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             6 
Chapter 6 

 

Slip Flow and Heat Transition for Hydromagnetic Elastico-Viscous 

Fluid Past a Flat Moving Plate       

 

6.1 Introduction 

Modern technology and industrial industries rely heavily on heat transfer mechanisms on 

moving solid surfaces for processes as diverse as liquid film extrusion, paper manufacture, 

plastic sheet extrusion, polymer industry, crystal development, and many more. The 

boundary layer flow behaviour for a solid moving plate at a constant velocity was 

investigated by Sakaidis [108]. The effects of suction and blowing on the transfer of heat 

and mass over a moving surface were studied by Erickson et al. [109]. Tsou et al. [110] 

undertook a theoretical analysis of the aforementioned issues for a continuously moving 

plate, then tested their findings experimentally. Over a moving plate, Rashidi et al. [111] 

offer a hydromagnetic mixed convective fluid flow with a partial slip boundary. Bhatti et 

al. [112] offer a collection of related issues on a shifting boundary under a variety of 

physical circumstances. 

Many scientists have looked at fluid issues in which there is no slip condition across the 

boundary of a solid surface. Slip condition was first ignored, but it was subsequently 
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recognised that this assumption was incorrect for many real-world issues. The chemical 

cleansing and polishing procedure in medicine often exhibits the fluid flow with slip state. 

With a flat surface and a partial slide impact, Martin and Boyd [113] showed how heat may 

be transported on the boundary layer fluid. The radiation effect with momentum slip for 

unstable hydromagnetic boundary flow was studied by Pal et al. [114]. Hydromagnetic and 

slip effects on boundary layer fluid flow across a flat porous plate were established by 

Bhattacharyya et al. [115]. 

Furthermore, magnetohydrodynamic fluid flow and heat transfer across a moving flat 

surface have several current technical applications, such as those in petroleum engineering, 

geothermal energy, plasma research, aerodynamics, and many others. In addition, there are 

a wide variety of applications where several artificial techniques have been devised to 

govern behaviour or research the boundary layer. Free convective heat transfer for an 

isothermal plate caused by a magnetic field was studied by Sparrow and Cess [116]. For a 

moving wall with an electrically conducting vertical flow, Gupta [117] investigated the 

heat flux induced by the magnetic field. Newtonian fluid flow across a stretched surface 

governed by a momentum slip boundary condition was reported by Andersson [118] and 

Wang [119]. Numerous researchers have examined the possibility of hall impact for 

hydromagnetic boundary fluid flow across a revolving flat plate [120, 121]. 

The current investigation is motivated by the aforementioned publications, and seeks to 

examine the effects of hydromagnetic and slip on heat transfer for an elastic-viscous fluid 

flowing past a flat, moving plate using Walters's Liquid (Model 𝐵ˊ). The MATLAB 'bvp4c' 

built-in solver is used to solve the reduced-form partial differential equations that govern 

fluid motion through similarity variables. Plots of the numerically analysed findings for 

varying values of the flow dominating parameters and other relevant flow feature 

parameters are shown and discussed. 

6.2 Mathematical Formulation 

Considering hydromagnetic and slip effects, we analyse the steady flow of a two-

dimensional elastico-viscous boundary layer fluid through a flat, moving plate. Figure 6.1 

depicts the model's flow geometry. Equations of motion for the governing fluid, taking 

account of the approximation theory of the boundary layer are:  

∂u

∂x
+

∂v

∂y
= 0                                                                                                                                 (6.2.1)  
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ρ𝐶𝑝

∂2T

∂y2                                                                                                                 (6.2.3)  

where, 

  u: velocity towards x-axis, v: velocity towards y- axis,  𝜈 =
𝜇

𝜌
 : kinematic viscosity, 

  𝜇: fluid viscosity coefficient,  𝜌: fluid density, σ : fluid’s electrical conductivity  

 𝐵0: magnetic field, 𝑘0: elastic-viscous parameter, T: temperature,  

 K: fluid thermal conductivity, 𝐶𝑝: specific heat. 

 

                                     Fig. 6.1 The flow geometry of the problem 

The appropriate conditions imposed at the boundary: 

𝑢 = 𝑈𝑤 + 𝐴(
𝜕u

𝜕y
) , 𝑣 = 0  at  y = 0;    𝑢 → 𝑈∞ as 𝑦 → ∞                                               (6.2.4)  

𝑇 = 𝑇𝑤  at  y = 0  ;   𝑇 → 𝑇∞  as  𝑦 → ∞                                                                             (6.2.5)  

where, 𝑈𝑤: constant free velocity of the plate, 𝑈∞: constant free stream velocity,  

            A: Slip length, 𝑇𝑤: constant plate temperature, 𝑇∞: constant free stream temperature 

