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Chapter 7 

Unsteady Elastico-viscous Boundary Layer Stagnation-point Slip Flow 

and Heat Transition along a Stretching Surface  

 

7.1 Introduction 

The practical significance lies in the fluid movement and heat transfer that occurs along a 

stretching surface. Such flows are ubiquitous in technological and industrial processes, and 

the final product's quality is significantly affected by the cooling pace. As a result, heat 

transport should be managed to produce a superior product. In fluid mechanics, the 

boundary layer flow is extremely important since the entire dynamic is triggered by the 

boundary surface. The boundary layer theory is essential for modelling various types of 

fluids and hence, for solving derived equations utilising similarity variables. 

A significant number of crucial industrial fluids exhibit non-Newtonian 

characteristics. Such fluids are now widely accepted as being more appropriate in real-

world industrial applications than Newtonian fluids. The non-Newtonian viscoelastic fluid 

displays viscous and elastic characteristics. When pressure is applied to it with high 

velocity, it hardens and changes its state from liquid to solid, and thus it is widely used in 

protective equipment. The non-Newtonian flow generated by a stretching sheet has several 

uses in a wide variety of industries and manufacturing processes. Examples include paper, 
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fibre and plastic sheet production, food processing, metal spinning, hot rolling, wire 

coating, etc.   

When a solid object is in the path of the flow and there is zero velocity at that point, 

the flow becomes stagnant. This flow pattern is commonly used in dental procedures and 

air filtration systems. The fluctuation in temperature and flow rate of a viscous fluid close 

to its stagnation point was investigated by Mahapatra et al. [122] over a stretched sheet. 

Nazar et al. [123] explored the time-varying fluid flow around the stagnation point across 

a deforming surface. Hayat et al. [124] used MHD to analyze the micropolar fluid dynamics 

across a nonlinear stretching sheet. Mukhopadhyay and Swati [125] demonstrated the heat 

transition process of an unstable free and force convection flow along a vertically 

expanding surface.  

The unsteady flow condition is often noticed when the flow is reliant on time in many 

circumstances. Ishak et al. [126] examined the nature of quiescent fluid along a stretching 

surface. The partial slip impact on the flow field close to stagnation point past a contracting 

surface was studied by Bhattacharyya et al. [127]. Bhattacharyya [128] also demonstrated 

Casson fluid flow adjacent to stagnation point, as well as heat transfer in the direction of a 

contracting or expanding sheet. Khalid et al. [129], Seth et al. [130], Dzulkifli et al. [131], 

Rosali et al. [132] also examined the flow and heat transmission processes adjacent to the 

stagnation point, considering different flow properties.  

Layek et al. [133] presented the heat transfer and flow symmetry for non-Newtonian 

fluids considering power-law fluid with thermal radiation across a nonlinearly 

contracting/expanding sheet. The impact of slip on fluid mass transportation and heat 

transport process in an MHD unsteady flow on a stretched surface were studied numerically 

by Mabood et al. [134].  Alghamdi et al. [135] investigated the attributes of nanofluid 

hybrid flow over a stretched surface as it nears a stagnation point. Agrawal et al. [136] 

examined the fluid motion and heat transport of MHD non-linear porous stretching sheet 

considering slip factors. Mabood et al. [137] presented the visco-elastic nature of nanofluid 

along a stretching cylinder. Debnath and Saha [138, 139,140,141] examined the flow 

behaviour of elastic-viscous fluid considering different geometry. Saha and Debnatht [142] 

investigated the reactive solute diffusion in elastic-viscous fluid past a flat porous plate. 

The fluid motion and heat transport across a stretching surface in an unsteady elastico-

viscous boundary layer with Walters Liquid (Model 𝑩ˊ) is investigated in this study.  
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7.2 Mathematical Formulation 

The heat transition for unsteady elastico-viscous fluid flow close to the stagnation point is 

examined for a stretching surface with velocity 𝑈𝑤(𝑥, 𝑡). The temperature 𝑇𝑤 (𝑥, 𝑡) of the 

stretching surface changes with time and distance in the x-direction of the sheet. The 

following set of eqs. regulate the fluid motion: 

𝑢𝑥 + 𝑣𝑦 = 0                                                                                                                               (7.2.1) 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦

= −
1

ρ
𝑝𝑥 + ν𝑢𝑦𝑦  

− k0(ρ)
−1(𝑢𝑡𝑦𝑦 + 𝑢𝑢𝑥𝑦𝑦 + 𝑣𝑢𝑦𝑦𝑦 − 𝑢𝑦𝑢𝑥𝑦 − 𝑣𝑦𝑢𝑦𝑦)                       (7.2.2) 

𝑇𝑡 + 𝑢𝑇𝑥 + 𝑣𝑇𝑦 = 𝐾(ρ𝐶𝑝)
−1

𝑇𝑦𝑦                                                                                          (7.2.3) 

where, 𝑢: velocity in the 𝑥-directions, 𝑣: velocity in the 𝑦-directions and other symbols 

have their usual meaning. 

