Total No. of printed pages = 6 ET 131305 OR Roll No. of candidate 2019 B.Tech. (EE) 3rd Semester End-Term Examination ANALOG ELECTRONICS (Old Regulations) Time - Three hours Full Marks - 100 The figures in the margin indicate full marks for the questions. (Answer to Question no.1 and any six from the rest.) Answer all questions: 1. $(10 \times 1 = 10)$ What do you mean by donor acceptor impurities? What is the energy band gap of Ge at 300K? Define mass - action law. Define dynamic resistance of a diode. What is a transistor? Why is it so called? (vi) Why is collector wider than emitter and base? (vii) What do you mean by feedback in amplifiers? Turn over

- (viii) For an inverting amplifier, if $R_1 = 1k\Omega$ and $R_F = 10 \ k\Omega$ The closed loop gain is
 - (a) 10
- (b) 11
- (c) -10
- (d) 100
- (ix) Define CMRR in op-amps.
- (x) If transistor has a $\alpha = 0.97$, the value of β
 - (a) 0.03
- (b) 32.33
- (c) 200
- (d) 100
- 2. (a) What do you mean by Fermi level? Draw Fermi energy level for p-type, n-type and intrinsic semiconductor. (5+10=15)
 - (b) Define mean free path and mean free time.
 Find the conductivity of silicon:
 - (i) in intrinsic condition at 300K
 - (ii) with donor impurity of 1 in 108
 - (iii) with acceptor impurity of I in 5×107
 - (iv) with both the above impurities simultaneously

Given that for silicon at room temperature $n_1 = 1.5 \times 10^{10}/\text{cm}^3$, $\mu_n = 1300\text{cm}^2/\text{V-s}$, $\mu_p = 500\text{cm}^2/\text{V-s}$ and number of silicon atoms/cm³ = 5×10^{22} .

- 3. (a) Describe P-N junction in forward bias and reverse bias conditions. (5+10=15)
 - (b) Explain the formation of the depletion region in P-N junction diode with the derivation of the depletion width.

- Determine the forward resistance of a P-N function diode when the forward current is 5mA at T=300K. Assume silicon diode. (5+5+5=15)
- (h) Draw the comparison of CB, CC, CE configuration of BJT.
- (e) Determine the base, collector and emitter entrents and V_{CE} for a CE circuit shown below. For $V_{CE}=5V$, $V_{BB}=2V$, $R_B=100k\Omega$, $R_C=1k\Omega$, $V_{BB}=0.7V$, $\beta=100$.

- (a) Describe the Ebers-Moll model with circuit diagram.
 - (b) Describe the operation of NPN transistor in CB configuration.
 - (c) Find I_B , I_C , V_{CE} and S for fixed bias circuit. Given, $V_{CC}=16V$, $R_B=470K$, $R_C=2.7K$, $\beta=90$ (5+5+5=15)

- 6. (a) What is early effect? Define punch through. (4+4+3+4=11)
 - (b) Why the stability of Q-point is necessary? What are the causes of instability of a Q-point?
 - (c) Explain how negative feedback amplifier helps in reducing distortion and noise?
 - (d) What are the different ways of connecting a feedback signal in an amplifier? Derive an expression for input resistance of a voltage series feedback.
- 7. (a) An amplifier with $2.5 \mathrm{K}\Omega$ input resistance and $50 \mathrm{Kg}\Omega$ output resistance has a voltage gain of 100. The amplifier is now modified to provide 5% negative feedback in series with the input calculate
 - (i) Voltage gain
 - (ii) Input resistance
 - (iii) Output resistance .

(5+5+5=15)

- (b) Draw the schematic diagram of a summing of adder amplifier. Derive the expression of the output voltage.
- (c) Indicate a op-amp connected as a
 - (i) Scale changer
 - (ii) High pass filter
 - (iii) Subtractor
 - (iv) Voltage follower
 - (v) Integrator

For each case get the relevant expression for $V_{\text{out.}}$

- Draw the pin configuration of IC 741. Define input offset voltage, input bias current and .

 input offset current. (5+5+5=15)
- (b) Prove that $V_{out} = \frac{R_2}{R_1} (V_2 V_1)$ for the circuit shown.

(e) Find the output voltage Vout

- 9. Write short notes on (any three)
- (5+5+5=15)
- (a) Avalanche breakdown
- (b) Topologies of feedback amplifiers
- (c) Voltage divider biasing
- (d) Operating modes of op-amp