Stream functions along with similarity variables taken as: 

𝛹 = √2𝑈∞νx ℎ(𝜂), 𝜂 = √
𝑈∞

2νx
 𝑦, 𝑢 =

𝜕𝛹

𝜕𝑦
, 𝑣 = −

𝜕𝛹

𝜕𝑥
 , 𝑇 = 𝑇𝑤 + (𝑇𝑤 − 𝑇∞)𝜃(𝜂)      (6.2.6)  

Using the relation (6.2.6) in (6.2.2) and (6.2.3), we finally obtain the following sets of 

equation: 

ℎ′′′(𝜂) + ℎ(𝜂)ℎ′′(𝜂) + 𝑘1 [2ℎ′(𝜂)ℎ′′′(𝜂) + ℎ(𝜂)ℎ′v(𝜂) − (ℎ′′(𝜂))
2
] + Mℎ′(𝜂) =

0                                                                                                                                                    (6.2.7)  

𝜃′′(𝜂) + 𝑃𝑟ℎ(𝜂)𝜃′(𝜂) = 0                                                                                                     (6.2.8)  

where 𝑀 =
2𝑥σ𝐵0

2

𝜌𝑈∞
: hydromagnetic parameter, 𝑘1 =

𝑘0𝑈∞

2𝜇𝑥
: elastic-viscous parameter, 

  𝑃𝑟 =
 𝜇𝐶𝑝 

𝐾
 : Prandtl number,  

The final form of conditions imposed at the boundary obtained from (6.2.4) and (6.2.5) are: 
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ℎ(𝜂) = 0,  ℎ′(𝜂) = λ+αℎ′′(𝜂) 𝑎𝑡  𝜂 = 0 ;        ℎ′(𝜂) = 1,  ℎ′′(𝜂) = 0 𝑎𝑠  𝜂 → ∞     (6.2.9)  

𝜃(𝜂) = 1 𝑎𝑡  𝜂 = 0 ;  𝜃(𝜂) = 0 𝑎𝑠 𝜂 → ∞                                                                      (6.2.10) 

where, λ =
𝑈𝑤

𝑈∞
 : velocity ratio at the plate, α=√

𝑈∞

2𝜇𝑥
 : velocity slip parameter. 

6.3 Method of Solution 

The self-similar differential equations (6.2.7) and (6.2.8) are transformed to first order 

differential equations as: 

ℎ = ℎ1, ℎ
′ = ℎ2,  ℎ

′′ = ℎ3, ℎ
′′′ = ℎ4 , 𝜃 = ℎ5, 𝜃

′ = ℎ6                                                    (6.3.1)  

From (6.3.1), we can write 

ℎ1
′ = ℎ2, ℎ2

′ = ℎ3, ℎ3
′ = ℎ4, ℎ5

′ = ℎ6,                                                                                    (6.3.2)  

Making use of (6.3.1) and (6.3.2), the equations (6.2.7) and (6.2.8) can be written as: 

ℎ4
′ =

1

ℎ1
[(ℎ3)

2 − 2ℎ2ℎ4 − (
1

𝑘1
) {ℎ4 + ℎ1ℎ3 + 𝑀ℎ2}]                                                     (6.3.3)  

𝑓6
′ = −𝑃𝑟ℎ1ℎ6                                                                                                                           (6.3.4)  

and the applicable boundary conditions (6.2.9) and (6.2.10) reduces as follows: 

ℎ1(0) = 0, ℎ2(0) = λ+αℎ3(0) 𝑎𝑛𝑑  ℎ2(∞) = 1, ℎ3(∞) = 0                                        (6.3.5)  

ℎ5(0) = 1  𝑎𝑛𝑑  ℎ5(∞) = 0                                                                                                  (6.3.6)  

6.4 Results and Discussion 

Using the built-in MATLAB programme "bvp4c," the numerical calculation of the results 

of velocity profile and temperature profiles are shown in order to determine the physical 

relevance of the flow pattern for each of the included flow parameters. The findings are 

shown graphically in Figs. 6.2 to 6.9 by varying factors such as elastico-viscous 𝑘1, 

hydromagnetic M, Velocity ratio λ, slip α and the Prandtl number Pr. The velocity ratio 

parameter is considered to be smaller than 1 in this study. 

The velocity profile ℎ′(𝜂) for change of 𝑘1, M, λ and α against 𝜂 is shown in Figs. 6.2 to 

6.4. Fig. 6.2 illustrates how fluid transmission improves initially as  𝑘1 grows, eventually 

declines as distance increases, and then settles down. Fluid flow improves initially as 

temperature in the fluid aids in deforming the polymers of elastic-viscous material, but as 

distance increases, the benefits of temperature eventually diminish and the fluid motion is 
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slowed. According to Fig. 6.3, the fluid motion initially decreases as M increases, but at 

𝜂 = 2 and higher, it begins to accelerate for some distance before eventually slowing down 

with uniform flow. The Lorentz force, which is produced by magnetic fields, initially resists 

fluid motion, but as it travels further, its impact lessens, causing fluid velocity to increase 

briefly before eventually settling. 

