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Chapter 4 

 

Reactive Solute Diffusion in Elastico-Viscous Boundary Layer Fluid 

Flow over a Flat Permeable Plate with Variable Surface 

Concentration 

 

4.1 Introduction  

The steady fluid motion of viscous liquid past a flat surface attracts researchers because of 

its enormous technological applications. The study of such a type of flow was firstly 

initiated by Blasius [65]. Abu-Sitta [66] revealed the the existence of solution of fluid 

motion passing through a flat surface. Later stage, many scholars [67-68] investigated 

various elements of boundary layer flow across a flat surface. 

The elastico-viscous fluid, which has both elastic and viscous properties, has many 

applications in engineering sciences. As high-velocity pressure is applied to it, it hardens 

and transforms from a liquid to a solid. That’s why, it is now frequently used in protective 

equipment such as liquid body armor, liquid sports shoes, helmets, mobile cases, speed 

bumps, and other similar products. Hayat et al. [69] examined the mixed convective heat 

transition taking visco-elastic liquid through a stretching cylinder. Rashidi et al. [70] 
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investigated hydromagnetic mixed convective visco-elastic fluid motion taking thermal 

radiation. 

The investigation of solute transport in fluid flow is critical for the progress of 

separation method and the theory of chemical kinetics. Many researchers [71-75] examined 

the impact of chemical processes on fluid as a result of stretching and contracting of sheets. 

Heat transition and mass transport in a hydromagnetic chemically reactive fluid across a 

flat permeable plate were demonstrated by Ibrahim and Makinde [76]. Bhattacharyya and 

Uddin [77] examined the chemically reactive diffusion of solute through a flat permeable 

plate surrounded by porous medium having variable surface concentration. Eldabe et al. 

[78] investigated the chemically reactive mass transport taking variable wall concentration 

for a moving flat permeable plate. The mass diffusion due to chemical reaction over an 

expanded exponentially surface having variable wall concentration was demonstrated by 

Banerjee et al. [79].   

The mass transport and heat transition mechanism through porous media has piqued 

the curiosity of many scholars due to its widespread use in the chemical industry, petroleum 

engineering, and a range of other technological operations. Furthermore, a better 

understanding of convection through porous media could aid in the design of insulation, 

grain storage, metal processing, filtration systems, catalytic reactors, heat exchangers, and 

other fields. Nayak et al. [80] illustrated how heat and mass transmission take place via a 

boundary layer in a chemically reactive, hydromagnetic, viscous liquid with a source/sink.  

Sing and Kumar [81] investigated impact of chemical reaction on heat and mass transfer 

process for micropolar fluid past a porous channel using radiation. Mjankwi et al. [82] 

looked at how the heat flow and mass absorption coefficient were affected by different fluid 

properties. Misra and Govardhan [83] studied how heat and mass transmission process 

affected the boundary layer for nanofluid flow. Jabeen et al. [84] provided a comparative 

study with thermal radiation and thermophoresis with chemically reactive MHD flow along 

a porous stretching surface. 

This paper deals with the solute diffusion resulting from chemical reaction in Elastico-

viscous fluid through a flat permeable plate represented by Walter Liquid (Model B/)  with 

variation in surface concentration. The variable reaction rate is considered in this study. 

Employing similarity variables, the resultant equations converted to self-similar forms and 

thus solved by the well-known MATLAB inbuilt solver ‘bvp4c’. For relevant flow feature 
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parameters, the numerically calculated results are displayed. The results of the numerical 

calculations are plotted for the involved flow feature values. From a physical standpoint, 

the fluid flow and solute transport mechanisms are thoroughly examined.     