 

Fig. 7.1: Physical sketch of flow model 

In the inviscid free stream, 𝑢 = 𝑈∞(𝑥, 𝑡), hence from (6.2.2) one can write 

(U∞)𝑡 + U∞(U∞)𝑥 = −(ρ)−1𝑝𝑥                                                                                           (7.2.4) 

where, U∞ is the stagnation flow velocity in a free stream. 

Hence, (7.2.2) becomes 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦

= (U∞)𝑡 + U∞(U∞)𝑥 + ν𝑢𝑦𝑦  

−
k0

ρ
(𝑢𝑡𝑦𝑦 + 𝑢𝑢𝑥𝑦𝑦 + 𝑣𝑢𝑦𝑦𝑦 − 𝑢𝑦𝑢𝑥𝑦 − 𝑣𝑦𝑢𝑦𝑦)                                 (7.2.5) 

The relevant boundary conditions 
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u = Uw(x, t) + N1υ𝑢𝑦, v = 0 at y = 0;    u → U∞(x, t) as y → ∞                                (7.2.6) 

T = Tw + D1𝑇𝑦 at y = 0;   T → T∞ as y → ∞                                                                    (7.2.7) 

The suitable form of stretching and stagnation velocities are  𝑈𝑤(𝑥, 𝑡) = 𝑐𝑥(1 − 𝛼𝑡)−1 and 

𝑈∞(𝑥, 𝑡) = 𝑎𝑥(1 − 𝛼𝑡)−1, where 𝑐(> 0): stretching parameter, 𝛼(> 0): a constant, 𝑎(>

0): straining parameter, 𝑁1(= 𝑁√1 − 𝛼𝑡): velocity slip factor, 𝐷1(= 𝐷√1 − 𝛼𝑡): thermal 

slip factor, N: initial velocity slip factor, D: initial thermal slip factor. 

Surface temperature 𝑇𝑤 (𝑥, 𝑡) is chosen as 

Tw = T∞ + T0(cx
2)(2υ)−1(1 − αt)−

3

2                                                                                 (7.2.8)  

where, 𝑇∞: constant temperature of free stream, 𝑇0: constant determining rate of surface 

temperature. 

Similarity variables are taken as: 

ψ = (
cυ

1−αt
)

1

2
xf(η), T = T∞ + (Tw − T∞)θ(η) and η = y (

c

υ(1−αt)
)

1

2
                          (7.2.9)  

with 𝑢 = 𝜓𝑦 and 𝑣 = −𝜓𝑥, where ψ: stream function and  η: similarity variable. 

In view of (7.2.9), equation (7.2.5) and (7.2.3) take the form 

𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 − 𝐴(𝑓′ +
 𝜂

2
𝑓′′ −

𝑎

𝑐
) + (

𝑎

𝑐
)
2

      

− 𝑘1 [𝐴
 𝜂

2
𝑓′v + 2𝐴𝑓′′′ − 𝑓𝑓′v + 2𝑓′𝑓′′′ − (𝑓′′)2] = 0                   (7.2.10) 

θ′′ + Pr(fθ′ − 2f ′θ −
A

2
(3θ + ηθ′)) = 0                                                                      (7.2.11) 

where  
𝑎

𝑐
 and  𝐴 =

𝛼

𝑐
 represent velocity and unsteadiness parameter respectively, 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
 

: Prandtl number. 

Reduced conditions at the boundary are  

𝑓(𝜂) = 0,  𝑓′(𝜂) = 1 + λ𝑓′′(𝜂) 𝑎𝑡  𝜂 = 0 ; 𝑓′(𝜂) =
𝑎

𝑐
,  𝑓′′(𝜂) = 0 𝑎𝑠  𝜂 → ∞     (7.2.12) 

𝜃(𝜂) = 1 + δ𝜃′(𝜂) 𝑎𝑡  𝜂 = 0 ;  𝜃(𝜂) → 0 𝑎𝑠 𝜂 → ∞                                                    (7.2.13) 



 77 

where λ = 𝑁√𝑐𝜐 : transformed velocity slip parameter and δ = 𝐷√
𝑐

𝜐
 : transformed thermal 

slip parameter. 

