Behavioural Study of Visco-Elastic Fluid Flow Characterized by Walters Liquid (Model B')

A THESIS SUBMITTED AS PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN MATHEMATICS

То

By

Bikash Koli Saha Department of Mathematics Royal School of Applied & Pure Sciences Registration No: 1181166

May 2024

DECLARATION

I hereby declare that the content embodied in the PhD thesis entitled "**Behavioural Study** of Visco-Elastic Fluid Flow Characterized by Walters Liquid (Model B')" is the result of research work carried out by me in the Department of Mathematics, The Assam Royal Global University, Guwahati, India, under the supervision of Dr. Kamal Debnath.

In keeping with the general practice of reporting research observations, due acknowledgments have been made wherever the work described is based on the findings of other researchers.

Further, I declare that this thesis as a whole or any part thereof has not been submitted to any university (or institute) for the award of any degree/ diploma.

Signature

Bikash Koli Saha

(Bikash Koli Saha) Registration No: 1181166 Roll No: 187011001

Date: 29-05-2024

Place: Guwahati

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the work presented in the thesis entitled *Behavioural Study of Visco-Elastic Fluid Flow Characterized by Walters Liquid (Model B')* by Bikash Koli Saha, submitted to the Assam Royal Global University for the award of the degree of Doctor of Philosophy in **Mathematics**, is a record of the results obtained from the research work carried under my supervision.

This thesis conforms to the template and stipulated guidelines of the Assam Royal Global University, including the standard related to plagiarism, and has a plagiarism index of **5** %, excluding the bibliography.

Kamal Sebnath

29-05-2024

Signature of the Supervisor (With Date and Seal)

Ouriginal

Document Information

Analyzed document	Thesis Plagarism Test (Bikash Koli Saha) 28.08.23.pdf (D173176066)
Submitted	2023-08-28 05:38:00 UTC+02:00
Submitted by	Royal Global University
Submitter email	centrallibrary@rgu.ac
Similarity	5%
Analysis address	centrallibrary.rgu@analysis.urkund.com

Sources included in the report

W	URL: https://www.hindawi.com/journals/mpe/2021/6648281/ Fetched: 12/7/2021 3:21:31 AM	3
W	URL: https://www.researchgate.net/publication/222321397_Effect_of_radiation_and_magnetic_field_on_the_mixed_convection_stagnation- point_flow_over_a_vertical_stretching_sheet_in_a_porous_medium Fetched: 5/8/2021 3:06:35 AM	3
W	URL: https://www.researchgate.net/publication/236007966_Unsteady_MHD_Boundary_Layer_Flow_with_Diffusion_and_First- Order_Chemical_Reaction_over_a_Permeable_Stretching_Sheet_with_Suction_or_Blowing Fetched: 12/9/2022 5:46:24 PM	5
W	URL: https://www.researchgate.net/publication/236007932_Effects_of_thermal_radiation_on_micropolar_fluid_flow_and_heat_transfer_over_a_porous_shrinking_sheet Fetched: 12/30/2019 8:10:19 AM	4
W	URL: https://puzzling.stackexchange.com/questions/105725/make-numbers-1-40-using-digits-2-0-2-1 Fetched: 11/9/2021 9:47:10 AM	1
W	URL: https://www.researchgate.net/publication/251594192_Stagnation_point_flow_and_heat_transfer_over_a_stretchingshrinking_sheet_in_a_porous_medium Fetched: 11/28/2019 7:54:40 AM	3
W	URL: https://www.researchgate.net/publication/245055298_Heat_and_mass_transfer_analysis_for_boundary_layer_stagnation- point_flow_towards_a_heated_porous_stretching_sheet_with_heat_absorptiongeneration_and_suctionblowing Fetched: 10/22/2019 10:46:33 AM	3
W	URL: https://doi.org/10.1007/978-981-19-4193-1 Fetched: 8/28/2023 5:38:00 AM	2
W	URL: https://www.researchgate.net/publication/269974537_Boundary_layer_stagnation- point_flow_of_Casson_fluid_and_heat_transfer_towards_a_shrinkingstretching_sheet Fetched: 12/10/2019 7:40:44 AM	6
W	URL: http://www.ijmer.com/papers/Vol5_Issue5/Version-3/D0505_03-2437.pdf Fetched: 7/22/2022 11:43:26 AM	3
w	URL: https://doi.org/10.1155/2020/9685482 Fetched: 8/28/2023 5:38:00 AM	3