4.2 Mathematical Formulation 

The diffusion of solute results from chemical reaction in Elastico-viscous fluid across a flat 

permeable plate surrounded by a porous domain taking variation in concentration at the 

plate is considered as 𝐶𝑊 = 𝐶∞ + 𝐶0𝑥
𝑛, where 𝐶𝑊: plate concentration, 𝐶∞: free stream 

concentration, 𝐶0: real constant, 𝑛: power-law exponent. The free stream velocity 𝑢∞ and 

the concentration 𝐶∞ away from boundary layer make up the external flow. The plate along 

x-axis serves a reference frame and y-axis is at right angle to it. Fig. 4.1 depicts the physical 

geometry of flow problem. 

 

 

Fig. 4.1 Physical model of flow problem 
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where, 

 𝑢: velocity along 𝑥-axis, 𝑣:  velocity along 𝑦-axis,  k0: elastico-viscous factor,  

 𝑘: permeability parameter, 𝜇: coefficient of fluid viscosity, 𝐶: concentration, 
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 𝜌: fluid density,  𝐷: diffusion coefficient, 𝜈 =
𝜇

𝜌
 : kinematic viscosity, 𝑅(𝑥) =

𝐿𝑅0

𝑥
: variable 

reaction rate, 𝐿: reference length,  𝑅0: constant. 

The relevant conditions at the boundary are: 

At  y = 0: 𝑢 = 0,  𝑣 = 𝑣𝑤  and as   𝑦 → ∞:  𝑢 → 𝑢∞                                                        (4.2.4) 

At  y = 0: 𝐶 = 𝐶𝑊 = 𝐶∞ + 𝐶0𝑥
𝑛 and as  𝑦 → ∞:   𝐶 → 𝐶∞                                           (4.2.5) 

where 𝑣𝑤 =
𝑣0

(𝑥)
1
2

:  applied suction or blowing parameter for flat plate, 𝑣0: constant also 

𝑣0 < 0 represents suction, and 𝑣0 > 0 indicates blowing. 

Stream function 𝛹(𝑥, 𝑦) is connected with velocity components as 

  𝑢 =
𝜕𝛹

𝜕𝑦
, 𝑣 = −

𝜕𝛹

𝜕𝑥
                                                                                                                  (4.2.6)  

Now, applying (4.2.6), (4.2.2) and (4.2.3) transformed as 
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Relevant boundary conditions (4.2.4) turn into: 

At  y = 0;  
𝜕𝛹

𝜕y
= 0,

𝜕𝛹

𝜕x
= −𝑣𝑤 𝑎𝑛𝑑 as  𝑦 → ∞:  

𝜕𝛹

𝜕y
→ 𝑢∞                                         (4.2.9) 

Variables without dimension, 𝛹 and 𝐶 are taken as : 

𝛹 = √𝑈∞νx 𝑓(𝜂) ,   𝐶 = 𝐶∞ + (𝐶𝑤 − 𝐶∞)𝜙(𝜂)                                                            (4.2.10)                                                                        

where, 𝜂 = (
𝑦

𝑥
)√𝑅𝑒𝑥: similarity variable,  𝑅𝑒𝑥 =

𝑢∞𝑥

ν
: local Reynolds number. 
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Employing (4.2.10), obtain final self-similar equations as: 

𝑓′′′(𝜂) +
1

2
𝑓(𝜂)𝑓′′(𝜂) + 𝑘1 [2𝑓′(𝜂)𝑓′′′(𝜂) + 𝑓(𝜂)𝑓′v(𝜂) − (𝑓′′(𝜂))

2
] −

1

𝐷𝑎𝑥𝑅𝑒𝑥
(𝑓′(𝜂) − 1) = 0                                                                                                         (4.2.11)                                                                                                                                     

𝜙′′(𝜂) +
1

2
𝑆𝑐𝑓(𝜂)𝜙′(𝜂) − 𝑆𝑐(𝑛𝑓′(𝜂) + 𝛽)𝜙(𝜂) = 0                                                   (4.2.12) 

where,  𝐷𝑎𝑥 =
𝑘

𝑥2 =
𝑘0

𝑥
: local Darcy number, 𝑘 =𝑘0𝑥 , 𝑘0 being constant, 𝑘1: modified 

elastic-viscous parameter, 𝑆𝑐 =
ν

𝐷
: Schmidt number, 𝛽 =

𝐿𝑅0

𝑢∞
:  chemical reaction rate 

parameter having cases (i) destructive type if 𝛽 > 0 (ii) constructive type if 𝛽 < 0, and (iii) 

non-reactive solute 

if  𝛽 = 0. 

