there are either no inductors or no capacitors, the 
Brayton-Moser equations have many features of gradient equations and much of 
the material of Chapter 9 can be applied; see Problem 9. In the more general case 
the equations have the character of a gradient with respect to an indefinitemetric. 

We add some final remarks on an energy theorem. Suppose for simplicity that 
all the LI and C, are constant and let 

W : e  x e*-R 
be the function W(i, u) = 4 Cr Lhir' + f C,  C+,'. Thus W has the form of a 
norm square and its level surfaces are generalized ellipsoids; W may he interpreted 
as the energy in the inductor and capacitor branches. Define P.: e X e* + R 
(power in the resistors) to be the composition 

where P.(i, u) = C i,u, (summed over resistor branches). We state without proof: 

Theorem 5 Lel 9: I - e X e* be any soluliun o j  the egualias of (hc prmimu 
&orem. Then 

Theorem 5 may be interpreted as asserting that in a circuit the energy in the 
inductors and capacitors varies according to power dissipated in the reaistors. 

See the early wtions where W appcared and was ueed in the analysis of Liewd's 
equation. Theorem 5 proridc.v criteria for asymptotic stability in circuits. 
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1. Let A\' be a finite set and P C N X N a symmetric binary relation on N (that is, 
(I, y) E P if (y, I) c P).  Suppoee z Z y for all (z, y) E P. Show that there 
is a linear graph in R' whaae nodes are in one-bone compondence with N, 
such that the two nodes corresponding to r, y are joined by a branch if and 
only if ( I ,  y) E N .  

2. Show that Kirchhoff's voltage Law as atated in the text is equivalent to the 
follouing condition ("the voltage drop m u n d  a loop is zero") : Let a, a,, . . . , 
ab = a. be nodes such that u. and a--, are end points of a branch R,, m = 
1 , .  . ,C.Then 

where r ,  = + l  aecodmg as (L)+ = a- or --I. 

3. Prove that dim K = dim E (see the proposition in the text and the remark 
after it). 

4. I'ruvr Theorem 5, 

5 ('onsidr,r resistors whose characteristic is of the form F(C, v,) = 0, where F is 
:I rval-vnlud C' function. Show that an RLC circuit (Fig. A) with this kind of 
resistor satisfies the special hypothesis if and only if the resistor is current 
rontrolled, that is, F has the form 
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FIG. El 

6. Show that the differential equations for the cimuit in Fig. B are given by: 

dv,. 
C' - - i, - f (u,.). 

dl 

Here i = f(v) gives the resistor characteristic. 

7. Suppose given a circuit satisfying the basic hypotheaia of this seetioo .nd dl 
the other ammptiona except that the charaeteristic of one redstor is given 
by a voltage-controlled characteristic I = f(v), not necessarily current mn- 
trulled. Show that if the compondmg term of the mixed potentid P m repLced 
by Jvf'fv) dv, then Theorem 4 is still true. 

8. Find the differential eqwtiona for this circuit (Brayton) (Fig. C). H e  1111 
denotes a battery (resistor with characteristic: v = conat.), + d-tes a 

Y 

FIG. A FIG. C 



linear resistor, and the box in a resistor with characteristic given by i = j ( u ) .  
F i d  the mixed potential and the pbaae portrait for some choice of j. See 
Problem 7. 

9. We refer to the Brayton-Moaer equations. S u p p ~ e  there are no capacitors. 
(a) Show that the function P :  & -+ R decreases along noncquilibrium tra- 

j~etoriea of the Brayton->loser equations. 
(1,) T*.t n be the number of inductors. If rach function I,, is a constant, 

find an inner product on R" = & which makes thr vector 

the gradient of P in the sense of Chapter 9, Section 5. 

This rhapter follows to a large rxtrnt "Mathematical foundations of rlrctrical 
clrcrllt*'' 1,. Srnalr in theJor~nml qf'D!mrwrtinl G I O I I I P ~ I - ~  122l. 1'111. I I I I I ~ < , I . L ~ ~ . ; ~ , ~ I I ~ I ~ ~ ~  

t ~ x t  on rlcetrical circuit theory by D-r and I<uh C5] is excellent for a trratmmt 
of many rclated subjects. Hartman's book [9], ~nentioncd also in Chaptcr 11, 
goes rxtensively into the material of our Sections 2 and 3 with many historical 
references. Lefsebetz's book D i f f e r d i a l  Equations, Geomelrical Theory [14] also 
discusses these nonlinear planar equations. Van der Pol himself related his equation 
to heartbeat and recently E. C. Zeeman has done very interrsting work on this 
subjrct. For Bome physical background of circuit theory, onr can see The Feynman 
k l u r w  on Phyaiw [B]. 

Chapter 11 
The Poincarg-Bendixson Theorem 

We have already Been how periodic solutions in planar dynamial syatema play 
an important role in electrical circuit theory. In fact the periodic solution in V m  
der Pol's equation, coming from the simple circuit equation in the previoun chspter, 
has features that go well beyond circuit theory. This periodic solution in a 'limit 
cycle," a concept we make precise in this chapter. 

The Poincar&Bendixson theorem gives a criterion for the detection of Limit 
ryclesIn theplane; ~liisrriter~onrould hare been usedtofind theVanderPoloseillk 
tor. On the other hand, this approach would have missed the uniqu- 

Poinc&Bendixson is a basic tool for understanding planar d y r u m i d  system 
hut for differential equations in higher dimensions it has no -tion or 
counterpart. Thus after the first two rather basic sections, we restrict o d v e s  to 
planar dynamical systems. The fir& section gives some properties of the Limitirq 
behavior of orbita on the level of abstract topological dynamic8 while in (be next 
section we analyze the flow near nonequilihrium points of 8 dynamid systan. 

Throughout this chapter we w i d e r  a dynamical syatem on an open net W in a 
vector space E, that in, the flow 4, defined by a C' vector field f: W + E. 

51. Limit S e t a  

We recall from Chapter 9, Section 3 that y F W is an *firnil point of r F W 
if there is a Pequence 1. - o. such that lim.-. &.(I) = y. The set of d l  *limit 
points of y is the ~ l i m i l  ael L . ( y ) .  We define a-limit poinla and the d i m i l  icl L.(y) 
by replacing 1. - m with 1. + - m in the above definition. By a l imil  ael we 
mean a set of thc form Ic(y)  or L.(y) .  

Here are some examples of limit sets. If i is an asymptotically stable equilib 
rium, it is the -limit set of every point in its basin (see Chapter 9, Section 2). Any 
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Prod .  (a) Suppoee v E L.(r).and +.(.I = z. If +,(z) -r u, h +L--.(z) + u. 
Hence y € L.(z). 

(b) If + -+ Q and k . ( z )  -+y E L ( z ) ,  then + 2 0 for d k i e n t l y  large n 
w that +,.(z) E D. Hence y E D - D. 

(c) Follows from (b). 

PROBLEMS 

FIG. B 

equilibrium h its own a-limit set and v l i i t  set. A cloeed orbit ia the a-limit and 
-limit set of every point on it. In  the Van der Pol oscillator there h a unique c l d  
orbit 7 ;  it is the +limit of every point except the origin (Fig. A).  The origin h the 
a-limit set of every point inside 7. If y in outside 7,  then L.(y) b empty. 

There are examples of limit sets that are neither closed orbits nor equilibria, for 
example the figure 8 in the flow suggated by Fig. B. There are three equilibria, two 
sourn,  and one saddle. The figure 8 b the elinit set of all points outside it. The 
right half of the 8 is the v l i t  set of all points inside it except the equilibrium, and 
similarly for the left half. 

In three dimension8 there are extremely complicated examples of limit sets, 
although they are not eaey to describe. In  the plane, however, limit sets are fairly 
simple. In fact Pi. B is typical, in that one can ahow that a limit set other than a 
closed orbit or equilibrium is made up of equilibria and trajectories joining them. 
The Poinc&Bendixson theorem aaya that if a compact limit set in the plane 
contains no equilibria it is a closed orbit. 

We recall from Chapter 9 that a limit set is cloeed in W, and b invariant under 
the flow. We ahall aleo need the following result: 

Pro-ition (a) If z and z are on lhc same trajcdow, Ulm L.(E) - L.(z) ; aim6 . .  . 
lady for a-limits. 

(b) I! D ti a doad podtidy inuariad id and z E D, lhm L ( r )  C D ;  mmilarly 
fw neuat*clv i 4 l  scla and d i m & .  

(c) A dodml i-rial el, in parlinJar o limil #el, conhim the a-limil and dinti6 
a& of aey poinl in il. 

1. Show that acompact limitset isconneeted(that is, not the union oftwodiajoiot 
oonempty closed sets. 

2. Identify R' with C' having two complex coordinates (w, z), and eoolido tbe 
linear sydem 

where 0 is an irratimtd real number. 
(a) Put a = .?" and ahnw that the set (a' 1 n - 1, 2, . . . I  ia dense in th 

unitcireleC= IzE C I I t I  = 1). 
(b) Let +, be the ROW of (9). Show that for n an integer, 

&(w, t )  = (w, a v ) .  

(c) Let (w, s )  belong to the torus C X C C C'. Use (a), (b) ta abow tbat 

L(U4,s )  = La(% 4 )  = C X C. 

(d) P i d  L. and L. of an arbitrary point of C'. 

3. Find a linev system on RY = Cb sueh that if a belongs to the ttonr 
C X  ... X C C C k , t h e n  

4. In Problem 2, suppme inetead that 0 b raliaol.  Identify L and L d every 
point. 

5. Let X be a nonempty mpact  invariant set for a 0 dynamicd ey&m Suppme 
that X b m i n i d ,  that is, X contains no compact invariant nonanpty propm 
subset. Prove the following: 
(a) Every tnjeetory in X  in dense in X ;  
(b) L.(r) - L ( z )  = X for eaeh E E X; 
( 0 )  For any (relatively) open set U C X, there b a number P > 0 sueh tb.c 

f o r a n y z € X , 1 . € R , t h e r e e ~ l s u c h t h . t + , ( ~ )  E U d I t - 4 1  < 
p; 



I I't~r any r, y in X there are sequences 1. -+ m ,  8 .  + - m such that 

1 1" - I "  1 < 2 / a. - s.,, 1 < 2P,  

and 
O,.(z) u, 6 . b )  +u .  

6. Lrt X be a closed invariant aet for a C' dynamical system on R', such that 
el(=) is defined for all 1 C R, z E X. Suppose that L.(z) = L.(z) = X for 
all r : X. I'rove that X is compact. 

$2. Incal Sretions and Flow Boxes 

\Vr considrr again the flow 0,  of the C1 vector field j: W + E. Suppose the origin 
0 t E' belongs to W. 

A local scction a t  0 off  is an open aet S containing 0 in a hyperplane H C E which 
is trxnsvrrsr to j. By a hyperplane we mean a linear subspace whose dimension 
is an,, Ips8 than dim E. To my that S C H is 1raMvcrse to J means that J(z), 6 H 
for all z < S. In particular j(z)  # 0 for I E S. 

Our first use of a local aeetion a t  0 will be to conatmet a "flow box" in a neighbor- 
hood of 0. A flow box gives a complete description of a flow in a neighborhood of 
any ~ronequilibrium point of any flow, by means of special (nonlinear) coordinates. 
The drscription is simple: points move in parallel straight lines a t  constant sped. 

\Vv 11,akv this precise as follows. A di&morphian q: U + V is a differentiable 
mar' Iron! < , I I I .  oprn aet of a vectoi space to-another with a differentiable inverse. 
.\ . f lo~~.  box is a diffeomorphism 

of a neighborhood N of (0, 0) onto a neighborhood of 0 in W, which transforms 
the vretor f iddj :  W A E into the constant vector firld (1,O) on R X H. The Roa 
of J is thereby converted to a simple flow on R X H:  

The map + is defined by 

+(I, Y) = O ~ U ) ,  

for ( I ,  y) in a sufficiently small neighborhood of (0, 0) in R X H. One appeals to 
Chnptrr 13 to see that + is a C1 map. The derivative of + at  (0,O) is easily computed 
to b, the linear map which is the identity on 0 X H, and on R = R X 0 i t  sends 
1 to j (0) .  Since j(0) is transvem to H, it follows that D+(O, 0) is an isomorphiom. 
Hencc by thc invewe f w t i o n  t- Y. mapa an open neighborhood N of (O50) 
d~ffram,~rpl~irally onto a nriphborltnod V of 0 in E. Wv takv N of thr forpl 
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FIG. A. The flow box 

S X (-o, o), where S C H is a section at 0 and r > 0. In  this case r e  sometimes 
write V ,  = q(N) and call V. a Pox. boa a t  (or about) 0 in E. See Fig. A. An 
important propprty of a flow bax is that if z E V.. then #,(a) E S for a unique 
t € ( - 0 , o ) .  

From the definition of Y. it follows that if W ' ( p )  = (a, y), then F 1 ( + , ( p ) )  = 
( 8  + I ,  y) for sufficiently small I a I, 1 11. 

We remark that a flow box can be defined about any nonequilibrium point z. 
The assumption that z. = 0 is no real restriction since if I, is any point, one uo 
replace f(z) by f (z  - 4) to convert the point to 0. 

If S is a local section, the trajectory through a point r. (perhaps far from S) may 
reach 0 F S i n  a certain time 4; see Fi. B. We show that in a certain locd n e w ,  f, 
is a continuous function of 4 More precisely: 

FIG. B 

Proposition Lei S be a local aeclion at 0 ad above, and mppoae +,.(a) = 0. T h e  
isanopmsel U C Wcm*oiningr,andaun~C1rnapr:U--tRnrd,Ulolr(r.)  = 

b and 

O.,., (2) E S 
for all z E C .  

Proof. Let h : E + R be a linear map whose kernel H is the hyperplane mn- 
taining S. Then h(J(0)) # 0. The function 
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in C, and 
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BY the implicit function theorem there in a unique C map z --t ~ ( z )  E R d& 
:I t>#,lghl,orlrooat ti, err,, in W such that r ( s )  = h a n d  G(z, r(z))  r 0. Henee 

+.,.,(z) F H ;  if U C UI isaauffickntly d u d g h b o r h o o d  of s h  &,.,(I) E S. 
This proves the proposition. 

For later reference note that 

FIG. R 

We now rentrict our diseuaaion to planar dynmnicd syntmu. 
Let G, z,, . . . be a Iinite or infinite aequenca of distinct poinb on the w l u h  

curve C = l o , ( l o ) l O < l S a I .  We say the sequence in mrmolo~ dag the bo 
jedory if #,.(lo) - z. with 0 5 $ < . . . 5 a. 

Let YO, y,, . . . be a finite or infinite sequence of points on a line segment I in R*. 
We say the sequence in maolmtc dag I if the vector y. - y. is a & mul- 
h,(y, - y,J with 1 < A, < A:, < . . . n = 2,3. . . . .Anotherway tosay thisisthat 
y,, is between y.., and y.., in the natural order along I, n = 1.2. . . . . 

A wquence of points may be on the intersection of a solution curve and a segment 
I; they may he monotone along the solution curve hut not along the w e n t ,  or 
vice v e m ;  see Fig. A. However, lhis is impossibk if the segment ia o lo& &ion. 
F i  B shows an example; m.e suggest the reader experiment with paper and 
pencil ! 

Proposition 1 Lel S be a local sedwn of a C1 planar dyamical sydnn ond y, n, 
yt, . . . a sequence of dialincl poinla of S fhd are on fhe &ante aolulirm nrm C. I j  Ulc 

s w n u  is m m l r m e  aluq C,  il ia alao monolone along S. 

Proof. I t  suffices to consider three points yo, y,, yr. Let I: be the simple closed 
curve made up of the part B of C between yo and y, and the segment T C S between 
yo and y,. Let D be the c l o d  bounded region bounded by 2. We auppone that the 
trajectory of yt leovea D a t  yt (Fig. C) ; if it enters, the argument in similar. 

We assert that a t  any point of T the trajectory leaves D. For i t  either leaves or 
entera because, T b e i i  transverse to the flow, it crosses the boundary of D. The 
set of points in T whose trajectory leaves D is a nonempty open subset T- C T, by 

FIG. C u 



c . o r ~ t i n i ~ i t  of tlw fh~a.; t h ~  S P ~  TI C T wh~re  traj~ctnrirs ~ n t r r  D is also npr.n in 
'7' S i n w  7' and T ,  SIT,. disji~~int find T = T- U T,, it fnlln~vs from connectrdnc.s~ 
u f  l i l t .  itktt,rv:il that T, must ht- ~ m p t y .  

I t  f0111n~s that thr cornplemrnt of D is positively invariant. l'or no trajectory 
c : ~ n  v8itrr 1 )  at a point of T; nor can it cross B, by uniqurnpss of solutions. 

'l'lt<,n.ic,r<, +,(!/,) + R2 - I)  for all 1 > 0. In particular, yz t S - T. . . I hc st,t S - T is the union of two half open intervals In and I ,  with yo an end- 
puint of I, and yl an endpoint of It. One can draw an arc from a point +.(y3 (with 
r > 0 vvry small) to a point of I S ,  without crossing 2. Th~refore I ,  is outside D. 
Si~nilarly I, is inside D. I t  follows that y, E I ,  since it must he outside D. This 
she\\-s that y, is between y, and y, in I ,  proving Proposition 1. 

We come to an important property of L i i t  points 

Proposition 2 Lel y F L.(I) U L.(z). Then the lrajeclory oJ y crosses any l o d  
&rrlrot! 01  ,lo/ rrlore tho,, one poinl. 

Proof. SUP~OSP y, and y, are distinct points on the trajectory of y and S is a 
Ioc:il svctiott eontainin~ y, and y,. Sup- y F L.(z) (the argument for 1,.(1) is 
similar). Then yi  t Lu(z) ,  k = 1, 2. Let V(r,  be flow boxes a t  yh defined by some 
intc,rvals . I ,  C S; we mume J ,  and Jl disjoint (Fig: D). The tmjectory of z enters 
I',rr infinitc4.v often; hence it crows J ,  infinitely often. Hence there is a sequence 

a,, 4,4,4, a, bz, . . . , 
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which is monotone along the trajectory o f t ,  with a. E J,,  b. C Js, n = 1, 2, . . . . 
But H U C ~  a srqurnce cannot be monotone along S since J ,  and J1 are disjoint, con- 
tradicting l'roposition 1. 

1. Let A C R2 he the annulus 

Let j be a C1 vector field on a neighborhood of A which points inward along 
the twu boundary circles of A .  Suppose also that every radial segment of A 
is local section (Fig. E). Pmve there is a periodic trajectory in A. 

(Hid: Let S be a d i a l  segment. Show that if a f S then +,(a) F S for a 
smallest 1 = t ( z )  > 0. Consider the map S + S given by z ++ 4,(.,(z).) 

2. Show that a closed orbit of a planar C1 dynamieal system meets a l d  section 
in at most one point. 

3. Let W C R' be open and let j: W -r R' be a C1 vector field with no equilibria. 
Let J C W be an open line segment whose end points are in the boundary of 
W. Suppose J is a global aeclwn in the sense that J is transverse to J ,  and for 
any z f W there exiats a < 0 and t > 0 such that +,(z) f J and +,(I) E J. 
Prove the following statements. 
(a) For any t E J let ,(I) E R be the smallest positive number such that 

F (z )  = +,,.I F J ;  thin map F :  J --r J is C' and haa a C inveree. 
(b) A point r i J lies on a c l o d  orbit if and only if F(I) = I. 
(c) Every limit srt is a closed orbit. 
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4.  1,vt r be a recurrent point of s C' planar dynamical system, that is, there is a 
sequence 1. -r f m such that 

(a) I'rovr that rithrr z is an equilibrium or z lies on a closed orbit. 
(b) Show by exnrnple that there can be a recurrent point for higher dimen- 

sional systems that is not an equilibrium and does not lie on a closed orbit. 

$4. The Poinead-Bendixson Theorern 

Uy a closed orbit of a dynamical system we mean the image of a nontrivial periodic 
solution. Thus a trajrctory 7 is a closed orbit if 7 is not an equilibrium and 
+, (z) = 2 for some z i 7, p # 0. I t  follows that +.,(y) = y for all y E 7,  n = 0, 
*I, * 2 , .  . . . 

In this section we cornplpte the proof of a celebrated result: 

Them- (Poincar&Bendixson) A nonempty m p n d  limil s d  of a CL planar 
dyna~nical system, which d i n s  no equilibrium point, is a closed orW. 

Proof. Assume L.(z) is compact and y C L.(z). (The case of o-limit sets is 
similar.) We show fust that the trajectory of y is a closed orbit. 

Since y belongs to the compact invariant set L.(z) r e  know that L.(y) is a 
nonrmpty subset of L.(z). Let z E L.(y); let S be a local section a t  z,  and N a 
flow box neighborhood of z about some open interval J, z C J C S. By Propasition 
2 of the previous section, the trajectory of y meets S at  exactly one point. On the 
other hand, there is a aequence 1. -+ ro such that +,.(y) -+ z; hence infinitely many 
+,.(y) belong to V. Therefore we can find r ,  a E R such that r > a and 

It fol1on.s that +,(y) = +.(y); hence g_.(y) = y, r - s > 0. Since L.(z) contains 
no equilibrium, y belongs to closed orbit. 

It remains to prove that if 7 is a closed orbit in L.(z) then 7 = L.(z). It is 
*nough to show that 

nherr d(+,(z), 7) is the distance from z to the compact set 7 (that is, the distance 
from +,(z) to the nearest point of 7). 
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Let Sbea loes l sec t iona t rE  r , somnaII thatSn.r  = z. B y l o o m a t a h  
box V, near z we see that there is a sequence 4 < l, < . . . sucb that 

+8.(2) -+ 2, 

+dz) B S for L, < 1 < f ,  n = 1, 2, . . . 
Put z. = +,.(z). By Proposition 1, 8ection 3, z. -+ r monotonidly in S. 
There exh an upper bound for the net of positive numbers l.+, - L For mp 

pose h ( z )  = z, A > 0. Then for z. d c i e n t l y  near z, +I(%) E V. d hm 

h+,(z.) E S 

for some t E [-e, r ]  Thus 

Let 8 > 0. From Chapter 8, there exists 6 > 0 such that if I z. - u 1 < 4 and 
I 11 < A + then I +,(z.) - +,(u)l < 8. 

Let na be m lage that I z. - z I < 6 for all PL > n,,. Then 

f 2 t 2 f,,. 
Then 

d(+s(z), 7)  2 I +#(z) - +a-t-(z)l 

aince I 1 - 1. I 2 A + r. The proof of the Poin&Bendixaon theorem is complete. 

PROBLEMS 

1. Consider a C' dynamical syetem in R' having only a b i t e  number of equilibrir 
(a)  Show that everv limit net is either a cloned orbit or the union of eouilibk 

and trajectori; +,(z) such that h,. +dl)  and lim,, +,id are 
equilibria. 

(b) Show by example (draw a picture) tbat the number of diathct tsajeetoriea 
in L ( z )  may be iofinite. 

2. Let 7 be a cloeed orbit of a C dymmieal system on an open set in R'. Let X 
be the period of 7. Let (7.1 be a sequence of c l w d  olbita; mppcae the period 
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of 7. is Am. If there are point8 I. E r. such that z. -+ z t 7, prove that A. -t A. 
(This result can be false for higher dimensional syatems. I t  is true, however, that 
if A. - r,  then r is an integer multiple of A.) 

55. Applications of the  PoinurCBendixson Theorem 

\Ye continue to suppose given a planar dynamical system. 

Definition A limit cycle is a closed orbit 7 such that r C L.(z) or r C L.(z) 
for some z f 7. In the first case is called an vlimit cycle; in the second case, an 
a - l i t  cycle. 

In the proof of the Po inc~Bendixson  theorem it was shown that limit cycles 
enjoy a certain property not shared by other closed orbits: if r is an w-limit cycle, 
there exists z f 7 such that 

lim d(Q,(z) ,  7 )  = 0. 
,-- 

Yor an a - l i t  cycle replace m by - m.  ~eometrically this means that some tra- 
jectory spirals toward r as 1 -. m (for *limit cycles) or as 1 -r - m (for a - l i t  
cyclrs). See Fig. A. 

FIG. B 

is positively invariant, as is the set B = A - 7. I t  is easy to see that +,(y) apirab 
toward 7 for all y € B. A useful consequence of this is 

Pmpoaition 1 L e l r b e a n d i m i l  cyde. 1f-1 = L.(z),z f .r U l c n z h a a n c i p b -  
hood 1'such lhal r = L.(y) lor all y F V. I n  olher wda, Ulr scl 

A =  I y / r = L - ( ~ ) l  - y  

is open. 

Proof. I.'or sufficiently large 1 > 0, &(z)  is in the interior of the set A d&bed 
above. Hence &(y)  € A for y sufficiently close to z. This implies the proposition. 

