Total No. of printed pages = 6

ME 1317 E 013

Roll No. of candidate

2018

B.Tech. 7th Semester End-Term Examination

COMPUTATIONAL FLUID DYNAMICS

(Elective — I)

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any six from the rest.

L Chose the correct answer for the following questions:

 $(10 \times 1 = 10)$

- (i) For partial differential equation, if $b^2-4ac<0$ then the equation is called
 - (a) Hyperbolic (b) Parabolic
 - (c) Elliptic (d) None of these
- (ii) Boundary condition which includes derivative of boundary value is
 - (a) Dirichlet boundary condition
 - (b) Neumann boundary condition
 - (c) Forced boundary condition
 - (d) Discrete boundary condition

[Turn over

- (iii) The continuity equation for steady compressible flow can be written as
 - (a) $\frac{\partial u_m}{\partial x_m} = 0$ (b) $\frac{\partial u_i}{\partial x_j} = 0$
 - (c) $D\rho/Dt = 0$ (d) None of these
- (iv) Finite difference method is
 - (a) Exact solution method
 - (b) Approximate solution method
 - (c) Unique solution method
 - (d) None of these
- (v) When a dirichlet computation of dependent variables can be made in terms of known quantities, computation is said to be
 - (a) Implicit (b) Explicit
 - (c) Unique (d) Dependent
- (vi) Difference between exact solution to mathematical model and discretized equations used to approximate is called
 - (a) Modeling error
 - (b) Discretization error
 - (c) Convergence error
 - (d) None of these

- (vii) For a Newtonian fluid, τ_{zz} in compressible flow is given by
 - (a) $\frac{1}{2}\mu\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$
 - (b) $\frac{1}{2} \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)$
 - (e) $\mu \frac{\partial w}{\partial z}$
 - (d) None of the above
- (VIII) The ratio of inertia force to viscous force is
 - (a) Reynolds number
 - (b) Mach number
 - (c) Euler number
 - (d) Froude number
- (ix) One dimensional Heat conduction equation is of
 - (a) Boundary value problem
 - (b) Initial value problem
 - (e) Both initial and boundary value problem
 - (d) None of the above
- (*) Which of the following is of second order accurate?
 - (a) First order forward difference approximation
 - (b) First order backward difference approximation
 - (c) First order central difference approximation
 - (d) None of the above

- 2. (a) What do you mean by conservative and non conservative form of governing equation? (5)
 - (b) Derive the continuity equation for any of the models of flow. (10)
- 3. (a) Describe how boundary layer is formed on a flat surface. What are the boundary layer assumptions? (7)
 - (b) Using non dimensionalization derive the three dimensional X-momentum equation. (8)
- 4. (a) What do you mean by well posed problem? (5)
 - (b) How partial differential equations can be classified? Give examples. (5)
 - (c) Describe explicit and implicit schemes with examples. (5)
- 5. (a) Derive the expression for 2nd order central difference with respect to x. What will be the truncation error for this? (5)
 - (b) Discretize the equation $\frac{\partial U}{\partial t} = k \frac{\partial^2 U}{\partial x^2}$ using (2×5)
 - (i) Crank Nicholson scheme
 - (ii) Leap frog scheme.
- 6. (a) Derive the finite difference expression for second order mixed derivative. (5)
 - (b) Explain alternating direction implicit method with the help of two dimensional heat conduction equation. (10)

- 7. (a) Explain the explicit approach for one dimensional heat conduction equation. (5)
 - (b) Find the temperature distribution in an insulated long bar of uniform cross sectional area with boundary conditions at left end temperature is 1°C, at the right end temperature is 0°C. The initial condition is

$$T(x,0) = \sin(\pi x)$$
 for $0 < x < 1$

Assume $r = 1/2 = k (\Delta T)/(\Delta x)^2$. Solve up to three time step. (10)

- 8. (a) Describe the finite volume method for one dimensional diffusion problem. (5)
 - (b) Consider the problem of source free heat conduction in an insulated rod whose ends are maintained at constant temperatures of 100°C and 500°C. The ID problem is sketched in fig is governed by $\frac{d}{dx} \left(k \, \frac{dT}{dx} \right) = 0$.

Calculate the steady state temperature distribution in the rod. Thermal conductivity k = 1000 W/mk, cross sectional area $A = 10 \times 10^{-3}$ m². (10)

- 9. (a) Discretize one dimensional wave equation using Lax scheme. (5)
 - (b) Compute the solution of equation for the 1st two time step using upwind scheme.

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$$
; where c is a constant, $c \ge 0$

Initial condition
$$u(x, 0)$$

$$\begin{cases} x - x^2, & 0 < x \le 1 \\ 0, & x > 1 \end{cases}$$

And the boundary conditions are u(0,t) = 0; for all t.

Consider
$$\Delta x = \frac{1}{4}, v = \frac{c \Delta t}{\Delta x} = 0.5$$
. (10)