The Assam Royal Global University, Guwahati
Royal School of Applied & Pure Sciences
M.Sc. Mathematics, 4 th Semester
Semester End Examination, June 2023
Course Title: Fuzzy Set Theory
Course Code: MAT014D402

Roll No.

Time: 3 Hours

Maximum Marks: 70

 $[2 \times 8 = 16]$

Note: Attempt all questions as per instructions given. The figures in the right-hand margin indicate marks.

Section - A

1. Answer all questions (Maximum word limit 50):

a. Suppose membership function for the linguistic variable "heavy" and "light" are defined as follows

"Heavy" =
$$\left\{\frac{0.2}{5}, \frac{0.4}{8}, \frac{0.6}{12}, \frac{0.8}{20}, \frac{1}{80}\right\}$$

Develop membership functions for the following linguistic phrases (i)Very Heavy

(ii)Fairly Heavy
$$\left(= [Heavy]^{\frac{2}{3}}\right)$$

b. What do you mean by α –cuts of fuzzy set? Find the α –cuts of the following Triangular Fuzzy Numbers

 $\Lambda = \begin{bmatrix} -1 & 1 & 3 \end{bmatrix}$

c. Use max-min composition rule to find the composition between the relation

$$\mu_{R_1} = \begin{bmatrix} 0.2 & 0.3 & 0.8 \\ 0 & 0 & 1 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}, \mu_{R_2} = \begin{bmatrix} 0 & 0.2 \\ 1 & 0.9 \\ 0 & 0.5 \end{bmatrix}$$

- d. When does a fuzzy relation said to be a compatibility relation?
- e. Show that for every $A \in P(X)$, any necessity measure Nec on P(X) and associated possibility measure, Pos satisfy $Nec(A) > 0 \Rightarrow Pos(A) = 1$
- f. What is meant by semi continuous Fuzzy Measure?
- g. Derive, $\sim A$ for a three valued logic where truth values are 0, 1/2 and 1.

h. What are the different classifications of fuzzy proposition?

Section – B

2. Answer any two of the following questions:

a. Given fuzzy sets $A_1 = \{(-1,0.5), (0,1), (1,0.5)\}$ on the universal set

a. $X = \{-1, 0, 1, \}$. Let a mapping $f: X \to Y$ be defined by $y = x^2 + 2$. Use extension

principle to obtain a fuzzy set B on Y.

b. Define disjoint sum and bounded sum. If A and B are two fuzzy sets defined as

$$A = \{(-1, 0.6), (0, 0.7), (1, 0.4), (2, 0.8)\}$$

$$B = \{(-1, 0.4), (0, 0.6), (1, 0.6), (2, 0.2)\}$$

Find disjoint sum and bounded sum.

c. Find the solution of the fuzzy equation A + X = B where, A and B are two fuzzy numbers given by $A = \begin{bmatrix} 3 & 4 & 5 \end{bmatrix}$ and $B^{-} \begin{bmatrix} 12 & 20 & 32 \end{bmatrix}$

 $[7 \times 2 = 14]$

3. Answer any two of the following questions:

Given a fuzzy relation 1.0 0.0 0.8 0.0 0.6 0.8 0.01 0.0 0.0 0.6 0.0 0.5 0.0 1.0 0.8 0.0 1.0 0.8 0.0 0.0 0.0 R(x,y) =0.0 0.6 0.8 1.0 0.0 0.0 0.8 0.0 0.0 1.0 0.6 0.6 0.0 0.0 0.8 0.5 0.0 0.0 0.6 1.0 0.0 L0.0 0.0 0.0 0.8 0.0 0.0 1.0

Is R(x, y) an equivalence relation? Justify your answer.

b.

C.

a.

Prove that Max-min composition is associative i.e. $R_1 o (R_2 o R_3) = (R_1 o R_2) o R_3$ using the following three fuzzy relations

	r0 2	0.0	0.6	1.01	<i>R</i> ₂ =	۲1.0	0.2	0.4	0.07	
	10.2	0.9	0.0	1.0		0.0	09	10	0.8	
$R_1 =$	0.0	0.5	0.8	0.3	$R_2 =$	0.0	0.6	0.0	0.4	
	L0.1	0.0	0.4	0.6		0.0	0.0	0.0	0.1	
	0.0	0.0	0.6-			-0.3	0.5	0.0	0.24	
	FU.2	0.2	0.67							
D	0.0	0.3	0.4							
<i>R</i> ₃ =	0.7	0.4	1.0							
	L1 0	0.8	04							

Consider the fuzzy equation

 $p \circ \begin{bmatrix} 0.8 & 0.5 & 0.9 \\ 0.7 & 0.7 & 0.4 \\ 0.5 & 0.4 & 0.5 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.5 & 0.4 \end{bmatrix}$, verify the existence and find the maximal solution.

4. Answer any two of the following questions:

$[7 \times 2 = 14]$

a. A criminal under trial is facing trials. The prosecutors presented three evidences E_1, E_2 and E_3 before two experts. After careful examination of these three evidences, the experts provided the basic probability assignments **m**₁ and **m**₂ for different focal points are specified in the following table:

Focal Elements	Expert 1	Expert 2
	m 1	m 2
E ₁	0.05	0.15
E ₂	0.05	0.05
E ₃	0.05	0.05
$E_1 \cup E_2$	0.1	0.05
$E_2 \cup E_3$	0.2	0.1
$E_2 \cup E_3$	0.05	0.1
$E_1 \cup E_2 \cup E_3$	0.5	0.5

(i) Find the Belief measures for each of the focal elements.

(ii) Find combined probability assignment m_1 , $2(E_1)$ using Dempster's rule of combination.

b. Write short notes on Necessity and Possibility measures of Possibility theory.

c. Describe Plausibility Measure. Prove that,

Page 2|3

$[7 \times 2 = 14]$

5. Answer any one of the following questions:

- a. (i) Find the truth values of A <=> B proposed by Lukasiewicz.
 (ii) Describe Unconditional qualifies and unqualified proposition of fuzzy logic.
- b. (i) Describe Zadeh implication relation with example.
 - (ii) Use Zadeh implication relation and Fuzzy max-min composite relation, to infer S' = Speed *is* ABOVE NORMAL where the given rule base is as follows:

Rule 1: IF height is SHORT, THEN speed is LOW

Rule 2: IF height is MEDIUM, THEN speed is MODERATE

where fuzzy set for height (in feet) and speed (m/s) is given below: $H_1(\text{Height}) = \text{SHORT} = \left\{\frac{0.6}{5}, \frac{0.3}{6}, \frac{0.1}{7}\right\} H_2(\text{Height}) = \text{MEDIUM HEIGHT} = \left\{\frac{0.8}{5}, \frac{0.4}{6}, \frac{.3}{7}\right\}$

 $S_1(\text{Speed}) = \text{LOW} = \left\{ \frac{0.9}{5}, \frac{0.2}{7}, \frac{0.1}{9} \right\} S_2(\text{Speed}) = \text{MODERATE} = \left\{ \frac{0.6}{5}, \frac{.8}{7}, \frac{.7}{9} \right\}$ Given $H'(\text{Height}) = \text{height } is \text{ ABOVE AVERAGE} = \left\{ \frac{0.5}{5}, \frac{0.9}{6}, \frac{.8}{7} \right\}.$