It can be seen from Fig. 6.4 that the velocity increases with a significant variance in the 

curves at first due to rising values of α, and subsequently the velocity decreases and 

ultimately settles down with no deviations. The outcome is completely justified since the 

slip parameter aids in fluid moving freely at the plate, but as distance increases, more fluid 

stores up at the plate and the slip factor's benefits weaken. With the rising of  λ, the velocity 

first decelerates then progressively increases for a time until ultimately levelling out with 

distance, as shown in Fig. 6.5. Physically, this may be explained as an increase in the 

velocity ratio parameter, a fall in free stream velocity, and a subsequent decrease in fluid 

velocity that quickly settles down. 

Figs. 6.6 to 6.9 show the temperature profile 𝜃(𝜂) with the variation of 𝑘1, M, Pr and λ 

against 𝜂. According to Fig. 6.6, the fluid gets more viscous as 𝑘1 increases, which prevents 

thermal energy from being transferred to the fluid readily and causes temperature curves to 

decline. From Fig. 6.7, it is noticed that the fluid temperature is not greatly impacted by the 

rising values of M. It is evident from Figs. 6.8 and 6.9 that the temperature of the fluid 

decreased as Pr and λ grew. The outcome is acceptable since increasing Pr reduces the 

fluid's heat conductivity. As the velocity ratio parameter increases, the free stream velocity 

drops and less heat is transferred from the plate to the fluid.  The findings indicate that the 

medium and flow factors affect the fluid's temperature. 

 

Fig. 6.2 Velocity  ℎ′(𝜂)  versus 𝜂  for 𝑘1 with  𝑀 = 0.1, λ=0.1, α=0.3, Pr=0.4                                
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             Fig. 6.3 Velocity  ℎ′(𝜂)  versus 𝜂  for M with𝑘1 = 0.4, λ=0.1, α=0.3, Pr=0.4 

 

       

      Fig.6.4 Velocity  ℎ′(𝜂)  versus 𝜂  for α with 𝑘1 = 0.4, M=0.1, λ=0.1, Pr=0.4 

 

      

   Fig.6.5 Velocity  ℎ′(𝜂)  versus 𝜂  for λ with 𝑘1 = 0.4, M=0.1, α=0.3, Pr=0.4  
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Fig. 6.6 Temperature  𝜃(𝜂)  versus 𝜂  for 𝑘1 with M=0.1, α=0.3, λ=0.1, Pr=0 

 

 

Fig. 6.7 Temperature  𝜃(𝜂)  versus 𝜂  for 𝑀 

 

 

         Fig. 6.8 Temperature  𝜃(𝜂)  versus 𝜂  for 𝑃𝑟 with 𝑘1=0.4, M=0.1 α=0.3, λ=0.1       
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                         Fig. 6.9 Temperature  𝜃(𝜂)  versus 𝜂  for λ with 𝑘1=0.4, M=0.1 α=0.3, Pr=0.4 

   

6.5 Conclusion 

This research looked at how hydromagnetic fields and slip affect the temperature change 

in an elastic-viscous boundary layer as it flows past a moving flat plate. The resulting 

equations of fluid motion are solved using the MATLAB software 'bvp4c,' which is based 

on the finite difference approach. In other words, this work may be developed further. It is 

possible to compare the outcomes of several analytical and numerical approaches. Flow 

simulation of the issue may be performed to provide a good view of the outcomes. 

The study's findings may be summed up as follows.: 

• At first, a rise in fluid temperature helps to deform polymers of elastico-viscous 

material, resulting in increased fluid flow; but, as the fluid moves farther away from 

its source, its temperature decreases, slowing the fluid's motion. 

• The magnetic field creates a resistive force that at first opposes the motion of the 

fluid, but with increasing distance, its impact diminishes and the fluid velocity 

increases for a time before settling down. 

• The slip parameter allows fluid to flow more freely at the plate, but its benefits 

diminish as more fluid accumulates at the plate over time. 

• As the velocity ratio parameter increases, the free stream velocity drops, resulting 

in a gradual slowing and eventual settling of the fluid velocity. 

• The increase in elastic viscosity renders the fluid more viscous, which hinders the 

transfer of thermal energy to the fluid, resulting in a drop in temperature curves. 

• As the Prandtl number grows the thermal conductivity of the fluid falls. 

• The growth of the velocity ratio parameter lowers the free-stream velocity and, 

consequently, the heat transfer from the plate to the fluid. 