7.3 Method of Solution 

To employ Matlab inbuilt solver bvp4c, (7.2.10) and (7.2.11) are reduced as 

 𝑓 = 𝑦1, 𝑓
′ = 𝑦2,  𝑓

′′ = 𝑦3, 𝑓
′′′ = 𝑦4 , 𝜃 = 𝑦5, 𝜃

′ = 𝑦6                                                    (7.3.1) 

From (7.3.1), we can write as 

 𝑦1
′ = 𝑦2, 𝑦2

′ = 𝑦3, 𝑦3
′ = 𝑦4, 𝑦5

′ = 𝑦6                                                                                     (7.3.2) 

Making use of (7.3.1) and (7.3.2), the equations (7.2.10) and (7.2.11) can be written as 

  𝑦4
/
= 

1

(𝐴
𝜂

2
 −𝑦1)

[𝑦3
2 − 2𝑦2𝑦4 − 2𝐴𝑦4 −

1

𝑘1
{𝑦4 + 𝑦1𝑦3 − 𝑦2

2 − 𝐴(𝑦2 +
𝜂

2
𝑦3 −

𝑎

𝑐
) +

(
𝑎

𝑐
)2}]                                                                                                                                          (7.3.3)         

 𝑦6
/
= −Pr {𝑦1𝑦6 − 2𝑦2𝑦5 −

𝐴

2
(3𝑦5 + 𝜂𝑦6)}                                                                    (7.3.4) 

and the relevant boundary conditions (7.2.12) and (7.2.13) reduces as follows: 

𝑦1(0) = 0, 𝑦2(0) = 1+λ𝑦3(0) 𝑎𝑛𝑑  𝑦2(∞) =
𝑎

𝑐
, 𝑦3(∞) = 0                                        (7.3.5) 

𝑦5(0) = 1 + 𝛿𝑦6(0) 𝑎𝑛𝑑  𝑦5(∞) = 0                                                                                 (7.3.6) 

The above equations are considered to write down the programming codes and plotting 

velocity and temperature curves with the help of involved flow feature parameters. 

7.4 Results and Discussion 

The built-in MATLAB programme 'bvp4c' is used to plot velocity and temperature curves, 

emphasizing the importance of the flow pattern in terms of its physical significance for the 

flow parameters involved in the flow field. Figs. 7.2 to 7.14 are the visual depictions of 

involved flow parameters' effects on the findings. To verify the correctness of current work, 

the numerically computed values produced using the Matlab solver ‘bvp4c’, skin friction 

coefficient 𝑓′′(0) are evaluated. The acquired results agree with the standard values that 

have previously been published, as presented in Table 7.1.  
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Table 7.1 Values of 𝑓′′(0) for different values of  
𝑎

𝑐
 with 𝐴 = 𝑘1 = λ=𝛿 = 0 

𝑎

𝑐
 

Mahapatra and 

Gupta [103] 

Nazar et al. 

[104] 

Bhattacharyya et 

al. [108] 

Present study 

0.1 -0.9694 -0.9694 -0.9694 -0.9694 

0.2 -0.9181 -0.9181 -0.9181 -0.9181 

0.5 -0.6673 -0.6673 -0.6673 -0.6673 

2.0 2.0175 2.0175 2.0175 2.0175 

3.0 4.7293 4.7296 4.7293 4.7292 

 

Fig. 7.2 depicts the velocity curves 𝑓′(𝜂) against 𝜂 for variation of  
𝑎

𝑐
 under (a) slip 

and (b) no-slip boundary conditions.  For  
𝑎

𝑐
 > 1, boundary layer thickness diminishes with 

the growth of 
𝑎

𝑐
 and, similarly, for 

𝑎

𝑐
 < 1, it reduces with growing 

𝑎

𝑐
 . But, for 

𝑎

𝑐
 = 1, no 

boundary layer structure is noticed, which signifies the physical behavior of the fluid. 

Velocity curves 𝑓′(𝜂) against 𝜂 for varations of k1 under (a) slip and (b) no-slip 

boundary conditions for 
𝑎

𝑐
 = 1.5 & 

𝑎

𝑐
 = 0.5 are presented in Figs.7.3 and 7.4. Fig.7.3 indicates 

that the velocity enhances initially but with the rise of k1, the fluid motion diminishes for 

both the cases. Whereas the reverse pattern is observed in Fig. 7.4, it shows that  
𝑎

𝑐
  plays 

an important role for increasing and decreasing velocity in the flow field. 