A similar result holds for a-limit cycles. 

FIG. A. -r ia cyek. 

Theorem 1 A noncrnply cornpad ad K lhal is poailiwly or ncgolialy imwimd 
conlains eilher a limil cyde or an equilibrium. 

Proof. Suppose for example that K is positively invariant. If I E K, thtn L ( I )  
is a nonempty subset of K; apply Poincar&Bendimn. 

limit cycles possegs a kind of one-sided stability. Suppose r is an w-limit cycle 
and let +,(z) spiral toward as t -+ m. Let S be a loeal mction a t  z E 7.  Then there 
sill br an interval T C S diejoint from 7 bounded by +,o(z), 9 , , (z) ,  with lo < 11 
and nut  meeting thc trajectory of z for 4 < 1 < 1, (Fig. B). The region A bounded 
1)y 7 ,  T and the cuwe 

I+e(z)l b 4 1 5  111 

The next result exploits the spiraling property of limit cycles. 

Proposition 2 Lel r be a dosed orbit and suppose lhal the domain W afthe d m i c d  
syslem incltrdes lhc tohole open region Li enclosed by 7. Thm U &im cilhcr a n  
equilibrium or a l ia i l  cycle. 



Proof. Let D be the compact set U u 7. Then D is invariant since no trajectory 
from C' can crass 7. If U contains no limit cycle and no equilibrium, then, for any 
z t  I., 

L.(z) = = 7 

by I'~,irir;~r&Rendixson. If S is a local section at a point z E 7, there are sequences 
1. - cc , s. + - m such that 

(PI.(z) € S, +r.(z) + 2, 

and 

(P..(z) E S ,  +..(z) + 2. 

But this leads to a contradiction of the propi t ion in Section 3 on monotone 
sequences. 

Actually this last result can be considerably sharpened: 

Theorem 2 Lel 7 be a closed orbd endosing an open sel C' contained in the domain 
1V of the dynamical system. Then U contains an equilibrium. 

Proof. Suppose U contains no equilibrium. If z. -+ z in U and each z. lies 
on a clusvd orbit, then z must lie on a closed orbit. For othernise the trajectory of 
z \\-ould spiral toward a limit cycle, and by Proposition 1 so would the trajectory 
of some 2.. 

Let A t 0 be the greatest lower bound of the areas of regions enclosed by closed 
orbits in U .  Let (7.J be a sequence of closed orbits enclosing regions of areas A. 
such that lim,,A. = A. Let z. E 7.. Since 7 U U is compact we may assume 
r.  - z c I ' .  Then if U contains no equilibrium, z lies on a closed orbit R of area 
.4 18). Thr usual section argument shown that as n -+ m, 7. gets arbitrarily close 
to P li~rd l~cr~ce the area A. - A (R), of the region between 7. and 8, goes to 0. Thus 
A (8) = ;I. 

\Ye have s h o w  that if U contains no equilibrium, it contains a closed orbit 6 
enclosing a region of minimal area. Then the region enclosed by R contains neither 
an equilibrium nor a closed orbit, contradicting Proposition 2. 

The follonhg result uses the spiraling properties of l i t  cycles in a subtle way. 

Theorem 3 Lel H be a first inlcgral of a plamr C1 dynamical a y a h  (lhal is, H 
LS a real-cald funclwn lhal is wmlanl on trajcdorics). If H ia not conslanl on any 
open set, then Mere are no limd eycles. 

Proof. Suppose there is a limit cycle 7 ;  let c E R be the constant value of H 
on 7. If z(1) is a trajectory that spirals toward r, then H(z(1)) I c by continuity 
of H. In Proposition 1 we found an open set whose trajectories spiral toward 7;  thus 
H is constant on an open set. 

PROBLEMS 

1. The celebrated Brouwer fied poinl Lhemem statea that any continuous map f 
of the closed unit hall 

D m =  ( z C R m / l z l  = l l  

into itself has a b e d  point (that ie, f ( z )  = z for some z). 
(a) Prove thii for n = 2, wuming that f is C', by finding an equilibrium for 

the vector field g(z) = I(+) - z. 
(b) Prove Brouwer's theorem for n = 2 using the fact that any continuous 

map is the uniform limit of C1 maps. 

2. I x t  f be a C1 vector field on a neighborhood of the annulus 

A =  l z E ~ ~ l l < I z l < 2 ) .  

Suppose that f has no zeros and that f is transverse to the boundary, pointing 
inward. 
(a) Prove there b a closed orbit. (Notice that the hypothesis is weaker than 

in Problem 1, Section 3.) 
(b) If there are exactly seven closed orbits, show that one of them has orbits 

spiraling toward it from both sides. 

3. Let f :  R' -+ R' be a C1 vector field uith no zeros. Suppose the Bow +, generated 
by j preserves area (that is, if S is any open set, the area of +,(S)  is independent 
of 1). Show that every trajectory is a cloeed set. 

4. Let j be a C' vector field on a neighborhood of the annulus A  of Pmblem 2. 
Suppose that for every boundary point I, /(z) is a nonzero vector tangent to 
the boundary. 
(a) Sketch the possible phase portraits in A under the further assumption 

tbat there are no equilibria and no closed orbits besides the boundary 
circles. Include the case where the boundary trajectories have opposite 
orientations. 

(b) Suppose the boundary trajectories are oppositely oriented and that the 
flow. preserves area. Show that A contains an equilibrium. 

5. Let f and g be C' vector fields on R' such tbat Cf(z). g(z)) = 0 for all z. Iff 
has a closed orbit, prove that g has a zero. 

6. LetfbeaC'vectorfieldonanopensetWCR'andH:W-RaOfunction 
auch that 

DH(z)J(z) = 0 

for all z. Prove that: 
(a) H is conatant on solution curves of z' = j ( z ) ;  



I 1) I I )H (r) = 0 if r belongs to a limit cycle; 
I r I If z belongs to a compact invariant set on nhich DH is never 0, then z 

lirs on a cloird orbit. Chapter 12 
Ecology 

Notes 

1'. Hartman's Ordinary Differential Equalmns [9], a good but advanced book, 
coven extensively the material in this chapter. 

It should he noted that our discussion implicitly used thc fact that a closed curve 
in R? nhich does not intersect itself must separate Rz into two connectcd rrgions, a 
bounded one and an unbounded one. This theorem, the Jordan curve theorem, while 
naively obvious, needs mathematical pmof. One can be found in Newman's Topology 
o j  I'lartr Sels [17]. 

In  this chapter we examine some nonlinrar two dimvnsional system that have 
been used as mathematical m~nlels of the gnlwth of two species sharing a common 
environment. In the first section, which treats only a single species, various math* 
matical assumptions on the g ~ o n t h  rate are discussed. These are intended to capture 
mathematically, in the simplest s a y ,  the dependence of the growth rate on faod 
supply and the negative effects of overcrowding. 

In Section 2, the simplest types of equations that model a predator-prey ecology 
are investieated: the object is to find out the lone-run aualitative behavior of tra- 
jectorics. A more sophisticated approach is used in Section 3 to study two competing 
species. Instead nf explicit formulas for thr ~quations, certain qualitative assump- 
tions are made about the form of the equations. (A similar approach to predator 
and prpy is outlind in one of the problems.) Such assumptions are more plausible 
than any set of particular equations can be; one has correspondingly more confidence 
in the conclusions reached. 

An interesting phenomenon observed in Section 3 is bifurcation of behavior. 
hlathematically this means that a slight quantitative change in initial conditions 
leads to a large qualitative di fference in long-t~rm behavior (because of a change of 
w-limit sets). Such bifurcations, also called "catastrophes," occur in many applica- 
tions of nonlinear systems; several recent thmries in mathematical b i o l w  have 
been based on bifurcation theory. 

$1. One Speciea 

The birth rate of a human population is usually given in tern of the number 
of births per thousand in one year. Thr numbr.r one thousand is used merely t~ 
avoid decimal places; instead of a birth rate of 17 per thousand one could just ne 
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well spcnk of 0.017 pcr individual (although thie is harder to visualize). Similarly, 
thr prriod of one year is also only a convention; the birth rate could just as well 
br givrn in terms of a week, a second, or any other unit of time. Similar remarks 
apply' to the death rate and to the growlh ralc, or birth rate minus death rate. The 
~ r o u t l ~  rttte is thus the net change in population per unit of time divided by the 
total population at the beginning of thc time period. 

Suppost' the population y(1) a t  time 1 changes to y + Ay in the time interval 
[ t ,  1 + A/]. Then the (average) growth rate is 

I n  prxctier y (1) is found only a t  such times b, 11, . . . when population is counted; 
and its valuc is a nonnrgativ~ integer. We assume that y is extended (by interpola- 
tion or some other method) to a nonnegative red-valued function of a real variable. 
Wr assume that y has a continuous derivative. 

Giving in to  an irresistible mathematical urge, we form the limit 

AY ~ ' ( 1 )  lim - = -. 
A , + Y A ~  ~ ( t )  

'1'111s furlr:ic,n of t is tlle grmulh rob of the population a t  time 1. 
'1'111. sitnplrst assumption is that of a cmLant growth rate a.  Thia is the case 

ii tlic nunrher of births and deaths in a small time period At have a fixed ratio to 
thr total population. These ratios will be linear functions of At, but independent 
$11 t l ~ r  sizr of the population. Thus the net change will be ay At where a is a constant; 
hvnr,. 

ilttc,grating we obtain the familiar formula for unlimi(ed grmoUI: 

y (1) = em'y (0). 

The growth rate can depend on many things. Let us aasume for the moment that 
it depends only on the per capita food supply a, and that a > 0 is constant. There 
u.ill he a minimum ro necessary to sustain the population. For a > a@, the growth 
rate is positive; for r < so, it is negative; while for r = ro, the growth rate is 0. The 
simplrst rvay to ensure this is to make the growth rate a linear function of r - VO: 

E1t . r~ .  r r  :111t1 oO arc1 con~tants, dependent only on the species, and r is a parameter, 

(1. ONE SPECIES 257 

dependent on the particular environment but constant for a given ecology. (In 
the next section D will be another species satisfying a second differential equation.) 

The preceding equation is readily solved: 

~ ( 1 )  = expClo(o - u~)ly(O).  

Thus the population must increase without limit, remain constant, or approach 
0 as a limit, depending on whether s > oo, r = no, or r < ro. If we recall that actu- 
ally fractional values of y (1) are meaningless, we see that for all practical purpose 
"y (1) - 0" really means that the population dies out in a finite time. 

In reality, a population cannot increase without limit; a t  least, this has never 
been observed! I t  is more realistic to assume that when the population level exceeds 
a certain value q, the growth rate is negative. We call this value 7, the limilinp 
population. Note that n is not necessarily an upper bound for the population. Rea- 
sons for the negative growth rate might be insanity, decreased food supply, over- 
crowding, smog, and so on. We refer to these various unspecifid causes as a& 
phenomena. (There may be p i t i v e  social phenomena; for example, a medium size 
population may be better organized to resist predators and obtain food than a 
small one. But we ignore this for the moment.) 

Again making the simplest mathematical assumptions, we suppcm the growth 
rate is proportional to n - y : 

a = c(n - y), c > 0 a constant. 

Thus we obtain the quolion of limiled gryul :  

(2) 9 = ~ ( 7 ,  - y)y; C > 0, 1 > 0. 
dl 

Notr that thin suggests 

This means that during thc period At the population change is y2 A1 less than i t  
would be without social phenomena. We can interpret cy' as a number propor- 
tional to the average number of encounters between y individuals. Hence cyz is a 
kind of social friction. 

The equilibria of (2) occur a t  y = 0 and y = n. The equilibrium at * isasymptot- 
ically stable (if c > 0)  since the derivative of c(n - y)y at q is -cq, which is 
negative. The basin of q is ( y  I y > 0 )  since y ( 1 )  will increase to q as a limit if 0 < 
y (0) < n, and decrease to n as a limit if q < y (0). (This can be seen by eonsidering 
the sign of dyldt.) 

A more realistic model of a single species is 

Here the variable growth rate M is assumed to depend only on the t& population 
Y. 



It  is plausible to assume as before that there is a limiting population q such that 
M(q) = 0 and M(y) < 0 for y > 7 .  If very small populations behave like the 
unl~mited groa th model, we assumr A1 (0) > 0. 

1. .% population y (1) is governed by an equation 

Y' = M(Y)Y.  
Provr that: 
(a )  equilibria occur a t  y 5 0 and whrnrvrr Y (y) = 0;  
(b)  the rquilihrium a t  y = 0 is unstable; 
1 1 , )  uu vquilibrium t > 0 is asymptotically stabh if and only if thvrr rxiats 

e > 0 such that A t  > 0 un the interval [I - e, 6) and bl < 0 on 
( 5 ,  C + .I. 

2. Suppose the population of the United Statrs obeys limited growth. Compute 
the limiting population and the population in the ycar 2000, using the following 
data: 

Year Population 

1950 150,697,361 
1960 179,323,175 
1970 203,184,772 

$2. Predator and Pmy 

We consider a predator species y and its prey z. The prey population is the total 
food supply for the predators at any given moment. The total food consumed by 
thr predaton (in a unit of time) is proportional to the number of predator-prey 
tmeountcrs, which we assume proportional to ry. Hence thc per capita food supply 
frrr t lw  predators a t  time 1 is proportional b r(1). Ignoring social phenomena for 
I Iw  r,n,rnmt. wp obtain from equation (I )  of the preceding mtion:  

Y' = a ( z  - d y ,  

a l ~ v r < ,  r t  > 0 and o,, > 0 arc. constants. We rcwritr this as 

y' = (Cz - D)y; C > 0, D > 0. 

Considt-r next the growth rate of the prey. In each small time period At, a certain 
numbvr of prey am eaten. This number is assumrd to drpend only on the two popu- 
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lations, and is proportional to At; we !vrite it asf(r, y)  At. What should we postulate 
about J(r, y)? 

It  is reasonable that f(z,  y) he proportional to y: tnice as many cats rill eat 
taicr as many mice in a small time period. Wr also assume f(r, y )  is proportional 
to r :  if the mouse population is doubled, a cat rill come across a mouse tuice as 
often. Thus we put j ( r ,  y) = pry, p a positive constant. (This assumption is l e s  
plausible if the ratio of prey to p r e d a t o ~  is vPry large. If a cat is placed among a 
~ufficicntly large mouse population, after a while it nil1 ignore the mice.) 

The prey sppeies is assumed to have a constant per capita food supply available, 
sufficipnt to increase its population in the absence of predators. Therefore the prey 
is suhjrct to a differential equation of the form 

I n  this way wr arrivr a t  thr prednlor-prey epualinna of Voltem and Lotka: 

z' = (A - By)r, 
A , B , C , D > O .  

y' = (Cz - D)y. 

This system has equilibria a t  (0. 0) and z = (DIC, A I B ) .  It is rRqV to see that 
(0, 0 )  is a saddle, hence unstable. The eigrnvalues at ( D / C ,  A / B )  are pure imagi- 
nary, hon,ever, which gives no information about stability. 

WP investigate the phase portrait of (1) by drawing the two Lines 

These divide the region z > 0, y > 0 into four quadrants (Fi. A). In each quadrant 
the signs of r' and y' are constant as indicated. 

Thr positive z-axis and the positive y-axis are each trajectories as indicated in 
Fig. A. The reader can make thr appropriate conclusion about the behavior of the 
populatinn 

Oth~rn , i s~  earh solution C U N P  ( r ( / ) ,  y(1)) moves count~rcloekuiw around r 
from on? quadrant to the next. Consider for exampl~ a trajectory (r(l), ~ ( 1 ) )  
starting a t  a point 

A  
y ( O ) = u > - > o  

B 

in quadrant I. There is a maximal interval [0, r )  = J such that (r(t), ~ ( 1 ) )  E 



x,' < 0 y ' :  0 z',' 0 

I y < O  

Y ' O  

4 
] I l l  ,, /B  - - - - - - - - - - - ; ---- 1 ------;- \--;-; r = O  

FIG. A 

quadrant I for 0 5 1 < r (perhaps r = w ). Put 

A - E v =  - r < O ,  

C u - D = s > O .  

t i n  lcltlg as 1 E J ,  z(1) is decreasing and y(1) is increasing. Hence 

d 2' 
-log ~ ( 1 )  = - = A - By 5 'r, 
dl Z 

d Y( 
- l o g y ( l ) =  - = C z - D > a .  
dl Y 

Therefore 

12) 
D 
- < z(1) 5 ue-', 
C - 

for 0 < 1 < r .  From the sreond inequality of (2) we see that r is finite. From (2) 
and (3) we see that for t E J ,  (z(l), y(1)) is confined to the compact r d o n  

Therefore (Chapter 8) (z(r) ,  Y ( 7 ) )  is defined and in the houndary of that region; 
since z(l)  is decreasing, z ( r )  = D/C. Thua the trajectory enters quadrant 11. 
Similarly for other quadrants. 

We cannot yet tell whether trajectories spiral in toward r, spiral toward a limit 
cycle, or spiral out toward "infinity" and the coordinate axes. Let us try to find a 
Liapunov function H. 

Borrowing the trick of s e p r d h  of vorioblea from partial differential equations, 
\ye look for a function of the form - 

H(z, Y )  = F(z)  + G(Y). 

We want H 5 0, where 

dG = dF z' + - y'. 
dz dy 

Hence 

d F  dG 
H(z, Y)  = z z  (A - By) + y - dy (Cz - D). 

We obtaia k - 0 provided 

Since I and y are independent variables, this is possible if and only if 

z dF/dz y dG/dy - = -- = constant. 
C z - D  By-A 

Putting the constant equal to 1 r e  get 

integrating r e  find 
F(z)  = Cz - D log 2, 

D(y) = B y  - A  logy. 
Thus the function 

defined for z > 0, y > 0, is constant on aolution curvw of (1) 



By ronsidrring the signs of JH/Jz and JH/Jy it is easy to SM. that the rquilibrium 
r = ( D j C ,  AIR) is an absolute minimum for H. I t  follows that H (morr prrcisrly, 
H - H ( 2 ) )  is a Liapunov function (Chapter 9). Therefor(. z i s  a slob& equilibriuat. 

We note next that there ore n o  limit cycles; this follou-s from Cbaptrr 11 bccauze 
H is not constant on any open set. 

!VC , I , # , \  r,r,,vr 

Throrcnt 1 E I I T ~  110j~c101y OJ lhe I'olferra-hfka equalions ( 1 )  i s  a clnaed orbif 
(crccpl /tic cgr~il ibriu?!~ z and the coordinale axes) .  

p,on/. C~msid,,r a point w = ( u ,  u ) ,  u > 0, v > 0 ;  III # 2 .  Thrn thrrr is a 
,I,IuI,I!- ir~finitc, arqurnrr . . . < 1_ ,  < la < 1 ,  < . . . such that +,.(w) is on tllr line 
, = 1) (', :,,n'i 

1"- m as n - m ,  

If u .  i 4  itot ill a closed orbit, the points +,.(w) arc monotone along the line z = DIC 
i ('ll;tl,tc,r I I ). Sinrp there arr no limit cycles, either 

Sinrp H is constant on the trajectory of w, this implies that H(w) = H(r ) .  Rut this 
ror~tmdirts minimality of H(z). 

\\,. I I , , ~  l~evc tlrv fc,lloa.ing (schematic) phasr portrait (I.'ig. B). Thrrr~forr, for 
;A,>> ci\-m> initial populations ( ~ ( 0 ) ~  y (0)) with ~ ( 0 )  # 0 ,  and y(0) # 0, other 
111:111 . 1111. populations of prrdator and prey will oscillate cyclically. 

No matter u-hat the numbers of prey and predator are, neither species will die 
out, nor will it grow indefinitely. On the other hand, except for the state r ,  which 
is improbable, the populations will not remain constant. 

Let us introduce social phenomena of Section 1 into the equations (1). We obtain ~- 

the follouing predator-prey equal& o j  species with limtled grmulh: 

( 5 )  z' = ( A  - By - A I ) I ,  

y' = (Cz - D - py)y. 

The constants . I ,  R. C. D, A, r are all positive. 
Wr dividr. thv upper-right quadrant Q ( I  > 0, y > 0 )  into sectors by the two 

lirm 
L :  A - Ry - h r  = 0; 

Along these lines I' = 0 and y' = 0, respectively. There are two passibilities, ae- 
cording to whether th& lines intersect in Q or not. If not (Fig. C), the predators 
die out and the prey population approaches its limiting value A / A  (where L meeta 
the z-axis). 

A /  A 
FIG. C. Pledatom - 0 ;  prey - A/A. 

Thii is because it is impossible for both prey and predators to increase at  the 
same time. If the prey is above its limiting populatior~ it must deeresse and after 
a while the predator population also starts to decrease (when the trajectory c m  
.M). After that point the prey can never increase past A l A ,  and so the predatm 
continue to decrease. If the trajectory crossff L, the prey increases again (but not 
past .4/h), while the predators continue to die off. In the limit the predators dis- 
appear and the prey population stabilizes at ;I /A. 



FIG. D 

Suppose now that L and M cmen a t  a point z = (5, y)  in the quadrant Q (Fi8. 
D ) ;  of course z is an equilibrium. The linear part of the vector field (3) a t  z is 

[; 13 
The characteristic polynomial has positive coefficients. Both roots of such a poly- 
nomial have negative real parts. Therefore z w aaymplofically a&. 

Nntr that in addition t~ the equilibria a t  r and (O,O), thereis also an equilibrium, 
n saddlr, a t  the intersection of the l i e  L with the z-.&is. 

It is nnt easy to determine the basin of z ;  nor do we know whether there are any 
limit ryrlt=s. Nevertheless we can obtain some information. 

Let L meet the z-axis a t  (p, 0)  and the y-axis at  (0, 9 ) .  Let I' be a rectangle 
whose corners are 

(0, 0)s (P, O), 0 ) ,  (P, O 
with p > p, I > q, and (g, I) E M (Fig. E).  Every trajectory a t  a boundary point 
of r either enters I' or is part of the boundary. Therefore I' is posilwelg inuarionl. 
Every point in Q is contained in such a rectangle. 

13y thr Poincar6-Brndixson theorem the w-limit set of any point (z, y) in I', with 
r > 0, > 0, must b r a  limit cycle or one of the three equilibria (0, O), z or (p, 0).  
Wr nrlr out (0, 0 )  and (p, 0) by noting that z' is increasing near (0, 0); and y' is 
irrrrv:-inr near ( p ,  0). Therefore L.(rr) is either z or a limit cycle in I'. By a con- 
scqomrr. of the PoincarbBendiison theorem any limit cycle must surround z. 

WP ~ h s ~ r v e  further that any such rectangle r contains all limit cycle. For a 
litnit C Y P I C  (like any trajectory) must enter I', and I' is positively invariant. 

Fixing (P, I )  as above, it follows that jor any initid ualur (z(O), y(O)), h 
erlsla b > 0 arch Llurl 

z ( l ) < # ,  y ( t ) < q  if 1 2 b .  

One can also find eventual lower bounds for z(l) and y (1) 

FIG. E 

We alm see that in the long run, a trajectory either approached z or else spirals 
down to a limit cycle. 

From a practical standpoint a trajectory that tends toward z w indistinguishable 
from z after a certain time. Likewise a trajectory that approaches a Limit cycle 7 
can be identified with 7 after it in sufficiently close. 

The mnclusion is that mry acdopy of pradalma and prcy which obey. equalimu (2) 
cvcnlually wlUu down lo either o cmdnnl m perwdic popuhlion. Thcrc are abdulc 
upper bounds fhal no popuhlia can e& in the lung run, no mailer whal lhe inilial 
populorimu are. 

PROBLEM 

Show by examples that the equilibrium in Fig. D nm be either a spird sink or a 
node. Draw d i m s .  

03. Competing Spedw 

We consider now two species z, y which cornlntc for a cornmon food supply 
Instead ~fanal~zingspecificequations we follow adluerent procedure: wemnsider 
a large c l w  ofequations about which we m u m r  only a Pu~qualitativefeatum. In 
this way considerable generality is gained, and little is lost becaw spwilic 
equations can be very diflicult to analyze 



The equations of growth of the two species are written in the form 

(1 )  z' = M ( r ,  y)z, 

Y' = N ( r ,  Y)Y, 

. ~ h r r ~  thc growth rates M and N are C' functions of nonnegative variables z, y. 
Thc following assumptions are made: 

(a)  If rither species increases, the growth rate of the other goes down. Hence 

dM 
- < 0  and F < O .  
% dr  

(h) If either population is very large, neither species can multiply. Hence 
thert- exists K > 0 such that 

A ~ ( I , Y ) < O  and N ( r , y ) < o  if Z ~ K  or y > _ ~ .  

(c) In the absence of either species, the other has a positive growth rate up to 
n rr,rtain population and a negative growth rate beyond it. Therefore there are 
v,,nst:mts a > 0, b > 0 sueh that 

. 11 (1 ,  0 )  > 0 for I < a and Af (I, 0 )  < 0 for r > a. 

