Total No. of printed pages = 6

MA 131301 OR

Roll No. of candidate				
	2018		uf	loak

B.Tech. 3rd Semester End-Term Examination

MATHEMATICS — III

(Old Regulation)

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No. 1 and any six from the rest.

1. Answer the following:

$$(10 \times 1 = 10)$$

(i) The particular integral of
$$(D^2 - 7DD' + 5D'^2) Z = e^{x-y}$$
 is

(a)
$$xe^{x-y}$$

(b)
$$-\frac{1}{12}e^{x-3}$$

(c)
$$\frac{1}{13}e^{x-y}$$

(d)
$$\frac{1}{13}xe^{x-y}$$

(ii) A solution of
$$(px + qy - Z)^2 = p^2 + q^2$$
 is

(a)
$$Z = ax + by + a^2 + b^2$$

(b)
$$Z = (ax + by)^2 + a^2 + b^2$$

(c)
$$Z = ax + by - \sqrt{a^2 + b^2}$$

(d)
$$Z = \sqrt{ax + by} + a^2 + b^2$$

[Turn over

- of The Wave (iii) The solution equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ is
 - $y = (c_1 \cos px + c_1 \sin px)(c_3 e^{pt} + c_4 e^{-pt})$
 - (b) $y = (c_1 \cos px + c_1 \sin px)$ $(c_3 \cos pct + c_4 \sin pct)$
 - (c) $y = (c_1 e^{px} + c_2 e^{-px})(c_3 \cos pct + c_4 \sin pct)$
 - (d) $y = (c_1 e^{px} + c_2 e^{-px})(c_3 e^{pct} + c_4 e^{-pct})$
- (iv) The relation |3-Z|+|3+Z|=5 represents a
 - Circle (a)
- (b) Parabola
- Ellipse
- (d) Hyperbola
- For a complex function f(Z) = u + iv where $u = u(r, \theta), v = v(r, \theta)$

 - (a) $\frac{\partial u}{\partial r} = \frac{\partial v}{\partial \theta}$ (b) $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$
 - (c) $\frac{\partial u}{\partial \theta} = \frac{1}{r} \frac{\partial v}{\partial r}$ (d) $\frac{\partial u}{\partial \theta} = \frac{\partial v}{\partial r}$
- (vi) If f(Z) is analytic within and on a closed curve C and 'a' is a point inside C, then
 - (a) $\oint_C f(Z) \ dZ = f(\alpha)$
 - (b) $\oint_C f(Z) \ dZ = f^n(a)$
 - (c) $\oint \frac{f(Z) dZ}{Z a} = 2\pi i f^n(a)$
 - (d) $\oint \frac{f(Z) dZ}{Z a} = 2\pi i f(a)$

- (vii) For any two events A and B, P(A-B) is equal
- (viii) The mean and variance of a binomial distribution are 8 and 4 respectively, then P(X = 1) = -
- (ix) The inverse Laplace Transform of $\frac{1}{(S+3)^3}$ is
 - (a) $\frac{1}{2}e^{-3t}t^2$ (b) $\frac{1}{2}e^{3t}t^2$
- - (c) $\frac{1}{2}e^{-3t}t^3$ (d) $\frac{1}{3}e^{3t}t^3$
- (x) If $L\{f(t)\} = \bar{f}(s)$, Then $L\{f'(t)\} =$
 - (a) $\bar{f}(s) s f(0)$ (b) $s\bar{f}(s) f(0)$
 - (c) $s^2 \bar{f}(s) s f(0)$ (d) $s \bar{f}(s) + f(0)$
- Form a partial differential equation from

$$2Z = \frac{x^2}{a^2} + \frac{y^2}{b^2} \,. \tag{3}$$

- Solve the equation Zpq = p + q.
- Solve the equation

$$x^{2}(y-Z)p+y^{2}(Z-x)q=Z^{2}(x-y).$$
 (7)

(5)

- 3. (a) Prove that the function $u(x, y) = \log(x^2 + y^2)$ is harmonic. (3)
 - (b) Determine the analytic function whose real part is $e^x(x\cos y y\sin y)$. (7)
 - (c) Evaluate $\int_{0}^{2+i} (\overline{Z})^2 dZ$ along the line 2y = x. (5)
- 4. (a) Urn I contains 3 green and 5 red balls. Urn II contains 2 green, 1 red and 2 yellow balls. One urn is selected at random and then a ball is drawn from it. What is the probability that the ball is green? (5)
 - (b) In a bolt factory, machines A, B and C manufacture respectively 25%, 35% and 40% of total output. Of these 5%, 4% and 2% respectively are defective. A bolt is drawn at random from the product and is found to be defective. What is the probability that it is manufactured by machine C? (5)
 - (c) In a normal distribution 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution. (5)
- 5. (a) Find the Laplace Transform of (2 + 3 = 5)
 - (i) $f(t) = 5t^4 4\cos 3t$,
 - (ii) $f(t) = e^{-3t} \sin 2t$.
 - (b) Prove that $\int_{0t}^{\infty} \frac{e^{-t} e^{-3t}}{t} dt = \log 3$. (5)
 - (c) Evaluate $L^{-1}\left\{\frac{s+2}{s^2-4s+13}\right\}$. (5)

- (a) Solve: $(D^2 3DD' + 2D'^2)Z = \sin(2x + y)$. (5)
 - (b) Expand $\frac{\sin Z}{Z \pi}$ about $Z = \pi$. (4)
 - (c) Find the mean and variance of binomial distribution. (6)
- 7. (a) Solve the following equation by Charpit's method: $(p^2 + q^2)y = q^Z$. (7)
- (b) Evaluate $\oint_C \frac{Z dZ}{(Z-1) (Z-3)}$ where C is the circle |Z|=3.
 - (c) Evaluate: $L^{-1} \left\{ \frac{1}{s(s+1)^2} \right\}$. (3)
- 8. (a) Find the image of the infinite strip $\frac{1}{4} \le y \le \frac{1}{2}$ under the transformation $w = \frac{1}{Z}$. (4)
 - (b) A company claims that the mean life time of tube lights is 500 hours. Is the claim of the company tenable if a random sample of 25 tube lights produced by the company has mean 518 hours and standard deviation 40 hours? (4)
 - (c) Solve the equation by Laplace Transform method: $\frac{d^2x}{dt^2} 3\frac{dx}{dt} + 2x = e^{-t}; \quad \text{where}$ $x(0) = -3, \ x'(0) = 5. \tag{7}$

Tavo mulT

- 9. (a) Determine the residue at each pole of $f(Z) = \frac{2Z+1}{Z^2 Z 2}.$ (3)
 - (b) Determine the solution of the one-dimensional heat equation $\frac{\partial u}{\partial t} = C^2 \frac{\partial^2 u}{\partial x^2}$ with the boundary conditions u(0, t) = u(l, t) = 0 for t > 0 and $u(x, 0) = u_0$.
 - (c) In 60 throws of a die, number one is obtained 6 times, two or three 18 times, four or five 24 times and number six is obtained 12 times. Test at 1% level if the die is a fair one. (5)