Figs. 7.5 and 7.6 demonstrate the velocity curves 𝑓′(𝜂) against 𝜂 for variaton of A 

with (a) slip and (b) no-slip boundary conditions for 
𝑎

𝑐
 = 1.5 & 

𝑎

𝑐
 = 0.5. When A is raised, 

the velocity at a point rises, causing the boundary layer's thickness to fall for  
𝑎

𝑐
= 1.5 but 

thickness of boundary layer grows with the rise of A with slip and non-slip conditions, 

despite the fact that starting velocity at a location decreases. 

Velocity curves 𝑓′(𝜂) against 𝜂 for variation of 𝜆 with (a) slip and (b) no-slip boundary 

conditions for 
𝑎

𝑐
 = 1.5 & 

𝑎

𝑐
 = 0.5 are portrayed in fig. 7.7. It is noticed that for both 

𝑎

𝑐
 values, 

the velocity boundary layer thins down quickly as λ rises. 

Fig. 7.8 depicts temperature curves 𝜃(𝜂) against 𝜂  for two different boundary 

conditions: (a) slip and (b) no-slip for distinct values of  
𝑎

𝑐
. When a/c increases, 𝜃(𝜂) reduces 
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noticeably for fixed 𝜂, and thus thermal boundary layer becomes thin. The thermal 

boundary layer is also seen for a/c = 1. 

Temperature profiles 𝜃(𝜂) versus 𝜂 for distinct values of k1 at the boundary: (a) slip 

and (b) no-slip for a/c = 1.5 and a/c = 0.5 are presented in Figs. 7.9 and 7.10. Fig. 7.9 shows 

that the temperature curves decrease at first, then rise somewhat with rising values of k1, 

yet Fig. 7.10 shows the opposite pattern. The fluid temperature is significantly influenced 

by the velocity ratio parameter a/c. 

Figs. 7.11 and 7.12 show temperature curves 𝜃(𝜂) against 𝜂 for variation of A, with 

(a) a slip and (b) no slip boundary conditions. The fluid temperature reduces at all points 

with the rise of A for distinct values of a/c with slip and no-slip conditions.  

Temperature curves 𝜃(𝜂) against 𝜂 for distinct values of 𝜆 are shown in Fig. 7.13, with 

(a) slip and (b) no-slip boundary conditions for a/c = 1.5 and a/c = 0.5. At a given point, 

the temperature reduces when a/c approaches 1.5, but it rises sharply as a/c approaches 0.5. 

   

Fig.7. 2 (a) Plot of 𝑓′(𝜂) for variation of a/c taking 𝜆 ≠ 0 

     

Fig.7. 2 (b) Plot of 𝑓′(𝜂) for variation of a/c taking 𝜆 = 0 
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          Fig. 7.3 (a) Plot of 𝑓′(𝜂) for variation of  𝑘1 taking  𝜆 ≠ 0  for a/c =1.5 

 

    

       Fig. 7.3 (b) Plot of 𝑓′(𝜂) for variation of  𝑘1 taking  𝜆 = 0 for a/c =1.5 

 

 

Fig. 7.4 (a) Plot of 𝑓′(𝜂) for variation of  𝑘1 taking  𝜆 ≠ 0 for a/c =0.5 
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Fig. 7.4 (b) Plot of 𝑓′(𝜂) for variation of  𝑘1 taking 𝜆 = 0 for a/c =0.5 

 

 

 

Fig. 7.5 (a) Plot of 𝑓′(𝜂) for variation of A taking 𝜆 ≠ 0 for a/c =1.5 

 

                   Fig. 7.5 (b) Plot of 𝑓′(𝜂) for variation of A taking 𝜆 = 0  for a/c =1.5 
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                 Fig. 7.6 (a) Plot of  𝑓′(𝜂) for variation of A taking 𝜆 ≠ 0 for a/c =0.5 

 

             

                  Fig. 7.6 (b) Plot of  𝑓′(𝜂) for variation of A taking   𝜆 = 0 for a/c =0.5 

 

             

  Fig. 7.7 (a) Plot of 𝑓′(𝜂) for variation of λ for a/c =1.5 
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 Fig. 7.7 (b) Plot of 𝑓′(𝜂) for variation of λ for a/c =0.5 

 

     

      Fig. 7.8 (a) Plot of  𝜃(𝜂) for variation of a/c taking  δ ≠ 0 

        

                                 Fig.7.8 (b) Plot of  𝜃(𝜂) for variation of a/c taking δ = 0 
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                 Fig.7.9 (a) Plot of 𝜃(𝜂) for variation of  𝑘1 taking δ ≠ 0   for a/c =1. 