.Y(O,y)>O for y < b  and N ( O , y ) < O  for y > b .  

I{?. I;!) ;i11<1 (1.1 r:trl~ rvrllc;tl Ilnv x x R lll~vts tllc. u.1 fi = M ' (0) exactly once 
if  0 5 r 5 a and not at all if r > a. By (a) and the implicit function theorem 
ia th? ~ r a p h  of a nonnegativr C' map J: [O, a] - R sueh that !-'(0) = a. Below 
thr rurvr r ,  AI > 0 and atx~vr it Y < 0 (Fig. A) .  

I \ 
X 

FIG. A- . 
In thv samc way the set Y = N-'(O) is a 8mwth curve of the form 

I(I, Y)I 1 = g(y) l ,  
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whrn: g: [0, b] - R iY a nonnegative I" map with g-'(O) = b. The function 5' is 
positive to the left of v and negative to thc right. 

Supposr p and v do not intersect and that p is hduw v. Then a phase portrait can 
hv C,und in a straightforward way follo\ving m<.th,ds of the previous section. The 
rquilibria RIP (0, O), (a, 0 )  and (0, I ) .  All orbits trnd to one of the three rquilihria 
hut most to thr asymptotically stablr rquilibrium (0, b). &!r Fig. B. 

Y I  1 

I 

FIG. B 

Suppose now that p and u intersect. We make the assumption that r fl r is a 
finite set, and a t  each intersection point, p and u cross iranwersely, that is, they have 
distinct tangrnt lines. This assumption could be dispensed with but it simplifies 
the topology of the curves. hlorenver Af and A' can be approximated arbitrarily 
closely by functions whose zero sets have this property. In a sense which can be 
made precise, this is a "generic" property. 

The curves p and v and the cwrdinate axes bound a finite number of connected 
open sets in the upper right quadrant: these are srts where r' # 0 and y' # 0. We 
call these open sets basic regions (Fig. C). They- are of four types: 

I :  2' > 0, y' > 0; 

11: 2' < 0, y' > 0; 

111: 2' < 0, y' < 0 ;  

IV:  r' > 0, y' < 0. 



FIG. C 

Thr boundary dB of a basic region B is made up of points of the following typea: 
points of IJ n r, called uerlices; points on r or v hut not on both nor on the coordinate 
axes, called ordinary boundary points; and points on the axes. 

A vertex is an equilibrium; the other equilibria are a t  (0, 0). (a ,  O), and (0, b). 
At an ordinary boundary point w E dB, the vector (r', y') is either vertical (if 
w E P) or horizontal (if w E r). I t  points either into or out of B since p has no 
vertical tangents and v hae no horizontal tangents. We call w an inward or mrlward 
paint of dB, accordingly. 

The following technical reault is the key to analyzing equation (1):  

Lemma Lcl B be a beak region. Then the ordinary boundary poinla of B are e& 
nU inward or all outward. 

Proof. If the lemma holds for B, we call B gwd. 
k t  p be a vertex of B where r and r c m .  Then p is on the boundary of four 

basic rrgions, one of each type. Typea I1 and IV, and types I and 111, are diagonally 
opposite pairs. 

Let w C r and rn C v he the open arcs of ordinary boundary paints having p 
as a common end point. If U consists entirdy of intvard or entirely of outward 
points of dB, we call p good Jor B; otherwise p is bad Jor B. It  is easy to see that if 
pis good for B, it isgood for the other three basic regions adjacent top,  and similarly 
for had (Fig. D).  This js because (z', y') rcvenrs direction as one proceeds along 

or v past a rro,sing point. Hence it makes sense to call a vertex simply good or bad. 

FIG. U 

Consider first of all the region Bo whose boundary contains (0, 0). This is of type 
I (2' > 0, y' > 0). If q iS an ordinary point of IJ n dBo, we can connect p to a paint 
inside Bo by a path which avoids u. Along such a path y' > 0. Hence ( 2 ,  y') points 
upward out of Ba at  p since r is the graph of a function. Similarly a t  an ordinary 
point r of v n dB,, (z', y') points to the right, out of Bo at  r. Hence Bo is good, and 
so every vertex of BO is good. 

Next we show that if B is a basic region and dB contains one good vertex p of 
g n  v ,  then B is gwd. We assume that near p, the vector field along dB points into 
B; we also assume that in B, r' < 0 and y' > 0. (The other cases are similar.) Let 
w C p, PO C u he arcs of ordinary boundary points of B adjacent t o p  (Fig. E). For 
example let r he any ordinary point of dB n IJ and q any ordinary point of w. Then 
y' > 0 a t  q. Aa we move along p from p to r thr sign of y' changes each time we cross 
v.  Tlrc number of such mornings in men hecausc r and q are on the same side 91 r. 
Hence y' > 0 a t  r. This means that (r', y') points up a t  r. Similarly, z' < 0 at 
every ordinary point of v n dB. Therefore along p the vector ( i ,  y') points up; 
along u ic points left. Then B lies above r and le/l of u. Thus B is good. 

This proves the lemma, for we can pass from any vertex to any other along r ,  
starting from a good vertex. Since successive vertices belong to the boundary of a 
common basic region, each vertex in turn is proved good. Hence all are g o d .  

Aa a consequence of the lemma, each basic region, atul da closure, is eilher psi- 
lwely or negaliuely invariant. 



FIG. E 

\That are the possible vlimit points of the flow ( I ) ?  There are no closed orbits. 
Fur a closed orbit must be contained in a bank region, but this is impossible since 
r ( l )  and y ( 1 )  are monotone along any solution curve in a basic region. Therefore 
all wlimit points are equilibria. 

We note also that each trajectory is defined for all 12 0 ,  because any point 
lies in a large rectangle r spanned by (0 ,  O) ,  (a, O),  (0 ,  yo), (a, yo) with I. > a, 
yo > b ;  such a rectangle is compact and positively invariant (Fig. F). Thus we 
have shown: 

Theoren* The J?UW 9, of (1) has Ule j o M n q  propcrly : /or aU p = ( I ,  y ) ,  z 2 0 ,  
y 2 0, lhc limit 

lim + # ( P )  
I-0 

exists and iu one of a finite number oj equilibria. 

Wr conclude that Ule populaliona oj two cmnpeling spccics alwoya iml Lo one oj a 
finife nurrrbcr o/ limilinq populaliona. 

Examining the equilibria for Ability, one finds the following resulta. A v e r b  
where r and r ench have negative slope, but r is steeper, is asymptot idy stable 
(Fig. G ) .  One aees this by drawing a small rectangle with aides @el to the axes 
around the equilibrium, putting one comer in each of the four d j t  regions. 
Such a rectangle is pxitively invariant; since it can be arbitrarily amall, the equilih- 
rium is asymptotically stable. Analytically thin is e x p d  by 

M .  
slope of r = - - N* < slope of v - -  - - 

M. N ,  < O, 

where M. = dM/az ,  M. - JM/&, and 80 on, a t  the equilibrium, fmm which a 
computation yields eigenvalues with negative real parts. Hence we have a sink. 

A cane by cane study of the different ways r and r can cross ahowe that the only 
other asymptotically atable equilibrium is (b, 0 )  when (b, 0 )  is above r,  or (a, 0 )  
when (a, 0 )  is to the right of v. All other equilibria are nuatable. For example, q 
in Fig. H is unstable because arbitrarily near it, to the left, ia a trajectory with r 



drcrmsing; such a trajectory tends toward (0, b). Thus in Fig. H ,  (0, b) and p 
arr asymptotically stable, while q, r, s and (a, 0 )  are unstable. Note that r is a 
MUICC. 

There must be a1 kasl me aaymplolically ahbk equilibrium. If (0, b )  is not one, 
then it lies under p; and if (a, 0 )  is not onc, it lies over p. In that case p and v cross, 
and t h ~  fint croasing to the left of (a, 0 )  is asymptotically stable. 

ICvery trajectory tends to an equilibrium; it is instructive to see how these 
u-limits change as the initial state changes. Lpt us suppose that q is a saddle. Then 
it can be shown that exactly two trajectories o, a' approach q, the so-called shbk 
manifolds of q, or sometimes separalrices of q. We concentrate on the one in the 
unbounded basic region B., labeled a in Fig. H. 

FIG. H. Bifurcation of behavior. 

All points of B .  to the left of u end up a t  (0, b), while points to the right go to 
p. As we move acroas o this limiting behavior changes radically. Let us consider 
this hifirrcatim of behauior in biological terms. 

Lc,t ca, UI he statcs in B., very near each other hut separated by a; suppose the 
tn~jrett,ry of 00 goes to p while that of UI goes to (0, b ) .  The point vo = (a, yo) 
rvlmx~nt.: nn i,mlo~y of competing speeies which will rventually stabilize at p. 
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Notr that b t h  populations are positive at p. Suppose that some unusual event 
orcurs, not acrountrd for by our model, and thr state of the ecology changes sud- 
drnly from I,, to 0,. Such an event might bp intrndurtion of a nett- pesticide, importa- 
tion of additional members of onc nf thr sperirs, a forest fire, or the like. Mathe- 
matically the rvrnt is a jump from the basin of p to that of (0, b). 

Such a change, even though quite small, is an ecological catastrophe. For the 
trajectory of ut has quite a different fate: it goes to (0, b) and the r species is a p e d  
out! 

Of course in practical ecology one rarely has Fig. H to work with. Without it, the 
change from uo to 0,  does not seem very different from the insignificant change from 
uo to a near state u2, which also goes to p. The moral is clear: in the absence of com- 
prehensive knowledge, a deliberate change in the ecology, even an apparently minor 
one, is a very risky proposition. 

1. The equations 

r' = r ( 2  - 1. - y), 

satisfy conditions (a) through (d) for competing spwies. Explain why t h e e  
equations make it mathumaticnlly posuiblc., hut rxtremely unlikely, for both 
sp~cirr  to survive. 

2. Two species r, y are in syntbiosia if an inereasp of either population leads to  an 
increase in the growth rate of the other. Thus we assume 

a.w ax 
- > 0  and - > 0  
JY a= 

We also suppose that the total food supply is limitcd; hence for some .4 > 0, 
R > 0 wc have 

n r ( ~ , ~ ) < o  if r > A ,  

S(z, y) < 0 if y > B.  

If hntll populations are very small, thc.1- both incrrasr.; hence 

.lI(O, 0) > 0 and .V(0, 0 )  > 0. 



Assuming that the intersections of the curves M-'(O), N-'(0) are finite, and 
ill1 arr  transverse, show that: 
(a) every trajectory tends to an equilibrium in the region 0 < z < A, 0 < 

Y < B ;  
(b) there are no sources; 
(c) there is a t  least one sink; 
(d) if JM/Jz < 0 and JN/Jy < 0, there is a unique sink z,  and z = Lr(z, y) 

for all z > 0, y > 0. 

:I. Provr that under plausible hypotheses, two mutually destructive species can- 
not rorxist in the long run. 

I .  1x1 11 and r drnote predator and prey populations. Let 

2' = M(z, y)z, 

Y' = N(z, Y)Y, 

where Y and N satisfy the following conditions. 
( i)  If there are not enough prey, the predators decrease. Hence for some 

b > O  
N ( t , y ) < O  if z < b .  

(ii) An increasc in the prey improves the predator growth rate; hence 
a.v/ar > 0. 

(iii) In the absence of predators a small prey population will increase; hence 
'If (0, 0 )  > 0. 

iiv) B~yond a certain size, the prey population must decrease; hence there 
exists A > 0 with M(z, y) < 0 if z > A.  

iv)  Any increase in predators decreases the rate of growth of prey; hence 
anr/ay < o. 

(vi) The two curves hf-'(a), N-'(0) intersect transversely, and a t  only a 
finite number of points. 

Shrnv that if there is some (u, v )  with M(u, v) > 0 and N(u, v) > 3 
t111.11 LIIC.TC is rithcr an asymptotically stable equilibrium or an vlimit cycle. 
.\l<,rrovcr, if the number of limit cycles is finite and positive, one of them must 
have orbits spiraling toward it from both sides. 

.i. Show that the analysis of equation (1) is essentially the same if (c) is replaced 
by the more natural assumptions: M (0,O) > 0, N (0,O) > 0, and M (z, 0)  < 0 
f o r r > A , N ( O , y ) < O f o r y > B .  

u.aa impi rd  by ubsprvation of L h  populations ill thr Upper Adriatic. A diseuasion 
ofmme of this matcrial is found in a DaDer by E. W.  .\Iontroll el al., "On the Voltem 
and other nonlin~ar models" C16l. '& al& the book The ~lrugikfm Ezdcmx by - - 

U. D'Ancona [4]. 
A vrrv readable summarv of some recent work is in "The struPnle for Me. I" 

by A. ~ e s c i ~ n o  and I. ~ i c h h e o n  [21]. Much of the material of this chapter van 
adapted from their paper. 

A recent book by Ren6 Thom [24] on morphogenesis uses very advanced theories 
of stability and bifurcation in constructing mathematical models of biologid 
processes. 

Them is a good deal of experimental and observational evidence in support of 
the grncral conclusions of this chapter-that predator-prey ecologies oscillate 
while competitor ecologips reach an equilibrium. In fact Volterra's original study 



Chapter 13 
Periodic Attractors 

Here we define mymptotic stability for closed orbits of a dynamical system, and 
nn rrprrially important kind callrd a periodic attractor. Just as sinks are of major 
i t l i l t ~ r l ~ t t , r . c .  s!tlr,nK ~(~tnilil~ria i n  mod,.l. of "physical" systFms, 80 periodic attractora 
an, tltc ~ t i r l s l  irnl)orttint kind of oxeillations in such models. As we shall show in 
( ' l~ i tp t t~  l l i ,  sucll oscillations persist evrn if the vector field is perturbed. 

'I'11c. ~ l l i l i r l  r~sul t  is that a certain eigenvalue condition on the derivative of the 
Ron- inqrlir,~ asymptotic stability. This is proved by the 88me method of local see- 
tic,rw nst.,l rarlier in the I'oincar&Bendirson theorem. This leads to the study of 
"disrn,tr. dynamieal systems" in Section 2, a topic which is interesting by itself. 

$1. Asymptotic Stability of Closed Orbitn 

Let f :  U' - R. be a C1 vector field on an open set W C R'; the flow of the dif- 
frrrntial equation 

is <It,nutr,l I,? 9,. 
I.vt 7 C 11. bf a closed orbit of the flow, that is, a nontrivial periodic solution 

cur\.<,. I\'? rall 7 asy~~~plolically alnble if for every open set Ul C W, with 7 C UI 
ttrrw is 1111 OPPIB set l't, 7 C L', C U ,  such that +,(Ut) C U ,  for all 1 > 0 and 

lim d(+dz) ,  7 )  = 0. 
, .. 

Herr d ( r ,  7 )  means the minimum distance from z to a point of 7 .  
Thr closrd orbit in the Van der Pol oscillator was shown to be asymptotically 

stablr. On the other hand, the closed orbits of the harmonic oscillator are not since 
an qmptotically stable closed orbit is evidently isolated from other closed orbits. 

$1. A8YMFlOTlC BTABILITY OF CWSED ORBITS m 

We nay a point z C W hm aqnnpbtu pcriOd A E R if 

Lim 1+1+,(z) - +,(z)1 = 0. 
,*.s 

Theorem 1 Lel 7 be an aqmpblically .slab& closed orbd of p d  A. Thm 7 has a 
nkghborhood U C W arch lhd every point of U haa arymptolu pcriod A. 

Proof. Let U be the open set U .  in the definition of asymptotically stable with 
Wo = U,. Let z E U and fix e > 0. There exists 6, 0 < 6 < r ,  such that if r E 7 
and I y - z I < 6, then I+r(y) - + L ( z ) ~  < c (by continuity of the Row). Of courae 
+h(r) = r. Since d(+,(z), 7 )  - 0 as 1 -+ m, there exists I, > 0 such that if 1 > 4, 
there is a point 2, E 7 such that I +,(z) - z, I < 6. Keeping in mind +h(zt)  = z, 
we have for 1 > 4:  

1 + ~ + t ( z )  - +e(z)l 5 I +i+,(z) - +~(zz)l + I +&(zz )  - +$(z)l 

C e + 6 < 2 e .  - 
Thie proves the theorem. 

The significance of Theorem 1 ia that after a certain time, trajectories near an 
asymptotically stable closed orbit behave as if they themselves had the same period 
am the CM orbit. 

The only example we have seen of an asymptotic closed orbit occun, in a two 
dimensional system. This is no accident; planar systems are comparatively easy to 
analyze, essentially because solution curves locally separate the plane. 

The theorem below is analogous to the fact that an equilibrium Z is asymptotically 
Btable if We eigenvalues of Df(Z) have n~gative real part. I t  is not as convenient 
to use since it requires information about the solutions of the equation, not merely 
about the vector field Nerertheles. I! ~c ofgreat InlpoRanrP 

Thcorem 2 Let7 beadoscdmbitofperiodh offhedyom*daydm ( I ) .  W p  C 7. 
Suppone thd n - 1 of lhe eigmyolua of the linear map D+r(p) : E -+ E are lcds fhan 
1 an absolufe d u e .  Thm 7 id aqnnplolicdly slab&. 

Some remarks on tbia theorem are in order. First, it assumes that +, in differemti- 
able. In fact, +,(z) in a O function of (1, z ) ;  this is proved in Chapter 16. S a n d ,  
the condition on D+i(p) in independent of p E 7. For if q E 7 in a different point, 
let r E R be such that Clp)  = q. Then 

which shows that D+l(p) in similar to &(q). Tbird, note that 1 is always an e b -  
value of D+&(p) eince 

W & ( P ) ~ ( P )  = I(P).  



The elgenvalue condition in Theorem 2 is stronger than asymptotic stability. 
If it holds, we edl 7 a periodic afhdar. Not only do trajectories near a periodic 
attractor 7 have the m e  asymptotic period M 7 ,  but they are aaymptotkally 
"in phssr" with 7. This is stated precisely in the following thmrem. 

Thcorcm 3 Let 7 be a periodic attraclor. I j  lht-.d(+,(z), 7) = 0, Ulen 
is o untpur p i n t  r E 7 arch lhd h,. 1 +,(I) - +t(z)l - 0. 

This meam that any p i n t  sufficiently near to 7 has the same fate aa a definite 
point of 7. 

I t  can be proved (not eaaily) that the cloeed orbit in the Van der Pol oscillator 
is a periodic attractor (see the Problems). 

The proofs of Theorems 2 and 3 oecupy the rent of this chapter. The proof of 
Throrrm 2 depends on a local seclwn S to the flow at  p, analogous to those in Chap  
ter 10 for planar flows: S is an open subset of an ( a  - I)dimensionsl subepaee 
transverse to the vector field a t  p. Following trajectories from one point of S to 
another, defines a C' map h: So -+ S, where S. is open in S and contains p. We call 
h the I'oincar6 map. The following section studies the "diirete dynamical system" 
h :  S. - S. In  particular p E So is shown to be an asymptotically stable Iixed p i n t  
of h,  and this w i l y  implies Theorem 2. 

$2. DISCRETE DYNAMICAL SYSTEMS 279 

space" of somr sort, then g(z) is the state of t h ~  system I unit of time after it is in 
state z. After 2 units of time it will bt. in state g2(z) = g ( g ( r ) ) ;  after n units, in 
state y" (1.). Thus instead of a continuous family of states 1 +,(z) I 1 F R) m.e heve 
the discrete family [gB(z) I n E ZI, where Z is the set of integers. 

The diffeomorphism might be a linear operator T :  E - E. Such systems are 
studird in linear al~,,hra. We get rather cornplcte information about their structure 
from the canonical form thporrms of Chaptrr fi. 

Suppose T = eA,  A F LIE). Then T is the "time one map" of the linear flow 
eU. If this continuous flow el* reprernts mrne natural dynamical process, the 
discrete flow T' = emA is like a series of photographs of the process taken a t  regular 
time intervals. If these intervals are very small, the discrete flow is a good approxi- 
mation to the continuous one. A motion picture, for example, is a discrete flow 
that is hard to distinguish from a continuous one. 

The analogue of an equilibrium for a discrrte system g: E - E is a fird poid 
I: = g(z'). For a linear operator T, the origin is a fixed point. If there are other 
fixed points, they are eigenvectors belonging to the eigenvalue 1. 

We shall be interestel in stability properties of tixed points. The key exampl~ is a 
linear cot~lraclwn: an operator T E L ( 6 )  such that 

(1) lim Tmz = 0 
"*- 

for all z C E. The time one map of a contracting flow is a linear contraction. 

Proposition The follouing stdements are equiuale,ct: 

Let 7 be a cloeed orbit of period A > 0 in a planar dynamical system z' = j(z) .  
L e t v  E 7. 

then 7 is a periodic attractor, and conversely. 
(b) Using the methods of Chapter 10, Section 3, and Limrdk's jmmula (a proof 

of Liouville's formula may be found in Hartman's book [g]) 

Det D+~(P)  = e v  {[ Tr D,(+.P) 

show that the closed orbit in the Van der Pol millator is a periodic attractor. 

52. Discrete Dynamiul System8 

An important example of a discrete dynamicd system (precise definition later) 
is a C' map g: W -+ W on an open set W of vector space which haa a C' inverse 
g-': W - W. Such a map is called a diflbmnorphiam of W. If W represents a "state 

(a)  T is a linear conlmdwn; 
(b) the etgenvalues of T haue absolule d u e s  less lhan 1;  
(c) lhere is a norm on E,  and p < 1, such lhd 

ITz l  S r l r l  
for all 2 t E. 

Proof. If mme real eigenvalue A hss absolutp value I A I 2 1, (1) is not true 
if z is an cigenvector for A. If I A I t 1 and A is complex, a similar argument about 
the complexification of T shoax that T is not a contraction. Hence (a) implies 
(h) .  That (c) implies (a) is obvious; it re~nains to prove (b) implies (c). 

We embed E in ita complexification h'c, extending T to a complex linear operator 
Tc on 6 c  (Chapter 4). I t  suffices to find a norm on Ec as in (c) (regardinx LC as a 
real vector space), for then (c) follows by restricting this norm to E. 

Recall that Ec is the direct sum of the generalized eigenspaces V I  of Tc,  which 
are invariant under Tc. I t  suffices to norm each of these subspaces; if r = zs 
z h  E V L ,  then a n  define 1 z I = max(/ zr l I .  Thus r e  may replace Ec h s  Y i ,  or 
what is the same thing, assume that T has only one eigenvalue A. 

A similar argument reduces us to the case where the Jordan form of Tc ha* only 



on? rlmmrtrti~ry Jordan Mock 

IFnr any e > 0 t h w ~  is anoth~r basis {e l ,  . . . , e.1 giving Tc the "-Jordan form" 

1 

7'lti.: was I,ruved in Chapter 7. Give Ec the max norm for this basis: 

aht%rr a,. . . . , a. are arbitrary compl~x numbers. Then if I A / < 1 and e is suffi- 
ei?ntly snrall. (ci is satisfid. This completes the proof of Proposition I. 

\Vc now drfine a discrete dynamical syslem to be a C' map g: W - E where W 
is an open srt in a vector space E. If W # E, it is possible that g' is not defined at 
:ill 1'1 l i t t ta  , , f  Ii', or evrn st any points of W. (This last case is of course unintermting 
ss :I <I> ~~:in>ict~I syat~m,)  

A l i 1 ~ t 1  r)oir,t I = g( f )  of such a system is asymplolically shble if every neighbor- 
hoot1 1'  C I!' of i rnntail~s a npighborhwd l i ,  of r' such that (,"((',) C 1: for 
n 2 0 an11 

lim g"(z) = i 
"-* 

for all r E 11,. It follows the Propmition that 0 is aytrrl~tot~r;tlly .;l;il,lr for ;! 
linear contraction. 

In analogy with continuous flows r e  define a 8ink of a discrete d?.namieal system 
g to nr.,an an equilibrium (that is, fixed point) a t  which the ~igmvalut.~ of Dg have 
nbsulutv value less than 1. 

The main result of this section is: 

Theorem Lel r' be a k e d  poinl 01 a diacrelc dynamical system g: W - E. IJ the 
~ l y r t ! r n l u r s  of Dg(Z) arc less than 1 in absolute ualus, i is asymptolicolly stable. 

Prooj. We m y  assume d = 0 t E. Give E a norm such that for some p < 1, 

I Dg(O)s I 5 r l z l 
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for all z 6 E. k t  0 < r < 1 - g. Ry Taylor's thporrm there is a neighborhood 
I' C 14' of 0 so small that if I f 1', then 

I g(z) - Dg(0ir l < t l 2 1. 
Hence 

I ~(111 < 107(0)1l + * I  rI 

5 r / r I + a l r l .  