Equation (4.2.11) can be written as 

𝑓′′′(𝜂) +
1

2
𝑓(𝜂)𝑓′′(𝜂) + 𝑘1 [2𝑓′(𝜂)𝑓′′′(𝜂) + 𝑓(𝜂)𝑓′v(𝜂) − (𝑓′′(𝜂))

2
] + 𝑘∗(1 − 𝑓′(𝜂))

= 0                                                                                                                                             (4.2.13) 

where 𝑘∗ =
1

𝐷𝑎𝑥𝑅𝑒𝑥
 : permeability parameter. 

Equations (4.2.9) and (4.2.5) are transformed as: 

𝐴𝑡  𝜂 = 0 ;   𝑓(𝜂) = 𝑆,  𝑓′(𝜂) = 0 𝑎𝑛𝑑 𝑎𝑠  𝜂 → ∞:  𝑓′(𝜂) = 1,   𝑓′′(𝜂) = 0           (4.2.14) 

𝐴𝑡  𝜂 = 0 ; 𝜙(𝜂) = 1 and as 𝜂 → ∞:  𝜙(𝜂) = 0                                                            (4.2.15) 

where, 𝑆 = (
−2𝑣𝑤

𝑢∞
) (𝑅𝑒𝑥)

1

2 =
−2𝑣0

(𝑢∞ν)
1
2

: suction or blowing parameter having cases (i) for 

suction, 𝑆 > 0 when 𝑣0 < 0   and (ii) for blowing, 𝑆 < 0 when 𝑣0 > 0. 

4.3 Method of Solution 

The implement ‘bvp4c’ MATLAB solver to equations (4.2.13) and (4.2.12), the following 

transformation is adopted: 

𝑓 = 𝑓1,  𝑓′ = 𝑓2,   𝑓′′ = 𝑓3,  𝑓′′′ = 𝑓4 , 𝜙 = 𝑓5,  𝜙′ = 𝑓6                                                   (4.3.1) 

Making use of (4.3.1), equations (4.2.13) and (4.2.12) can be written as: 
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𝑓4
′ =

1

𝑓1
[(𝑓3)

2 − 2𝑓2𝑓4 − (
1

𝑘1
) {𝑓4 +

1

2
𝑓1𝑓3 + 𝑘∗(1 − 𝑓2)}]                                            (4.3.2) 

𝑓6
′ = −

1

2
𝑆𝑐𝑓1𝑓6 + 𝑆𝑐(𝑛𝑓2 +  𝛽)𝑓5                                                                                         (4.3.3)  

and the applicable boundary conditions (5.2.14) and (5.2.15) reduces as follows: 

𝑓1(0) = S,  𝑓2(0) = 0 𝑎𝑛𝑑  𝑓2(∞) = 1,  𝑓3(∞) = 0                                                          (4.3.4) 

𝑓5(0) = 1  𝑎𝑛𝑑  𝑓5(∞) = 0                                                                                                    (4.3.5) 

4.4 Results and Discussion 

To emphasize the physical relevance of the pertinent flow parameters, the velocity profile 

and concentration profile, both of which were calculated numerically, are shown in Figs. 

4.2 to 4.18 using different parameter combinations like elatico-viscous k1, permeability k*, 

suction/blowing S, Schmidt number 𝑆𝑐, first order chemical reaction rate 𝛽 under direct and 

inverse variation.  

