Roll No:						
	1		The second second second	and the second		

The Assam Royal Global University, Guwahati Royal School of Applied & Pure Sciences

B.Sc. Mathematics 1st Semester

Semester End Examination, January 2023
Course Title: Calculus (Differential & Integral)
Course Code: MAT012C101

Time: 3 Hours

Maximum Marks: 70

Note: Attempt all questions as per instructions given.

The figures in the right-hand margin indicate marks.

Section - A

1. Attempt all questions:

 $2 \times 8 = 16$

- **a.** If $y = x^2 e^{ax}$, find y_n by using Leibnitz's theorem.
- **b.** If $u = x^2 + y^2 + z^2$, show that $xu_x + yu_y + zu_z = 2u$.
- **c.** If $\phi(\alpha) = \int_{\alpha}^{\alpha^2} \frac{\sin \alpha x}{x} dx$, find $\phi'(\alpha)$ where $\alpha \neq 0$.
- **d.** Show that the subnormal at any point of the parabola $y^2 = 4ax$ is constant and the subtangent varies as the abscissa of the point of contact.
- e. Define multiple point and node of a curve.
- **f.** Find the curvature of the parabola $y^2 = 12x$ at the point (0,0).
- **g.** Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^4 x dx$.
- **h.** Find the area of the region enclosed by the circle $x^2 + y^2 = 4$.

Section - B

2. Attempt any two of the following questions:

 $6 \times 2 = 12$

a. If
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
, $(x,y) \neq (0,0)$, show that $\lim_{x \to 0} \lim_{y \to 0} f(x,y) \neq \lim_{y \to 0} \lim_{x \to 0} f(x,y)$.

Also Show that
$$\lim_{(x,y)\to 0} \frac{xy}{x^2 + y^2}$$
 does not exist.

P.T.O.

- **b.** Show that if $z(x+y) = x^2 + y^2$, then $\left(\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}\right)^2 = 4\left(1 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y}\right)$.
- c. If z = f(u, v), where $u = x^2 2xy y^2$, v = y, prove that $(x + y)\frac{\partial z}{\partial x} + (x y)\frac{\partial z}{\partial y} = 0$, can be transformed into $\frac{\partial z}{\partial y} = 0$.

3. Attempt any two of the following questions:

 $7 \times 2 = 14$

- **a.** Find the subtangent, subnormal, length of the tangent and length of the normal at the point 't' on the cycloid $x = a(t + \sin t)$, $y = a(1 \cos t)$.
- **b.** Find the saddle points, relative maxima and minima of $f(x, y) = 8x^3 24xy + y^3$.
- c. Find the points of intersection of the curves $2x^2 + y^2 = 20$, $4y^2 x^2 = 8$ and find the angle of intersection of the curves at any two of those points of intersection.

4. Attempt any two of the following questions:

 $7 \times 2 = 14$

- **a.** Find the equation of the circle of curvature of 2xy + x + y = 4 at the point (1,1).
- **b.** Find the radius of curvature at any point of the curve $x = a(t + \sin t)$, $y = a(1 \cos t)$ at $t = \frac{\pi}{2}$.
- **c.** Trace the Cardioid $r = a(1 \cos \theta)$.

5. Attempt any two of the following questions:

 $7 \times 2 = 14$

- **a.** Evaluate $\int \frac{xdx}{\sqrt{x^2 + 2x + 5}}$
- **b.** Prove that $\beta(m,n) = 2 \int_{0}^{\frac{\pi}{2}} \sin^{2m-1} x \cos^{2n-1} x dx$ and hence find the value of $\Gamma\left(\frac{1}{2}\right)$.
- **c.** Show that $\int_{x=1}^{2} \int_{y=\sqrt{x}}^{x} \sin \frac{\pi x}{2y} dy dx + \int_{x=2}^{4} \int_{y=\sqrt{x}}^{2} \sin \frac{\pi x}{2y} dy dx = \frac{4(\pi+2)}{\pi^3}$.