Putting u = r + r < 1 we have / g(z)J  < u I z I far I E I'. Given a neighborhood 
C' of 0, choose r > 0 so small that the ball L'x of radius r about 0 lies in L:. Then 
/ g'l: / 5 v" I z / for z f Cl; hence 9% C C', and g " ~  - 0 as I - m. This completes 
t h ~  proof. 

The preceding argument can be slightly modified to show that in the specified 
norm, 

lg(z) -g(y)l  5 # I z - y l 7  P < I ,  

for all 2, y in some neighborhood of 0 in W 

93. Stability end Closed Orbile 

We consider again the flow 6, of a C' vector field J: II' - E. Let .r C W be a 
closed orbit and suppose 0 c 7 .  

Suppow S is a ~cction a t  0. If A > 0 is the period of 7, then as 1 increases past 
A ,  the solution cuwc h(O) crows S at  0. If 2 is tiufficiently near 0, there u<ll be a 
time r ( z )  near A when +.,,,(I) crosses S. In this way a map 

is obtained, I' being a neighborhod of 0. In fact, by Section 2 of Chapter 11, there 
is such a C and a unique C' map r :  C - R such that +,(.,(I) C S for all I in L' 
and r(0) = A. 

Now let I . ,  r hc as abovc and put So = S n 1 ' .  Llofine a C1 map 

g: So-+ S ,  

g(z) = + , < , , ( ~ i .  

Then g is a discrete dynamical system with a fixed point a t  0. See Fig. A. \Ye call 
g a I'oinrard map.  Note that the Poinear6 map may not be definable a t  all points 
i f  s (1;i~. B). 

T h r n  is an intimate connection brtwcen the d\.namieal ~ m w r t i e s  of the flow . . 
near y and those of the Puincad map near 0. 1-or example: 



FIG. A. A Poinear6 msp I: S. -t S 

Proposition 1 I,el y:  So -. S be a Poincard map for 7 aa above. Let I E So be mrch 
llinl l i n ~ . ~ .  qm(z)  = 0. Then 

lim d(+,(z), 7) = 0. 
0-m 

Proof. Let g"(z) = I. C S. Since g"+'(z) is defined, z. E SO. Put r(z.) = A.. 
Since I. -1 0, h.  -+ A (the period of 7) .  Thus there is an upper bound r for 
II h .  I I ,A 2 0 ) .  By continuity of thc flow, as n - 5, 

I +,(z.) - 4.(0)1 -0  

unlfornrly in s 6 [O, r]. For any 1 > 0, there exist ~ ( l )  E [0, r], and an integer 

13. 8TABII.ITT AND CWSW ORBIT8 

n(1) 2 0 such that 
+,(z) = +.<~,(I"C<,) 

and n(1) -+ m as 1 --t .o. Therefore for I > 0 

d ( + t ( ~ ) ,  7) 5 I +<(=) - + ~ e , ( O ) l  

= I +,CC,I",#, - +.CC,(O)I, 
whichgaestoOas1--0. 

Keeping the same notation, we also have: 

Proposition 2 IJ 0 id o sink for g, then 7 is asymptotically aloblc. 

Proof. Let U be any neighborhood of 7 in W ;  we must find U,, a neighborhood 
of 7 in U, such that +,(U,) C U for all 1 > 0 and 

for all z E U,. 
Let N C U be a neighborhood of 7 so small that if r E N and I 1 I < 21, then 

&(z) E U (where X is the oeriod of .r). . ~. . 
Let H C E  be the hyperplane containing the I d  section S. Sinm 0 in a aink, 

the main result of Section 2 says that H has a norm such that for some p < 1, and 
some neighborhood V of 0 in So, it is true that 

Ir(z)l < r l r l  
for all I i V. I r t  p > 0 be so small that the ball B, in H around 0 of radiua p is 
contained in V n N ;  and such that r ( r )  < 21 if z E B,  

Define 
UI = (+,(I) I z E B,, t 2 01. 

See Fig. C. Then U, is a neighborhmd of 7 which is poeitively invariant. Moreover 
U, C U. For let y E UI. Then y = +,(I) for some z E B,, t 2 0. We rvnrert that 
(1, 2) can be chosen so that 0 < 1 < r(z).  For put ~ " ( 2 )  = I.. Then r. E V for 
d l  n > 0. There exista n such that y is between z. and r.,, on the trajectory of 
I; since I. E V, r(rm) < 21; and y = +,(I) = &(I.) for 0 < I < 2A. Then y € U 
because z. E N. 

Finally, d(+,(y), 7) -0 as 1 -+ m for all y E U. For we can h t e ,  for given y, 

Since gm(z) -0, the result follows from Propasition 1. 

The following m u l t  links the derivative of the P o i n c d  map to that of the flow. .~ 
We keep the same notation. 

Proposition 3 Lcl the hypcrplone H C E be inwrianl under Dh(0). Then 

Du(0) - D+r(O)l H. 
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P r w j ,  1,ct r :  So - R be the C1 map such that r(0) = k and g(r)  = +(r(r ) ,  2) 
By the remark a t  the end of Section 2, Chapter 11, we have 

Sine? I)O~(O) (H)  = H = Ker h,  Dr(0) - 0. Hence by the chain rule 

= D+i(O)I H. 

I t  is ray to see that the derivatives of any two Poincard m a p ,  for different 
sectirrns at 0, are similar. 

\\'<, rtoa h:ive all thc ingredients for the proof of Theorem 2 of the &t section. 
Supposr 7 is a closed orbit of period A as in that theorem. We may assume 0 € r. 

\Ve choose an (n - 1)dimensional subspace H of E as follows. H is like an 
eigenspace corresponding to the eigenvalues of D+h(O) with absolute value less 
than 1. Precisely, let B C Ec be the direct sum of the gened ied  eigenspaces 
belonging to these eigenvalues for the complexification (Dh(0))c :  Ec -+ Ec, and 
let H = B n E. Then H is an (n - 1)dimensional subspace of E invariant under 
D11(0) and the restriction Drr(0)l H is a linear contraction. 

Let S C H be a &ion at 0 and g: So 4 S a P o i n c d  map. The previous p r o d -  
tion implirs that the fixed point 0 € S.is asinkforg. By Pmposition2,~ inasymptot 
ically stablc. 

To provc Theorem 3, it suffices to consider a point r € So where g: So -r S M 

the 1'0incar6 map of a local nection a t  0 E 7 (since every trajectory starting near 
7 it~trrsc,cts So). 

If + . ~ ( r )  is defined and sufficiently near 0 for n = 1, . . . , k,  then 

+.h(~) = ~<.(O.Z), 
where 

1. = I.-, + ,(g"-'z) - A. 

For some v < 1 and some norm on E we have 

1 0.2 I < . I o--'z I; 

and using Dr(0) = 0, we h o w  that for any r > 0, 

I t" - 1 .4  I 5 c I O"-~Z 1 5 evm-l 1 r I 
if I I I is sufficiently small. Thus 

Hence if t is sufficiently small, the sequence r.r(z) stays near 0 and can be con- 
tinued for all positive integen, n, and the above inequalities are valid for all n. It 
follows that the sequence (1.1 is Cauchy and converges to some a E R. Thus +.&(I) 
converges to +.(O) = z f 7. This implies Theorem 3 of Section 1. 

PROBLEMS 

I .  Show that the planar system 

r' = (1 - r1 - y2)z - y, 

y ' = z + ( l - ~ ~ - y ' ) ~  

has a unique closed orbit 7 and compute its Paincan? map. Show that 7 is a 
periodic attractor. (Hint: Use polar coordinates.) 

2. Let X denote either a closed orbit or an equilibrium. If X is asymptotically 
stable, show that for every A > 0 there is a neighborhood U of X such that if 
P C C' - X,then +,(p) # p for all 1 C [O, ?.I. 

3. Show that a linear flow cannot have an asymptotically stable dosed orbit. 

4. Define the concepts of aoMc doaed mbtl of a flow, and at&& fied p ' n l  of a 
discrete dynamical system. Prove the following: 
(a)  A cloeed orbit is stable if and only if its Po incd  map baa a Btable fixed 

point a t  0. 
(b) If a closed orbit 7 of period A is stable then no eigendue of D+i(p), 

P F 7, has ab801ute value more than one, but the converse can be fabe. 
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5. (a)  I a t  p be an asymptotically stable fixed point of a diecrete dynamic81 
system g: W - E .  Show that p has arbitrarily small compact neighbor- 
h o d  v c w such that g(V) c int V and nQQ g"(V) = p. 

(b) State and prove the analogue of (a) for closed orbits. 

6. Let 9 :  R + R be the map 

g(z) = az + 62% + nl, a # 0. 

Invrstignte the fixed point 0 for stability and asymptotic stability (see Problem 
1). Considrr separately thr cases I a 1 < 1, / a1 = 1, I a1 > 1. 

Chapter 14 
Classical Mechanics 

i. ~'Tht, ('rlntractinp hlap Thwrem) Let X C R" be a nonempty closed set and 
. . - -  S n continuous map. Suppoee / has a Lipschits constant o < I. Frovc 
tlrrit f JLM unique fixed point p, and lim.,.f"(z) = p for all z E X. (Hid: 
Considrr the sequence f"(z).) 

The goal of this very short chapter is to do two 1l1111gs: (1) to give a statement 
of the famous n-body problem of celestial mechanics and (2) to give a brief intro- 
duction to Hamiltonian mechanics. We give a more abstract treatment of Hamil- 
tonian theory than ia given in physics texts; but our method exhibits invariant 
notions more clearly and has the virtue of passing easily to the case where the 
configuration space i8 a manifold. 

(1. The n-Body Problem 

We give a description of the n-body "problem" of celestial mechanics; this 
extends the Kepler problem of Chapter 2. The basic example of this mmhanicd 
system is the solar system with the sun and planets representing the n bodies. 
Another example in the vatem consisting of the earth, moon, and sun. We are 
concerned here with Newtonian gravitational forces; on the other hand, the New- 
tonian n-body problem ia the prototype of other n-body problem, with f o r m  
other than gravitational. 

The data, or parametera of t h k  system, are n positive numbers representing the 
manses of the n bodies. We denote these numbers by m,, . . . , m.. 

The first goal in understanding a mechanical system ia to define the umjgwdim 
space, or apace of generalized positions. In this ease a configuration will consist 
precisely of the positions of ench of the n bodies. We will write ri for the position 
of the ith body so that z. ia a point in Euclidean three space (the apace in which we 
live) denoted by E. Now E is ieomorphic to Carhian space R' but by no n a t d  
ieomorphism. However E does have a natural notion of inner product and m i -  
ated norm; the notions of length and perpendicular make sense in the space in 
which we live, while any system of coordinate axes ia arbitrary. 



Thus Euclidean three space, the configuration space of one body, is a three- 
dimrnsiunal vector space togethrr with an inner product. 

Tht, ronfi~uration space 111 for the ,,-body problem is the Cartesian product of 
E !< i t l l  i ts~4i ,, timrs; thus 111 = (E) '  and r = (I,, . . . , z.), where I, t E is the 
~)c>sitioll 01 the ith body. Sot" that r ,  denotes a point in E, not a number. 

O l i t ,  trt: l> drducr the space of states from the configuration space as the space 
l',, all t:ingc.nt vectors to all possible curvrs in A l .  Onr may think of TM BS the 
pn~rlurt .lI x d l  and represent a state as (I, u )  C d l  X Y, whprc r is a configura- 
ti,,n a brfvrr and 1, = ( u , ,  . . . , u. ) ,  u ,  t E being the velocity of the ith body. A 
stat*, of tht. system gives complete information about the sys t~m a t  a given moment 
and (at lvast in classical mechanics) determines thr complrte life history of the 
slntc,. 

'1'111. ,h,tvnnination of this life history goes via the ordinary differential equations 
of motion, Newton's equations in this instance. G d  insights into these equations 
can hr obtained by introducing kinetic and potential energy. 

The kinetic energy is a function K :  A! X Af + R on the space of states which 
is givrn by 

Ht,rr t l t v  m,rtn of v ,  ix t h ~  Euclidran norm on E. Onr may also consider K  to be 
gi\-cw dirr(,tly by an inner product B on A1 by 

It  is clear that B defines an inner product on A! where (u., w . )  means the original 
inner product on E. 

Thr polr,rlial energy V is a function on M defined by 

\VI, supposr that the gravitational constant is 1 for simplicity. Note that this 
function is not defined a t  any "collision" (where r .  = I , ) .  Let A,, be the subspace of 
collisions of the ith and jth bodies so that 

Thus A,, is a linear subspace of the vector spacr A!. Drnotc thr npacr of all collisions 
I,? A C .I1 so that A = U A,,. Thvn prnprrly spraking, thr  clomnin 111 thr potrntial 
vnl.rp? i.; 11 - A :  

v :  nr - A + R. 
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Wr deal thrn with thr space of noncollision statrs which is (.hr - A) X hf. 
Newton's equations are ssond order equations on h! - A  which may be written 

m.?. = -grad. V(r)  for i = 1 , .  . . , n. 

Here the partial derivative D.V of V  with respect to I, is a map fmrn .I1 - A  to 
L ( E , R ) :  then the inner ~ roduc t  o n E  conrert.~D,V(r) toa rertorwhich wecall p a d ,  
V(r). The process is similar to the definltlon of gradient in Clrapter 9. Thus the 
equations make sense a? written. 

One may rewrite Newton's equations in such a way that they h o m e  a first 
order system on the space of states (At - A )  X JI:  

m.vj = -grarl, V(r) ,  for i = . . . . . n 

The flow obtained from this differential equation thrn determines how a statc 
moves in timp, or the life history of the n bodirs once thrir positions and velocities 
are given. Although thrre is a vast literature of several eenturirs on these equa- 
tions, no clear picture has emerged. In fact it is still not evcn clrar what the basic 
questions arp for this "problem." 

Somr of thr q u ~ t i o n s  that havr bern studid inrludr.: Is it true that almost all 
statc.s do nut lead t < ,  collisions? To what rxtc*et arc urricdie atlutians stablt,? How 
to show the existencr of periodic solutions? How to rrlate the thcwry of the n-body 
problem to the orbits in the solar systrm? 

Our present goal is simply to put Newton's nluations into thr franrrwork of 
this book and to see how they fit into the more abstrart framework of Hamiltonian 
mrchanics. 

We put the n-body problem into a little morc gc,neral setting. The key ingrrdi~nts 
are: 

(1) Configuration space Q, an open set in a vector spacr f: (in thc above ease 
Q = - A a n d E  = M).  

(2) A C function K :  Q X E -4 R, kinetic energy, such that K ( r ,  u )  has the 
formK(r, v )  = K.(v, u), where K .  is an inncr product on E (in thr above 
case K ,  was independent of r, but in problems with constraints, K, de- 
pends on r ) .  

(3) A C function V: Q + R, potential energy. 

The triple ( Q ,  K ,  V) is called a simple mechanical ~yalem,  and Q  X B the stale 
s p a u  of thc system. Givcn a simple mechanical ayatem (Q.  K ,  V )  the energy or 
total energ). is the function e :  Q  X E - R drfincd by e ( r ,  v )  = K ( r ,  v )  + V ( r ) .  

For a simplr r,~~,chanical system, one can canonically drfine a vector field on 
Q  X E which gives the equations uf motion fur the stat= (points of Q X E ) .  We 
will see how this can be done in the next section. 



I IXI I I I I~ I I~E of simplc mechanical systems beside the n-body problem include a 
partirlr ntoving in a conservative central force field, a harmonic oscillator, and a 
frirtic,rllrss pmdulum. If one ~xtcnds the definition of simple mechanical systems 
to pvrniit Q to be a manifold, then a large part of classical mechanics may be 
anal\zed in this framework. 

82. Ilun~iltonisn Mechanics 

We shall introduce Hamiltonian mechanics from a rather abstract point of 
view, and thrn relate it to the Newtonian point of vicw. This abstract development 
proereds quite analogously to the modem treatment of gradients using inner 
prcxlucts; now however the inner product is replaced by a "symplwtic form." 
So \vv b r ~ i n  our discussion by defining this kind of form. 

If F is n vector space, a sympleclic Jmm n on F is a real-valued bilinear form 
that is antisymmetric and nondcgenerate. Thus 

n : F  X F + R  

is a bilinear map that is anlisymmelric:n(u, v) = -n(v, u), and nondcgenerall, 
which means that the map 

Oo = .: F --t F* 

is an isomorphism. Here O is the linear map from F to F* defined by 

O(U) (u) = n(u, u), U, v E F. 

I t  turns out that the existence of a symplectic form on F implies that the di- 
mension of F is even (see the Problems). 

We give an example of such a fonn R. on every even dimensional vector space. 
If F' is an even dimensional vector space, we may write F i n  the form F = E X E*, 
the Cartesian p d u c t  of a vector space E and its dual E*. Then an element J of 
F is of the fonn (v, w) where v, ware vectom of E, E*, respectively. Now if J = (0,  w), 
10 = ( f f ,  d) are two vectors of F, we define 

O(bP) = d ( v )  - w(ff). 

Thrn it is easy to check that R. is a symplectic form on F. The nondegeneracy is 
obtnind by showing that if a # 0, then one may find 6 such that %(a, 8)  # 0. 
Notc that Ib does not depend on a choice of coordinate structure on E, so that it 
is natural on E X E'. 
If onc chooses a basis for E, and uses the induced basis on E*, Sb is expressed 

in coordinates by 

P (  (v ,  w),  (ff, d)) = C w.'vi - C wiv.'. 

I t  can be shown that every s.mplectic form is of this type for some repwenb- 
tion of F as E X E*. 

Now let U be an open subset of a vector space F provided with a sympleetic 
fonn n. There is a prescription for aesigning to any C function H: U - R, a Ct 
vector field XH on U called the Hamilloninn vcclm field of H. In thin con- H m 
called a Hamilhian or a Hamiltoninn function. To obtain X. let DH: U -t P 
be the derivative of H and simply wi te  

(1) XM(t )  = g 1 D H ( r ) ,  I E U ,  

where 0-' is the inverse of the isomorphism O: F + F* defined by 0 above. (1) in 
equivalent to sayingn(XH(r), y) = DH(x)(y), all y € F. Thus Xn: U -t F in a 
C1 vector field on U ;  the differential equations defined by this vector field .re 
called Hamilla'a equnlias. By using coordinates we can compare these with what 
are called Hamilton's equations in physicn hooks. 

Lrt be the symplectic fonn on F = E X E* debed  above .nd let 
r = (I,, . . . , I.) represent points of E and y = (y,, . . . , y.) points of .P for the 
dual coordinate structures on E and E'. Let 4: F + F* be the Moeiated im- 
rnorphism. 

For any C function H: U + R, 

JH JH 
DH(Z, U) = c , - 81. dr.  + c I - ay. dy. 

aH JH - - -  XH(I, Y) = f;, . . . , ay. , a ~ ,  ' ' ' ' ' - E) a=. 
Thii is Been as follows. Observe that (suppming (I, y))  

W X H )  = DH 
or 

a ( X H ,  w) = DH(w) for all w E F. 

By letting w range over the standard basic elements of R", one mnhrms the ex- 
preasion for XH. The differential equation defined by the vector field Xu in tben: 

Thesc are the usual expressioli for Hamilton's equations. 
Continuing on the abstract lcvel we obtain the "conservation of energy" theorem. 

The reason for calling it by this name is that in the mechanied mod& described 



i l l  t l l i -  sc,ttiag, If plays the rolp of mergy, and the solution curves represent the 
n ~ < l t ~ , n s  cil statrs of the system. 

Thvorvrn (Consrrvation of Energy) Lel U be a n  open sel qf a ueclm apace F, 
11. I '  - R any C (u,tcliort a i d  LI a sympleclic form on F. Then H is cnnshnl on the 
solati~r,t curses dejned by lhs ueclor field Xn.  

Proof.  If +,(I) is a solution curve of the vector fivld XM, then it has to be shotvn 
that 

d 
- H = 0 all z, 1. 
dl 

Tl~ia ,,aprc,s.iion by tlre chain rule is 

But DH(XH) is simply, by the definition of XH, ~ ( X H ,  x"; which is 0 since n is 
antis) ~nmt~trir. This ends thr proof. 

It is instructive to compare this development with that of a gradient dynamical 
system. These me the same except for the character of thr basic bilinear form 
involved; for one system i t  is an inner product and for the other it is a symplectic 
form. The. drfining function is constant on solution cuwcs for the Hamiltonian 
casr, but except a t  equilibria, it is increasing for the gradient case. 

From thr point of view of mechanics, the Hamiltonian formulation has the 
advant;,~,~ that thc equations of motion are expressed simply and without need 
of r<r,rdinates, starting just from the energy H. Furthermorr, conservation laws 
follow ~asily and naturally, the one v.e proved being the simplest example. Rather 
than pursue this direction however, we turn to the question of r~lating abstract 
Hamiltonian mechanics to the more classical approach to mechanics. U'e shall see 
hoa. thc rnergy of a simplr mechanical system can br viewed as a Hamiltonian H; 
tht  diflerrntial equations of motion of the system are thrn givrn by thr vrctor 
fipld X,,. 

Thus to a given simple mechanical system (Q ,  K, V) ,  \ve \\.ill associate a Hamil- 
t<rni:~rr syrtcm H: I' -+ R, U C F ,  R a symplectic form on F in a natural way. 

Ilt,r;ill that configuration spacc Q is an open set in a vector spare E and that 
tliv st;rt<, sparr of thr simplr mechanical system is Q X E. The space of generalized 
n1onlorit:l or phase space of the system is Q X E*, where E' is thr d u d  vector 
S[I>LV<, of 0. 

'I'III, n,lntir,n h t w w ~ ~  t l~c  state spacc and thr phase spacc of thr Rystmm is given 
by 1111, I,mgt-,#dr~ lrans/mrnalion A: Q X E -+ Q X E*. To definr A, first dctine a 
linvar iscnnurphism A.: E -+ E*, for each q E Q ,  by 

A.(u)w = ?K.(v, w); u 6 E,  IU E R. 

Then set 
a )  = (9, A.(u)). 

Consider thr rxanlplr of a simplr mechanical systmm of a particle with mass m 
moving in Euclidean thrw spacc E under a consrrvative force firld given by poten- 
tial enrrgy 1.. In this rasr statr space is E X E and ti: E X E -r R is given by 
K ( q ,  1 , )  = )ni I a l a .  Thrn A :  E X E -+ B X E* is given by A.(u) = p t E*, where 
p(1c) = ?ti,(& 10) ; or 

p ( w )  = m ( s ,  a) 

and ( , ) is thr inner product on E. In a Cartcdan coordinate system on E, p = 

ma, so that thr image p of u under A is indwd thr classical momentum, "conjugate" 
to u. 

Rpturning to our simple mechanical system in grnrral, note that the Legendre 
transformation has an inverse, so that A is a diffeomnrphism from the state space 
to the phase space. This permits one to transfrr the energy function e on state 
spacr to a function H on phase space called thr Ha~~ti / /o~i iarr  of a simple n~echniral 
system. Thus ~ v r  havr 

T ~ P  final step in converting a simple meehanicnl system to a Hamiltonian system 
is to put a syrnplectic form on F = E X E* > Q X E* = ('. But \ye have already 
constructed sueh a form O in the early part of this sretiun. Using (q, p )  for variables 
on Q X E*, then Hamilton's equations takr the form in cmrdinates 

Since for a given mechanical system H (interpreted as total energy) is a known 
function of p, ,  q,, thesc are ordinary ditiprrntial equations. The basic sssertion of 
Hamiltunian mechanics is that they describe tht. motion of the system. 

The justification for this assertion is t\vofold. On one hand, there are many 
casrn rvhrn. 1lnnliltr)n's 9uations arr cr,uivnl<.rit to Sewton's; we discuss onc 
h~,lnn. 01) 1111. other hand, thrrr an- comnlori pl~ysic;~l systwns to which Sewton's 
laws do not dirrcth- apply (such as a spinnin~ top), hut which fit into the framrwork 
of "sin~plv n~rrhanical qstems," especially if the co~~liguratiun space is allowed 
to br. a surfacr ur higher dimrnsiunal manifold. For many such systems, Hamilton's 
wuatiuns have been verified cxprrimentally. 



It is meaningleea, however, to try to deduce Hamilton's equations from Newton's 
on the abstract level of simple mechanical system (Q, K, V). For there h no 
identification of the elements of the "eonfiguration space" Q with any particular 
physical or geometrical parameters. 

Cunsldfr as an example the specla1 caw above where K(q, v )  = 4 x mu,' in 
Cart~snt~n roordlnates. Then nqv, = p, and H@, q)  = x (R2/2n&) + V(q); Hamil- 
ton'. ~qt1ztt1ons become 

av P('--. 
Jq< 

Differentiating the first and e o m b i g  these equations yield 

These are the familiar Newton's equations, again. Conversely, Newton's equatiom 
imply Hamilton's in this case. 