The skin friction coefficient is assessed to judge the correctness of the numerical 

output produced by ‘bvp4c’ and to verify the current work without taking elastico-viscous 

and permeability parameters and is obtained as  𝑓′′(0) = 0.3321 which is well in accord 

with the standard results obtained by Bhattacharyya and Layek [75] as 𝑓′′(0) =

0.332058 , Ishak, Nazir and Pop [72] 𝑓′′(0) = 0.3321, Eldabe,  Sedki and Youssef  [78] 

𝑓′′(0) = 0.332057.  

The velocity curves 𝑓′(𝜂) versus 𝜂 for the various values of elastico-viscous (k1) and 

permeability (k*) parameters are depicted in figures 4.2 & 4.3. The rise in 𝑘1 and 𝑘∗, 

enhances the velocity profile 𝑓′(𝜂) at some fixed 𝜂. This indicates a reduction in the 

thickness of the momentum boundary layer. 

The impact of suction and blowing factors on the velocity curves 𝑓′(𝜂) are 

demonstrated from figs. 4.4 and 4.5. It is noticed that growing applied suction velocity 

reduces and gradually settled down after traversing a certain distance. On the other hand, 

velocity enhances rapidly with applied blowing and settles down soon. Furthermore, the 

solute boundary barrier is thinner after being subjected to fluid suction, whereas blowing 

thickens it. 
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Figs. 4.6 and 4.7 depict the fluid concentration profile 𝜙(𝜂) against 𝜂 with the growth 

of elastico-viscous parameter 𝑘1 for direct variation and inverse variation. The 

concentration of the fluid for direct variation diminishes with growing elastico-viscocity 

but for inverse variation, though it enhances initially but gradually it diminishes and finally 

settles down at 𝜂 = 6. 

The influence of permeability factor on the concentration distribution 𝜙(𝜂) against 𝜂 

for direct and inverse variation are illustrated in figs. 4.8 and 4.9. Due to concentration 

overshoot, solute transport from the surface to the fluid occurs in direct fluctuation, whereas 

solute absorption at the surface occurs in inverse variation. Fig. 4.8 shows that the 

concentration of the fluid reduces with the rise of permeability factor for direct variation 

but for the inverse variation the fluid concentration diminishes initially but gradually it rises 

with the growing permeability factor as noticed from fig. 4.9. 

The effect of applied suction for direct and inverse variation on 𝜙(𝜂), the 

concentration distribution, are demonstrated from figs. 4.10 and 4.11. The concentration 

profile reduces but not significantly as the applied suction values enhance for direct 

variation but for inverse variation notable reduction in concentration profile is noticed with 

the rise of applied suction. Thus, the thickness of solute boundary layer is diminished upon 

application of suction. 

The impact of Schmidt number 𝑆𝑐 on the concentration curves 𝜙(𝜂) against 𝜂 for 

direct and inverse variation are plotted in figs. 4.12 and 4.13. The rapid reduction of 

concentration profile is observed from fig. 4.12 for direct variation with the growth of 𝑆𝑐. 

But, for inverse variation, though the concentration enhances initially with the rise of 𝑆𝑐 

but gradually it diminishes as shown in fig. 4.13. Schmidt number is the proportion of 

momentum and mass diffusivity means diffusion coefficient is inversely proportional to 

Schmidt number and hence due to increasing values of Schmidth number (𝑆𝑐), the diffusion 

coefficient is diminished, which reduces the solute boundary layer thickness for direct and 

inverse variations after crossing the certain distance in the plate. 

The variation of first order chemical reaction rate parameter (𝛽) for the concentration 

curves 𝜙(𝜂) against 𝜂  are depicted in figs. 4.14 and 4.15 for direct and inverse variations. 

The smoothness of the curves is observed in the direct variation which indicates that the 

reaction rate parameter is highly constructive and hence constructive chemical reaction is 

possible. But, for inverse variation, uneven or bumpy curves are seen which implies that 
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the reaction rate parameter is highly destructive. Therefore, mass transport from the plate 

occurs in a destructive reaction, while mass absorption takes place in a constructive 

reaction. Also, the thickness of solute boundary layer diminishes as 𝛽 rises. 

