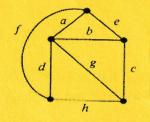
	CONTRACTOR OF STREET,			Contraction of the			
Roll No:							
		The second second	Sector Sector Sector		Contraction of the local sector	the second second	

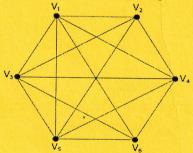
The Assam Royal Global University, Guwahati Royal School of Applied & Pure Sciences M.Sc. Mathematics 3rd Semester Semester End Examination, January, 2023 Course Title: Graph Theory Course Code: MAT014C302

Time: 3 Hours

Maximum Marks: 70


Note: Attempt all questions as per instructions given. The figures in the right-hand margin indicate marks.

Section – A


Q1. Attempt all questions. (Maximum word limit 50)

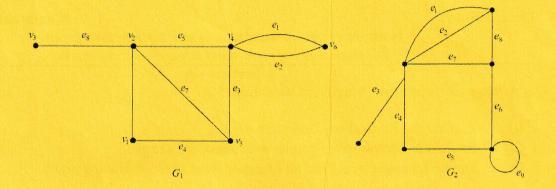
 $[2 \times 8 = 16]$

- (i) Explain the Konigsberg Bridge problem.
- (ii) Explain isomorphism of graphs with a proper example.
- (iii) Define spanning tree. Find all spanning trees of the following graph

- (iv) Justify that the incident matrix of a disconnected graph with two components G_1 and G_2 can be written in block diagonal form.
- (v) Draw the spanning cycles of K_5 .
- (vi) Define point covering and line covering of graph.
- (vii) State and justify Euler's polyhedron formula with a proper example.
- (viii) Is the following graph a planar graph? Justify.

Section – B

Q2. Answer any two of the following:


 $[6 \times 2 = 12]$

- (i) Justify that if a graph G is disconnected then its vertex set V can be partitioned into two non-empty disjoint subsets V_1 and V_2 such that there exists no edge in G whose one end vertex is in V_1 and the other in V_2 . Is the converse true? If yes, then prove it.
- (ii) What is directed graph? Discuss different types of digraphs.
- (iii) Prove that a connected graph with even degree vertices is a Euler graph.

Q3. Answer any two of the following:

 $[7 \times 2 = 14]$

- (i) What is tree in a graph? How many edges are there in a tree with *n*-vertices? Prove it. Also, give a proper example.
- (ii) Define block in graph. Suppose G is a connected graph with at least three vertices. Then show that G is a block if every two points of G lie on a common cycle.
- (iii) Define the cycle matrix of any graph G. Find the cyclic matrices of the following graphs

Q4. Answer any two of the following:

- (i) What is n -factorisation? Justify that the complete graph K_{2n} is 1-factorable.
- (ii) Prove that the following statements are equivalent for a connected graph G,
 - (a) G is Eulerian.
 - (b) Every point of G has even degree.
 - (c) The set of lines of G can be partitioned into cycles.
- (iii) For any non-trivial connected graph G, justify that $\alpha_0 + \beta_0 = p = \alpha_1 + \beta_1$, where $\alpha_0, \beta_0, \alpha_1, \beta_1$ have their usual meaning.

Q5. Answer any two of the following:

 $[7 \times 2 = 14]$

 $[7 \times 2 = 14]$

- (i) Prove that the complete graph of five vertices is non-planar.
- (ii) Show that in any simple, connected and planar graph with f regions, n vertices and e edges (e > 2), $e \le 3n 6$. Justify that K_5 and $K_{3,3}$ are nonplanar.

(iii) State and prove the five-colour theorem.