Total No. of printed pages = 4

CS 1317 E 012

00 1011	E 012										
Roll No. of	candidate										
	· Intelegra	2018				\					
B.Tech. 7th Semester End-Term Examination											
NA	TÚRAL LA	NGUAG	E PR	OCI	ESS	SIN	G				
(Elective-I)											
Full Marks	s – 100			Tim	.e —	Th	ree	ho	urs		
The	figures in the	e margin the ques			ull	ma	rks	5			
An	swer Q.No. 1	and any	y six fr	om	the	res	st.		/		
1. Answ	er the followi	ing ques	tions:			(10) ×	1 =	10)		
	ouilt up fron	is the smalle	tudy o r mea	f the	e wa	ay ear	woı ing	rds un	are nits,		
1	recognition characters.										
1 1	models that probability of soo far into th	assume f some fu	that	we	can	p:	red	ict	the		

The task or reevaluating some of the zeroprobability and low-probability N-grams and assigning them non-zero values is called

[Turn over

(vi)	The task of — is to examine would tokens in context and specify exactly which sense of word is being used. — is a corpus that is annotated with	What is Add One Smoothing? Explain with example. (4) Explain the importance of n-gram model in the importance of n-gram model in (5)	
	verbal propositions and their arguments In machine learning, ————————————————————————————————————	word prediction. Give example. (5) Define backoff and interpolation in n-gram model. (3 + 3 = 6)	
(viii	i) The ———— views documents and queries	What do you mean by unknown words in a POS tagging task? How are POS tags assigned to unknown words? $(4 + 4 = 8)$	
(ix)	as vectors in a large multidimensional space. There are two broad classes of ways to form words from morphemes:	Briefly explain the Porter Stemmer. (4+4-8) (a) Describe the various tuples of Finite State Transducer. (3)	
(x)	A regular expression is one way of characterizing a particular kind of formal language called ————.	(a) Briefly explain bigram model for spelling correction. (4)	
(a)	Briefly explain the Unicode system for text representation in computers. (5)	(b) Explain linear regression model. Give example. $(3 + 2 = 5)$	
(b)	How Transformation Based Tagging rules are applied? Give example. $(3+2=5)$	(e) What is top down parsing? What is ambiguity in parsing? $(3 + 3 = 6)$	
(c)	Explain the issues in computational morphology with suitable example. $(4+1=5)$	(a) What do you mean by Homonymy, Polysemy and Synonymy for information retrieval	
(a)	What do you mean by Formal language? Give example. $(3 + 2 = 5)$	systems? $(2 \times 3 = 6)$ (b) Explain Vector Space model of information	
(b)	Explain lexemes and phonemes in natural language processing. $(2.5 \times 2 = 5)$	retrieval. Give example. $(3 + 2 = 5)$ (c) Explain the feature vector for machine learning	
(c)	Explain the different regular expression patterns.	approaches in word sense disambiguation. (4)	
1317	E 012 2	CS 1317 E 012 3 [Turn over	

2.

3.

- (a) Explain the different phases in natural language processing. (2 × 5 = 10)
 (b) Explain the regular expression: /[^a-zA-Z][tT]he/
 - (c) Differentiate between NFA and DFA. (2)
- 9. (a) Explain the different types of Morphology. Give examples. $(2 \times 4 = 8)$
 - (b) What are the different categories of single word misspellings? (4)
 - (c) Mention the different elements in balanced corpus. (3)