Total No. of printed pages = 7

EE 1317 E 011

Roll No. of candidate

2018

B. Tech. 7th Semester End-Term Examination RELIABILITY ENGINEERING (Elective – I)

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer Question No. 1 and any six from the rest.

- 1. Choose the correct answer for the following questions: $(10 \times 1 = 10)$
 - (i) Which type of failures occurs due to some major reason by terminating the functioning level for a long duration of time?
 - (a) Initial failures
 - (b) Early failures
 - (c) Wear out failures
 - (d) Catastrophic failures

[Turn over

- (ii) If all the subsystems in series have constant failure rate then
 - (a) The failure rate of system is constant.
 - (b) The failure rate of system will increase as more subsystems are added.
 - (c) The failure rate of system is sum of subsystems.
 - (d) All of the above
- (iii) How many channels are to be connected in parallel to achieve a reliability of 0.95 when reliability of each channel is 0.6?
 - (a) 1.25
 - (b) 6.9
 - (c) 3.2
 - (d) 3.75
- (iv) Calculate the reliability of a parallel series system with m=3 and n=4 and reliability of each component is 0.80?
 - (a) 0.9952
 - (b) 0.456.
 - (c) 0.978
 - (d) 0.9045
- (v) Find the design life reliability of 90% of a weibull distributed system with wave and shape parameter 1 80 and 0.5 respectively.
 - (a) 5 years
 - (b) 2 years
 - (c) 4.5 years
 - (d) 1 year

- (vi) What is MTTF?
 - (a) Maximum time to failure
 - (b) Mean time to failure
 - (a) Minimum time to failure
 - (d) None of the mentioned
- Which of the following is not a phase of bathtub curve" of hardware reliability?
 - (a) Useful Life
 - (b) Burn-in
 - (e) Wear out
 - (d) Time
- (viii) Which of the following approaches are used to achieve reliable systems?
 - (a) Fault prevention
 - (b) Fault removal
 - (c) Fault tolerance
 - (d) All of the mentioned
- (ix) If a fair coin is tossed four times. What is the probability that two heads and two tails will result
 - (a) 3/8
 - (b) 1/2
 - (c) 5/8
 - (d) 3/4
- (x) Two dice are thrown at random, what is the most probable sum to obtain
 - (a) 6
 - (b) 12
 - (c) 7
 - (d) None of these

- 2. (a) A certain item is manufactured at two plant 1 makes 80% of requirement and Plant makes 20%. From Plant 1, 90% makes 20% particular standard and from Plant 2 only Evaluate:
 - (i) Out of every 100 items purchased by a customer how many will be up to standard
 - (ii) Given that an item is standard, what the probability that it was made by Plant 2.
 - (b) What is the percentage of area covered by the following:
 - (i) $\mu \pm \sigma$
 - (ii) $\mu \pm 2\sigma$
 - (iii) $\mu \pm 3\sigma$
 - (c) In a sample of 60 nails, 10 of them contains only defective heads, fine contains only defective tail-ends and fine contains both the defect. What is the probability that a nail is selected randomly contains either a defective head or defective tail.
- 3. (a) Discuss the difference between Mean time to failure and mean time in between failure.

 Derive the expression for mean time to failure (MTTF) for an exponential distribution having a constant hazard model. (2+4=6)
 - (b) A system with constant failure rate $\lambda = 0.001$ has a guaranteed life time of 200 hours. Find the reliability at 1000 hrs. Calculate MTTF, t_{med} and design life for 45% reliability. (4)

- The time to failure density function of a
- $t \ge 0$ where t is in hrs.
- Illurard rate function.
- Reliability at t= 10 hrs.
- (III) MTTF.
- (iv) Bet the design life for a reliability of 90%.

What is Markov Model? Derive the expression for probabilities of operating and failed state as a function of time. (2+8=10)

- Discuss the Markov model for a non-Repairable system. (5)
- (a) Define Stochastic transitional probability Matrix (STPM). A system with single identical repairable component with failure rate λ and repair rate μ
 - (i) Develop state space diagram. (3+7=10)
 - (ii) Find STPM ..
 - (iii) Solve and find steady state probability.
- (b) Determine reliability of the following system if all the components have a reliability of 0.9. (5)

5

6. (a) Draw the fault tree diagram of given available and find the probability.

(b) A plant has following units:

25 MW× 2 units

50 MW× 1 unit

FOR=0.02

Derive the Capacity Outage Probability table using Recursive Algorithm. (10)

7. (a) A system having 3 identical units of 50 MW.

The unavailability of the units can be calculated using the following data:

Failure Rate/year = 5

Repair Duration = 10 hrs

Develop the capacity outage probability table using Binomial Distribution. (6)

(b) The failure distribution is defined by:

 $F(t) = 3t^2/10^9$; $0 \le t \le 1000 \text{ hr.}$

- (i) What is the probability of failure within a 100 hr warranty period?
- (ii) Compute MTTF.
- (iii) Find the design life for a reliability of 0.99.

(6)

(c) What is meant by K out of M system? (3)

- Two non-identical units A and B operating in standby mode. Assuming 100% reliability of sensing and switching system, determine the reliability of the system for an operating time 't'. Simplify the function for the cases $\lambda_A = \lambda_B$. Determine the MTTF of both the systems. (6)
- (b) The mean life of a component is 100 hours. If you want to build a parallel system having a mean life of 200 Hours, how many components would be repaired? (5)
- (e) A power plant consists of 5 generators of capacity 20 MW. The probability of failure of each generator is 0.03. What is the probability that:
 - (i) Exactly 4 units are in operation.
 - (ii) At least 3 units are in operation. (4)
- (a) Two units A and B are independent P(A) = 0.75; P(B) = 0.28. Find
 - (i) $P(A \cup B)$

(ii)
$$P(A \cap \overline{B})$$
. (4)

- (b) An engine is designed to have minimum reliability of 0.8 and minimum availability of 0.98 over a period of 103 hrs. Determine mean repair time and frequency of failure of engine.(4)
- (c) A constant failure rate with $\lambda = 0.004$ has been operating for 1000 hrs. What is the probability that it will fail in the next 100 hours. (7)