PROBLEMS 

1. Show that if the veetor space F hss a symplectic form fl on it, then F hss even 
dimension. Hinl: Give F a n  inner product ( , ) and let A : F + F be the operator 
defined by (At, y) = n( t ,  y). Conaider the eigenvectors of A. 

2. (Lagrange) Let (Q, K, V) be a aimple mechnnical system and XH the m i -  
ated Hamiltonian vector field on phaae space. Show that (q. 0) ia an equi- 
librium for XH if and only if DV(q) = 0;  and (9, 0) h a stable equilibrium if 
q is an isolated minimum of V. (Hint: Use conservation of energy.) 

3. Consider the seeoud order differential equation in one variable 

r? + f(z) = 0, 

where f: R + R h C and if f(z) = 0, then J'(t) # 0. Describe the orbit stmc- 
ture of the assminted system in the plane 

i = u  

and show that H is constant on orbits. The critical points of H are at  u = 0, 
J(r) = 0; use Hz. = J'(z), H., = 1.) 

4. Consider the equation 

2 + g ( z ) r  + f ( z )  = 0, 

where g ( r )  > 0, and J h as in Problem 3. Deserihe the phase portrait (the 
function y may be interpreted as coming from friction in a mechanical problem). 

Notes 

One modern approach to mechanics is Abraham's book, Fmrndol im oJMcdrania 
111. Wintrier's Analylicnl Farndaliona oJ Celmlial Mechonica ['Z] ban a very er- 
tenaive treatment of the n-body problem. 

r = -f(t) 

whpn J ( t )  = t - 2'. Discuss this phaspportrait in general. (Hint: Conaider 

H(z, v) - ttr + / f ( 0  df 
0 
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Chapter 15 
Nonautonomous Equations 

and Diflerentiability of Flows 

This is a short technical chapter which t a k e  care of some unfinished business 
left ovrr from Chapter 8 on fundamental theory. We develop existence, uniqueness, 
and continuity of solutions of nonautonomous equations r' = j(1, r ) .  Even though 
our main emphasis is an autonomous equations, the thwry of nonautonomous 
linrnr rquations I' = A (I)= is n d e d  as a technical dcvice in establishing differenti- 
abiliti of flr,vs. The variational rqnation along asolution of an autonomous equation 
is :an i,<lu:~ti<,n of this typr. 

$1. Existence, Uniqueness, and  Continuity for Nonautonomous Dilleren- 
tiul Equations 

Lrt E br a normed vpetor spacr, W C R X E an oprn srt, and f :  W 4 E a con- 
tinrlrn~s map. h t  (b,  %) E IV. A solution to t h ~  initial valur problrm 

is n diHorrntiablr curvr, r(1) in E defined for I in somr intrrval J having the follo\ving 
proprrrties: 

4 E J and 4 4 )  = uo, 

(1, ~ ( 1 ) )  € JV, I'(1) = f ( f ,  d l ) )  

for all 1 .I. 

Wc. call thc function f(1, r )  Lipschilz in r if then. is a constant K > 0 such that 

If(4 11) - f(1, xt)l 5 K I - 13 I 
for all (I, r , )  and ( 1 ,  I,) in IV. 

The fundanrr,ntal local thmrcn~ for nonautonomous equations is: 

Theorem 1 1,el W C R X E be open a d  f :  W 4 E a conlinum map Ulol la 
1.ipschilz i i ~  r .  I /  (b, uo) t W, lbre ir art open inlerval J conlaining 1 and a unique 
solution lo ( I )  defilefined on J. 

The proof is the same as that of the fundamental theorem for autonomous equa- 
tions (Chaptrr 8) ,  the rxtra variable 1 be in^ insrrtpd where appropriate. 

The theorrm applirs in particular to functions /(t, I) that are C', or even con- 
tinuously diffrrrntiahlc only in r ;  for such an f is locally Lipxhitz in I (in the 
obvious senao). In particular we can prove: 

Theorem 2 /,el A :  J -+ I.(E) be a conlinuow "tap from an open intend J lo the 
space of linear operalors on E. IAL (10, %) C J X E. Then Lhe inilol ualue proMn 

has a unique solulio,r on all of J. 

Proof. It  suffices to find a solution on rvrry compact interval; by uniquenens 
such solutions ran be continued aver J. If J o  C J is compact, there is sn  upper 
hound K to thc norms of thr oprrators A ( t ) ,  1 6  J.. Sucll an u p p r  bound is a 
1.ipschitz ronstant i l l  I for/ I J o  X E ,  and Theori!m 1 can be used to prove Theorem 
L. 

As in thr autonomous casr, solutions of (1) arr continuous with respect to initial 
conditions if /(I, I )  is locally Lipschitz in I. Wr leave thp precise formulation and 
proof of this iact to the readrr. 

A difformt kind of continuity is continuity of solutinns a. functions of the data 
/ ( 1 ,  r ) .  That is, i f f :  IV - E and g :  W - E arc both Lipschitz in r ,  and I f  - p I 
is uniformly small, 1t.e rxpect solutions t o r '  = / ( I ,  I) and y' = g(1, y), having the 
snmc initial valurs, to closr. This is trul,; in fact we have the following more 
pr~cisc result. 

Theorem 3 1,el W C R X E be open and f ,  g: IV 4 E conltnum. Suppaa Mal 
for all (t, r )  C It', 

I f ( l , r )  - ! l ( L . ~ ) l  < t .  

Lel K be a LtpschtI~ c011~1anl i n  I for f ( 1 ,  r ) .  If .(I),  y( l )  are solultoru to 

I' = f ( 1 ,  r ) ,  

S' = ~ ( 1 ,  Y J ,  



298 15. NONAUTONOMOUS EQUATIONS AND DIWERENTIABILITY 01 m w s  

rerpecliorly, on some inlerual J, and z(b)  = y(1.), Ulm 

I z ( t )  - y(t) l  5 (exp(K I1 - b I )  - 1)  
K 

fm all 1 E J .  

Proof. For 1 E J we have 

Let u ( t )  = I r ( t )  - ~ ( 0 1 .  Then 

It  fallo~vs from Gronwall's inequality (Chapter 8) that 

u( t )  + ~ < ~ e x ~ ( K l t - k ! ) ,  

which yields the theorem. 

$2. Difirentiability of the Flow of Autonomous Equations 

Cc)~?.;idt~r nn autonomous difierential equation 

( 1 )  r' = f ,  f :  W E ,  W open in E, 

$2. D I I F E ~ E N T I A B I L I T K  OF THE PLOW OF AUTONOMOUS EQUATION8 . .: 299 
*. '* 

where f is assumed C1. Our &m is to show that the flow 

(1, z) - +(t, 7 )  = + # ( X I  
defined by (1 )  is a C' function of two variables, and to identify d+/Jr. 

To this end let y ( l )  be a particular solution of (1) for 1 in some open in tend  
J .  Fix 1. E J and put y (4 )  = yo. For each 1 (I J put 

thus A :  J + L ( E )  is continuous. We define a nonautonomous linear equation 

(2 )  u' = A(t )u .  

This is the variational epua(M1 of (1) dong the solutia y ( t ) .  
From Section 1 we know that (2 )  has a solution on all of J for every initial eondi- 

tion u ( b )  = ua. 
The significance of (2) b that ij u. is d, then Ulc map 

t - + Y ( l )  + u ( O  

is a good approzimalion lo Une 8dution z(1) of ( I )  w'l initid ualu z ( 4 )  = y. + u., 
To make this precise we introduce the following notation. If € E E, let the map 

be the solution to (2) which sends 4 to €. If € and yo + I E W, let the map 

be the solution to (1) which sends b to ys + t .  (Thus y( l ,  I )  = *,-,(us + t ) . )  

Pmpoeition Let JO C J be a compact inlerval containing 1.. Thm 

This means that for every r > 0, there ellists 6 > 0 such that if I € I 5 6 ,  then 

for all 1 E Jo.  Thus as 1 + 0, the curve t  -+ y ( t )  + u(1, €) ia a better and better 
approximation to y(t, I ) .  In many applications y ( l )  + u( t ,  [) ia used in pkee of 
~ ( 1 ,  €1 ; this is convenient because u( t ,  6 )  is linear in €. 

We will prove the proposition presently. First we use (3 )  to prove: 

Theorem 1 The hepow +(t ,  r )  of (1 )  ia C'; thal ia, d+/dt and W d r  e d  and are 
continurn in (1, r ) .  
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Prwj. Of course J+(t, z ) / J l  is just f (+ , (z ) ) ,  which is continuous. TO compute 
J+/dr  \vc have, for small I ,  

+(t, YO + C) - +(t. YO) = ~ ( t ,  0 - ~ ( 1 ) .  

The proposition now implies that J+(t, yo)/dx € L ( E )  is the linear map - u(t,  t ) .  
Thc cnnfinuity of J+/Jr is a eonsequence of the continuity in initial conditions and 
data of solutions to the variational equation (2). 

Drnoting the flow again by +,(E), we note that for each t the derivative D+,(x) 
of t l ~ r  n1a11 0, at  r E W is the same as d+(t, z)/Jr.  We call this the space derivative 
of thr Rmv,  as opposed to the time deriualive J+(t, z) /J l .  

T~I I .  proof of the prccding throrem actually computn D+,(r) as the solution 
to an initial value problem in the vector space L ( E )  : for eoch zo E W the spaee 
deriratiue of the pow salisfres 

IIt,re. \vrx regard I, as a parameter. An important apccial case is that of an equilibrium 
2 so lhnt +,(f) s f. Putting Df(5) = A € L ( E ) ,  we get 

D&(S) = I. 
Thv solution to this is 

D+,(z) = elA. 

Tlris irwans that in  a neighborhood of an  equilibrium lhePow is approximolely linear. 
IVr now prove the proposition. For simplicity we take Lo = 0. The integral equa- 

tions satisfied by y(t, €1, y(f) ,  and u(l, I )  are 
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The Taylor estimate for f says 

f(y) - f(z) = Df(+)(y - a )  + R(z ,  Y - 21, 

limR(z, y - z)/l y - 8 1  = 0 
.-Y 

uniformly in y for y in a given compact set. We apply this t o y  = y(a, t ) ,  8  = y(s) ; 
from linearity of Dj(y(s))  and (4) we get 

( 5 )  1 ~ ( t ,  0 - y(l) - 4 1 ,  f ) l  C I' I D j ( v ( s ) ) C ~ ( s ,  0 - ~ ( 8 )  - u(s, 01 Ids 
0 

Denote the left side of (5) by g(f) and put 

N = m a x l l l D j ( ~ ,  s)ll I S  E J o l  

Then from (5) we get 

Fix t > 0 and pick 6, > 0 so small that 

(7) IR(y(s ) ,  y(s. 0 - y(s))l < e l  y(s ,  0 - y(s)l 

if I y(s, 0 - y(s)l < 60 and s E Jo.  
From Chapter 8, Section 4 there are constants K 2 0 and 6, > 0 such that 

(8) I y ( a , O  - y(s)I 5 / t / F  5 6 0  

if I I < 6, and a E J.. 
Assume now that I f I 2 6,. From (6), (7),  and (8) we find, for f t Je, 

~ ( t )  < N I' B(a) ds + [ r I t I da, 
0 

whence 

for some constant C depending only on K and thr lrngth of Jo. Applying Gronrd ' s  



inequality we obtain 
o(1) s cd" l o  l 

if t E J .  and I [ I 5 8,. ( R e d  that 8, depends on a.) Bince e in any poeitive number, 
this ahows that p ( L ) / (  [ 1-0 d o r m l y  in 1 E Jh which proves the proposition. 

We ahow next that the Bow enjoys the m a  of differentiability as does 
~ ~ 

the data. 
A function t: W --r E is d e d  C ,  1 < r < rn if i t  h.s r mntinuoun derintivw. 

 art 2thi;liaequi&tto:jis'0&~f: W + L ( E )  isC-'. I f f i a C f o r d l  
r > 1, we aay f is C-. We let O man "mntinuoun." 

Proof. We induct on r, the ease r - 1 having been proved in Theorem 1. 
We may suppose r < - for the pmof. 
Sup-, as the inductive hypothesis, that r 2 2 and that the Bow of every 

differential equation 
E' - WE) ,  

with Cc' data F, in Cc'. 
Conaider the differential equation on E X B defined by the vector field 

or equivalently, 

( 9 )  I' = I u' - Dj(1)u. 

Since F is C-', the Bow + of (9 )  in C-'. But this BOW in just 

since the second equation in ( 9 )  is the v b r i ~ t i d  equation of the first equation. 
Therefore d+/Jz  ia a Ox function of (1, I ) ,  since W / d z  - &,(I) .  MoreoVEI 
%/at is C'' ( ~ n  fact. C' 1n t )  aince 
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PROBLEMS 

1. Let A:  R -. L ( E )  be continuoua and let P :  R -t L ( E )  be the solution to the 
initial value problem 

P' = A (L)P, P ( 0 )  = PO E L(E)  
Show that 

Det P(1) = (Det Po) erp [l Tr A(8) d.]. 

2. Showthat i f f i sO,somerwith~Sr< ~ , a o d ~ ( t ) i s ~ ~ ~ l ~ t i ~ ~ ~ ~ ~ = ~ ( ~ ) ,  
then z is a C*' function. 

J t  follows that. + is C b e e  its first partid derintivm are C-'. 
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Perturbation Theory 
and Structural Stability 

This rhap t~r  is an introduction to the problem: What effect does changng the 
diffrrrnt ial ~ ~ u a t i o n  itself have on the solution? In particular, we find general condi- 
tions for rquilibria to persist under small perturbations of the vector field. Similar 
rt,sults BTP found for periodic orbits. Finally, u.e discuss briefly more global problems 
of thr snmr type. That is to say, we consider the question: When d o e  the phase 
portrait itsvlf persist under perturbations of the vector field? This is the problem of 
strrlrtural stability. 

I.r,t 11. br ;m oprn srt in a vrctor space E and f :  W -+ E n C' vector field. By a 
perhcrbalton off  we- simply mean another C vector field on W which we think of ss 
bring "C1 close to f," that is, 

I f (7)  - q(z)I and 11 Df(z) - Dg(z)II 

arr small for all r F W. 
T<> n\:tk<. this morr prrcisr, lpt u(1V) bc the set of all C' vrctor fields on W. If 

I: lt:i.- ;I ntsrm. \vr. drfinr thr C1-t~rm 1 1  h 11,  of a vector field h € W(W) to he the 
1v.1.t i l l~l, t ,r  l,ound of all thr nunihrrs 

1 I ,  I I 7 E W. 

\\.I, :,ll~n\ tltc possibility ( 1  h 1 1 ,  = if thrse numhrs are unboundd. 

A neighborhood of f t W(W) is any subset X C U(IV) that contains a set of the 
form 

lg E w(W)I IIg - - / I I !  < e l  

for 8omv e > 0 and some norm on E. 
Thr srt W )  has thr formal proprrtir3 of a vrsctor spare undrr tht- usual opra-  

tions of addition and scalar multiplication of vvctor-valurd functions. The C1 n o m  
has many of the =me formal propr t i~q as the norms fur vector spaces defined 
earlier, namely, 

I 1  h l l t  2 0, 

11  h (1, = 0 if and only if h = 0, 

=her[, if 1 1  h 11, or 11 q 11, is infinite, the obvious interpretation is made. 
We can now state our first perturbation theorem. 

Theorem 1 I,el p. W -t E be a C' vector $el? and i E 1V a n  epui2ibriurn of r' = 
/(I) such lhal DJ(i) E L(E) is it~uerlible. Then there exists a n e i g k h w d  U C W 
off and a r~eiqhbmhood X C W(W) oJ j such lhal for arty q E 31 Lhere is a uniqu 
equilibrium g 6 U of y' = q(y).  Moreouer, if E is normed, for any 6 > 0 m a n  
choose X so Uul ( y - t I < r. 

Theorem 1 applies to the special case where f is a hyperbolic equilibrium, that 
is, thr (.i~envalurs of Df(f) have nonzwo n.al parts. In this c w ,  thr inrlcr ind(f) 
o f f  in 1 ti,, n~~rrth,,r of vi~~.r~vnlucr (e<,untinp, moltipliritivs) of Dj(2) having negative 
rval par1x. If dim E = n ,  thcn ind( f )  = ?r nrrwa f is a sink. while ind(f) = 0 
mrans it is a sourev. We can sharpen Theorem 1 as  follo\vs: 

Theorem 2 Suppose lhal 5 is a hyperbolic equilibriunl. In Themern 1, then, 31, 
U can be chosen SO Lhal if g E 31, /he unique equilibrium E U of y' = g(y) id hyper- 
bolic and has the same inder a s  f.  

Proof. This follows from a thoorem in Chapter 7 and Theorem 1 

The proof of Thcorern 1 has nothing to do with differential equations; rather, it 
depends on the following result about C1 maps: 

Proposition 1,el f :  W -+ E be C' and suppose r. i- 1V is sueh lhol the li,rear o p c r h r  
DJ(r0) : E -r E rs inuerlibk. Then there is a ,meighborhood X C W( W) of f and  an 
open sel 1 ;  C W conlaining so such that ij g t x, then 

(a)  g I 1' is one-lo-OIIP, and 
(h) 1 ( r d  E g(U) .  
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Theoren) 1 follows by taking r, - i and j(2) = 0, for then g(g) = 0 for a unique 
g C U .  To make I g - 2 I < e (easuming E is normed now) we simply replace W 
by W ,  = ( I  € W 1 1 z - 2 1 < e l .  The proposition guarantees that 31 can be 
chosen so that U ,  and hence g, is in W. for any g E 31. 

I t  remains to prove the proposition. In the following lemmas we keep the same 
notation. 

Lemma 1 Aamrmc E is normml. Lct 

v > I 1  D!(-)-' 11. 
In1 V C W be an open bdl around ze such lhd 

(1) I1  DS(Y)-' I 1  < *, 
and 

(2) l l  D~(Y)  - Dj(z)ll < I/* 

f o r d l y , r E  V.Thf lVis rm~- .  

Proof.  If y E V and u E E is nonzero, then 

u = Dj(v)-'(Dj(y)u); 
hence 

l u l 5 l l  Dj(y)-' I I  I Df(y)u I ,  
so, f r u m  (1) .  

(3) 
l u l I Df(y)(u)I > -. 

Now let y, r be dietinct points of V with r = y + u. Note that since V is a ball, 
y + t u  E V f o r a l l t E  [0, 11. Def ineaOmapr: [O, l ] - tEby 

v(t) = f ( ~  + 14.  

Then 

v(0) = f ( y ) ,  v(1) = l(4. 
By the rhein rule, 

v'(t) = Dj(u + tub.  
Hencr 

1 .  PEMISTENCE OF EQUILIBRIA 

Therefore 

lf(z) - fb) I  2 I D!(Y)U I - I 1  MY + 1 ~ )  - Dj(~) l l  I u I dt. 

From (3) and (2) we then g ~ t  

1111 l u l  I f ( y )  -f(z)l > - - - = 0. 

Thus f(y) # /(z). This proves Lemma 1. 

Lemma 2 Suppose E is a normed uecLor spm m'lh norm &fined by an i n w  produd. 
Lel B C W be a dosed bali around zo with boundary dB, and j :  W - E a C mop. 
Suppone Df(y) is invertible fm ail y E B. Let 

minll f(y) - f(s)l 1 Y E dB1 > 26 > 0. 

Then w E J(B) ij I w - f ( s ) l  < 6. 

Proof.  Since B is compact, there exists yo € B at which the function 

H :  B-+R,  

takes a minimal value. Note that yo cannot be in dB, for if y E dB, then 

l f ( ~ ) - w l ~ l j ( ~ ) - f ( ~ ~ ) l - l f ( ~ ) - w l  
> 26 - 6. 

~ e n c e  
I ~ ( Y )  - w l  > 6 > lj(s) - wl, 

showing that 1 j ( y )  - w I is not minimal if y C dB. 
Since the norm on E comes from an inner product, ) I z I' is differentiable; ite 

derivative a t  z is the linear map z -+ ( r ,  2). By the chain rule, H is differentiable 
and its derivative a t  yo is the linear map 

Since yo in a critical point of H and yo in an interior point of 8, DH(y,) = 0. 
Since Dj(y,) is invertible, there exists v E E with 

Df(~o)v =f(yo) - w 
Then 

= WYO) - w,f(y.) - w )  

= I j ( ~ 0 )  - w 1'. 
Therefore j(yo) = w, proving Lemma 2. 
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Xote that the proof actually shows that 

w E f ( B -  dB) 

To prove the proposition we give E a norm coming from an inner product. The 
subset of invertible operators in the vector space L(E) is open. Therefore there 
exists a > 0 such that A C L(E) is invertible if 

11 A - Df(r~)ll  < a. 

S i n r ~  thc ,Imp r - Df(r) is continuous, there is a neighborhood XI C W of 10 

such that if r E N,, then 

l l  Df(r)  - Df(.k)Il < 1.. 

I t  follows that if g E W (W) is such that 

l l  - I I  < 1a 

for all r t Y,, then Dg(z) is invertible for all I E N I .  The set of such g is a neighbor- 
hood %, off 

1x1 i, > I! I>f(ro)-1 11. The map A - A-' from invertible operators to L(E) ,  is 
C ~ I I I ~ I I I I O , ~ - ~  I I I S ~  thr formula in Appendix I for the inverse of a matrix). I t  follows 
t l~at  ! I I : ~  rr r,viRhborhood WT C 311 and zo has a neighborhood .Vt C N I  such that 
if g i W, and y E .Vz, then 

I I  D ~ ( Y ) - '  I l  < u .  

We can find still smaller neighborhoods, 3L C 312 of f and NI C N2 of ro, such that 
if g E X r  and y, z C N,, then 

I f  ~ i ~ , t i ~ , ~ l / ~ ( ~ . s  from Lmtrna I thalfor a n y  ball V C Nand  any g C W,, g I V is one-lo- 
02,<- 

1.11 ii 1,;tlI 1. C Sa around ro. Let B C V be a closed ball around ro and choose 
6 > 0 as i n  Ixmma 2. There is a neighborhood W C 3Ts of f such that if g E W, then 

It fc,ll,~\v\-r that if I w - g(z0)I < 6 and g t n, then w E g(B). The proposition is 
now prg~vt~ i  using this W and taking U = V. 

WP have not discussed the important topic of nonautonomous perturbations. 
Problem 2 shows that in a certain s e w  the basin of attraction of a sink persists 
undw small nonautonomous perturbations. 

$2. PERSISTENCE OF CLOSED ORBIT8 

PROBLEMS 

1. Shou. that the stable and unstable manifolds of a hyperbolic equilibrium of a 
linear digerential equation r' = Ar  vary continuously with linear perturbations 
of A t L(E) .  That is, supposp E" c E' is the invariant splitting of E such 
that elA:  E' - Eu is an expanding linear flow and elA: E' - O is contracting. 
Given t > 0, there exists 6 > 0 such that if 1 1  B - A 11  < 6, then B leaves 
invariant a splitting F" e F. of E such that elB I F u  is expanding, c'B I F is 
contracting, and there is a linear isomorphism T:  E - E such that T(E") = 
F', T(EB) = Fm,and 1 1  T -  Ill < c. 

2. Let W C R" be an open set and 0 E W an asymptotically stable equilibrium 
of a C' vector field f :  W - R'. Assume that 0 has a strict Liapunov function. 
Then 0 has a neighborhood W ,  C W with the following property. For any 
r > 0 there exists 6 > 0 such that if g: R X W -R is C' and 1 g(1. I) - 
f(1)1 < 6 for all (1, r ) ,  then every solution =(I) t o r '  = g(1, z) with r ( 4 )  E W 
satisfies r ( l )  E W for all 1 2 h and I r(L)l < r for all 1 greater than some I,. 
(Hinl: If V is a strict Liapunov function for 0, then (d/dl) (V(z(1)) is close 
to (dldl) (V(y(O), where y' = f ( y )  Hence (dldl) (l'(r(1)) < 0 il I z(f)I is 
not too small. Imitate the proof of Liapunov's theorem.) 

92. Persistence of Closed Orbits 

In this section we consider a dynamical system 0, defined by a C1 vector field 
f: W + E where W C E is an open set. We suppose that there is a c l d  orbit 
7 C W of period A > 0. For convenience we assume the origin 0 E E is in 7. The 
main result is: 

Theorem1 Lelu:So--rSbeaPmnearlmpforal~aeclinSa10.LclUC W 
be a neighbmhwd of 7. Suppoae Uat 1 ia not an eigenualue of Du(0). Then Lhnc crisb 
aneipkborhwdWCv(W) off arch lhalevery veclmjeld g E  3 z ~ a ~ ~  
BC u. 

The condition on the Poinear6 map in Theorem 1 is equivalent to the condition 
that the erg~nralue 1 ofD& (0) ha- n~ultil,lirity I .  Vnfortunately, no equivalent 
condition on the vectorlieldf IS known. 

