	 ,			
Roll No:				

The Assam Royal Global University, Guwahati

Royal School of Applied & Pure Sciences M.Sc. Mathematics, 3rd Semester Semester End Examination, January 2023

Course Title: Number Theory-I Course Code: MAT014D301

Time: 3 Hours

Maximum Marks: 70

Note: Attempt all questions as per instructions given.

The figures in the right-hand margin indicate marks.

Section - A

1. Attempt all questions. (Maximum word limit 50)

2 x 8

- a. For any integer n, prove that $3 \mid n(2n^2 + 7)$.
- b. If $ax + by = \gcd(a, b)$ for some integers x and y then show that $\gcd(x, y) = 1$.
- c. If gcd(a, 35) = 1 then show that $a^{12} \equiv 1 \pmod{35}$.
- d. For any odd integer a, show that $a^2 \equiv 1 \pmod{8}$.
- e. If $n = 2^{k-1}$ then show that $\sigma(n) = 2n 1$ for $k \ge 2$.
- f. Define Mobius function (μ). Also, find μ (30).
- g. Define Legendre's symbol. Also, find $\left(\frac{2}{13}\right)$.
- h. Define quadratic residue with an example.

Section - B

2. Attempt any two of the following:

6 x 2

- a. For positive integers a and b, prove that $gcd(a, b) \times lcm(a, b) = ab$.
- b. Given any two integers a and b with b > 0, prove that there exist unique integers q and r such that a = bq + r where $0 \le r < b$.
- c. Find the values of x and y such that gcd(312, 2054) = 312x + 2054y.
- 3. Attempt any two of the following:

7 x 2

- a. Find the remainders of 2^{50} and $\sum_{n=1}^{100} n!$ when divided by 12.
- b. Show that the system of linear congruences $ax + by \equiv r \pmod{n}$ and $cx + dy \equiv s \pmod{n}$ has a unique solution if gcd(ad bc, n) = 1.
- c. State and prove the converse of Wilson's theorem. Also, find the remainder of 15! when divided by 17.
- 4. Attempt any two of the following:

7 x 2

- a. If n is a positive integer and p is a prime then prove that the highest exponent e such that $p^e \mid n!$ is $\sum_{k=1}^{\infty} \left[\frac{n}{n^k} \right]$.
- b. Define τ -function. Show that it is multiplicative. Also, show that $\prod_{d|n} d = n^{\tau(n)/2}$ where n > 1 is a positive integer.

c. Define σ -function and find $\sigma(1246)$. Also, for $k \ge 2$, if $2^k - 1$ is prime and $n = 2^{k-1}(2^k - 1)$ then show that $\sigma(n) = 2n$.

5. Attempt any two of the following:

7 x 2

- a. State and prove Lagrange's theorem.
- b. Prove that if p is a prime and d|p-1 then there are exactly $\phi(d)$ incongruent integers having order d modulo p.
- c. Prove that if p is an odd prime and gcd(a, p) = 1 then the congruence $x^2 \equiv a \pmod{p^n}$, $n \ge 1$ has a solution if and only if $\left(\frac{a}{n}\right) = 1$.