W	URL: https://doi.org/10.1155/2019/7392459 Fetched: 8/28/2023 5:38:00 AM	4
W	URL: https://sciencedocbox.com/amp/94474363-Physics/Application-of-shooting-method-on-mhd-thermally-stratified-mixed-convection-flow-of-non-newtonian- fluid-over-an-inclined-stretching-cylinder.html Fetched: 10/22/2019 11:32:36 AM	1
W	URL: https://cyberleninka.org/article/n/1479774 Fetched: 10/26/2022 11:39:42 AM	1
W	URL: https://doi.org/10.1515/ijnsns-2017-0211 Fetched: 8/28/2023 5:38:00 AM	1
W	URL: https://doi.org/10.1007/978-981-15-9927-9 Fetched: 8/28/2023 5:38:00 AM	2

ACKNOWLEDGEMENTS

I am extremely grateful and indebted to my Supervisor Dr. Kamal Debnath, Associate Professor & Head, Department of Mathematics, Royal School of Applied and Pure Sciences, The Assam Royal Global University, for his valuable advice, resourceful guidance and constant encouragement in compilation of this thesis.

I shall remain highly grateful towards Prof. (Dr.) Anuradha Devi, Dean, Royal School of Applied & Pure Sciences, The Assam Royal Global University, for believing me and encouraging me for this entire research work.

I would also like to thanks all faculty members of Department of Mathematics, Royal School of Applied & Pure Sciences, The Assam Royal Global University, for their encouragement, love and valuable support during the progress of my research work.

I am always thankful to The Assam Royal Global University, the pioneer of higher education in north-east India for providing me all the necessary facilities to carry out my research work.

Lastly, I convey my gratitude towards my family, friends, without their support and encouragement it would have been certainly much harder to write this doctoral thesis.

Thanks all of you

Signature

Bikash Koli Saha

(Bikash Koli Saha)

Abbreviations

U(x)	Main stream velocity
u	Velocity in the x-direction
v	Velocity in the y-direction
ρ	Fluid density
μ	Coefficient of fluid viscosity
ν	Kinematic viscosity
σ	Electrical conductivity of the fluid
k_0	Visco-elastic parameter
B(x)	Magnetic field
\mathbf{B}_0	Constant Magnetic field
<i>k</i> ₁	Non-Newtonian parameter
М	Magnetic parameter
η	Similarity variable
U	Stretching velocity
U ₀	Reference velocity
Ν	Velocity slip factor
<i>N</i> ₁	Initial value of velocity slip factor
v_w	Suction or blowing parameter
V(x)	Velocity of suction or blowing
V ₀	Initial strength of suction or blowing
λ	velocity slip parameter
S	Modified Suction or blowing parameter
τ	skin friction coefficient
К	Permeability parameter
k^*	Modifed Permeability parameter
δ	Velocity slip parameter
β	Thermal slip parameter
Pr	Prandtl parameter
С	Concentration
C_W	Plate concentration
\mathcal{C}_{∞}	Free stream concentration
n	Power-law exponent
D	Diffusion coefficient
R ₀	Constant

R(x)	Variable reaction rate
L	Reference length
Re_x	Local Reynolds number
Da_x	Local Darcy number
S _c	Schmidt number
β	Thermal slip factor/ Reaction rate parameter
C_p	Specific heat
Т	Temperature
K	Thermal conductivity of fluid
T_{w}	Plate temperature
T_{∞}	Free stream temperature
U_w	Plate velocithy/stretching parameter
U_{∞}	Free stream velocity
А	Velocity ratio parameter
Α	Unsteadiness parameter
А	Slip Length
Ψ	Stream function and
T_0	Rate of surface temperature
С	Stretching parameter
а	Straining parameter/velocity slip parameter
G1	Velocity slip factor
G ₀	Initial value of velocity slip factor
H ₁	Thermal slip factor
H ₀	Initial value of thermal slip factor