Proof of t he  theorem. Let r: & - R be the C map such that r(0)  = X and 
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We may assume that the closure of So is a compact subset of S.  Let u > 0 .  There 
exists 6. > 0 such that if g 6 X ( W )  and 1 g ( z )  - j ( r ) l  < 6. for all z E SO, then, 
first, S will be a local section at 0 for g, and second, there is a C1 map n: So + R 
such that 

I n(z) - ~ ( ~ 1 1  < a ,  

*.I.> ( I )  c S? 
and 

I $.I.>(Z) - 4 2 )  I < a9 
where $, is thr flow of g .  

Put 
$.,,1(r) = u ( z ) .  

Thrn 
0 :  S o - S  

is 2 i' ' Intnp which is a kind of Poincare map for the flow $,. 
C;i\.t,n n r i ~  to > 0 and any compact set K C W, and any r > 0 we can ensurr 

that 
I I  D+ , ( r )  - oJ.,(z)ll  < v 

for all 1 E [-l. l.], r E K, ~rovided we make I /  g - j 1 1 ,  small enough. This follows 
from continuity of solutions of differential equations as functions of the original 
data and initial conditions and the expression of J+, ( r ) /dr  as solutions of the 
nonautonomous equation in L ( E ) ,  

d A 
- =  
dl D ~ ( Y ( L ) ) A ( ~ ) ,  

u-her? y' = y i y ) .  (See Chapter 15.) 
Frrlln this one can show that provided 1 1  g - f 1 1 ,  is small enough, one can make 

) -- v i r l l  and / I  Dl,(=) - Du(z)ll assmall asdesired for all r E So. 
A fixi,rl p<,int r = v ( r )  of u lies on a closed orbit of the flow 6, .  We view such a 

l i x d  point K< n zero of the C1 map 

rht-rr, H is thr hypprplane containing S 
I e t  6: So - H be the C' map 

((2) = u ( 2 )  - I 

so that ( ( 0 )  = 0 .  Now 
D t ( 0 )  = Du(0)  - I ,  

wherv I :  Ii -r H is the identity. Since 1 is not an eigenvalue of Du(0)  we know 
that 0 is nclt an  ~igrnvalur of Dt(O) ,  that is, D ( ( 0 )  ia invertible. From the proposi- 
tion in t lw  prvceding section we can find a neighborhood 3l C V ( S o )  of i such that 
:<n, I I I : ~ ~ )  III ,m ha. ;L unlqrla zero y S,,. If I / g - f 1 1 ,  is suffic~ently small, 7 E 311. 

BY. PEILSISTENCE OF CLOSED ORBITS 311 

Hmcr 7 hns a unique zrro y € SO; and y lies on a closed orbit 8 of g .  \Inreover, we 
can niakr y so close to 0 that B C U .  This proves Theorem 1 .  

The question of the uniqueness of the closed orbit of the perturbation is interest- 
ing. I t  is no1 necessarily unique; in fact, it is possihlc that all points of U lie on 
closed orbits of j !  But it is true that clasd orbits other than r will have periods 
much higpr than 7 .  In fact, given e > 0 ,  there exists 6 > 0 SO small that if 0 < 
d ( r ,  7 )  < 6 and +,(I) = I, t > 0 ,  then 1 > Zh - e. The same will hold true for 
sufficiently small prrturbations of 7 :  the fixed point y of u that we found above 
lies on a rlosrd orbit 0 of g whosr p r r i d  is tvithin t of h ;  while any other closed orbit 
of g that nlccts So will have to circlr around 4 seaerol limes beforr it el- up. This 
follows frurn thr r(.lntion of claad orbits to thr. soctionu; see Fig. A. 

- 

FIG. A. A closed orhit 8' near a hyperbulie closed orhit 8. 

Thrre is one special caw where the uniquenes of the closed orbit of the perturba- 
tion can be ~uaranteed: if Y is a periodic attractor and g is sufficiently close to j, 
then 4 will also he a periodic attractor; hencc ever). trajstory that comes near 6 
winds closcr and closer to 0 as t -+ and so cannot br a closed orbit. 

Similarly, if  7 i~ a periodic n:prllrr, su is 6, and again uniqurnrss holds. 
Considr~r next thr ease where 7 is a hyperbolic closed orbit. Thb  means that the 

derivative a t  0 E y of the Poincar6 map has nu rigenvalues of absolute value 1. In 
this case a tiraker kind of uniqueness obtains: there is a neighborhood V C U of 
7 such that if 31 is small enough, every g E I will have a unique closed orbit that 
ia enlirely conlained in V .  I t  is possible, however, for every neighborhood of a hyper- 
bolic closcd orbit to interswt other closed orbits, although this is hard to picture. 

We now state without proof an important approximation result. Let B C R' 
he a closed ball and dB its boundary sphere. 

Theorem 2 I,el W C R" be an open set eonlaining B and j :  W + R. a C veclor 
fie10 which is lransverse lo aB at m y  pmnl oj dB. Lel I C U ( W )  be any neighborhood 
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off. 7'krti thrrc erisls g t 31 such that: 

(a) if Z t B 13 an equiltbrium of g, then 5 is hyperbolic; 
(b) if 7 C B is a closed mbil of g, then 7 is hyperbolic. 

The condition that j be transverse to dB is not actually necessary, and in fact, B 
can be replaced by any compact subset of W. 

1. Slwu that thr rigc,nvalur condition in the main theorem of this section 
is II<'C<'SSBTy. 

2. Let 7 br a periodic attractor of I' = f ( r ) .  Show there is a C' real-valued 
function V ( r )  on a neighborhood of 7 such that V 2 0, V-'(0)  = 7,  and 
( d l $ / )  (V( r ( t ) )  < 0 if r ( t )  is a solution curve not in 7 .  (Hint: Let z(t) be 
thv solutinn rurvP in 7 such that r ( t )  - z(t) -0 as 1 -r m ;  ser Chapter 13. 
St,rtion 1, l'hrorrm 3. Consid~r JT / r(1) - z(t)12 dl for som? lame constant T.) 

3. 1.1.1 I I  (1 R" b<, open and 11.1 7 bv a prriodic attraetor for a C' vrctor field f :  W -+ 

R" 81iva that 7 h n  a nrighbnrhood 11 with the following property. For any 
e > 0 tll<,rr mists 6 > 0 such that if g: R X W -+ R" is C' and / g(1, r )  - 

I < b ,  then every solution r ( t )  to r' = g(t, r )  with I ( & )  E U satisfies 
rill 5 I for all 1 > b and d ( r ( l ) ,  7) < e for all t greatrr than some 11. (Hint: 
I'rt>l,lcrr~ 2 ,  and Problem 2 of Section 1.) 

53. Structural  Stability 

In the previous sections we saw that certain features of a flow may be preserved 
under small perturbations. Thus if a flow has a sink or attractor, any nearby flow 
will have a nearby sink; similarly, for periodic attraetors. 

I t  sometimes happens that any nearby flow is topologically the same as a given 
flow, that is, for any sufficiently small perturbation of the flow, a homeomorphism 
rxists that carries ~ a c h  trajectory of the original flow onto a trajectory of the per- 
turhati<,n. ( A  homemnorphisrn is simply a continuous map, having a continuow 
invrrr<,.) Such n homromrrrphim sets up a one-toane correvpondence between 
rquilitxi:~ c , f  the two flows, closed orbits, and so on. In this case the original flow 
(or its vectur field) is calld structurally stoblr. 

Hc,ns is thr prcrisr definition of stmctural stability, a t  least in the restricted 
setting of vfrtor fields which point in on the unit disk (or ball) in R'. Let 
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and 
J D S =  ( r E R " l 1 z 1  = I ) .  

Consider C1 vector fields f :  W -+ R" defined on some open set W containing D- 
such that U(z), r )  < O for each r in JD". Such an f is called alrwturally stab& on 
D' if there exists a neighborhood 31 C W( W) such that if g: W - + R m  is in X, then 
flows of /and q are topologically equivalent on D'. This means there exists a homeo- 
morphism h .  Dm 4 D" such that for each r C Dm, 

h({+,(?)l 1 2  01) = I + C ( ~ ( I ) ) I  t 2 01, 

where I, is the flow of g; and if r is not an equilibrium, h preserves the orientation 
of the trajectory. (The orientation of the trajectory is simply the direction that 
points move along the curve as 1 increases.) 
This is a very strong condition on a vector field. I t  mPans that the flow +, can- 

not have any "exceptional" dynamical features in D'. For example, it can be shown 
that i f f  t int D' is an equilibrium, then it must be hyperbolic; the basic r-n 
is that linear flows with such equilibria are generic. 

The harmonic oscillator illustrates the necessity of this condition as follows. 
Suppow that f :  W - R', with W > P, is a vector firld which in some neighborhood 
of 0 is given by 

By arbitrary slight perturbation, the matrix A can be changed to make the origin 
either a sink, saddle, or source. Since thme have diRcrent dynamic behavior, the 
flows are not topologirally thesamc. H ~ n r r t  1s ~ ~ o t  ctruvti~r;tll\ s t ah l~ .  Incontract. 
it is known that thr \'an der Pol osrill;rtor IS strur.tur:tlly - t i t l > l ~  

The follorring is the main result of this section. I t  gives an example of a class of 
structurally stable systems. (See Fig. A,)  

FIG. A. A structurally slable vector field 
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Theorem 1 !.el f :  W + R" be a C1 wclor field on an  open sel W > D' luilh l k  
follm'ng properlies: 

(a) j hor rzaclly one equilibrium 0 t D", and 0 is a sink; 
I h) 1 pc~r ~ f s  intrord olor~g lhe boundary JD' of Dm, lhal i s ,  

( 1 ,  r )  < 0 il r € JD' .  

( c )  ltrrl,+, +,(L) = O f o r  a11 1 C Dm, where + I  is lhejlotu o f f .  

Then f is slruclurallg s a l e  on Dm. 

Before proving this we mention three other results on structural stability. These 
concern a C' vector field f :  W -+ R' w h r r ~  W C R' is a neighhorhod of D2. The 
fint is from thr original paper on structural stability by Pontr)agin and Andronov. 

Thcorrm 2 Suppose J potnls inward on P. Then the follmuing condilions laken 
logrliivr ore srjrc,r,alenl lo struclural slabilily on P:  

I:,) liir, ~qrtilibria in D2 are hyperbolic; 
I l r )  r.rv.li i-lased orbzl in  112 is eilher a prridic allraelor or a periodic repeller (lha! 

rs, n prriudic allraclor for the ueclorjirld -f(z)) ; 
(c: 1 1 1 0  lrajrclory in  D2 goes from saddle lo saddle. 

Tlrv nt.ressit\- of th? third condition is shown by breaking a saddle connection 
as in 1:ig. B(a1 by an approximation as in Fig. B(b). 

A good d?al of force is given to Theorrm 2 by the following result of Peixoto; 
it implirs thnt s t ~ c t u m l  stability on Da is a g~nrric cnndition. I.rt Ua(W) hr thc 
srt 01 (7' verhlr firlds on W thnt point inward on JD'. 

Theorem 3 The sel 

S = 1 f t W,(W)I f is structurally st,able on D'I 

is dens? onrl open. Thal i s ,  every elemenl of S has a neighborhood in Va(W) conlained 
i n  S, and ewry open set i n  Uo(W) contains a vector freld which i s  slruclurally slable 
on D2. 

Unfortunntrly, it has been shown that thew can he no analogue of Theorem 3 
for dintensions greater than 2. Nevertheless, thprc are many interesting vector 
fields that arc structurally stable, and the subject continues to inspire a lot of 
rpsrarch. 

In t h ~  important case of grdient dynamical systems, there i? an analogue of 
Throrrrn 3 fur higher dimensions ns follows. Consider in u(D') the set grad(D') 
of gradipnt vrctor fields that point inward on D'. 

( b )  

PI(;. U. (a) Flow near a saddle mnl~eetion; (b) brealing r saddle connection 

Theorem 4 The sel oJ slruclurally stable syslems conlairrod i n  grad (D') w open 
and dense i , ~  grad ( D m ) .  

We turn to the proof of Theorem 1. In outline it proceeds as follows. A vector 
firld g sufficiently close to f is shown to have a unique equilibrium a E D' near 
0; n~oreover, all trajectories of g in D' tend toward a. Once this ia h o r n ,  the homeo- 
morphism h:  D" - D" is defined to be the identity on JD'; for each r E JD' it 
maps thrf-trajmtory of z onto the g-trajectory of z preserving the parametrization; 
and h(0) = a. 

Thc proof is based on the following result which is interesting in itself. In Section 
I we showed the persistence of a hyperbolic equilibrium under small perturbations. 
In the special case of a sink we have a sharper result showing that the baain of 
attraction retains a certain size under perturbation. 
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Plopclsiti0n Lei 0 € E be a sink for a C1 veclorfield j :  W - E where W is an open 
srl  io!ilat,iiug 0. There erish an i n w  producl on E, a number r > 0, and a neighbm- 
hood 2 i  C U ( W )  o f j  such lhal lhe jollowing holds: for each g t 3I lhme is a rink a = 
a(y) for y such lhol the sel 

B , =  IzE  E I I r l 5 r l  

onloins a, is in the basin oj a, orrd is poaili~ly inuarianl under lheflow oj g. 

Prooj. From Chapter 9 r e  give E an inner product with the foUowing property. 
For somr u < 0 and 2r > 0 it is true that 

U ( z ) , z )  < * I r l 1  

if 0 < I r ( *: 2r.  It folluws that B, is in thr basin of 0, and that ((r) points inward 
I I . .  I t  is P I I . R ~  tl~nt j hnq n nri~hborhood 3b C U(W) such that if b E 34, 
tl11.11 : \ I - 1 7  111 1 )  points inward along dB.. 

I , 8 I I  r I . : ~ I # < I  p111 s = r + c I f  1 .r r .  ~ I I I I I B  1111~cI11~1~tI I~:~llb'.(,q):~lm~~t y 
i ~ 1 1 I i  I : I I I I I ~ - A  -.>tl>liv-: 

B. C B.(Y) C Be. 

1r.t u < r < 1. WP m c r t  that if 11  g - j 1 1 ,  is sufficientl.v small, then the sink a 
of y will hr in A,, and mortSuvrr, 

(1) MI), - a )  5 u I z - a 1' 
if r i: &(a) .  To see this, write 

( g ( ~ ) ,  I - a )  = V(z - a) ,  I - a )  + (a(z) - j ( z  - a) ,  z - a) 

5 v 1 z - a la + (g(z) - f[z - a ) ,  z - a). 

Thc niap a ( r i  = g( r )  - j(r - a) vanish~s a t  a. The norm of its derivative a t  z is 
rsti!n:ltrd tlius 

I 1  Da(z)ll 5 I 1  W z )  - DJ(z)ll + I 1  Df(z) - Dj(z - a)ll; 
as I (  y - ( (1,  + 0, (1  Dg(r) - Df(r) (1 + 0 uniformly for ( r 1 5 2r; and also z - 
a - 0,  so I I  I ) / ( I )  - D/(I - a)II -0 uniformly for I r I 5 2r. Thus if 11 g - ( 11,  
is small mough, 11 Dn(z)II 2 r - n, and u - v is a Lipschitz constant for a ;  hence 

I a(z)l - I - a(a)l  5 (u - v)l z - a I .  
Consrqurntly, if  / I  g - jll, is sufficiently small, say, less than 6 > 0, 

(g(z), z - a)  < v l r - a 1' + (a(r), z - a )  

S v [ z - a r +  : U - V ) I L - ~ ~ ~  

= # I T - ( 1 1 '  
as rvquird. 

1'111 : ] I ,  = 19 C v (U ' ) I I I~ - I I I I  < & I ,  and set a = 3 b n l , .  Suppose g E  32, 
with sink a t 8.. By ( I )  the set &(a) is in the basin of a. Since B. C &(a),  and 
g ( ~ )  points inward along dB,, the proof is complete. 
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We now prove Theorem 1. Since Dm is compact and f(z) pointa inward along the 
boundary, no solution curve can leave Dm. Hence D" is positively invariant. Choose 
r > 0 and a C U(W) as in the proposition. Let 3b C he a neighborhood of / 
so small that if g E 3b, then g(z) points inward along dD'. Let I, be the flow of 
g 6 G. Note that D" is also positively invariant for ),. 

For every z € D' - int B,, th?rr is a neighborhood U. C W of z and C > 0 
such that if y t U. and 1 > I,, then 

I O t (~) l  <r. 

By compactness of aD" R finite number U.,, . . . , U,. of the sets U ,  cover J P .  Put 

Then +,(D" - int B,) C B,, if 1 2 4. It follows from continuity of the flow in j 
(Chapter 1.5) that j  ha^ a neighborhood a, C such that if g E XJ, then 

+,(D-- intB.)CB. if 1 2 4 .  

This implies that 

lim l , (z)  = a for all r t D' 
I - -  

For let x D" : then y = +,,(x) B.. and& C bas~n ofa utl#lrr +,. 
It  also implies that every y D - a is of the for111 +,(XI for .some- r dD" and 

1 2 0. For otherwiseL.(y) is not empty: hut i f z  L.(yl. then +,(rl- a a- I - x .  

hence y = a.  
Fix g 6 a,. We have proved no far that the map 

9: [O, m) X dD" - D", 

*(I, 2 )  = 4t(z) 

has D" - a for its image. And the map 

has Dm - 0 ae ita image. We define 

Another way of saying this is that h maps +,(z) to b,(z) for z E JD', 1 2 0, and 
h(0)  = a; therefore h maps trajectories of 4 to trajectories of I ,  preserving orienta- 
tion. Clearly, h(D.) = Dm. The continuity of h is verified from continuity of the 
flows, and by reveming the role of the flow and its perturbation one obtaiaa a mn- 
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tinuous invrrse to h. Thus h is a homeomorphism; thr proof of Thmlpm 1 
is complrtr. 

Afterword 
1. slicla- that if I: R2 - R2 is structurally stable on D2 and f(O) = 0,  t h ~ n  0 is a 

11) lwrl>tdir c~~~uilibrium. 

1'. 1.c.t r C R', I I  > 2 bc the circle 

y =  l r € R " I z ~ + + = 4 . r k = 0  for k > L ) I .  

1,t.t 
N = lz € R" 1 d(z, 7 )  5 11. 

Let W C R' be a neighborhood of Nand J: W - R" a C' vector field. Suppose 
f (r )  points into N for all z in J.V = ( z  t R- I d(r,  7 )  = 1 ) .  If y is a periodic 
nttrartnr and y = L.(r) for all z € N, prove that J is structurally stable on 
.\-. (Srr Fig. C for n = 3.) 

FIG. C 

3. I f f  t U ( W )  is structurally stable on Dm C R', show that f has a neighborhood 
31 such that every g 6 3t is structurally stable. 

4. Show tlrat Theorem 1 can be sharpened as follows. For every t > 0 there is a 
o<.iglihorhood R of Jsuch that if g € % t h e  homeomorphism h (in the definition 
of structural stability) can be chosen so that I h ( r )  - I I < r for all I € D.. 

5.  Find necessary and sufficient conditions that a vector field J: R -+R be struc- 
turally stable on a compact interval. 

6. I a t  A be an operator on R" such that the linear flow e l A  is hyperbolic. Find 
r > 0 such that if B is an operator on R" satisfying 11 B - A 1 1  < r ,  then there 
is a h,tlnrnmorphism of R' ontc itself that takea each trajectory of th,: dif- 
ivr~,r~tird i,quation r' = A r  onto a trajectory uf y' = By. 

This book is only an introduction to the subject of dynamical systems. To pro- 
ceed furthrr requires the treatment of diffprrntial equations on manifolds; and 
the formidable complications arising from infinitely many closed orbits must be 
faced. 

This is not the place to develop the throry of manifolds, but we can try to indi- 
cate their use in dynamiral systems. Thr surface S of the unit ball in RJ is an exam- 
ple of the twodimmsional manifold. A vrctor field on R' might be tangent to S 
at  all points < ) IS ;  if  it is, t hm S is invariant undrr tlrv flow. In  this way we get an 
rxamplc of a dynamical systrm i,n thv manifold S (srr. Fig. A).  

The compactness of S implies that solution curvrs of such a system are defined 
for all 1 C R. This is in fact true for all Rows on compact manifolds, and is one 
reason for the introduction of manifolds. 

hlanifolds arise quite naturally in mechanics. C'onsid~r for example a simple 
mechanical system as in Chapter 14. There is the Hamiltanian function H:  6'- R, 
where U is an open subset of a vector space. The "conservation of energy" theorem 
states that H is constant on trajectories. Another way of saying the same thing 
is that if H ( s )  = c, then the whole trajectory of 2 lies in the subset H-'(c). For 
"most" values of c this suhset is a submanifold of 11, just as the sphere S in R' can 
be viewed as H-'(I) where H(z ,  y, I) = z2 + y2 + 2'. The dimension of H-'(c) 
is one less than that of U .  Other lint integrals cut doum the dimension even further. 
In the planar I<epler problem, for example, the state space is originally an open 
subset li of R4. The flow conserves b t h  total energy H and angular momentum 
h. For all values of c, d the subset 11 t C.1 H ( L )  = C, h(z)  = dl is a manifold 
that is invariant undpr the flow. 

hlanifolds also arise in mechanical problems with constraints. A pendulum in 
three dimensions has a configuration spacr con~isting of the 2-sphere S, and its 
state space is the manifold of tangent vectors to S. The configuration space of a 



rigid body a i th  one point fixed is a compact three-dimensional manifold, the set 
of rotations of Euclidean three space. 

The topology (global structure) of a manifold plays an important role in the 
analysis of dynamical systems on the manifold. For example, a dynamical system 
on the two sphrre S must have an equilibrium; this can be proved using the 
PoincarCRcndixson theorem. 

The mathematical treatment of electrical circuit theory can he extcndcd if mani- 
folds nrc usrd. The very restrictive special hypothesis in C'haptrr 10 was made in 
ordr,r to nvoid manifolds. That hypothesis is that the physical statcs of a circuit 
lr,l,t,\ina Tiirrhhoff's and ~rneralizrd Ohm's laws) can br paramrtriwl by the 
in~l~~rt r t r  rnrrmts and capacitor voltag~s. This convrrts the flow on the space of 
phypicnl states into a flow on a vector space. Unfortunatrly this assumption ex- 
rludrs many circuits. The more gcneral theory simply deals with the flow directly 
on the space of physical states, vhich is a manifold under "generic" hypotheses 
on the circuit. 

Jlanif<~lds entrr into differential equations in another way. The set of points 
\vll<,zr tr:rjvrtorirs trnd to a given hyperbolic equilibrium form a submanifold called 
tlw s%:ibl~~ ~nunifdrl of tin. equilibrium. Tlicse submanifolds are n key to any deep 
glul~:il urr~lvrstanding of dynamical systems. 

Our an:llysis of thr long-tcrrn behavior of trajectories has been limited to the 
sin~plvst kinds of limit suts, equilibria and closed orbits. For some types of systems 
thesv arr cssentially all that can occur, for example gradicnt flows and planar sys- 
tcms 13ut to achieve any kind of gpncral picture in dimensions higher than two, one 

must confront liniit sets which can be rxtrcmely ron~plicated, even for ~ t ~ ~ t u r a l l y  
stable systems. I t  can happen that a compact rrgion contains infinitely many 
prriodic solutions with periods approaching infinity. l'oincar6 was dismayed by 
his discovery that this could happrn evm in thy SP\\-tonian threebod? problem, 
and rxprpssed despair of comprehending such a plreoomt.non. 

In spitc of thp prcvalpncr of such systems it is not easy to prove their existence, 
and we cannot go into details here. But to give some idea of how they arise in a p  
pnrcntly simple situations, we indicate in I'ig. B a discrete dynarnical system in 
the planr. Hrre thr rrctangle ABCU is srnt tu its inlay? A'B'C'D' in the most 
obvious way by a diffeomorphism J of R2; thus J( .4)  = +Ir ,  and so on. I t  can be 
sllurvn that J will have infinitely many pvriodic points, and that this property is 
prrsrrv~d by perturbations. ( A  point p is prriodic il Pi),\ = 11 for some 71 > 0.) 
Considering R2 BS embedded in RS, one can construct a flow in Rz transverse to R' 
whose time one map leaves R' invariant and is just the diff~omorphism J in R'. Such 
a flow has closed orbits through the periodic points of j. 

FIG. B 

In spite of Poincar6's discouragem~nt thcrr has heen much pragrrss in recent 
yrars in understanding the global behavior of fairly general types of dynamicel 
systems, including those exhibiting arbitrarily long closed orbits. On the other 
hand, wc arc far from a clear picture of the suhjrct and many intt~mting prr>blema 
arc unsolved. 

