The Assam Royal Global University, Guwahati Royal School of Applied & Pure Sciences M.Sc. Mathematics, 3rd Semester Semester End Examination, January 2023 Course Title: Mathematical Logic Course Code: MAT014D303

Roll No:

Time: 3 Hours

Maximum Marks: 70

Note: Attempt all questions as per instructions given The figures in the right-hand margin indicate full marks for the questions

SECTION A

1. Attempt all questions:

- a. Verify tautology of the statement $((q \lor r) \to (\sim r \to q))$.
- b. Show that $(p \to q)$ is logically equivalent to (p|(q|q)).
- c. Are $((\sim A \rightarrow B) \rightarrow C)$ and $(\sim A \rightarrow (B \land C))$ wfs. in the formal system L? Justify with reason.
- d. A sequence $A_1, A_2, ..., A_n$ is a *proof* of A_n , if for each $i (1 \le i \le n)$, either A_i is ______ or A_i _____.
- e. Justify that the formal system L is not complete.
- f. Give an example of extension of the formal system L?
- g. Translate into symbols using universal quantifier "No number is both odd and even".
- h. Is $(A_1^1(x_2) \rightarrow A_1^3(x_1, a))$ a well-formed formula? Justify with reason.

SECTION B

2. Answer any two of the following:

- a. i) Find the statement form in which only the connectives ~ and \land occur, which is logically equivalent to $(p \leftrightarrow q)$.
 - ii) Show that the singleton sets $\{\downarrow\}$ and $\{|\}$ are adequate sets of connectives.
- b. Find the statement form in *conjunctive normal form* which are logically equivalent to the following $((p \lor q) \land r)$; **P.T.O.**

2x8

6x2

c. i) Test the validity of the argument form $(p \to (q \lor r)), \sim r: \therefore (\sim q \to \sim p)$

ii) Suppose $\mathcal{A}_1, \ldots, \mathcal{A}_n$; $\therefore \mathcal{A}$ is a valid argument form, prove that $\mathcal{A}_1, \ldots, \mathcal{A}_{n-1}$; \therefore $\mathcal{A}_n \to \mathcal{A}$ is also a valid argument form.

3. Answer any two of the following:

7x2 a. Without using Deduction theorem for L, show that for any wfs. $\mathcal{A}, \mathcal{B}, \mathsf{C}$ of L,

 $i) \{A, (\mathcal{B} \to (A \to C))\} \vdash_L (B \to C), ii) \vdash_L (A \to A) \text{ and } \vdash_L (\sim B \to (B \to A)).$

- b. If $\Gamma \cup \{\mathcal{A}\} \vdash_L \mathcal{B}$, show that $\Gamma \vdash_L (\mathcal{A} \to \mathcal{B})$ where \mathcal{A} and \mathcal{B} are wfs. of L and Γ is a (possibly empty) set of wfs. of L.
- c. Suppose L' is a formal deductive system which differs from the formal system Lonly in having the axiom 3 as $((\sim A \rightarrow \sim B) \rightarrow ((\sim A \rightarrow B) \rightarrow A))$ for any wf. A, B. Show that i) $\vdash_{L'} (\sim (A \rightarrow \sim B) \rightarrow A)$ ii) $\sim A \vdash_{L'} (A \rightarrow B)$ and $iii) A \vdash_{L'} (\sim A \to B)$

4. Answer any two of the following:

- a. Suppose L^* be consistent extension of L, Show that there is a complete extension $\int \text{of } L^*$.
- b. Suppose L^* be consistent extension of L and \mathcal{A} be a wf. of L which is not a theorem of L^* . Show that L^{**} is also consistent, where L^{**} is the extension of L obtained from L^* by including $(\sim \mathcal{A})$ as an additional axiom.
- c. Show that if A is a theorem of the formal system L, then A is a tautology. Using definition of valuation, prove that $((\sim A \rightarrow \sim B) \rightarrow (B \rightarrow A))$ is a tautology for any wf. A, B of L.

5. Answer any two of the following:

- a. Show that a wf of the first order language \mathcal{L} which is a tautology is true in any interpretation of L.
- b. i) If A is a wf. of \mathcal{L} and A is a tautology, then show that A is a theorem of K. ii) If x_i does not occur free in \mathcal{A} , show that $\vdash_K ((\mathcal{A} \to (\forall x_i)\mathcal{B}) \to \mathcal{A})$ $(\forall x_i)(\mathcal{A} \to \mathcal{B}))$
- c. i) Show that $((\forall x_1)(\exists x_2)A_1^2(x_1, x_2) \rightarrow (\exists x_1)(\forall x_2)A_1^2(x_1, x_2))$ is not logically valid.

ii) Write alphabets of symbols of first order language \mathcal{L} . Give an example of atomic formula.

7x2

7x2