 

          

                    Fig.7.9 (b) Plot of 𝜃(𝜂) for variation of  𝑘1 taking δ = 0 for a/c =1.5 

 

 

         

     Fig. 7.10 (a) Plot of  𝜃(𝜂) for variation of  𝑘1 taking (a) δ ≠ 0  for a/c =0.5 



 85 

 

Fig. 7.10 (b) Plot of  𝜃(𝜂) for variation of  𝑘1 taking  δ = 0 for a/c =0.5 

 

 

Fig.7.11(a) Plot of 𝜃(𝜂) for variation of  𝐴  taking  δ ≠ 0 for a/c =1.5 

 

        

              Fig.7.11(b) Plot of 𝜃(𝜂) for variation of  𝐴 taking  δ = 0 for a/c =1.5 

 



 86 

       

       Fig. 7.12 (a) Plot of 𝜃(𝜂) for variation of  𝐴 taking  δ ≠ 0 for a/c =0.5 

 

       

                         Fig. 7.12 (b) Plot of 𝜃(𝜂) for variation of  𝐴 taking  δ = 0 for a/c =0.5 

 

 

        

             Fig. 7.13 (a) Plot of 𝜃(𝜂) for variation of  λ for (a) a/c =1.5 
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Fig. 7.13 (b) Plot of 𝜃(𝜂) for variation of  λ for a/c =0.5 

 

7.5 Conclusions 

The following conclusion can be drawn from this paper: 

▪ Elastico-viscous and velocity ratio factors have a substantial effect on fluid 

motion.  

▪ Fluid motion and heat transition can be controlled by adjusting velocity and 

thermal slip factors. 

▪ Transition of thermal energy reduces for rising values of almost all the flow 

parameters. 

▪ The unsteadiness constant plays a role in enhancing the rate of thermal transition 

of the fluid. 

▪ Velocity ratio parameter heavily influenced the fluid dynamics.  

▪ Slip factors help to control the boundary layer thickness under slip and no-slip 

conditions. 

▪ Boundary layer thickness can be controlled by the slip parameters. 
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Scope for future work 

The future scope of research on viscoelastic fluid flow is vast and holds great potential for 

advancements in various fields such as fluid dynamics, material science, biology, and 

engineering. It is crucial to develop accurate and efficient mathematical models to 

characterize the behaviour of viscoelastic fluids. Microfluidic devices are widely used in 

various applications, and understanding the behaviour of viscoelastic fluids at the 

microscale is essential for their efficient operation. Viscoelastic fluids have significant 

industrial applications, such as in polymer processing, food processing, and oil drilling. 

Future research can explore ways to optimize manufacturing processes, design better 

mixing and pumping systems, and develop advanced materials with tailored rheological 

properties. Viscoelastic fluids play a crucial role in various biological systems, such as 

blood flow, mucus transport, and cell mechanics. Studying the behaviour of these fluids in 

biological contexts can provide insights into disease mechanisms and lead to the 

development of new diagnostic and therapeutic approaches. Viscoelastic fluids can exhibit 

unique properties, such as shear-thinning or shear-thickening behaviour, which can be 

harnessed for the development of smart materials and devices such as soft robotics, flexible 

electronics, bullet proof jackets, speed bump, etc. Advancements in this field has the 

potential to improve understanding of complex fluid behaviour and pave the way for 

innovative technologies with improved performance and efficiency. 

Due to diversified applications displayed by the problems discussed in this thesis, it may 

be remarked that there is enough scope of doing further research in this field. Some fluid 

properties have been discussed in this study but there are many rheological properties of fluids 

of engineering interest which may be incorporated for further research. It is also possible to 

conduct a comparative analysis of different numerical and analytical methods for solving the 

same problem. Additionally, a future study that focuses on flow simulation and stability 

analysis of the problem would be highly intriguing. As per requirement of the fluid flow 

situation different suitable geometrical configurations and coordinate systems may be 

considered. It is possible to employ Lie group and Homotopy analysis method to develop the 

constitutive model. The results of this investigation will act as a source of inspiration for 

future experimental work, which appears to be missing at the moment. 

 