The follouing books are recommendpd to the reader who nishes to see how the 
subject of dynamical systems has developed in recent years. They represent a good 
cross section of current research: Proceedirzgs OJ Symposia in  Pure dldhonalica 
Volunze X I V ,  Clobal Analysi* [3] and Dynaa~ical  Syak???rs [IS]. See den Sitecki's - 

Dlferenliable Dynnn~ica [IS]. 
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WP frcqutmtly usc the summalion sign: 

Elementary Facts 

Tlnis apl~c't~dix collrets various rlementary facts that  most readera will have 
s w n  bvfnr,.. 

1. S e t  Theore t ic  Conventions 

Wr usr cxtrnsively maps, or functions, from one set X t o  another Y, which we 
writ,. 

j : X - Y  or X-Y. 

Thus the map j assigns to each element z € X (that is, t belongs to X )  an  element 
f ( r )  = y of Y. In this case 1%-r often write r -+ y or r - J ( r ) .  The  identity map 
i :  S - X is defined by i (z )  = r a n d  if Q  is a subsct of X, Q C X, the inelusion 
rn:~l, n :  Q - .Y is d c f i n d  by a(q) = q. I f f :  X - Y, and g: Y - Z are two maps, 
tht, rornposition g J (or somrtimes written gj) is defined by g . j ( r )  = g u ( r ) ) .  
TIIV I I I : L ~  j .  .Y - Y is said to be one-to-one if whcnrtver I, r' C X, I Z r', thcn 
j ( r !  t J k  r' I .  T h r  image of j is th r  set drscrihvd as 

I m j  = ly E Y I y = j ( r ) , s o m e r  E XI 

Tllvr) J is 0n10 i f  Im j = Y. An invrrse p (or J-') of j is a map g: Y - X such that 
g * j is tllc idrntity map on X and j . g is the idrntity on Y. If the image of j i s  
Y and J is cnrr to "or, tllrn j has an  invrrsr and conversely. 

11 1: S - Y is a map and Q C X, then I I Q :  Q  - Y denotes the reslr ic lk of 
J t l '  V so J I Q(q) = j (q) .  

C z .  = r l + r 2 +  - -  +I., 
1-1 

where the r ,  arc elements of a vector spacc. If t h e  is not much ambiguity, tbe 
limits are omitted: 

C r . = r , +  . . . +  z.. 

2. Complex Numbers 

Wv rceall th r  clemrnts of complrx numbers C. \VP are nut interested in complex 
analysis in itself; hut sometimes th r  usr of complrx numbers simplifies the study 
of ma1 ditT~rrntia1 equations. 

T h r  art nf complrx numbrrs C ir the Cartesian plant Rz rnnaidrrrd as a vector 
spnrr, togrthrr with a pnldurt opvration. 

h t  i be tllc, cumplrx number i = (0. I )  in ruordinatrs on R'. Then every complex 
numhpr z can br writtrn uniquely in thc. form z = r + iy a-hrrr r, y are real num- 
bers. Cmnp1e.x numbrrs are added as r l r m ~ n t s  of R', so if r = z + iy, z' = r' + iy', 
then 2 + L' = (I + r ')  + i (y  + y'): the rules of addition carry ovrr from R2 to C. 

Bfultiplualwn of complex numbers is defined as  folloas: if  z = r + iy and 
z' = I' + iy', then 22' = (zz' - yy') + i ( ry '  + r'y). S o t e  that P = - I  (or 
" i  = 6 1 " )  withthisdefinition of product and this fact is an  aid t o  remembering 
the product drfinition. The  rrader may check the follo\ving properties of multi- 
plication: 

(a)  n' = ~ ' 2 .  

(b) (zz')~" = z(zrz"). 
(c) Iz = z (hcre 1 = 1 + i - 0) .  
(d)  If z = I + iy is not 0, thrn 

r - iy 
z-lz = ~ ~ - 1  = 1, where 2-1 = -- . 

I.2 + yz 

(e) I f  2 is real (that is, r = r + i O), t l ~ r a  multiplication h y z  eoincidrs with 
scalar multiplication in Re. If z and z' are both rcal, eomplrx multiplication 
sprcializrs to ordinary multiplication. 

( f)  ( 2  + 2')w = zw + z'w, z ,  r', w 6 C. 

The co,r~plcr conjugate of a romplcr nun~bc,r I = r + iy is the complrx numbrr 
i = r - iy. Thus cr~njugation is a map s: C - C, n ( z )  = 2. tvhich llas as its srt 
of fixed paints the rral numbers; that  is to say i = r if and only if r is rpal Simple 
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prulx.rtie <,I ronjugation are: 

(I + 2 ' )  = f + i', 
;' = a'. 

I ' 1 1 e .  :111~1111111~ V:LIUI, of :I r~mplcx number z = z + i y  is 

1 z 1 = ( ~ i ) l ~ ~  = (2 + y2)lt2. 

Thrn 

12 I = 0 if and only if r = 0, 

and I r I is the ordinary absolute value if z is real. 
Suppose a complex number z has absolute value 1. Then on Rz it is on the unit 

rirrlr (d,,srrib~d by 9 + y' = 1) and thrre is a 0 E R such that z = cos8 + i sin 8. 
Wr dcfinp the symbol e" by 

e" = cos 8 + i sin 8,  

e.+,s = e. " e .  

This us,, of the exponential symbol can be justified by shoving that it is con- 
sistrnt vith n convergent power serirs representation of e'. Here one takes the 
po\\cr srrics <)I c.+* nu <nw dom for ordinary real rxponcntial~; thus 

Out, r:in i q ~ ~ r a t r  ai th complex exponentials by the same rules as for real ex- 
p,,~wt~ti;~ls. 

3. Determinants 

One, m;ry fiud a good account of d~terminants in Lang's Second Course in Cnkulus. 
[I?]. Hcrv \\-p just n . r i t~  dolvn a couplr 01 lacts that are useful. 

1:irst \\-c give a general expression for a determinant. k t  A = [a,,] be the 
I,' X itt;itrix \vhose entry in thc it11 row and jth column is a,,. Denote by .a,, 
the, t t i  - l i X ( > I  - 1) matrix obtained by deleting the ith row and jth colun~n. 
'Thcn if  I is n fixed integer, 1 < i < n, the determinant satisfies 

D P ~  .4 = (-l)i+'a,l Det A,,  + - .  . + ( -  l)'+'a.. Det A,.. 

Thus the expression on the right does not depend on i and furthermore give a 
way of finding (or defining) Det A inductively. The determinant of a 2 X 2 matrix 
L; :] is ad - bc. For a 3 X 3 matrix 

one obtains 

an oa 
Det ( A )  = a,, Det [a: :] -a,* Det [:: 3 +a. Det [, J . 

Recall that if Det A # 0, then A has an inverse. One way of Iinding thin inverse 
is to soI\'e explicitly ~ I I P  systen> of ~ q u i t t i o ~ ~ ~  AT = y for x obtaining r = B y :  then 
Bisnli inrerseA1 forA 

If Det A # 0, one has the formula 

A-' = transpose of I 
It  follows easily from the recursive definition that the determinant of a tri- 

angular matrix is the product of the diagonal entries. 

4. Two Pmpoaitions an Linear Algebra 

The purpose of this section is to prove Propositions 1 and 3 of Section lB, Chap 
ter 3. 

Proposition 1 Every valor space F has a basis, and every baaia of F has the m e  
number of elemenls. Zj (el, . . . , Q J  C F ia an independent d s e i  lhd ia nol a k, 
by adjoining to it suiloble vedms e*,, . . . , e,, one urn Jmm a baaia el, . . ., L. 

The proof goes by some easy lemmas. 

Lemma 1 A ayalem of n l i n w  homogeneow egwlwns i n  n + 1 unhmrms duxlyr 
haa a ndriviol solution. 

The proof of Lc- 1 is done by the process of elimination of one unLnown to 
obtain a system of n - 1 equations in n unknowns. Then one is finished by indue- 
tion (the first case, n = 2, being obvious). The elimination is done by  sing the 
first equation to d v e  for one variable as a Linear cornhiition of the rest. The 
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cxprrs~ion obtained is substituted in the remaining equations to make the r e  
duction 

Lemma 2 Lel (el ,  . . . , e.1 be a basis for a valor space F. If v,, . . . , v. are linearly 
i t ~ d e ~ ~ ~ ~ t d e ~ ~ t  elements of F ,  then m I n. 

Proof. It is suffirirnt to show that m + n + 1. Suppose otherwise. Then each 
0,  is a linear combination of the e., 

u i = C a o e h ,  i =  1, . . . ,  n + l  .-, 
BY Lemma 1, the system of equations 

.+I 

C z . a a - 0 ,  k = 1 ,  . . . ,  n, 
i l  

has a nontrivial solution z = (1.1, . . . , z.,~). Then 

so that the u, are linearly dependent. This contradiction proves Lemma 2. 

From Lemma 2 we obtain the part of Proposition 1 which says that two basee 
havp the same number of elements. If (e l ,  . . . , e.) and (v , ,  . . . , v.) are the two 
ban,., thtm the lemma says m < n. An interchange yields n < m. 

S a y  that a set S = (u, ,  . . . , v,J of linearly independent elements of F is marimal 
if for evqry a in F,  v 4 S, the set (u ,  vl, . . . , v.1 is dependent. 

Lemma 3 A mazimal 8d of linearly independen1 elemmls B = (v, ,  . . . , v-1 in a 
aeclor space F is a basis. 

Proof. We have to show that any v E F, v B, is a linear combination of the 
v.. But by hypothesis v,  v,, . . . , u, are dependent so that one can find numbers z, 
z, not all zero such that x z,v ,  + m = 0 .  Then z # 0 since the v. are independent. 
Tl~u,  1 ,  = X (-z./z)u.. This proves Lemma 3. 

I'rupositlon 1 now goes easily. Recall F is a linear subspace of R. (our definition 
of vrctor space!). If F f 0 ,  let ul he any nonzero element. If l u l l  is not a h&, 
one can Iind E F, v* not in the space spanned by ( v , ) .  Then VL,  v, are independent 
and if (c,, is maximal, we are M h e d  by Lemma 3. Otherwise we continue 
the process. The process must stop with a maximal set of linearly independent 
elements W I ,  . . . , v - I ,  m 5 n by Lemma 2. Tbis given us a baais for F. The rest of 
the proof of the proposition proceeds in exactly the same manner. 
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Proposition 3 Lel T: E -+ F bc a linear map. Then 

dim(Im T) + dim(Ker T) = dim E. 

In  parliculor, arppoae dim E = dim F. Then the f o l h i r w  are equ*aln* ddmcllls: 

(a) Ker T = 0 ;  
(b) Im T ; F; 
(c) T is an waorphiam.  

P r m f .  The semnd Dart follows from the fvst part (and things said in Section 1 ~ ~ 

of ~ha;l ter  3).  
To prove the first part of the proposition let / I ,  . . . . jr be a hasis for Im T. Choose 

el, . . . , ek auch that Te. = f,. Let g,, . . . , gl  be a basis for Ker T. It is sufficient 
to show that 

(CIS  . . . eb# 81. . . . 811 

i sab&forEsincek = d i m I m T a n d I  = dimKerT.  
First, these elements are independent: for if X.e, + E M.gi = 0, application 

of T yields hirei = x A& = 0. Then the A, = 0 since the f. are independent. 
Thus x Mai = 0 and the Mi = 0 since the gi are independent. 

Second, E is spanned by the ei and g,, that is, every element of E can he witten 
aa a linear combination of the ei and the g,. Let e be any element of E. Define 
u = x Asi, where Te = AJ. defines the A.. Then e = (e - v )  + v. Now 
T(a - u) = 0 so e - v E Ker T and thua (e - v )  can be written as a h e a r  combin- 
ation of the gi. 



1. T h e  Fundamen ta l  Theorem of Algebra 

I,,. :I  l ,~,l!-~~c~mi;~l of drpwr n 2 1 with complex cocfici~nts %, . . . , am. Then p (z )  = 0 
fur at lcnst r E C. 

T h y  proof in based o n  the following basic property of polynomials. 

Proposition 1 l im~~ , -*  1 p ( z )  1 = rn 

Proof. For r # 0 we can write 

Hence 

Th~r r fo rc  there exists L > 0 such that if / z I > L, then the righthand side of 
(1 is > 1 I 0. / > 0,  and hrnce 

Proposition 2 lp(z)I ailaim a minimum value. 

Proof. For each k > 0 define the compact set 

D I =  l z E ~ 1 l z 1 5 I ; ) .  

The continuous function I p ( z )  1 attains a minimum value 

u = 1 ( Z  I, nb E D., 

on DI. (a may not be unique.) By Proposition 1 there exists k > 0 such that 

(2) I p ( r )  l 2 V ,  if I z  I > k .  

We may take k t I .  Then ur is the minimum value of I p ( z )  1, for if z E DI, then 
I p ( z )  I 5 UI, while if z 6 DI, / p (z )  I 2 v ,  by (2);  and u, t ur sinceD, C DI. 

Proof of theorem. Let I p ( & )  I he minimal. The function 

q ( z )  - p ( z  + 2 0 )  

is a polynomial taking the same values as p ,  hence it suffices to prove that q has a 
root. Clearly, I q ( 0 )  I is minimal. Hence we may assume that 

(3) the minimum value oj / p (z )  / is I p ( 0 )  I = I (10 I. 
We write 

p ( z )  = a + 0.1' + rk+ ' r (z ) ,  n. # 0, k t I ,  

where r is a polynomial of degree n - h - 1 if k < n and r = 0 otherwise. 
We choose w so that 

(4) a + arwk = 0. 

In other words, w is a kth root of -%/ak. Such a root exists, for if 

-a - = ~ ( C O S  .$ + i sin R ) ,  
ah 

then we can take 

w = p l l b  (:) + i sin (:)) 
We now write, for 0 < 1 < 1, 

p(1w) = (1 - it)% + I*(@ + atu,') + (tu,)'+4(1w) 

= ( 1  - l k ) a  + ( l w ) ~ ' r ( t w ) .  
Hence 

I P ( ~ w )  I 5 I % I - lk  I a. / + lb+' I wk+'r(iw) I 
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But if I aa I > 0, for 1 sufficiently small, we have 

I % I - 1 I wk+'r(tw) I > 0, 
such a value of 1 makes 

Ip(1w)l < ls l .  
This contradicts minimality of I p(0) I = I a. I. Hence I p(0) I = 0. 

Corollary .4 polynomial p of degree n can be foelored: 

p(z) - (z - ht)...(z - A.), 

where p(Ar) = 0, k = I ,  . . . , n, and p(z) # Ofor z # A,. 

Prooj. For any A E C we have 

P(Z) = ~ ( ( 2  - A) + A) 

Expanding by the binomial theorem, we have 

Every term on the right with j > 0 has a factor of z - A; hence 

for some polynomial q(z) of degree n - 1 (which depends on A). In particular, if 
p(At) = 0, which must be true for some A,, we have 

Since 91 has a root A,, we wite  

P(Z) = (z - A d  (2 - Ar)rn(z) 
and so on. 

1 ' 1 1 ~  rvrnpl~x numbers A,, . . . , A. are the rook of p. If they are distinct, p has 
si,t i ldr r,l,dr. If k appears k times among (A,, . . . , A"), A k a root of mullipldy k, 
or a k-lobi root. This is equivalent to (z - A)' being a factor of p(z). 

Appendix I I T  
On Canonical Forms 

The goal of this appendix is to prove three results of Chapter 6: Theorem 1 and 
the uniquenw of the S + N deeompasition, of Section 1; and Theorem 1 of Sec- 
tion 3. 

1. A Dewmposition Theorem 

Theorem 1 (Section 1, Chapter 6) Let T be an opn&r on V where V w a 

mmplu veelor apace, or V ia real and T has rzol eigmvdua. Then V ia lhc dired 
aum of lhc gmeraliud eigcnspaca of T .  The dimension of mdr g m c r d d  eiq- 
quda lJz mull ipldy of the mcspondinu eigenualue. 

For the p m f  we conaider thus an operator T :  V 4 V ,  where we suppose that 
V is a complex vector apace. 

Define subspaces for each nonnegative integer j lu, follows: 

K,(T) = K t  = Ker TI; N = U Ki; 

Chooae n and m eo that 
K, = K. if j 2 n, 
L t -  L, if j > m ,  
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which is possible since V is finite dimensional. Put 

N(T)  = N = K., M(T) = M = 1,. 

('lt%arl\, 5 and M are invariant 

Lemma V = N mM. 

Praof. Since T Y  = L .+I = M, T 1 M is invertible; also, P ( M )  = M and 
T"r t 0 f o ~  nonzero z in M. Since Tn[N) = 0, we have N n M = 0. If z E V is 
an? vcctnr, let T-r = y F M. Since T" / M is invertible, T-z = T-2, t E M. 
I'ut r = ( r  - 2 )  + z. Since z - z E N, z E M, this proves the lemma. 

I.rt a,, . . . , a, be the distinct eigenvalues of T. For each eigenvalue o r  define 
sultsparc..; 

N* = N(T - a.1) = U Ker(T - d ) ' ,  
,a 

Clrarl?., thew ~ubspaces are invariant under T. 
By thr lemma, 

V = N, m MI. 

Proposition V = N ,  @ .  . . m N,. 

Proof. We use induction on the dimension d of V, the csses d = 0 or 1 King 
trivial. Suppose d > 1 and assume the theorem for any space of smaller dimen- 
sion. In particular, the theorem ia dssumrd to hold for T I MI: MI - M,. 

I t  therefore suffices to prove that the eigenvalues of T I MI are ax, . . . , a,, and 
that 

( I 1  N ( T  - err 1 MI) = N ( T  - a.I), all k > 1 

\Ye, lirst !,rove that 

( 2 )  Ker ( ( T  - all)  I Ni) = 0, all k > 1. 

Suppnsr ( T  - a J ) z  = 0 and z r' 0. Then Tz = a,z; hence 

( T  - urI)z = (or, - a,)z. 
But tlvn 

( T -  akI)7r = (at -ar ) ' z#O 

for nll  .i > 0. 80 r A',. 
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Since N. is invariant under T - all r e  have 

by (2). Therefore N, C Im ( T  - all)', all j 2 0, k > 1. This shows that 

N, C M, ,  all k > 1. 

This implies that at, . . . , a, are eigenvalues of T ( M,. I t  is now clear thnt the 
eigenvalues of T / M ,  are precisely a,, . . . , a. since at is not, and any eigenvalue of 
T I MI is also an eigenvalue of T. The proposition is proved. 

We can now prove Theorem 1. Let nr he the multiplicity of at as a root of the 
characteristic polynomial of T. Then T ( Nt: N, - N k  has the unique eigenvalue 
ar (the proof is like that of (2) above), and in fact the lemma implies that a. has 
multiplicity nr as an eigenvalue of T I N*. Thus the degree of the characteristic 
polynomial of T I N, is n. = dim N1. 

The generalized eigenspace of T: V -+ V belonging to ar is defined hy El = 

E(T, a'! = Ker ( T  - ar)nb. Then, clearly, E, C N I .  
In fact, it follows that Eh = N, from the definition of NI and Lemma 2 of the 

next sect,ion (applied to T - a&). This finishes the prwf of the theorem il V is 
complex. But everything said above is valid for an operator on a real vector space 
provided its eigenvalues are d. The theorem is proved. 

2. Uniqueness of S and N 

Thmrm Let T be a linear operalor on a vector spoce E which is unnplez ij T has 
any nmreal eiger~values. Then there is only me u,ay qf erpresaing T as S + N, where 
S is diagnalizable, N is nilpalent, and S S  = NS. 

Proof. L L P ~  Et = E(Ak, T ) ,  k = I, . . ., r, be thc generalized eigenspaca of T. 
Then E = El a . . . m E. and T = TI m . . . m T,, where Tb = TI El. Note 
that E, is invariant under every operator that commutes with T. 

Since Sand  N both commute uith Sand  N, they hoth commute with T. Hence 
EI is invariant under Sand  N. 

Put S1 = At1 t I,(Ek), and N I  = TI - S.. I t  suffiecv to show that S I E, = &, 
for then N I Eh = 4, proving the uniqueness of S and N. 

S i n c ~  S is dia~onali~ablr, so is S I Et (Prohlrm 17 of Chapter 6. Section 2 ) .  There- 
fore S 1 Eh - A,I is diagonalizable; in othpr wmds S ( Et - SI is diagonalimhlr. 
This opwator is the same as Nk - N I E,. Sinct: N / E, commutes with ArI and 
with Tk, it also commutes with NI. It follows that X I  - h' 1 Ek is nilpotent (use 
the binomial theorem). Thus S I Et - S, is rppresrntrd by a nilpotent diagonal 
matrix. Thr only such matrix is 0; thus S 1 E, = S* and the theorem is proved. 
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3. Canonical Forma for Nilpotent Operators 

The goal is to prove the following theorem. 

Theorem 1 (Section 3, Chapter 6) Ld N be a nilpoleni operalor on a red  or 
contplrr i,relor space V. Then V has a bnsis giving N a malriz of Utefonn , 

where A ,  is an elementary nilpotent Mock, and t k  & of Ak is a mnincrc(un'ng junc- 
lion o/ k. The m o l d  A,, . . . , A, are uniquely delemined by the operalor N. 

In this section, V is a real or complex vector space. 
A subspace W C V is a cyclic subspace of an operator T on V if T(W) C W 

and there is a vector z E W such that W is spanned by the vector T'z, n = 0,1, . . . . 
15-e call such an z a cyclic veclor for W. 

Any vrrtor z generates a cyclic auhspace, for the iterates of z under T, that is, 
z, Tz, T'Z, . . . generate a subspsce which is evidently cyclic. We denote this 
subspace by Z(z) or Z(z,  T). 

Suppose N: V -+ V is a nilpotent operator. For each z E V there is a smallest 
positive integer n, denoted by nil(z) or nil(z, N),  such that N'z = 0. If z Z 0, 
then .\lkz 2 0 for 0 5 k < nil(r). 

Lemma 1 Let nil(z, N)  = n. Then lhc veckws N'z, 0 5 k 5 n - I ,  form a baah 
j,>r Z(z, .V). 

'of. 'They clearly span Z(z).  If they are dependent, there is a relation 
Z"-' a, .Yk!z)  = 0 with not all a. = 0. Let j be the smallest index, 0 5 j 5 n - 1 
such that  a, # 0. Then 

0 - ~"-p'[i'a,Nkz) L-i 

sincv ,i + k - j - 1 2 n if k 2 j + 1. Thus a,Nm-'z = 0, so Nm-'z = 0 because 
a, f O. Hut this contradicts n = nil(=, N).  

l'llia rcsult proves that in Ute basis ( r ,  Nz, . . . , Nm-'21, n = nil (z) ,  the nilpotent 
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operator N / Z (z) hss the matrix 

with ones below the diagonal, zeros elsewhere. This is where the ones below the 
diagonal in the canonical form come from. 

An argument similar to the proof of Lemma 1 shows: 

if Xi, a*Nkr = 0, then a, = 0 fork  < nil(& x). 
I t  is convenient to introduce the notation p (T)  to denote the operator C:, o.T' 

if p is the polynomial 

where 1 is an indeterminate (that is, an "unknown"). Then the statement proved 
above can be rephrased: 

Lemma 2 Lel n = nil (z, N). If p( l )  is a polynomial w h  h i  p(N)z = 0, then 
1' dwides p(l), that ti, there is a polynomial ~ ~ ( 1 )  auch Uial p(1) = lSp,(t). 

We now prove the existence of a canonical form for a nilpotent operator iv. 
In view uf  the matrix discussed above for N I Z(z) ,  this amounts to proving: 

Propi t ion  Let N: V - V be a nilpolen1 apmalor. Then V is a direcl arm of 
cyclic arb8paces. 

The proof goes by induction on dim V, the case dim V = 0 being trivial. If 
dim V > 0, then dim N(V) < dim V, since N has a nontrivial kernel. Therefore 
there are nonzero vectors y,, . . . , y, in N(V) such that 

Let z; € V be a nonzero vector with 

We prove the s u b m e s  Z ( q ) ,  . . . , Z(zr) are indepmdd. 
Observe that nil(zi) 2 2 since 

N y  = y; # 0. 

If the subspaces Z ( y )  are not independent, there are vectom u, t Z ( y ) ,  not 
all zero, such that 2-1 u, = 0. Therefore Xi Nu; = 0. S i c e  Nui E N(Z(z;)) = 
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%(y,)  : X I I ~  the Z(Y,) arr independent by assumption, it follows that u, t Ker N, 
j = 1. . . . , r .  Now each i c ,  has the form 

",-I 

C a,.NLz,, n> = nil(z,). 
k 4  

Hrnrr n, = p , ( F ) y  for the polynomial p,(l) = C&' a,#. Therefore Xu, = 

p,(S)g, = 0. By Lemma2,p,(t) isdivisible by 1-ifn~ < nil(y,). Since 1 < nil(y,), 
,v,. can ,vritr 

P,@) = s,(t)t 
for somp polynomial s,(l). 

