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Note: Attempt all questions as per instructions given.
The figures in the right-hand margin indicate marks.
Section — A

1. Attempt all questions. (Maximum word limit 50) 2x8
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“If f + g is integrable on [a, b] then f and g both are integrable on [a, b]." Is this
statement true? Justify.
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Define Riemann Stieltjes upper and lower sum.

Define pointwise convergence of a sequence of functions with an example.

Find the pointwise limit of (f;,) where f,(x) = tan"*nx V x € [0, ).

Give the definition of differentiability of a two-variable function with an example.
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Section — B
2. Attempt any two of the following: 6x2

Prove that if a bounded function f : [a,b] » R is Riemann integrable with Riemann
integral A then A = ff Flodx

State and prove the fundamental theorem of calculus.

Find U(f, P) and L(f, P) of the function f(x) = x* V x € [0,1] where P partitions {0,2] into five
equal parts.
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. Attempt any two of the following: 7x2

Let f:[a, b] » R be a monotonic function and a is increasing function which is also
continuous on [a. b] then prove that f is Riemann-Stieltjes integrasle.

b. Define absolutely convergent integral. Prove that every absolutely convergent integral is
convergent. Is the converse true? Justify.
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c. Show that integral [ i

4. Attempt any two of the following: 7x2
a. State and prove the Dirichlet’s Test for uniform convergence of a sequence of functions.
b. Let f,(x) = —=— for x € [0, ). Check the uniform convergence of (f,) on [0, ).
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State and prove Weierstrass M-Test. Using this test, show that the series D1 la Cl)is

uniformly convergent, where f,(x) = x", x € [O ,%]

Attempt any two of the following: X 2

NZ42n
. Find the radius of convergence and interval of convergence of the power series Y, S—’%’;—I—
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. Using € — § definition, show that lim =S
(xy)-(0,0) x*+y
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Check the differentiability of the function f(x, y) = { at the point

(0,0).
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