_____ vi)_____

List of Figures

Fig. No.	Figure Caption	Page No.
2.1	Geometrical model of the flow problem	23
2.2	Effects of k_1 on velocity curve curve $f'(\eta)$ against η	27
2.3	Effects of k* on velocity $f'(\eta)$ against η	27
2.4	Effects of S on velocity curve $f'(\eta)$ against η	28
2.5	Effects of δ on velocity curve $f'(\eta)$ against η	28
2.6	Effects of k_1 on temperature curve curve $\theta(\eta)$ against η	28
2.7	Effects of k* on temperature $\theta(\eta)$ against η	29
2.8	Effects of S on temperature curve $\theta(\eta)$ against η	29
2.9	Effects of δ on temperature curve $\theta(\eta)$ against η	29
2.10	Effects of k_1 on temperature gradient curve $-\theta'(0)$ against δ	30
2.11	Effects of k_1 on temperature gradient curve $-\theta'(0)$ against β	30
2.12	Effects of k* on temperature gradient curve $-\theta'(0)$ against δ	30
2.13	Effects of k* on temperature gradient curve $-\theta'(0)$ against β	31
2.14	Effects of k_1 on skin friction coefficient τ against δ	31
2.15	Effects of k* on skin friction coefficient τ against δ	31
3.1	Geometrical model of the flow problem	35
3.2	Velocity profile $f'(\eta)$ against $\eta \eta$ for various values of k_1	39
3.3	Velocity profile $f'(\eta)$ against η for various values of M	39
3.4	Velocity profile $f'(\eta)$ against η for various values of slip parameter λ	39
3.5	Velocity profile $f'(\eta)$ against η for various values of S (suction)	40
3.6	Velocity profile $f'(\eta)$ against η values of S (blowing)	40
3.7	Skin friction τ against M for various various values of k_1	40
3.8	Skin friction τ against S (suction) values of k_1	41
3.9	Skin friction τ against S (blowing) for various values of k_1	41
4.1	Physical model of flow problem	45
4.2	$f'(\eta)$ versus η with variation of k_1	50
4.3	$f'(\eta)$ versus η with variation of k*	51
4.4	$f'(\eta)$ versus η with variation suction S	51
4.5	$f'(\eta)$ versus η with variation of blowing S	51
4.6	$\phi(\eta)$ versus η for variation of k_1 for $n > 0$	52
4.7	$\phi(\eta)$ versus η for variation of k_1 for $n < 0$	52