Figs. 4.16 and 4.17 demonstrate the impact of varying surface concentration on the 

concentration profile for distinct positive and negative values of n. As n value increases for 

direct variation, it is noticeable from fig. 4.16 that the concentration curves 𝜙(𝜂) and the 

thickness of solute boundary layer diminish. For inverse variation, however, the surface 

concentration diminishes as n reduces, as shown in fig. 4.17. Also, mass absorption is 

noticed in inverse variation, and as the value of  𝑛 (< 0) rises, mass absorption enhances. 

 Skin friction calculation is essential for engineers to determine the total frictional 

drag exerted on the object and to estimate the heat transport rate on its surface.  The skin 

friction coefficient 𝜏 is plotted in fig. 4.18 against applied suction for rising values of 

elastico-viscous parameter. It shows that the viscous drag though initially enhances but 

gradually reduces with growing elastico-viscous parameter. The growing applied suction 

factor diminishes the coefficient of  skin friction at a certain length of the plate and then it 

enhances along with the plate. 

 

 

Fig. 4.2  𝑓′(𝜂) versus 𝜂 with  variation of  𝑘1 
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Fig 4.3  𝑓′(𝜂) versus 𝜂 with  variation   of k* 

 

 

Fig. 4.4  𝑓′(𝜂) versus 𝜂 with  variation of suction S 

 

   

Fig. 4.5  𝑓′(𝜂) versus 𝜂 with  variation of blowing S 
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Fig. 4.6  𝜙(𝜂) versus 𝜂  for variation of  𝑘1 for n > 0 

 

    

Fig. 4.7  𝜙(𝜂) versus 𝜂  for variation of  𝑘1 for n < 0 

 

        

Fig. 4.8  𝜙(𝜂) versus 𝜂  for variation of k*  for n > 0 
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Fig. 4.9  𝜙(𝜂) versus 𝜂  for variation  k* for n < 0 

 

  

Fig. 4.10  𝜙(𝜂) versus 𝜂  for variation of S for n > 0 

 

     

Fig. 4.11 𝜙(𝜂) versus 𝜂  for variation of S for n < 0 
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Fig. 4.12  𝜙(𝜂) versus 𝜂  for variation of  Sc for n > 0 

 

            

Fig. 4.13 𝜙(𝜂) versus 𝜂  for variation of Sc for n < 0 

 

            

Fig. 4.14  𝜙(𝜂) versus 𝜂  for variation of  𝛽 for n > 0 
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Fig. 4.15  𝜙(𝜂) versus 𝜂  for variation of  𝛽 for n < 0 

 

                        

Fig. 4.16  𝜙(𝜂) versus 𝜂  for variation of n > 0 

 

                       

Fig. 4.17  𝜙(𝜂) versus 𝜂  for variation  of n < 0 
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                                                         Fig. 4.18  𝜏 versus 𝑆 for variation of 𝑘1 

 

4.5 Conclusion 

The study reveals that the growth of elastico-viscosity and permeability enhances fluid 

motion but it reduces the concentration of the fluid for direct variation. For inverse 

variation, though the concentration rises at the leading age of the plate but gradually it starts 

decreasing with the growing elastico-viscosity and permeability factors. The velocity and 

concentration for direct and inverse variation also diminish as the suction parameter 

enhances. The concentration reduces with the rise of Schmidt number for direct variation 

but for inverse variation initially, it rises but ultimately it reduces. For both direct and 

inverse variation, the reaction rate parameter lowers the fluid concentration.  The increasing 

positive values of surface concentration reduces the concentration smoothly but the 

negative values of surface concentration diminish the concentration abruptly. The drag 

force reduces with the growth of suction. This work can be extended due to its numerous 

applications. Various analytical and numerical techniques can be utilized for comparing the 

present findings. The fluid flow simulation can be used to get a clear image of the generated 

outcomes. 

 

 

 


