

The Assam Royal Global University, Guwahati Royal School of Applied & Pure Sciences M.Sc. Mathematics, 2nd Semester Special Supplementary Examination, September 2023 Course Title: Functional Analysis Course Code: MAT014C203

Time: 3 Hours

Maximum Marks: 70

2 x 8

UNIV

Note: Attempt all questions as per instructions given.

The figures in the right-hand margin indicate marks.

Section – A

- 1. Attempt all questions. (Maximum word limit 50)
 - a. What do you mean by distance of a point from a set?
 - b. If T is a bounded linear operator on a normed space X, show that $||T|| = \sup_{||x||=1} ||Tx||$.
 - c. If T^* is Hilbert adjoint of the operator T. Show that $(ST)^* = T^*S^*$
 - d. Write the statement of Cauchy-Schwarz inequality.
 - e. Define maximal and minimal element in a partially ordered set.
 - f. Write the statement of closed graph theorem.
 - g. Show that the right shift operator S defined by $S(x_0, x_1, ...) = (0, x_0, x_1, ...)$ is bounded.
 - h. Define contraction of a mapping in a metric space.

Section – B

- 2. Attempt **any two** of the following:
 - a. Show that the normed linear space $c[0,1] = \{f: [0,1] \rightarrow R | fis \ continuous\}$ is not complete.
 - b. Show that B(X, Y):set of all bounded linear operators from X to Y, is a normed linear space with norm $||T|| = \sup_{\|x\|=1} ||Tx||$.
 - c. Let X be a normed space and Y be a proper closed subspace of X. Show that for every $r \in (0,1)$ there exists $x_r \in X$ such that $||x_r|| = 1$ and $r \le d(x_r, Y) \le 1$.

P.T.O.

6 x 2

- 3.
- Attempt **any two** of the following:
- a. i) The space C[a, b] is not an inner product space.
 - ii) Let X and Y be inner product spaces and $T: X \to Y$ a bounded linear operator. Show that T = 0 if and only if $\langle Tx, y \rangle = 0$ for all $x \in X$ and $y \in Y$.
- b. State and prove Bessel's Inequality in an inner product space.
- c. i) If M and N are closed subspaces of a Hilbert space H such that M⊥N, show that subspace M + N is closed.
 ii) If M is a but for Hiller to be the bud that M ≥ M = (0)

ii) If *M* is a subset of a Hilbert space *H*, show that $M \cap M^{\perp} = \{0\}$.

4. Attempt **any two** of the following:

a. i) Let X be a normed linear space and x₀ ∈ X, x₀ ≠ 0. Show that there exists a bounded linear functional f̃ on X such that f̃(x₀) = ||x₀|| and ||f̃|| = 1.
ii) Using Uniform Boundedness Theorem, show that the normed space X of all polynomials with norm defined by

 $||x|| = \max_{i} |\alpha_{i}| (\alpha_{0}, \alpha_{1}, ... \text{the coefficients of } x) \text{ is not complete.}$

b. i) Show that Uniform boundedness theorem does not hold in an incomplete norm space.

ii) Show that weak convergence does not imply strong convergence in general.

c. i) Show that T is a closed linear transformation if and only if its graph T_G is a closed subspace.

ii) State and prove normed space version of Hahn-Banach Theorem.

- 5. Attempt **any two** of the following:
 - a. Consider a metric space X = (X, d), where $X \neq \emptyset$. Suppose that X is complete and let $T: X \rightarrow X$ be a contraction on X. Show that T has one fixed point.
 - b. i) Let X be a linear space and A: X → X be a linear operator. If Range(A) is finite dimensional, show that σ_p(A) is a finite set.
 - ii) Show that the spectrum $\sigma(T)$ of a bounded linear operator $T: X \to X$ on a Banach space X lies in the disk $|\lambda| \leq ||T||$..
 - c. i) Prove that the right shift operator $T: l^2 \rightarrow l^2$ defined by $T(x_1, x_2, ...) = (0, x_1, x_2, ...)$ has no eigenvalue

ii) Show that the spectrum $\sigma(T)$ of a bounded linear operator is compact.

7 x 2

7x 2