ſ

4.8	$\phi(\eta)$ versus η for variation of k* for n > 0	52
4.9	$\phi(\eta)$ versus η for variation of k* for n < 0	53
4.10	$\phi(\eta)$ versus η for variation of S for $n > 0$	53
4.11	$\phi(\eta)$ versus η for variation of S for n < 0	53
4.12	$\phi(\eta)$ versus η for variation of S _c for n > 0	54
4.13	$\phi(\eta)$ versus η for variation of S _c for for n < 0	54
4.14	(η) versus η for variation of β for n > 0	54
4.15	$\phi(\eta)$ versus η for variation of β for n < 0	55
4.16	$\phi(\eta)$ versus η for variation of n > 0	55
4.17	$\phi(\eta)$ versus η for variation of n < 0	55
4.18	τ versus S for variation of k_1	56
5.1	Physical sketch of the flow in a convergent channel	59
5.2	Velocity distribution against η for $M = 8$	63
5.3	Velocity distribution against η for $M = 10$	63
5.4	Velocity distribution against η for $M = 12$	64
5.5	Skin friction coefficient for different values of K ₁	64
6.1	The flow geometry of the problem	67
6.2	Velocity $h'(\eta)$ versus η for k_1 with $M = 0.1$, $\lambda = 0.1$, $\alpha = 0.3$, $Pr = 0.4$	69
6.3	Velocity $h'(\eta)$ versus η for M with $k_1 = 0.4$, $\lambda = 0.1$, $\alpha = 0.3$, $Pr = 0.4$	70
6.4	Velocity $h'(\eta)$ versus η for α with $k_1 = 0.4$, $M=0.1$, $\lambda=0.1$, $Pr=0.4$	70
6.5	Velocity $h'(\eta)$ versus η for λ with $k_1 = 0.4$, $M=0.1$, $\alpha=0.3$, $Pr=0.4$	70
6.6	Temperature $\theta(\eta)$ versus η for k_1 with $M=0.1$, $\alpha=0.3$, $\lambda=0.1$, $Pr=0.4$	71
6.7	Temperature $\theta(\eta)$ versus η for M with $k_1=0.4$, $\alpha=0.3$, $\lambda=0.1$, $Pr=0.4$	71
6.8	Temperature $\theta(\eta)$ versus η for Pr with $k_1=0.4$, $M=0.1 \alpha=0.3$, $\lambda=0.1$	71
6.9	Temperature $\theta(\eta)$ versus η for λ with $k_1=0.4$, $M=0.1 \alpha=0.3$, $Pr=0.4$	72
7.1	Physical sketch of flow model	75
7.2 (a)	Plot of $f'(\eta)$ for variation of a/c taking $\lambda \neq 0$	79
7.2 (b)	Plot of $f'(\eta)$ for variation of a/c taking $\lambda = 0$	79
7.3 (a)	Plot of $f'(\eta)$ for variation of k_1 taking $\lambda \neq 0$ for a/c =1.5	80
7.3 (b)	Plot of $f'(\eta)$ for variation of k_1 taking $\lambda = 0$ for a/c =1.5	80
7.4 (a)	Plot of $f'(\eta)$ for variation of k_1 taking $\lambda \neq 0$ for a/c =0.5	80
7.4 (b)	Plot of $f'(\eta)$ for variation of k_1 taking $\lambda = 0$ for a/c =0.5	81
7.5 (a)	Plot of $f'(\eta)$ for variation of A taking $\lambda \neq 0$ for a/c =1.5	81

7.5 (b)	Plot of $f'(\eta)$ for variation of A taking $\lambda = 0$ for a/c =1.5	81
7.6 (a)	Plot of $f'(\eta)$ for variation of A taking $\lambda \neq 0$ for a/c =0.5	82
7.6 (b)	Plot of $f'(\eta)$ for variation of A taking $\lambda = 0$ for a/c =0.5	82
7.7 (a)	Plot of $f'(\eta)$ for variation of λ for a/c =1.5	82
7.7 (b)	Plot of $f'(\eta)$ for variation of λ for a/c =0.5	83
7.8 (a)	Plot of $\theta(\eta)$ for variation of a/c taking $\delta \neq 0$	83
7.8 (b)	Plot of $\theta(\eta)$ for variation of a/c taking $\delta = 0$	83
7.9 (a)	Plot of $\theta(\eta)$ for variation of k_1 taking $\delta \neq 0$ for a/c =1.5	84
7.9 (b)	Plot of $\theta(\eta)$ for variation of k_1 taking $\delta = 0$ for a/c =1.5	84
7.10 (a)	Plot of $\theta(\eta)$ for variation of k_1 taking (a) $\delta \neq 0$ for a/c =0.5	84
7.10(b)	Plot of $\theta(\eta)$ for variation of k_1 taking $\delta = 0$ for a/c =0.5	85
7.11(a)	Plot of $\theta(\eta)$ for variation of <i>A</i> taking $\delta \neq 0$ for a/c =1.5	85
7.11(b)	Plot of $\theta(\eta)$ for variation of <i>A</i> taking $\delta = 0$ for a/c =1.5	85
7.12(a)	Plot of $\theta(\eta)$ for variation of <i>A</i> taking $\delta \neq 0$ for a/c =0.5	86
7.12 (b)	Plot of $\theta(\eta)$ for variation of <i>A</i> taking $\delta = 0$ for a/c =0.5	86
7.13(a)	Plot of $\theta(\eta)$ for variation of λ for (a) a/c =1.5	86
7.13 (b)	Plot of $\theta(\eta)$ for variation of λ for a/c =0.5	87