But non-, substituting JV for 1, we have 

u; = s,(N)Nzj 

= s,(N)yj E Z(yj). 

Tlrc,rr(orr u, = 0 since the Z(y,) are independent. 
WP no\$- show that 

(1  V = Z ( r , ) m . ~ . e Z ( r , ) m L  

with I, C I<rr S. h t  Krr .V = ti and lrt I, be a subspace of K such that 

K = ( t i n  N ( v ) )  L. 

' l ' l ~ r ~ i  I. i-  ir~<lrpt~ndent from the Z(r i ) .  To see this, let v C (@Z(z,)) n L. Then 
i I @ % i i , ) ]  n K ,  and by an argument similar to the one above, this implirs 
I .\ I 1 . ) .  H u t  .V(I.) n I, = 0, hrnec v = 0. 

It is rl<.:ir that cvery cyclic subspace in t i ,  and hence in L, is one dimensional. 
Thcrrfrlrr I, = Z(wl) e . .  . e  Z(w.), where (w,, . . . , w.1 is a basis for L. Finally, 

I' = Z(2,) e . . . e Z ( z , )  eZ(w, )  e . . . e Z ( w . )  . 

This proposition implies the theorem, except for the question of uniqueness of the 
m;ttrirrs A, ,  . . . , A,. This uniqueness is equivalent to the assertion that the oper- 
a t ~ l r  .\ drtrwninrs the sizrs of the blocks A. (or the dimension? of the cyclic sub- 
. ' 1 ' 1 1 1 ~  is donr tly induction on dim V. 

( ' ~ r i w l ~ . r  t11<. rt,strir.ti,,n of .\' to its image N(V) = F:  

.V / F: F - F. 

I t  I. * . ; I -$  I , ,  5r.v tllat if  I '  is thr Jirvrt sum of c,vclic subspnr,.~ Z, e . .  .re %, m IV:. 
n I ~ , . r r  I 1  , C l i v r  .\-, : ~ r ~ l  ZI is p ~ n r r a t d  hy I,, dim Z. > I ,  tl>c,n .V(I') is thr 
,I,r,.,,t > I , , , ,  

N(Zt) *...re A'(Z.), 

nltwru \I%,\ is cyclic, gencmtrd by ,V(r.), and dim .V(Z,) = dim Z .  - 1. Since 
dim .\(I.') < dim i', tlrc numbvrs {dim ZI -. I I are drtermincd by A' / F, hcnce 
by .\. I t  L~llo\vs that (dim Z*) arr  also drtermined by iV. 

This l i~~is l~cs  thr pm,f of thr thrarcm. 

Appendix Iv 
The Inverse Function Theorem 

In this appendix we prove the inverse function theorem and the implicit function 
theorem. 

Inverse function theorem Lcl W be an opm ad in a vceta rpau E Md W f: 
W -4 E be a C map. Supposc a E W w arch thal Df(a )  ia an iMCrlibL linear 
operator a E. Then a had an opm neighborhood V C W arch fhal f I V w a d i m  
morphimn rmlo an opm set. 

Prmj .  By continuity of Df: W - L ( E )  there is an open ball V C W about z. 
and a number r > 0 such that if y, z E V, then Df(y) is invertible, 

and 

I t  follows from Lemma 1 of Chapter 16, Seetion 1, that f I V is one-bone. hlore- 
over, Lemma 2 of that section implies that f (V)  is an open set. 

The map /-I: j (V) - V is continuous. This follows from local compaetnees of 
f(V).  Alternatively, in the proof of Lemma 1 it is shown that if y and 2 are in 
V, then 

l u - z l  S v I f ( y )  - f ( z )  I ;  
hence, putting f(y) = a and f(z) = b, we have 

I T t ( a )  - f-'(b) I < u l a - b I. 
which proves continuous. 

I t  remains to prove that f-' is C1. The derivative of I-' a t  a = f(z)  E j (V)  is 
D/(z)-'. To nee this, we write, for b = f(y) E /(IJ): 



THE INVERSE FUNCTION THEOREM 339 

Now 

f(Y) - /(I) = Dj(z)(y - E) + R(y, r ) ,  
where 

lim R(Y, r )  
, . I Y - ~ I = O  

Hence 

= I D/(z)-'(R(Y, z) I. 
Hence 

This clearly goes to 0 as I /(y) - /(I) I goea to 0. Therefore D(f-') (a) = 
[Dj(j-'a)?'. Thus the map D(/-') : / ( V )  --r L(E) is the composition:/-', followed 
by Dj, followed by the inversion of invertible operatore. Since each of these maps 
is continuous, so is D(j-I). 

Remark.  Induclion on r = 1 ,  2 ,  . . . ahowa d a o  Ulal i f f  w C', then /-' w C'. 

Implicit function theorem Let W C El X EZ be an open set in the Cartesian 
prrxlurl o j  ltuo w t o r  spaces. Let F :  W + EZ be a C' map. Suppoae (s. yo) E W is 
mrh lhal flip l~near operator 

is invertible. Put F(ro,  yo) = c. Then there are open sek U C El, V C E, wilh 

( a ,  YO) E u X V C W 

and o unique C' m p  

g: U --. V 
arch thol 

F(I, d r ) )  4 c 

fbr -o i l+  I 1 ' .  n~id ~~wreoaer, F ( r ,  y) # cif(z,  y) E U x Vatul y # g(z). 

Hr,forr brginning the proof we remark that the conclusion can be rephrased thus: 
the graph of g is the set 

P(C) n ( U  x v) .  

Thus F-'(c) is a "hypersurface" in a neighborhood of (I., yo). 
To prove the implicit function theorem we apply the inverse function theorem 

to the map 

/: W - El X E,, 

f (z ,  Y)  = (+, F ( r ,  Y)) .  

The derivative of f at (z, y) F W is the linear map 

Dl(., y) : E, X E; - EL X I&, 

I t  is easy to find an inverse to this if aF(z, y)/dy is invertible. Thus Dl(*, a) is 
invertible. Hence there is an open set C', X V C W containing ( a ,  yo) such that 
f restricts to a ditTeomorphism of U .  X V onto an open set Z C El X E,. 

Choose open sets U C UO, Y C E; such that IO C ti, e C Y, and 

The inveree of j: UO X V - Z prwrves the first cwrdinate because / preserves 
it. The restriction of (f I UO X V ) - '  to I: X Y is thus a C' map of the form 

h(z, w) = (z, v ( ~  u') 1, 
where 

p : l i X Y - I '  
is C1. 

Define a C' map 
$7: u - V ,  

Q(") = v ( ~ ,  c). 

From the relation! h = identity of U X Y we obtain, for z E U :  

Thus 
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for all I 6 U .  Since f in one-tc-one on U X V, if y # g(z), then 

f (2, Y) f f(2, g(2)); 
hence 

(2, F(z, y))  # (2, F(z,  g(z)))  = (2, c), 

ao F(z,  y) # c. Thin completes the pmof of the implicit function theorem 

We note that if F in C', p is C. 
From the identity 

F ( r ,  g(z)) = c, 

we find from the chain rule that for all z in U :  

Thin yields the formula 
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Chapter I 

Section 2, page 12 

2. (a)  (k ,ec ,  k d ,  k,e') 
(b )  (k,el ,  k*+', k,) 
( P )  ( k ~ e ' .  h2e2', li,en) 

6 .  .4 = diag (a,. . . .. 0.1 and a. < 0, I = 1, . . ., 11. 

8. (b )  Any rolutions u ,  v such that u ( 0 )  and ~ ' ( 0 )  are independent veetom. 

Chapter 2 

".\lostv initial conditions rn<.ans the sc3t of ( r ,  L.) .: R' X R' such that L. is not 
collinrar with r. 

2 2P 2 2. ( a )  with B ( r ,  y) = - - 3 - .i and ( e )  with \ . ( I ,  y) = - 2 

i .  H i :  Usr ( 4 )  Sprtion 6 



ANSWERS TO SELECTED PBOBLEMS N S U ' E R S  TO SELECTED PROBLEMS 

Chapter 3 In the nru coordinates t h ~  difTt.rential q u a t l u n  bmomm 

Y; = Y, 
y; = -d Y,, 
I / :  = d y,. 

Thr, ~rnr . ral  solution is 

Srcfinrt 3. pape 54 

y, = Ce', 
yx = A c o s ( f i 1 )  + Bsin( \ lZ l ) ,  
ya = -Bcos(* I) + A sin(* 1). 

T h r r ~ f o n .  

J I  = Ce' - B c o s ( f i 1 )  + A  sin(*(),  
7 9  = (2B - A d  ) con(* 1) - ( B f i  + 2A) sin(* l ) ,  
s = (B  + A*) cos( f i1 )  + ( ~ d  - A) s i n ( f i 1 ) .  

( T h r  authors solved this problem in only two days.) 

4. All ~ i g ~ n v a l u e s  are positive. 

6. ( b i  b > O  

Secfior~ 4. pope  60 

1. \ cl I r = 3e' ros 21 + 9c' sin 21 
y = 3e' sin 21 - 9e' cos 21 

Chapter 5 

Section 2, poge 81 

Section 1,  poge 65 3. A = l , B = f i  

4.  ( a )  d i h )  4 (c) I ( d l  4 
6. ( a )  and (d )  

2. dim 6 = dim Ec and dim F > dim Fa 

3. F 3 R c n  

Section 3, page 87 Serf ion 2,  page 69 

1. ( a )  Basis for E is given by (0, -a, f i )  and (1, -2, - 1) 

- z 3 Hint: Notr - /Ty/ = I Ty / if y = - 
1 1 1  I Y I  1 1 1  Section 3, poge 73 

4. (a) T ~ P  norm is 1. 

7. Htnl: Use geometric series. l n t r u d u r ~  th r  new basis ( I .  0, O), (0, -fi,fi), ( I ,  -2, - I ) ,  and new coordinates 
(yt, Y,, yri related to the old by 

r~ = YI + YS, 

z2 = -fi y* - 2y,, 
I, = v2 y, - y,. 

x 2 . = L  for O < r < I ,  s i t h r = ( l I - T I [  
, 1 - r  

13. H i :  Show that all the tprms in th r  pjarr  srries for eA leave E invariant. 



ANBWER8 TO BELECTED PROBLEMS 

Sert ion J, poge  97 

1. ( a )  r ( t )  = (K, - lK,)en, 
y(1) = Kle2'. 

( b )  r ( t )  = e"(K,cosl  - K ~ s i n t ) ,  
wit) = ez'(KI cos 1 + Kt sin 1). 

?. (:I) i l l )  = (21 + l )en,  
iiili = 2 e " .  

fh1 110 = 2e2'sin 1. 
! , i t ]  = -2r2'c0st.  

4 Iliiit: l'onsidrr A rt,strictrd t o  eigenspaen of k and use result of Prohlem 3. 

!I ' : t i  htnk ( h )  sourcr (c) source 
r c l i  nrlnc r r f  tllr.sc. (I) nonr of these 

10 I:,) Only if a < -2 are thrrs  any values of such k and in this case for 
k 7 F 2 i .  

(11) Nu values {ti k. 

14. 111111: There is a rral rigrnvaluc,. Study T on its t~igmspace. 

Serlirrn .i, poge  102 

(1.1 r j t )  = A c n s t + B s i n t .  
y ( t )  = -A sin 1 + Bcos  1 + 21. 

Sect ion 6, p a g e  107 

2. ( a )  s ( t )  = cos2t. ( h )  s(1) = -eM + e"-'. 

3. I s 1, i n  t ( h )  r x p f i  1 ,  exp -fi 1 

4.  ilirll: (:lirek cnsrs (a ) ,  ( b ) ,  (e)  of th r  theornm. 

S.  a = 0, b > 0 ;  prrind is db/2r. 

Chapter 6 

Section 2, poge  120 

1. 1 3 )  (;vtwralizrd I-eigenspacr s p a n n d  by , ( I ,  0) .  (0, 1) ;  

2. ll fhrrthl~on-rrofthrmafrixis  [ b , , ] ,  t h ~ n t ) , ,  = Ofori  < j + r ( r  = I ,  2. ... 1 .  

3 .  Thr only rigvnvalur. is 0. 

4.  i [ e , '1 
e l  - el' 

-?' + ? ? I  0 

('rln.;idr.r thv S + S d<-rr,~ai~,<,.itic>r~. 

(i. A prcsvrvcr raeh g ~ n e r a l i z d  i,;~vnspacr EA; hrncr i t  suffices to consider the 
r(ntrirtions of A and T to Ek. If T = S + .Y, then S / E, = A 1  which commutes 
with A. Thus S and T both commutr with A ;  so th~reforc  does 5 = T - S. 

S, VSP th,. Cayley-Hamilton t h w r ~ m .  

I . .  Otnsider hases of thr. krrnrl and thr im;tgr. 

Sect ion 3, p g e  126 

I .  Canonical forms: 

3. Assunr. that S is in nilpotent canonical fr,rm. k t  b denote the number of blocks 
and s th r  inaximal numhrr of TOIVS in B block. Then bs 5 n; also b = n - rand 
s 5 k .  

4. Similar pairs arc ( a ) ,  (d)  and (1) ) .  ( e l .  

Sec t ion  4, p a g e  132 



fi. II ..I, = #r. I # 0, thcn 0 = q ( A ) r  = q ( p ) l .  

\. S l ~ n r  that A and A'  lravr thr same Jordan form if A is il complex matrix, and 
111t.  s l tnr ,  rr:d canonical furm i f  A is rral. 

I .  I ; t i  I.vt wrry eigrnvalur have real part < - b  with b > a > 0. Let A = S + .V 
u ith S scmisirnplr and ,T nilpotent. In suitable coordinates 11 els ( 1  <_ e-", 

c'.' / (  5 Cfm. Thrn ( 1  el* 1 )  5 ce-'bt", and so em I /  eC*  / /  -0  as  t - m. 

I.vt s > 0 hr so large that el. / I  elA 1 1  < 1 for t > s. Put k = min(ll elA [I-') 
for 0 5 1 5 s. 

I' If r is an cigenvector belonging to an eigenvalue with nonzero real part, then 
the solution e'"r is not periodic. If ib, ic are pure imaginary eigenvalue, b # i c ,  
and r .  tr t C" arr corresponding eigenvcctors, then the real part of efA(z  + to) 
is x nonprrindic solution. 

1 .  bl/l = F ' .  

2. (a )  In (7),  A = B = 0. Hence s(0) = C, s'(0) = D,  ~ " ' ( 0 )  = -c, 
r131(0) = - D ,  

Section 1, page 150 

Chapter 7 

2 .  Vsr  thr thwrem of this section and Theorems 1 and 2 of Seetion I .  
3. UFP Prohlern 2. 

1 t 1 ,  n (b)  dense (c) dense, open 
I r I u1x,rt ( f )  open (g) dense, open 

N B W E R P  m SELECTED PROBLEMS 

Chapter 8 

1. (a) f(r) = r + 2. 

%(l) = 2. 

U,(O = 2 + / ' l (%(s))  ds = 2 + 11 4 h  

By induction 

Hence 
z(1) = lim u.(t) = 4c' - 2. --- 

~ " ( 1 )  = 0 

for dl n: Hence z(t) = 0. 

(c) z ( 0  = t-', 

4. (a) 1 

Ij(') - l(O) + m as z - 0; no Lipschitz constant 
(b) ( z - 0 1  

(c) 1 

5. (a) For 0 < c < B let 



ANSWERS m SELECTED PROBLEMS 

C h a p t e r  9 

1'. I'c,r C X : \ I I > ~ ~ ~ ~ .  J ~ I )  = -11 (1  1 R). 
: I :  I'sv a rl~r.cial inorr pnjduct an  R". O ~ m p u t r  th,. rntc of rhangr c,f 

1 f(1) / >  n l ~ c r r  r ( l )  is a solution such that r ( 0 )  is ( the real part of) an rigc>rl- 
vrrtor for D/(O) having positive real par t ;  take r ( 0 )  vrry small. 

4. 1.51. ( I r l  <,l the throrcnl nf Seetion 1. 

:1. i t :  I.ook at the Jordan form uf A .  I t  suffices to considr,r an r l ~ m ~ n t a r y  
.Jordan tllork. 

1. 1' + y2 is R strict Liapunov function. 
S. 1'-'[0, c ]  is positively invariant. The u-limit set of any point of T.'-'[O, c ]  con- 

sists entirrly of rquilibria in 1'-'LO, c]; hence it is just i. 

2. Let r' = -grad V ( r j .  Thcn V dccreases along trajvctories, so that 1' is r.r,tl- 
stant on n n.currrnt trajrctory. H ~ n c e ,  a rrcurrcnt trajectory consists rntir(4y 
of r<luilil,rium points, and so is a ronstant. 

3, I;,) Enrh s r t  I.-'(- z, c]  is positivrly invariant. 
1 I ) i  1:v. Thmrrm 3. 

ANSBEHS m S E L E ~ T E D  PROBLEMS 351 

C h a p t e r  10 

Section 1,  page 215 

Section 3, page 226 

1 .  Evrry solution is prriodic! Hirtl: I i  ( ~ ( 0 ,  y(1j) is a solution, so is ( - I ( - l ) ,  

y ( - 0 ) .  

Section 4, page 228 

1. 2  , . = - I * 2 f l  

Section 5 ,  page 237 

C h a p t e r  11 

Section I. page 241 

1. H i :  If thc limit sr t  L is not ronnrctrd, fill11 disjoint o p m  srts 1'1. 1; con- 
taining I,. Thrn find a boundrd s<qu<.nec of pr,ints r .  on the trajwtrlry with 
IC fl u,, I>  e 1 '2 .  

4. flint:  Every solution is pf.riodir. 



ANSWER8 TO YELECPED PROBLEM8 

Section 3 ,  page 247 

2. Hinl :  Apply Proposition 2. 

I. Hi111s: (a)  If r is not an equilibrium, take a local section a t  r. (b) See 
Prol,lcm 2 of Section 1. 

2. Hinl: Lrt y C 7 .  Take a local section a t  y and apply Proposition I of the pre- 
vious section. 

Section 5 ,  page 253 

2. Hinls:  (a) Use Poinear.-Rmdiison. (b)  Do the problem for 2n + l 
closed orbits; use induction on n. 

5.  Hinl:  Let U be the region bounded by a closed orbit r of J. Then g is trans- 
verse to the boundary 7 of U .  Apply Poincad-Bendixson. 

Chapter  13 

Section I ,  page Z78 

( a )  Hinl:  Show that the given condition is equivalent to the existence of an 
t-iwnvalue a of D+(z )  with I a / < 1. Apply Theorem 2. 

Section 3, p I p r  285 

:3. I :  If u is periodic of period A, then so is n, for all r > 0. 
5 .  Ilir81s: la )  Do the problem first in casr p is zero and g is linrar. Thcn use 

Tit?-lr~r's formula for thr genrral casr. (b )  Apply thr rcsult in (a)  after taking 
a local svction. 

I N 8 W E R S  TO SELECTED PROBLEMS 

Chapter  16 

Section 1,  pope 309 

1. H i :  If B is close to A ,  each eigenvalue of B having negative real part will 
he close to a similar eigenvaluc A of A .  Arguing as in the proof that SI is open 
in Theorem 1 of Chap t~r  7, Srction 3, show that the sum of the multiplicities 
of these rigenvalues r ,  of B nr.ar A equals the multiplicity of A. Then show that 
bases for the gencralizcd eigenspaces of the 6, can he chosen near corresponding 
basrs for A. 

Section 3 ,  poge 318 

I .  Suppose Dj(0) has 0 as an eigenvaluc, let g . ( r )  = j ( r )  + .I, r f 0. For I r I 
sufficiently small, one of g-., g. will be a saddle and the other a s o m e  or sink; 
hence J cannot have the same phase portrait as both g, and 9.. If Dj(0) has 
f Ai, A > 0, as an eigenvalue, then g-. is a sink and g,. is a source. 

ti. Hin t :  Firjt consider the case where elA is a contraction or expansion. Then use 
Problem 1 of Section 1. 

Section 2, page 303 

2 This is pretty trivial. Since z' is the C function J, then r is C+'. 
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Curretl! slates. 212, 2'zJ 
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I>ilferetxtistiu!> operator, 142 
Direct sum, 41 
I>isrrete dgnamieal system, 278, 280 
IJisrrete Ruw, 279 
I)iseriminatlt, 96 
1)1sta8~ce, 10, 76 
1)llnl hrr,ir. 205 
I)!>sl rpnre. 36 
I ) x I ~ I  vector rpttre, 204 
I)yr~an~irnl sy-!em. 5, 6. 159, 160 

E 

Eeeentririty, 26 
Eipenspaee, 110 
Eigenvalue, 63 
Eipenvertor, 42, 63 
Elementary h-block, 127 
Klernetttnry Jordan matrix, 127 
I~le~nenlsrr  nilpotent block. I22 
ICner~y, I#, 2X!l 
I.:IIIITP t!rbil, 1!15 
KqnatVw) of llrntted growth, 257 
Eqoilitlrium. 145 
Eqc~~ltbrn~m pclint, 180 
liquilibrium state, 145, 181 
Eurlidesn lhree rpsee, 287 
Expnnsion, 145 
Expolleat (erp), 83 
Exponential, 74 

of operntur, 82 
I<xlx,lte!lllnl nppmseh, 181 
I.:r,,lll,<~,,,,nl .,.rips, m 

F 
Fartorial, R3 
Field of force, I5 
Fixed point, 181. 279 
Flow, 6, 175 
Flow box, 243 
Focus. 93 
Force field. 16, 17, 23 
Fundamental theorem, 162 
Fuadnme~,tal theorem of alpbra,  328 
F!llld~me!~tnl theory, 160 

G 
(;ei~ei;al~red plgcsspsee, 110 
l : e n r r ~ l ~ ~ e d  nr<,nrents, 292 
1 ;e t~nr  proPcrty, 154 
C:el,?ricity, lk'i 
(:luh%I senion, 247 
( h x d  verlirr;, 2611 

SUBJECT INDEX 

Gradient, 17 
Gradient system. 199 
Graph of map, 339 
Gmnwsll's inequality, 169 
Gmwth rate, 256 

H 

Hsmiltonian. 291, 293 
tl%miltonisr? vector field, a 1  
Hmilton'x equationa, 281 
Harmonic motion, 59 
Harmonic oscillator, 15, LO5 
Higher order linear equations, 138 
Higher order systems, 102 
Hornmmorphism. 312 
Homogeneous lines, systems, 89 
Hopf bifurcation, 227 
Hyperbolic closed orbit, 311 
Hyperbolic equilibrium, 187 
Hyperbolic flow, 150 
Hyperplane, 242 

I 

Identity map, 322 
Image, 34, 322 
Implicit function theorem, 338 
Improper node, 93 
Independent set (subset), 34 
Induelmee, 213,232 
Indurtors, 211. 213, 232 
Infinite aerie, 86 
Initial condition. 2, 162 
Initial value problem, 2 
Inner pmduct, 16, 75 
In p h e  trajectories. 278 
Intgral ,  23 
Invari.nce, 198 
Inverse. 33 
Inverse function theorem, 337 
Invertibility, 33 
laomorphiism, 35 
Iteration scheme, 168 

J 
Jordan A-block, 127 
Jordan curve theorem, 254 
Jordan form, 127 
Jordan matrix, 127 

K 

KCL. 211, ZZ!J 
Kcplcr pmblem, 58 

SUBJECT INDEX 

Kepler'. fint law. 23 
Kernel. :33 
Kinetic energy. 18. 2% 
Kirchholf'h rurrent lnr .  211 
KVL. 212. 230 

L 

1.sgrst~ge's tlxer,rem. 194 
Latrlr rectum, 26 
Lqendre trarlsfurmation, 292 
Length, 10, 76 
lave1 surface, 195,200 
Liapunov. 192 
Liapunov Rtnrtion, 193 
1.iapunov'r theorem, 180 
Liensrd'a equaliun, 210, 215 
Limit cycle, 250 
Limit set. 239 
Limiting population, 257 
Linear contraction. 279 
Linesr Row, 97 
Linear flaph, 229 
Linesr map, 30, 33 
Linear part, 181 
Linear subspsce, 33 
Linear transformsfion, 5 
Lu~earity pmpertie, 30 
Linearly independent elements, 326 
Liouville's formula, 278 
Lip~ehitr constant, 161 
Lip~ehitz funetiun, 163 
h e a l  leetion, 212, 278 
Locally Lipchit., 163 

M 

Manifolds, 232, 319 
Mstriee (matrix), 8, 11 
Maxwell, 191 
Minimal set. 241 
Mired potential, 233 
>lonotone along trajectory, 244 
\fultiplirity, 110 

01 a root, 330 

N 
n-body pmblem, 287 
Neighborhood, 76, 305 
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